新课标人教版A必修2-第二单元测试题
人教版高中数学必修二第二章单元测试(二)- Word版含答案
2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.下列推理错误的是( ) A .A ∈l ,A ∈α,B ∈l ,B ∈α⇒l ⊂α B .A ∈α,A ∈β,B ∈α,B ∈β⇒α∩β=AB C .l ⊄α,A ∈l ⇒A ∉α D .A ∈l ,l ⊂α⇒A ∈α2.长方体ABCD -A 1B 1C 1D 1中,异面直线AB ,A 1D 1所成的角等于( ) A .30°B .45°C .60°D .90°3.在空间四边形ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 上的点,当BD ∥平面EFGH 时,下面结论正确的是( ) A .E ,F ,G ,H 一定是各边的中点 B .G ,H 一定是CD ,DA 的中点C .BE ∶EA =BF ∶FC ,且DH ∶HA =DG ∶GCD .AE ∶EB =AH ∶HD ,且BF ∶FC =DG ∶GC4.如图,正方体的底面与正四面体的底面在同一平面α上,且AB ∥CD ,正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,那么m +n 等于( )A .8B .9C .10D .115.如图所示,在正方体ABCD —A 1B 1C 1D 1中,若E 是A 1C 1的中点,则直线CE 垂直于( )A .ACB .BDC .A 1DD .A 1D 16.如图所示,将等腰直角△ABC 沿斜边BC 上的高AD 折成一个二面角,此时∠B ′AC =60°,那么这个二面角大小是( )A .90°B .60°C .45°D .30°7.如图所示,直线P A 垂直于⊙O 所在的平面,△ABC 内接于⊙O ,且AB 为⊙O 的直径,点M 为线段PB 的中点.此卷只装订不密封班级 姓名 准考证号 考场号 座位号现有结论:①BC ⊥PC ;②OM ∥平面APC ;③点B 到平面P AC 的距离等于线段BC 的长,其中正确的是( ) A .①②B .①②③C .①D .②③8.如图,三棱柱111ABC A B C -中,侧棱AA 1⊥底面A 1B 1C 1,底面三角形A 1B 1C 1是正三角形,E 是BC 中点,则下列叙述正确的是( )A .CC 1与B 1E 是异面直线B .AC ⊥平面ABB 1A 1 C .AE ,B 1C 1为异面直线,且AE ⊥B 1C 1D .A 1C 1∥平面AB 1E9.已知平面α⊥平面β,α∩β=l ,点A ∈α,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α,m ∥β,则下列四种位置关系中,不一定成立的是( ) A .AB ∥mB .AC ⊥mC .AB ∥βD .AC ⊥β10.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( ) A .512πB .3π C .4π D .6π 11.正方体ABCD -A 1B 1C 1D 1中,过点A 作平面A 1BD 的垂线,垂足为点H .以下结论中,错误的是( ) A .点H 是△A 1BD 的垂心 B .AH ⊥平面CB 1D 1C .AH 的延长线经过点C 1D .直线AH 和BB 1所成的角为45°12.已知矩形ABCD ,AB =1,BC ,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.下列四个命题:①若a ∥b ,a ∥α,则b ∥α;②若a ∥α,b ⊂α,则a ∥b ;③若a ∥α,则a 平行于α内所有的直线;④若a ∥α,a ∥b ,b ⊄α,则b ∥α.其中正确命题的序号是________.14.如图所示,在直四棱柱1111ABCD A B C D -中,当底面四边形A 1B 1C 1D 1满足条件_______时,有A 1C ⊥B 1D 1.(注:填上你认为正确的一种情况即可,不必考虑所有可能的情况)15.已知四棱锥P ABCD -的底面ABCD 是矩形,P A ⊥底面ABCD ,点E 、F 分别是棱PC 、PD 的中点,则 ①棱AB 与PD 所在直线垂直; ②平面PBC 与平面ABCD 垂直; ③△PCD 的面积大于PAB △的面积; ④直线AE 与直线BF 是异面直线.以上结论正确的是________.(写出所有正确结论的编号)16.如图所示,已知矩形ABCD 中,AB =3,BC =a ,若P A ⊥平面ABCD ,在BC 边上取点E ,使PE ⊥DE ,则满足条件的E 点有两个时,a 的取值范围是________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,长方体1111ABCD A B C D -中,M 、N 分别为AB 、A 1D 1的中点,判断MN 与平面A 1BC 1的位置关系,为什么?18.(12分)如图,三棱柱111ABC A B C -的侧棱与底面垂直,AC =9,BC =12,AB =15,AA 1=12,点D 是AB 的中点. (1)求证:AC ⊥B 1C ; (2)求证:AC 1∥平面CDB 1.19.(12分)如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC . (1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A DE P --为直二面角?并说明理由.20.(12分)如图,三棱柱ABC -A 1B 1C 1中,侧面BB 1C 1C 为菱形,B 1C 的中点为O ,且AO ⊥平面BB 1C 1C . (1)证明:B 1C ⊥AB ;(2)若AC ⊥AB 1,∠CBB 1=60°,BC =1,求三棱柱111ABC A B C -的高.21.(12分)如图所示,ABCD是正方形,O是正方形的中心,PO⊥底面ABCD,底面边长为a,E是PC的中点.(1)求证:P A∥面BDE;(2)求证:平面P AC⊥平面BDE;(3)若二面角E BD C--为30°,求四棱锥P ABCD-的体积.22.(12分)如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1,BC的中点.(1)求证:平面ABE⊥平面B1BCC1;(2)求证:C1F∥平面ABE;(3)求三棱锥E ABC-的体积.2018-2019学年必修二第二章训练卷点、直线、平面之间的位置关系(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.【答案】C【解析】若直线l∩α=A,显然有l⊄α,A∈l,但A∈α.故选C.2.【答案】D【解析】由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.故选D.3.【答案】D【解析】由于BD∥平面EFGH,所以有BD∥EH,BD∥FG,则AE∶EB=AH∶HD,且BF∶FC=DG∶GC.故选D.4.【答案】A【解析】如图,取CD的中点H,连接EH,HF.在四面体CDEF中,CD⊥EH,CD⊥FH,所以CD⊥平面EFH,所以AB⊥平面EFH,所以正方体的左、右两个侧面与EFH平行,其余4个平面与EFH相交,即n=4.又因为CE与AB在同一平面内,所以CE与正方体下底面共面,与上底面平行,与其余四个面相交,即m=4,所以m+n=4+4=8.故选A.5.【答案】B【解析】易证BD⊥面CC1E,则BD⊥CE.故选B.6.【答案】A 【解析】连接B′C,则△AB′C为等边三角形,设AD=a,则B′D=DC=a,B C AC'==,所以∠B′DC=90°.故选A.7.【答案】B【解析】对于①,∵P A⊥平面ABC,∴P A⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面P AC,又PC⊂平面P AC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥P A,∵P A⊂平面P AC,∴OM∥平面P AC;对于③,由①知BC⊥平面P AC,∴线段BC的长即是点B到平面P AC的距离.故①②③都正确.8.【答案】C【解析】由已知AC=AB,E为BC中点,故AE⊥BC,又∵BC∥B1C1,∴AE⊥B1C1,故C正确.故选C.9.【答案】D【解析】∵m∥α,m∥β,α∩β=l,∴m∥l.∵AB∥l,∴AB∥m.故A一定正确.∵AC⊥l,m∥l,∴AC⊥m.故B一定正确.∵A∈α,AB∥l,l⊂α,∴B∈α.∴AB⊄β,l⊂β.∴AB∥β.故C也正确.∵AC⊥l,当点C在平面α内时,AC⊥β成立,当点C不在平面α内时,AC⊥β不成立.故D不一定成立.故选D.10.【答案】B【解析】如图所示,作PO⊥平面ABC,则O为△ABC的中心,连接AP,AO.1sin 602ABC S =︒=11194ABC A B C ABC V S OP OP -∴=⨯==,OP ∴=213OA ==,∴tan OP OAP OA ∠=,又02OAP π<∠<,∴3OAP π∠=.故选B .11.【答案】D【解析】因为AH ⊥平面A 1BD ,BD ⊂平面A 1BD ,所以BD ⊥AH . 又BD ⊥AA 1,且AH ∩AA 1=A .所以BD ⊥平面AA 1H .又A 1H ⊂平面AA 1H .所以A 1H ⊥BD ,同理可证BH ⊥A 1D ,所以点H 是△A 1BD 的垂心,故A 正确. 因为平面A 1BD ∥平面CB 1D 1,所以AH ⊥平面CB 1D 1,B 正确.易证AC 1⊥平面A 1BD .因为过一点有且只有一条直线与已知平面垂直,所以AC 1和AH 重合.故C 正确.因为AA 1∥BB 1,所以∠A 1AH 为直线AH 和BB 1所成的角. 因为∠AA 1H ≠45°,所以∠A 1AH ≠45°,故D 错误.故选D . 12.【答案】B【解析】A 错误.理由如下:过A 作AE ⊥BD ,垂足为E ,连接CE ,若直线AC 与直线BD 垂直,则可得BD ⊥平面ACE ,于是BD ⊥CE ,而由矩形ABCD 边长的关系可知BD 与CE 并不垂直.所以直线AC 与直线BD 不垂直.B 正确.理由:翻折到点A 在平面BCD 内的射影恰好在直线BC 上时,平面ABC ⊥平面BCD ,此时由CD ⊥BC 可证CD ⊥平面ABC ,于是有AB ⊥CD .故B 正确. C 错误.理由如下:若直线AD 与直线BC 垂直,则由BC ⊥CD 可知BC ⊥平面ACD ,于是BC ⊥AC ,但是AB <BC ,在△ABC 中∠ACB 不可能是直角.故直线AD 与直线BC 不垂直.由以上分析显然D 错误.故选B .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.【答案】④【解析】①中b 可能在α内;②a 与b 可能异面或者垂直;③a 可能与α内的直线异面或垂直.14.【答案】B 1D 1⊥A 1C 1(答案不唯一)【解析】由直四棱柱可知CC 1⊥面A 1B 1C 1D 1,所以CC 1⊥B 1D 1,要使B 1D 1⊥A 1C ,只要B 1D 1⊥平面A 1CC 1,所以只要B 1D 1⊥A 1C 1,还可以填写四边形A 1B 1C 1D 1是菱形,正方形等条件. 15.【答案】①③【解析】由条件可得AB ⊥平面P AD ,∴AB ⊥PD ,故①正确;若平面PBC ⊥平面ABCD ,由PB ⊥BC ,得PB ⊥平面ABCD ,从而P A ∥PB , 这是不可能的,故②错;1·2PCD S CD PD =△,1·2PAB S AB PA =△,由AB =CD ,PD >P A 知③正确;由E 、F 分别是棱PC 、PD 的中点,可得EF ∥CD ,又AB ∥CD ,∴EF ∥AB , 故AE 与BF 共面,④错. 16.【答案】a >6【解析】由题意知:P A ⊥DE ,又PE ⊥DE ,P A ∩PE =P ,∴DE ⊥面P AE ,∴DE ⊥AE .易证△ABE ∽△ECD .设BE =x ,则A B B EC E C D=,即33xa x =-.∴290x ax +=-, 由0∆>,解得a >6.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】平行,见解析.【解析】直线MN ∥平面A 1BC 1.证明如下:∵M ∉平面A 1BC 1,N ∉平面A 1BC 1.∴MN ∉平面A 1BC 1. 如图,取A 1C 1的中点O 1,连接NO 1、BO 1.∵11112N D O C ∥,1112M D B C ∥,∴1NO MB ∥.∴四边形NO 1BM 为平行四边形.∴MN ∥BO 1.又∵BO 1⊂平面A 1BC 1,∴MN ∥平面A 1BC 1. 18.【答案】(1)见解析;(2)见解析. 【解析】(1)∵C 1C ⊥平面ABC ,∴C 1C ⊥AC .∵AC =9,BC =12,AB =15,∴AC 2+BC 2=AB 2,∴AC ⊥BC .又BC ∩C 1C =C ,∴AC ⊥平面BCC 1B 1,而B 1C ⊂平面BCC 1B 1,∴AC ⊥B 1C . (2)连接BC 1交B 1C 于O 点,连接OD .如图,∵O ,D 分别为BC 1,AB 的中点,∴OD ∥AC 1.又OD ⊂平面CDB 1,AC 1⊄平面CDB 1.∴AC 1∥平面CDB 1. 19.【答案】(1)见解析;(2)存在,见解析.【解析】(1)证明∵P A ⊥底面ABC ,∴P A ⊥BC .又∠BCA =90°,∴AC ⊥BC . 又∵AC ∩P A =A ,∴BC ⊥平面P AC .(2)∵DE ∥BC ,又由(1)知,BC ⊥平面P AC ,∴DE ⊥平面P AC . 又∵AE ⊂平面P AC ,PE ⊂平面P AC ,∴DE ⊥AE ,DE ⊥PE . ∴∠AEP 为二面角A DE P --的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC ,∴∠P AC =90°.∴在棱PC 上存在一点E ,使得AE ⊥PC .这时∠AEP =90°, 故存在点E ,使得二面角A DE P --为直二面角.20.【答案】(1)见解析;(2. 【解析】(1)证明 连接BC 1,则O 为B 1C 与BC 1的交点.因为侧面BB 1C 1C 为菱形,所以B 1C ⊥BC 1.又AO ⊥平面BB 1C 1C ,所以B 1C ⊥AO ,故B 1C ⊥平面ABO . 由于AB ⊂平面ABO ,故B 1C ⊥AB .(2)解 在平面BB 1C 1C 内作OD ⊥BC ,垂足为D ,连接AD . 在平面AOD 内作OH ⊥AD ,垂足为H .由于BC ⊥AO ,BC ⊥OD ,故BC ⊥平面AOD ,所以OH ⊥BC . 又OH ⊥AD ,所以OH ⊥平面ABC .因为∠CBB 1=60°,所以△CBB 1为等边三角形.又BC =1,可得OD =.由于AC ⊥AB 1,所以11122OA B C ==.由OH ·AD =OD ·OA,且AD =OH .又O 为B 1C 的中点,所以点B 1到平面ABC, 故三棱柱111ABC A B C -. 21.【答案】(1)见解析;(2)见解析;(3)3P ABCD V -=. 【解析】(1)证明 连接OE ,如图所示.∵O 、E 分别为AC 、PC 的中点,∴OE ∥P A . ∵OE ⊂面BDE ,P A ⊄面BDE ,∴P A ∥面BDE . (2)证明 ∵PO ⊥面ABCD ,∴PO ⊥BD .在正方形ABCD 中,BD ⊥AC ,又∵PO ∩AC =O ,∴BD ⊥面P AC . 又∵BD ⊂面BDE ,∴面P AC ⊥面BDE .(3)解 取OC 中点F ,连接EF .∵E 为PC 中点, ∴EF 为POC △的中位线,∴EF ∥PO .又∵PO ⊥面ABCD ,∴EF ⊥面ABCD ,∴EF ⊥BD . ∵OF ⊥BD ,OF ∩EF =F ,∴BD ⊥面EFO ,∴OE ⊥BD . ∴∠EOF 为二面角E BD C --的平面角,∴∠EOF =30°.在Rt △OEF中,1124OF OC AC ===,∴·tan 30EF OF =︒,∴2OP EF ==.∴2313P ABCD V a -=⨯. 22.【答案】(1)见解析;(2)见解析;(3)V =. 【解析】(1)证明在三棱柱111ABC A B C -中,BB 1⊥底面ABC ,所以BB 1⊥AB . 又因为AB ⊥BC ,所以AB ⊥平面B 1BCC 1, 又AB ⊂平面ABE ,所以平面ABE ⊥平面B 1BCC 1. (2)证明 取AB 的中点G ,连接EG ,FG .因为E ,F 分别是A 1C 1,BC 的中点,所以FG ∥AC ,且12FG AC =. 因为AC ∥A 1C 1,且AC =A 1C 1,所以FG ∥EC 1,且FG =EC 1, 所以四边形FGEC 1为平行四边形.所以C 1F ∥EG .又因为EG ⊂平面ABE ,C 1F ⊄平面ABE ,所以C 1F ∥平面ABE .(3)解 因为AA 1=AC =2,BC =1,AB ⊥BC,所以AB == 所以三棱锥E -ABC的体积1111·12332ABC V S AA ==⨯⨯=△.。
人教A版高中必修二试题第二章 单元测试 .docx
第二章单元测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷60分,第Ⅱ卷90分,共150分,考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能2.下列命题中,不是公理的是()A.平行于同一个平面的两个平面互相平行B.过不在一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线图D213.已知一个四棱锥的三视图如图D21所示,则该四棱锥的四个侧面中,直角三角形的个数是() A.4 B.3C.2 D.14.已知α,β,γ是三个不同的平面,命题“若α∥β,且α⊥γ,则β⊥γ”是真命题.若把α,β,γ中的任意两个平面换成直线,另一个保持不变,则在所得到的所有新命题中,真命题的个数是() A.0个B.1个C.2个D.3个5.在长方体ABCD -A1B1C1D1的六个面与六个对角面(平面AA1C1C,平面ABC1D1,平面ADC1B1,平面BB1D1D,平面A1BCD1及平面A1B1CD)所在的平面中,与棱AA1平行的平面共有() A.2个B.3个C.4个D.5个6.若l,m是两条不同的直线,α是一个平面,则下列命题中正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥mD.若l∥α,m∥α,则l∥m7.如图D2 2所示,已知六棱锥P -ABCDEF的底面是正六边形,若P A⊥平面ABC,P A=2AB,则下列结论正确的是()图D22A.PB⊥ADB.平面P AB⊥平面PBCC.直线BC∥平面P AED.直线PD与平面ABC所成的角为45°8.在直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°9.已知m,n是两条不同的直线,α,β,γ是三个不同的平面,下列命题中错误的是()A.若m⊥α,m⊥β,则α∥βB.若α∥γ,β∥γ,则α∥βC.若m⊂α,n⊂β,m∥n,则α∥βD.若m,n是异面直线,m⊂α,n⊂β,m∥β,n∥α,则α∥β10.设α,β,γ是三个互不重合的平面,m,n为两条不同的直线,给出下列命题:()①若n∥m,m⊂α,则n∥α;②若α∥β,n⊄β,n∥α,则n∥β;③若β⊥α,γ⊥α,则β∥γ;④若n∥m,n⊥α,m⊥β,则α∥β.其中是真命题的有()A.①和②B.①和③C.②和④D.③和④11.如图D23所示,在长方体ABCD -A1B1C1D1中,若AB=BC,E,F分别是AB1,BC1的中点,则下列结论中不成立的是()图D23①EF与BB1垂直;②EF⊥平面BCC1B1;③EF与C1D所成的角为45°;④EF∥平面A1B1C1D1.A.②③B.①④C.③D.①②④12.在长方体ABCD-A1B1C1D1中,若AB=AD=2 3,CC1=2,则二面角C1BD-C的大小为() A.30°B.45°C.60°D.90°请将选择题答案填入下表:题号123456789101112总分答案第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.在四面体ABCD中,已知棱AC的长为6,其余各棱长都为2,则二面角A BD C的大小为________.14.已知a,b为互相不垂直的两条异面直线,α是一个平面,则a,b在α上的射影可能是:①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.则在上面的结论中,正确结论的序号是________.(写出所有正确结论的序号)15.如图D24所示,若正四棱锥P-ABCD的底面积为3,体积为22,E为侧棱PC的中点,则PA与BE所成的角为________.图D24图D2516.如图D25所示,已知矩形ABCD的边AB=a,BC=2,PA⊥平面ABCD,PA=2,现有数据:①a =12;②a =1;③a =3;④a =2;⑤a =4.当在BC 边上存在点Q ,使PQ ⊥QD 时,a 可以取________.(填上一个你认为正确的数据序号即可)三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(10分)如图D 26所示,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E ,F 分别是AB ,BD 的中点.求证:(1)直线EF ∥平面ACD ; (2)平面EFC ⊥平面BCD.图D 2-618.(12分)如图D 27所示,在五面体ABCDEF 中,四边形ADEF 是正方形,FA ⊥平面ABCD ,BC ∥AD ,CD =1,AD =2 2,∠BAD =∠CDA =45°.(1)求异面直线CE 与AF 所成角的余弦值; (2)证明:CD ⊥平面ABF.图D 2719.(12分)如图D28所示是一个正方体的表面展开图的示意图,MN和PQ是两条面对角线,请在正方体中将MN和PQ画出来,并就这个正方体解答下列问题.(1)求直线MN和PQ所成角的大小;(2)求四面体M-NPQ的体积与正方体的体积之比.图D2820.(12分)如图D29所示,在三角形ABC中,AC=BC=22AB,四边形ABED是边长为1的正方形,平面ABED⊥底面ABC,G,F分别是EC,BD的中点.(1)求证:GF∥平面ABC;(2)求证:AC⊥平面EBC;(3)求该五面体的体积.图D2921.(12分)如图D210所示,在长方形ABCD中,AB=2,AD=1,E为CD的中点,以AE为折痕,把△DAE折起到△D′AE的位置,且平面D′AE⊥平面ABCE.(1)求证:AD′⊥BE;(2)求四棱锥D′ABCE的体积;(3)在棱D′E上是否存在一点P,使得D′B∥平面PAC,若存在,求出点P的位置,若不存在,请说明理由.图D21022.(12分)如图D211所示,在等腰梯形ABCD中,AB∥CD,AD⊥BD,M为AB的中点,矩形ABEF 所在的平面和平面ABCD相互垂直.(1)求证:AD⊥平面DBE;(2)设DE的中点为P,求证:MP∥平面DAF;(3)若AB=2,AD=AF=1,求三棱锥E-BCD的体积.图D211参考答案1.D [解析] 两条直线同时垂直于同一条直线,这两条直线可能平行、相交、异面. 2.A [解析] B 为公理2,C 为公理1,D 为公理3.3.A [解析] 由三视图知:该几何体为底面是矩形,有一条侧棱垂直于底面的四棱锥,其中四个侧面全是直角三角形,所以该四棱锥的四个侧面中,直角三角形的个数是4.4.C [解析] 若α,β换为直线a ,b ,则命题化为“若a ∥b ,且a ⊥γ,则b ⊥γ”,此命题为真命题;若α,γ换为直线a ,b ,则命题化为“若a ∥β,且a ⊥b ,则b ⊥β”,此命题为假命题;若β,γ换为直线a ,b ,则命题化为“若a ∥α,且b ⊥α,则a ⊥b ”,此命题为真命题.故真命题有2个.5.B [解析] 与AA 1平行的平面有:平面BCC 1B 1,平面CC 1D 1D ,平面BB 1D 1D ,共3个.6.B [解析] A 错误,要判断l ⊥α,需判断l 垂直于α内的两条相交直线;B 正确,此为线面垂直的性质定理;C 错误,l 与α内的直线可能平行或异面;D 错误,l 与m 可能平行、相交或异面.7.D [解析] 由题意知,直线PD 与平面ABC 所成的角为∠PDA.∵在Rt △PAD 中,PA =2AB =AD ,∴∠PDA =45°.8.C [解析] 延长CA 到D ,使得AD =AC ,连接A 1D ,则四边形ADA 1C 1为平行四边形,故∠DA 1B 就是异面直线BA 1与AC 1所成的角.又∵三角形A 1DB 为等边三角形,∴∠DA 1B =60°.9.C [解析] 若m ⊂α,n ⊂β,m ∥n ,则α∥β,错误,α与β也可能相交. 10.C [解析] ①错误,可能n ⊂α;③错误,可能β,γ相交;②和④正确. 11.A [解析] 显然①④正确,②③错误.12.A [解析] 连接AC 交BD 于点O ,连接OC 1.因为AB =AD =2 3,所以AC ⊥BD ,又易证BD ⊥面ACC 1A 1,所以BD ⊥OC 1,所以∠COC 1为二面角C 1BD C 的一个平面角.因为在△COC 1中,OC=6,CC 1=2,所以tan ∠COC 1=33,所以二面角C 1BD C 的大小为30°.13.90° [解析] 取BD 的中点M ,连接AM ,CM ,因为AB =AD =BC =CD ,所以AM ⊥BD ,CM ⊥BD ,故∠AMC 为所求二面角的平面角.根据题意可知AM =3,CM =3,因为AM 2+CM 2=AC 2,所以∠AMC =90°.14.①②④ [解析] ①②④对应的情况如下图所示:15.60° [解析] 连接AC ,BD 交于点O ,连接OE ,易得OE ∥PA ,∴所求的角为∠BEO.由所给条件易得OB =62,OE =12PA =22,BO ⊥OE ,∴tan ∠BEO =BOOE=3,∴∠OEB =60°.16.①(或②) [解析] 为了使PQ ⊥QD ,只要使AQ ⊥QD. 设BQ =x ,则CQ =2-x.∵△AQD 是直角三角形,∴AD 2=AQ 2+QD 2,即4=a 2+x 2+a 2+(2-x)2,∴x 2-2x +a 2=0,此方程有解,∴Δ≥0,即0<a ≤1. 故①②都满足题意.17.证明:(1)∵E ,F 分别是AB ,BD 的中点,∴EF 是△ABD 的中位线, ∴EF ∥AD.∵EF ⊄平面ACD ,AD ⊂平面ACD ,∴直线EF ∥平面ACD.(2)∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD.∵CB =CD ,F 是BD 的中点, ∴CF ⊥BD.又∵EF∩CF =F ,∴BD ⊥平面EFC.∵BD ⊂平面BCD ,∴平面EFC ⊥平面BCD.18.解:(1)因为四边形ADEF 是正方形,所以FA ∥ED , 故∠CED 为异面直线CE 与AF 所成的角.因为FA ⊥平面ABCD ,所以FA ⊥CD ,故ED ⊥CD.在Rt △CDE 中,因为CD =1,ED =2 2,所以CE =CD 2+ED 2=3,所以cos ∠CED =ED CE =2 23.故异面直线CE 与AF 所成角的余弦值为2 23. (2)证明:过点B 作BG ∥CD 交AD 于点G ,则∠BGA =∠CDA =45°. 由∠BAD =45°可得BG ⊥AB ,从而CD ⊥AB.又因为CD ⊥FA ,FA∩AB =A ,所以CD ⊥平面ABF .19.解: (1)如图所示,MN 与PQ 是异面直线,连接NC ,MC , 因为在正方体中,PQ ∥NC ,所以∠MNC 为异面直线MN 与PQ 所成的角. 因为MN =NC =MC ,所以∠MNC =60°. 所以MN 与PQ 所成角的大小为60°.(2)设正方体的棱长为a ,则正方体的体积V =a 3. 而三棱锥M-NPQ 的体积与三棱锥N-PQM 的体积相等,且NP ⊥平面MPQ ,所以V N PQM =13·12MP ·MQ ·NP =16a 3.所以四面体M-NPQ 的体积与正方体的体积之比为1∶6.20.解:(1)证明:图2连接AE.∵四边形ADEB 为正方形,∴AE∩BD =F , 且F 是AE 的中点,∴GF ∥AC.又AC ⊂平面ABC ,∴GF ∥平面ABC.(2)证明:∵四边形ADEB 为正方形,∴EB ⊥AB.又∵平面ABED ⊥平面ABC ,平面ABED∩平面ABC =AB ,∴BE ⊥平面ABC , ∴BE ⊥AC.∵CA 2+CB 2=AB 2,∴AC ⊥BC. 又∵BC∩BE =B ,∴AC ⊥平面EBC. (3)取AB 的中点N ,连接CN. 因为AC =BC ,∴CN ⊥AB.又∵平面ABED ⊥平面ABC ,平面ABED∩平面ABC =AB ,CN ⊂平面ABC , ∴CN ⊥平面ABED.∵△ABC 是等腰直角三角形,∴CN =12AB =12.∵五面体C-ABED 是四棱锥,∴V 四棱锥C-ABED =13S 四边形ABED ·CN =13×1×12=16.21.解:(1)证明:根据题意可知,在长方形ABCD 中,△DAE 和△CBE 为等腰直角三角形, ∴∠DEA =∠CEB =45°,∴∠AEB =90°,即BE ⊥AE , ∵平面D′AE ⊥平面ABCE ,且平面D′AE∩平面ABCE =AE ,∴BE ⊥平面D′AE ,∵AD′⊂平面D′AE , ∴AD ′⊥BE.(2)取AE 的中点F ,连接D′F ,则D′F ⊥AE. ∵平面D′AE ⊥平面ABCE ,且平面D′AE∩平面ABCE =AE , ∴D ′F ⊥平面ABCE ,∴V D ′ABCE =13S 四边形ABCE ·D ′F =13×12×(1+2)×1×22=24.(3)如图所示,连接AC 交BE 于Q ,假设在D′E 上存在点P ,使得D′B ∥平面PAC ,连接PQ , ∵D ′B ⊂平面D′BE ,平面D′BE∩平面PAC =PQ ,∴D′B ∥PQ ,∴在△EBD′中,EP PD ′=EQ QB ,∵在梯形ABCE 中,EQ QB =EC AB =12,∴EP PD′=EQ QB =12,即EP =13ED ′, ∴在棱D′E 上存在一点P ,且EP =13ED ′,使得D′B ∥平面PAC.22.解:(1)证明:∵平面ABCD ⊥平面ABEF ,平面ABCD∩平面ABEF =AB ,矩形ABEF 中EB ⊥AB , ∴EB ⊥平面ABCD ,∵AD ⊂平面ABCD ,∴EB ⊥AD ,∵AD ⊥BD ,BD∩BE =B ,∴AD ⊥平面BDE. (2)证明:取EF 的中点G ,连接MG ,PG(如图所示). 因为P ,M ,G 分别为DE ,AB ,EF 的中点,∴MG ∥AF ,PG ∥DF ,∵MG∩PG =G ,AF∩DF =F , ∴平面PMG ∥平面DAF.∵PM ⊂平面PMG ,∴MP ∥平面DAF.(3)过D 作DH 垂直于AB 于H.在直角三角形ADB 中,∵AB =2,AD =1,∴BD =3,DH =32,∴三棱锥E-BCD 的体积V =13×1×12×1×32=312.。
人教A版新课标高中数学必修二第二章单元测试题(含答案)
高二周末检测题一、选择题1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面; ③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行; ④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行. 其中正确的命题是( )A .①②B .②④C .①③D .②③ 2 .垂直于同一条直线的两条直线一定 ( )A 、平行B 、相交C 、异面D 、以上都有可能 3.若三个平面两两相交,有三条交线,则下列命题中正确的是( )A .三条交线为异面直线B .三条交线两两平行C .三条交线交于一点D .三条交线两两平行或交于一点4. 在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与EF GH 、 能相交于点P ,那么 ( )A 、点P 必在直线AC 上B 、点P 必在直线BD 上C 、点P 必在平面BCD 内 D 、点P 必在平面ABC 外5.若平面α⊥平面β,α∩β=l ,且点P ∈α,P ∉l ,则下列命题中的假命题是( )A .过点P 且垂直于α的直线平行于βB .过点P 且垂直于l 的直线在α内C .过点P 且垂直于β的直线在α内D .过点P 且垂直于l 的平面垂直于β 6.设a ,b 为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )A .若a ,b 与α所成的角相等,则a ∥bB .若a ∥α,b ∥β,α∥β,则a ∥bC .若a ⊂α,b ⊂β,a ∥b ,则α∥βD .若a ⊥α,b ⊥β,α⊥β,则a ⊥b 7.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是线段A 1B 1,B 1C 1上的不与端点重合的动点,如果A 1E =B 1F ,有下面四个结论:①EF ⊥AA 1; ②EF ∥AC ; ③EF 与AC 异面; ④EF ∥平面ABCD . 其中一定正确的有( )A .①②B .②③C .②④D .①④8.如图,在△ABC 中,∠BAC =90°,P A ⊥面ABC ,AB =AC ,D 是BC的中点,则图中直角三角形的个数是( ) A .5 B .8 C .10D .69.如右图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD的中心,M 、N 分别是棱DD 1、D 1C 1的中点,则直线OM ( ) A .与AC 、MN 均垂直相交 B .与AC 垂直,与MN 不垂直 C .与MN 垂直,与AC 不垂直D .与AC 、MN 均不垂直10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1 和 CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为( ) A 、2V B 、3V C 、4V D 、5V11.(2009·海南、宁夏高考)如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E 、F ,且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等12.将正方形ABCD 沿对角线BD 折成直二面角A -BD -C ,有如下四个结论:①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 成60°的角;④AB 与CD 所成的角是60°. 其中正确结论的个数是( )A. 1B. 2C. 3D. 4 二、填空题13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ,平行则四边形ABCD 一定是 .14.已知三棱锥D -ABC 的三个侧面与底面全等,且AB =AC =3,BC =2,则以BC 为棱,以面BCD 与面BCA 为面的二面角的平面角大小为 .15.如下图所示,以等腰直角三角形ABC 斜边BC 上的高AD 为折痕.Q PC'B'A'C BA使△ABD和△ACD折成互相垂直的两个平面,则:(1)BD与CD的关系为________.(2)∠BAC=________.16.在正方体ABCD—A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则①四边形BFD′E一定是平行四边形.②四边形BFD′E有可能是正方形.③四边形BFD′E在底面ABCD内的投影一定是正方形.④平面BFD′E有可能垂直于平面BB′D.以上结论正确的为__________.(写出所有正确结论的编号)三、解答题17、如图,在四面体ABCD中,CB=CD,AD⊥BD,点E、F分别是AB、BD的中点.求证:(1)直线EF∥面ACD.(2)平面EFC⊥平面BCD.18.如图所示,边长为2的等边△PCD所在的平面垂直于矩形ABCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.19.如图,在三棱柱ABC-A1B1C1中,△ABC与△A1B1C1都为正三角形且AA1⊥面ABC,F、F1分别是AC,A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.20.如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB=120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.21.如图,△ABC中,AC=BC=22AB,ABED是边长为1的正方形,平面ABED⊥底面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥底面ABC;(2)求证:AC⊥平面EBC;(3)求几何体ADEBC的体积V.高二周末检测题答一、选择题 1-5 BDDAB 6-10 DDBAB 11-12 DC 二、填空题13、菱形 14、90° 15、(1)BD ⊥CD (2)60° 16、①③④ 三、解答题17、证明:(1)∵E 、F 分别是AB 、BD 的中点,∴EF ∥AD .又AD ⊂平面ACD ,EF ⊄平面ACD , ∴直线EF ∥面ACD .(2)在△ABD 中,∵AD ⊥BD ,EF ∥AD , ∴EF ⊥BD .在△BCD 中,∵CD =CB ,F 为BD 的中点,∴CF ⊥BD . ∵CF ∩EF =F ,∴BD ⊥平面EFC , 又∵BD ⊂平面BCD , ∴平面EFC ⊥平面BCD .18、[解析] (1)证明:如图所示,取CD 的中点E ,连接PE ,EM ,EA , ∵△PCD 为正三角形,∴PE ⊥CD ,PE =PD sin ∠PDE =2sin60°= 3. ∵平面PCD ⊥平面ABCD ,∴PE ⊥平面ABCD ,而AM ⊂平面ABCD ,∴PE ⊥AM . ∵四边形ABCD 是矩形,∴△ADE ,△ECM ,△ABM 均为直角三角形,由勾股定理可求得EM =3,AM =6,AE =3, ∴EM 2+AM 2=AE 2.∴AM ⊥EM .又PE ∩EM =E ,∴AM ⊥平面PEM ,∴AM ⊥PM . (2)解:由(1)可知EM ⊥AM ,PM ⊥AM , ∴∠PME 是二面角P -AM -D 的平面角. ∴tan ∠PME =PEEM=33=1,∴∠PME =45°.∴二面角P -AM -D 的大小为45°.19[分析] 本题可以根据面面平行和面面垂直的判定定理和性质定理,寻找使结论成立的充分条件. [证明] (1)在正三棱柱ABC -A 1B 1C 1中, ∵F 、F 1分别是AC 、A 1C 1的中点, ∴B 1F 1∥BF ,AF 1∥C 1F .又∵B1F1∩AF1=F1,C1F∩BF=F,∴平面AB1F1∥平面C1BF.(2)在三棱柱ABC-A1B1C1中,AA1⊥平面A1B1C1,∴B1F1⊥AA1.又B1F1⊥A1C1,A1C1∩AA1=A1,∴B1F1⊥平面ACC1A1,而B1F1⊂平面AB1F1,∴平面AB1F1⊥平面ACC1A1.20.(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ⊄平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ,DP,因为Q为AB的中点,且AC=BC,所以CQ⊥AB.因为DC⊥平面ABC,EB∥DC,所以EB⊥平面ABC,因此CQ⊥EB.故CQ⊥平面ABE.由(1)有PQ∥DC,又PQ=12EB=DC,所以四边形CQPD为平行四边形,故DP∥CQ,因此DP⊥平面ABE,∠DAP为AD和平面ABE所成的角,在Rt△DP A中,AD=5,DP=1,sin∠DAP=5 5,因此AD和平面ABE所成角的正弦值为5 5.21[分析] (1)转化为证明GF平行于平面ABC内的直线AC;(2)转化为证明AC垂直于平面EBC内的两条相交直线BC和BE;(3)几何体ADEBC是四棱锥C-ABED.[解] (1)证明:连接AE,如下图所示.∵ADEB 为正方形,∴AE ∩BD =F ,且F 是AE 的中点, 又G 是EC 的中点,∴GF ∥AC ,又AC ⊂平面ABC ,GF ⊄平面ABC , ∴GF ∥平面ABC .(2)证明:∵ADEB 为正方形,∴EB ⊥AB ,又∵平面ABED ⊥平面ABC ,平面ABED ∩平面ABC =AB ,EB ⊂平面ABED , ∴BE ⊥平面ABC ,∴BE ⊥AC . 又∵AC =BC =22AB , ∴CA 2+CB 2=AB 2, ∴AC ⊥BC .又∵BC ∩BE =B ,∴AC ⊥平面BCE . (3)取AB 的中点H ,连GH ,∵BC =AC =22AB =22, ∴CH ⊥AB ,且CH =12,又平面ABED ⊥平面ABC∴GH ⊥平面ABCD ,∴V =13×1×12=16.。
新人教版英语必修2第二单元检测(A)
第二单元检测(A)(时间:120分钟满分:150分)一、听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.Where will they meet?A.At the underground.B.At the cinema.C.At the museum.2.Which bus will the woman take?A.Bus Number 4.B.Bus Number 6.C.Bus Number 2.3.What is the man doing?A.Saying goodbye to a friend.B.Arranging a plane trip.C.Paying a bill at the bank.4.How will the woman pay for the meal?A.With Master Card.B.With Visa Card.C.With cash.5.When will the woman get the TV?A.In about an hour.B.A long time.C.Several days.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C 三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6~8题。
6.Where does the conversation probably take place?A.At school.B.At home.C.In the office.7.How many hours will the girl work a day?A.2.B.4.C.6.8.How much could she get in a week?A.24 dollars.B.80 dollars.C.120 dollars.听第7段材料,回答第9~11题。
【单元测试卷】新人教 必修二 Unit 2 单元检测卷(含答案)
新人教版高中英语必修二Unit 2 Wildlife Protection 单元测试(考试时间:120分钟分值:150分)一、根据汉语提示写出正确的单词(每小题0.5分,共5分)1.The children’s mother was _______ (担心的) about their safety when they didn’t come back from school at the usual time.2.The driveless cars will help ______(减少) traffic accidents caused by human drivers’ mistakes.3.The green development means the development of the economy should be in _______ (和谐,融洽) with the protection of the environment.4.Today, over half of the panda’s _______(栖息地) are under protection, and we feel confident that this species will have a bright future.5.After discussing with her parents, she ____ (打算) to work as a volunteer in the earthquake-hit area last year.6.The 5G technology is expected to make the _______(利润) of Huawei on the increase.7.It is _______ (非法的) for anyone to be fired because of pregnancy.8.Some couples see single women as a _______ (威胁) to their relationships.9.Go to a part of the world you’re unfamiliar with and _______ (观察) how people live there.10. He may break up under all this _______ (压力).二、用所给单词的正确形式填空(每小题0.5分,共5分)1. Many species are in peril of _______(extinct) because of our destruction of their natural habitat.2. The new rules will become __________(effect) in the next few days.3. God loves you at each stage of __________(recover) and growth.4. Could you tell me my __________ (reserve) number, please?5.Most problems don’t directly _____ (threat) peace and security and rarely contribute to conflict.6. This is the key to __________ (harmony) human relations.7. For the same reason we all have similar ______ (emotion) expressions like smiling, and crying.8. In the short term, however, the loss of jobs is __________ (alarm).9. As these are __________ (endanger) species, he said, invasive methods of physiological study are not appropriate.10.Your __________ (exist) seems to have meaning, for someone needs you and loves you.三、选择合适的短语, 并用其正确形式完成句子(每小题1分,共5分)aware of, on average, concerned about, adapt to, due to1._______________ the development of technology and industry, sharing economy is now reshaping people’s lif e.2.Everyone should be _______________ the importance of keeping a balanced diet!3. _______________, happy people are likely to live longer.4.I just have a lot of peace in what will happen, not really _______________winning or losing.5.The children who make full preparations may find it easy to __________ the new school.四、阅读理解(每小题2分,共30分)阅读下列短文, 从每题所给的A、B、C和D四个选项中, 选出最佳选项。
(人教版)高中数学必修二(全册)单元测试卷汇总
(人教版)高中数学必修二(全册)单元测试卷汇总、阶段通关训练(一)(60分钟 100分)一、选择题(每小题5分,共3。
分)1・已知某几何体的三视图如图所示,那么这个几何体是□ □便視囲A. 长方体 C.匹棱锥【解析】选A.该几何体是长方体,如图所示» 入城商中目字必零二01 :酚俭1王训停 爺人椒版為中教学宕偌2!; &馈通关训号 信,奴薮版快9E 必偌二好:阶段遑关训澤 司:人馭艇苣中数猝偌二桂測:跻蜀■美训遂 琼人板版毫中gtl 修二窗I ;樓埃蜃量怦估 S 人会版毎中數⑴ C 2) Word 版言眾忻 Word 版合解忻 W 。
招版含解忻 (AS ) Word 板合樹ff (B 卷)WordB.圆性 D.四棱台正視图悟视图2.以钝角三角形旳较小边所在的直线为轴,其他两边旋转一周所得到的几何体是()A .两个圆锥拼桜而成的组合体B.一个圖台C.一个圆锥D . 一个圆锥挖去一个同底的小圆维【解析】选D.如图以AB为轴所得的几何体是一个大圆锥挖去一个同底的小圆锥.3.已知AAB攏边长为2a的正三角形,那么△ABCE勺平面直观图△ A'B‘ C'的面积为()D.\Ga~【鮮析】选C.直观图面积S与原图面积S具有关系:S' Mfs.因为S 好芸12a)所以S …c 三•X\/3a'=^a .4- 4 4【补偿训练】某三角形的直观图是斜边长为2的等腰直角三角形,如图所示,则原三信形的面积是【解析】根据宜观图和原图形的关系可知原图形的面积为X 2vl X 2二2卮 答案:2^24. 某三梭锥的三视图如图所示,则该三検锥的体积是【解析】选B .由三视图可判断该三棱锥底面为等腰直角三角形,三 棱锥旳高为 2. RI V=x x 1 x 1 x 2=.^【补偿洲练】已知正三棱镣V-ABC 的正视图、侧视图和帽视图如图所 示,则该正三枝锥侧视图的面积是A.B. C. D.1A.v39B.6\,r 3D.6俯视C.即3【解析】选D .如图,根据三视图间的关系可得BCM3,所以侧视图 中VA 二\|铲一任X ? X 2妁七整,所以三橙锥侧视图面积S- 海=x 2V 3X 2\顶二6,故选 D.5.(2016 •蚌瑋高二检测)若一个回锥的侧面展开图是面积为 2工的半圆面,则该圆锥的体积为B.V3 X C .拓x【解析】选A.设园锥的母线长为I,底面半径为r,由题意|7苗2 = 211,vnl = 2TTT ,解得'所以圆锥的高为 h=\F —尸=寸3 , V= * r 2h= r x 12x r = L . 6.(2016 •雅安高二检测)设正方体的全面积为 24,邪么其内切球的体积是A .扼KB.兀32 D.—【解析】 选B.正方体的全面积为24,所以,设正方体的棱长为a.6 宀 24, a 二2,正方体的内切球的直径就是正方体的校长,所以球的半径为1,内切球旳体积:V = 7t . ID RC乙 第*已回刮寻詠回王曲>=s '哥USS 甲'里蛔国皿【果到】&&価91实逐刘t ¥豈我到国丑屬T 風濕&一天喔宰邕€好日-6肝里N 二縛:毒虽•*+£,W=M*£Axl X >t=S rft凰峯4 Z^A^Ax^ x=A '風刘"坦 NN 八一醇E3HI 诳乙 弟学段皿期一旧耳闻1/峯'皓也乎书屋絶三零净【爆蜴】醇車回1/溟【四'(国⑰)国隴三阳财回廿必日(脈玛二堆※困• 9L0S1-8LL :孝晶U=x 韧 N 刮’壽」三三)阜尚‘X 興覃毋号密祺[菓到】 麹*辛矣廚留丄壬至藏乌去廖犯讪目丄竺羽诲同争宙【睾里區墙】^实些阳号屛醇斟濯施*09实邊回回淮即回通士互士 .乙屿%邊国基’9L 实雙団驚勢N(G&详‘&9鲤W 辱)谴乏帯 '二=M 媛苴'務nD所以AQ=\吃,A O=R^/6.所以S丼二4兀F<=24T.答案:24 x10•圖台的底面半径分别为1和2,母线长为3,则此圖台的体积为【解析】圆台的高h= 732 - (2 - I)2 =2 <1 ,所以体积71 2 aV=y(R+Rr4-r )h=^^i(. 答案:學三、解答题(共4小题,共50分)11.(12分)如區几何体上半部分是母线长为5,底面圆半径为3的圆锥,下半部分是下底面圆半径为2,母线长为2的圆台,计算该几何体的表面枳和体枳【韻析】圖锥侧面积为S = X rl=15r ,圖台的侧面积为缶冗(r+r ' )1二10冗,圖台的底面宜积为订’』牝,所以表面积为:S=S+S+S s=15i +10兀+4H=29X;圆锥的体积V-xr2hi=12x ,圆台的体积V:= r h2(r :+rr , +「’ 2)=^y^r ,所以体积为:V=V+U=12i------ X .312.(12分)如图是一个几何体的正视图和俯视图(1)试判断该几何体是什么几何体?(2)画出其侧视图,并求该平面图形的面积.(3)求出该几何体的体积.【解析】(1)由该几何体的正视图和俯视图可知该几何体是一个正六棱锥.(2)该几何体的側视图如图.其中AB=AC AD^BC,且BC的长是俯视图正六边形对边的距离,即BC=v3a, AD是正六棱锥的高,即AD十3a,所以该平面图形的面积(3)没这个正六棱锥的底面积是S,体积为V,则S=6< —a=—a\4 2所以V=x三歯x JJa=a°.13.(13分)如图所示,在四边形ABC畔,Z DAB=90 , ZADCF35 ,AB二5 CD二不臣,AD二2求四边形ABC说AD旋转一周所成几何体的表面积及体积.【鮮析】S 表面二S SOFB +S Bo ma +S 四部面=it x 5~+ i x (2+5) x 5+ r X 2X 2V2=(4 克+60) x .V=V H&-V B*=z (4-r if z+Fj )h- x h148=I (25+10+4) X 4- Jt X 4X 2. x .14.(13分)(2016 ,湖北实验中学高一检测 )如图,△ ABC中,ZACB=90 , Z ABC=30* , BC%3 在三角形内挖去一个半圆(圆心。
人教版高中语文必修二第二单元检测题附答案解析
第二单元复习检测题1、以下各组字的读音完全正确的一组是〔〕A、其黄而陨〔yǔn〕渐(jīān)车帷裳纤(xiān)细剽〔biāo〕悍B、相形见绌〔chù〕饮鸩(zhèn)止渴溘〔kè〕然纨(wán)素C、望风披靡 (mǐ) 白头偕(xiē)老巷(xiàng)道镂(lòu)空D、夙(sù)兴夜寐酾(shī)酒临江垣(yuán )墙鹄舫(fāng)2、以下各组字的读音完全正确的一组是〔〕A、踯躅〔zhú〕葳蕤〔ruí〕匪我愆〔qiān〕期沐猴而冠〔guān〕B、弥〔mí〕望细腻( nì) 浑身解〔xiè〕数敷衍〔yān〕塞责C、渐〔jiān〕染便(pián)言弄巧成拙〔zhuó〕王事靡盬〔gǔ〕D、阴晦〔huì〕果脯〔fǔ〕涸(hé)辙之鲋咥〔xì〕其笑矣3、以下各组字形全都正确的一组是〔〕A、执著赍钱一张一弛青青子衿B、遵守磐石是非屈直何时可掇C、帐簿羁縻怨声载道前倨后恭D、伶俜聘请虎视眈眈篷筚生辉4.以下各组词语中,书写全部正确的一组是A.推诿装潢直截了当信口开河B.喋血烂漫留连忘返浑水摸鱼C.盘据内讧义无反顾小题大做D.斑驳车厢按捺不住必恭必敬5、依次填入以下各句横线处的词语,最恰当的一组 ( )①每年三月,全国人大代表和政协委员都聚集北京,共商_______。
②连学好母语都需要花大力气,下苦功夫,_______学习外语呢?③这种偷梁换柱的行为对国人的诚信造成了负面影响,国人也因此觉得_______受损。
A.国是况且荣誉 B. 国事何况声誉C.国是何况声誉 D. 国事况且荣誉6、以下各句加点成语使用正确的一项为哪一项〔〕A、最近,手机上网资费全面下调,广阔用户对此弹冠相...庆.。
专家预测,将来通过手机收看体育赛事或许会成为一种潮流。
新教材人教版高中英语必修第二册全册各单元测验及模块综合检测 含解析
人教版必修第二册各单元测验Unit1 Cultural Heritage ............................................................................................................ - 1 - Unit2 Wildlife protection ....................................................................................................... - 15 - Unit3 The internet .................................................................................................................. - 28 - Unit4 History and traditions ................................................................................................... - 42 - Unit5 Music ............................................................................................................................ - 56 - 模块综合测验 ....................................................................................................................... - 70 -Unit1 Cultural HeritageⅠ.阅读理解(共15小题;每小题2.5分,满分37.5分)AIf you'd like to go sightseeing,the following World Heritage Sites may be your best choices.Jiuzhai Valley Scenic and Historic Interest AreaThe Jiuzhai Valley,which lies in the northern part of Sichuan Province,reaches a height of more than 4,800 metres,with a series of different forest ecosystems (生态系统).There you can enjoy watching excellent waterfalls.Some 140 kinds of birds also live in the valley,as well as a number of endangered plants and animals,the giant panda included.For more information,please visit http:∥/en/list/637.Khami Ruins National MonumentThe city of Khami,which developed after the capital of Great Zimbabwe had been abandoned in the mid16th century,is of great archaeological(考古的)interest.The discovery of objects from Europe and China shows that Khami was a major centre for trade over a long period of time.For more information,please visit http:∥/en/list/635.Henderson IslandHenderson Island,which lies in the eastern South Pacific,is one of the few atolls(环礁)in the world whose ecology has not been touched by human beings.It is especially famous for the ten plants and four land birds that can only be seen on the island.For more information,please visit http:∥/en/list/487.The Old City of JerusalemAs a holy city for three different religions in the Middle East,Jerusalem has always been of great religious importance.It was given a World Heritage Status in 1981 and placed on the “List of World Heritage in Danger” the following year.For more information,please visit http:∥/en/list/148.【语篇解读】本文介绍了四处世界遗产地供游客选择。
人教版高中语文必修二第二单元考试题含解析
人教版必修2第二单元检测(一)(时间:90分钟分值:100分)一、基础训练(共21分,每小题3分)1.下面加点字的注音正确的一项是(D)A. 蚩蚩.(chī) 愆.期 (xiān) 垝.垣 (guǐ) 侘.(chà)傺B.修姱.(kuā) 谣诼. (zhuō) 溘.死 (kè) 方圜. (guān)C. 箜.篌(kōng) 伶俜. (pīng) 踯躅.(zhū)玳瑁.(mào)D.羁.鸟(jī)靡盬.(gǔ)罹.(lí)难采薇(wēi)2.下列词语书写没有错别字的一组是(C)A. 哽咽葳蕤遗施蒲纬B.娥眉公姥扶将窈窕C. 思量誓违许和怅然D. 婀娜芨荷嗟叹煎迫3.下列各句中,加点字词的性质与例句不相同的一项是(B )例句:我有亲父母..A、便可白公姥.... B、女行无偏斜C、昼夜勤作息..嘶.. D、其日牛马4.下列句子中没有词类活用的一项是()A高余冠之岌岌兮B苟余情其信芳C长余佩之陆离D今我来思,雨雪霏霏5.下列各句中加点词语的意义和用法不相同的一项是()A自名秦罗敷,可怜体无比可怜九月初三夜B登即相许和,便可做婚姻沛公奉卮酒为寿,约为婚姻C枝枝相覆盖,叶叶相交通阡陌交通,鸡犬相闻D多谢后世人,戒之慎莫忘乃令张良留谢6.下列两组加点字的意义和用法判断正确的一项是()(1)以尔车来,以我贿迁(2)尔其无忘乃父之志(3)乘彼垝垣,以望复关(4)彼竭我盈,故克之A两个“尔”相同,两个“彼”相同B两个“尔”不同,两个“彼”相同C两个“尔”相同,两个“彼”不同D两个“尔”不同,两个“彼”不同7.下列有关文学常识的表述不妥当得一项是()A.《诗经》是我国最早的一部诗歌总集,共305篇,又称“诗三百”。
“赋、比、兴、风、雅、颂”被称为“诗经六义”。
B.《孔雀东南飞》是保存下来的我国最长的一首长篇叙事诗,也是古乐府民歌的代表作之一,与北朝的《木兰辞》并称“乐府双璧”。
人教版高中英语必修第二册 Unit 2 单元测试题(含答案)
人教版高中英语必修第二册 Unit 2 单元测试题(含答案)大单元思维知识整合一、重点单词1. complex adj. 复杂的;难懂的;(语法)复合的2. tutor n. (英国大学中的)助教;导师;家庭教师3. cite vt. 引用;引述4. messenger n. 送信人;信使5. zone n. (有别于周围的)地区;地带;区域6. overwhelmingadj.无法抗拒的;巨大的;压倒性的7. homesicknessn.思乡病;乡愁8. advisor n. 顾问9. firm n. 公司;商行;事务所 adj. 结实的;牢固的;坚定的10. departure n. 离开;启程;出发11. setting n. 环境;背景;(小说等的)情节背景12. dramatic adj. 巨大的;突然的;急剧的;喜剧(般)的13. tremendousadj.巨大的;极大的14. mature adj. 成熟的15. boom vi. & n. 迅速发展;繁荣二、重点短语1. set up建立;竖立2. adapt to适应;改编3. get used to习惯于……4. be keen to do渴望做5. take turns to do sth.轮流做某事6. as well as也;和……一样7. participate in参加;参与8. speak up大声点说;明确表态9. feel at home舒服自在;不拘束10. engage in(使)从事;参与11. get involved in参与;卷入;与……有关联12. to begin with首先三、重点句型1.It was the first time that...这是第一次做……It was the first time that she had left China.这是她第一次离开中国。
句式分析:句中It was the first time that...表示“这是第一次做某事”。
人教版高中数学必修2第二章测试题A组及答案解析
人教版高中数学必修2第二章测试题A组及答案解析第二章点、直线、平面之间的位置关系一、选择题1.设 $\alpha$,$\beta$ 为两个不同的平面,$l$,$m$ 为两条不同的直线,且 $l\subset\alpha$,$m\subset\beta$,有如下的两个命题:①若 $\alpha\parallel\beta$,则 $l\parallel m$;②若 $l\perp m$,则 $\alpha\perp\beta$。
那么()。
A。
①是真命题,②是假命题B。
①是假命题,②是真命题C。
①②都是真命题D。
①②都是假命题2.如图,ABCD为正方体,下面结论错误的是()。
A。
BD $\parallel$ 平面CBB。
AC $\perp$ BDC。
AC $\perp$ 平面CBD。
异面直线AD与CB角为60°3.关于直线 $m$,$n$ 与平面 $\alpha$,$\beta$,有下列四个命题:① $m\parallel\alpha$,$n\parallel\beta$ 且$\alpha\parallel\beta$,则 $m\parallel n$;② $m\perp\alpha$,$n\perp\beta$ 且 $\alpha\perp\beta$,则$m\perp n$;其中真命题的序号是()。
A。
①②B。
③④C。
①④D。
②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行②垂直于同一平面的两个平面互相平行③若直线 $l_1$,$l_2$ 与同一平面所成的角相等,则$l_1$,$l_2$ 互相平行④若直线 $l_1$,$l_2$ 是异面直线,则与 $l_1$,$l_2$ 都相交的两条直线是异面直线其中假命题的个数是()。
A。
1B。
2C。
3D。
45.下列命题中正确的个数是()。
①若直线 $l$ 上有无数个点不在平面 $\alpha$ 内,则$l\parallel\alpha$②若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行④若直线 $l$ 与平面 $\alpha$ 平行,则 $l$ 与平面$\alpha$ 内的任意一条直线都没有公共点A。
人教版高中英语必修2第2模块单元检测卷及答案解析.docx
人教版高中英语必修2第2模块单元检测卷第I卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下而5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项屮选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What does the man ask for?A.Hot coffee.B.Iced coffee.C.Cold soda.2.What does the woman want to find?A. A cellphone・B. A map.C. A park.3 • Why won, t the woman' s boyfriend attend the concert?A • He doesn' t want to go.B • He couldn,t get a ticket.C- He has other plans.4- Why will the woman stay home?A.To wait for a call.B • To watch a ball game on TV.C. To have dinner with a friend.5.What does the woman suggest the man do?A.Apply for a different job.B- Wait for an application form.C- Fill out an online application・第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项屮选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时I'可。
高中英语(新人教版)必修第二册课后习题:UNIT 2单元测评(课后习题)【含答案及解析】
UNIT 2单元测评(时间:120分钟满分:150分)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What are the speakers talking about?A.A travel plan.B.An exam result.C.A sports game.2.Why does the man refuse to eat the chocolate cake?A.He is on a diet.B.He has a bad tooth.C.He dislikes chocolate.3.Where will the woman go?A.To the shop.B.To the country.C.To Alice’s home.4.Why does the man like monkeys?A.They are cute.B.They are clever.C.They are naughty.5.What is John now?A.A teacher.B.A lawyer.C.A writer.第二节(共15 小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6.What does Jack want to do?A.Watch TV.B.Play outside.C.Go to the zoo.7.Where does the conversation probably take place?A.At home.B.In a cinema.C.In a supermarket.听第7段材料,回答第8至10题。
新教材 人教A高中数学必修第二册全册各章测验及模块综合测验 精选最新配套习题含解析
人教A 必修第二册各章综合测验1、平面向量及其应用............................................................................................................ - 1 -2、复数 ................................................................................................................................. - 11 -3、立体几何初步 ................................................................................................................. - 17 -4、统计 ................................................................................................................................. - 30 -5、概率 ................................................................................................................................. - 41 - 模块综合测验 ....................................................................................................................... - 52 -1、平面向量及其应用(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.向量a =(2,-1),b =(-1,2),则(2a +b )·a =( ) A .6 B .5 C .1D .-6A [由向量数量积公式知,(2a +b )·a =(3,0)·(2,-1)=6.]2.设非零向量a ,b ,c 满足|a|=|b|=|c|,a +b =c ,则向量a ,b 的夹角为( ) A .150° B .120° C .60°D .30°B [设向量a ,b 夹角为θ, |c|2=|a +b|2=|a|2+|b|2+2|a||b|cos θ,则cos θ=-12,又θ∈[0°,180°],∴θ=120°.故选B .]3.已知向量a =(1,k ),b =(2,2),且a +b 与a 共线,则a ·b 的值为( ) A .1 B .2 C .3D .4 A [a +b =(3,k +2),∵a +b 与a 共线, ∴3k -(k +2)=0,解得k =1.]4.在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若b 2+c 2-a 2=65bc ,则sin(B +C )的值为( )A .-45B .45C .-35D .35B [由b 2+c 2-a 2=65bc ,得cos A =b 2+c 2-a 22bc =35,则sin(B +C )=sin A =45.]5.已知点A ,B ,C 满足|AB →|=3,|BC →|=4,|CA →|=5,则AB →·BC →+BC →·CA →+CA →·AB →的值是( )A .-25B .25C .-24D .24A [因为|AB →|2+|BC →|2=9+16=25=|CA →|2, 所以∠ABC =90°,所以原式=AB →·BC →+CA →(BC →+AB →)=0+CA →·AC → =-AC →2=-25.]6.已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a 等于( )A .2B .1C .45D .53A [设C (x ,y ),则AC →=(x -7,y -1),CB →=(1-x,4-y ), ∵AC →=2CB →,∴⎩⎨⎧ x -7=2(1-x ),y -1=2(4-y ),解得⎩⎨⎧x =3,y =3,∴C (3,3),又∵C 在直线y =12ax 上,所以3=12a ×3, ∴a =2.]7.如图,在△ABC 中,AD →=23AC →,BP →=13BD →,若AP →=λAB →+μAC →,则λ+μ的值为( )A .49B .89C .23D .43 B [∵BP →=13BD →, ∴AP →-AB →=13(AD →-AB →), ∴AP →=23AB →+13AD →,又AD →=23AC →, ∴AP →=23AB →+29AC →=λAB →+μAC →, ∴λ=23,μ=29,∴λ+μ=89.]8.已知点M 是边长为2的正方形ABCD 的内切圆内(含边界)一动点,则MA →·MB →的取值范围是( )A .[-1,0]B .[-1,2]C .[-1,3]D .[-1,4]C [建立如图所示坐标系,设M (x ,y ),其中A (-1,-1),B (1,-1),易知x 2+y 2≤1,而MA →·MB →=(-1-x ,-1-y )·(1-x ,-1-y )=x 2+(y +1)2-1,若设E (0,-1),则MA →·MB →=|ME →|2-1,由于0≤|ME →|≤2,所以MA →·MB →=|ME →|2-1的取值范围是[-1,3],故选C .] 二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.对任意向量a ,b ,下列关系式中恒成立的是( ) A .|a ·b |≤|a ||b | B .|a -b |≤||a |-|b || C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 2ACD [|a ·b |=|a |·|b |·|cos 〈a ,b 〉|≤|a |·|b |,故A 正确;由向量的运算法则知C ,D 正确;当b =-a ≠0时,|a -b |>||a |-|b ||,故B 错误.故选ACD .]10.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若A =π6,a =2,c =23,则角C 的大小是( )A .π6B .π3C .5π6D .2π3BD [由正弦定理可得a sin A =c sin C ,所以sin C =c a sin A =32,而a <c ,所以A <C ,所以π6<C <56π,故C =π3或23π.]11.已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足B =π3,a +c =3b ,则ac =( )A .2B .3C .12D .13AC [∵B =π3,a +c =3b , ∴(a +c )2=a 2+c 2+2ac =3b 2,①由余弦定理可得,a 2+c 2-2ac cos π3=b 2,② 联立①②,可得2a 2-5ac +2c 2=0, 即2⎝ ⎛⎭⎪⎫a c 2-5⎝ ⎛⎭⎪⎫a c +2=0,解得a c =2或a c =12.故选AC .]12.点P 是△ABC 所在平面内一点,满足|PB →-PC →|-|PB →+PC →-2P A →|=0,则△ABC 的形状不可能是( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形ACD [∵P 是△ABC 所在平面内一点,且 |PB →-PC →|-|PB →+PC →-2P A →|=0, ∴|CB →|-|(PB →-P A →)+(PC →-P A →)|=0, 即|CB →|=|AC →+AB →|, ∴|AB →-AC →|=|AC →+AB →|,两边平方并化简得AC →·AB →=0,∴AC →⊥AB →,∴∠A =90°,则△ABC 一定是直角三角形.故选ACD .]三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.与向量a =(1,2)平行,且模等于5的向量为________.(1,2)或(-1,-2) [因为所求向量与向量a =(1,2)平行,所以可设所求向量为(x,2x ),又因为其模为5,所以x 2+(2x )2=5,解得x =±1.因此所求向量为(1,2)或(-1,-2).]14.已知向量a =(m,2),b =(-1,n )(n >0),且a ·b =0,点P (m ,n )在圆x 2+y 2=5上,则m +n =________,|2a +b |=________.(本题第一空2分,第二空3分)334 [因为向量a =(m,2),b =(-1,n )(n >0),且a ·b =0,P (m ,n )在圆x 2+y 2=5上,∴⎩⎨⎧-m +2n =0,m 2+n 2=5,解得m =2,n =1,即m +n =2+1=3. ∴2a +b =(3,5),∴|2a +b |=34.]15.在△ABC 中,S △ABC =14(a 2+b 2-c 2),b =1,a =2,则c =________.1 [∵S △ABC =12ab sin C , ∴12ab sin C =14(a 2+b 2-c 2), ∴a 2+b 2-c 2=2ab sin C .由余弦定理得,2ab cos C =2ab sin C ,∴tan C =1,∴C =45°,∴c =a 2+b 2-2ab cos C =3-2=1.]16.如图所示,半圆的直径AB =2,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值是________.-12 [因为点O 是AB 的中点, 所以P A →+PB →=2PO →,设|PC →|=x ,则|PO →|=1-x (0≤x ≤1), 所以(P A →+PB →)·PC →=2PO →·PC →=-2x (1-x ) =2⎝ ⎛⎭⎪⎫x -122-12. 所以当x =12时,(P A →+PB →)·PC →取到最小值-12.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求|a +b |;(2)求向量a 在向量a +b 方向上的投影. [解] (1)因为(2a -3b )·(2a +b )=61, 所以4|a |2-4a·b -3|b |2=61.因为|a |=4,|b |=3,所以a·b =-6, 所以|a +b |=|a |2+|b |2+2a·b =42+32+2×(-6)=13.(2)因为a ·(a +b )=|a |2+a·b =42-6=10,所以向量a 在向量a +b 方向上的投影为a ·(a +b )|a +b |=1013=101313.18.(本小题满分12分)如图所示,在平面直角坐标系中,|OA →|=2|AB →|=2,∠OAB=2π3,BC →=(-1,3).(1)求点B ,C 的坐标;(2)求证:四边形OABC 为等腰梯形.[解] (1)连接OB (图略),设B (x B ,y B ),则x B =|OA →|+|AB →|·cos(π-∠OAB )=52, y B =|AB →|·sin(π-∠OAB )=32,∴OC →=OB →+BC →=⎝ ⎛⎭⎪⎫52,32+(-1,3)=⎝ ⎛⎭⎪⎫32,332, ∴B ⎝ ⎛⎭⎪⎫52,32,C ⎝ ⎛⎭⎪⎫32,332. (2)证明:∵OC →=⎝ ⎛⎭⎪⎫32,332, AB →=⎝ ⎛⎭⎪⎫12,32,∴OC →=3AB →,∴OC →∥AB →. 又易知OA 与BC 不平行, |OA →|=|BC →|=2,∴四边形OABC 为等腰梯形.19.(本小题满分12分)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =3a sin C -c cos A .(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c . [解] (1)由c =3a sin C -c cos A ,及正弦定理得 3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝ ⎛⎭⎪⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4. 而a 2=b 2+c 2-2bc cos A , 故b 2+c 2=8. 解得b =c =2.20.(本小题满分12分)已知a =(cos α,sin α),b =(cos β,sin β),0<β<α<π. (1)若|a -b |=2,求证:a ⊥b ;(2)设c =(0,1),若a +b =c ,求α,β的值. [解] (1)证明:由题意得|a -b |2=2, 即(a -b )2=a 2-2a ·b +b 2=2. 又因为a 2=b 2=|a |2=|b |2=1, 所以2-2a ·b =2,即a ·b =0,故a ⊥b .(2)因为a +b =(cos α+cos β,sin α+sin β)=(0,1), 所以⎩⎨⎧cos α+cos β=0, ①sin α+sin β=1, ②由①得,cos α=cos(π-β), 由0<β<π,得0<π-β<π. 又0<α<π,故α=π-β. 代入sin α+sin β=1, 得sin α=sin β=12, 而α>β,所以α=5π6,β=π6.21.(本小题满分12分)如图,在△OAB 中,已知P 为线段AB 上的一点,OP →=x ·OA →+y ·OB →.(1)若BP →=P A →,求x ,y 的值;(2)若BP →=3P A →,|OA →|=4,|OB →|=2,且OA →与OB →的夹角为60°时,求OP →·AB →的值. [解] (1)∵BP →=P A →, ∴BO →+OP →=PO →+OA →, 即2OP →=OB →+OA →,∴OP →=12OA →+12OB →,即x =12,y =12. (2)∵BP →=3P A →,∴BO →+OP →=3PO →+3OA →, 即4OP →=OB →+3OA →,∴OP →=34O A →+14OB →.∴x =34,y =14. OP →·AB →=⎝ ⎛⎭⎪⎫34OA →+14OB →·(OB →-OA →)=14OB →·OB →-34OA →·OA →+12OA →·OB →=14×22-34×42+12×4×2×12=-9.22.(本小题满分12分)如图,我国南海某处的一个圆形海域上有四个小岛,小岛B 与小岛A 、小岛C 相距都为5 n mile ,与小岛D 相距为3 5 n mile.小岛A 对小岛B 与D 的视角为钝角,且sin A =35.(1)求小岛A 与小岛D 之间的距离和四个小岛所形成的四边形的面积; (2)记小岛D 对小岛B 与C 的视角为α,小岛B 对小岛C 与D 的视角为β,求sin(2α+β)的值.[解] (1)∵sin A =35,且角A 为钝角, ∴cos A =-1-⎝ ⎛⎭⎪⎫352=-45. 在△ABD 中,由余弦定理得:AD 2+AB 2-2AD ·AB ·cos A =BD 2. ∴AD 2+52-2AD ·5·⎝ ⎛⎭⎪⎫-45=(35)2⇒AD 2+8AD -20=0. 解得AD =2或AD =-10(舍).∴小岛A 与小岛D 之间的距离为2 n mile. ∵A ,B ,C ,D 四点共圆, ∴角A 与角C 互补.∴sin C =35,cos C =cos(180°-A )=-cos A =45. 在△BDC 中,由余弦定理得: CD 2+CB 2-2CD ·CB ·cos C =BD 2, ∴CD 2+52-2CD ·5·45=(35)2⇒CD 2-8CD -20=0, 解得CD =-2(舍)或CD =10. ∴S 四边形ABCD =S △ABD +S △BCD=12AB ·AD ·sin A +12CB ·CD ·sin C =12×5×2×35+12×5×10×35=3+15=18. ∴四个小岛所形成的四边形的面积为18平方n mile.(2)在△BDC 中,由正弦定理得:BC sin α=BD sin C ⇒5sin α=3535⇒sin α=55.∵DC 2+DB 2>BC 2, ∴α为锐角,∴cos α=255.又∵sin(α+β)=sin(180°-C )=sin C =35, cos(α+β)=cos(180°-C )=-cos C =-45. ∴sin(2α+β)=sin[α+(α+β)]=sin αcos(α+β)+cos αsin(α+β)=55×⎝⎛⎭⎪⎫-45+255×35=2525.2、复数(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知z=11-20i,则1-2i-z等于()A.z-1B.z+1C.-10+18i D.10-18iC[1-2i-z=1-2i-(11-20i)=-10+18i.]2.3+i1+i=()A.1+2i B.1-2i C.2+i D.2-iD[3+i1+i=(3+i)(1-i)(1+i)(1-i)=3-3i+i+12=2-i.故选D.]3.若复数z满足z1-i=i,其中i为虚数单位,则z=()A.1-i B.1+iC.-1-i D.-1+iA[由已知得z=i(1-i)=i+1,则z=1-i,故选A.]4.若复数z满足i z=2+4i,则在复平面内,z对应的点的坐标是() A.(2,4) B.(2,-4)C .(4,-2)D .(4,2)C [z =2+4ii =4-2i 对应的点的坐标是(4,-2),故选C .] 5.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2B [∵(2+a i)(a -2i)=-4i ,∴4a +(a 2-4)i =-4i. ∴⎩⎨⎧4a =0,a 2-4=-4.解得a =0.故选B .] 6.若复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,则b =( ) A . 2 B .23 C .-23 D .2C [因为2-b i 1+2i =(2-b i )(1-2i )5=2-2b 5-4+b 5i ,又复数2-b i1+2i(b ∈R )的实部与虚部互为相反数,所以2-2b 5=4+b 5,即b =-23.]7.设z ∈C ,若z 2为纯虚数,则z 在复平面上的对应点落在( ) A .实轴上B .虚轴上C .直线y =±x (x ≠0)上D .以上都不对C [设z =x +y i(x ,y ∈R ),则z 2=(x +y i)2=x 2-y 2+2xy i.∵z 2为纯虚数,∴⎩⎨⎧x 2-y 2=0,xy ≠0.∴y =±x (x ≠0).] 8.已知0<a <2,复数z 的实部为a ,虚部为1,则|z |的取值范围是( ) A .(1,5) B .(1,3) C .(1,5)D .(1,3)C [由已知,得|z |=a 2+1. 由0<a <2,得0<a 2<4, ∴1<a 2+1<5.∴|z |=a 2+1∈(1,5).故选C .]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对得5分,部分选对得3分,有选错的得0分)9.给出下列复平面内的点,这些点中对应的复数为虚数的为()A.(3,1) B.(-2,0)C.(0,4) D.(-1,-5)ACD[易知选项A、B、C、D中的点对应的复数分别为3+i、-2、4i、-1-5i,因此A、C、D中的点对应的复数为虚数.]10.已知复数z=a+b i(a,b∈R,i为虚数单位),且a+b=1,下列命题正确的是()A.z不可能为纯虚数B.若z的共轭复数为z,且z=z,则z是实数C.若z=|z|,则z是实数D.|z|可以等于1 2BC[当a=0时,b=1,此时z=i为纯虚数,A错误;若z的共轭复数为z,且z=z,则a+b i=a-b i,因此b=0,B正确;由|z|是实数,且z=|z|知,z是实数,C正确;由|z|=12得a2+b2=14,又a+b=1,因此8a2-8a+3=0,Δ=64-4×8×3=-32<0,无解,即|z|不可以等于12,D错误.故选BC.]11.已知复数z0=1+2i(i为虚数单位)在复平面内对应的点为P0,复数z满足|z-1|=|z-i|,下列结论正确的是()A.P0点的坐标为(1,2)B.复数z0的共轭复数对应的点与点P0关于虚轴对称C.复数z对应的点Z在一条直线上D.P0与z对应的点Z间的距离的最小值为2 2ACD[复数z0=1+2i在复平面内对应的点为P0(1,2),A正确;复数z0的共轭复数对应的点与点P0关于实轴对称,B错误;设z=x+y i(x,y∈R),代入|z-1|=|z-i|,得|(x-1)+y i|=|x+(y-1)i|,即(x-1)2+y2=x2+(y-1)2,整理得,y=x ,即Z 点在直线y =x 上,C 正确;易知点P 0到直线y =x 的垂线段的长度即为P 0、Z 之间距离的最小值,结合平面几何知识知D 正确.故选ACD .]12.对任意z 1,z 2,z ∈C ,下列结论成立的是( ) A .当m ,n ∈N *时,有z m z n =z m +nB .当z 1,z 2∈C 时,若z 21+z 22=0,则z 1=0且z 2=0C .互为共轭复数的两个复数的模相等,且|z |2=|z |2=z ·zD .z 1=z 2的充要条件是|z 1|=|z 2| AC [由复数乘法的运算律知A 正确;取z 1=1,z 2=i ,满足z 21+z 22=0,但z 1=0且z 2=0不成立,B 错误;由复数的模及共轭复数的概念知结论成立,C 正确; 由z 1=z 2能推出|z 1|=|z 2|, 但|z 1|=|z 2|推不出z 1=z 2,因此z 1=z 2的必要不充分条件是|z 1|=|z 2|,D 错误.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.已知复数z =(5+2i)2(i 为虚数单位),则z 的实部为________. 21 [复数z =(5+2i)2=21+20i ,其实部是21.]14.a 为正实数,i 为虚数单位,⎪⎪⎪⎪⎪⎪a +i i =2,则a =________. 3 [a +i i =(a +i )·(-i )i·(-i )=1-a i ,则⎪⎪⎪⎪⎪⎪a +i i =|1-a i|=a 2+1=2, 所以a 2=3.又a 为正实数,所以a = 3.] 15.设a ,b ∈R ,a +b i =11-7i1-2i(i 为虚数单位),则a +b 的值为________. 8 [a +b i =11-7i 1-2i =(11-7i )(1+2i )(1-2i )(1+2i )=25+15i5=5+3i ,依据复数相等的充要条件可得a =5,b =3.从而a +b =8.]16.设z 的共轭复数是z ,若z +z =4,z ·z =8,则|z |=________,z-z =________(本题第一空2分,第二空3分).22 ±i [设z =x +y i(x ,y ∈R ),则z =x -y i ,由z +z =4,z ·z =8得, ⎩⎨⎧ x +y i +x -y i =4,(x +y i )(x -y i )=8,⇒⎩⎨⎧ x =2,x 2+y 2=8,⇒⎩⎨⎧x =2,y =±2.∴|z |=2 2.所以zz =x -y i x +y i =x 2-y 2-2xy ix 2+y 2=±i.]四、简答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)设复数z =lg(m 2-2m -2)+(m 2+3m +2)i ,当m 为何值时,(1)z 是实数? (2)z 是纯虚数? [解] (1)要使复数z 为实数, 需满足⎩⎨⎧ m 2-2m -2>0,m 2+3m +2=0,解得m =-2或-1.即当m =-2或-1时,z 是实数. (2)要使复数z 为纯虚数, 需满足⎩⎨⎧m 2-2m -2=1,m 2+3m +2≠0,解得m =3.即当m =3时,z 是纯虚数.18.(本小题满分12分)已知复数z 1=1-i ,z 1·z 2+z 1=2+2i ,求复数z 2. [解] 因为z 1=1-i ,所以z 1=1+i , 所以z 1·z 2=2+2i -z 1=2+2i -(1+i)=1+i. 设z 2=a +b i(a ,b ∈R ),由z 1·z 2=1+i , 得(1-i)(a +b i)=1+i , 所以(a +b )+(b -a )i =1+i ,所以⎩⎨⎧a +b =1,b -a =1,解得a =0,b =1,所以z 2=i.19.(本小题满分12分)已知复数z 满足|z |=1,且(3+4i)z 是纯虚数,求z 的共轭复数z .[解] 设z =a +b i(a ,b ∈R ),则z =a -b i 且|z |=a 2+b 2=1,即a 2+b 2=1.① 因为(3+4i)z =(3+4i)(a +b i)=(3a -4b )+(3b +4a )i ,而(3+4i)z 是纯虚数, 所以3a -4b =0,且3b +4a ≠0.② 由①②联立, 解得⎩⎪⎨⎪⎧a =45,b =35,或⎩⎪⎨⎪⎧a =-45,b =-35.所以z =45-35i ,或z =-45+35i.20.(本小题满分12分)复数z =(1+i )2+3(1-i )2+i ,若z 2+az <0,求纯虚数a .[解] 由z 2+a z <0可知z 2+az 是实数且为负数. z =(1+i )2+3(1-i )2+i =2i +3-3i 2+i =3-i 2+i =1-i.因为a 为纯虚数,所以设a =m i(m ∈R ,且m ≠0),则z 2+a z =(1-i)2+m i 1-i =-2i +m i -m 2=-m 2+⎝ ⎛⎭⎪⎫m 2-2i <0,故⎩⎪⎨⎪⎧-m2<0,m2-2=0,所以m =4,即a =4i.21.(本小题满分12分)已知等腰梯形OABC 的顶点A ,B 在复平面上对应的复数分别为1+2i ,-2+6i ,OA ∥BC .求顶点C 所对应的复数z .[解] 设z =x +y i(x ,y ∈R ),C (x ,y ), 因为OA ∥BC ,|OC |=|BA |, 所以k OA =k BC ,|z C |=|z B -z A |,即⎩⎨⎧21=y -6x +2,x 2+y 2=32+42,解得⎩⎨⎧ x 1=-5,y 1=0或⎩⎨⎧x 2=-3,y 2=4.因为|OA |≠|BC |,所以x 2=-3,y 2=4(舍去), 故z =-5.22.(本小题满分12分)已知复数z 满足(1+2i)z =4+3i. (1)求复数z ;(2)若复数(z +a i)2在复平面内对应的点在第一象限,求实数a 的取值范围. [解] (1)∵(1+2i)z =4+3i , ∴z =4+3i 1+2i =(4+3i )(1-2i )(1+2i )(1-2i )=10-5i5=2-i , ∴z =2+i.(2)由(1)知z =2+i ,则(z +a i)2=(2+i +a i)2=[2+(a +1)i]2=4-(a +1)2+4(a +1)i , ∵复数(z +a i)2在复平面内对应的点在第一象限, ∴⎩⎨⎧4-(a +1)2>0,4(a +1)>0, 解得-1<a <1,即实数a 的取值范围为(-1,1).3、立体几何初步(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面给出了四个条件:①空间三个点;②一条直线和一个点;③和直线a都相交的两条直线;④两两相交的三条直线.其中,能确定一个平面的条件有()A.3个B.2个C.1个D.0个D[①当空间三点共线时不能确定一个平面;②点在直线上时不能确定一个平面;③两直线若不平行也不相交时不能确定一个平面;④三条直线交于一点且不共面时不能确定一个平面. 故以上4个条件都不能确定一个平面.] 2.在长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°D[由于AD∥A1D1,则∠BAD是异面直线AB,A1D1所成的角,很明显∠BAD =90°.]3.已知a,b,c是直线,则下面四个命题:①若直线a,b异面,b,c异面,则a,c异面;②若直线a,b相交,b,c相交,则a,c相交;③若a∥b,则a,b与c所成的角相等.其中真命题的个数为()A.0 B.3C.2 D.1D[异面、相交关系在空间中不能传递,故①②错;根据等角定理,可知③正确.]4.一个棱柱的侧面展开图是三个全等的矩形,矩形的长和宽分别为6 cm,4 cm,则该棱柱的侧面积为()A.24 cm2B.36 cm2C.72 cm2D.84 cm2C[棱柱的侧面积S侧=3×6×4=72(cm2).]5.在正方体ABCD-A1B1C1D1中,动点E在棱BB1上,动点F在线段A1C1上,O为底面ABCD的中心,若BE=x,A1F=y,则四面体O-AEF的体积()A.与x,y都有关B.与x,y都无关C.与x有关,与y无关D.与y有关,与x无关B[因为V O-AEF=V E-OAF,考察△AOF的面积和点E到平面AOF的距离的值,因为BB1∥平面ACC1A1,所以点E到平面AOF的距离为定值,又AO∥A1C1,所以OA为定值,点F到直线AO的距离也为定值,即△AOF的面积是定值,所以四面体O-AEF的体积与x,y都无关,故选B.]6.如图,点S在平面ABC外,SB⊥AC,SB=AC=2,E,F分别是SC和AB 的中点,则EF的长是()A.1 B. 2C.22D.12B[取CB的中点D,连接ED,DF,则∠EDF(或其补角)为异面直线SB与AC所成的角,即∠EDF=90°.在△EDF中,ED=12SB=1,DF=12AC=1,所以EF=ED2+DF2= 2.]7.在四面体ABCD中,已知棱AC的长为2,其余各棱长都为1,则二面角A-CD-B的余弦值为()A .12B .13C .33D .23C [取AC 的中点E ,CD 的中点F ,连接BE ,EF ,BF ,则EF =12,BE =22,BF =32,因为EF 2+BE 2=BF 2,所以△BEF 为直角三角形,cos θ=EF BF =33.]8.已知三棱柱ABC -A 1B 1C 1的侧棱与底面垂直,体积为94,底面是边长为3的正三角形.若P 为底面A 1B 1C 1的中心,则P A 与平面ABC 所成角的大小为( )A .5π12B .π3C .π4D .π6B [如图所示,P 为正三角形A 1B 1C 1的中心,设O 为△ABC 的中心,由题意知:PO ⊥平面ABC ,连接OA ,则∠P AO 即为P A 与平面ABC 所成的角.在正三角形ABC 中,AB =BC =AC =3,则S =34×(3)2=334,VABC -A 1B 1C 1=S ×PO =94, ∴PO = 3. 又AO =33×3=1, ∴tan ∠P AO =PO AO =3,∴∠P AO =π3.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题为真命题的是( )A .若两个平面有无数个公共点,则这两个平面重合B.若一个平面经过另一个平面的垂线,那么这两个平面相互垂直C.垂直于同一条直线的两条直线相互平行D.若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面不垂直BD[A错,两个平面相交时,也有无数个公共点;C错,比如a⊥α,b⊂α,c⊂α,显然有a⊥b,a⊥c,但b与c也可能相交.故选BD.]10.如图,圆柱的轴截面是四边形ABCD,E是底面圆周上异于A,B的一点,则下列结论中正确的是()A.AE⊥CEB.BE⊥DEC.DE⊥平面CEBD.平面ADE⊥平面BCEABD[由AB是底面圆的直径,得∠AEB=90°,即AE⊥EB.∵圆柱的轴截面是四边形ABCD,∴AD⊥底面AEB,BC⊥底面AEB.∴BE⊥AD.又AD∩AE=A,AD,AE⊂平面ADE,∴BE⊥平面ADE,∴BE⊥DE.同理可得,AE⊥CE,易得平面BCE⊥平面ADE.可得A,B,D正确.∵AD∥BC,∴∠ADE(或其补角)为DE与CB所成的角,显然∠ADE≠90°,∴DE⊥平面CEB不正确,即C错误.故选ABD.]11.如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠DAB=60°,侧面P AD 为正三角形,且平面P AD⊥平面ABCD,则下列说法正确的是()A.在棱AD上存在点M,使AD⊥平面PMBB.异面直线AD与PB所成的角为90°C.二面角P-BC-A的大小为45°D.BD⊥平面P ACABC[如图,对于A,取AD的中点M,连接PM,BM,∵侧面P AD为正三角形,∴PM⊥AD,又底面ABCD是菱形,∠DAB=60°,∴△ABD是等边三角形,∴AD⊥BM,又PM∩BM=M,PM,BM⊂平面PMB,∴AD⊥平面PBM,故A正确.对于B,∵AD⊥平面PBM,∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确.对于C,∵平面PBC∩平面ABCD=BC,BC∥AD,∴BC⊥平面PBM,∴BC⊥PB,BC⊥BM,∴∠PBM是二面角P-BC-A的平面角,设AB=1,则BM=32,PM=32,在Rt△PBM中,tan∠PBM=PMBM=1,即∠PBM=45°,故二面角P-BC-A的大小为45°,故C正确.对于D,因为BD与P A不垂直,所以BD与平面P AC不垂直,故D错误.故选ABC.]12.如图所示,在四个正方体中,l是正方体的一条体对角线,点M、N、P 分别为其所在棱的中点,能得出l⊥平面MNP的图形为()AD[如图所示,正方体ABCD-A′B′C′D′.连接AC,BD.∵M、P分别为其所在棱的中点,∴MP∥AC.∵四边形ABCD为正方形,∴AC⊥BD,∵BB′⊥平面ABCD,AC⊂平面ABCD,∴BB′⊥AC,∵AC⊥BD,BD∩BB′=B,∴AC⊥平面DBB′,∵DB′⊂平面DBB′,∴AC⊥DB′.∵MP∥AC,∴DB′⊥MP,同理,可证DB′⊥MN,DB′⊥NP,∵MP∩NP=P,MP⊂平面MNP,NP⊂平面MNP,∴DB′⊥平面MNP,即l垂直平面MNP,故A正确.故D中,由A中证明同理可证l⊥MP,l⊥MN,又∵MP∩MN=M,∴l⊥平面MNP.故D正确.故选AD.]三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知一圆锥的侧面展开图是半径为2的半圆,则该圆锥的表面积为________,体积为________.(本题第一空2分,第二空3分)3π33π[设圆锥的底面半径为r,根据题意,得2πr=2π,解得r=1,根据勾股定理,得圆锥的高为22-12=3,所以圆锥的表面积S=12×π×22+π×12=3π,体积V=13×π×12×3=33π.]14.已知正四棱锥的侧棱长为23,侧棱与底面所成的角为60°,则该四棱锥的高为________.3[如图,过点S作SO⊥平面ABCD,连接OC,则∠SCO=60°,∴SO=sin 60°·SC=32×23=3.]15.如图,在三棱柱A1B1C1-ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F-ADE的体积为V1,三棱柱A1B1C1-ABC的体积为V2,则V1∶V2=________.1∶24[因为D,E分别是AB,AC的中点,所以S△ADE ∶S△ABC=1∶4. 又F是AA1的中点,所以A1到底面的距离H为F到底面距离h的2倍,即三棱柱A1B1C1-ABC的高是三棱锥F-ADE高的2倍,所以V1∶V2=13S△ADE·hS△ABC·H=124=1∶24.]16.已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为________.36π[如图,连接OA,OB.由SA=AC,SB=BC,SC为球O的直径,知OA⊥SC,OB⊥SC.由平面SCA⊥平面SCB,平面SCA∩平面SCB=SC,OA⊥SC,知OA⊥平面SCB.设球O的半径为r,则OA=OB=r,SC=2r,∴三棱锥S-ABC的体积V=13×⎝⎛⎭⎪⎫12SC·OB·OA=r33,即r33=9,∴r=3,∴S球表=4πr2=36π.]四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长为10 cm,求圆锥的母线长.[解]如图,设圆锥的母线长为l,圆台上、下底面的半径分别为r、R.因为l-10l=rR,所以l-10l=14,所以l=403cm.即圆锥的母线长为403cm.18.(本小题满分12分)如图,三棱柱ABC-A1B1C1的侧棱与底面垂直,AC=9,BC=12,AB=15,AA1=12,点D是AB的中点.(1)求证:AC⊥B1C;(2)求证:AC1∥平面CDB1.[证明](1)∵C1C⊥平面ABC,∴C1C⊥AC.∵AC=9,BC=12,AB=15,∴AC2+BC2=AB2,∴AC⊥BC.又BC∩C1C=C,∴AC⊥平面BCC1B1,而B1C⊂平面BCC1B1,∴AC⊥B1C.(2)连接BC1交B1C于点O,连接OD.如图,∵O,D分别为BC1,AB的中点,∴OD∥AC1.又OD⊂平面CDB1,AC1⊄平面CDB1.∴AC1∥平面CDB1.19.(本小题满分12分)如图,已知三棱锥P-ABC,P A⊥平面ABC,∠ACB=90°,∠BAC=60°,P A=AC,M为PB的中点.(1)求证:PC⊥BC;(2)求二面角M-AC-B的大小.[解](1)证明:由P A⊥平面ABC,所以P A⊥BC,又因为∠ACB=90°,即BC⊥AC,P A∩AC=A,所以BC⊥平面P AC,所以PC⊥BC.(2)取AB中点O,连接MO,过O作HO⊥AC于H,连接MH,因为M是BP的中点,所以MO∥P A,又因为P A⊥平面ABC,所以MO⊥平面ABC,所以∠MHO为二面角M-AC-B的平面角,设AC=2,则BC=23,MO=1,OH=3,在Rt△MHO中,tan∠MHO=MOHO=33,所以二面角M-AC-B的大小为30°.20.(本小题满分12分)已知一个圆锥的底面半径为R,高为H, 在其中有一个高为x的内接圆柱.(1)求圆柱的侧面积;(2)x为何值时,圆柱的侧面积最大?[解](1)设圆柱的底面半径为r, 则它的侧面积为S=2πrx, rR=H-xH,解得r=R-RH x,所以S圆柱侧=2πRx-2πRH x2.(2)由(1)知S圆柱侧=2πRx-2πRH x2,在此表达式中,S圆柱侧为x的二次函数,因此,当x=H2时,圆柱的侧面积最大.21.(本小题满分12分)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.[解](1)如图,由已知AD∥BC,故∠DAP或其补角为异面直线AP与BC所成的角.因为AD⊥平面PDC,所以AD⊥PD.在Rt△PDA中,由已知,得AP=AD2+PD2=5,所以cos∠DAP=ADAP=55.所以异面直线AP与BC所成角的余弦值为5 5.(2)因为AD⊥平面PDC,直线PD⊂平面PDC,所以AD⊥PD.又BC∥AD,所以PD⊥BC,又PD⊥PB,PB∩BC=B,所以PD⊥平面PBC.(3)过点D作AB的平行线交BC于点F,连接PF,则DF与平面PBC所成的角等于AB与平面PBC所成的角.因为PD⊥平面PBC,故PF为DF在平面PBC上的射影,所以∠DFP为直线DF与平面PBC所成的角.由于AD∥BC,DF∥AB,故BF=AD=1,由已知,得CF=BC-BF=2.又AD⊥DC,故BC⊥DC,在Rt△DCF中,可得DF=CD2+CF2=25,在Rt△DPF中,可得sin∠DFP=PDDF=55.所以直线AB与平面PBC所成角的正弦值为5 5.22.(本小题满分12分)如图①,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图②.①②(1)求证:DE∥平面A1CB;(2)求证:A1F⊥BE;(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.[解](1)证明:∵D,E分别为AC,AB的中点,∴DE∥BC.又∵DE⊄平面A1CB,BC⊂平面A1CB,∴DE∥平面A1CB.(2)证明:由已知得AC⊥BC且DE∥BC,∴DE⊥AC.∵DE⊥A1D,DE⊥CD,A1D∩CD=D,∴DE⊥平面A1DC.而A1F⊂平面A1DC,∴DE⊥A1F.又∵A1F⊥CD,DE∩CD=D,∴A1F⊥平面BCDE,∵BE⊂平面BCDE,∴A1F⊥BE.(3)线段A1B上存在点Q,使A1C⊥平面DEQ.理由如下:如图,分别取A1C,A1B的中点P,Q,则PQ∥BC.又∵DE∥BC,∴DE∥PQ.∴平面DEQ即为平面DEP.由(2)知,DE⊥平面A1DC,A1C⊂平面A1DC,∴DE⊥A1C.又∵P是等腰三角形DA1C底边A1C的中点,∴A1C⊥DP,DE∩DP=D,∴A1C⊥平面DEP.从而A1C⊥平面DEQ.故线段A1B上存在点Q(中点),使得A1C⊥平面DEQ.4、统计(时间:120分钟,满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.对一个容量为N 的总体抽取容量为n 的样本,当选取抽签法抽样、随机数法抽样和分层随机抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3D [在抽签法抽样、随机数法抽样和分层随机抽样中,每个个体被抽中的概率均为nN ,所以p 1=p 2=p 3,故选D .]2.某公司从代理的A ,B ,C ,D 四种产品中,按分层随机抽样的方法抽取容量为110的样本,已知A ,B ,C ,D 四种产品的数量比是2∶3∶2∶4,则该样本中D 类产品的数量为( )A .22B .33C .40D .55C [根据分层随机抽样,总体中产品数量比与抽取的样本中产品数量比相等,∴样本中D 类产品的数量为110×42+3+2+4=40.]3.在抽查产品尺寸的过程中,将其尺寸分成若干组,[a ,b ]是其中的一组.已知该组的频率为m ,该组上的频率分布直方图的高为h ,则|a -b |等于( )A .mhB .h mC .m hD .m +hC [在频率分布直方图中小长方形的高等于频率组距,所以h =m |a -b |,|a -b |=mh ,故选C .]4.我市对上、下班交通情况作抽样调查,上、下班时间各抽取12辆机动车测其行驶速度(单位:km/h)如下表:上班时间182021262728303233353640下班时间161719222527283030323637A.28与28.5 B.29与28.5C.28与27.5 D.29与27.5D[上班时间行驶速度的中位数是28+302=29,下班时间行驶速度的中位数是27+282=27.5.]5.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e,众数为m o,平均值为x,则()A.m e=m o=x B.m e=m o<xC.m e<m o<x D.m o<m e<xD[由条形图可知,中位数为m e=5.5,众数为m o=5,平均值为x≈5.97,所以m o<m e<x.]6.某校为了对初三学生的体重进行摸底调查,随机抽取了50名学生的体重(kg),将所得数据整理后,画出了频率分布直方图,如图所示,体重在[45,50)内适合跑步训练,体重在[50,55)内适合跳远训练,体重在[55,60]内适合投掷相关方面训练,估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为()A.4∶3∶1 B.5∶3∶1C.5∶3∶2 D.3∶2∶1B[体重在[45,50)内的频率为0.1×5=0.5,体重在[50,55)内的频率为0.06×5=0.3,体重在[55,60]内的频率为0.02×5=0.1,∵0.5∶0.3∶0.1=5∶3∶1,∴可估计该校初三学生适合参加跑步、跳远、投掷三项训练的集训人数之比为5∶3∶1,故选B.]7.为了了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得到频率分布直方图如图所示,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为()A.64 B.54C.48 D.27B[前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组频数和为38.所以第三组频数为38-16=22.又最大频率为0.32,故第四组频数为0.32×100=32.所以a=22+32=54.故选B.]8.某学习小组在一次数学测验中,得100分的有1人,得95分的有1人,得90分的有2人,得85分的有4人,得80分和75分的各有1人,则该小组数学成绩的平均数、众数、中位数分别是()A.85,85,85 B.87,85,86C.87,85,85 D.87,85,90C[∵得85分的人数最多为4人,∴众数为85,中位数为85,平均数为110(100+95+90×2+85×4+80+75)=87.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得3分,有选错的得0分)9.某地区经过一年的建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中正确的是()A.建设后,种植收入减少B.建设后,其他收入增加了一倍以上C.建设后,养殖收入增加了一倍D.建设后,养殖收入与第三产业收入的总和超过了经济收入的一半BCD[设建设前经济收入为a,则建设后经济收入为2a,由题图可知:种植收入第三产业收入养殖收入其他收入建设前经济收入0.6a 0.06a 0.3a 0.04a建设后经济收入0.74a 0.56a 0.6a 0.1a10.在某次高中学科竞赛中,4 000名考生的参赛成绩统计如图所示,60分以下视为不及格,若同一组中的数据用该组区间中点值为代表,则下列说法中正确的是()A .成绩在[70,80)分的考生人数最多B .不及格的考生人数为1 000C .考生竞赛成绩的平均分约为70.5分D .考生竞赛成绩的中位数为75分ABC [由频率分布直方图可得,成绩在[70,80)内的频率最高,因此考生人数最多,故A 正确;由频率分布直方图可得,成绩在[40,60)的频率为0.25,因此,不及格的人数为4 000×0.25=1 000,故B 正确;由频率分布直方图可得,平均分为45×0.1+55×0.15+65×0.2+75×0.3+85×0.15+95×0.1=70.5,故C 正确;因为成绩在[40,70)内的频率为0.45,[70,80)的频率为0.3,所以中位数为70+10×0.050.3≈71.67,故D 错误.故选ABC .]11.甲、乙两班举行电脑汉字录入比赛,参赛学生每分钟录入汉字的个数经统计计算后填入下表:班级 参加人数中位数 方差 平均数 甲 55 149 191 135 乙55151110135A .甲、乙两班学生成绩的平均数相同B .甲班的成绩波动比乙班的成绩波动大C .乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀)D .甲班成绩的众数小于乙班成绩的众数ABC [甲、乙两班学生成绩的平均数都是135,故两班成绩的平均数相同,∴A 正确;s 2甲=191>110=s 2乙,∴甲班成绩不如乙班稳定,即甲班的成绩波动较大,∴B 正确;甲、乙两班人数相同,但甲班的中位数为149,乙班的中位数为151,从而易知乙班不少于150个的人数要多于甲班,∴C 正确;由题表看不出两班学生成绩的众数,∴D错误.]12.在某地区某高传染性病毒流行期间,为了建立指标来显示疫情已受控制,以便向该地区居民显示可以过正常生活,有公共卫生专家建议的指标是“连续7天每天新增感染人数不超过5人”,根据连续7天的新增病例数计算,下列各选项中,一定符合上述指标的是()A.平均数x≤3B.平均数x≤3且标准差s≤2C.平均数x≤3且极差小于或等于2D.众数等于1且极差小于或等于4CD[A错,举反例:0,0,0,0,2,6,6,其平均数x=2≤3,不符合指标.B错,举反例:0,3,3,3,3,3,6,其平均数x=3,且标准差s=187≤2,不符合指标.C对,若极差等于0或1,在x≤3的条件下,显然符合指标;若极差等于2且x≤3,则每天新增感染人数的最小值与最大值有下列可能:(1)0,2,(2)1,3,(3)2,4,符合指标.D对,若众数等于1且极差小于或等于4,则最大值不超过5,符合指标.故选CD.]三、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.下列数据的70%分位数为________.20,14,26,18,28,30,24,26,33,12,35,22.28[把所给的数据按照从小到大的顺序排列可得:12,14,18,20,22,24,26,26,28,30,33,35,因为有12个数据,所以12×70%=8.4,不是整数,所以数据的70%分位数为第9个数28.]14.为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x(单位:小时)与当天投篮命中率y之间的关系:。
高中英语(新人教版)必修第二册同步习题:UNIT 2单元达标测评(同步习题)【含答案及解析】
单元达标测评(满分:120分;时间:100分钟)第一部分阅读(共两节,满分50分)第一节(共15小题;每小题2.5分,满分37.5分)阅读下列短文,从每题所给的A、B、C、D四个选项中选出最佳选项。
AStories of Animals Acting Just Like Humans◆Monkeys do mathIf monkeys managed the world,we might stay away from the recent banking hardship.In an experiment led by Keith Chen at Yale,monkeys showed an understanding of pricing and planning the money,as well as a wish to stay away from losses when required to buy food with money.◆A camel eats breakfast with peopleThe first time Joe ate with British farmers,he was uninvited.The four-year-old Bactrian camel stuck his head through their open kitchen window,and emptied a fruit bowl.Now the couple,who rent out reindeer,camels,goats,and other creatures for television shows,movies,and photo shoots,set a place at their table for the confident double-humped creature,where Joe eats grain food and his favorite:bananas on toast.◆Marmots(土拨鼠)befriend a boyA mass of marmots in the Austrian Alps has made friends with eight-year-old Matteo Walch by chance,whose family vacations there in summer.Typically,they beat their tails,chatter,and whistle to warn other marmots of danger,but with Matteo, they behave much differently,allowing the boy to feed,pet,and even touch noses withthem.“Watching them makes me feel a connection with nature,” says Matteo.How sweet!1.In what way do monkeys behave like humans according to the text?A.In the character.B.In intelligence.C.In communication.D.In lifestyle.2.Why do the British couple raise the animals?A.To make money.B.To have dinner with them.C.To protect endangered animals.D.To train them to act as humans.3.Why does Matteo Walch go to the Austrian Alps?A.To warn marmots of danger.B.To develop interest in nature.C.To make friends with marmots.D.To go on a holiday with his family.BMy husband and I recently went to Disney World with our three children.We had a wonderful time.Besides,I experienced something that left a deep impression on me.Our children were excited about the attraction where children could drive cars. They were delighted so I decided to stand beside the track to take pictures of everyone as they drove past on the track.As I waited for them to drive by,I noticed a car with a father and his son who was about7years old.They rolled down the hill at the beginning,but suddenly the car stopped.The young driver looked nervous,“I can’t do it.” His father quietly said,“Yes,you can.”“No,I can’t!”“Yes,you can,son.”The little guy was almost in tears.“I can’t!” With deep patience,the father said,“Son,you can do this.I’m going to help you.” A moment later,with the father helping his son,the two went smoothly(顺利地)on their way down the track.The scene brought tears to my eyes and it reminded(使想起)me of my dear father.Just like the little boy’s dad,my father used to say the same words to me. Every time things got hard or when I experienced setbacks along the way,he would say,“Michelle,you can do this.I’m going to help you.”Time and time again the words greatly encouraged me on the journey.I’m aware that I can’t do things beyond my own power,but the words“Yes,you can” come beside me and give me wisdom and strength.As I benefited(受益)a lot from them,I often tell my children never to say“I can’t” easily when they meet something difficult.4.Why did the author stand beside the track?A.She didn’t dare to drive alone.B.She wasn’t interested in driving cars.C.She wanted to take photos of her family.D.She wanted to rest for a few minutes.5.How did the author react to the father’s helping his son?A.She was greatly moved.B.She was impressed by the boy’s patience.C.She decided to learn from the father.D.She reminded the father not to be too strict.6.What does the underlined word in the last but one paragraph mean?A.Disasters.B.Frustration.C.Fights.D.Pain.7.What can we infer from the passage?A.The author enjoys traveling very much.B.The author is patient with her children.C.The author was greatly encouraged by the boy’s father.D.The author was greatly influenced by the words“Yes,you can”.CThe word“sport” first meant something that people did in their free ter it often meant hunting wild animals and birds.About a hundred years ago the word was first used for organized games.This is the usual meaning of the word today.People spend a lot of their time playing football,basketball,tennis and many other sports.Such people play because they want to.A few people are paid for the sport they play.These people are called professional sportsmen.They may be athletes for only a few years,but during that time the best ones can earn a lot of money.For example,a professional footballer in England earns more than30,000dollars a year.The stars earn a lot more.International golf and tennis champions can make more than500,000dollars a year.Of course,only a few sportsmen can earn as much money as that.Perhaps the most surprising thing about sportsmen and money is that the stars can earn more money from advertising than from sports.An advertisement for sports equipment does not simply say“Buy our things”.It says“Buy the same shirt and shoes as...”.Famous sportsmen can even advertise things like watches and food.They allow the companies to use their names or a photograph of them and they are paid for this.Sport is no longer just something for people’s spare time.8.What does the passage mainly talk about?A.The development of sport.B.Hunting wild animals and birds.anized games.D.Something people are paid to do.9.What can we learn from the passage?A.People spend too much money on sports.B.The development of sport is slower than any other activity.C.Most people enjoy sport because they can earn money.D.Nowadays sport is not merely a pastime for people.10.What do people play sports for today?A.Fun.B.Different purposes.C.Money.D.Keeping fit.11.What surprises people most?A.The stars get more money from advertising.B.The word“sport” meant hunting animals.C.Professional sportsmen are paid for what they do.D.Only a few athletes can earn$500,000a year.DFinding fish is going to get harder as climate change continues to heat the world’s oceans.A new study finds that warming seas over the past80years have reduced the sustainable catch of80species of fish and shellfish.The sustainable catch refers to the amount of some species that can be harvested without doing long-term damage to the health of populations.Overfishing has made that decline worse,researchers say.Overfishing refers to catching so many fish that the size of the population falls.In some parts of the world, such as the heavily fished Sea of Japan,the decrease is as high as35percent.That’s a loss of more than one in every three fish.Researchers examined changes in235populations of fish and shellfish between 1930and2010.Those fish populations spread far apart across38ocean regions. Temperature changes varied from one ocean site to another.But on average over that time,Earth’s sea-surface temperatures have risen by about half a degree Celsius.On average,that warming had caused the sustainable catch to drop by4.1percent, the study found.About8percent of the fish and shellfish populations the team studied saw losses as a result of the ocean warming.However,about4percent of some populations increased.That’s because certain species have thrived in warmer waters. One example is a kind of black sea fish.It lives along the northeastern U.S.coast.As warming continues,these fish will reproduce faster until they reach their limit.About3.2billion people worldwide rely on seafood as a source of food.That means it’s urgent for commercial fishing fleets(捕鱼船队)and regulators(监管机构)to consider how climate change is affecting the health of all of those fish in the sea.12.What does the new study discover?A.Overfishing is to blame for fish’s bad health.B.Warming seas cause fewer fish and shellfish.C.Seafood matters to people’s health worldwide.D.The living regions of fish and shellfish are different.13.What does the underlined word“thrived” in Paragraph4probably mean?A Survived narrowly. B.Disappeared soon.C.Decreased sharply.D.Developed quickly.14.What do we know about species of fish and shellfish?A.About8percent of them suffered from a great loss.B.About35percent of them survived in the Sea of Japan.C.About3.2billion people have been saving seafood as it is the source of their food.D.About80percent of the fish species have died out because of warming seas in the past80years.15.Where is the text probably from?A.A cooking guide.B.A science magazine.C.A news review.D.A health brochure.第二节(共5小题;每小题2.5分,满分12.5分)阅读下面短文,从短文后的选项中选出可以填入空白处的最佳选项。
人教版高中英语必修第二册课后习题 第2单元测评卷
第二单元测评(时间:120分钟总分:150分)第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What does the man want to do?A.Fly a kite.B.Go to the park.C.Play on the Internet.2.What will the girl buy this evening?A.Sunglasses.B.A scarf.C.Gloves.3.What does the man suggest the woman do?A.Take a taeone else for help.4.Who is the woman probably?A.A hotel clerk.B.A police officer.C.The man’s wife.5.What are the speakers mainly talking about?A.A birthday party.B.New Year’s gifts.C.The man’s parents.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6.How does the man probably feel?A.Excited.B.Nervous.C.Regretful.7.What will the man do neantha.B.Dance with the woman.C.Attend a graduation ceremony.听第7段材料,回答第8、9题。
【人教版】高中英语必修二:Unit 2 单元测试题 1(含答案)
Unit 2 单元测试题1第二部分:阅读理解(共两节,满分40分)第一节(共15小题;每小题2分,满分30分)阅读下列短文,从每题所给的四个选项(A、B、C和D)中,选出最佳选项。
ACompetition in the Olympics should be between athletes who use their own strength (力量) or speed. If some athletes don't follow the rules, it ruins the fun for everyone connected with the game. It also gives an extremely unfair advantage to the athlete using the drug.— Jim from Atlanta Drug use among top athletes has long been a problem. Without drug testing, the Olympics would be about who uses the most drugs, not who trains the hardest and has the most athletic skills. Also drugs hurt people and they could even kill people.— David from Houston Why should athletes be allowed to compete when it's not really them who are actually competing? It's the drugs that do all the work. Athletes who use drugs are like runners with skates. It's cheating and should not be allowed. It's unfair to other competitors who don't use drugs.—Bruce from Chicago Most sports athletes are held to a standard of being drug free. Olympians should not be held any differently. They take part in highly competitive sports for their country and win medals for it. Testing the athletes for drugs must be done in every country and every sport. No drug testing would be unfair to people who don't use drugs.— Sam from Los Angeles Although popular opinion is against athletes' using drugs, I believe they do help make the Olympic sports more wonderful. I enjoy seeing human beings achieving things that couldn't be done with normal conditioning. I enjoy seeing stronger, faster and longer performances with the help of drugs.— Jack from New York21. What does David think of drug use in the Olympics?A. It's more common in top athletes than others.B. It's a difficult problem to deal with.C. It helps improve athletes' skills.D. It's bad for athletes' health.22. The underlined sentence in Paragraph 3 suggests that _____.A. using drugs is the same as cheatingB. drugs help athletes reach greater speedsC. runners should not be allowed to use drugsD. using drugs can not test athletes' real ability23. Both Jim and Sam mentioned _____.A. the popularity of the OlympicsB. the fairness of the OlympicsC. the rules of the OlympicsD. the fun of the Olympics24. The text is mainly written to _____.A. discuss whether Olympic athletes should be tested for drugsB. explain why drugs should be avoided in the OlympicsC. warn people of the bad influences of drug useD. call people's attention to sports and drugsBIn 1996, John Jones made an unusual discovery. He had just enlarged a piece of paper money for a friend — a Confederate bank note, money issued (发行) by banks in Southern States of America during the Civil War. When he was face to face with the picture, he couldn't believe his eyes: slaves happily picking cotton in their master's fields.Jones grew up in South Carolina. He had heard painful stories of slavery from his great-grandmother. The picture on the money did not match the history of AfricanAmerican slaves that he'd heard all his life. “I had never seen that type of picture on money before,” he said.Jones wondered why slaves looked so happy. He started doing research.Searching for and finding the answers to his questions changed his life. During two years' search, Jones found more than 120 different bills. He discovered that the bills had several things in common. They showed slaves working in jobs related to farming. Many of them showed healthy and smiling slaves at work. None of the bills showed the hardships of slavery.Jones wanted to share what he had learned. “I wanted other people to see what I had seen,” he said. He decided to make lar ge paintings of the pictures on the money. After three years of work, Jones had painted more than 80 slavery scenes (场景). He paired each painting with the money on which the picture appeared. “The Color of Money” — an exhibit (展览) of his work — has toured the country.Jones' paintings tell an important story about the South 150 years ago. He likes to repeat the saying “The story is on the money.” In this case, the saying happens to be true.25. How did Jones feel when he saw the picture on the money?A. Angry.B. Painful.C. Excited.D. Surprised.26. Why did Jones do research on the money?A. He had never heard of Confederate money.B. He wanted to learn about American history through it.C. It showed slaves quite different from those in his mind.D. His great-grandmother told him some unusual stories about it.27. What did Jones find?A. About 120 different bills were issued during the Civil War.B. The difficulty of slaves was never shown on the bills.C. Slaves lived a harder life than he thought.D. Slaves worked long hours on farms.28. What's the best title for the text?A. Confederate MoneyB. Money Tells a StoryC. African American SlavesD. John Jones Changes AmericaCA team of middle schoolers from North Dakota has turned a prize-winning idea into reality with their Recycling Bin app (废物回收箱应用软件). The app encourages recycling by providing users with a searchable map of nearby recycling centers.The group of nine sixth graders from STEM Center Middle School, in West Fargo, North Dakota, came up with the idea as part of a school program for the Verizon Innovative App Challenge. The competition was designed by the Verizon Foundation to increase students' interest in science, technology, engineering, and math, or STEM. It asks students to think of an app that could solve (解决) a problem in their school. The students came up with the Recycling Bin when they saw a need for more recycling in their school for a long time. “We thought that this would really help a lot of people,” Jaden Hilkemann, 12, said.They kept their idea simple so that anyone could use it. The middle schoolers were surprised when they were among the ten national winning teams. “I didn't think our app was this good!” Joram Stith, 12, said. “We were the youngest winning group.”With the help of the Massachusetts Institute of Technology's Media Lab, they turned their idea into an app ready for download. “We had groups of two or three people each developing one part of the app,” Hunter Koehmstedt, 12, said. “We worked together and it was great.” Jacob Pfeifer, 12, added that they le arned a lot working together. “At first, we all didn't agree on exactly what we wanted it to do, but in the end we all came to an agreement,” he said.In June, the free Recycling Bin app became available for download. “I was very excited when it went up on the app store,” Seralyn Blake, 12, said. “A lot of my family members downloaded the app. It was pretty cool.”29. What do we know about the Verizon Innovative App Challenge?A. It was held by STEM Center Middle School.B. It is a competition for middle school students.C. It was designed to help solve environmental problems.D. It encourages students to develop an interest in STEM.30. The idea for the Recycling Bin _____.A. proved to be highly usefulB. came into being quite by chanceC. came from a 12-year-old in West FargoD. resulted from the bad recycling situation in North Dakota31. What did the group of nine sixth graders think of their app?A. It was popular among middle school students.B. Its winning was beyond their expectations.C. It was the simplest of the winning apps.D. It was good enough to win.32. While turning their idea into reality, the prize-winning members _____.A. learned a lot from each otherB. could hardly reach an agreementC. had no idea how to divide the workD. downloaded an app for further researchDDuring the day, Mike Kosciuk teaches students at De La Salle Collegiate High School in Michigan. However, in the evenings and on weekends, Mike provides instruction on . Not only does he teach students math from 9th grade through college level, he also teaches other online teachers how to improve their teaching. Recognized as a leader in online teaching, Mike was the February 2010 Tutor of the Month for .Chrissy Markley is one of many online teachers who are taking virtual (虚拟的) learning to the lower grades. At Arizona Connections Academy, an online publicschool, Chrissy teaches 7/8th Grade Gifted Language Arts and 9th Grade Language Arts. Once a 6th grade teacher in a traditional public school area, Chrissy enjoys teaching in the virtual classroom. Recognized as an excellent teacher, she was named the school's 2011 Teacher of the Year.Having ten years' experience in online teaching, Jody Shine began teaching with Davenport University. When she was asked to teach online, she was skeptical at first. “I feared something would be lost in the give and take of classroom discussion,” Jody said. “Now I know online teaching allows students greater freedom to express themselves.” Today, Jody uses voice recordings a nd online videos to teach English Composition to Davenport students.Like Arizona Connections Academy, Open High School of Utah is also a public school offering online instruction. There, Amy Pace is an award-winning (获奖的) science teacher. After spending 11 years in a traditional teaching environment, Amy joined Open High School of Utah. She has helped create an interesting science course. In 2010, she was one of 103 7th to 12th grade teachers to be chosen for a Presidential Award for Excellence in Mathematics and Science Teaching.33. What subject does Mike teach?A. English Composition.B. Language Arts.C. Science.D. Math.34. The underlined word “skeptical” in Paragraph 3 probably means _____.A. unhappyB. doubtfulC. seriousD. bored35. What kind of readers will probably like reading the text?A. Parents who are helping their kids choose a public school.B. Students who are searching for an online teacher.C. Teachers who want to win prizes in teaching.D. Anyone who likes to study abroad.第二节(共5小题;每小题2分,满分10分)根据短文内容,从短文后的选项中选出能填入空白处的最佳选项。
新课标人教版A数学必修二模块检测含答案.docx
最专业最齐全的word 文档资料下载模块检测(时间:100分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项 中,只有一项是符合题目要求的)1. (2010-湖北高考)用Q , b, c 表示三条不同的直线,卩表示平面,给出下列命题: ①若 a//b, b//c,贝l| a//c ;②若 a 丄b, b 丄c,则 Q 丄c ;③若 a//y, b //y,则Q 〃b ;④若 Q 丄y, b-Ly,则 a//b.其中真命题的序号是()• A. ①②B.②③C.①④D.③④解析 由平行公理可知①正确;②不正确,若三条直线在同一平面内,则a II c ;③ 不正确4与b 有可能平行,也有可能异面或相交;由线面垂直的性质可知④正确. 答案C 2. 直线2x —y + 3=0的倾斜角所在区间是( ).A (0,劭B.g 另 (兀 3TI } (3兀、 c£,力D.(j,解析 由直线方程得其斜率"2 ,又b > 1 , .••倾斜角的范围为仔,另故选B. 答案B3. 一空间几何体的三视图如图所示,则该几何体的体积为( A. 2兀+2厉 B. 4兀+2厉 C. 2兀+羊 D. 4兀+芈解析 该几何体由一圆柱和一正四棱锥组成,圆柱的底面半径为1 ,高为2 ,则其)• 侧视图一 l —2f 止视图俯视图体积为271 ,四棱锥的底面边长为迈,高为厉,所以体积为卜(迈)2x厉=苹,所以该几何体的体积为2兀+芈.答案C4.在空间直角坐标系中,已知点P(l,迈,^3),过P作平面yOz的垂线P0,则垂足0的坐标为().A. (0,匹,0)B. (0, \[2, V3)C. (1,0, V3)D. (1,迈,0)解析根据空间直角坐标系的概念知,yOz平面上点0的x坐标为0 , y坐标、z 坐标与点P的y坐标迈,z坐标VI分别相等,•••0(0 ,迈,厉).故选B.答案B5.若P0是圆x2+y2 = 9的弦,P0的中点是M(l,2),则直线P0的方程是().A. x~\~2y—3=0 B・x~\~2y—5 = 0C. 2兀—y+4=0 D・2x~y=02 - 0解析由题意知k0M =------ = 2 ,1 - 0■ -^PQ ~ ~ '•••直线P0的方程为:y - 2 = _*(x _ 1),即x + 2y - 5 = 0.故选 B.答案B6 .戯I通过两直线7x+5y—24=0和x~y=0的交点,且点(5,1)到I的距离为顶, 则/的方程是().A. 3x+y+4=0B. 3%-y+4=0C・ 3x—y—4=0 D・兀—3y—4 = 07% + 5y ・ 24 二 0 , 解析由 得交点(2,2), x - y = 0.设I 的方程为y-2 = k(x-2), 即 kx-y + 2-2k = 0) I5fe - 1 + 2 - 2fel 易知AP ==申a , OP =,所以球的半径R = OA 满足R 1 2 = + ga}77=~^2°2'故 S 球=47iF =尹/答案B8.若直线中+*=1与圆%2+/=1有公共点,贝0(). A.B ・C •右+*W1 D*+屛 1解析 直线十誌1与圆戏+于=1有公共点,因此圆心(0,0)到直线bx + ay - ab = Q 的距离应小于等于1. P/ + (-l)2■■■I 的方程为3x-y-4 = 0.故选C. 答案C7. (2010-课标全国高考)设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都 在一个球面上,则该球的表面积为().2 7 211 22A ・ 7iaCr^Tta D ・ 5兀。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 点、直线、平面之间的位置关系A 组一、选择题1.设 α,β为两个不同的平面,l ,m 为两条不同的直线,且l ⊂α,m ⊂β,有如下的两个命题:①若 α∥β,则l ∥m ;②若l ⊥m ,则 α⊥β.那么( ).A .①是真命题,②是假命题B .①是假命题,②是真命题C .①②都是真命题D .①②都是假命题2.如图,ABCD -A 1B 1C 1D 1为正方体,下面结论错误..的是( ). A .BD ∥平面CB 1D 1 B .AC 1⊥BD C .AC 1⊥平面CB 1D 1D .异面直线AD 与CB 1角为60°3.关于直线m ,n 与平面 α,β,有下列四个命题: ①m ∥α,n ∥β 且 α∥β,则m ∥n ; ②m ⊥α,n ⊥β 且 α⊥β,则m ⊥n ; ③m ⊥α,n ∥β 且 α∥β,则m ⊥n ; ④m ∥α,n ⊥β 且 α⊥β,则m ∥n .其中真命题的序号是( ). A .①②B .③④C .①④D .②③4.给出下列四个命题:①垂直于同一直线的两条直线互相平行 ②垂直于同一平面的两个平面互相平行③若直线l 1,l 2与同一平面所成的角相等,则l 1,l 2互相平行 ④若直线l 1,l 2是异面直线,则与l 1,l 2都相交的两条直线是异面直线 其中假.命题的个数是( ). A .1B .2C .3D .45.下列命题中正确的个数是( ).①若直线l 上有无数个点不在平面 α 内,则l ∥α②若直线l 与平面 α 平行,则l 与平面 α 内的任意一条直线都平行③如果两条平行直线中的一条直线与一个平面平行,那么另一条直线也与这个平面平行(第2题)④若直线l与平面 α 平行,则l与平面 α 内的任意一条直线都没有公共点A.0个B.1个C.2个D.3个6.两直线l1与l2异面,过l1作平面与l2平行,这样的平面().A.不存在B.有唯一的一个C.有无数个D.只有两个7.把正方形ABCD沿对角线AC折起,当以A,B,C,D四点为顶点的三棱锥体积最大时,直线BD和平面ABC所成的角的大小为().A.90°B.60°C.45°D.30°8.下列说法中不正确的....是().A.空间中,一组对边平行且相等的四边形一定是平行四边形B.同一平面的两条垂线一定共面C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一个平面内D.过一条直线有且只有一个平面与已知平面垂直9.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的一个平面和这个平面相交,那么这条直线和交线平行②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面③如果两条直线都平行于一个平面,那么这两条直线互相平行④如果一个平面经过另一个平面的一条垂线,那么些两个平面互相垂直其中真命题的个数是().A.4 B.3 C.2 D.110.异面直线a,b所成的角60°,直线a⊥c,则直线b与c所成的角的范围为().A.[30°,90°]B.[60°,90°]C.[30°,60°]D.[30°,120°]二、填空题11.已知三棱锥P-ABC的三条侧棱P A,PB,PC两两相互垂直,且三个侧面的面积分别为S1,S2,S3,则这个三棱锥的体积为.12.P是△ABC所在平面 α 外一点,过P作PO⊥平面 α,垂足是O,连P A,PB,PC.(1)若P A=PB=PC,则O为△ABC的心;(2)P A⊥PB,P A⊥PC,PC⊥PB,则O是△ABC的心;(3)若点P到三边AB,BC,CA的距离相等,则O是△ABC的心;(4)若P A =PB =PC ,∠C =90º,则O 是AB 边的 点; (5)若P A =PB =PC ,AB =AC ,则点O 在△ABC 的 线上. 13.如图,在正三角形ABC 中,D ,E ,F 分别为各边的中点,G ,H ,I ,J 分别为AF ,AD ,BE ,DE 的中点,将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为 .14.直线l 与平面 α 所成角为30°,l ∩α=A ,直线m ∈α,则m 与l 所成角的取值范围 是 .15.棱长为1的正四面体内有一点P ,由点P 向各面引垂线,垂线段长度分别为d 1,d 2,d 3,d 4,则d 1+d 2+d 3+d 4的值为 .16.直二面角 α-l -β 的棱上有一点A ,在平面 α,β 内各有一条射线AB ,AC 与l 成45°,AB ⊂α,AC ⊂β,则∠BAC = .三、解答题17.在四面体ABCD 中,△ABC 与△DBC 都是边长为4的正三角形. (1)求证:BC ⊥AD ;(2)若点D 到平面ABC 的距离等于3,求二面角A -BC -D 的正弦值;(3)设二面角A -BC -D 的大小为 θ,猜想 θ 为何值时,四面体A -BCD 的体积最大.(不要求证明)18. 如图,在长方体ABCD —A 1B 1C 1D 1中,AB=J(第13题)(第17题)2,BB 1=BC =1,E 为D 1C 1的中点,连结ED ,EC ,EB 和DB .(1)求证:平面EDB ⊥平面EBC ; (2)求二面角E -DB -C 的正切值.19*.如图,在底面是直角梯形的四棱锥S-ABCD 中,AD ∥BC ,∠ABC =90°, SA ⊥面ABCD ,SA =AB =BC =1,AD =21. (1)求四棱锥S —ABCD 的体积;(2)求面SCD 与面SBA 所成的二面角的正切值. (提示:延长 BA ,CD 相交于点 E ,则直线 SE 是 所求二面角的棱.)(第19题)(第18题)20*.斜三棱柱的一个侧面的面积为10,这个侧面与它所对棱的距离等于6,求这个棱柱的体积.(提示:在AA1上取一点P,过P作棱柱的截面,使AA1垂直于这个截面.)(第20题)第二章点、直线、平面之间的位置关系参考答案A组一、选择题1.D解析:命题②有反例,如图中平面 α∩平面 β=直线n,l⊂α,m⊂β,且l∥n,m⊥n,则m⊥l,显然平面 α 不垂直平面β, (第1题)故②是假命题;命题①显然也是假命题,2.D解析:异面直线AD与CB1角为45°.3.D解析:在①、④的条件下,m,n的位置关系不确定.4.D解析:利用特殊图形正方体我们不难发现①②③④均不正确,故选择答案D.5.B解析:学会用长方体模型分析问题,A1A有无数点在平面ABCD外,但AA1与平面ABCD相交,①不正确;A1B1∥平面ABCD,显然A1B1不平行于BD,②不正确;A1B1∥AB,A1B1∥平面ABCD,但AB⊂平面ABCD内,③不正确;l与平面α平行,则l与 α 无公共点,l与平面 α 内的所有直线都没有公共点,④正确,应选B.(第5题) 6.B解析:设平面α 过l1,且l2∥α,则l1上一定点P与l2确定一平面β ,β 与α 的交线l3∥l2,且l3 过点P. 又过点P与l2平行的直线只有一条,即l3有唯一性,所以经过l1和l3的平面是唯一的,即过l1且平行于l2的平面是唯一的.7.C解析:当三棱锥D-ABC体积最大时,平面DAC⊥ABC,取AC的中点O,则△DBO是等腰直角三角形,即∠DBO =45°.8.D解析:A .一组对边平行就决定了共面;B .同一平面的两条垂线互相平行,因而共面;C .这些直线都在同一个平面内即直线的垂面;D .把书本的书脊垂直放在桌上就明确了.9.B解析:因为①②④正确,故选B . 10.A解析:异面直线a ,b 所成的角为60°,直线c ⊥a ,过空间任一点 P ,作直线 a ’∥a , b ’∥b , c ’∥c . 若a ’,b ’,c ’ 共面则 b ’ 与 c ’ 成 30° 角,否则 b ’ 与 c ’ 所成的角的范围为(30°,90°],所以直线b 与c 所成角的范围为[30°,90°] .二、填空题 11.313212S S S .解析:设三条侧棱长为 a ,b ,c . 则 21ab =S 1,21bc =S 2,21ca =S 3 三式相乘: ∴81a 2 b 2 c 2=S 1S 2S 3, ∴ abc =23212S S S . ∵ 三侧棱两两垂直,∴ V =31abc ·21=313212S S S .12.外,垂,内,中,BC 边的垂直平分.解析:(1)由三角形全等可证得 O 为△ABC 的外心;(2)由直线和平面垂直的判定定理可证得,O 为△ABC 的垂心; (3)由直线和平面垂直的判定定理可证得,O 为△ABC 的内心; (4)由三角形全等可证得,O 为 AB 边的中点;(5)由(1)知,O 在 BC 边的垂直平分线上,或说 O 在∠BAC 的平分线上. 13.60°.解析:将△ABC 沿DE ,EF ,DF 折成三棱锥以后,GH 与IJ 所成角的度数为60°. 14.[30°,90°].解析:直线l 与平面 α 所成的30°的角为m 与l 所成角的最小值,当m 在 α 内适当旋转就可以得到l ⊥m ,即m 与l 所成角的的最大值为90°.15.36. 解析:作等积变换:4331⨯×(d 1+d 2+d 3+d 4)=4331⨯·h ,而h =36. 16.60°或120°.解析:不妨固定AB ,则AC 有两种可能. 三、解答题17.证明:(1)取BC 中点O ,连结AO ,DO . ∵△ABC ,△BCD 都是边长为4的正三角形, ∴AO ⊥BC ,DO ⊥BC ,且AO ∩DO =O , ∴BC ⊥平面AOD .又AD ⊂平面AOD ,∴BC ⊥AD . (第17题)解:(2)由(1)知∠AOD 为二面角A -BC -D 的平面角,设∠AOD =θ,则过点D 作DE ⊥AD ,垂足为E .∵BC ⊥平面ADO ,且BC ⊂平面ABC ,∴平面ADO ⊥平面ABC .又平面ADO ∩平面ABC =AO , ∴DE ⊥平面ABC .∴线段DE 的长为点D 到平面ABC 的距离,即DE =3. 又DO =23BD =23, 在Rt △DEO 中,sin θ=DODE =23,故二面角A -BC -D 的正弦值为23. (3)当 θ=90°时,四面体ABCD 的体积最大.18.证明:(1)在长方体ABCD -A 1B 1C 1D 1中,AB =2,BB 1=BC =1,E 为D 1C 1的中点.∴△DD 1E 为等腰直角三角形,∠D 1ED =45°.同理∠C 1EC =45°.∴︒=∠90DEC ,即DE ⊥EC .在长方体ABC D -1111D C B A 中,BC ⊥平面11DCC D ,又DE ⊂平面11DCC D ,∴BC ⊥DE .又C BC EC = ,∴DE ⊥平面EBC .∵平面DEB 过DE ,∴平面DEB ⊥平面EBC .(2)解:如图,过E 在平面11DCC D 中作EO ⊥DC于O .在长方体ABCD -1111D C B A 中,∵面ABCD ⊥面11DCC D ,∴EO ⊥面ABCD .过O 在平面DBC 中作OF ⊥DB 于F ,连结EF ,∴EF ⊥BD .∠EFO 为二面角E -D B -C 的平面角.利用平面几何知识可得OF =51, (第18题) 又OE =1,所以,tan ∠EFO =5.19*.解:(1)直角梯形ABCD 的面积是M 底面=AB AD BC ⋅)(+21=43=1221+1⨯, ∴四棱锥S —ABCD 的体积是V =31·SA ·M 底面=31×1×43=41.(2)如图,延长BA ,CD 相交于点E ,连结SE ,则SE 是所求二面角的棱. ∵AD ∥BC ,BC =2AD , ∴EA =AB =SA ,∴SE ⊥SB∵SA ⊥面ABCD ,得面SEB ⊥面EBC ,EB 是交线. 又BC ⊥EB ,∴BC ⊥面SEB ,故SB 是SC 在面SEB 上的射影,∴CS ⊥SE ,∠BSC 是所求二面角的平面角. ∵SB =22+AB SA =2,BC =1,BC ⊥SB , ∴tan ∠BSC =22=SB BC , (第19题)即所求二面角的正切值为22. 20*.解:如图,设斜三棱柱ABC —A 1B 1C 1的侧面BB 1C 1C 的面积为10,A 1A 和面BB 1C 1C 的距离为6,在AA 1上取一点P 作截面PQR ,使AA 1⊥截面PQR ,AA 1∥CC 1,∴截面PQR ⊥侧面BB 1C 1C ,过P 作PO ⊥QR 于O ,则PO ⊥侧面BB 1C 1C ,且PO =6. ∴V 斜=S △PQR ·AA 1=21·QR ·PO ·AA 1=21·PO ·QR ·BB 1 =21×10×6 =30.(第20题)。