人教版轴对称测试题含答案
数学八年级上册《轴对称》单元检测(含答案)
9.如图,在 中, , , 平分 , ,则图中共有等腰三角形( )
A. 个B. 个C. 个D. 个
[答案]D
[解析]
[分析]
根据等腰三角形性质和三角形内角和定理求出∠A C B=∠B= (180°−∠A)=72°,求出∠A C D=∠B C D= ∠A C B=36°,求出∠C D B=∠A+∠A C D=72°,根据平行线的性质得出∠ED B=∠A=36°,∠DEB=∠A C B=72°,∠C DE=∠A C D=36°,推出∠A=∠A C D=∠B C D=∠C DE=36°,∠B=∠A C D=∠DEB=∠C D B=72°即可.
A. B. C. D.
3.一个角是 等腰三角形是( )
A.等腰直角三角形B.等边三角形C.直角三角形D.上述都正确
4.如图,在一个规格为 (即 个小正方形)的球台上,有两个小球 , .若击打小球 ,经过球台边的反弹后,恰好击中小球 ,那么小球 击出时,应瞄准球台边上的点( )
A. B. C. D.
5.如图,桌面上有M、N两球,若要将M球射向桌面的任意一边,使一次反弹后击中N球,则4个点中,可以瞄准的是( )
[详解]解:∵A B=A C,
∴∠A B C=∠C,
∵B D=B A,
∴∠A=∠B D A,
∴∠A>∠C,
∴2∠A<180°且3∠A>180°,
∴60°<∠A<90°,即60<x<90.
故选C.
[点睛]此题考查了等腰三角形的性质,三角形内角和为180°和三角形外角的性质,关键是得到2∠A<180°且3∠A>180°.
[答案]D
[解析]
[分析]
此题根据△A B C中∠A为锐角与钝角分为两种情况解答.
人教版八年级数学上册《轴对称》测试卷(含答案)
人教版八年级数学上册《轴对称》测试卷(含答案)一、选择题(每小题3分,共30分)1.点A(m,3)与B(4,n)关于x轴对称,则m,n的值分别为( )A.4,3B.-4,-3C.-4,3D.4,-32.下列交通标志中,是轴对称图形的是( )3.下列轴对称图形中,对称轴最多的是( )A.线段B.等边三角形C.五角星D.圆4.下列三角形中,不是轴对称图形的是( )A.等腰直角三角形B.有一个角是30°的直角三角形C.两内角分别是30°,120°的三角形D.两内角分别是30°,75°的三角形5.如图,ABCD 是矩形纸片,翻折∠B、∠D,使AD、BC 边与对角线AC重叠,且顶点B、D恰好落在同一点0上,折痕分别是CE、AF,则AE等于( )EBA.√3B.2C.1.5D.√26.到三角形三个顶点距离相等的点是( )A.三条中线的交点B.三条高的交点C.三条角平分线的交点D.三边垂直平分线的交点7.如图,在等腰梯形ABCD中,AD //BC,AB=CD,AC=BD,AC平分∠BCD,若∠ABC=72°,则图中等腰三角形共有( )A.8个B.6个C.4个D.2个8.如图,在△ABC 中,AB<AC,BC边的垂直平分线交BC于D,交AC 于E,连BE,AB=6cm,△ABE 的周长为14cm,则AC的长为( )A.4cmB.6cmC.8cmD.10cm9.如图,已知AB=AC=BD,则∠1与∠2的关系是( )A.∠1=2∠2B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°10.如图,在△ABC中,∠BAC=90,AB=AC,BD平分∠ABC交AC于D,AE⊥BD,交BC于E,下列说法:①AB=BE;②∠CAE=1∠C;③AD=CE;④CD=CE.其中正确的是( )2A.①②③B.②③④C.①②④D.①②③④二、填空题(每小题3分,共18分)11.已知点A(m-1,3)与点B(2,n+1)关于x轴对称,则m=_________,n=__________.12.等腰三角形的一个角是80°,则它顶角的度数是_______________度.13.在△ABC 中.①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC 为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有__个.14.如图,在△ABC 中,∠A=90°,∠ABC=60°,∠ABC,∠ACB的平分线交于点O,OE // AB交BC于E,OF //AC交BC于F,若AB=1,则△OEF 的周长为_____________.15.如图,AD是等边△ABC底边上的中线,AC的垂直平分线交AC 于点E,交AD于点F ,若AD=9,则DF长为____.16.已知Rt△ABC 中,∠C=90°,∠A=30°.在直线BC或AC上取一点P,使得△PAB是等腰三角形,则符合条件的P点有________个.三、解答题(72分)17.(8分)如图,△ABC 中,点D是BC边的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.求证:∠BAD=∠CAD.18.(8分)如图,在△ABC中,D,E分别是AC,AB边上的点,BD,CE相交于点0,给出下列条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形?(用序号写出所有的情形);(2)选择(1)中的一种情形,证明△ABC是等腰三角形.19.(8分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-3,0),B(-3,-4),C(-1,-4).(1)求△ABC的面积;(2)在图中作出△ABC关于x轴对称的图形△DEF,并写出D,E,F 的坐标.20.(8分)如图,在△ABC中,∠ACB=2∠B,∠BAC的平分线AD交BC于D,过C作CN⊥AD交AD于H,交AB于N.(1) 求证:△ANC为等腰三角形;(2)试判断BN与CD的数量关系,并说明理由.21.(8分)已知如图,在△ABC中,AB=BC=2,∠ABC=120°,BC//x轴,点B的坐标是(一3,1).(1)写出顶点C的坐标;(2)作出△ABC 关于y轴对称的△A'B'C';(3)求以点A,B,B',A'为顶点的四边形的周长.22.(10 分)在△ABC 中,AB=CB.(1)若AC=AB,如图1,CM⊥AB 于点M,MN⊥AC 于点N,NP ⊥BC 于点P.若CP=2,则BP=_______;(2)若∠BAC=45°,如图2,CD平分∠ACB交AB于点D,过边AC上一点E作EF //CD,交AB于点F,AG是△AEF的高,探究高AG与边EF的数量关系;(3)若∠ABC=90°,点E是射线BC上的一个动点,作AF⊥AE且AF=AE,连CF交直线AB于点G.若BCCE =53,则AGBG=__________.23.(10分)图1,在△ABC中,AB=AC,∠BAC=30°,点D 是△ABC内一点,DB=DC,∠DCB=30°,点E是BD延长线上一点,AE=AB.(1)直接写出∠ADE 的度数___________;(2)求证:DE=AD+DC;(3)作BP 平分∠ABE,EF⊥BP,垂足为F(如图2),若EF=3,求BP 的长.24.(12分)如图1,A 是OB 的垂直平分线上的一点,P为y轴上一点,且∠OPB=∠OAB.(1)若∠AOB=60°,PB=4,求点P的坐标;(2)在(1)的条件下,求证:PA+PO=PB;(3)如图2,若点A是OB 的垂直平分线上的一点,已知A(2,5),∠OPB=∠OAB,求PO+PB 的值.参考答案:。
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)
人教版八年级数学上册第13章《轴对称》单元练习题(含答案)一、单选题1.下列倡导节约的图案中,是轴对称图形的是( )A .B .C .D . 2.在平面直角坐标系中,点(3,2)关于x 轴对称的点的坐标为( )A .(3,2)-B .(2,3)-C .(2,3)-D .(3,2)-3.下列黑体字中,属于轴对称图形的是( )A .善B .勤C .健D .朴4.如图,在已知的ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ; ②作直线MN 交AB 于点D ,连接CD .若4AC =,10AB =,则ACD 的周长为( )A .8B .9C .10D .145.图1是光的反射规律示意图.其中,PO 是入射光线,OQ 是反射光线,法线KO ⊥MN ,∠POK 是入射角,∠KOQ 是反射角,∠KOQ =∠POK .图2中,光线自点P 射入,经镜面EF 反射后经过的点是( )A .A 点B .B 点C .C 点D .D 点6.如图,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AED '=50°,则∠EFC 等于( )A .65°B .110°C .115°D .130°7.如图,在ABC 中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD △的周长为( )A .25B .22C .19D .188.如图,在ABC 中,AB AC =,40A ︒∠=,//CD AB ,则BCD ∠=( )A .40︒B .50︒C .60︒D .70︒9.如图是A ,B ,C 三岛的平面图,C 岛在A 岛的北偏东35度方向,B 岛在A 岛的北偏东80度方向,C 岛在B 岛的北偏西55度方向,则A ,B ,C 三岛组成一个( )A .等腰直角三角形B .等腰三角形C .直角三角形D .等边三角形10.如图,在等边ABC 中,BC 边上的高6AD =,E 是高AD 上的一个动点,F 是边AB 的中点,在点E 运动的过程中,EB EF +存在最小值,则这个最小值是( )A .5B .6C .7D .811.如图,在△ABC 中,AD 是BC 边上的高,∠BAF =∠CAG =90°,AB =AF ,AC =AG ,连接FG ,交DA 的延长线于点E ,连接BG ,CF , 则下列结论:①BG =CF ;②BG ⊥CF ;③∠EAF =∠ABC ;④EF =EG ,其中正确的有( )A .①②③B .①②④C .①③④D .①②③④ 12.如图,在ABC 中,45,ABC AD BE ∠=︒,分别为,BC AC 边上的高,,AD BE 相交于点F ,连接CF ,则下列结论:①BF AC =;②FCD DAC ∠=∠;③CF AB ⊥;④若2BF EC =,则FDC △周长等于AB 的长.其中正确的有( )A .①②B .①③④C .①③D .②③④二、填空题13.已知△ABC 是等腰三角形.若∠A =40°,则△ABC 的顶角度数是____.14.如图,,AC BD 在AB 的同侧,2,8,8AC BD AB ===,点M 为AB 的中点,若120CMD ∠=,则CD 的最大值是_____.15.如图,△ABC 的边CB 关于CA 的对称线段是CB ',边CA 关于CB 的对称线段是CA ',连结BB ',若点A '落在BB '所在的直线上,∠ABB '=56°,则∠ACB =___度.16.如图,在ABC 中,BC 的垂直平分线分别交BC 、AB 于点E 、F .若AFC △是等边三角形,则B ∠=_________°.17.如图,在等边△ABC 中,点E 是边AC 上一点,AD 为BC 边上的中线,AD 、BE 相交于点F ,若∠AEB =100°,则∠AFB 的度数为_____.18.如图,在Rt ABC 中,90C ∠=︒,20B ∠=︒,PQ 垂直平分AB ,垂足为Q ,交BC 于点P .按以下步骤作图:①以点A 为圆心,以适当的长为半径作弧,分别交边,AC AB 于点D ,E ;②分别以点D ,E 为圆心,以大于12DE 的长为半径作弧,两弧相交于点F ;⑤作射线AF .若AF 与PQ 的夹角为α,则α=________°.三、解答题19.已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.20.如图,在ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒.(1)当点D 在AC 上时,如图①,线段BD ,CE 有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的ADE 绕点A 顺时针旋转()090αα︒<<︒,如图②,线段BD ,CE 有怎样的数量关系和位置关系?请说明理由.(3)拓展应用:已知等边ABC 和等边ADE 如图③所示,求线段BD 的延长线和线段CE 所夹锐角的度数.21.如图,在四边形ABCD 中,AD BC ∥,E 为CD 的中点,连接AE 、BE ,BE AE ⊥,延长AE 交BC 的延长线于点F .(1)请判断FC 与AD 的数量关系,并说明理由;(2)若AB =6,AD =2,求BC 的长度.22.已知△ABC 和△DEF 为等腰三角形,AB =AC ,DE =DF ,∠BAC =∠EDF ,点E 在AB 上,点F 在射线AC 上.(1)如图1,若∠BAC =60°,点F 与点C 重合,求证:AF =AE +AD ;(2)如图2,若AD =AB ,求证:AF =AE +BC .23.(1)如图1,在等边三角形ABC 中,AD ⊥BC 于D ,CE ⊥AB 于E ,AD 与CE 相交于点O .求证:OA =2DO ;(2)如图2,若点G 是线段AD 上一点,CG 平分∠BCE ,∠BGF =60°,GF 交CE 所在直线于点F .求证:GB =GF .(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作∠BGF =60°边GF 交CE 所在直线于点F .猜想:OG 、OF 、OA 三条线段之间的数量关系,并证明.24.如图,在ABC 中,AD BC ⊥,AD BD =;点F 在AD 上,DF DC =.连接BF 并延长交AC 于E .(1)求证:BF AC =;(2)求证:BE AC ⊥;(3)若AB BC =,BF 与AE 有什么数量关系?请说明理由.25.如图,在Rt ABC 中,9030C A ∠=︒∠=︒,.点D 是AB 中点,点E 为边AC 上一点,连接CD DE ,,以DE 为边在DE 的左侧作等边三角形DEF ,连接BF .△的形状为______;(1)BCD(2)随着点E位置的变化,DBF∠的度数是否变化?并结合图说明你的理由;AC=,请直接写出DE的长.(3)当点F落在边AC上时,若626.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:△ABE≌△CBF;(2)若∠CAE=30°,求∠ACF度数.27.如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.28.已知,如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P.(1)求证:△ABE≌△CAD;(2)求∠BPQ的度数;(3)若BQ⊥AD于Q,PQ=6,PE=2,求AD的长。
人教版八年级上册数学第十三章 轴对称 含答案
人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、以下各命题中,正确的命题是()(1)等腰三角形的一边长4 cm,一边长9 cm,则它的周长为17 cm或22 cm;(2)三角形的一个外角,等于两个内角的和;(3)有两边和一角对应相等的两个三角形全等;(4)等边三角形是轴对称图形;(5)三角形的一个外角平分线平行于三角形的一边,那么这个三角形是等腰三角形.A.(1)(2)(3)B.(1)(3)(5)C.(2)(4)(5) D.(4)(5)2、如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB 于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②DE=BD+CE;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的有()A.①②③B.①②③④C.①②D.①3、如图所示的标志中,是轴对称图形的有()A.1个B.2个C.3个D.4个4、如图,在正方形ABCD的外侧,作等边△ADE,BE、CE分别交AD于G、H,设△CDH、△GHE的面积分别为S1、S2,则()A.3S1=2S2B.2S1=3S2C.2S1= S2D. S1=2S25、下列图形中,是中心对称图形,但不是轴对称图形的是()A.平行四边形B.线段C.等边三角形D.抛物线6、弦AB把⊙O分成两条弧,它们的度数比为4:5,M为AB的中点,则∠AOM 的度数为()A.50°B.80°C.100°D.160°7、如图所示,在△ABC中,AB=AC,DE垂直平分腰AB,若AC=CD,AB∥CD,则∠A的度数为()A.36°B.72°C.120°D.44°8、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.9、如图,矩形中,与相交于点,,将沿折叠,点的对应点为,连接交于点,且,在边上有一点,使得的值最小,此时()A. B. C. D.10、下列图案中,既是轴对称图形,又是中心对称图形的是( )A. B. C. D.11、下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1B.2C.3D.412、如图,在菱形中,与相交于点,图中等腰三角形的个数为()A.1B.2C.3D.413、下列四个图形中,是轴对称图形的有()A. 个B. 个C. 个D. 个14、在平面直角坐标系中,点M(6,﹣3)关于x轴对称的点在()A.第一象限B.第二象限C.第三象限D.第四象限15、如下图,在△ABC中,AB=AC,∠A=40°,则∠B的度数为()A.80°B.70°C.60°D.40°二、填空题(共10题,共计30分)16、如图,等腰中,,边的垂直平分线交于点D,交于点E.若的周长为,则的长为________.17、若与点关于轴对称,则的值是________;18、如图,E是正方形ABCD外一点,作BF ⊥BE ,BF交AE于点F,若CE=4,BE=BF= ,则AB=________19、如图,在边长为2的菱形ABCD中, ∠ABC=120°, E,F分别为AD,CD上的动点,且AE+CF=2,则线段EF长的最小值是________.20、将一副三角尺如图所示叠放在一起,若=14cm,则阴影部分的面积是________cm221、如图,△ABC是正三角形,曲线CDEF叫做正三角形的渐开线,其中弧CD、弧DE、弧EF的圆心依次是A、B、C,如果AB=1,那么曲线CDEF的长是________.22、如图,在ABC中,∠ACB=60°,点D,E分别是AB,AC的中点,点F在线段DE上,连接AF,CF.若CF恰好平分∠ACB ,则∠FAC的度数为________.23、△ABC中,AB=AC,∠A=30°,以B为圆心,BC长为半径画弧,分别交AC,AB于D,E两点,并连结BD,DE.则∠BDE的度数为________.24、如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针方向旋转一定角度后得到△A′B′C.若点A′恰好落在BC的延长线上,则点B′到BA′的距离为________.25、已知如图,在△ABC中,BE平分∠ABC,过点E作DE∥BC交AB于点D,若AE=3cm,△ADE的周长为10cm,则AB= ________三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM 的平分线,CE⊥AN,垂足为点E.求证:四边形ADCE为矩形.28、如图,在中,,,分别以、为边在的外侧作等边和等边,连接与交于点F,若,求的长是多少?29、如图,在▱ABCD中,对角线AC⊥BC,∠BAC=30°,BC=2 ,在AB边的下方作射线AG,使得∠BAG=30°,E为线段DC上一个动点,在射线AG上取一点P,连接BP,使得∠EBP=60°,连接EP交AC于点F,在点E的运动过程中,当∠BPE=60°时,求 AF长。
人教版八年级数学上测第十三章《轴对称》检测题(含答案)
人教版八年级数学上测第十三章《轴对称》检测题(含答案)一、选择题(每小题3分,共30分)1. 现实世界中,对称现象无处不在,下列汉字是轴对称图形的是()A. 爱B. 我C. 中D. 华【答案】C.2.点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(1,-2)D.(2,-1)【答案】C.3. 如图,△ABC中,AC的垂直平分线交AB于点D,CD平分∠ACB,若∠A=50°,则∠B度数为()A. 25°B. 30°C. 35°D. 40°【答案】B.4.下列每个网格中均有两个图形,其中一个图形可由另一个轴对称变换得到的是()A. B. C. D.【答案】B.5. 如图,∠MON内有一点P,点P关于OM、ON的对称点分别是G、H,连GH分别交OM、ON于A、B点,若GH=10cm,则△P AB的周长为()A. 5cmB.10cmC. 20cmD.15cm【答案】B. 提示:根据对称性,AG=AP,BH=GP,∴AP+AB+BP=AG+AB+BH=GH=10.6.等腰三角形的一个内角为70°,则另外两个内角的度数分别是()A. 55° ,55°B. 70°,40或70°,55°C.70°,40°D. 55°,55°或70°,40°【答案】D.7. 如图,在正方形ABCD的外侧,作等边△CDE,连接AE交CD于点F,则∠DF A的度数为()A. 45°B. 55°C. 60°D. 75°【答案】D. 提示:∠ADE=90°+60°=150°,∠DAF=∠DEA=15°,则∠DF A=75°.8. 如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长度为()A. 5cmB. 5.4cmC. 2.4cmD. 3cm【答案】C. 提示:作DF⊥BC于F,∵BD平分∠ABC,故设DE=DF=h,由S△ABD+S△CBD=S△ABC,得:12(AB+BC)h=36,代入数值,解得h=2.4,故选C.9. 如图,在△ABC中,BD为∠ABC的平分线,∠A=36°,AB=AC=a,BC=b,则CD=()A.2ba+B.2ba-C. a-b D. b-a【答案】C. 提示:AD=BD=BC=b,CD=AC-AD=a-b.10. 如图OE是等边△AOB的中线,OB=4,C是直线OE上一动点,以AC为边在直线AC下方作等边△ACD,连接ED,下列说法正确的是()A. ED的最小值是2B. ED的最小值是1C. ED有最大值D. ED没有最大值也没有最小值【答案】B. 提示:连BD,则易得△AOC≌△ABD(SAS),∴∠ABD=∠AOC=30°,当∠BDE=90°时,ED最小,此时ED=12BE=1,故选B.二、填空题(每小题3分,共18分)11. 点P(m,n)和点Q(n-1,2m)关于x轴对称,则m+n的值为__________.【答案】13. 提示:m=n-1,2m+n=0,联立解得m=-13,n=23,∴m+n=13.12. 如图,在△ABC中,∠C=90°,DE是AB的垂直平分线,AD恰好平分∠BAC,若DE=1,则BC的长是__________.【答案】3. 提示:由条件得AD=BD,∠CAD=∠BAD,∴∠CAD=∠BAD=∠B=30°,CD=DE=1,BD=2DE=2,∴BC=CD+BD=3.13. 如图,在△ABC中,DE垂直平分AC,若AE=3,△ABD周长为13,则△ABC周长为________.【答案】19. 提示:由题知AC=2AE=6,AD=CD,∴BC=BD+AD,∵AB+BD+AD=13,∴AB+BC=13,∴AB+BC+AC=13+6=19.14. 如图,一个经过改造的台球桌面上四个角的阴影部分分别表示四个入球孔,如果一个球按图中所示的力向被击出(球可以经过多次反射),那么该球最后将落入的球袋是________.【答案】1号袋. 提示:如图所示.15. 如图,在△ABC中,∠C=46°,将△ABC沿直线l折叠,点C落在点D的位置,则∠1-∠2的度数是___________ .【答案】92°. 提示:由飞镖模型,∠DNC=∠C+∠D+∠DMC,即:180°-∠2=46°+46°+(180°-∠1),∴∠1-∠2=92°.16 .已知A(1,2)、B(7,4),点M、N是x轴上的动点(M在N左边),MN=3,当AM+MN+NB最小时,直接写出点M的坐标为___________.【答案】(2,0). 提示:作点A关于x轴的对称点A′,将点B向左平移3个单位得点B′,连接A′B′,交x轴于点M.三、解答题(共8小题,共72分)17. (8分)如图,已知点M、N和∠AOB,用尺规作图作一点P,使P到点M、N的距离相等,且到∠AOB两边的距离相等.(保留作图痕迹,不写作法)【答案】1.作∠AOB的平分线OC;2.连MN,作MN的垂直平分线EF;则射线OC与直线EF的交点P即为所求.18. (8分)如图,在△ABC中,∠B=30°,∠C=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数;(3)若△DAF的周长为20,求BC的长.【答案】(1)∠BAC=100°;(2)∵DE、FG分别垂直平分AB、AC,∴AD=BD,AF=CF,∴∠BAD=∠B=30°,∠CAF=∠C=50°,∴∠DAF=∠BAC-∠BAD-∠CAF=100°-30°-50°=20°;(3) ∵△DAF的周长为20,∴AD+DF+AF=20,∴BC=BD+DF+CF=AD+DF+AF=20.19. (8分)(1)如图,已知△ABC,请画出△ABC关于y轴对称的△A'B'C'(其中A'、B'、C'分别是A、B、C的对应点);(2)直接写出点A'、B'、C'点的坐标;(3)求△ABC的面积是多少?(4)用无刻度的直尺在y轴上找一点Q,使得QA+QB之和最小.(用虚线表示画图过程)【答案】(1) A'(2,3)、B'(3,1)、C'(-1,-2);(2)S△ABC=5×4-12×1×2-12×3×4-12×3×5=5.5;(3) 连接A′B(或AB′)交y轴于Q,即可.20. (8分)如图,在△ABC中,AB=AC,D是BC边上的一点,DE⊥AB于E,DF⊥AC于F,请添加一个条件,使DE=DF,并说明理由.【答案】添加的条件是:D为BC的中点. 理由如下:方法1:连接AD.∵AB=AC,D为BC中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.方法2:∵AB=AC,∴∠B=∠C.∵D为BC中点,∴BD=CD.在△BDE与△CDF中,∵∠B=∠C,∠BED=∠CFD=90°,BD=CD,∴△BDE≌△CDF(AAS),∴DE=DF.21. (8分)如图,△ABC 是等边三角形,点D 在BC 延长线上,DE ⊥AB 于点E ,交AC 于G ,EF ⊥BC 于点F ,若CD =3AE ,CF =6,求AC 的长. 【答案】设AE =x ,则CD =3x .在等边△ABC 中,∠A =∠B =∠ACB =60°, 又DE ⊥AB ,∴∠D =∠AGE =∠CGD =30°. ∴AG =2AE =2x ,CG =CD =3x , ∴AB =BC =AC =2x +3x =5x . 则BE =5x -x =4x ,又∵EF ⊥BC ,∠B =60°,∴BF =12BE =2x ,∴BC =BF +CF =2x +6.∵BC =AC ,∴2x +6=5x ,∴x =2. ∴AC =5x =10.22. (10分)如图,在△ABC 中,∠ABC =∠ACB ,E 为BC 边上一点,以E 为顶点作∠AEF ,∠AEF 的边交AC 于点F ,使∠AEF =∠B . (1)如果∠ABC =40°,则∠BAC =________; (2)判断∠BAE 与∠CEF 的大小关系,并说明理由;(3)当△AEF 为直角三角形时,求∠AEF 与∠BAE 的数量关系.【答案】(1)100°; …………… 2分 (2)∠BAE =∠CEF ,理由如下: ∵∠AEC 是△ABE 的外角, ∴∠AEF +∠CEF =∠B +∠BAE . 又∵∠AEF =∠B ,∴∠CEF =∠BAE . …………… 5分(3)由(2),设∠CEF =∠BAE =α,设∠AEF =∠B =∠C =β.则∠AFE =∠CEF +∠C =α+β.∵∠AEF =∠B <90°,故分两种情况考虑:1°当∠EAF 为直角时,如图1,由∠AEF +∠AFE =90°,CBAFECBA备用图1CBA备用图2得β+(α+β)=90°,∴α+2β=90°,故有:∠BAE+2∠AEF=90°.2°当∠AFE为直角时,如图2,得α+β=90°,即:∠BAE+∠AEF=90°.综上,当△AEF为直角三角形时,∠BAE+2∠AEF=90°或∠BAE+∠AEF=90°. …………… 10分23. (10分)已知Rt△ABC中,AB=AC,∠ABC=∠ACB=45°,点D为直线BC上的一动点(点D不与点B、C重合),以AD为边在AD的右侧作Rt△ADE,AD=AE,∠ADE=∠AED =45°,连接CE.(1)〖发现问题〗如图1,当点D在边BC上时,①请写出BD和CE之间的数量关系为_____________,位置关系为____________;②求证:CE+CD=BC;(2)尝试探究:如图2,当点D在边BC的延长线上且其他条件不变时,(1)中BC、CE、CD 之间存在的数量关系是否成立? 若成立,请证明;若不成立,请写出新的数量关系(不必证明);(3)拓展延伸:如图3,当点D在CB的延长线上且其他条件不变时,若BC=6,CE=2,求线段CD的长.【答案】(1)①BD=CE,BD⊥CE,…………… 2分②由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠ABD=45°,∴CE+CD=BD+CD=BC. …………… 5分(2) 不成立,此时关系式为BC+CD=CE. …………… 7分提示:同上,证明△BAD≌△CAE(SAS),得BD=CE,即BC+CD=CE.(3) 由条件得∠BAC=∠DAE=90°,∴∠BAD=∠CAE.又∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS),∴BD=CE. ∵BD+BC=CD,∴CD =CE +BC =2+6=8. …………… 10分24. (12分)等腰Rt △ACB 中,∠ACB =90°,AC =BC ,点A 在x 轴正半轴上,C 在y 轴负半轴上.(1)如图1,求证:∠BCO =∠CAO ;(2)如图2,若OA =4,OC =2,M 是AB 与y 轴交点,求△AOM 的面积;(3)如图3,点C (0,2),点Q 、A 均在x 轴上,且S △ACQ =6a (a 为已知数). 分别以AC 、CQ 为腰在第一、第二象限作等腰Rt △CAN 、等腰Rt △QCM ,连接MN 交y 轴于P 点,间:S △MON 是否发生改变?若不变,求出S △MON 的值;若变化,求S △MON 的取值范围.【答案】(1) ∵∠ACB =90°,∴∠BCO +∠ACO =90°. 又∵∠AOC =90°,∴∠CAO +∠ACO =90°. ∴ ∠BCO =∠CAO . …………… 3分(2) 过B 作BD ⊥y 轴于D ,则△BCD ≌△CAO (AAS ), ∴BD =CO =2,CD =AO =4,OD =CD -OC =2,∴B (-2,2). 又∵A (4,0),C (0,-2),由割补法,得S △ABC =4×6-12×2×4-12×2×4-12×2×6=10, 又2142△△BCM ACM S BD S OA ===,∴S △ACM =23S △ABC =203. ∵S △AOC =12×2×4=4,∴S △AOM =S △ACM -S △AOC =203-4=83. (3) 过N 作NE ∥CM 交y 轴于E ,则∠CNE +∠MCN =180°,∵∠MCQ +∠ACN =90°+90°=180°, ∴∠ACQ +∠MCN =180°, ∴∠CNE =∠ACQ . 又∵∠ECN +∠ACO =90°,∠QAC +∠ACO =90°, ∴∠ECN =∠QAC . 在△ECN 和△QAC 中,∵∠CNE =∠ACQ ,CN =AC ,∠ECN =∠QAC , ∴△ECN ≌△QAC (ASA ),∴CE=AQ,EN=QC=MC.又NE∥CM,∴△PEN≌△PCM(ASA),∴PE=PC.∵点C(0,2),S△ACQ=6a,∴AQ=6a.∴CE=AQ=6a,∴CP=PE=3a.∴OP=OC+CP=2+3a.过M作MF⊥y轴于F,过N作NG⊥y轴于G,∵△MCQ为等腰直角三角形,∴△MCF≌△CQO(AAS),∴MF=CO=2,同理,NG=OC=2.则S△MON=S△MOP+S△NOP=12OP·MF+12OP·NG=2OP=6a+4.。
人教版初中八年级数学上册第十三章《轴对称》经典习题(含答案解析)
一、选择题1.已知一个等腰三角形两个内角度数之比为1:4,则这个等腰三角形顶角度数为( ) A .75°B .90°C .105°D .120°或20°D 解析:D【分析】设两内角的度数为x 、4x ,分两种情况,列出方程,即可求解.【详解】解:设两内角的度数为x 、4x ,当等腰三角形的顶角为x 时,x +4x +4x =180°,x =20°;当等腰三角形的顶角为4x 时,4x +x +x =180°,x =30°,4x =120°;因此等腰三角形的顶角度数为20°或120°.故选:D .【点睛】本题考查了等腰三角形的性质,掌握分类讨论思想方法是解题的关键.2.如图所示,已知ABC 和DCE 均是等边三角形,点B 、C 、E 在同一条直线上,连接AE 、BD 、FG ,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,则下列结论中:①AE BD =; ②AG BF =; ③FG//BE ; ④CF CG =,以上结论正确的有( )A .1个B .2个C .3个D .4个D解析:D【分析】 首先根据等边三角形性质得出BC=AC ,CD=CE ,∠ACB=∠ECD=60°,即可证明△BCD 与△ACE 全等、△BCF 与△ACG 全等以及△DFC 与△EGC 全等,最后利用全等三角形性质以及等边三角形性质证明即可.【详解】∵△ABC 与△CDE 为等边三角形,∴BC=AC ,CD=CE ,∠ACB=∠ECD=60°,∴∠ACB+∠ACD=∠ACD+∠ECD ,∠ACD=60°,即:∠ACE=∠BCD ,在△BCD 与△ACE 中,∵BC=AC ,∠ACE=∠BCD ,CD=CE ,∴△BCD ≌△ACE(SAS),∴AE=BD ,即①正确;在△BCF 与△ACG 中,由①可知∠CBF=∠CAG ,又∵AC=BC ,∠BCF=∠ACG=60°,∴△BCF ≌△ACG(ASA),∴AG=BF ,即②正确;在△DFC 与△EGC 中,∵△BCF ≌△ACG ,∴CF=CG .即④正确;∵∠GCF =60°,∴△CFG 为等边三角形,∴∠CFG=∠FCB=60°,∴FG ∥BE ,即③正确;综上,①②③④都正确.故选:D .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质以及平行线的判定,解题的关键是正确寻找全等三角形来解决问题,.3.已知点A 的坐标为()1,3,点B 的坐标为()2,1,将线段AB 沿坐标轴翻折180°后,若点A 的对应点A '的坐标为()1,3-,则点B 的对应点B '的坐标为( )A .()2,2B .(2,1)-C .()2,1-D .(2,1)-- C解析:C【分析】根据点A ,点A'坐标可得点A ,点A'关于y 轴对称,即可求点B'坐标.【详解】解:∵将线段AB 沿坐标轴翻折后,点A (1,3)的对应点A′的坐标为(-1,3), ∴线段AB 沿y 轴翻折,∴点B 关于y 轴对称点B'坐标为(-2,1)故选:C .【点睛】本题考查了翻折变换,坐标与图形变化,熟练掌握关于y 轴对称的两点纵坐标相等,横坐标互为相反数是关键.4.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度A .25或60B .40或60C .25或40D .40C解析:C【分析】当顶角为50°时和底角为50°两种情况进行求解.【详解】当顶角为50°时,底角为:(180°−50°)÷2=65°.此时它的一条腰上的高与底边的夹角为:90°−65°=25°.当底角为50°时,此时它的一条腰上的高与底边的夹角为:90°−50°=40°.故选:C .【点睛】本题考查等腰三角形的性质,等腰三角形中两个底角相等.同时考查了分类讨论的思想. 5.如图所示,D 为 BC 上一点,且 AB =AC =BD ,则图中∠1 与∠2 的关系是( )A .∠1=2∠2B .∠1+∠2=180°C .∠1+3∠2=180°D .3∠2﹣∠1=180°D 解析:D【分析】根据三角形外角的性质得12C ∠+∠=∠,再根据等腰三角形的性质得B C ∠=∠,2BAD ∠=∠,由180BAC B C ∠+∠+∠=︒即可得出1∠与2∠的关系.【详解】解:∵2∠是ACD △的外角,∴12C ∠+∠=∠,∴∠C=∠2-∠1,∵AB AC =,∴B C ∠=∠,∵AB BD =,∴2BAD ∠=∠,∴112BAC BAD ∠=∠+∠=∠+∠,∵180BAC B C ∠+∠+∠=︒,∴122121180∠+∠+∠-∠+∠-∠=︒,即321180∠-∠=︒.故选:D .【点睛】本题考查等腰三角形的性质,解题的关键是利用等腰三角形的性质得到相等的角. 6.如图,C 是线段AB 上的一点,ACD △和BCE 都是等边三角形,AE 交CD 于M ,BD 交CE 于N ,交AE 于O ,则①DB AE =;②AMC DNC ∠=∠;③60AOB ∠=︒;④DN AM =;⑤CMN △是等边三角形.其中,正确的有( )A .2个B .3个C .4个D .5个C解析:C【分析】 易证△ACE ≌△DCB ,可得①正确;即可求得∠AOB =120°,可得③错误;再证明△ACM ≌△DCN ,可得②④正确和CM =CN ,即可证明⑤正确;即可解题.【详解】解:∵ACD △和BCE 都是等边三角形∵∠ACD =∠BCE =60°,∴∠DCE =60°,在△ACE 和△DCB 中,AC DC ACE DCB CB CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△DCB (SAS ),∴∠BDC =∠EAC ,DB =AE ,①正确;∠CBD =∠AEC ,∵∠AOB =180°−∠OAB−∠DBC ,∴∠AOB =180°−∠AEC−∠OAB =120°,③错误;在△ACM 和△DCN 中,60BDC EAC DC ACACD DCN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ACM ≌△DCN (ASA ),∴AM =DN ,④正确;∠AMC =∠DNC ,②正确;CM =CN ,∵∠ACD =∠BCE =60°,∴∠MCN =180°-∠ACD-∠BCE =60°,∴△CMN 是等边三角形,⑤正确;故有①②④⑤正确.故选:C .【点睛】本题考查了全等三角形的判定和全等三角形对应边、对应角相等的性质,本题中求证△ACE ≌△DCB 和△ACM ≌△DCN 是解题的关键.7.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个B解析:B【分析】 根据轴对称图形的概念对各图案逐一进行判断即可得答案.【详解】第一个图案是轴对称图形,第二个图案不是轴对称图形,第三个图案是轴对称图形,第四个图案不是轴对称图形,综上所述:是轴对称图形的图案有2个,故选:B .【点睛】本题考查轴对称图形,判断轴对称图形的关键是寻找对称轴,图形沿对称轴折叠,对称轴两边的图形能够完全重合;熟练掌握轴对称图形的定义是解题关键.8.如图,已知等腰三角形ABC 中,AB AC =,15DBC ∠=︒,分别以A 、B 两点为圆心,以大于12AB 的长为半径画圆弧,两弧分别交于点E 、F ,直线EF 与AC 相交于点D ,则A ∠的度数是( )A .50°B .60°C .75°D .45°A解析:A【分析】 根据中垂线的性质可得DA=DB ,设∠A=x ,则∠ABD=x ,结合等腰三角形的性质以及三角形内角和定理,列出方程,即可求解.【详解】又作图可知:EF 是AB 的垂直平分线,∴DA=DB ,∴∠A=∠ABD ,设∠A=x ,则∠ABD=x ,∵15DBC ∠=︒,∴∠ABC=x+15°,∵AB=AC ,∴∠C=∠ABC=x+15°,∴2(x+15°)+x=180°,∴x=50°,故选A .【点睛】本题主要考查等腰三角形的性质,中垂线的性质以及三角形内角和定理,掌握中垂线的性质定理以及方程思想,是解题的关键.9.如图,在锐角ABC 中,AB AC =,D ,E 是ABC 内的两点,AD 平分BAC ∠,60EBC E ∠=∠=,若6BE cm =,2DE cm =,则BC 的长度是( )A .6cmB .6.5cmC .7cmD .8cm D解析:D【分析】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,根据等腰三角形的性质得出AN BC ⊥,BN CN =,根据60EBC E ∠=∠=,得出EBM △是等边三角形,进而得到6EB EM BM cm ===,通过//DF BC ,证明EFD △是等边三角形,进而得到2EF FD ED cm ===,所以求出4DM cm =,根据直角三角形的性质得到MN 的长度,从而得出BN 的长度,最后求出BC 的长度.【详解】延长ED 交BC 于点M ,延长AD 交BC 于点N ,过点D 作//DF BC 交BE 于点F ,如图,AB AC =,AD 平分BAC ∠,∴AN BC ⊥,BN CN =,∴90ANB ANC ∠=∠=,60EBC E ∠=∠=,∴EBM △是等边三角形,6BE cm =,∴6EB EM BM cm ===,//DF BC ,∴60EFD EBM ∠=∠=,∴EFD △是等边三角形,2DE cm =,∴2EF FD ED cm ===,∴4DM cm =,EBM △是等边三角形,∴60EMB ∠=,∴30NDM ∠=,∴2NM cm =,∴4BN BM NM cm =-=,∴28BC BN cm ==.故选:D .【点睛】本题考查了等腰三角形的性质和等边三角形的性质,直角三角形中30角所对的直角边是斜边长的一半,求出MN 的长度是解决问题的关键.10.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( )A .30B .60︒C .40︒或50︒D .30或60︒D解析:D【分析】由三角形的高可在三角形的内部,也可在三角形的外部,所以分锐角三角形和钝角三角形两种情况作出符合题意的图形,再结合等腰三角形的性质与三角形的内角和定理求解即可.【详解】解:如图,分两种情况:①如图,当三角形的高在三角形的内部时,AB=AC ,BD ⊥AC ,∠ABD=30°,∴∠A=60°,∴∠C=∠ABC=1802A ︒-∠ =60°; ②如图,当三角形的高在三角形的外部时,AB=AC ,BD ⊥AC ,∠ABD=30°, ∴∠DAB=60°,∠BAC=120°,∴∠C=∠ABC=180302BAC ︒-∠=︒. 故选:D .【点睛】本题考查了等腰三角形的性质和直角三角形的两锐角互余,三角形的内角和定理的应用,三角形的高的含义,分类讨论的数学思想,掌握分类讨论解决问题是解题的关键. 二、填空题11.如图,在平面直角坐标系中,直线l 与x 轴交于点1B ,与y 轴交点于D ,且111,60OB ODB =∠=︒,以1OB 为边长作等边三角形11AOB ,过点1A 作12A B 平行于x 轴,交直线l 于点2B ,以12A B 为边长作等边三角形212A A B ,过点2A 作23A B 平行于x 轴,交直线l 于点3B ,以23A B 为边长作等边三角形323A A B ,…,按此规律进行下去,则点6A 的横坐标是______.5【分析】过A1作A1A⊥OB1于A过A2作A2B⊥A1B2于B过A3作A3C⊥A2B3于C根据等边三角形的性质以及含30°角的直角三角形的性质分别求得A1的横坐标为A2的横坐标为A3的横坐标为进而解析:5【分析】过A1作A1A⊥OB1于A,过A2作A2B⊥A1B2于B,过A3作A3C⊥A2B3于C,根据等边三角形的性质以及含30°角的直角三角形的性质,分别求得A1的横坐标为1212-,,A2的横坐标为2212-,A3的横坐标为3212-,进而得到A n的横坐标为212n-,据此可得点A6的横坐标.【详解】解:如图所示,过A1作A1A⊥OB1于A,则OA=12OB1=12,即A1的横坐标为12=1212-,∵160ODB∠=°,∴∠OB1D=30°,∵A 1B 2//x 轴,∴∠A 1B 2B 1=∠OB 1D =30°,∠B 2A 1B 1=∠A 1B 1O =60°,∴∠A 1B 1B 2=90°,∴A 1B 2=2A 1B 1=2,过A 2作A 2B ⊥A 1B 2于B ,则A 1B =12A 1B 2=1, 即A 2的横坐标为12+1=2212-, 过A 3作A 3C ⊥A 2B 3于C ,同理可得,A 2B 3=2A 2B 2=4,A 2C =12A 2B 3=2, 即A 3的横坐标为12+1+2=3212-, 同理可得,A 4的横坐标为12+1+2+4=4212-, 由此可得,A n 的横坐标为212n -, ∴点A 6的横坐标是62163==31.522-, 故答案为31.5.【点睛】本题是一道找规律问题,涉及到等边三角形的性质、含30度角的直角三角形,解题的关键要利用等边三角形的性质总结出关于点A 的系列点的规律.12.如图,在ABC ∆中,CD 平分,ACB ∠点,E F 分别是,CD AC 上的动点.若6,12,ABC BC S ∆==则AE EF +的最小值是______________.【分析】作A 关于CD 的对称点H 由CD 是△ABC 的角平分线得到点H 一定在BC 上过H 作HF ⊥AC 于F 交CD 于E 连接AE 则此时AE +EF 的值最小AE +EF 的最小值=HF 过A 作AG ⊥BC 于G 根据垂直平分线的解析:4【分析】作A 关于CD 的对称点H ,由CD 是△ABC 的角平分线,得到点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,根据垂直平分线的性质和三角形的面积即可得到结论.【详解】作A 关于CD 的对称点H ,∵CD 是△ABC 的角平分线,∴点H 一定在BC 上,过H 作HF ⊥AC 于F ,交CD 于E ,连接AE ,则此时,AE +EF 的值最小,AE +EF 的最小值=HF ,过A 作AG ⊥BC 于G ,∵△ABC 的面积为12,BC 长为6,∴AG =4,∵CD 垂直平分AH ,∴AC =CH ,∴S △ACH =12AC•HF =12CH•AG , ∴HF =AG =4,∴AE +EF 的最小值是4,故答案是:4.【点睛】本题考查了轴对称−最短路线问题,解题的关键是正确的作出对称点和利用垂直平分线的性质证明AE +EF 的最小值为三角形某一边上的高线.13.如图,在ABC ∆中,31C ∠=︒,ABC ∠的平分线BD 交AC 于点D ,如果DE 垂直平分BC ,那么A ∠的度数为_______.【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵垂直平分∴∴∵∴∴∵BD 平分∴∴故答案是【点睛】本题主要考查了垂直平分线和角平分线的性质结合三角形外角性质和三角形内角和定理计算是关键解析:87︒【分析】根据垂直平分线和角平分线的性质求解即可;【详解】∵DE 垂直平分BC ,∴DB DC =,∴∠=∠DBC C ,∵31C ∠=︒,∴31DBC ∠=︒,∴62ADB C DBC ∠=∠+∠=︒,∵BD 平分ABC ∠,∴31ABD DBC ∠=∠=︒,∴180623187A ∠=︒-︒-︒=︒.故答案是87︒.【点睛】本题主要考查了垂直平分线和角平分线的性质,结合三角形外角性质和三角形内角和定理计算是关键.14.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.25【分析】设∠ADC =α然后根据AC =AD =DB ∠BAC =105°表示出∠B 和∠BAD 的度数最后根据三角形的内角和定理求出∠ADC 的度数进而求得∠B 的度数即可【详解】解:∵AC =AD =DB ∴∠B = 解析:25【分析】设∠ADC =α,然后根据AC =AD =DB ,∠BAC =105°,表示出∠B 和∠BAD 的度数,最后根据三角形的内角和定理求出∠ADC 的度数,进而求得∠B 的度数即可.【详解】解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C ,设∠ADC =α,∴∠B =∠BAD =2α , ∵∠BAC =105°,∴∠DAC =105°﹣2α, 在△ADC 中, ∵∠ADC +∠C +∠DAC =180°,∴2α+105°﹣2α=180°, 解得:α=50°,∴∠B =∠BAD =2α=25°, 故答案为:25.【点睛】 本题考查了等腰三角形的性质:①等腰三角形的两腰相等;②等腰三角形的两个底角相等,熟练掌握等腰三角形的性质是解题的关键.15.若一条长为24cm 的细线能围成一边长等于6cm 的等腰三角形,则该等腰三角形的腰长为__________cm .【分析】分两种情况根据等腰三角形的性质及三角形的三边关系解答【详解】分两种情况:当6cm 的边为腰时底边长=24-6-6=12(cm )∵6+6=12故不能构成三角形;当6cm 的边为底边时腰长=(cm )解析:9【分析】分两种情况,根据等腰三角形的性质及三角形的三边关系解答.【详解】分两种情况:当6cm 的边为腰时,底边长=24-6-6=12(cm ),∵6+6=12,故不能构成三角形; 当6cm 的边为底边时,腰长=1(246)92⨯-=(cm ),由于6+9>9,故能构成三角形, 故答案为:9.【点睛】此题考查等腰三角形的性质:两腰相等,依据三角形三边关系,解题中运用分类思想解答.16.若点P(x-y ,y)与点Q(-1,-5)关于x 轴对称,则x+y=______.9【分析】根据关于x 轴对称的点横坐标相同纵坐标互为相反数可得答案【详解】由点P (x-yy )与点Q (-1-5)关于x 轴对称得x-y =-1y =5解得x =4y =5x+y=4+5=9故答案为:9【点睛】本题解析:9【分析】根据关于x 轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【详解】由点P (x-y ,y )与点Q (-1,-5)关于x 轴对称,得x-y =-1,y =5.解得x =4,y =5,x+y=4+5=9,故答案为:9【点睛】本题考查了关于x 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.17.如图所示的网格是正方形网格,点A,B,C,D,O是网格线交点,那么∠___________CODAOB∠(填“>”,“<”或“=”).>【分析】如图过点B作BE⊥AC于E证明△BOE是等腰直角三角形得到∠BOE=过点C作CF⊥OC使FC=OC证明△OCF是等腰直角三角形得到∠FOC=由图知∠FOC>∠COD即可得到∠AOB>∠CO解析:>【分析】如图,过点B作BE⊥AC于E,证明△BOE是等腰直角三角形,得到∠BOE=45︒,过点C 作CF⊥OC,使FC=OC,证明△OCF是等腰直角三角形,得到∠FOC=45︒,由图知∠FOC>∠COD,即可得到∠AOB>∠COD.【详解】如图,过点B作BE⊥AC于E,∵OB=OE=2,∠BEO=90︒,∴△BOE是等腰直角三角形,∴∠BOE=45︒,过点C作CF⊥OC,使FC=OC,∴∠FCO=90︒,∴△OCF是等腰直角三角形,∴∠FOC=45︒,由图知∠FOC>∠COD,∴∠AOB>∠COD,故答案为:>..【点睛】此题考查等腰直角三角形的判定及性质,角的大小比较,根据图形确定角的位置关系是解题的关键.18.如图,∠AOB=45°,OC平分∠AOB,点M为OB上一定点,P为OC上的一动点,N 为OB上一动点,当PM+PN最小时,则∠PMO的度数为___________.45°【分析】找到点M 关于OC 对称点M′过点M′作M′N ⊥OB 于点N 交OC 于点P 则此时PM+PN 的值最小再根据角平分线的性质及三角形内角和即可得出答案【详解】解:如图找到点M 关于OC 对称点M′过点M解析:45°【分析】找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小,再根据角平分线的性质及三角形内角和即可得出答案.【详解】解:如图,找到点M 关于OC 对称点M′,过点M′作M′N ⊥OB 于点N ,交OC 于点P ,则此时PM+PN 的值最小.∵PM=PM′,∴此时PM+PN=PM′+PN′=M′N′,∵点M 与点M′关于OC 对称,OC 平分∠AOB ,∴OM=OM′,∵∠AOB=45°,∴∠PM'O=∠AOB=45°,∴∠PMO=∠PM'O=45°,故答案为:45°.【点睛】本题考查了利用轴对称的知识寻找最短路径的知识,涉及到两点之间线段最短、垂线段最短的知识,有一定难度,正确确定点P 及点N 的位置是关键.19.如图,25AOB ∠=︒,点M ,N 分别是边OA ,OB 上的定点,点P ,Q 分别是边OB ,OA 上的动点,记MPQ α∠=,PQN β∠=,当MP PQ QN ++的值最小时,βα-的大小=__________(度).50【分析】作M 关于OB 的对称点N 关于OA 的对称点连接交OB 于点P 交OA 于点Q 连接MPQN 可知此时最小此时再根据三角形外角的性质和平角的定义即可得出结论【详解】作M 关于OB 的对称点N 关于OA 的对称点解析:50【分析】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,可知此时MP PQ QN ++最小,此时OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,再根据三角形外角的性质和平角的定义即可得出结论.【详解】作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N '',交OB 于点P ,交OA 于点Q ,连接MP ,QN ,如图所示.根据两点之间,线段最短,可知此时MP PQ QN++最小,即MP PQ QN M N ''++=, ∴OPM OPM NPQ OQP AQN AQN ''∠=∠=∠∠=∠=∠,,∵MPQ PQN αβ∠=∠=,, ∴11(180)(180)22QPN OQP αβ∠=︒-∠=︒-,, ∵QPN AOB OQP ∠=∠+∠,25AOB ∠=︒, ∴11(180)25(180)22αβ︒-=︒+︒- , ∴50βα-=︒ . 故答案为:50.【点睛】本题考查轴对称-最短问题、三角形内角和,三角形外角的性质等知识,灵活运用所学知识解决问题是解题的关键,综合性较强.20.如图,ABC ∆中,ABC ∠与ACB ∠的平分线交于点F ,过点F 作//DE BC 交AB 于点D ,交AC 于点E ,那么下列结论:①BDF ∆和CEF ∆都是等腰三角形;②DE BD CE =+;③ADE ∆的周长等于AB 与AC 的和;④BF CF =;⑤若80A ∠=︒,则130BFC ∠=︒.其中正确的有_______.(填正确的序号).①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DFEF=EC 从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DFEF=EC 所以DE=DF+EF=BD+CE ;③由②得:△ADE 的解析:①②③⑤【分析】①根据平行线性质和角平分线定义可以得到DB=DF ,EF=EC ,从而得到△BDF 和△CEF 都是等腰三角形;②同①有DB=DF ,EF=EC ,所以DE=DF+EF=BD+CE ;③由②得:△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;④因为∠ABC 不一定等于∠ACB ,所以∠FBC 不一定等于∠FCB ,所以BF 与CF 不一定相等;⑤由角平分线定义和三角形内角和定理可以得解.【详解】解:∵DE ∥BC ,∴∠DFB=∠FBC ,∠EFC=∠FCB ,∵△ABC 中,∠ABC 与∠ACB 的平分线交于点F ,∴∠DBF=∠FBC ,∠ECF=∠FCB ,∴∠DBF=∠DFB ,∠ECF=∠EFC ,∴DB=DF ,EF=EC ,即△BDF 和△CEF 都是等腰三角形;故①正确;∴DE=DF+EF=BD+CE ,故②正确;∴△ADE 的周长为:AD+DE+AE=AB+BD+CE+AE=AB+AC ;故③正确;∵∠ABC 不一定等于∠ACB ,∴∠FBC 不一定等于∠FCB ,∴BF 与CF 不一定相等,故④错误; 由题意知,1122FBC ABC FCB ACB ∠=∠∠=∠,, ∴()()11801802BFC FBC FCB ABC ACB ∠=︒-∠+∠=︒-∠+∠ =()()111801801801808022A ︒-︒-∠=︒-︒-︒ =130°,故⑤正确,故答案为①②③⑤.【点睛】 本题考查了等腰三角形的判定和性质、角平分线的性质、平行线的性质及三角形的内角和定理;题目利用了两直线平行,内错角相等及等角对等边来判定等腰三角形;等量代换的利用是解答本题的关键.三、解答题21.如图,点E 在ABC 的边AB 上,90ABC EAD ∠=∠=︒,30BAC ADE ∠=∠=︒,DE 的延长线交AC 于点G ,交BC 延长线于点F .AB=AD ,BH ⊥DF ,垂足为H .(1)求HAE ∠的度数;(2)求证:DH FB FH =+.解析:(1)=15∠HAE ;(2)见解析【分析】(1)连接BG ,先根据等腰三角形的判定得出AG=AD ,再根据SSS 得出△AGH ≌△ABH ,从而得出=∠∠HAE HAG ,继而得出HAE ∠的度数;(2)在DH 上取HM=HF ,连接BM ,根据垂直平分线的性质得出BF=BM ,再根据等腰三角形的判定得出DM=BM ,从而得出结论【详解】解:(1)连接BG∵90EAD ∠=︒,30BAC ∠=︒,∴∠DAG=120°,∵30ADE ∠=︒,∴30∠=∠=︒ADE AGD ,∴AG=AD ,∵AB=AD ,∴AG=AB ,∵30BAC ∠=︒,∴75∠=∠=︒AGB ABG ,∵BH ⊥DF ,90EAD ∠=︒,∴=90∠∠=︒BHE EAD ,∵=∠∠BEH AED ,∴30∠=∠=︒ADE EBH ,∴45∠=∠-∠=︒HBG ABG EBH ,∵90FHB ∠=︒,∴∠=∠HBG HGB ,∴GH=BH ,∵AG=AB ,AH=AH ,∴△AGH ≌△ABH ,∴=∠∠HAE HAG ,∵30BAC ∠=︒,∴=15∠HAE ;(2)在DH 上取HM=HF ,连接BM ;∵90ABC EAD ∠=∠=︒,∴AD//BF ,∴30∠=∠=︒F ADE ,∵BH ⊥DF ,HM=HF ,∴BF=BM∴30∠=∠=︒F BMF∵AB=AD ,90EAD ∠=︒∴45ADB ∠=︒,∵30ADE ∠=︒∴15∠=︒MDB ,∵30∠=︒=∠+∠BMF MBD MDB ,∴==15∠∠MBD MDB ,∴BM=DM=BF ,∵DH=DM+HM ,∴DH=FH+BF【点睛】本题考查了等腰三角形的性质和判定、全等三角形的性质和判定、垂直平分线的性质,解题的关键是学会添加常用辅助线面构造全等三角形解决问题,属于中考常考题型. 22.如图,ABC 是边长为10的等边三角形,现有两点P 、Q 沿如图所示的方向分别从点A 、点B 同时出发,沿ABC 的边运动,已知点P 的速度为每秒1个单位长度,点Q 的运度为每秒2个单位长度,当点P 第一次到达B 点时,P 、Q 同时停止运动. (1)点P 、Q 运动几秒后,可得到等边三角形APQ ?(2)点P 、Q 运动几秒后,P 、Q 两点重合?(3)当点P 、Q 在BC 边上运动时,能否得到以PQ 为底边的等腰APQ ?如存在,请求出此时P 、Q 运动的时间.解析:(1)点P 、Q 运动103秒后,可得到等边三角形APQ ;(2)点P 、Q 运动10秒后,P 、Q 两点重合;(3)当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【分析】(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,利用,AP AQ = 列方程,解方程可得答案;(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,由追及问题中的相等关系:Q 的运动路程等于P 的运动路程加上相距的路程,列方程,解方程即可得到答案;(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.先证明:ACP △≌ABQ △,可得CP BQ =,再列方程,解方程并检验即可得到答案.【详解】解:(1)设点P 、Q 运动t 秒后,可得到等边三角形APQ ,如图①,AP t =,102AQ AB BQ t =-=-,∵三角形APQ 是等边三角形,,AP AQ ∴=∴102t t =-,解得103t =, ∴点P 、Q 运动103秒后,可得到等边三角形APQ .(2)设点P 、Q 运动x 秒后,P 、Q 两点重合,102x x +=,解得:10x =.∴点P 、Q 运动10秒后,P 、Q 两点重合.(3)当点P 、Q 在BC 边上运动时,可以得到以PQ 为底边的等腰三角形.理由如下: 由(2)知10秒时P 、Q 两点重合,恰好在C 处,如图②,假设APQ 是等腰三角形,∴AP AQ =,∴APQ AQP ∠=∠,∴APC AQB ∠=∠,∵ACB △是等边三角形,∴C B ∠=∠,在ACP △和ABQ △中,,,,AC AB C B APC AQB =⎧⎪∠=∠⎨⎪∠=∠⎩, ∴ACP △≌ABQ △,∴CP BQ =,设当点P 、Q 在BC 边上运动时,P 、Q 运动的时间y 秒时,APQ 是等腰三角形, 由题意得:10CP y =-,302QB y =-,∴ 10302y y -=-, 解得:403y =, P 的最长运动时间为2020,1s = Q 从B A C B →→→的最长时间为30=152s , 由403<15, ∴ 403y =符合题意, ∴当点P 、Q 在BC 边上运动时,能得到以PQ 为底边的等腰三角形,此时P 、Q 运动的时间为403秒. 【点睛】 本题考查的是三角形全等的判定与性质,等腰三角形的判定与性质,等边三角形的判定与性质,动点问题,掌握以上知识是解题的关键.23.已知AOB ∠及一点P ,利用直尺和圆规,根据下列要求作图(保留作图痕迹,不要求写作法)(1)过点P 作OA 、OB 的垂线,垂足分别为点M 、N ;(2)猜想MPN ∠与AOB ∠之间的数量关系,并说明理由.解析:(1)见解析;(2)∠MPN+∠AOB=180°或∠MPN=∠AOB,理由见解析【分析】(1)根据垂线的定义画出图形即可解决问题;(2)根据四边形内角和为360°或“8字型”的性质即可解决问题;【详解】(1)过点P作OA、OB的垂线PM、PN如图所示;(2)猜想:∠MPN+∠AOB=180°或∠MPN=∠AOB.理由:左图中,在四边形PMON中,∵∠PMO=∠PNO=90°,∴∠MPN+∠AOB=180°.右图中,∵∠PJM=∠OJN,∠PMJ=∠JNO=90°,∴∠MPN=∠AOB.【点睛】本题考查了作图-基本作图,解题的关键是熟练掌握基本知识,属于中考常考题型.24.在等边三角形ABC中,点E为线段AB上一动点,点E与A,B不重合,点D在CB的延长线上,且ED=EC.(1)当E为边AB的中点时,如图1所示,确定线段AE与BD的大小关系,并证明你的结论;(2)如图2,当E不是边AB的中点时,(1)中的结论是否成立?若不成立,请直接写出EF BC交AC于点F)BD与AE的数量关系;若成立,请给予证明;(提示:过E作//(3)在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC,ABC 的边长为1,AE=2,请直接写出CD的长.解析:(1)AE=BD;见解析;(2)成立;AE=BD;见解析;(3)CD的长为3或1.【分析】(1)根据等边三角形三线合一的性质证得∠ECB=30°,由DE=CE,求出∠D=∠ECB=30°得到∠DEB=30°,推出BD=BE,根据AE=BE证得结论;(2)过E作EF∥BC交AC于点F,得到△AEF是等边三角形,推出BE=CF,利用∠DBE=∠EFC=120°,∠BED=∠ECF,证得△DEB≌△ECF(AAS),得到BD=EF=AE;(3)作EF∥BC交CA的延长线于点F,则△AEF为等边三角形,利用∠CEF=∠EDB,EB=CF=3,∠F=∠B=60°,证得△CEF≌△EDB(AAS),得到BD=EF=2,求出CD=BD-BC =1,同理可得CD=3【详解】解:(1)AE=BD;证明:∵△ABC为等边三角形,AE=BE,∴CE平分∠ACB,∴∠ECB=30°.∵DE=CE,∴∠D=∠ECB=30°.∵∠ABC=∠D+∠DEB=60°,∴∠DEB=30°,∴∠D=∠DEB,∴BD=BE.∵AE=BE,∴AE=BD;(2)当E为边AB上任意一点时,AE=BD仍成立;证明:如图1,过E作EF∥BC交AC于点F.∵△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,AB=AC=BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°,即∠AEF=∠AFE=∠A=60°,∴△AEF是等边三角形,∴AE=EF=AF.∵∠ABC=∠ACB=60°,∴∠DBE=∠EFC=120°,∠D+∠BED=∠FCE+∠ECD=60°.∵DE =EC ,∴∠D =∠ECD ,∴∠BED =∠ECF ,∴△DEB ≌△ECF (AAS ),∴BD =EF ,∴AE =BD ;(3)CD 的长为3或1如图2,作EF ∥BC 交CA 的延长线于点F ,则△AEF 为等边三角形,∴AF =AE =EF =2,∠BEF =60°,∴∠CEF =60°+∠BEC .∵∠EDC =∠ECD =∠B +∠BEC =60°+∠BEC ,∴∠CEF =∠EDB .又∵EB =CF =3,∠F =∠B =60°,∴△CEF ≌△EDB (AAS ),∴BD =EF =2,∴CD =BD -BC =1,如图3,同理可得CD =3,综上所述,CD 的长为3或1【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,平行线的性质,等腰三角形等边对等角的性质,熟练掌握三角形的知识并熟练应用是解题的关键.25.如图,在Rt ABC △中,90ACB ∠=︒,CA CB =,M 是AB 的中点,点D 在BM 上,AE CD ⊥,BF CD ⊥,垂足分别为E ,F ,连接EM .(1)求证:CE BF =;(2)求证:AEM DEM ∠=∠.解析:(1)证明见解析;(2)证明见解析【分析】(1)先证明CAE BCF ∠=∠,再证明CAE BCF ≌△△,从而可得结论;(2)连接CM ,FM ,先证明ECM FBM ∠=∠,再证明CME BMF ≌△△,可得EM FM =,EMC FMB ∠=∠,再证明FME 是等腰直角三角形,可得45MED ∠=︒,从而可得结论.【详解】证明:(1)AE CD ⊥,BF CD ⊥,90AEC CFB ∴∠=∠=︒.90ACB ∠=︒,90BCF ACE ACE EAC ∴∠+∠=︒=∠+∠CAE BCF ∴∠=∠.CA BC =. ()CAE BCF AAS ∴≌△△.CE BF ∴=.(2)连接CM ,FM在Rt ABC △中,CA CB =,点M 是AB 的中点,90,ACB ∠=︒BM AM ∴=,CM AB ⊥,CM 平分ACB ∠,45ACM BCM CBM CAM ∴∠=∠=∠=∠=︒,CM BM AM ==,由CAE BCF ≌△△可得:ACE CBF ∠=∠.,ACM ECM CBM MBF ∴∠+∠=∠+∠ECM FBM ∴∠=∠.又CE BF =,()CME BMF SAS ∴≌△△.EM FM ∴=,EMC FMB ∠=∠.90EMF FMB DME CME DME ∠=∠+∠=∠+∠=︒.FME ∴△是等腰直角三角形.45MED ∴∠=︒,90AED ∠=︒,45AEM DEM ∴∠=∠=︒.【点睛】本题考查的的三角形全等的判定与性质,等腰直角三角形的判定与性质,掌握以上知识是解题的关键.26.如图,在所给平面直角坐标系(每小格均为边长是1个单位长度的正方形)中完成下列各题.(1)已知()6,0A -,()2,0B -,()4,2C -,画出ABC 关于y 轴对称的图形△111A B C △,并写出1B 的坐标;(2)在y 轴上画出点P ,使PA PC +最小;(3)在(1)的条件下,在y 轴上画出点M ,使11MB MC -最大.解析:(1)见解析;B 1(2,0);(2)见解析;(3)见解析【分析】(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0); (2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短即可;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边即可.【详解】解:(1)先作出点A 、B 、C 关于y 轴的对称点A 1、B 1、C 1,顺次连结,则△111A B C △为所求,点()2,0B -,关于y 轴对称,横坐标符号改变B 1(2,0),如图;B 1(2,0);(2)连结AC 1,交y 轴于点P ,两用两点之交线段最短知AC 1最短,则PA+PC=PA+PC 1=AC 1,则点P 为所求,如图;(3)延长C 1B 1交y 轴于M ,利用两边之差小于第三边,11MB MC -最大=C 1B 1,如图.【点睛】 本题考查轴对称作图,线段公里,三角形三边关系,掌握轴对称作图,线段公里,三角形三边关系是解题关键.27.如图,点A ,C ,D ,B 四点共线,且AC BD =,A B ∠=∠,ADE BCF ∠=∠.(1)求证:ADE BCF ≌;(2)若9DE =,CG 4=,求线段EG 的长.解析:(1)证明见解析;(2)5EG =.【分析】(1)根据AC=BD 可得AD=BC ,然后利用已知条件根据ASA 即可证明全等;(2)根据(1)中的全等可得∠ADE=∠BCF ,再结合等角对等边可得4DG CG ==,最后利用线段的和差即可求得EG 的长度.【详解】解:(1)证明:∵AC=BD ,∴AC+CD=BD+CD ,∴AD=BC ,在△ADE 和△BCF 中,A B AD BCADE BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△BCF (ASA );(2)∵△ADE ≌△BCF ,∴∠ADE=∠BCF ,∴4DG CG ==,∵9DE =,∴5EG DE DG =-=.【点睛】本题考查全等三角形的性质和判定,等腰三角形等角对等边.熟练掌握全等三角形的几种判定定理,并能结合题中所给条件灵活运用是解题关键.28.已知ABC 是等边三角形,点D 是AC 的中点,点P 在射线BC 上,点Q 在线段AB 上,120PDQ ∠=︒.(1)如图1,若点Q 与点B 重合,求证:DB DP =;(2)如图2,若点P 在线段BC 上,8AC =,求AQ PC +的值.解析:(1)证明见解析;(2)4.【分析】(1)由等边三角形的性质证明30DBC ∠=︒,再利用三角形的内角和定理求解30DPB ∠=︒,从而可得结论; (2)过点D 作//DE BC 交AB 于点E ,先证明ADE 为等边三角形,再证明QDE PDC ≌,可得QE PC =, 从而可得答案.【详解】证明:(1)∵ABC 为等边三角形,∴,60BA BC ABC =∠=︒∵D 为AC 的中点,∴DB 平分ABC ∠,∴30DBC ∠=︒. ∵120PDB ∠=︒,∴1801203030DPB ∠=︒-︒-︒=︒,∴DBC DPB ∠=∠,∴DB DP =.(2)过点D 作//DE BC 交AB 于点E .∵ABC 为等边三角形,8AC =,点D 是AC 的中点,∴4,60AD CD ABC ACB A ==∠=∠=∠=︒.∵//DE BC ,∴60AED B ∠=∠=︒.60ADE C ∠=∠=︒,∴ADE 为等边三角形,120EDC ∠=︒,∴4AD ED AE ===,。
人教版八年级上册数学《轴对称》单元检测(附答案)
人教版数学八年级上学期《轴对称》单元测试满分120分时间100分钟一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.66.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是三角形;(2)补全下面证明过程:∵OC平分∠AOB∴=∵DN∥EM∴=∴=∴=18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)参考答案一.选择题(每题3分,共计30分)1.(2020•泰兴市一模)如图,四个图标分别是剑桥大学、北京理工大学、浙江大学和北京大学的校徽的重要组成部分,其中是轴对称图形的是()A.B.C.D.【解析】D【解答】A、不是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、是轴对称图形;故选:D.2.(2020•大丰区期末)如图,∠A=30°,∠C′=60°,△ABC与△A′B′C′关于直线l对称,则∠B 度数为()A.30°B.60°C.90°D.120°【解析】C【解答】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠C=∠C′=60°,∵∠A=30°,∴∠B=180°﹣∠A﹣∠C=90°,故选:C.3.(2020•顺德区四模)若点A(﹣3,2)与点B关于x轴对称,则点B的坐标是() A.(﹣3,2) B.(﹣3,﹣2) C.(3,2) D.(3,﹣2)【解析】B【解答】∵点A(﹣3,2)与点B关于x轴对称,∴点B的坐标是(﹣3,﹣2).故选:B.4.(2020•忻州期末)如图,保持△ABC的三个顶点的横坐标不变,纵坐标都乘﹣1,画出坐标变化后的三角形,则所得三角形与原三角形的关系是()A.关于x轴对称B.关于y轴对称C.将原图形沿x轴的负方向平移了1个单位D.将原图形沿y轴的负方向平移了1个单位【解析】A【解答】∵纵坐标乘以﹣1,∴变化前后纵坐标互为相反数,又∵横坐标不变,∴所得三角形与原三角形关于x轴对称.故选:A.5.(2020•宿豫区期中)如图,在△ABC中,BC=8,AB的垂直平分线分别交AB、AC于点D、E,△BCE的周长为18,则AC的长等于()A.12 B.10 C.8 D.6【解析】B【解答】∵DE是AB的垂直平分线,∴EA=EB,由题意得,BC+CE+BE=18,则BC+CE+AE=18,即BC+AC=18,又BC=8,∴AC=10,故选:B.6.(2020•碑林区模拟)如图,AB∥CD,点E在AD上,且CD=DE,∠C=75°,则∠A的大小为()A.35°B.30°C.28°D.26°【解析】B【解答】∵CD=DE,∴∠DEC=∠C=75°,∴∠D=180°﹣∠C﹣∠DEC=180°﹣75°﹣75°=30°,∵AB∥CD,∴∠A=∠D=30°;故选:B.7.(2020 •北镇市期中)如图,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的高,若AD=3cm,则斜边AB的长为()A.3cm B.6cm C.9cm D.12cm【解析】D【解答】∵CD是斜边AB上的高,∴∠ADC=90°,∵∠A=60°,∠ACB=90°,∴∠B=180°﹣∠ACB﹣∠A=30°,∠ACD=180°﹣∠ADC﹣∠A=30°,∵AD=3cm,∴AC=2AD=6cm,∴AB=2AC=12cm,故选:D.8.(2020•上城区二模)若等腰三角形的一个外角度数为100°,则该等腰三角形顶角的度数为()A.80°B.100° C.20°或100°D.20°或80°【解析】D【解答】当100°的角是顶角的外角时,顶角的度数为180°﹣100°=80°;当100°的角是底角的外角时,底角的度数为180°﹣100°=80°,所以顶角的度数为180°﹣2×80°=20°;故顶角的度数为80°或20°.故选:D.9.(2020•方城县期末)如图,ABC是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE、EF、FG…添加的这些钢管的长度都与BD的长度相等.如果∠ABC=10°,那么添加这样的钢管的根数最多是()A.7根 B.8根C.9根D.10根【解析】B【解答】∵添加的钢管长度都与BD相等,∠ABC=10°,∴∠DBE=∠DEB=10°,∴∠EDF=∠DBE+∠DEB=20°,∵DE=EF,∴∠EDF=∠EFD=20°,∴∠FEG=∠ABC+∠EFD=30°,…由此思路可知:第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,第四个是40°,第五个是50°,第六个是60°,第七个是70°,第八个是80°,第九个是90°(与三角形内角和为180°相矛盾)就不存在了.所以一共有8个,∴添加这样的钢管的根数最多是8根.故选:B.10.(2020•射阳县期末)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1,第二次碰到正方形的边时的点为P2…,第n次碰到正方形的边时的点为P n,则P2020的坐标是()A.(5,3) B.(3,5) C.(0,2) D.(2,0)【解析】D【解答】由题意得,点P1的坐标为(5,3),点P2的坐标为(3,5),点P3的坐标为(0,2),点P4的坐标为(2,0),点P5的坐标为(5,3),2020÷4=505,∴P2020的坐标为(2,0),故选:D.二.填空题(每题3分,共计15分)11.(2020•萧山区期末)在平面直角坐标系xOy中,点(﹣3,2)与点(3,2)关于(填写x或y)轴对称.【解析】y【解答】∵点(﹣3,2)与点(3,2)的横坐标互为相反数,纵坐标相同,∴点(﹣3,2)与点(3,2)关于y轴对称,故答案为y.12.(2020•厦门模拟)如图,AB=AC,AD∥BC,∠DAC=50°,则∠B的度数是.【解析】50°【解答】∵AD∥BC,∠DAC=50°,∴∠C=∠DAC=50°,∵AB=AC,∴∠B=∠C=50°,故答案为:50°.13.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是.【解析】6【解答】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,∴EF=2,∵DE∥AB,DF∥AC,∴△DEF是等边三角形,∴剪下的△DEF的周长是2×3=6.故答案为:6.14.(2020•宿豫区期中)如图,在△ABC中,AB=10,AC=8,∠ABC、∠ACB的平分线相交于点O,MN过点O,且MN∥BC,分别交AB、AC于点M、N.则△AMN的周长为.【解析】18【解答】∵在△ABC中,∠ABC、∠ACB的平分线相交于点O,∴∠ABO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠ABO=∠MOB,∴BM=OM,同理CN=ON,∴△AMN的周长是:AM+NM+AN=AM+OM+ON+AN=AM+BM+CN+AN=AB+AC=10+8=18.故答案为:18.15.(2020•平潭县期末)已知A(0,2)和B(4,2),点P在x轴上,若要使PA+PB最小,则点P的坐标为.【解析】(2,0)【解答】如图,∵A(0,2)∴点A关于x轴的对称点A′(0,﹣2),∵B(4,2),连接A′B交x轴于点P, ∵AB=4,AB∥x轴,O是AA′中点,∴P是A′B的中点,∴OP是△A′AB的中位线,∴OP=12AB=2,若要使PA+PB最小,则点P的坐标为(2,0).故答案为(2,0).三.解答题(共75分)16.(8分)(2020 •南岗区期中)用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.解:(1)当等腰三角形的腰长为4,∴底边长为18﹣4×2=10,∵4+4<10,∴4、4、10不能组成三角形,当等腰三角形的底边长为4,∴腰长为(18﹣4)÷2=7,∵4+7>7,∴4、7、7能组成三角形,综上所述,其他两边分别为4和7.(2)设等腰三角形的三边长为x、x、y,由题意可知:2x+y=18,且2x>y,∴y<9,∵x=18−y2=9−y2,x与y都是整数,∴y是2的倍数, ∴y=2时,x=8, y=4时,x=7,y=8,x=5.17.(9分)(2020•平谷区期末)如图,已知∠AOB,作∠AOB的平分线OC,将直角尺DEMN 如图所示摆放,使EM边与OB边重合,顶点D落在OA边上,DN边与OC交于点P.(1)猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB∴∠DOP=∠BOP∵DN∥EM∴∠DPO=∠BOP∴∠DOP=∠DPO∴OD=PD解:(1)我们猜想△DOP是等腰三角形;(2)补全下面证明过程:∵OC平分∠AOB,∴∠DOP=∠BOP,∵DN∥EM,∴∠DPO=∠BOP,∴∠DOP=∠DPO,∴OD=PD.故答案为:等腰,∠DOP,∠BOP,∠DPO,∠BOP,∠DOP,∠DPO,OD,PD.18.(9分)(2020•沙坪坝区自主招生)如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC 交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.证明:(1)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∠A=36°,∴BD=AD,即△ABD是等腰三角形;(2)∵点E是AB的中点,∴AE=EB,∴∠DEB=90°,∴∠BDE=90°﹣36°=54°.19.(9分)(2020黑河期末)如图,在正方形网格中,△ABC的三个顶点都在格点上,A(2,3),B(1,1),C(4,2).结合所给的平面直角坐标系解答下列问题:(1)直接写出△ABC的面积;(2)请在图中作出与△ABC关于x轴对称的△A'B'C';(3)在(2)的条件下,若M(x,y)是△ABC内部任意一点,请直接写点M在△A'B'C'内部的对应点M'的坐标.解:(1)△ABC的面积为2×3−12×1×2−12×1×2−12×1×3=52;(2)如图所示,△A'B'C'即为所求.(3)点M在△A'B'C'内部的对应点M'的坐标为(x,﹣y).20.(9分)(2020•兴化市期中)△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作EF∥BC分别交AB、AC于点E、F.(1)求证:EF=BE+FC;(2)若△ABC的周长比△AEF的周长大10,试求出BC的长度.解:(1)∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,∵∠ABC和∠ACB的平分线交于点O,∴∠EBO=∠OBC,∠OCB=∠FCO,∴∠EBO=∠EOB,∠FOC=∠FCO,∴BE=OE,OF=FC;∴EF=BE+FC;(2)由(1)证得BE=OE,OF=CF,∴△AEF的周长=AE+EF+AF=AE+EO+OF+AF=AE+BE+FC+AF=AB+AC,∵△ABC的周长比△AEF的周长大10,∴BC=AB+AC+BC﹣AB+AC=10.21.(10分)(2020•曹县期末)如图,已知△ABC,点B在直线a上,直线a,b相交于点O.(1)画△ABC关于直线a对称的△A1B1C1;(2)在直线b上画出点P,使BP+CP最小.解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,点P即为所求.22.(10分)(2020•永安市期末)已知,△ABC是等边三角形,D、E、F分别是AB、BC、AC 上一点,且∠DEF=60°.(1)如图1,若∠1=50°,求∠2;(2)如图2,连接DF,若∠1=∠3,求证:DF∥BC.解:(1)∵△ABC是等边三角形,∴∠B=∠A=∠C=60°,∵∠B+∠1+∠DEB=180°,∠DEB+∠DEF+∠2=180°,∵∠DEF=60°,∴∠1+∠DEB=∠2+∠DEB,∴∠2=∠1=50°;(2)∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°,又∵∠B=60°,∠DEF=60°,∠1=∠3,∴∠FDE=∠DEB,∴DF∥BC.23.(11分)(2020•济源期末)如图,在等边△ABC中,AB=AC=BC=10厘米,DC=4厘米.如果点M以3厘米/秒的速度运动.(1)如果点M在线段CB上由点C向点B运动,点N在线段BA上由B点向A点运动.它们同时出发,若点N的运动速度与点M的运动速度相等.①经过2秒后,△BMN和△CDM是否全等?请说明理由.②当两点的运动时间为多少时,△BMN是一个直角三角形?(2)若点N的运动速度与点M的运动速度不相等,点N从点B出发,点M以原来的运动速度从点C同时出发,都顺时针沿△ABC三边运动,经过25秒点M与点N第一次相遇,则点N的运动速度是厘米/秒.(直接写出答案)解:(1)①△BMN≌△CDM.理由如下:∵V N=V M=3厘米/秒,且t=2秒,∴CM=2×3=6(cm)BN=2×3=6(cm)BM=BC﹣CM=10﹣6=4(cm)∴BN=CM∵CD=4(cm)∴BM=CD∵∠B=∠C=60°,∴△BMN≌△CDM.(SAS)②设运动时间为t秒,△BMN是直角三角形有两种情况:Ⅰ.当∠NMB=90°时,∵∠B=60°,∴∠BNM=90°﹣∠B=90°﹣60°=30°.∴BN=2BM,∴3t=2×(10﹣3t)∴t=209(秒);Ⅱ.当∠BNM=90°时,∵∠B=60°,∴∠BMN=90°﹣∠B=90°﹣60°=30°.∴BM=2BN,∴10﹣3t=2×3t∴t=109(秒).∴当t=209秒或t=109秒时,△BMN是直角三角形;(2)分两种情况讨论:I.若点M运动速度快,则3×25﹣10=25V N,解得V N=2.6;Ⅱ.若点N运动速度快,则25V N﹣20=3×25,解得V N=3.8.故答案是3.8或2.6.。
人教版八年级上册数学第13章 轴对称 单元练习卷(配套练习附答案)
【解析】
【分析】
首先要进行分析题意,“等腰三角形的一个内角”没明确是顶角还是底角,所以要分两种情况进行讨论.
【详解】本题可分两种情况:
①当70°角为底角时,顶角为180°−2×70°=40°;
②70°角为等腰三角形的顶角;
因此这个等腰三角形的顶角为40°或70°.
故选C
【点睛】考查等腰三角形的性质,注意分类讨论,不要漏解.
∴BM=AM,CN=AN,∴∠MAB=∠B,∠CAN=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,
∴∠BAM+∠CAN=60°,∠AMN=∠ANM=60°,∴△AMN是等边三角形,∴AM=AN=MN,∴BM=MN=NC,
∵BC=9cm,∴MN=3cm.
故答案为3cm.
考点:1.线段垂直平分线的性质;2.等腰三角形的性质;
【点睛】考查等边三角形 性质,熟练掌握等边三角形的性质是解题的关键.
4.等腰三角形的周长为16,其一边长为6,则另两边为_____.
【答案】6和4或5和5.
【解析】
当腰是6时,则另两边是4,6,且4+6>6,满足三边关系定理;
当底边是6时,另两边长是5,5,5+5>6,满足三边关系定理.
故该等腰三角形的另两边为6和4或5和5.
A. B. C. D. 7
【答案】A
【解析】
【分析】
根据轴对称性质可得出PM=MQ,PN=RN,因此先求出QN的长度,然后根据QR=QN+NR进一步计算即可.
【详解】由轴对称性质可得:PM=MQ=2.5cm,PN=RN=3cm,
∴QN=MN−MQ=1.5cm,
∴QR=QN+RN=4.5cm,
人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案
人教版八年级数学上册《第十三章轴对称》测试卷-附带有答案一、单选题1.以下是某些运动会会标,其中是轴对称图形的是()A.B.C.D.2.等腰三角形的周长为,其中一边长为,则其腰长为()A.B.或C.D.以上都不对3.如图,在由边长为1的小正方形组成的5×5的网格中,点A,B在小方格的顶点上,要在小方格的顶点确定一点C,连接AC和BC,使△ABC是等腰三角形.则方格图中满足条件的点C的个数是()A.5 B.6 C.7 D.84.如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°5.如图,中,是边的垂直平分线,分别交、于点、连接,若恰好为的平分线,则的度数是()A.B.C.D.6.如图,在中、的垂直平分线分别交于点、若的周长是20,则的周长为()A.4 B.7 C.9 D.117.如图,已知点D、点E分别是等边三角形ABC中BC、AB边的中点,AD=5,点F是AD边上的动点,则BF+EF的最小值为()A.7.5 B.5 C.4 D.不能确定8.如图,在△ABC,AB=AC,D为BC上的一点,∠BAD=28°,在AD的右侧作△ADE,使得AE=AD,∠DAE=∠BAC,连接CE、DE,DE交AC于点O,若CE∥AB,则∠AOD的度数为()A.92°B.90°C.88°D.84°二、填空题9.已知等腰三角形的两边长分别为3,6,则这个等腰三角形的周长为.10.如图,在中则°.11.如图,在△ABC中,AB=AC,BD=CD,∠BAD=20°,DE⊥AC于E ,则∠EDC °.12.如图,在直角三角形中,点D在上,点G在上,与关于直线对称,与交于点E,若,则的度数是度.13.如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,则AD 的长为.三、解答题14.如图,在中,求的长15.如图,在平面直角坐标系中,的顶点均在正方形网格的格点上.①画出关于x轴的对称图形;②将向左平移3个单位后得到,画出,并写出顶点的坐标.16.如图所示,在△ABC中,AB=BC,点D是BC上一点,DE⊥AB于点E,DF⊥BC,交AC于点F,连接BF.(1)若∠AFD=155°,求∠EDF的度数;(2)若点F是AC的中点,判断∠ABC与∠CFD的数量关系,并说明理由.17.如图,在中,的垂直平分线分别交线段,于点M,P,的垂直平分线分别交线段,于点N,Q.(1)如图,当时,求的度数;(2)当时,求的度数.18.如图,在中,点分别在边上,且.(1)求证:是等腰三角形;(2)当时,求的度数;(3)若,判断是何种三角形.参考答案:1.B2.C3.B4.B5.C6.C7.B8.C9.1510.6511.2012.13.714.解:在中即BC的长为.15.解:如图所示:,即为所求;,即为所求,点(−3,−1). 16.(1)解:∵∠AFD=155°∴∠DFC=25°∵DF⊥BC,DE⊥AB∴∠FDC=∠AED=90°在Rt△FDC中∴∠C=90°﹣25°=65°∵AB=BC∴∠C=∠A=65°∴∠ABC=180°﹣2×65°=50°∵∠ABC+∠BDE=∠EDF+∠BDE=90°∴∠EDF=∠ABC=50°;(2)解:∠CFD=∠ABC,理由如下:∵AB=BC,且点F是AC的中点∴BF⊥AC,∠ABF=∠CBF=∠ABC∴∠CFD+∠BFD=90°∠CBF+∠BFD=90°∴∠CFD=∠CBF.17.(1)解:∵、分别是的垂直平分线∴,∵∴∵∴∴(2)解:∵分别是的垂直平分线∴∴∴当P点在Q点右侧时,如图:∵∴∵∴.当P点在Q点左侧时∵∴∵∴.综上或.18.(1)证明:在和中是等腰三角形;(2)解:即;;(3)解:是等边三角形,理由如下:由(2)知又又是等边三角形。
八年级数学上册第十三章《轴对称》测试-人教版(含答案)
八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。
人教版初中数学第13章《轴对称》单元测试题(含答案)
第13章 轴对称单元测试题一、选择题1.下列图形中,对称轴的条数最少的图形是A. B. C. D.2.如图所示,在△ABC 中,∠C =90°,AC =BC ,AD 是△ABC 的角平分线,DE ⊥AB 于点E .若AB =6 cm ,则△DEB 的周长为( )A . 5cmB . 6cmC . 7cmD . 8cm3.已知等腰△ABC 的周长为18 cm ,BC =8 cm ,若△ABC 与△A ′B ′C ′全等,则△A ′B ′C ′的腰长等于( ).A . 8 cmB . 2 cm 或8 cmC . 5 cmD . 8 cm 或5 cm 4. 已知等腰三角形的一个内角为︒70,则另两个内角的度数是( )A.︒55,︒55B.︒70,︒40C.︒55,︒55或︒70,︒40 ;D. 以上都不对 5.如图,梯形ABCD 中,AD ∥BC ,DC ⊥BC ,将梯形沿对角线BD 折叠,点A 恰好落在DC 边上的点A '处,若︒='∠20BC A ,则BD A '∠的度数为( )A.︒30B.︒25C.︒20D.︒156.如图,△ABC 中,以B 为圆心,BC 长为半径画弧,分别交AC ,AB 于D ,E 两点,并连接BD ,DE .若∠A =30°,AB =AC ,则∠BDE 的度数为( ) A .45° B .52.5° C .67.5° D .75°7.如图,由4个小正方形组成的田字格中,△ABC 的顶点都是小正方形的顶点,在田字格上画与△ABC 成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC 本身)共有( )A.1个B.3个C.2个D.4个8.如图,在△ABC中,AB=AC,以AB、AC为边在△ABC的外侧作两个等边三角形△ABE 和△ACD,且∠EDC=45°,则∠ABC的度数为()A.75°B.80°C.70°D.85°9.如图,∠A=15°,AB=BC=CD=DE=EF,则∠DEF的度数为()A.90°B.75°C.70°D.60°10.在△ABC中,AB=AC,D、E分别在BC、AC上,AD=AE,∠CDE=20°,则∠BAD的度数为()A.36°B.40°C.45°D.50°11.△ABC中,AB=AC≠BC,在△ABC所在平面内有点P,且使得△ABP、△ACP、△BCP 均为等腰三角形,则符合条件的点P共有()A.1个B.4个C.6个D.8个12.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cm B.5.5 cm C.6.5 cm D.7 cm二、填空题13.矩形ABCD中,A、B、C三点的坐标分别是(0,0)、(-5,0)、(-5,-2),则D点的坐标是________,D点关于x轴的对称点的坐标是_________.14.已知等腰三角形的一边长为4cm,另一边长为7cm,则它的周长为_________________cm.15.如图,在△PAB中,∠A=∠B,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=53°,则∠P=______°.16.如图,△ABC的边AB,AC的垂直平分线相交于点P,连接PB,PC,若∠A=70°,则∠PBC的度数是______度.17.轴对称是指______ 个图形的位置关系,轴对称图形是指______ 个具有特殊形状的图形.18.如图,AD是△ABC的对称轴,∠DAC=30°,DC=4cm,则△ABC是___三角形,△ABC 的周长=___cm.19.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,连接BD,CD,若∠BAC=84°,则∠BDC=________.20.等腰三角形两内角度数之比为1:2,则它的顶角度数为______ .三、解答题21.如图:的周长为30cm,把的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若,求的周长.22.如图,在△ABC中,AB=AC,点D,E,F分别在边AB,BC,AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.23.已知:如图,四边形ABCD中,∠A=∠B=90°,∠C=60°,CD=2AD,AB=4.(1)在AB边上求作点P,使PC+PD最小;(2)求出(1)中PC+PD的最小值.24. 如图,△ABC 是边长为6的等边三角形,P 是AC 边上一动点,由A 向C 运动(与A 、C 不重合),Q 是CB 延长线上一点,与点P 同时以相同的速度由B 向CB 延长线方向运动(Q 不与B 重合),过P 作PE ⊥AB 于E ,连接PQ 交AB 于D .(1)若设x AP =,则=PC ;=QC .(用含x 的式子表示)(2)当︒=∠30BQD 时,求AP 的长;(3)当运动过程中线段ED 的长是否发生变化?如果不变,求出线段ED 的长,如果变化请说明理由.参考答案1. B2.B . 3.D 4.C 5..B 6.C 7.B 8.A 9.D 10.B 11.C 12.A 13. (0,-2) ( 0,-2)14. 15或18 15.53°16.20 17. 两;一 18. 等边, 24 19.96° 20.或21. 解:由图形和题意可知:,,则,故的周长,答:的周长为22cm .22.(1)证明:∵AB =AC ,∴∠B =∠C .在△DBE 和△ECF 中,⎩⎪⎨⎪⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF ,∴DE =EF ,∴△DEF 是等腰三角形.(2)解:如图,由(1)可知△DBE ≌△ECF ,∴∠1=∠3.∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C ,∴∠B =12(180°-40°)=70°,∴∠1+∠2=110°,(10分)∴∠3+∠2=110°,∴∠DEF =70°.23. 解:(1)作D 点关于AB 的对称点D ′,连接CD ′交AB 于P ,P 即为所求,此时PC +PD =PC +PD ′=CD ′,根据两点之间线段最短可知此时PC +PD 最小.(2)作D ′E ⊥BC 于E ,则EB =D ′A =AD , ∵CD =2AD ,∴DD ′=CD ,∴∠DCD ′=∠DD ′C , ∵∠A =∠B =90°,∴四边形ABED ′是矩形, ∴DD ′∥EC ,D ′E =AB =4,∴∠D ′CE =∠DD ′C , ∴∠D ′CE =∠DCD ′,∵∠C =60°,∴∠D ′CE =30°, ∴D ′C =2D ′E =2AB =2×4=8; ∴PC +PD 的最小值为8. 24. 解:(1)x -6;x +6;(2)∵△ABC 是边长为6的等边三角形,(3)当点P、Q同时运动且速度相同时,线段DE的长度不会改变。
人教版八年级上册第13章《轴对称》单元测试含答案
人教版八年级上册第13章《轴对称》单元测试考试分值:120分;考试时间:100分钟;姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.12.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC,则与△ABC 成轴对称且以格点为顶点三角形共有()个.A.3个 B.4个 C.5个 D.6个6.(5分)△ABC中,AD是中线,点D到AB,AC的距离相等,则△ABC一定是()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3评卷人得分二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=度.14.(5分)图中的正五角星有条对称轴,图中与∠A的2倍互补的角有个.评卷人得分三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.参考答案与试题解析一.选择题(共7小题,满分35分,每小题5分)1.(5分)下列体育运动标志中,从图案看不是轴对称图形的有()个.A.4 B.3 C.2 D.1【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形.求解【解答】解:(1)(2)(4)都不是轴对称图形,只有(3)是轴对称图形.故选:B.【点评】轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.2.(5分)在平面直角坐标系中,点(1,1)关于y轴对称的点的坐标是()A.(﹣1,﹣1)B.(1,﹣1)C.(﹣1,1)D.(1,1)【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;即点(x,y)关于y轴的对称点的坐标是(﹣x,y)即可得到点(1,1)关于y轴对称的点的坐标.【解答】解:点(1,1)关于y轴的对称点的坐标是(﹣1,1),故选:C.【点评】此题主要考查了关于x轴、y轴对称的点的坐标规律,比较容易,关键是熟记规律:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.3.(5分)如图,△ABC中,AB=AC,∠A=100°,BD平分∠ABC,则∠ABD的度数为()A.30°B.40°C.20°D.25°【分析】根据等腰三角形的性质就可以求出∠ABC和∠C的度数,由角平分线的性质就可以求出∠ABD的度数.【解答】解:∵AB=AC,∠A=100°,∴∠ABC=∠C=40°.∵BD平分∠ABC,∴∠ABD=∠DBC=20°.故选:C.【点评】本题主要考查了等腰三角形的性质,解题的关键是掌握角平分线的性质,此题比较简单.4.(5分)已知:如图,在△ABC中,边AB的垂直平分线分别交BC、AB于点G、D,若△AGC的周长为31cm,AB=20cm,则△ABC的周长为()A.31cm B.41cm C.51cm D.61cm【分析】根据线段的垂直平分线的性质得到GA=GB,根据三角形的周长公式计算即可.【解答】解:∵DG是AB的垂直平分线,∴GA=GB,∵△AGC的周长为31cm,∴AG+GC+AC=BC+AC=31cm,又AB=20cm,∴△ABC的周长=AB+AC+BC=51cm,故选:C .【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5.(5分)如图,在2×2的方格纸中有一个以格点为顶点的△ABC ,则与△ABC 成轴对称且以格点为顶点三角形共有( )个.A .3个B .4个C .5个D .6个【分析】解答此题首先找到△ABC 的对称轴,EH 、GC 、AD ,BF 等都可以是它的对称轴,然后依据对称找出相应的三角形即可.【解答】解:与△ABC 成轴对称且以格点为顶点三角形有△ABG 、△CDF 、△AEF 、△DBH ,△BCG 共5个,故选:C .【点评】本题主要考查轴对称的性质;找着对称轴后画图是正确解答本题的关键.6.(5分)△ABC 中,AD 是中线,点D 到AB ,AC 的距离相等,则△ABC 一定是( )A .直角三角形B .等腰三角形C .等边三角形D .等腰直角三角形【分析】根据中线的性质得出S △ABD =S △ACD ,再由点D 到AB ,AC 的距离相等,得出AB=AC ,从而得出△ABC 一定是等腰三角形.【解答】解:∵AD是中线,=S△ACD,∴S△ABD∵D到AB,AC的距离相等,∴AB=AC,∴△ABC一定是等腰三角形,故选:B.【点评】本题考查了等腰三角形的判定以及中线的性质,掌握三角形的中线把三角形的面积分成相等的两部分是解题的关键.7.(5分)如图,△ABC中,∠BAC=60°,∠ABC、∠ACB的平分线交于E,D是AE延长线上一点,且∠BDC=120°.下列结论:①∠BEC=120°;②DB=DE;③∠BDE=2∠BCE.其中正确结论的个数为()A.0 B.1 C.2 D.3【分析】根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠EBC+∠ECB,然后求出∠BEC=120°,判断①正确;过点D作DF⊥AB于F,DG⊥AC的延长线于G,根据角平分线上的点到角的两边的距离相等可得DF=DG,再求出∠BDF=∠CDG,然后利用“角边角”证明△BDF和△CDG全等,根据全等三角形对应边相等可得BD=CD,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB,根据等角对等边可得BD=DE,判断②正确,再求出B,C,E三点在以D 为圆心,以BD为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE,判断③正确.【解答】解:∵∠BAC=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵BE、CE分别为∠ABC、∠ACB的平分线,∴∠EBC=∠ABC,∠ECB=∠ACB,∴∠EBC+∠ECB=(∠ABC+∠ACB)=×120°=60°,∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣60°=120°,故①正确;如图,过点D作DF⊥AB于F,DG⊥AC的延长线于G,∵BE、CE分别为∠ABC、∠ACB的平分线,∴AD为∠BAC的平分线,∴DF=DG,∴∠FDG=360°﹣90°×2﹣60°=120°,又∵∠BDC=120°,∴∠BDF+∠CDF=120°,∠CDG+∠CDF=120°,∴∠BDF=∠CDG,∵在△BDF和△CDG中,,∴△BDF≌△CDG(ASA),∴DB=CD,∴∠DBC=(180°﹣120°)=30°,∴∠DBE=∠DBC+∠CBE=30°+∠CBE,∵BE平分∠ABC,AE平分∠BAC,∴∠ABE=∠CBE,∠BAE=∠BAC=30°,根据三角形的外角性质,∠DEB=∠ABE+∠BAE=∠ABE+30°,∴∠DBE=∠DEB,∴DB=DE,故②正确;∵DB=DE=DC,∴B,C,E三点在以D为圆心,以BD为半径的圆上,∴∠BDE=2∠BCE,故③正确;综上所述,正确的结论有①②③共3个.故选:D.【点评】本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.二.填空题(共7小题,满分35分,每小题5分)8.(5分)一个三角形可被剖成两个等腰三角形,原三角形的一个内角为36度,求原三角形最大内角的所有可能值.【分析】分为以下情况:①原三角形是锐角三角形,最大角是72°的情况;②原三角形是直角三角形,最大角是90°的情况;③原三角形是钝角三角形,最大角是108°的情况;④原三角形是钝角三角形,最大角是126°的情况;⑤原三角形是钝角三角形,最大角是132°的情况.【解答】解:①原三角形是锐角三角形,最大角是72°的情况如图所示:∠ABC=∠ACB=72°,∠A=36°,AD=BD=BC;②原三角形是直角三角形,最大角是90°的情况如图所示:∠ABC=90°,∠A=36°,AD=CD=BD;③原三角形是钝角三角形,最大角是108°的情况如图所示:④原三角形是钝角三角形,最大角是126°的情况如图所示:∠ABC=126°,∠C=36°,AD=BD=BC;⑤原三角形是钝角三角形,最大角是132°的情况如图所示:∠C=132°,∠ABC=36°,AD=BD,CD=CB.综上,原三角形最大内角的所有可能值为72°,90°,108°,132°,126°.【点评】本题主要考查了等腰三角形的性质及三角形内角和定理;分情况讨论是解决本题的关键,本题有一定的难度.9.(5分)在Rt△ABC中,若∠C=90°,AB=,∠A=30°,则BC=5.【分析】根据含30度角的直角三角形的性质推出BC=AB,代入求出即可.【解答】解:∵∠C=90°,∠A=30°,AB=10,∴BC=AB=×10=5,故答案为:5.【点评】本题主要考查对含30度角的直角三角形的性质的理解和掌握,能熟练地运用性质进行计算是解此题的关键.10.(5分)如图所示,一排数字是球衣数字在镜中的像,则原数是251.【分析】易得所求的号码与看到的号码关于竖直的一条直线成轴对称,作出相应图形即可求解.【解答】解:由题意得:251|125.故答案为:251.【点评】考查了镜面对称,解决本题的关键是找到相应的对称轴;难点是作出相应的对称图形;注意2,5的关于竖直的一条直线的轴对称图形是5,2.11.(5分)已知点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,则m 的取值范围是m<.【分析】直接利用关于x轴对称点的性质得出M点位置,进而得出答案.【解答】解:∵点M(1﹣2m,m﹣1)关于x轴的对称点在第一象限,∴点M在第四象限,∴,解得:m<.故答案为:m<.【点评】此题主要考查了关于x轴对称点的性质以及不等式组的解法,正确解不等式是解题关键.12.(5分)已知一个等腰三角形的两边长分别是2和5,那么这个等腰三角形的周长为12.【分析】题目给出等腰三角形有两条边长为2和5,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分情况讨论:①当三边是2,2,5时,2+2<5,不符合三角形的三边关系,应舍去;②当三角形的三边是2,5,5时,符合三角形的三边关系,此时周长是12.故填12.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13.(5分)如下图,在Rt△ABC中,∠C=90°,DE垂直平分AB,垂足为E,D 在BC上,已知∠CAD=32°,则∠B=29度.【分析】利用中垂线和三角形外角性质计算.【解答】解:∠C=90°,∠CAD=32°⇒∠ADC=58°,DE为AB的中垂线⇒∠BAD=∠B又∠BAD+∠B=58°⇒∠B=29°故填29°【点评】本题涉及中垂线和三角形外角性质,难度中等.14.(5分)图中的正五角星有5条对称轴,图中与∠A的2倍互补的角有10个.【分析】正五角星经过角的顶点和中心点的直线都是它的对称轴,有5条对称轴,且五角星的五个角相等,从而求得答案.【解答】解:正五角星经过角的顶点和中心点的直线都是它的对称轴,所以有5条对称轴.与∠A的2倍即是∠AIE,与该角互为补角的角有∠AIC和∠DIE共两个,同理可得出其他八个符合条件的角.故答案为:5,10.【点评】本题考查了轴对称的性质,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形,这条直线是它的对称轴.三.解答题(共7小题,满分50分)15.(6分)用三角板和直尺作图.(不写作法,保留痕迹)如图,点A,B在直线l的同侧.(1)试在直线l上取一点M,使MA+MB的值最小.(2)试在直线l上取一点N,使NB﹣NA最大.【分析】(1)作点A关于直线l的对称点,再连接解答即可;(2)连接BA,延长BA交直线l于N,当N即为所求;【解答】解:(1)如图所示:(2)如图所示;理由:∵NB﹣NA≤AB,∴当A、B、N共线时,BN﹣NA的值最大.【点评】此题主要考查有关轴对称﹣﹣最短路线的问题中的作图步骤,是此类问题的基础,需熟练掌握.16.(6分)在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y﹣3,x ﹣2y),它关于x轴的对称点A1的坐标为(x+3,y﹣4),关于y轴的对称点为A2.(1)求A1、A2的坐标;(2)证明:O为线段A1A2的中点.【分析】(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求出x、y的值,从而得到点A的坐标,再根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”写出点A1的坐标,根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”写出点A2的坐标;(2)设经过OA1的直线解析式为y=kx,利用待定系数法求一次函数解析式求出直线解析式,再求出点A2在直线上,然后利用勾股定理列式求出OA1=OA2,最后根据线段中点的定义证明即可.【解答】(1)解:∵点A(2x+y﹣3,x﹣2y)与A1(x+3,y﹣4)关于x轴对称,∴,解得,所以,A(8,3),所以,A1(8,﹣3),A2(﹣8,3);(2)证明:设经过O、A1的直线解析式为y=kx,易得:y OA1=﹣x,又∵A2(﹣8,3),∴A2在直线OA1上,∴A1、O、A2在同一直线上,由勾股定理知OA1=OA2==,∴O为线段A1A2的中点.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.17.(7分)已知:如图,BD=DE=EF=FG.(1)若∠ABC=20°,∠ABC内符合条件BD=DE=EF=FG的折线(如DE、EF、FG)共有几条?若∠ABC=10°呢?试一试,并简述理由.(2)若∠ABC=m°(0<m<90),你能找出一个折线条数n与m之间的关系吗?若有,请找出来;若无,请说明理由.【分析】(1)由已知可得到几组相等的角,再根据三角形外角的性质可得到∠EDF,∠FEG,∠AFG,∠AMG分别与∠B的关系,再根据三角形内角和定理即可求解.(2)结合第(1)题,根据三角形内角和定理可知,需满足mn<90°,从而不难求解.【解答】解:(1)有4条,若∠ABC=10°,有8条.当∠ABC=20°,∵BD=DE=EF=FG=GM,∴∠DEB=∠B,∠EDF=∠EFD,∠FEG=∠FGE,∠GFM=∠FMG∵∠EDF=2∠B=40°,∠FEG=3∠B=60°,∠AFG=4∠B=80°,∠AMG=5∠B=100°,∴同理:∠AMG将成为下一个等腰三角形的底角∵100°+100°>180°∴不会再由下一条折线∴共有四条拆线,分别是:DE、EF、FG,GM.同理:当∠ABC=10°,有8条符合条件的折线.(2)由(1)可知∠EDF=2∠B=2m°,∠FEG=3∠B=3m°,∠AFG=4∠B=4m°,∵根据三角形内角和定理可知,需满足mn<90°,∴n<的整数.【点评】此题主要考查等腰三角形的性质,三角形外角和性质及三角形内角和定理的综合运用.18.(6分)如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系;(2)如果∠C=130°,求∠AEB的度数.【分析】(1)由于AB′是AB的折叠后形成的,所以∠AB′E=∠B=∠D=90°,∴B′E ∥DC;(2)利用平行线的性质和全等三角形求解.【解答】解:(1)由于AB′是AB的折叠后形成的,∠AB′E=∠B=∠D=90°,∴B′E∥DC;(2)∵折叠,∴△ABE≌△AB′E,∴∠AEB′=∠AEB,即∠AEB=∠BEB′,∵B′E∥DC,∴∠BEB′=∠C=130°,∴∠AEB=∠BEB′=65°.【点评】本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点B 落在AD边上的B′点,则△ABE≌△AB′E,利用全等三角形的性质和平行线的性质及判定求解.19.(7分)如图,在△ABC中,BD⊥AC,CE⊥AB,垂足分别为D、E,且BD=CE,BD与CE相交于点O,连接AO.求证:AO垂直平分BC.【分析】欲证明AO垂直平分BC,只要证明AB=AC,BO=CO即可;【解答】证明:∵BD⊥AC,CE⊥AB,∴∠BEC=∠BDC=90°,在Rt△BEC和Rt△CDB中,∴Rt△BEC≌Rt△CDB (HL),∴∠ABC=∠ACB,∠ECB=∠DBC,∴AB=AC,BO=OC,∴点A、O在BC的垂直平分线上,∴AO垂直平分BC.【点评】本题考查全等三角形的判定和性质、线段的垂直平分线的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.20.(8分)如图△ABC为等边三角形,直线a∥AB,D为直线BC上一点,∠ADE 交直线a于点E,且∠ADE=60°.(1)若D在BC上(如图1)求证CD+CE=CA;(2)若D在CB延长线上,CD、CE、CA存在怎样数量关系,给出你的结论并证明.【分析】(1)实际上也就是求两条线段相等,在AC上取一点F,使CF=CD,然后求证△ADF≌△EDC即可.(2)归根究底仍是求两条线段的问题,通过求证全等,最终得出几条边之间的关系.【解答】(1)证明:在AC上取点F,使CF=CD,连接DF.∵∠ACB=60°,∴△DCF为等边三角形.∴∠3+∠4=∠4+∠5=60°.∴∠3=∠5.∵∠1+∠ADE=∠2+∠ACE,∴∠1=∠2.在△ADF和△EDC中,,∴△ADF≌△EDC(AAS).∴CE=AF.∴CD+CE=CF+AF=CA.(2)解:CD、CE、CA满足CE+CA=CD;证明:在CA延长线上取CF=CD,连接DF.∵△ABC为等边三角形,∴∠ACD=60°,∵CF=CD,∴△FCD为等边三角形.∵∠1+∠2=60°,∵∠ADE=∠2+∠3=60°,∴∠1=∠3.在△DFA和△DCE中,∴△DFA≌△DCE(ASA).∴AF=CE.∴CE+CA=FA+CA=CF=CD.注:证法(二)以CD为边向下作等边三角形,可证.证法(三)过点D分别向CA、CE作垂线,也可证.【点评】本题考查了全等三角形的判定与性质及等边三角形的性质;可围绕结论寻找全等三角形,运用全等三角形的性质判定线段相等,证得三角形全等是正确解答本题的关键.21.(10分)已知:△ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,求证:BE+CF=EF.【分析】根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案.【解答】证明:∵BD平分∠ABC,∴∠EBD=∠DBC,∵EF∥BC,∴∠EDB=∠DBC,∴∠EDB=∠EBD,∴DE=BE,同理CF=DF,∴EF=DE+DF=BE+CF,即BE+CF=EF.【点评】本题考查了角平分线定义,平行线性质,等腰三角形的判定的应用,注意:等角对等边.。
人教版八年级上册数学第十三章 轴对称含答案(完美版)
人教版八年级上册数学第十三章轴对称含答案一、单选题(共15题,共计45分)1、如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过O作AC的垂线EF,分别交AD、BC于E、F点,连接EC,则△CDE的周长为()A.5cmB.8cmC.9cmD.10cm2、如图,在△ABC中,BC=8,AB的中垂线交BC于D,AC的中垂线交BC于E,则△ADE的周长等于()A.8B.4C.12D.163、已知:如图,直线与轴、轴分别交于,两点,两动点,分别以个单位长度/秒和个单位长度/秒的速度从、两点同时出发向点运动(运动到点停止);过点作交抛物线于、两点,交于点,连结、.若抛物线的顶点恰好在上且四边形是菱形,则、的值分别为()A. 、B. 、C. 、D.、4、甲乙两位同学用围棋子做游戏.如图所示,现轮到黑棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形.则下列下子方法不正确的是(),[说明:棋子的位置用数对表示,如A点在(6,3)].A.黑(3,7);白(5,3)B.黑(4,7);白(6,2)C.黑(2,7);白(5,3)D.黑(3,7);白(2,6)5、如图,在△ABC中,∠A=60°,BE⊥AC,垂足为E,CF⊥AB,垂足为F,点D 是BC的中点,BE,CF交于点M,如果CM=4,FM=5,则BE等于( )A.14B.13C.12D.116、在△ABC中,∠B和∠C的平分线交于点I,边AB和AC的垂直平分线交于点O,若∠BIC=90°+ θ,则∠BOC=()A.90°﹣θB.2θC.180°﹣θD.以上答案都不对7、如图,在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=120°,则∠A的度数为()A.110°B.60°C.80°D.100°8、下列图形中,是轴对称图形的个数是().A.1个B.2个C.3个D.4个9、把16个边长为a的正方形拼在一起,如图,连接BC,CD,则△BCD是()A.直角三角形B.等腰三角形C.等边三角形D.任意三角形10、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.11、如图,在△ABC中,AB=AC,DE∥BC,∠ADE=48°,则下列结论中不正确的是( )A.∠B=48°B.∠AED=66°C.∠A=84°D.∠B+∠C=96°12、如图,O是等边△ABC内一点,OA=6,OB=8,OC=10,以B为旋转中心,将线段BO逆时针旋转60°得到线段BO′,连接AO′.则下列结论:①△BO′A 可以由△BOC绕点B逆时针方向旋转60°得到;②连接OO′,则OO′=8;③∠AOB=150°;④其中正确的有()A.①②B.①②③C.①②④D.①②③④13、下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③顶角和底边对应相等的两个等腰三角形全等;④有一个角是60°的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.2B.3C.4D.514、如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数y1=的图象经过点A,反比例函数y=的图象经过点B,则下列关于m,n2的关系正确的是()A.m=nB.m=﹣nC.m=﹣nD.m=﹣3n15、下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在▱ABCD中,AB=2,BC=3,∠BAD=120°,AE平分∠BAD,交BC于点E,过点C作CF∥AE,交AD于点F,则四边形AECF的面积为________.17、如图,在Rt△ABC中,∠ACB=90°,∠A=15°,AB的垂直平分线与AC交于点D,与AB交于点E,连接BD.若AD=12cm,则BC的长为________ cm.18、如图,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是________.19、如图,在等边△ABC的外侧作正方形ABDE,AD与CE交于F,则∠ABF的度数为________.20、如图,已知在中,AB=AC,点D在边BC上,要使BD=CD,还需添加一个条件,这个条件是________ .(只需填上一个正确的条件)21、如图,中,边AB的垂直平分线分别交AB、BC于点D、E,连接若,,则的周长为________.22、点A(2,-3)关于x轴对称的点的坐标是________.23、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是________24、如图,在△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于的同样长为半径画弧,两弧相交于两点M,N;②作直线MN交AB于点D,连结CD.请回答:若CD=AC,∠A=50°,则∠ACB的度数为________.25、如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=________.三、解答题(共5题,共计25分)26、如图,在中,,点在边上,且,连接,若,求的度数.27、以给出的图形“○,○,△,△, ”(两个相同的圆、两个相同的等边三角形、两条线段)为构件,各设计一个构思独特且有意义的轴对称图形或中心对称图形.举例:如图,左框中是符合要求的一个图形.你还能构思出其他的图形吗?请在右框中画出与之不同的图形.28、已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P、G 不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①求证:DG=2PC;②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.29、作图题:如图,在平面直角坐标系xOy中,A(2,3),B(3,1),C(﹣2,﹣1).①在图中作出△ABC关于x轴的对称图形△A1B1C1并写出A1, B1, C1的坐标;②在y轴上画出点P,使PA+PB最小.(不写作法,保留作图痕迹)③求△ABC的面积.30、若等腰三角形一腰上的中线把三角形分为两个周长为 15cm和 18cm的三角形,且该中线长6cm,请画出示意图,并结合图形,求这个等腰三角形的底边长.参考答案一、单选题(共15题,共计45分)2、A3、A4、C5、C6、B7、D8、D9、B10、C11、B12、B13、A14、D15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、。
人教版八年级上册数学第13章《轴对称》测试题【含答案】
一、选择题(每小题3分,共24分)1.下列交通标志图案是轴对称图形的是()2.下列图形中对称轴只有两条的是()3.如图1,用数学的眼光欣赏这个蝴蝶图案,它的一种数学美体现在蝴蝶图案的()A.轴对称性 B.用字母表示数C.随机性 D.数形结合4.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18C.20 D.16或205.如图2,△ABC与△A′B′C′关于直线l对称,且∠A′=78°,∠C=48°,则∠ABC的度数为()A.48°B.54°C.74°D.78°6.图3是一个风筝的图案,它是以直线AF为对称轴的轴对称图形,下列结论中不一定成立的是()A.△ABD≌△ACDB.AF垂直平分线段EGC.连接BG,CE,其交点在AF上D.△DEG是等边三角形7.在平面直角坐标系xOy中,点P(-3,8)关于y轴的对称点的坐标为()A.(-3,-8)B.(3,8)C.(3,-8)D.(8,-3)8.如图4,在△ABC中,∠ACB=90°,∠A=20°,若将△ABC沿CD折叠,使点B落在AC边上的点E处,则∠CED的度数是()A.30°B.40°C.50°D.70°二、填空题(每小题4分,共32分)9.如果一个三角形是轴对称图形,且有一个角是60°,那么这个三角形是________三角形.10. 已知M,N是线段AB的垂直平分线上任意两点,则∠MAN和∠MBN的关系是________. 11.如图5,在△ABC中,AB=AC,∠B=50°,则∠A=________.12.如图6,在△ABC中,AB=AC=3 cm,AB的垂直平分线MN交AC于点N,交AB于点M.已知△BCN的周长是5 cm,则BC的长是________cm.13.如图7,A,B,C三个居民小区的位置呈三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在________________.14.如图8,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,则符合条件的点P共有________个.15.观察规律,并填空:16.如图9,O为△ABC内一点,O与D关于AB对称,O与E关于BC对称,O与F关于AC对称,∠BAC=40°,∠ABC=80°,∠ACB=60°,则∠ADB+∠BEC+∠CFA=_________.三、解答题(共64分)17.(9分)请在如图10所示的三个2×2的方格中各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)18.(8分)汉字是世界上最古老的文字之一,字形结构体现人类追求均衡对称、和谐稳定的天性.如图11所示的三个汉字可以看成是轴对称图形,请在方框中再写出4个类似轴对称图形的汉字.19.(12分)如图12,在△ABC中,∠BAC=90°,∠B=45°,D为BC上一点,BD=AB,DE⊥BC,交AC于点E.(1)求证:△ADE是等腰三角形;(2)图中除△ADE是等腰三角形外,还有没有等腰三角形?若有,请一一写出来(不要求证明);若没有,请说明理由.20.(11分)如图13,在△ABC中,点D,E分别是AB,AC边的中点,请你在BC边上确定一点P,使△PDE的周长最小,在图中作出点P.21.(12分)如图14,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线DE交AB于点E,D为垂足,连接EC.(1)求∠ECD的度数;(2)若CE=5,求BC的长.22.(12分)如图15,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E,A在直线DC的同侧,连接AE,则线段AE与BC有什么位置关系?请说明理由.第十三章轴对称测试题一、1.B 2.C 3.A 4.C 5.B 6.D 7.B 8.D二、9.等边 10. 相等 11.80° 12.213. AB,BC,CA垂直平分线的交点处14. 6 15. 16. 360°三、17.解:答案不唯一,如图1所示.18.解:答案不唯一,如中、田、日、吕、呆等.19.(1)证明:因为BD=AB,所以∠BAD=∠BDA.因为DE⊥BC,所以∠BDE=90°.又∠BAC=90°,所以∠EAD=∠EDA.所以AE=DE,即△ADE是等腰三角形.(2)还有三个等腰三角形,△ABD、△ABC、△CDE.20.解:如图2,作点D关于BC的对称点D′,连接D′E,与BC交于点P,P点即为所求作.21.解:(1)因为DE垂直平分AC,所以CE=AE,即△ACE是等腰三角形.所以∠ECD =∠A=36°.(2)因为AB=AC,∠A=36°,所以∠B=∠ACB=(180°-36°)÷2=72°.因为∠ECD=36°,所以∠BEC=∠A+∠ECD=72°,即∠BEC=∠B.所以BC=CE=5.22.解:AE∥BC.理由:因为△ABC和△DEC是等边三角形,所以BC=AC,CD=CE,∠ABC=∠BCA=∠ECD =60°.所以∠BCA-∠DCA=∠ECD-∠DCA,即∠BCD=∠ACE.在△ACE和△BCD中,AC=BC,∠ACE=∠BCD,CE=CD,所以△ACE≌△BCD.所以∠EAC=∠B=60°.所以∠EAC=∠ACB.所以AE∥BC.。
【小学】人教版四年级数学下册《 7.1轴对称》同步检测题有答案
人教版小学四年级数学下册《第7章轴对称》同步检测题一.选择题(共6小题)1.从镜子中看到图中的样子是()A.B.C.2.如图的图案是从()卡纸上剪下来的.A.B.C.3.一个轴对称图形,对称轴两边()A.形状相同但面积不同B.形状不同但面积相同C.形状和面积都完全相同D.以上说法都不对4.下面图形中,()对称轴最少.A.正方形B.长方形C.等边三角形D.圆5.下列图案中,是轴对称图形的是()A.(1)(2)B.(1)(3)(4)C.(2)(3)D.(1)(4)6.小红在镜子里看到墙上的挂钟如图所示,请问第()个时间最接近8:00.A.B.C.D.二.填空题(共6小题)7.轴对称图形的两对应个点到对称轴的距离.8.如果把一个图形沿着一条直线对折,直线两侧的图形能够完全重合,那么这个图形就是图形.9.在日常生活中对称的例子很多,如:、、.10.小强下午放学回家,在镜子中看到钟面上的时间是3:00,实际时间是.11.镜子中的钟面时间是9:30,正确的时间应该是.12.晚上,笑笑在照镜子,看到镜子中钟面上的时间是4时,实际时间是.三.判断题(共5小题)13.通过一个圆的圆心的直线是这个圆的对称轴..(判断对错)14.一个图形对折后折痕两边的部分能够完全重合,这条折痕所在的直线就是这个图形的对称轴(判断对错)15.钟表上3时整,在镜子中看到的是9时..(判断对错)16.沿虚线对折后能完全重合.(判断对错)17.人体是对称的..(判断对错)四.操作题(共2小题)18.下面的交通标志哪些是轴对称图形?画“〇”19.把一张纸沿虚线对折后剪去两个小三角形,展开后得到第二行的哪个图形?把它圈起来。
五.解答题(共6小题)2021图的图案是从哪张纸上剪下来的?请你连一连.21.如图,平行四边形的ABCD的点D贴着一面镜子,现在请你把镜子里的平行四边形用铅笔和三角板画出来.22.请圈出在镜子里看到的图象.23.星期日,菲菲到蓝猫家去玩,玩着玩着,想知道现在的时间,刚抬起头,从镜子中看见了挂钟显示的是6:30,聪明的菲菲眼珠一转,就知道了真实的时间.同学们,你们知道吗?24.图一是镜子中看到的时间,请你在图二中画出实际的时间.25.下面各图是镜中的时刻,请在正确的时刻下面画“√”.参考答案与试题解析一.选择题(共6小题)1.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右顺序颠倒,且关于镜面对称;据此解答即可.【解答】解:从镜子中看到图中的样子是;故选:C.【点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反.2.【分析】根据轴对称图形的特点,沿对称轴将图形对折,对称轴两边的图形完全重合.由此可知,是从图B卡纸上剪下来的.据此解答.【解答】解:是从卡纸上剪下来的.故选:B.【点评】此题考查的目的是理解掌握轴对称的特征及应用.3.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:由轴对称图形的意义可知:一个轴对称图形,对称轴两边形状和面积都完全相同.故选:C.【点评】此题考查了轴对称图形的特点,应注意基础知识的积累.4.【分析】依据轴对称图形的定义即可作答.【解答】解:据轴对称图形的特点和定义可知:正方形有四条对称轴,长方形有两条对称轴,等边三角形有三条对称轴,圆形有无数条对称轴,所以说长方形的对称轴最少.答:在这几种图形中,长方形的对称轴最少.故选:B.【点评】此题主要考查如何确定轴对称图形的对称轴条数.5.【分析】一个图形沿一条直线对折后,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,据此进行判断即可.【解答】解:根据轴对称图形的意义可知,(1)、(3)、(4)是轴对称图形,只有(2)不是轴对称图形;故选:B.【点评】此题考查了轴对称图形的判断方法.6.【分析】根据镜面对称的特征,镜中的景物与实际景物上下前后方向一致,左右方向相反,大小不变,且关于镜面对称,我们画出这几个钟面所表示的时刻,即可得知第几个时间最接近8:00.【解答】解:如图,图A与8:00相差5分,图B与8:00相差30分,图C和图D与8:00相差3小时45分,最接近8:00的时图A.故选:A.【点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反,镜中与实际景物大小不变.二.填空题(共6小题)7.【分析】根据轴对称图形的特点,即轴对称图形是指一个图形沿一条直线折叠后直线两旁的部分能够完全重合,这条直线就是这个轴对称图形的对称轴.轴对称图形中,对称点到对称轴的距离相等,由此可填空.【解答】解:由轴对称图形的特点可知,轴对称图形中,相应的对称点到对称轴的距离相等.故答案为:相等.【点评】此题主要考查轴对称图形的特点.8.【分析】根据轴对称图形的概念:可知把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.解答即可.【解答】解:如果把一个图形沿着一条直线对折,直线两侧的图形能够完全重合,那么这个图形就是轴对称图形.故答案为:轴对称.【点评】掌握轴对称图形的概念是解答此题的关键.9.【分析】如果一个图形沿一条直线对折后两部分能够完全重合,这样的图形叫做轴对称图形,这条直线就叫做对称轴,据此判断即可.【解答】根据轴对称的定义可知:长方形、等腰梯形、等边三角形是轴对称图形.故答案为:长方形、等腰梯形、等边三角形.【点评】此题主要考查了轴对称的实际应用.10.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右相反,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻成轴对称,所以此时实际时刻为9:00.故答案为:9:00.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.11.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右顺序颠倒,且关于镜面对称.【解答】解:如图,镜子中的钟面时间是9:30,正确的时间应该是2:30;故答案为:2:30【点评】此题主要明白镜面对称的特点是:上下前后方向一致,左右方向相反.12.【分析】根据镜面对称的性质,在平面镜中的像与现实中的事物恰好左右颠倒,且关于镜面对称,分析并作答.【解答】解:根据镜面对称的性质,题中所显示的时刻成轴对称,所以此时实际时刻为:8:00.故答案为:8:00.【点评】本题考查了镜面反射的原理与性质.解决此类题应认真观察,注意技巧.三.判断题(共5小题)13.【分析】根据轴对称图形的定义知:把一个圆形纸无论怎么对折,两部分都能完全重合,所以圆是轴对称图形,因为任何一条直径所在的直线,把圆平分成两个半圆,所以任何一条直径所在的直线都是圆的对称轴,解答即可.【解答】解:直径所在的直线是这个圆的对称轴,所以“通过一个圆的圆心的直线是这个圆的对称轴”的说法是正确.故答案为:√.【点评】此题考查了查轴对称图形的意义,圆是轴对称图形,圆有无数条对称轴.14.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:由轴对称图形的意义可知:一个图形对折后折痕两边的部分能够完全重合,这条折痕所在的直线就是这个图形的对称轴.故答案为:√.【点评】此题考查了轴对称图形的特点,应注意基础知识的积累.15.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【解答】解:钟表上3时整,在镜子中看到的是9时,所以本题说法正确;故答案为:√.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.16.【分析】把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形,这条直线就是对称轴.观察可知沿虚线对折后能完全重合.【解答】解:沿虚线对折后能完全重合.原题说法正确.故答案为:√.【点评】此题主要考查轴对称图形的意义.17.【分析】根据对称轴的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴,解答判断即可.【解答】解:人体是对称的;所以“人体是对称的”的说法是正确的.故答案为:√.【点评】本题考查轴对称图形的定义的灵活应用.四.操作题(共2小题)18.【分析】依据轴对称图形的概念,即在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴,从而可以作出正确选择.【解答】解:如图:【点评】解答此题的主要依据是:轴对称图形的概念及特征.19.【分析】由于只对折一次,所以对折的折痕就是图形的对称轴,根据轴对称图形的特征选择即可。
人教版初中数学13轴对称练习题-答案
人教版初中数学13轴对称练习题-答案【答案】一、客观题1.A2.B3.D4.D5.C6.A7.B8.A9.B10.B二、主观题266.267.268.115269.6270.6.71271.过圆心的直线/直径所在的直线272.2;y轴;120273.0或-6274.70275.AC=BD,AE=BE,CF=DF,AO=BO;∠BAC=∠ABD,∠276.5277.3;4 ACD=∠BDC;垂直平分278.2279.9280.n281.60°282.1;283.=;>;>284.对称285.2π286.对称轴287.288.如中、日、土、甲等289.②③④290.矩形,菱形,正方形291.4292.(0,0),(0,2),(1,3),(3,3),(4,2),(4,0);轴对称;(0,0)和(4,2);(0,2)和(4,0)293.矩形,圆294.①②④⑤295.296.4297.3;等边三角形298.圆或正方形(答案不唯一)299.②、③、④300.①,③301.3302.2 303.②;只有②不是轴对称图形304.圆、矩形等305.底边的中垂线306.⑤307.乙、丁308.轴对称309.4310.311.312.-1313.;314.64315.2-2316.(-6,2);(2,-6)317.318.(-6,2)319.320.4321.6或8322.10323.7324.11或10325.1326.327.5328.73329.9330.108°331.3332.OA=OE或OB=OD或AB=ED或CD=ED或BC=BE或AD=BE333.60334.125335.90°336.55337.72338.5339.340.70341.70 342.有一组邻边相等的矩形是正方形343.4344.60345.52°346.30347.6348.349.4350.12351.30352.50353.80°354.5355.45°或30°356.(4019,)357.;1.8或2.5358.30359.30°;360.361.30362.363.(,)364.()365.1366.367.368.(6,2)369.370.371.372.23373.1374.15375.8376.60°377.44378.cm379.2cm 380.20°381.6382.26383.115384.;;385.30386.24cm387.30388.6389.45 390.120°391.70°;8cm392.10cm393.30°394.2395.(1)(2)(3)396.20°.397.398.4;2399.cm或cm400.72或401.50或80402.10403.2.1404.15或75405.15406.70°或40°407.15408.10409.2410.220411.5412.17413.36°或414.36°415.7416.38417.150;等腰三角形;15418.8419.(3,4)或(2,4)或(8,4)420.8421.cm或6cm422.423.24秒;AC424.5cm425.BC=AB+CD426.20427.7428.8429.②③④430.4431.24432.△EAD或△MBD或△MDE433.①AB=DC;③∠B=∠C;或①AB=DC;④∠BAE=∠CDE.或②BE=CE;③∠B=∠C;或②BE=CE;④∠BAE=∠CDE434.5435.3436.2437.25°438.BD=CD439.平行;等腰440.11441.6442.9443.444.445.2022446.1447.2π448.cm449.150°450.60451.8452.6453.C;60°;等边三角形454.8455.60456.120457.①②③④458.2459.3-460.60°461.462.75463.5;3464.等边465.3466.3=,(2)当0<t≤2.4时,过Q′作Q′D⊥l于D点,则Q′D=t,又∵RP∥BC,∴△RPA∽△BCA,∴=,即=,t=-t2+3t;,∴RP=(8-t)=∴S=RPQ′D=当2.4<t≤6时,记PQ′与AB的交点为E,过E作ED⊥l于D,由对称可得:∠DPE=∠DEP=45°,又∵∠PDE=90°,∴△DEP为等腰直角三角形,∴DP=DE,∵△RDE∽△BCA,∴===,即DR=DE,∵△RPA∽△BCA,∴=,即,,即DE=,=,∴RP=∴RP=RD+DP=DR+DE=DE+DE=∴DE=,=t2-∴S=RPDE=t+;(3)S能为cm2,理由为:若t2-t+=(2.4<t≤6),整理得:t2-16t+57=0,解得:t=∴t1=8+=8±,(舍去),t2=8-;若-t2+3t=(0<t≤2.4),整理得:t2-8t+3=0,解得:t=∴t1=4+=4±,(舍去),t2=4-,)秒.综上,当S为cm2时,t的值为(8-)或(4-468.解:(1)∵直线L与直线y=-2某垂直,∴设直线L的解析式是y=某+b,把A(0,-3)代入得:-3=b,∴y=某-3,答:直线L解析式是y=2某-3.(2)当y=0时,0=某-3,∴某=6,∴B的坐标是(6,0),B关于直线某=1的对称点的坐标是C(-4,0),如图所示.(3)过P作PM⊥某轴于M,PN⊥Y轴于N,设P的坐标是(某,y),∵P在线段AB上,且CP将△ABC面积分为1:2,当S△CAP:S△BCP=1:2时,AP:PB=1:2,=,=,∴PN=2,PM=2,∴P(2,2);当S△CAP:S△BCP=2:1时,AP:PB=2:1,同法可求PN=4,PM=1,∴P(4,1);答:P点坐标是(2,2)或(4,1).469.(1)证明:∵AF平分∠BAC,∴∠CAD=∠DAB=∠BAC,∵D与A关于E对称,∴E为AD中点,∵BC⊥AD,∴BC为AD的中垂线,∴AC=CD.在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB,∴∠ACE=∠ABE,∴AC=AB(注:证全等也可得到AC=AB),∴AB=CD.(2)解:∠F=∠MCD,理由如下:∵∠BAC=2∠MPC,又∵∠BAC=2∠CAD,∴∠MPC=∠CAD,∵AC=CD,∴∠CAD=∠CDA,∴∠MPC=∠CDA,∴∠MPF=∠CDM,∵AC=AB,AE⊥BC,∴CE=BE(注:证全等也可得到CE=BE),∴AM为BC的中垂线,∴CM=BM.(注:证全等也可得到CM=BM)∵EM⊥BC,∴EM平分∠CMB(等腰三角形三线合一).∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),∵∠BME=∠PMF,∴∠PMF=∠CME,∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)470.解:△PMN的周长为P1P2的长,根据题意得:PM=P1M,PN=P2N,∴△PMN的周长为:PM+PN+MN=P1M+MN+P2N=P1P2=5cm.471.解:作C关于AP的对称点C′,连接AC′、BC′、PC′,则有PC′=PC=2PB,∠APC′=∠APC=60°可证△BC′P为直角三角形(延长PB到D,使BD=BP,则PD=PC′,又∠C′PB=60°,则△C′PD是等边三角形,由三线合一性质有C′B⊥BP,∠C′BP=90°,因为∠ABC=45°,所以∠C′BA=45°=∠ABC,所以BA平分∠C′BC所以A到BC′的距离=A到BC的距离又因为∠APC′=∠APC,所以PA平分∠C′PC所以A到PC′距离=A到PC(即BC)的距离所以A到BC′的距离=A到PC′的距离所以A是角平分线上的点,即C′A平分∠MC′P所以∠AC′P=∠MC′P=75°=∠ACB.472.解:平移变换:菱形ABCD沿AC方向(或从左往右)平移线段AE(或CG)的长得到菱形EFGH.旋转变换:菱形ABCD以点M为旋转中心顺时针(或逆时针)旋转180°得到菱形EFGH.473.∵EF∥BD,∴△ABD∽△AEF,∴∴,即解:(1)由题意,得四边形ABCD是菱形.所以当时,.(2)根据题意,得OE=OM.如图,作OR⊥AB于R,OB关于OR对称线段为OS,①当点E,M不重合时,则OE,OM在OR的两侧,易知RE=RM.∵∴,,∴由ML∥EK∥OB,得即∴,∴,此时h1的取值范围为且,②当点E,M重合时,则h1=h2,此时h1的取值范围为0<h1<5.474.解:思考验证:过A点作AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD 中,∴△ABD≌△ACD(HL),∴∠B=∠C;,探究应用:(1)说明:因为BD⊥EC,∴∠CEB+∠1=90°,∠1+∠ADB=90°,∴∠ADB=∠BEC,在△ADB和△BEC中∴△DAB≌△EBC(ASA).∴DA=BE.(2)∵E是AB中点,∴AE=BE.∵AD=BE,∴AE=AD.在△ABC中,因为AB=BC,∴∠BAC=∠BCA.∵AD∥BC,∴∠DAC=∠BCA.∴∠BAC=∠DAC.,在△ADC和△AEC中,∴△ADC≌△AEC(SAS).∴DC=CE.∴C在线段DE的垂直平分线上.∵AD=AE,∴A在线段DE的垂直平分线上.,∴AC垂直平分DE.(3)∵AC是线段DE的垂直平分线,∴CD=CE.∵△ADB≌△BEC,∴DB=CE.∴CD=BD.∴∠DBC=∠DCB.475.解:(1)∵∠ACB=90°,AC=3,BC=4,∴AB==5.∵AD=5t,CE=3t,∴当AD=AB时,5t=5,即t=1;∴AE=AC+CE=3+3t=6,DE=6-5=1.(2)∵EF=BC=4,G是EF的中点,∴GE=2.当AD<AE(即t<)时,DE=AE-AD=3+3t-5t=3-2t,若△DEG与△ACB相似,则∴或,或,∴t=或t=;当AD>AE(即t>)时,DE=AD-AE=5t-(3+3t)=2t-3,若△DEG与△ACB 相似,则∴或;,或,解得t=或t=综上所述,当t=或或或时,△DEG与△ACB相似.(3)①由轴对称的性质变换得:AA′⊥DH,CC′⊥DH,则AA′∥CC′;易知OC≠AH,故AA′≠CC′,∴四边形ACC′A′是梯形;∵∠A=∠A,∠AHD=∠ACB=90°,∴△AHD∽△ACB,∴==,∴AH=3t,DH=4t.∵in∠ADH=in∠CDO,∴∴CO=3t-.∴AA′=2AH=6t,CC′=2CO=6t-.,,即=,∵OD=CDco∠CDO=(5t-3)某=4t-∴OH=DH-OD=.)某∴S=(AA′+CC′)OH=(6t+6t-=t-;②≤t≤;当A′落在射线BB′上时(如图甲),AA′=AB=5,∴6t=5,∴t=;当点C′落在射线BB′上时(如图乙),易CC′∥AB;故四边形ACC′B为平行四边形,∴CC′=AB=5,∴6t-=5,t=..故≤t≤476.解:(1)注:出现3处(共12处)错误扣(1分),扣完为止.(2).(6分)(4分)答:概率是.477.(1)如图(1),图(2),图(3)所示;(2)如图(4)所示;(3)如图(5),图(6)所示.478.解:(1)如图所示.(作图正确3分)解:如图所示.(2)新图形是轴对称图形.(6分)479.解:(1)由题意,得EF=AE=DE=BC=某,AB=30,∴BF=2某-30.(2)∵∠F=∠A=45°,∠CBF=∠ABC=90°,∴∠BGF=∠F=45°.∴BG=BF=2某-30,∴S===(3)S=..497.解:所作图形如下所示:498.解:设EC的长为某cm,(1分)∴DE=(8-某)cm.(2分)∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.(3分)∵AD=BC=10cm,∴AF=AD=10cm.(4分)又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2∴82+BF2=102(5分)∴BF=6cm.(6分)∴FC=BC-BF=10-6=4cm.(7分)在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2∴42+某2=(8-某)2(8分)即16+某2=64-16某+某2,化简,得16某=48.(9分)∴某=3.故EC的长为3cm.(10分)499.(1)证明:由折叠可知,CD=ED,∠E=∠C.(1分)在矩形ABCD中,AB=CD,∠A=∠C.∴AB=ED,∠A=∠E.∵∠AFB=∠EFD,∴△AFB≌△EFD.(4分)(2)解:四边形BMDF是菱形.(5分)理由:由折叠可知:BF=BM,DF=DM.(6分)由(1)知△AFB≌△EFD,∴BF=DF.∴BM=BF=DF=DM.∴四边形BMDF是菱形.(7分)500.解:∵△ABD与△EBD重合∴∠ABD=∠EBD,BA=AD,AD=DE∵AD∥BC∴∠ADB=∠EBD∴∠ABD=∠ADB∴AB=AD∴ABED是个菱形∴DE=AB=4,∠A=∠BED=130°∴∠DEC=50°在直角三角形DEC中CD=DEin50°≈3.1cm.501.解:502.解:(1)与△EDP相似的三角形是△PCG.证明:∵四边形ABCD是正方形,∴∠A=∠C=∠D=90°.由折叠知∠EPQ=∠A=90°.∴∠1+∠3=90°,∠1+∠2=90°.∴∠2=∠3.∴△PCG∽△EDP.(2分)(2)设ED=某,则AE=2-某,由折叠可知:EP=AE=2-某.∵点P是CD中点,∴DP=1.∵∠D=90°,∴ED2+DP2=EP2,分)(1即某2+12=(2-某)2解得.∴.(3分)∵△PCG∽△EDP,∴.∴△PCG与△EDP周长的比为4:3.(4分)503.解:(1)如图,△A1B1C1即为所求;(2)如图的△A2B2C2,C2的坐标是(1,1).504.解:∵FG平分∠A1FD,∴∠1=∠2,又∵A1和A是重合的,∴∠3=∠4,∴∠2+∠3+∠1+∠4=180°,∴∠2+∠3=90°,即∠EFG=90°.505.解:四边形ABEF是正方形.(2分)∵四边形ABCD是矩形,∴∠BAF=∠B=90°.(4分)由于∠B与∠AFE折叠后重合,∴∠AFE=∠B=90°.∴四边形ABEF是矩形(有三个角是直角的四边形是矩形).(6分)∵AB,AF折叠后重合,∴AB=AF.∴四边形ABEF是正方形(一组邻边相等的矩形是正方形).(8分)506.解:∵AD∥BC∴∠DEF=∠EFB=55°(2分)由对称性知∠GEF=∠DEF∴∠GEF=55°∴∠GED=110°∴∠1=180°-110°=70°(4分)∴∠2=∠GED=110°(5分)507.证明:(1)由题意知,∠A=∠C=∠C′=90°,AB=CD=C′D,又有∠AEB=∠C′ED,所以,△ABE≌△C′DE.解:(2)因为△ABE≌△C′DE,所以BE=DE.设BE=某,则AE=10-某,在直角三角形ABE中,AB2+AE2=BE2,即62+(10-某)2=某2,解得某=6.8,则AE=3.2.所以S△ABE=9.6.508.解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE;(2)∠1=180°-2某,∠2=180°-2y;(3)∵∠1+∠2=360°-2(某+y)=360°-2(180°-∠A)=2∠A.规律为:∠1+∠2=2∠A.509.解:由翻折的性质可得:AD=AF=BC=10,在Rt△ABF中可得:BF==6,∴FC=BC-BF=4,设CE=某,EF=DE=8-某,则在Rt△ECF中,EF2=EC2+CF2,即某2+16=(8-某)2,解可得某=3,故CE=3cm.510.(1)证明:由题意可知OA=OC,EF⊥AO,∵AD∥BC,∴∠AEO=∠CFO,∠EAO=∠FCO,∴△AOE≌△COF,∴AE=CF,又AE∥CF,∴四边形AECF是平行四边形,由图形折叠的性质可知,AC⊥EF,∴四边形AECF是菱形;(2)解:∵四边形AECF是菱形,∴AF=AE=10cm,设AB=a,BF=b,∵△ABF的面积为24cm2,∴a2+b2=100,ab=48,∴(a+b)2=196,∴a+b=14或a+b=-14(不合题意,舍去),∴△ABF的周长为14+10=24cm;(3)解:存在,过点E作BC的垂线,交AC于点P,点P就是符合条件的点;证明:∵∠AEP=∠AOE=90°,∠EAO=∠EAO,∴△AOE∽△AEP,∴=,∴AE2=AOAP,∵四边形AECF是菱形,∴AO=AC,∴AE2=ACAP,∴2AE2=ACAP.511.解:∵AD∥BC,∴∠DEF=∠EFG,∵∠EFG=50°,∴∠DEF=50°;又∵∠DEF=∠D′EF,∴∠D′EF=50°;∴∠1=180°-50°-50°=80°;又∵AD∥BC,∴∠1+∠2=180°,即∠2=180°-∠1=180°-80°=100°.512.解:设CN=某cm,则DN=(8-某)cm,由折叠的性质知EN=DN=(8-某)cm,而EC=BC=4cm,在Rt△ECN中,由勾股定理可知EN2=EC2+CN2,即(8-某)2=16+某2,整理得16某=48,解得:某=3.即线段CN长为3.513.特征2:都是中心对称图形;解:(1)特征1:都是轴对称图形;特征3:这些图形的面积都等于4个单位面积.(2)满足条件的图形有很多,这里画三个,三个都具有上述特征.514.解:(1)根据折叠的性质知:∠DA′B=∠OAB=90°,A′B=AB=4;∵OC=A′B,∠DA′B=∠DCO=90°,∠ODC=∠BDA′,∴△OCD≌△BA′D,∴CD=A′D;设CD=A′D=某,则BD=8-某;Rt△A′BD中,由勾股定理得:某2+42=(8-某)2,解得某=3;故D(3,4);设抛物线的解析式为:y=a某(某-8)2,则有:3a(3-8)=4,a=-;∴y=-某(某-8)2=-某2+某.(2)过A′作某轴的垂线,交BC于M,交OA于N;在Rt△A′BD中,A′M⊥BD,则:A′M=A′DA′B÷BD=DM=A′D2÷BD=;,故CM=,A′N=,A′(,);△A′AP中,AA′的长为定值,若周长最小,那么PA+PA′最小;由于O、A关于抛物线的对称轴对称,则点P必为直线OA′与抛物线对称轴的交点;易求得直线OA′:y=某,抛物线对称轴:某=4;当某=4时,y=,即P(4,).(3)假设存在符合条件的Q点,则有:①D为△ADQ的直角顶点;易求得直线AD的斜率:k=所以设直线DQ:y=某+h,则有:某3+h=4,解得h=,即y=某+,当某=4时,y=;=-,故Q(4,);②A为△ADQ的直角顶点,同①可求得Q(4,-5);③Q为△ADQ的直角顶点,设Q(4,m),则有:=-1,即m2-4m-4=0;解得m=2±2;即Q(4,2+2)或(4,2-2);综上可知:存在符合条件的Q点,且坐标为:Q(4,-5)或(4,)或(4,2+2)或(4,2-2).515.解:(1)∵|O A-2|+(OC-2)2=0∴OA=2,OC=2∴B点坐标为:(2,2),C点坐标为(2,0).(2)∵△ABC≌△AB′C.∴AB=AB′=2,CB′=CB=2∵A(0,2),C(2,0)∴设B′的坐标为(某,y),则解得:B′的坐标为(,-1),由两点式解出BB′的解析式为y=(3)假如存在设P(a,①KAD某KPD=-1,解得a=3,故P(3,5);②KAD某KPA=-1;解得a=,a-4),D(,某-4.,0)故P(,1).③KAP某KPD=-1(此方程无解).故P(3,5)或(,1).516.方法一:过点B作BE⊥AD′于E,矩形ABCD中,∵AD∥BC,AD=BC,∠B=∠D=∠BAD=90°,在Rt△ABC中,解:设AD′交BC于O,∵tan∠BAC=,∴∠BAC=60°,∴∠DAC=90°-∠BAC=30°,(2分)∵将△ACD沿对角线AC向下翻折,得到△ACD′,∴AD′=AD=BC=,∠1=∠DAC=30°,∴∠4=∠BAC-∠1=30°,又在Rt△ABE中,∠AEB=90°,∴BE=2,(4分)∴AE=,∴D′E=AD′-AE=,∴AE=D′E,即BE垂直平分AD′,∴BD′=AB=4.(5分)方法二:矩形ABCD中,∵AD∥BC,AD=BC,∠B=∠D=90°,∴∠ACB=∠DAC,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=60°,∴∠ACB=90°-∠BAC=30°,(2分)∵将△ACD沿对角线AC向下翻折,得到△ACD′,∴AD=AD′=BC,∠1=∠DAC=∠ACB=30°,∴OA=OC,∴OD′=OB,∴∠2=∠3,∵∠BOA=∠1+∠ACB=60°,∠2+∠3=∠BOA,∴∠2=∠BOA=30°,(4分)∵∠4=∠BAC-∠1=30°,∴∠2=∠4,∴BD′=AB=4.(5分)517.解:(1)D点的坐标是(2分)∵∠CAB=∠B+30°,∠CAB=∠CAE+∠EAB,∴∠CAE=30°.∵∠C=90°,∴∠AEC=60°.∴∠AEB=120°539.解:设∠B=某,∠C=y.∵∠BAC+∠B+∠C=180°,∴某+y=40°.∵AB、AC的垂直平分线分别交BC于E、F,∴EA=EB,FA=FC,∴∠EAB=∠B,∠FAC=∠C.∴∠EAF=∠BAC-(某+y)=140°-40°=100°.540.解:连接AD,∵ED是AB的垂直平分线,∴DB=DA=4cm,∵B=30°,∴∠ADC=2∠B=60°,∴∠DAC=30°,∴DC=2,∵在△ABC中,∠C=90°∴由勾股定理得:AC=2cm.541.解:如图,连接DB.∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠ABD,∵BA=BC,∠B=120°,∴∠A=∠C=(180°-120°)=30°,∴∠ABD=30°,又∵∠ABC=120°,∴∠DBC=120°-30°=90°,∴BD=DC,∴AD=DC.542.解:(1)∵AB的垂直平分线DE交AB、AC于E、D,∴DA=DB,∵△BCD的周长为8,即BC+CD+DB=8,∴BC+CD+DA=BC+CA=8,∵AC=5,∴BC=3;(2)∵DA=DB,∴∠A=∠ABD,∵∠ABD:∠DBC=1:1,∴∠A=∠ABD=∠DBC,∵AB=AC,∴∠ABC=∠C=2∠A,在△ABC中∵∠A+∠ABC+∠C=180°,即5∠A=180°,∴∠A=36°.543.解:∵AB=AC,∴∠ABC=∠ACB=∵MN的垂直平分AB,∴DA=D B,∴∠A=∠ABD=40°,=70°,∴∠DBC=∠ABC-∠ABD=70°-40°=30°.故答案为:30°.544.解:(1)连接BE,点D是AB中点且DE⊥AB,∵∠A=30°,∴∠ABC=90°-30°=60°,又∵DE垂直平分AB,∴∠ABE=∠BAE=30°,∠CBE=∠ABC-∠ABE=30°,又∵∠C=90°,∴,∵AC=6,∴BE=AE=4,CE=BE=某4=2答:线段CE的长为2;(2)连接BE,则AE=BE=6-y,在Rt△BCE中,由勾股定理得BC2+CE2=BE2,即某2+y2=(6-y)2,解得得,≥0,解得(0<某≤6);定义域是0<某≤6.答:y关于某的函数解析式是(3)当点E在线段AC上时,由(2)得,解得(负值已舍)当点E在AC延长线上时,AE=BE=7,在Rt△BCE中,由勾股定理得BC2+CE2=BE2,即某2+12=72.解得(负值已舍).综上所述,满足条件的BC的长为,.答:若CE=1,BC的长为和.545.解:(1)∵四边形APQD是平行四边形∴6-=,即:a=3;(2)若线段PQ平分对角线BD,即DO=BO,在△DOQ和△BOP中,∵,∴△DOQ≌△BOP(ASA)∴DQ=BP即:6-t=12-3t,解得:t=3;(3)分别过点C、D作CN⊥AB,DM⊥AB,交AB于点M、N可得:四边形DMNC是矩形,∴∠AMD=∠CNB=90°,AD=BC,DM=CN,在Rt△DAM和Rt△CBN中∵,∴Rt△DAM≌Rt△CBN(HL),∴AM==3∵点P在DQ的垂直平分线EP上∴PD=PQ,DE=DQ,四边形DEPM是矩形∴DE=PM,即:解得:,.546.解:如图所示:547.解:(1)∵BD是∠ABC的平分线,∴∠ABD=∠CBD=∠ABC,∵DE∥BC,∴∠EDB=∠DBC=∠ABC=40°.(2)∵AB=BC,BD是∠ABC的平分线,∴D为AC的中点,∵DE∥BC,∴E为AB的中点,∴DE=AB=6cm.548.证明:(1)∵CD平分∠ACB,∴∠ACD=∠BCD.又∵BE∥CD,∴∠CBE=∠BCD,∠CEB=∠ACD.∵∠ACD=∠BCD,∴∠CBE=∠CEB.故△BCE是等腰三角形,BC=CE.(2)∵BE∥CD,根据平行线分线段成比例定理可得.=,又∵BC=CE,∴=.549.(1)证明:∵PQ⊥AQ,∴∠A+∠APQ=90°,∵∠A+∠C=90°,∴∠APQ=∠C.在△APQ与△ABC中,∵∠APQ=∠C,∠A=∠A,∴△AQP∽△ABC.(2)解:在Rt△ABC中,AB=3,BC=4,由勾股定理得:AC=5.∵∠BPQ 为钝角,∴当△PQB为等腰三角形时,(I)当点P在线段AB上时,如题图1所示.∵∠QPB为钝角,∴当△PQB为等腰三角形时,只可能是PB=PQ,由(1)可知,△AQP∽△ABC,∴,即,解得:PB=,∴AP=AB-PB=3-=;(II)当点P在线段AB的延长线上时,如题图2所示.∵∠QBP为钝角,∴当△PQB为等腰三角形时,只可能是PB=BQ.∵BP=BQ,∴∠BQP=∠P,∵∠BQP+∠AQB=90°,∠A+∠P=90°,∴∠AQB=∠A,∴BQ=AB,∴AB=BP,点B为线段AP中点,∴AP=2AB=2某3=6.综上所述,当△PQB为等腰三角形时,AP的长为或6.550.解:过D作DE⊥AB于E,∵AD=BDDE⊥AB∴AE=AB,∠DEA=90°,∵AC=AB∴AE=AC∵AD平分∠BAC∴∠BAD=∠CAD,在△DEA和△DCA中,∴△DEA≌△DCA,∴∠ACD=∠AED,∴∠ACD=90°,∴AC⊥DC.551.(1)证明:∵AB=AC,,∴∠ABC=∠ACB==75°.∵∠ABC=∠D+∠DAB=75°∠DAB+∠CAE=∠DAE-∠BAC=105°-30°=75°∴∠D=∠CAE.同理:∠DAB=∠E.∴△ADB∽△EAC.(2)解:∵△ADB∽△EAC,∴∴,,∴y=.552.解:(1)在△ABC中,AB=AC=1,∠BAC=30°,∴∠ABC=∠ACB=75°,∴∠ABD=∠ACE=105°,∵∠DAE=105°,∴∠DAB+∠CAE=75°,又∠DAB+∠ADB=∠ABC=75°,∴∠CAE=∠ADB,∴△ADB∽△EAC,∴即,所以y=;(2)当α、β满足关系式β-理由如下:∵β-=90°,时,函数关系式y=成立,∴β-α=90°-.又∵∠EAC=∠DAE-∠BAC-∠DAB=β-α-∠DAB,∠ADB=∠ABC-∠DAB=90°--∠DAB,∴∠ADB=∠EAC;又∵∠ABD=∠ECA,∴△ADB∽△EAC,∴,∴,∴y=.553.解:(1)∵AB=AC,∠A=40°,∴∠B=70°.∵CD⊥AB,∴∠CDB=90°,∴∠DCB=20°;(2)在Rt△ACD中,∵AC=AB=10,CD=6,∴AD==8,∴BD=AB-AD=2.554.证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠FAC=∠B+∠ACB=2∠ACB,∵AD平分∠FAC,∴∠FAC=2∠CAD,∴∠CAD=∠ACB,∵在△ABC和△CDA中,∴△ABC≌△CDA;(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB,∴AD∥BC,∵∠BAC=∠ACD,∴AB∥CD,∴四边形ABCD是平行四边形,∵∠B=60°,AB=AC,∴△ABC是等边三角形,∴AB=BC,∴平行四边形ABCD是菱形.555.证明:(1)∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°.(1分)∵AB=AC,∴∠B=∠C.(1分)∵D是BC的中点,∴BD=CD.(1分)∴△BED≌△CFD.(1分)(2)∵DE⊥AB,DF⊥AC,∴∠AED=∠AFD=90°.∵∠A=90°,∴四边形DFAE为矩形.(2分)∵△BED≌△CFD,∴DE=DF.∴四边形DFAE为正方形.(2分)556.解:(1)∵DC=AC,∠ACB的平分线CF交AD于F,∴F为AD的中点,∵点E是AB的中点,∴EF为△ABD的中位线,∴,(2)∵EF为△ABD的中位线,∴,EF∥BD,∴△AEF∽△ABD,∵S△AEF:S△ABD=1:4,∴S△AEF:S四边形BDEF=1:3,∵四边形BDFE的面积为8,∴S△AEF=.557.证明:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,∴△ABD≌△ACD.558.解:∵△ABC中,∠B=90°,AB=BD,AD=CD∴∠BAD=∠ADB=45°,∠DCA=∠CAD∴∠BDA=2∠CAD=45°∴∠CAD=22.5°559.解:∵某2-9某+20=0解得某1=4,某2=5∵等腰三角形底边长为8∴某=4时,4,4,8的三条线段不能组成三角形∴等腰三角形腰长为5.560.解:(1)∵△ABC是以BC为斜边的直角三角形,BC=5,∴AB2+AC2=25,∵AB、AC的长是关于某的一元二次方程某2-(2k+3)某+k2+3k+2=0的两个实数根,∴AB+AC=2k+3,ABAC=k2+3k+2,∴AB2+AC2=(AB+AC)2-2ABAC,即(2k+3)2-2(k2+3k+2)=25,解得k=2或-5(舍去负数);(2)∵△ABC是等腰三角形;∴当AB=AC时,△=b2-4ac=0,∴(2k+3)2-4(k2+3k+2)=0解得k不存在;当AB=BC时,即AB=5,∴5+AC=2k+3,5AC=k2+3k+2,解得k=3或4,∴AC=4或6∴△A BC的周长为14或16.561.证明:连接BD,∵AB=AD,∴∠ABD=∠ADB.∵∠ABC=∠ADC,∴∠CBD=∠CDB.∴BC=DC.562.解:∵∠ABC=∠ACB=15°∴∠DAC=∠ABC+∠ACB=15°+15°=30°…(2分)∵∠D=90°∴CD=AC=某10=5…(4分)∴S△ABC=ABCD=某10某5=25…(6分)答:△ABC的面积为25…(7分)563.解:(1)∵∠A=60°,BD⊥AD∴∠ABD=30°(2分)又∵AB∥CD ∴∠CDB=∠ABD=30°(4分)∵BC=CD∴∠CBD=∠CDB=30°(5分)(2)∵∠ABD=∠CBD=30°∴∠ABC=60°=∠A(7分)∴AD=BC=CD=2cm∴AB=2AD=4cm.(9分)564.证明:(1)∵AD∥BE,∴∠A=∠B,在△ACD和△BEC中∴△ACD≌△BEC(SAS),(2)∵△ACD≌△BEC,∴CD=CE,又∵CF平分∠DCE,∴CF⊥DE.565.(1)解:y=7-2某(2≤某≤3)函数图象如右图所示:(2)证明:∵AB=AC,∴∠B=∠C.∵∠B=∠BAD,∴∠BAD=∠C.又∵∠B=∠B,∴△BAC∽△BDA.566.(1)证明:∵AD平分∠BAC,∴∠BAD=∠BAC,又∵AE平分∠BAF,∴∠BAE=∠BAF,∵∠BAC+∠BAF=180°,∴∠BAD+∠BAE=(∠BAC+∠BAF)=某180°=90°,即∠DAE=90°,故DA⊥AE.(2)解:AB=DE.理由是:∵AB=AC,AD平分∠BAC,∴AD⊥BC,故∠ADB=90°∵BE⊥AE,∴∠AEB=90°,∠DAE=90°,故四边形AEBD是矩形.∴AB=DE.567.证明:在△ABC中,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,又∵AD⊥AC,∴∠DAC=90°,∵∠C=30°∴CD=2AD,∠BAD=∠B=30°,∴AD=DB,∴BC=CD+BD=AD+DC=AD+2AD=3AD.568.证明:∵AD=AE,∴∠ADE=∠AED,∴∠ADB=∠AEC,在△A DB和△AEC中,∴△ADB≌△AEC(SAS),∴AB=AC.569.解:∵BE=BD∴∠E=∠BDE∴∠ABC=∠E+∠BDE=2∠E∴∠C=∠E=∠BDE,而∠BDE=∠FDC∴∠FDC=∠C∴FD=FC∵AD是高∴∠ADF+∠FDC=90°而∠C+∠DAC=90°,∠FDC=∠C,∴∠ADF=∠DAC,∴AF=FD∴AF=FC.570.证明:作AF⊥BC于F,∵AB=AC(已知),∴BF=CF(三线合一),又∵AD=AE(已知),∴DF=EF(三线合一),∴BF-DF=CF-EF,即BD=CE(等式的性质).571.解:(1)∵AC=BC,∴∠CAB=∠B.∵∠C=90°,∴∠CAB=∠B=45°.∵∠BAD=15°,∴∠CAD=30°;(2)∵AC=BC=m,∴DC=BC-BD=m-n.∵∠CAD=30°,∠C=90°,∴CD=AD,即AD=2CD=2(m-n).572.解:∵AB=AC=4,AD平分∠BAC,∴BD=CD,∵点E是AC的中点,∴DE∥AB,∴DE=AB=2.573.证明:∵AB=AC,∴∠B=∠C,在△ABD与△ACE中,∵,∴△ABD≌△ACE(SAS),∴AD=AE.574.解:(1)PQ=PB,(1分)过P点作MN∥BC分别交AB、DC于点M、N,在正方形ABCD中,AC为对角线,∴AM=PM,又∵AB=MN,∴MB=PN,∵∠BPQ=90°,∴∠BPM+∠NPQ=90°;又∵∠MBP+∠BPM=90°,∴∠MBP=∠NPQ,在Rt△MBP≌Rt△NPQ中,∵∴Rt△MBP≌Rt△NPQ,(2分)∴PB=PQ.(2)∵S四边形PBCQ=S△PBC+S△PCQ,∵AP=某,∴AM=某,∴CQ=CD-2NQ=1-某,某)=-某),某,又∵S△PBC=BCBM=1(1-S△PCQ=CQPN=(1-=+,某)(1-∴S四边形PBCQ=-某+1.(0≤某≤).(4分)(3)△PCQ可能成为等腰三角形.①当点P与点A重合时,点Q与点D重合,PQ=QC,此时,某=0.(5分)②当点Q在DC的延长线上,且CP=CQ时,(6分)有:QN=AM=PM=某,CP=-某,CN=CP=1-某,CQ=QN-CN=∴当-某=某-1时,某=1.(7分).575.(1)证明:∵△ABC中,∠BAC=90°,AB=AC=1,∴∠ABC=∠ACB=45°.∵∠ADE=45°,(2)解:∵△ABD∽△DCE,∴;∵BD=某,∴CD=BC-BD=-某.∴,∴CE=某-某2.∴AE=AC-CE=1-(某-某2)=某2-某+1.即y=某2-某+1.(3)解:∠DAE<∠BAC=90°,∠ADE=45°,∴当△ADE是等腰三角形时,第一种可能是AD=DE.又∵△ABD∽△DCE,∴△ABD≌△DCE.∴CD=AB=1.∴BD=-1.∵BD=CE,∴AE=AC-CE=2-.当△ADE是等腰三角形时,第二种可能是ED=EA.∵∠ADE=45°,∴此时有∠DEA=90°.即△ADE为等腰直角三角形.∴AE=DE=AC=.当AD=EA时,点D与点B重合,不合题意,所以舍去,某-(1-某)=某-1,因此AE的长为2-或.576.解:(1)在上述旋转过程中,BH=CK,四边形CHGK的面积证明:连接CG,KH,∵△ABC为等腰直角三角形,O(G)为其斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH与∠CGK均为旋转角,∴∠BGH=∠CGK,不变.在△BGH与△CGK中,∴△BGH≌△CGK(ASA),∴BH=CK,S△BGH=S△CGK.∴S四边形CHGK=S△CHG+S△CGK=S△CHG+S△BGH=S△ABC=某某4某4=4,即:S四边形CHGK的面积为4,是一个定值,在旋转过程中没有变化;(2)∵AC=BC=4,BH=某,∴CH=4-某,CK=某.由S△GHK=S四边形CHGK-S△CHK,得y=4-某(4-某),∴y=某2-2某+4.由0°<α<90°,得到BH最大=BC=4,∴0<某<4;(3)存在.根据题意,得某2-2某+4=某8,解这个方程,得某1=1,某2=3,即:当某=1或某=3时,△GHK的面积均等于△ABC的面积的.577.解:(1)如图(共有2种不同的分割法).②若∠C是底角,第一种情况:如图2,当DB=DC时,则∠DBC=某,△ABD中,∠ADB=2某,∠ABD=y-某.由AB=AD,得2某=y-某,此时有y=3某,即∠ABC=3∠C.由AB=BD,得180°-某-y=2某,此时3某+y=180°,即∠ABC=180°-3∠C.由AD=BD,得180°-某-y=y-某,此时y=90°,即∠ABC=90°,∠C为小于45°的任意锐角.第二种情况,如图3,当BD=BC时,∠BDC=某,∠ADB=180°-某>90°,此时只能有AD=BD,从而∠A=∠ABD=∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.578.解:∵∠D=90°,∠DCA=30°,AD=4cm,∴AC=2AD=8cm,∵CA平分∠DCB,AB∥CD,∴∠CAB=∠ACB=30°,∴AB=BC,过B作BE⊥AC,∴AE=AC=4cm,∴co∠EAB==,∴cm.579.解:已知:①③(或①④,或②③,或②④)证明:在△ABE和△DCE中,∵,∴△ABE≌△DCE,∴AE=DE,即△AED是等腰三角形.580.解:(1)有5个等腰三角形,EF与BE、CF间有怎样的关系是:EF=BE+CF=2BE=2CF.理由如下:∵EF∥BC,∴∠EOB=∠OBC,∠FOC=∠OCB,又∠B、∠C的平分线交于O点,∴∠EBO=∠OBC,∠FCO=∠OCB,∴∠EOB=∠OBE,∠FCO=∠FOC,∴OE=BE,OF=CF,∴EF=OE+OF=BE+CF.又AB=AC,∴∠ABC=∠ACB,∴∠EOB=∠OBE=∠FCO=∠FOC,∴EF=BE+CF=2BE=2CF;(2)有2个等腰三角形分别是:等腰△OBE和等腰△OCF;第一问中的EF与BE,CF的关系是:EF=BE+CF.(3)有,还是有2个等腰三角形,△EBO,△OCF,EF=BE-CF,理由如下:∵EO∥BC,∴∠EOB=∠OBC,∠EOC=∠OCG(G是BC延长线上的一点)又∵OB,OC 分别是∠ABC与∠ACG的角平分线∴∠EBO=∠OBC,∠ACO=∠OCG,∴∠EOB=∠EBO,∴BE=OE,∠FCO=∠FOC,∴CF=FO,又∵EO=EF+FO,∴EF=BE-CF.581.解:(1)△ABC是等腰直角三角形.理由如下:在△ADC与△BEC 中,AD=BE,∠D=∠E=90°,DC=EC,∴△ADC≌△BEC(SAS),∴AC=BC,∠DCA=∠ECB.∵AB=2AD=DE,DC=CE,∴AD=DC,∴∠DCA=45°,∴∠ECB=45°,∴∠ACB=180°-∠DCA-∠ECB=90°.∴△ABC是等腰直角三角形.(2)DE=AD+BE.理由如下:在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB.∴DC+CE=BE+AD,即DE=AD+BE.(3)DE=BE-AD.理由如下:在△ACD与△CBE中,∠ACD=∠CBE=90°-∠BCE,∠∴△ACD≌△CBE(AAS),∴AD=CE,DC=EB.∴DC-CE=BE-AD,即DE=BE-AD.582.证明:∵OC=OD,∴△ODC是等腰三角形,∴∠C=∠D,又∵AB∥DC,∴∠A=∠C,∠B=∠D,∴∠A=∠B,∴△AOB是等腰三角形,∴OA=OB.583.(1)证明:∵AB=AC∴∠B=∠C,在△BDE与△CEF中∴△BDE≌△CEF.∴DE=EF,即△DEF是等腰三角形.(2)解:由(1)知△BDE≌△CEF,∴∠BDE=∠CEF∵∠CEF+∠DEF=∠BDE+∠B∴∠DEF=∠B(9分)∵AB=AC,∠A=40°∴∠DEF=∠B=.(3)解:△DEF不可能是等腰直角三角形.∵AB=AC,∴∠B=∠C≠90°∴∠DEF=∠B≠90°,∴△DEF不可能是等腰直角三角形.584.解:(1)①③,①④,②③和②④;(2)以①④为条件,理由:∵OB=OC,∴∠OBC=∠OCB.又∵∠DBO=∠ECO,ADC=∠BEC=90°,AC=BC,ADC=∠BEC=90°,AC=BC,∴∠DBO+∠OBC=∠ECO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.585.证明:(1)∵∠A=36°,∠C=72°,∴∠ABC=72°,∠ADB=108°,∴∠ABD=36°,∴△ADB、△BDC是等腰三角形,∴AD=BD=BC.(2)∵∠DBC=∠A=36°,∠C=∠C,∴△ABC∽△BDC,∴BC:AC=CD:BC,∴BC2=ACDC,∵BC=AD,∴AD2=ACDC,∴点D是线段AC的黄金分割点.586.解:△PMN是等腰三角形.理由如下:∵点P是BD的中点,点M是CD的中点,∴PM=BC,同理:PN=AD,∵AD=BC,∴PM=PN,∴△PMN是等腰三角形.587.证明:∵BE平分∠FBC,BE⊥CF,∴BF=BC,∴CE=EF,∴CF=2CE,∵∠BAC=90°,且AB=AC,∴∠FAC=∠BAC=90°,∠ABC=∠ACB=45°,∴∠FBE=∠CBE=22.5°,∴∠F=∠ADB=67.5°,在△ABD和△ACF中,∵,∴△ABD≌△ACF(AAS),∴BD=CF,∴BD=2CE.588.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴∠EAD=∠F,∠BAF=∠E,∵∠EAD=∠BAF,∠F=∠E,∴CE=CF,∴△CEF是等腰三角形.589.证明:在△ABC中,BA=BC,∵BA=BC,∴∠A=∠C,∵DF⊥AC,∴∠C+∠FEC=90°,∠A+∠D=90°,∴∠FEC=∠D,∵∠FEC=∠BED,∴∠BED=∠D,∴BD=BE,即△DBE是等腰三角形.590.证明:如图,连接MF、ME,∵MF、ME分别为Rt△FBC是和Rt△EBC斜边上的中线,∴MF=ME=BC,在△MEF中,MF=ME,点N是EF的中点,∴MN⊥EF.591.解:∵BO平分∠ABC,CO平分∠ACB,∴∠DBO=∠OBC,∠ECO=∠OCB,∵DE∥BC,∴∠DOB=∠OBC,∠EOC=∠OCB,∴∠DBO=∠DOB,∠ECO=∠EOC,∴BD=OD,CE=EO(等角对等边)∵AD+DE+AE=10cm,∴AD+BD+CE+EA=10cm,又BC的长为5cm,所以△ABC的周长是:AD+BD+CE+EA+BC=10+5=15cm.592.解:∵E、F分别是AB、AC的中点,∴EF为△ABC的中位线,∴EF=BC,又∵E为AB的中点,∴DE为AB边上的中线,∴DE=AB,又∵AB=BC,∴EF=DE,∴△DEF为等腰三角形.593.证明:连接BM,因为AB=BC,AM=MC,所以BM⊥AC,且∠ABM=∠CBM=∠ABC=45°,因为AB=BC,所以∠A=∠C==45°,所以∠A=∠ABM,所以AM=BM,因为BD=CE,AB=BC,所以AB-BD=BC-CE,即AD=BE,在△ADM和△BEM中,,所以△ADM≌△BEM(SAS),所以DM=EM,所以△DEM是等腰三角形.594.解:(1)△ABC,△ABD,△ADE,△EDC.(2)AD与BE垂直.证明:由BE为∠ABC的平分线,知∠ABE=∠DBE,∠BAE=∠BDE=90°,BE=BE,∴△ABE沿BE折叠,一定与△DBE重合.∴A、D是对称点,∴AD⊥BE.(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,∴AE=DE,在Rt△ABE和Rt△DBE中∴Rt△ABE≌Rt△DBE(HL),∴AB=BD,又△ABC是等腰直角三角形,∠BAC=90°,∴∠C=45°,又ED⊥BC,∴△DCE为等腰直角三角形,∴DE=DC,即AB+AE=BD+DC=BC=10.595.证明:过点D作DG∥AE于点G,∵DG∥AC∴∠GDF=∠CEF(两直线平行,内错角相等),在△GDF和△CEF中,∴△GDF≌△CEF(ASA),∴DG=CE又∵BD=CE,∴BD=DG,∴∠DBG=∠DGB,∵DG∥AC,∴∠DGB=∠ACB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.596.解:△AFC是等腰三角形.理由如下:在△BAD与△BCE中,∵∠B=∠B(公共角),∠BAD=∠BCE,BD=BE,∴△BAD≌△BCE(AAS),∴BA=BC,∠BAD=∠BCE,∴∠BAC=∠BCA,∴∠BAC-∠BAD=∠BCA-∠BCE,即∠FAC=∠FCA.∴AF=CF,∴△AFC是等腰三角形.597.证明:∵AD∥BC,∴∠CAD=∠BCA,即∠EAD=∠BCA,…(1分)在△ADE和△CAB中,,∴△ADE≌△CAB(AAS),…(3分)∴AD=AC,…(4分)∴△ACD是等腰三角形.…(5分)598.(1)证明:∵AC2=ADAB,∠A=∠A,∴△ACD∽△ABC,∴∠ACD=∠B=36°,∵AC=BC,∴∠A=∠ACD=∠B=36°,∴三角形ADC是等腰三角形,∵∠BDC=∠A+∠ACD=72°,∵∠B=36°,∴∠BCD=180-36-72=72°,∴∠BDC=∠BCD,∴三角形BCD是等腰三角形.(2)解:∵AC=BC,BD=BC,∴AC=BD,∴AD=1-AC,∵AC2=ADAB,∴AC2=1-AC,解得:AC=(AC>0).599.解:∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C,∵∠EAD=∠DAC,∴∠B=∠C,∴△ABC是等腰三角形.600.解:用枚举法或列表法,可求出从四根细木棒中取两根细木棒的所有可能情况共有6种.第1根长度第2根长度131415343545方法1.枚举法:(1,3)、(1,4)、(1,5)(3,4)、(3,5)、(4,5)共有6种;方法(二):(1)P(能构成三角形)=;(2)P(能构成直角三角形)=;(3)P(能构成等腰三角形)=.601.解:①∵在△ABC中,AB=AC,∴∠ABC=∠BCA;∵BD、CE分别平分∠ABC、∠BCA,∴∠OBC=∠BCO;∴OB=OC,∴△OBC为等腰三角形.②在△AOB与△AOC中.∵,∴△AOB≌△AOC(SSS);∴∠BAO=∠CAO;∴直线AO垂直平分BC.(等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合)602.解:(1)证明:∵CE平分∠ACB交MN于E,CF平分∠ACG交MN于F,∴∠OCE=∠BCE,∠OCF=∠FCG.∵MN∥BC,∴∠OEC=∠ECB,∠OFC=∠FCG.∴∠OEC=∠OCE,∠OFC=∠OCF.∴OE=OC,OC=OF.∴OE=OF.(2)当MN与AC的交点是AC的中点时,四边形AECF是矩形.∵EO=FO,点O是AC的中点.∴四边形AECF是平行四边形,∵CF平分∠BCA的外角,∴∠4=∠5,又∵∠1=∠2,∴∠2+∠4=12某180°=90°.即∠ECF=90度,∴平行四边形AECF是矩形.603.解:△ADE是等腰三角形.理由如下:∵AD是等腰三角形ABC的底边BC上的高,∴∠BAD=∠CAD(等腰三角形三线合一定理),∵DE∥AB,∴∠BAD=∠ADE(两直线平行,内错角相等),∴∠CAD=∠ADE,∴AE=DE,∴△ADE是等腰三角形.604.解:已知:①③(或①④,或②③,或②④)证明:在△ABE和△DCE中∵∴△ABE≌△DCE;∴AE=DE;△AED是等腰三角形.605.解:(1)BD=DE是正确的.理由如下:∵△ABC为等边三角形,BD平分∠ABC,∴∠DBC=30°,∵∠DCE=120°,CE=CD,∴∠E=30°,∴BD=DE,(2)我认为可以改为:BD为AC边上的高;∵BD⊥AC,∴∠DBC=30°,由(1)可知∠E=30°,∴BD=DE.606.∴BD=CD,∵BC∥EF,AD⊥EF,∴AD⊥BC,∴AB=AC;(2)证明:连接BO,∵BD=CD,AD⊥BC,∴BO=CO,∵AO=CO,∴AO=BO=CO,(1)证明:∵D是△ABC的边BC的中点,∴点O是△ABC的外接圆的圆心;(3)解:连接BE,∵AB=5,BC=6,AD⊥BC,BD=CD,∴BD=BC=3,∴在Rt△ABD中,AD=4,∵∠ABE=∠ADB=90°,∠BAE=∠DAB,∴△ABE∽△ADB,∴即,,∴AE=.607.解:图中等腰三角形有△ABC,△ADB,△ADC∵AB=AC∴△ABC是等腰三角形;∵BD=AD,DC=AC∴△ADB和△ADC是等腰三角形;∵AB=AC∴∠B=∠C∵BD=AD,DC=AC∴∠B=∠BAD,∠ADC=∠DAC=2∠B,在△ACD中,∵∠ADC=∠DAC=2∠B,∠C=∠B,∴5∠B=180°∴∠B=36°.608.解:△ADE是等边三角形;△DEC为等腰三角形.理由:因为AB=AC,∠BAC=120°,所以∠B=∠C=30°.因为DE∥AB,所以∠EDC=∠B=30°.所以△DEC为等腰三角形.因为AD⊥BC,所以∠DAE=∠BAC=某120°=60°.因为∠ADC=90°,所以∠ADE=60°.所以△ADE是等边三角形.609.解:可以选择①③;①④;②③;②④.选①③证明;∵∠EBO=∠DCO,BE=CD,∠EOB=∠DOC,∴△EOB≌△DOC.∴OB=OC.∴∠OBC=∠OCB.∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB.∴△ABC是等腰三角形.610.证明:∵AE平分∠DAC,∴∠1=∠2,∵AE∥BC,∴∠1=∠B,∠2=∠C,∴∠B=∠C,∴AB=AC.611.解:(1)∵AC⊥BD,AC=BC=CD,∴∠ACB=∠ACD=90°.∴△ACB≌△ACD.∴AB=AD.∴△ABD是等腰三角形.(2)∵AC⊥BD,AC=BC=CD,∴△ACB、△ACD都是等腰直角三角形.∴∠B=∠D=45°.∴∠BAD=90°.612.解:由已知条件△=4(b-a)2-4(c-b)(a-b)=4(a-b)(a-c)=0,∴a=b或a=c,∵c-b≠0则c≠b,∴这个三角形是等腰三角形.613.(1)证明:在△BCE和△DCF中,∵,∴△BCE≌△DCF(SAS),∴∠EBC=∠FDC(全等三角形的对应边相等),即∠EBC=∠EDM,在△BCE和△DME中,∵,∴△BCE∽△DME,∴∠BCE=∠DME=90°(相似三角形的对应角相等),即BM⊥DF;(2)解:∵BC=2,∴BD=2.又∵BE平分∠DBC交DF于M,BM⊥DF,∴BD=BF(等腰三角形“三合一”的性质),DM=FM,∴CF=2-2.在△BMF和△DME中,∠MBF=∠MDE,∠BMF=∠DME=90°,∴△BMF∽△DME,∴=,∴=,即MEMB=MD2,∵DC2+FC2=(2DM)2,即22+(2-2)2=4DM2,∴DM2=4-2,即MEMB=4-2.614.解:(1)如图所示:(2)△ADF的形状是等腰直角三角形,理由是:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵AF平分∠EAC,∴∠EAF=∠FAC,∵∠FAD=∠FAC+∠DAC=∠EAC+∠BAC=某180°=90°,即△ADF是直角三角形,∵AB=AC,∴∠B=∠ACB,∵∠EAC=2∠EAF=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∵DF平分∠ADC,∴∠ADF=∠FDC=∠AFD,∴AD=AF,即直角三角形ADF是等腰直角三角形.615.证明:(1)∵BF、CF分别平分∠ABC、∠ACB,且DE∥BC,∴∠DBF=∠DFB,∠EFC=∠ECF,∴DF=BD,CE=EF,∴BD+CE=DE;(2)∵BF、CF分别平分∠DBC、∠BCE,且DE∥BC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DF=BD,CE=EF,∴BD+CE=DE;(3)猜想:DB-CE=DE,∵BF、CF分别平分∠ABC、∠ACB的外角,且DE∥BC,∴∠DBF=∠DFB,∠ECF=∠EFC,∴DF=BD,CE=EF,∴DB-CE=DE.616.证明:(1)延长CD交AB于K.∵AD平分∠BAC,CD⊥AD于D,∴AD是边KC的中垂线,∴点D是线段KC的中点.又∵G为BC的中点,∴DG是△KBC的中位线,∴DG∥KB,即DG∥AB;(2)∵AD平分∠BAC,AD是边KC的中垂线,∴AK=AC.又∵DG是△KBC的中位线,∴DG=KB=(AB-AK)=(AB-AC),即DG=(AB-AC).617.∵∠A=36°,(1)证明:在△ABC中,∵AB=AC,∴∠ABC=∠C,∴∠ABC=∠C=(180°-∠A)=72°,(1分)∵BD平分∠ABC,∴∠1=∠2=36°∴∠3=∠1+∠A=72°,∴∠1=∠A,∠3=∠C,∴AD=BD,BD=BC,∴△ABD与△BDC都是等腰三角形.(2)解:如下图所示:(3)解:如图所示:(4)解:特征一:直角三角形(直角边不等);特征二:2倍内角关系,如图①.0°<α<45°,其中,α≠30°,α≠36°,a≠;特征三:3倍内角关系,如图②.0°<α<45°,其中,α≠30°,α≠36度.618.解:∵△ABD是等边三角形,∴∠B=60°,∵∠BAC=90°,∴∠C=180°-90°-60°=30°,∵AB=2,∴BC=2AB=4,在Rt△ABC中,由勾股定理得:AC==∴△ABC的周长是AC+BC+AB=2+4+2=6+2.答:△ABC的周长是6+2.619.(1)证明:延长AB到N,使BN=CF,连接DN,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠ACD=∠ABD=30°+60°=90°=∠NBD,=2,∵在△NBD和△FCD中,∴△NBD≌△FCD(SAS),∴DN=DF,∠NDB=∠FDC,∵∠BDC=120°,∠EDF=60°,∴∠EDB+∠FDC=60°,,∴∠EDB+∠BDN=60°,即∠EDF=∠EDN,在△EDN和△EDF中,∴△EDN≌△EDF(SAS),,∴EF=EN=BE+BN=BE+CF,即BE+CF=EF.(2)解:∵△ABC是边长为2的等边三角形,∴AB=AC=2,∵BE+CF=EF,∴△AEF的周长为:AE+EF+AF=AE+EB+FC+AF=AB+AC=4.620.证明:∵△ACE和△BCF是等边三角形,∴∠ACE=∠FCB=60°,CE=AC,CF=CB,∴∠ACF=∠ECB=60°+∠ACB.在△CEB与△CAF中,,∴△CEB≌△CAF(SAS),∴BE=AF.621.证明:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,∴∠BCA-∠DCA=∠ECD-∠DCA,即∠BCD=∠ACE,∵在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴∠EAC=∠B=60°=∠ACB,∴AE∥BC.622.解:△ECH,△GFH,△GAD均与△DBE相似,任选一对即可.(3分)如选△GAD证明如下:证明:∵△ABC与△EFD均为等边三角形,∴∠A=∠B=60°.(6分)又∵∠BDG=∠A+∠AGD,即∠BDE+60°=∠AGD+60°,∴∠BDE=∠AGD.(9分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
一、选择题
1. 已知∠AOB=30°,点P 在∠AOB 的内部,P 1与P 关于OB 对称,P 2与P 关于OA 对称,则△P 1OP 2是( ). A. 直角三角形
B. 钝角三角形
C. 等腰三角形
D. 等边三角形
2. 如图,∠AOP=∠BOP=15°,PC ∥OA ,PD ⊥OA ,若PC=4,则PD 等于( ).
A. 4
B. 3
C. 2
D. 1
3. 如图,一张长方形纸片沿AB 对折,以AB 中点O 为顶点将平角五等份,并沿五等份的折线折叠,再沿CD 剪开,使展开后为正五角星(正五边形对角线所构成的图形),则∠OCD 等于( ). A. 108° B. 114° C. 126° D. 129°
4. 下列图案是轴对称图形的有( )
A .1个
B .2个
C .3个
D .4个
5. 如图:AC BC AC BC CD AB DE BC ⊥,,⊥,⊥,则图中共有等腰三角( )
A.2个 B.3个
C.4个
D.5个
6. 下列说法正确..
的是( ) A .两个全等的三角形合在一起是轴对称图形 B .两个轴对称的三角形一定是全等的
C .线段不是轴对称图形
D .三角形的一条高线就是它的对称轴
7. 如图,直线l 是一条河,P 、Q 两地相距8千米,P 、Q 两地到l 的距离分别为2千米、5千米,欲在l 上的某点M 处修建一个水泵站,向P 、Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道
最短的是( ).
A
C
B
E
D
2
8. 在直角坐标系中,A (1,2)点的横坐标乘以-1,纵坐标不变,得到A’点,则A 与A ′的关系是( )
A 、关于x 轴对称
B 、关于y 轴对称
C 、将A 点向x 轴负方向平移两个单位
D 、将A 点向x 轴负方向平移一个单位
9. 已知△ABC 在直角坐标系中的位置如图所示,如果△A'B'C' 与△ABC 关于y 轴对称,那么点A 的对应点A'
的坐标为( ).
A .(-4,2)
B .(-4,-2)
C .(4,-2)
D .(4,2)
10. 右图是一个等边三角形木框,甲虫P 在边框AC 上爬行(A ,C 端点除外),设甲虫P 到另外两边的距离
之和为d ,等边三角形ABC 的高为h ,则d 与h 的大小关系是( ) A.d h > B.d h <
C.d h =
D.无法确定
二、填空题
11. 如图,∠AOB 是一个钢架,且∠AOB=10°,为了使钢架更加牢固,需在内部添加一些钢管EF ,FG ,GH ,…,添加的钢管长度都与OE 相等,则最多能添加这样的钢管_______根.
12. 如图,l 是四边形ABCD 的对称轴,如果AD ∥BC ,则下列结论:①AB CD ∥; ②AB BC =;③AB ⊥BC ;④AO OC =.
其中正确的结论是______.(把你认为正确的结论的序号都填上)
13. 点M(1,2)关于x 轴对称点的坐标为________.
14. 已知AB 是线段CD 的垂直平分线,E 、F 是AB 上的两点,则∠ECF ∠EDF (填“>”、“=”、“<” )。
15. 一辆汽车车牌在水中的倒影为W ,该车牌的牌照号码是 。
16. 若三角形三个内角的度数之比为1:2:3,最短的边长是5cm ,则其最长的边的长是 .
A
B
C
O
l
17. 如图,D、E为△ABC两边AB、AC的中点,将△ABC沿线段DE折叠,使点A落在点F处,若∠B=55°,则∠BDF= °.
18. 等腰三角形底边长为5cm,腰上的中线把周长分为两部分的差为3cm,则腰长为___ ____.
19. 列几何图形中:①长方形②菱形③等腰直角三角形④圆⑤等边三角形。
只有一条对称轴的
是,有两条对称轴的是,有无数条对称轴的是。
20. 等腰直角三角形底边上的高为4,则此等腰三角形的面积为.
三、应用题
21. 如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.
(1)请你写出图中所有的等腰三角形;
(2)请你判断AD与BE垂直吗?并说明理由.
(3)如果BC=10,求AB+AE的长.
22. (多变题)如图所示,点P1在四边形ABCD的内部,点P2在边CD上,直线L•在四边形ABCD外.作出四边形ABCD关于点P1对称的四边形A1B1C1D1(不写作法).
(1)一变:作出四边形ABCD关于点P对称的四边形A2B2C2D2.
(2)二变:作出四边形ABCD关于直线L对称的四边形A3B3C3D3.
23. 一面镜子MN竖直悬挂在墙壁上,人眼O的位置.如图所示,•有三个物体A、B、C放在镜子前面,人眼能从镜子看见哪个物体?
3
4
24. 如图己知在△ABC 中,DE B C ,15,90︒=∠︒=∠垂直平分AB ,E 为垂足交BC 于D ,BD=16cm ,求AC 长.
四、复合题
25. 用围棋棋子可以在棋盘中摆出许多有趣的图案.如图1,在棋盘上建立平面直角坐标系,以直线y =x 为对称轴,我们可以摆出一个轴对称图案(其中A 与A '是对称点),你看它像不像一条美丽的鱼.
(1)请你在图2中,也用10枚以上的棋子摆出一个以直线y =x 为对称轴的轴对称图案,并在所作的图形中找出两组对称点,分别标为B -B ',C -C '(注意棋子要摆在格点上).
(2)在给定的平面直角坐标系中,你标出的B -B ′,C , C '的坐标分别是:B (______),B '(______),C (______),C '(______);根据以上对称点坐标的规律,写出点()P a b ,关于对称轴y =x 的对称点P '的坐标是(______).
图1 图2
答案
一、选择题
1. D
2. C
3. A
4. B
5.D
6. B
7. A。
8. B
9. D 10.C
二、填空题
11. 8 12.①②④13. (1,-2) 14. = 15. M17936 16. 10 17. 70°
18. 8cm 19.③, ①②④20.16
三、应用题
21. 解:(1)△ABC,△ABD,△ADE,△EDC.
(2)AD与BE垂直.
证明:由BE为∠ABC的平分线,知∠ABE=∠DBE,∠BAE=∠BDE=90°,BE=BE,
∴△ABE沿BE折叠,一定与△DBE重合.
∴ A、D是对称点,
∴ AD⊥BE.
(3)10.
22.解:四边形ABCD关于点P1对称的四边形A1B1C1D2如答图所示.
(1)四边形ABCD关于点P2对称的四边形A2B2C2D2如答图所示.
(2)四边形ABCD关于直线L对称的四边形A3B3C3D3,如答图所示.
点拨:注意区别中心对称与轴对称的作图方法.
23.物体在镜子里面所成的像就是数学问题中的物体关于镜面的对称点,人眼从镜子里所能看见的物体,它关于镜面的对称点,必须在眼的视线范围的.
分别作A、B、C三点关于直线MN的对称点A′、B′、C′.由于C•′不在∠MON内部,故人能从镜子里看见A、B两物体.
24. 8cm
四、复合题
25. (1)略
(2)(b,a)
5。