2018届新人教版九年级数学中考复习基础题试卷(3)含答案
人教版2018-2019学年度九年级中考数学试卷含答案
人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。
2018年中考初三数学总复习单元检测试题卷全集共8套解析版
九年级数学复习测试卷二一、选择题(每小题4分,共40分)1.下列计算正确的是( )A.30=0B.-|-3|=-3C.3-1=-3 D=±3解析:A项30=1,A错;B项正确;C项3-1=,C错;D项=3,D错. 答案:B2.在下列选项,与28 cm最接近的是( )A.珠穆朗玛峰的高度B.东方明珠电视塔的高度C.普通住宅楼一层的高度D.一张纸的厚度解析:28 cm=2.56 m,故选C.答案:C3.下列各式从左到右的变形正确的是( )A B.-C D=a-b答案:C4.如果分式的值为零,那么x等于( )A.-2B.2C.-2或2D.1或2解析:由已知得解得:x=-2,故选A.答案:A5.下列等式从左到右的变形,属于因式分解的是( )A.a(x-y)=ax-ayB.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)答案:D6.计算(+1)2 017?(-1)2 016的结果是( )A+1 B-1 C D.1解析:( +1)2 017?(-1)2 016=[(+1)( -1)]2 016?(+1)= +1.答案:A7.若实数a,b在数轴上的位置如图所示,则化简+b的结果是( )A.1B.b+1C.2aD.1-2a解析:由数轴可得:a-1b>0),则有( )A.k>2B.1b>0,∴0y,则下列式子错误的是( )A.x-3>y-3B.x+3>y+3C.-3x>-3y D答案:C2.不等式组的解集在数轴上表示如图,则该不等式组可能为( )A BC D解析:由不等式组的解集在数轴上表示可知该不等式组为画图大于号的开口向右,小于号的开口向左;注意“≤”或“≥”在数轴上画实心圆点,“”在数轴上画空心圆圈.答案:A3.阅读材料:设关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则两个根与方程系数之间有如下关系:x1+x2=-,x1?x2=已知x1,x2是方程x2+6x+3=0的两个实数根,则的值为( )A.4B.6C.8D.10解析:根据题意得,x1+x2=-=-6,x1?x2==3,则==10.答案:D4.若关于x,y的方程组的解是则|m-n|的值是( )A.5B.3C.2D.1解析:把代入所以|m-n|=|-1|=1;或:把代入方程组中的第二个方程x+my=n,解得:m-n=-1,所以|m-n|=1,故选D.答案:D5.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是( )A.当k=0时,方程无解B.当k=1时,方程有一个实数解C.当k=-1时,方程有两个相等的实数解D.当k≠0时,方程总有两个不相等的实数解解析:当k=0时,方程变为x-1=0,x=1.∴选项A错误;当k=1时,方程变为x2-1=0,方程有两个实数解x1=1,x2=-1.∴选项B错误;当k=-1时,方程变为-x2+2x-1=0,解得:x1=x2=1,∴选项C正确;当k≠0时,b2-4ac=(1-k)2-4×k×(-1)=(k+1)2≥0,∴方程有两个实数解.∴选项D错误.故选C.答案:C6.若关于x的方程=3的解为正数,则m的取值范围是( )A.m- D.m>-,且m≠-解析:解分式方程得x=∵方程的解是正数,>0,∴m<又x-3≠0,即x≠3,3,解得:m∴m的取值范围是m<,且m答案:B7.为庆祝“六一”国际儿童节,爱辉区某小学组织师生共360人参加公园游园活动,有A,B两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有( )A.3种B.4种C.5种D.6种解析:设租用A型号客车x辆,B型号客车y辆,依题意得45x+30y=360,即3x+2y=24.当x=0时,y=12,符合题意;当x=2时,y=9,符合题意;当x=4时,y=6,符合题意;当x=6时,y=3,符合题意;当x=8时,y=0,符合题意.故师生一次性全部到达公园的租车方案有5种.故选C.。
2018年中考数学样卷 答案
2018年普通初中毕业学业考试样卷参考答案及评分标准数学一、选择题(本题共10小题,每小题4分,共40分)二、填空题(本题共8小题,每小题4分,共32分)11.四12. 2313.124 14.0.7515.答案不唯一,如:(-3,1) 16.24π17.115°18.13.三、解答题(本题共8小题,共78分)19.(本小题满分8分)解:原式=1211()23-+-⨯-=1223-+=16.…………………………………8分20.(本小题满分8分)解:原式2221(1)11x x xx x--+-=⨯-2x=-.…………………………………6分当12x=-时,原式=4.………………………………………………8分21.(本小题满分8分)证明:如图,∵四边形ABCD是平行四边形,∴AD=BC,∠ADB=∠CBD.…………………………………2分又∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB,AE∥CF.…………4分∴AED∆≌CFB∆.………………………6分∴AE=CF.∴四边形AECF是平行四边形.∴AF=CE.………………………………………………………8分22.(本小题满分10分)解:(1)a=0.3,b=4 ………………………………………………………2分…………………………………4分(2)180(0.350.20)99⨯+=(人) …………………………………7分 (3) 甲 乙1乙2甲1 甲2 甲3 乙 甲1 甲2 甲3 乙 甲1 甲2 甲3 乙31124p == ……………………………………………………………10分 23.(本小题满分10分)解:(1)设该班男生有x 人,女生有y 人,依题意得:4223x y x y +=⎧⎨=-⎩, 解得2715x y =⎧⎨=⎩.∴该班男生有27人,女生有15人.…………………………………5分(2)设招录的男生为m 名,则招录的女生为(30)m -名,依题意得:5045(30)1460x x +-≥ ,解之得,22x ≥,答:工厂在该班至少要招录22名男生.…………………………10分24.(本小题满分10分)解:如图,在△ABC 中,AB =15,BC =14,AC =13,设BD x =,∴14CD x =-. ……………………………………………2分由勾股定理得:2222215AD AB BD x =-=-,2222213(14)AD AC CD x =-=--, ∴2215x -=2213(14)x --,解之得:9x =.……………………………… 7分 ∴12AD =. ………………………………………8分∴12ABC S BC AD ∆=11412842=⨯⨯=.…………10分25.(本小题满分12分)解:(1)∵抛物线顶点为A ,设抛物线对应的二次函数的表达式为2(1y a x =-+,将原点坐标(0,0)代入表达式,得13a =-.∴抛物线对应的二次函数的表达式为:213y x x =-. …………3分(2)将0y = 代入213y x x =-中,得B 点坐标为:,设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx =中,得k =, ∴直线OA 对应的一次函数的表达式为y x =.∵BD ∥AO ,设直线BD对应的一次函数的表达式为y b =+, 将B代入y b =+中,得2b =- , ∴直线BD对应的一次函数的表达式为2y -.由2213y y x ⎧=-⎪⎪⎨⎪=-⎪⎩得交点D的坐标为(3)-, 将0x =代入2y x -中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD ,OB OD ==.在△OAB 与△OCD 中,OA OC AB CD OB OD =⎧⎪=⎨⎪=⎩, ∴△OAB ≌△OCD .……………………8分(3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小.过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '∆∽C DQ '∆.∴PO C O DQ C Q '=',25=,∴PO =, ∴ 点P的坐标为(.………………………………………………………12分 26.(本小题满分12分) 解:(1)如26题解图1,在ABC ∆中, ∠ACB =90°,∠B =30°,AC =1,∴AB =2,又∵D 是AB 的中点,∴AD =1,112CD AB ==.又∵EF 是ACD ∆的中位线,∴12EF DF ==,在ACD ∆中,AD=CD, ∠A =60°, ∴∠ADC =60°. 在FGD ∆中,sin GF DF =⋅60°=, ∴矩形EFGH的面积12S EF GF =⋅==. ……………………………3分 (2)如26题解图2,设矩形移动的距离为,x 则102x <≤, 当矩形与△CBD 重叠部分为三角形时, 26题解图1CADB26题解图2则104x <≤,12S x ==,∴144x =>.(舍去). 当矩形与△CBD 重叠部分为直角梯形时,则1142x <≤,重叠部分的面积1124x -⨯=, ∴38x =. 即矩形移动的距离为38时,矩形与△CBD.…………7分(3)如26题解图3,作2H Q AB ⊥于Q .设DQ m =,则2H Q =,又114DG =,2112H G =. 在R t △H 2QG 1中,22211)()()42m ++= ,解之得m .∴1211164cos 12QG H G α+==12分26题解图31H 1E 1F 1G CA 2H 2E 2F D BQ。
2018年中考数学总复习经典(几何)试题(含答案)
中考数学总复习经典题(几何)(二)几何试题1、 如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S=2B .S=2.4C .S=4D .S 与BE 长度有关2、正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图4所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为: (A)10 (B)12 (C)14 (D)163、如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,2EF BE =,则AFC S =△ 2cm .4、 如图,在△ABC 中, ο70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ( )A. ο30 B. ο35 C. ο40 D. ο50 5、如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆1的半径)得图形34,,,,n P P P L L ,记纸板n P 的面积为n S , 试计算求出2S = ;3S = ;并猜想得到1n n S S --= ()2n ≥。
6、如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点,18AD BC PEF =∠=o ,,则PFE ∠的度数是 .(第16题)CFD BE A P (第6题)ADCEF GB 3题图 D ABRP F CGK图4E8题10题 12题7、如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180o得到BDE △,则DE = cm ,ABC △的面积= cm 2.8、如图,已知梯形ABCD ,AD BC ∥,4AD DC ==,8BC =,点N 在BC 上,2CN =,E 是AB 中点,在AC 上找一点M 使EM MN +的值最小,此时其最小值一定等于( ) A .6B .8C .4D .439、将一副直角三角板按图示方法放置(直角顶点重合),则AOB DOC ∠+∠= o.10、已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP =1,PB = 5 .下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 ;⑤S 正方形ABCD =4+ 6 .其中正确结论的序号是()A .①③④B .①②⑤C .③④⑤D .①③⑤11、如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:412、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,将腰CD 以D 为中心逆时针旋转90°至ED ,AE 、DE ,△ADE 的面积为3,则BC 的长为 . 13、如图,四边形OABC 为菱形,点B 、C 在以点O 为为圆心的上,若OA = 3,∠1 = ∠2,则扇形OEF 的面积为_________.14、 如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C.若∠AOB = 60o,OC = 4,则点P 到OA 的距离PD 等于__________. 15、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B .76 C .256D .2B AC D O P (第14题) AD B EC (第15题) ABE G CD(第7题)C D AO B30°45°A D EM(第11题(第13题)O A B C F 1 2 E E D(第20题)16、如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( )A .3B .4C .6D .917、如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( )A .a k 2B .a k 3C .2k aD .3ka18、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是19、如图,把矩形纸条ABCD 沿EF 、GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD 的边BC 长为 . 20、.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( )A. 2.5ABB. 3ABC. 3.5ABD. 4AB21、如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .22、如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= __________。
2018~2019学年九年级数学试卷及答案(word版)
2018~2019学年九年级数学试卷及答案(精选真题试卷+答案,值得下载打印练习)一、选择题(共10小题,每小题3分,共30分)1.武汉某天的最高气温是7℃,最低气温是-3℃,那么当天最高温与最低温的差是()℃A.4 B.10 C.-10 D.-41有意义,则x的取值范围是()2.要使分式2xA.x>2 B.x<2 C.x≠2D.x=23.下列运算正确的是()A.5a2+3a2=8a4 B.a3·a4=a12 C.a+2b=2ab D.a3·a2=a54.已知不透明的袋中只装有黑白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n 个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为()A.20 B.30 C.40 D.505.计算(x+1)(x+2)的结果为()A.x2+2 B.x2+3x+2 C.x2+3x+3 D.x2+2x+26.点A(-3,2)关于x轴对称的点的坐标为()A.(3,-2) B.(3,2) C.(-3,-2) D.(2,-3)7.如图使用五个相同的立方体搭成的几何体,其左视图是()8.若干名同学的年龄如下表所示,这些同学的平均年龄是14岁,则这些同学年龄的众数和中位数分别是( )A .14、14B .15、14.5C .14、13.5D .15、159.童威用火车棍按下列方式摆图形,第1个图形用了4根火柴棍,第2个图形用了10根火柴根,第3个图形用了18根火柴棍.依照此规律,若第n 个图形用了88根火柴棍,则n 的值为( )A .6B .7C .8D .910.如图,⊙O 为△ABC 的外接圆,AB =AC ,E 是AB 的中点,连接OE ,OE =25,BC =8,则⊙O 的半径为( ) A .3B .827 C .625 D .5二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算4的结果为___________ 12.计算111+++a aa 的结果为___________ 13.甲口袋装有2个相同的小球,球上分别写着字母A 、B ;乙口袋中装有3个相同的小球,球上分别写着字母C 、D 、E .童威从两个口袋中各随机取出一个小球,球上的字母恰好一个为元音字母另一个为辅音字母的概率是___________(A 和E 是元音字母,B 、C 和D 是辅音字母) 14.如图,AB ∥CD ,点E 在BC 上,CD =CE .若∠ABC =32°,则∠BED 的度数是_________15.如图,△ABC 中,∠BAC =60°,∠BAC 的平分线交BC 于D .若AB =8,AC =6,则AD 的长是___________16.设[x ]表示不超过x 的最大整数,如[2.1]=2,[3]=3,[0.3]=0,[-2.5]=-3,那么方程[x ]=-x 2+4x +1的解是___________ 三、解答题(共8题,共72分) 17.(本题8分)解方程组:⎩⎨⎧=--=13432y x x y18.(本题8分)如图,点C 、F 、E 、B 在一条直线上,∠CFD =∠BEA , CE =BF ,DF =AE ,写出CD 与AB 之间的数量和位置关系,并证明你的结论19.(本题8分)A 、B 、C 三名同学竞选学生会主席,他们的笔试和口试成绩(单位:分)分别用两种方式进行了统计,如下表和图1(1) 请将表格和图1中的空缺部分补充完整(2) 竞选的下一个环节是由本系的300名学生对三位候选人投票,三位候选人的得票情况如图2(每名学生都恰好推荐1名候选人),候选人每得一票计1分,请直接写出每位候选人在本环节的得分(3) 每位候选人的最后成绩为笔试得分的40%、口试得分的40%、投票得分的20%的总和.若最后成绩最高者胜出,请通过计算判断胜出者是谁?20.(本题8分)五一假期某学校计划组织385名师生租车游学,已知出租公司有42座和60座客车,每辆42座比每辆60座客车租金便宜140元,租3辆42座和2辆60座客车租金共计1880元(1) 求两种车租金每辆各多少元?(2) 若学校同时租用这两种客车8辆(可以坐不满),总租金不超过3200元,有几种租车方案?请选择最节省的租车方案21.(本题8分)已知如图,在Rt△ABC中,∠C=90°,⊙O与△ABC的三边分别相切于点D、E、F(1) 如图1,连接AO、BO,求∠AOB的度数1,求tan∠ABD的值(2) 如图2,连BD,若tan∠DBC=422.(本题10分)已知:如图,反比例函数xy 6=的图象在第一象限的分支上有两点A 、B ,其中点A 的横坐标为a ,点B 的横坐标为b ,且b =a +4.A 、C 两点关于原点O 对称,B 、D 两点关于原点O 对称(1) 四边形ABCD 的形状为___________,点C 、D 的坐标分别为________、________(用含a 的式子表示)(2) 若(1)中的四边形ABCD 的面积为48,试求a 的值(3) 若a =2,试在第三象限的双曲线上确定一点P ,使得P AB 的面积最小,请直接写出点P 的坐标23.(本题10分)已知:△ABC 中,点D 在边AC 上,且AB 2=AD ·AC (1) 求证:∠ABD =∠C(2) 在边BC 上截取BE =BD ,ED 、BA 的延长线交于点F ,求证:FEFDAB FA =(3) 在(2)的条件下,若AD =4,CD =5,cos ∠BAC =31,试直接写出△FBE 的面积24.(本题12分)如图,抛物线y =ax 2+bx -2a 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,41) (1) 求抛物线的解析式(2) 若点D (2,n )是抛物线上的一点,在y 轴左侧的抛物线上存在点T ,使△TAD 的面积等于△TBD 的面积,求出所有满足条件的点T 的坐标(3) 直线y =kx -k +2,与抛物线交于两点P 、Q ,其中点P 在第一象限,点Q 在第二象限,P A 交y 轴于点M ,QA 交y 轴于点N ,连接BM 、BN ,试判断BMN 的形状并证明你的结论数学答案一. 选择题BCDAB CAACC二. 填空题2, 1, 12, 106,22三. 解答题17.解方程组⎩⎨⎧=--=13432y x x y解:把方程(1)代入方程(2)得x=4,……………………3分 把x=4代入方程(1)得y=5,……………………6分故方程组的解为45x y =⎧⎨=⎩……………………8分18.CD=AB ,CD∥AB……………………2分证明:∵ CE =BF ,∴CF=BE……………………3分在△ABE 和△DCF 中,DF AE CFD BEACF BE∠∠=⎧⎪⎨⎪⎩==……………………5分 ∴△ABE≌△DCF……………………6分∠C =∠B ,CD=AB ,……………………7分∴CD∥AB ……………………8分19.(1)90,90……………………2分(2)A 105 B 120 C 75……………………5分(3)选手A:85×40%+90×40%+105×20%=91(分)选手B:95×40%+80×40%+120×20%=94(分)选手C:90×40%+85×40%+75×20%=85(分)故选手B当选……………………8分(每个选手正确得分各1分)20.(1)设60座客车租金为m元,则3(m-140)+2m=1880……………………2分解得m=460,m-140=320……………………3分答:42座客车租金为320元,60座客车租金为460元……………………4分(2)设42座客车租x辆,总租金为W元W=320x+460(8-x)= -140x+3680又4260(8)38532046083200xx xx+-+-≤≥⎧⎨⎩()……………………5分解得3535718x≤≤,……………………6分又x为整数,故x=4或5,故共有两种租车方案。
最新部编RJ人教版 初中中考数学真题真卷———2018年山东省日照市中考数学试卷含答案解析(Word版)
2018年山东省日照市中考数学试卷相信你能取得好成绩!一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣2.(3分)在下列图案中,既是轴对称又是中心对称图形的是()A.B.C. D.3.(3分)下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2 C.a6÷a2=a4D.a2+a2=2a44.(3分)若式子有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠15.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,86.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°7.(3分)计算:()﹣1+tan30°•sin60°=()A.﹣B.2 C.D.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.010.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O 在格点上,则∠BED的正切值等于()A.B.C.2 D.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是.16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x 都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P 是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.2018年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.2.(3分)在下列图案中,既是轴对称又是中心对称图形的是()A.B.C. D.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、此图案既不是轴对称图形又不是中心对称图形;B、此图案是轴对称图形,不是中心对称图形;C、此图案既是轴对称图形又是中心对称图形;D、此图案是中心对称图形,不是轴对称图形;故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2 C.a6÷a2=a4D.a2+a2=2a4【分析】根据同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式一一判断即可;【解答】解:A、错误.(a3)2=a5;B、错误.(a﹣b)2=a2﹣2ab+b2;C、正确.D、错误.a2+a2=2a2故选:C.【点评】本题考查同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(3分)若式子有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m≥﹣2且m≠1故选:D.【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件,本题属于基础题型.5.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,8【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.【点评】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.6.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°【分析】根据平行线的性质可得∠A=∠FDE=45°,再根据三角形内角与外角的性质可得∠1的度数.【解答】解:∵AB∥CD,∴∠A=∠FDE=45°,又∵∠C=30°.∴∠1=∠FDE﹣∠C=45°﹣30°=15°,故选:D.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.7.(3分)计算:()﹣1+tan30°•sin60°=()A.﹣B.2 C.D.【分析】根据实数的运算,即可解答.【解答】解:()﹣1+tan30°•sin60°=2+=2+=故选:C.【点评】本题考查了实数的运算,解决本题的关键是熟记实数的运算.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.【点评】本题主要考查菱形的判定,解题的关键是掌握菱形的定义和各判定及矩形的判定.9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.0【分析】根据反比例函数的性质,可得答案.【解答】解:①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选:B.【点评】本题考查了反比例函数的性质,熟记反比例函数的性质是解题关键.10.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O 在格点上,则∠BED的正切值等于()A.B.C.2 D.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=.故选:D.【点评】此题主要考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个【分析】观察图象判断出a、b、c的符号,即可得出结论①正确,利用对称轴公式x<﹣1,可得结论②正确;判断出﹣b<a+c<b,可得结论③正确,利用图象法可以判断出④错误;【解答】解:∵抛物线开口向上,∴a>0,∵﹣<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣<﹣1,a>0,∴b>2a,∴2a﹣b<0,故②正确,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1<y2,故④错误.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x 轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是19°21′.【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.【点评】本题主要考查的是余角的定义以及度分秒的换算,掌握相关概念是解题的关键.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1200.【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程.【解答】解:由题意可得,x(x+40)=1200,故答案是:x(x+40)=1200.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是4πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,【点评】考查学生对三视图掌握程度和灵活运用能力,关键是由主视图和左视图确定是柱体,锥体还是球体.16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为﹣2≤m<﹣1.【分析】根据题意可知抛物线在第四象限内的部分,然后根据反比例函数y=(m <0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,可以得到不等式组,从而可以求得m的取值范围.【解答】解:∵y=x2﹣4,∴当x=0时,y=﹣4,当y=0时,x=±2,当x=1时,y=﹣3,∴抛物线y=x2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,∵反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴,解得,﹣2≤m<﹣1.【点评】本题考查反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x 都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.【分析】(1)根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.(2)根据分式的减法和除法可以化简题目中的式子,然后在0≤x≤4的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1)根据题意可得不等式组,解不等式①,得:x>2,解不等式②,得:x≤4,所以不等式组的解集为2<x≤4,则整数x的值为3、4;(2)原式=[﹣]•=[﹣]•=•=•=,∵,∴x≠0且x≠2、x≠4,∴在0≤x≤4中,可取的整数为x=1、x=3,当x=1时,原式=1;当x=3时,原式=1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法与解一元一次不等式组的步骤.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为20km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?【分析】(1)根据OA段的速度,可得结论;(2)当1.5≤x≤2.5时,设y=20x+b,利用待定系数法即可解决问题;【解答】解:(1)在OA段,速度==20km/h,故答案为20.(2)当1.5≤x≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,∴y=20x﹣20,当x=2.5时,解得y=30,∴乙地离小红家30千米【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,属于中考常考题型.19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.【分析】(1)根据加权平均数分别计算三人的平均成绩,比较大小即可得;(2)①根据概率公式即可得;②列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:(1)==77(分),==86.5(分),==84.5(分),因为乙的平均成绩最高,所以应该录取乙;(2)①小厉参加实验D考试的概率是,故答案为:;②解:列表如下:所有等可能的情况有16种,其中两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,所以小王、小张抽到同一个实验的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P 是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.【分析】(1)连接DE,OA.想办法证明OA⊥BF即可;(2)作OH⊥PA于H,只要证明△AOH∽△PAB,可得=,即可解决问题.【解答】(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:作OH⊥PA于H.∵OA=OP,OH⊥PA,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,∴=,∴=,∴PB=.【点评】本题考查相似三角形的判定和性质、垂径定理、切线的判定等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a 的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q 的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,=OB•DP=×3×(﹣x2+x)=﹣x2+x.∴S△PBC=1,又∵S△PBC∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为BE=CE.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论BE=DE.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.【分析】探究结论:(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题;【解答】解:探究结论(1)如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等边三角形,∴EC=AE=EB,故答案为EC=EB.(2)如图2中,结论:ED=EB.理由:连接PE.∵△ACP,△ADE都是等边三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).【点评】本题考查三角形综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。
2018届中考数学复习 专题31 圆的基本性质试题(a卷,含解析)
专题31 圆的基本性质一、选择题1. ( 山东聊城,9,3分)如图所示,四边形ABCD 内接于⊙O ,F 是弧CD 上一点,且»»DFBC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若∠ABC=105°,∠BAC=25°,则∠E 的度数为A 、45°B 、50°C 、55°D 、60° 【答案】B 【逐步提示】第一步先利用圆的内接四边形对角互补的性质求出∠ACD 的度数,第二步利用等弧所对的圆周角相等求出∠DCE ,第三步利用三角形的一个外角等于不相邻两个内角的和求出∠E 的度数.【详细解答】解:因为,四边形ABCD 内接于⊙O ,所以∠ADC=180°-∠ABC=180°-105°=75°,又因为»»DFBC =,所以∠DCE=∠BAC=25°,又因为∠ADC=∠DCE+∠E ,所以∠E=∠ADC-∠DCE=75°-25°=50°,故选择B .【解后反思】本题考查了圆内接四边形及性质,解题的关键是掌握圆内接四边形的性质,并结合三角形内外角关系解决问题.等弧所对的圆周角相等;圆内接四边形对角互补;三角形的一个外角等于不相邻两个内角的和. 【关键词】圆内接四边形及性质 ;圆心角、圆周角定理;与三角形有关的线段、角;;2.( 山东泰安,10,3分)如图,点A 、B 、C 是圆O 上的三点,且四边形ABCO 是平行四边形,OF ⊥OC 交圆O于点F ,则∠BAF 等于( )A .12.5°B .15°C .20°D .22.5° 【答案】B 【逐步提示】本题考查了垂径定理及等边三角形的判定及性质,解题的关键是利用圆的有关性质及平行四边形的AOC B F 第10题图性质判定三角形的形状.连接OB ,由四边形ABCO 是平行四边形,可知AB OC ∥,再由半径相等可得△ABO 为等边三角形,由OF ⊥OC 可得OF ⊥AB ,从而知道∠BOF 的度数,利用同弧所对的圆周角等于圆心角的一半,可以计算出∠BAF 的度数.【详细解答】解:连接OB ,∵四边形ABCO 是平行四边形,∴AB OC ∥,∵OA =OB =OC ,∴AB =OB =OA ,∴△ABO 为等边三角形,∴∠AOB =60°.又∵OF ⊥OC ,∴OF ⊥AB ,∴∠BOF =12∠AOB =30°,∴∠BAF =12∠BOF =15°.故选择B .【解后反思】(1)圆周角定理能有效地把圆心角与圆周角联系起来即在同圆或等圆中圆周角的度数等于同弧或等弧所对的圆心角的一半;(2)圆中任意两条半径和弦组成的三角形都是等腰三角形.此题利用平行四边形对边平行且相等的性质,并结合圆中半径都相等,得到一个等边三角形,从而求得一个60°的角,这是解决问题的关键所在.【关键词】平行四边形的性质;等边三角形;圆心角、圆周角定理.3. ( 山东泰安,17,3分)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,∠B =30°,CE 平分∠ACB 交⊙O 于E ,交AB 于点D ,连接AE ,则ADE CDB S S ∆∆:的值等于( )A .1.1.1:2 D .2:3【答案】D 【逐步提示】本题考查了圆的有关性质及相似三角形的判定与性质,解决本题的关键是掌握有关的性质及图形之间的联系.因为可以知道△ADE ∽△CDB ,面积比就等于相似比的平方.所以求出相似比AEBC即可.因为AB 是⊙O AOCB F 第10题图AB第17题图的直径,∠B =30°,可知BC =AB cos30°,再找出AE 与AB 的关系就可以了.因为CE 平分∠ACB ,连接BE 可知△AEB 为等腰直角三角形,AE =AB cos45°.这样就知道了AEBC,问题解决.【详细解答】解:连接BE ,∵AB 为⊙O 的直径,∴∠ACB =∠AEB =90°,在Rt △ABC 中,∠B =30°,∴BC =AB cos30°AB .∵ CE 平分∠ACB ,∴∠ACE =∠BCE =45°,∵∠BCE =∠BAE ,∴∠BAE =45°,∴AE =AB cos45°=AB,∴AB AE BC,∵∠BCE =∠BAE ,∠ADE =∠CDB ,∴△ADE ∽△CDB ,∴ADE CDB S S ∆∆=223= 故答案为D .【解后反思】求两个三角形的面积关系首先判断两个三角形是否相似,如果相似可以用相似三角形的性质:两个相似三角形面积比等于相似比的平方去解决.此题解题的关键是利用直径所对的圆周角是直角得到两个直角三角形,然后通过特殊角的三角形函数值找到线段AE 与BC 的等量关系.【关键词】圆周角定理 ;特殊角的三角函数值;相似三角形的判定;相似三角形的性质4. ( 山东潍坊,9,3分)如图,在平面直角坐标系中,⊙M 与x 轴相切于点A (8,0).与y 轴分别交于点B (0,4)与点C (0,16).则圆心M 到坐标原点O 的距离是( ) A .10 B...【答案】D【逐步提示】本题考查了垂径定理及图形与坐标,解题的关键是作出辅助线,利用勾股定理进行解答.过点M 作MN ⊥BC ,交BC 于点N ,连接OM 、BM ,先利用垂径定理求出BN 的长度,再利用勾股定理求出⊙M 的半径,然后利用勾股定理求OM 的长度.【详细解答】解:过点M 作MN ⊥BC ,交BC 于点N ,连接OM 、BM ,AB第17题图由A(8,0)、B(0,4)、C(0,16)可得:OA=8,BC=16-4=12.∴MN=OA=8,BN=12BC=6∴在Rt△MNB中,BM10==,即⊙M的半径为10.∴ON=10.在Rt△OMN中,OM===故选择D .【解后反思】垂径定理与勾股定理联系密切,解此类题时需注意构造直角三角形,利用勾股定理进行解答.【关键词】垂径定理;勾股定理;平面直角坐标系;5.(山东省烟台市,10,3分)如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D.若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()【答案】D【逐步提示】由于不明确等腰三角形的边和腰,所以要分两种情况进行讨论:当BC为底边时,当BC为腰时,分别求出∠BCD的度数,即可求解.在求解过程中要注意:点C在以AB为直径的圆上,所以点D在量角器上对应的度数等于2∠BCD的度数.【详细解答】解:∵∠ACB=90°,∴点C在以AB为直径的圆上.分两种情况进行讨论:当BC为底边时,∠BCD=∠ABC=40°,∴点D在量角器上对应的度数是40°⨯2=80°,当BC为腰时,∠BCD=240180︒-︒=70°,∴点D在量角器上对应的度数是70°⨯2=140°,故选择D .【解后反思】解此题的关键是掌握圆心角、圆周角定理和等腰三角形的定义和性质.1.圆周角定理的推论:圆周角的度数等于它所对弧上的圆心角度数的一半.2.已知顶角求底角的方法:底角=1802-顶角.3.解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,然后利用圆周角定理以及推论求解,特别地,当有直径这一条件时,往往要用到直径所对的圆周角是直角这一性质;或是当有直角时,往往要用到90°的圆周角所对的斜边是直径..4.没有明确等腰三角形的底或腰时,一定要注意分类讨论.分类讨论是一种重数学思想,在研究数学问题时,常常需要通过分类讨论解决问题.分类要依据一个标准,且要做到不重不漏. 【关键词】等腰三角形;圆周角;弧;分类讨论思想;6.(浙江杭州,8,3分)如图,已知AC 是⊙O 的直径,点B 在圆周上(不与A .C 重合),点D 在AC 的延长线上,连结BD 交⊙O 于点E .若∠AOB =3∠ADB ,则( )A .DE =EB B .2DE =EBC .3DE =DOD .DE =OB【答案】D .【逐步提示】本题考查了圆的性质和等腰三角形的性质与判断,解题的关键是充分利用半径相等、等腰三角形的两底角相等及等角对等边等有关性质.由四个选项中都是线段DE 与相关线段的大小比较,且题目中条件为角之间的倍数关系,这样就联想到通过三角形之间的边角关系来探索相关线段的数量关系了:不妨连接OE ,首先由OB =OE ,得到∠B =∠OEB ;再由三角形的外角性质,得到∠AOB =∠B +∠D ,∠OEB =∠EOD +∠D ,加上已知条件∠AOB =3∠ADB ,就不难推导出∠DOE =∠D ,最后由等角对等边,得到DE =EO =OB . 【解析】连接OE ,如下图. ∵OB =OE , ∴∠B =∠OEB .∵∠AOB =∠B +∠D ,∠OEB =∠EOD +∠D ,∠AOB =3∠ADB , ∴∠B =∠OEB =2∠D . ∴∠DOE =∠D . ∴DE =EO =OB . 故选择D .【解后反思】本题是一道探究题,由两个角之间的3倍关系去探索线段DE 与图中相关线段的数量关系.如何充分利用已知条件与图形中隐含的条件,是解题的关键.连接OE 后,就容易利用圆的半径相等,加上等腰三角形的性质与判定定理及三角形的外角性质,得到图中两组相等的角及这两组角的对边也相等的结论,从而就探究出DE 与圆的半径相等的正确结论了.【关键词】圆的性质;等腰三角形的性质和判定;三角形的外角性质第8题图第7题图7.(浙江金华,9,3分)足球射门,不考虑其他因素,仅考虑射点到球门AB 的张角大小时,张角越大,射门越好.如图的正方形网格中,点A,B,C,D,E 均在格点上,球员带球沿CD 方向进攻,最好的射点在( )A.点CB.点D 或点EC.线段DE (异于端点) 上一点D.线段CD (异于端点) 上一点【答案】C【逐步提示】认真审题确定解题思路,过A . B .D 三点作圆,可以根据圆内角、圆周角及圆外角的性质确定各射点到球门AB 的张角,比较各张角的大小,确定答案.【解析】连接EB .AD .DB .AC .CB ,作过点A .B .D 的圆,可以确定点E 在圆上,点C 在圆外,根据圆周角及圆外角的性质可以确定∠AEB=∠ADB>∠ACB ,所以最好的射点是线段DE (异于端点) 上一点,故选择C.【解后反思】解题的关键在于构造圆,然后根据圆周角、圆内角及圆外角的性质确定各张角的大小,进而得出结论.【关键词】圆周角;“网格”数学题型8.(淅江丽水,10,3分)如图,已知⊙O 是等腰Rt △ABC 的外接圆,点D 是AC 上一点,BD 交AC 于点E ,若BC=4,AD=45,则AE 的长是A.3B.2C.1D.1.2 【答案】【逐步提示】确定AC=BC ,△CBE ∽△DAE ,根据相似比判断各选项中的数据是否正确.(第9题图)【解析】由题意得AC=BC=4,BD=285,△CBE∽△DAE,所以AE:BE=DE:CE=AD:CB=45:4=15,所以BE˙DE=AE˙CE,若AE=3,则BE=15>285,错误;若AE=2,则BE=10>285,错误;若AE=1,则BE=5,DE=35,CE=4-1=3,此时满足BE˙DE=AE˙CE,故AE=1;若AE=1.2,则BE=6>285,错误,故选择C.【解后反思】根据题意确定图形中各线段间的关系,然后根据已知条件对所给选项进行验证得出正确的结论.【关键词】圆;相似三角形的性质;验证法;;9.(四川达州,7,3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC 为第7题图A.13B.2 2C.24D.223【答案】C【逐步提示】本题主要考查了圆中有关计算.解题的关键是把∠OBC的正切值转化到直角三角形中求解.解题是:如图,连接CD,则CD是⊙A的直径,且∠OBC=∠ODC,在Rt△OCD中可求得tan∠ODC.【详细解答】解:连接CD,∵∠COD=90°,∴CD是⊙A的直径,∠OBC=∠ODC,在Rt△OCD中,OD=62-22=42,∴tan∠ODC=242=24故选择C.【解后反思】解答这类问题时,往往将坐标系内的点坐标转化为线段的长度,进而化归到直角三角形中,应用三角函数定义求得三角函数值.求锐角三角函数的方法:(1)直接定义法;(2)构造直角三角形;(3)借助三角函数关系求值.【关键词】圆周角定理及推论;三角函数10.(四川乐山,7,3分)如图4,C、D是以线段AB为直径的⊙O上两点,若CA=CD,且∠ACD=40°,则∠CAB= ( ).A.10°B.20°C.30°D.40°图4【答案】B.【逐步提示】欲求∠CAB,在Rt△ABC中,由AB是⊙O的直径得到∠ACB=90°,所以只需知道∠ABC的度数,在⊙O中,∠ABC=∠ADC,这样在等腰三角形ACD中,由∠ACD=40°可得解.【详细解答】解:∵CA=CD,并且∠ACD=40°,∴∠ADC=70°.在⊙O中,∵AB为直径,∠ACB=90°,∵∠ABC 与∠ADC是⊙O中»AC的圆周角,∴∠ABC=∠ADC=70°,∴∠CAB=∠AC B-∠ABC= 90°-70=20°,故选择B.【解后反思】对于圆的有关性质的考查,一般会将圆周角、圆心角,弧、弦、弦心距等量之间的关系合并考查,解题的关键是明确相关性质.本题涉及到的有:①在同圆(或等圆)中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等;②直径其所对的圆周角是90°.【关键词】等腰三角形性质;圆周角定理11.(四川省自贡市,5,4分)如图,⊙O中,弦AB与CD交于点M,∠A=45°,∠AMD=75°,则∠B的度数是A.15° B.25° C.30° D.75°【答案】C【逐步提示】∠B为圆周角,可以考虑将其转移,再利用三角形的内外角关系求解即可.【详细解答】解:∵∠A=45°,∠AMD=75°,∴∠C=30°,∴∠B=30°,故选择C.【解后反思】求角度数问题,通常手段就是转移和分解,本题在第一步是将角分解求出∠C,再利用转移的方法求出∠B.【关键词】三角形的内角和;圆心角、圆周角定理二、填空题1. .(山东青岛,11,3分)如图,AB是⊙O的直径,C , D是⊙O上的两点,若∠BCD = 28° ,则∠ABD= °.【答案】62【逐步提示】∠ABD 和∠ACD 都是弧AD 所对的圆周角,故只要求出∠ACD 的度数即可;根据“直径所对的圆周角是直角”可知∠ACB =90°,进而由∠BCD 的度数可求得∠ACD 的度数,问题得解. 【详细解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°.∵∠BCD =28°,∴∠ACD =90°-28°=62°,∴∠ABD =62°,故答案为62.【解后反思】与圆周角有关的知识点有:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是圆的直径;同弧(或等弧)所对的圆周角等于圆心角的一半. 【关键词】 圆周角;圆周角定理2. ( 山东省枣庄市,15,4分)如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,【答案】【逐步提示】本题考查了有关圆周角的性质,解题的关键是运用直径所对圆周角为直角及同弧所对圆周角相等把∠D 与直角三角形联系起来.连接BC ,利用直径所对圆周角为直角,解Rt △ABC ,然后利用同弧或等弧所对的圆周角相等,即可求得tan D 的值.【详细解答】解:连接BC ,∵AB 为⊙O 直径,∠ACB =90°,又∵AB =2r =6,∴BC =∵BC =BC ,∴∠D =∠A ,∴tan D =tan A =BCAC=,故答案为【解后反思】在圆中解决与角有关的问题时,常用的是弧、弦、圆心角的对应关系和圆周角定理,从而实现圆心角与圆周角、圆周角与圆周角的互换.若如涉及到三角函数,通常利用直径所对圆周角为直角,或构造垂径定理三角形求解.【关键词】 圆心角、圆周角定理;锐角三角函数值的求法DBD3.(重庆A,15,4分)如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC. 若∠AOB=120°,则∠ACB=_______度.【答案】60【逐步提示】∠AOB与∠ACB是同弧(AB)所对的圆心角和圆周角,则∠ACB=12∠AOB.【解析】∵∠AOB=120°,∠AOB所对的弧为AB,AB所对的圆周角为∠ACB,∴∠ACB=12∠AOB=12×120°=60°.故答案为60.【解后反思】在圆中,同弧所对的圆周角是它所对圆心角的一半.【关键词】圆心角、圆周角定理4.(重庆B,15,4分)如图,CD是⊙O的直径,若AB⊥CD,垂足为B,∠OAB=40°,则∠C等于度.【答案】25【逐步提示】利用直角三角形的两个锐角互余,由∠OAB的度数可求得∠AOB的度数,再根据同弧所对的圆周角与圆心角的关系求解.【解析】∵AB⊥CD,∠OAB=40°,∴∠AOB=50°. ∵∠C与∠AOB分别为AD所对的圆周角和圆心角,∴∠C=12∠AOB=25°. 故答案为25.【解后反思】在圆中,求角的度数时,首先要考虑要求的角是圆周角还是圆心角,再根据圆心角、圆周角的性质定理求解. 在同圆中,同弧所对的圆周角等于它所对的圆心角的一半.【关键词】三角形的内角和;圆心角、圆周角定理5.(四川省巴中市,16,3分)如图,∠A是⊙O的圆周角,∠OBC=550,则∠A= .【答案】350.【逐步提示】本题考查了圆心角、圆周角定理及其推论,解题的关键是理解并能熟练运用圆心角、圆周角定理及其推论,在⊙O中,弧BC所对的圆心角和圆周角分别是∠BOC和∠BAC,在△BOC中,OB=OC,由∠OBC=550,可以求得圆心角∠BOC的度数,从而求得圆周角∠A的度数.【详细解答】解:∵OB=OC,∴∠OCB=∠OBC=550,∴∠BOC=700,∴∠A=12∠BOC=350,故答案为350. 【解后反思】解决与圆有关的角度的相关计算时,一般先判断角是圆周角还是圆心角,再转化成同弧所对的圆周角或圆心角,利用同弧所对的圆周角相等,同弧所对的圆周角是圆心角的一半等关系求解 【关键词】圆心角、圆周角定理;6. ( 四川省成都市,23,4分)如图,△ABC 内接于⊙O ,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC=13,则AB = .【答案】392. 【逐步提示】本题考查了圆周角定理、相似三角形的判定及性质等相关知识,解题的关键是利用直径所对圆周角为直角及同弧所对圆周角相等,构造相似三角形.延长CO 交⊙O 于点E ,连接AM ,证明△AMC ∽△HBA ,然后利用相似三角形的性质即可求出AB 的值.【详细解答】解:延长CO 交⊙O 于点M ,连接AM .∵CM 是⊙O 的直径,∴∠MAC =90°,∵AH ⊥BC ,∴∠MAC =∠AHB = 90°,又∵∠M =∠B ,∴△AMC ∽△HBA ,∴AC AH =CM AB ,∵CM =2OC =26,即2418=26AB ,∴AB =182624⨯=392. 【解后反思】在有关圆的问题中,有直径通常作直径所对的圆周角,构造直角三角形;有弧、弦中点,通常连弧、弦中点与圆心,应用垂径定理;有切线,连过切点的半径.【关键词】圆心角、圆周角定理 ;相似三角形的判定;相似三角形的性质7. ( 四川南充,15,3分)如图是由两个长方形组成的工件平面图(单位,mm ),直线l 是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是 mm .【答案】50 【逐步提示】本题考查的圆内接四边形,是垂径定理,解题的关键是根据题意画出图形,利用数形结合进行解答. 根据已知条件得到CM=30,AN=40,根据勾股定理列方程得到OM=40,由勾股定理得到结论. 【详细解答】解:设圆心为O,由题意知,点O 在l 上。
2018年新人教版九年级下册中考数学期末试卷(附答案)
新人教版九年级下册数学中考模拟试卷(附答案)时量:120分钟,满分:120分同学:希望你树立信心,迎难而上,胜利将一定会属于你的!一、细心填一填(每小题3分,共30分)1、掷一枚普通的正方体骰子,出现点数为偶数的概率为 。
2、约分x 2-4x+4x 2-4=3、一元二次方程(2x-1)2-7=x 化为一般形式 4、a 8÷a 2=5、如图1,点A 、B 、C 在⊙O 上,∠ACB =25°, 则∠AOB = 。
6、已知圆锥底面半径为2cm ,每线长为6cm ,则 该圆锥的侧面积是 。
7、已知如图2,△ABC 中,D 在BC 上,且∠1= ∠2,请你在空白处填一个适当的条件:当 时, 则有△ABD ≌△ACD 。
8、将“等腰三角形两底角相等”改写成“如果……,那么……”的形式是 。
9、方程x 2=x 的根是10、一段时间里,某学生记录了其中7天他每天完成家庭作业的时间,结果如下(单位:分钟)80、90、70、60、50、80、60,那么在这段时间内该生平均每天完成家庭作业所需时间约为 分钟。
30分)11、计算2006°+(13)-1的结果是:A 、200613 B 、2009C 、4D 、4312、能判定两个直角三角形全等的是: 图1C 、两条边分别相等D 、斜边与一直角边对应相等13、若x =1是方程x 2+kx +2=0的一个根,则方程的另一个根与K 的值是:A 、2,3B 、-2,3C 、-2,-3D 、2,-314、三角形的外心是指: A 、三角形三角平分线交点B 、三角形三条边的垂直平分线的交点C 、三角形三条高的交点D 、三角形三条中线的交点15、已知如图3,AC 是线段BD 的垂直平分线, 则图中全等三角形的对数是:A 、1对B 、2对C 、3对D 、4对16、分式1a-x ,5ay-xy的最简公分母是:A 、(a-x)(ay-xy)B 、a(a-x)C 、y(a-x)D 、a-x17、两圆半径分别是7和3,圆心距是4,则这两圆的位置关系是: A 、内含B 、内切C 、相交D 、外切18、一扇形面积是3π,半径为3,则该扇形圆心角度数是 A 、120°B 、90°C 、60°D 、150°19、从总体中抽取一部分数据作为样本去估计总体的某种属性,下面叙述正确的是 A 、样本容量越大,样本平均数就越大 B 、样本容量越大,样本的标准差就越大 C 、样本容量越小,样本平均标准差就越大 D 、样本容量越大,对总体的估计就越准确。
2018年九年级第三次模拟考试数学试卷(含答案)
学校 班级 姓名 考号密 封 线 内 不 要 答 题2018年中考模拟试卷(三)(答案)科目 数学满分:120分 考试时间:120分钟一、单项选择题:本大题共10个小题,每小题3分,共30分,每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的字母填入题后的括号内. 1.B ;2.B ;3.B ;4.A ;5.C ;6.C ;7.C ;8.A ;9.B ;10.A ;1.﹣23的相反数是( )A .﹣8B .8C .﹣6D .62.近日,记者从潍坊市统计局获悉,2016年第一季度潍坊全市实现生产总值1256.77亿元,将1256.77亿用科学记数法可表示为(精确到百亿位)( ) A .1.2×1011 B .1.3×1011 C .1.26×1011D .0.13×10123.如图,将一块直角三角板的直角顶点放在直尺的一边上. 如果∠1=50°,那么∠2的度数是( ) A .30° B .40° C .50° D .60°4.如图是由几个大小相同的小正方体搭成的几何体的俯视图,小正方形中数字表示该位置小正方体的个数,则该几何体的左视图是( )A .B .C .D .5.菱形具有、矩形却不具有的性质是( )A .两组对边分别平行B .对角线互相平分C .对角线互相垂直D .对角线相等6.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000. 其中说法正确的有( )A .4个B .3个C .2个D .1个7.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( ) A .100×80﹣100x ﹣80x=7644 B.(100﹣x )(80﹣x )+x 2=7644 C .(100﹣x )(80﹣x )=7644 D .100x +80x=3568.如图,在⊙O 中,若点C 是的中点,∠A=50°,则∠BOC=( )A .40°B .45°C .50°D .60°第7题图 第8题图 第9题图 第10题图9.如图,抛物线y=ax 2+bx +c (a ≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac <b 2; ②方程ax 2+bx +c=0的两个根是x 1=﹣1,x 2=3;③3a +c >0 ④当y>0时,x 的取值范围是﹣1≤x <3⑤当x <0时,y 随x 增大而增大 其中结论正确的个数是( )A .4个B .3个C .2个D .1个10.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间(min )的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的密 封 线 内 不 要 答 题水,则接通电源的时间可以是当天上午的( ) A .7:20B .7:30C .7:45D .7:50二、填空题(本大题共8小题,每小题3分,共24分.把答案写在答题卡中的横线上.) 11.;12.x ≤3; 13.; 14.y=﹣x 2+6x ﹣11;15.8; 16.75; 17.9; 18.;11.在实数范围内分解因式:m 4﹣25= . 12.若=3﹣x ,则x 的取值范围是 .13.如右图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中 阴影部分的面积为 .第15题图 第16题图 第18题图14.将抛物线y=﹣x 2先向下平移2个单位,再向右平移3个单位后所得抛物线的解析式为 . 15.如图,铁路口栏杆短臂长1米,长臂长16米,当短臂端点下降0.5米时,长臂端点升高 米. 16.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为 度.17.一个小组有若干名同学,新年互送一张贺年卡片,已知全组共送贺年卡片72张,那么这个小组共有 名同学.18.如图,折叠矩形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB 、BC 上(含端点),且AB=6cm ,BC=10cm .则折痕EF 的最大值是 cm .三、解答题(一):本大题共5小题,共26分.解答时,应写出必要的文字说明、证明过程或演算步骤.19.(4分)计算:(π﹣3)0+﹣2sin45°﹣()﹣1.解:原式=1+3﹣2×﹣8=2﹣7.20.(4分)解不等式组:解:,解①得x <2, 解②得x ≥﹣1,则不等式组的解集是﹣1≤x <2.21.(6分)如图,在边长为1的正方形网格中,△ABC 的顶点均在格点上,点A 、B 的坐标分别是A (4,3)、B (4,1),把△ABC 绕点C 逆时针旋转90°后得到△A 1B 1C . (1)画出△A 1B 1C ,直接写出点A 1、B 1的坐标;(2)求在旋转过程中,△ABC 所扫过的面积.解:(1)所求作△A 1B 1C 如图所示:由A (4,3)、B (4,1)可建立如图所示坐标系, 则点A 1的坐标为(﹣1,4),点B 1的坐标为(1,4); (2)∵AC===,∠ACA 1=90°∴在旋转过程中,△ABC 所扫过的面积为: S 扇形CAA1+S △ABC =+×3×2=+3.学校 班级 姓名 考号密 封 线 内 不 要 答 题22.(6分)如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A 处,测得河的北岸边点B 在其北偏东45°方向,然后向西走60m 到达C 点,测得点B 在点C 的北偏东60°方向,如图2. (1)求∠CBA 的度数.(2)求出这段河的宽(结果精确到1m ,备用数据≈1.41,≈1.73).解:(1)由题意得,∠BAD=45°,∠BCA=30°,∴∠CBA=∠BAD ﹣∠BCA=15°; (2)作BD ⊥CA 交CA 的延长线于D , 设BD=xm , ∵∠BCA=30°, ∴CD==x ,∵∠BAD=45°, ∴AD=BD=x , 则x ﹣x=60,解得x=≈82,答:这段河的宽约为82m .23.(6分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措.二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(生男生女机会均等,且与顺序有关).(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好是1男1女的概率; (2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中至少有1个女孩的概率.解:(1)画树状图如下:由树状图可知,生育两胎共有4种等可能结果,而这两个小孩恰好是1男1女的有2中可能,∴P (恰好是1男1女的)=. (2)画树状图如下:由树状图可知,生育两胎共有8种等可能结果,这三个小孩中至少有1个女孩的有7种结果,∴P (这三个小孩中至少有1个女孩)=.四、解答题(二):本大题共5小题,共40分.解答时,应写出必要的文字说明、证明过程或演算步骤.24.(7分)为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:频数分布表(1)填空:a= ,b= ; (2)补全频数分布直方图;密 封 线 内 不 要 答 题(3)该校九年级共有600名学生,估计身高不低于165cm 的学生大约有多少人?解:(1)由表格可得, 调查的总人数为:5÷10%=50, ∴a=50×20%=10, b=14÷50×100%=28%, 故答案为:10,28%;(2)补全的频数分布直方图如下图所示, (3)600×(28%+12%)=600×40%=240(人)即该校九年级共有600名学生,身高不低于165cm 的学生大约有240人.25.(7分)如图,一次函数y=x +m 的图象与反比例函数y=的图象交于A ,B 两点,且与x 轴交于点C ,点A 的坐标为(2,1). (1)求m 及k 的值;(2)求点C 的坐标,并结合图象写出不等式组0<x +m ≤的解集.解:(1)由题意可得:点A (2,1)在函数y=x +m 的图象上, ∴2+m=1即m=﹣1, ∵A (2,1)在反比例函数的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x ﹣1,令y=0,得x=1, ∴点C 的坐标是(1,0),由图象可知不等式组0<x +m ≤的解集为1<x ≤2.26.(8分)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若AB=3,BC=4,求四边形OCED 的面积.解:(1)∵CE ∥BD ,DE ∥AC , ∴四边形CODE 是平行四边形, ∵四边形ABCD 是矩形, ∴AC=BD ,OA=OC ,OB=OD , ∴OD=OC ,∴四边形CODE 是菱形; (2)∵AB=3,BC=4,∴矩形ABCD 的面积=3×4=12, ∵S △ODC =S 矩形ABCD =3,∴四边形OCED 的面积=2S △ODC =6.27.(8分)如图,Rt △ABC 中,∠ABC=90°,以AB 为直径作半圆⊙O 交AC 与点D ,点E 为BC 的中点,连接DE .(1)求证:DE 是半圆⊙O 的切线.(2)若∠BAC=30°,DE=2,求AD 的长.学校 班级 姓名 考号密 封 线 内 不 要 答 题(1)证明:连接OD ,OE ,BD , ∵AB 为圆O 的直径, ∴∠ADB=∠BDC=90°,在Rt △BDC 中,E 为斜边BC 的中点, ∴DE=BE ,在△OBE 和△ODE 中,,∴△OBE ≌△ODE (SSS ), ∴∠ODE=∠ABC=90°, 则DE 为圆O 的切线;(2)在Rt △ABC中,∠BAC=30°, ∴BC=AC ,∵BC=2DE=4, ∴AC=8,又∵∠C=60°,DE=CE ,∴△DEC 为等边三角形,即DC=DE=2, 则AD=AC ﹣DC=6.28.(10分)如图,抛物线经过A (﹣1,0),B (5,0),C (0,)三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P ,使PA +PC 的值最小,求点P 的坐标;(3)点M 为x 轴上一动点,在抛物线上是否存在一点N ,使以A ,C ,M ,N 四点构成的四边形为平行四边形?若存在,求点N 的坐标;若不存在,请说明理由.解:(1)设抛物线的解析式为y=ax 2+bx +c (a ≠0),∵A (﹣1,0),B (5,0),C (0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x 2﹣2x ﹣;(2)∵抛物线的解析式为:y=x 2﹣2x ﹣, ∴其对称轴为直线x=﹣=﹣=2,连接BC ,如图1所示, ∵B (5,0),C (0,﹣),∴设直线BC 的解析式为y=kx +b (k ≠0),密 封 线 内 不 要 答 题∴,解得,∴直线BC 的解析式为y=x ﹣, 当x=2时,y=1﹣=﹣, ∴P (2,﹣);(3)存在.如图2所示,①当点N 在x 轴下方时,∵抛物线的对称轴为直线x=2,C (0,﹣), ∴N 1(4,﹣); ②当点N 在x 轴上方时,如图,过点N 2作N 2D ⊥x 轴于点D , 在△AN 2D 与△M 2CO 中,∴△AN 2D ≌△M 2CO (ASA ), ∴N 2D=OC=,即N 2点的纵坐标为.∴x 2﹣2x ﹣=, 解得x=2+或x=2﹣,∴N 2(2+,),N 3(2﹣,).综上所述,符合条件的点N 的坐标为(4,﹣),(2+,)或(2﹣,).。
【中考试卷】2018年九年级数学中考冲刺练习卷 三(含答案)
2018年九年级数学中考冲刺练习卷一、选择题:1.根据近三年的统计显示,新昌大佛寺旅游景点的旅游人次呈逐年增长趋势,预计2016年能达到9690000人次,将9690000用科学记数法表示为()A.0.969×107B.9.69×107C.9.69×106D.969×1042.如图,阴影部分的面积是( )A.3.5xy B.4.5xy C.4xy D.2xy3.下列四个图形:其中是轴对称图形,且对称轴的条数为2的图形的个数是()A.4 B.3 C.2 D.14.能将三角形面积平分的是三角形的( )A.角平分线B.高C.中线D.外角平分线5.如图,已知∠1=60°,如果CD∥BE,那么∠B的度数为()A.70°B.100°C.110°D.120°6.x是9的平方根,y是64的立方根,则x+y的值为( )A.3 B.7 C.3,7 D.1,77.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,2)重合,则点A的坐标是()A.(2,5)B.(﹣8,5)C.(﹣8,﹣1)D.(2,﹣1)8.如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )9.若a<1,化简=( )10.下列说法中正确的是()A.“任意画出一个等边三角形,它是轴对称图象”是随机事件B.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次C.“概率为0.0001的事件”是不可能事件D.“任意画出一个平行四边形,它是中心对称图形”是必然事件11.如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于()A.5:8 B.3:8 C.3:5 D.2:512.已知抛物线y=x2﹣x,它与x轴的两个交点间的距离为()A.0 B.1 C.2 D.4二、填空题:13.分解因式:a3﹣2a2+a= .14.若+有意义,则(﹣2)a= .15.将下列分式约分:(1)= ;(2)= ;(3)= .16.若直角三角形的三边长分别为x,6,8,则x2=_______.17.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.18.如图,正方形ABCD的边长为1cm,以CD为直径在正方形内画半圆,再以C为圆心,1cm长为半径画弧BD,则图中阴影部分的面积为.三、计算题:19.解方程组:20.解不等式组:四、解答题:21.如图,已知在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.22.已知AB是⊙O的直径,点P是直径AB上任意一点,过点P作弦CD⊥AB,垂足为点P,过B 点的直线与线段AB的延长线交于点F,且∠F=∠ABC.(1)如图1,求证:直线BF是⊙O的切线;(2)如图2,当点P与点O重合时,过点A作⊙O的切线交线段BC的延长线于点E,在其它条件不变的情况下,判断四边形AEBF是什么特殊的四边形?证明你的结论.23.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?24.已知抛物线y=ax2﹣4a(a>0)与x轴相交于A,B两点(点A在点B的左侧),点P 是抛物线上一点,且PB=AB,∠PBA=120°,如图所示.(1)求抛物线的解析式.(2)设点M(m,n)为抛物线上的一个动点,且在曲线PA上移动.①当点M在曲线PB之间(含端点)移动时,是否存在点M使△APM的面积为?若存在,求点M的坐标;若不存在,请说明理由.②当点M在曲线BA之间(含端点)移动时,求|m|+|n|的最大值及取得最大值时点M的坐标.参考答案1.C.2.A.3.B4.C5.D6.D.7.D8.D9.B10.D11.A12.C13.答案为:a(a﹣1)2.14.答案为:1.15.答案为:,﹣,1.16.答案为:100或2817.答案为:25°.18.答案为:cm219.答案为:x=5,y=-2;20.略21.连结AC,取AC的中点M,再分别连结ME、MF,可得EM=FM.22.(1)证明:如图1中,∵∠A=∠C,∠F=∠ABC,∴∠ABF=∠CPB,∵CD⊥AB,∴∠ABF=∠CPB=90°,∴直线BF是⊙O的切线.(2)结论:四边形AEBF是平行四边形.证明:如图2中,连接AC、BD.∵OA=OB,∴OC=OD,∴四边形ACBD是平行四边形∴AD∥BC,即AF∥BE,又∵AE切⊙O于点A,∴AE⊥AB,同理BF⊥AB,∴AE∥BF,∴四边形AEBF是平行四边形.23.24.解:(1)如图1,令y=0代入y=ax2﹣4a,∴0=ax2﹣4a,∵a>0,∴x2﹣4=0,∴x=±2,∴A(﹣2,0),B(2,0),∴AB=4,过点P作PC⊥x轴于点C,∴∠PBC=180°﹣∠PBA=60°,∵PB=AB=4,∴cos∠PBC=,∴BC=2,由勾股定理可求得:PC=2,∵OC=OC+BC=4,∴P(4,2),把P(4,2)代入y=ax2﹣4a,∴2=16a﹣4a,∴a=,∴抛物线解析式为;y=x2﹣;x k b1 . co m(2)∵点M在抛物线上,∴n=m2﹣,∴M的坐标为(m,m2﹣),①当点M在曲线PB之间(含端点)移动时,∴2≤m≤4,如图2,过点M作ME⊥x轴于点E,交AP于点D,设直线AP的解析式为y=kx+b,把A(﹣2,0)与P(4,2)代入y=kx+b,得:,解得∴直线AP的解析式为:y=x+,令x=m代入y=x+,∴y=m+,∴D 的坐标为(m , m+),∴DM=(m+)﹣(m 2﹣)=﹣m 2+m+,∴S △A P M =DM •AE+DM •CE=DM (AE+CE )=DM •AC=﹣m 2+m+4当S △A P M =时,∴=﹣m 2+m+4,∴解得m=3或m=﹣1,∵2≤m ≤4,∴m=3,此时,M 的坐标为(3,);②当点M 在曲线BA 之间(含端点)移动时,∴﹣2≤m ≤2,n <0,当﹣2≤m ≤0时,∴|m|+|n|=﹣m ﹣n=﹣m 2﹣m+=﹣(m+)2+,当m=﹣时,∴|m|+|n|可取得最大值,最大值为,此时,M 的坐标为(﹣,﹣),当0<m ≤2时,∴|m|+|n|=m ﹣n=﹣m 2+m+=﹣(m ﹣)2+,当m=时,∴|m|+|n|可取得最大值,最大值为,此时,M 的坐标为(,﹣),综上所述,当点M 在曲线BA 之间(含端点)移动时,M 的坐标为(,﹣)或(﹣,﹣)时,|m|+|n|的最大值为.。
2018年中考数学专题复习基础训练及答案(49页)
目录
第一部分数与代数第一章数与式
第1讲实数
第2讲代数式
第3讲整式与分式
第1课时整式
第2课时因式分解
第3课时分式
第4讲二次根式
第二章方程与不等式
第1讲方程与方程组
第1课时一元一次方程与二元一次方程组
第2课时分式方程
第3课时一元二次方程
第2讲不等式与不等式组
第三章函数
第1讲函数与平面直角坐标系
第2讲一次函数
第3讲反比例函数
第4讲二次函数
第二部分空间与图形第四章三角形与四边形
第1讲相交线和平行线
第2讲三角形
第1课时三角形
第2课时等腰三角形与直角三角形
第3讲四边形与多边形
第1课时多边形与平行四边形
第2课时特殊的平行四边形
第3课时梯形
第五章圆
第1讲圆的基本性质
第2讲与圆有关的位置关系
第3讲与圆有关的计算
第六章图形与变换
第1讲图形的轴对称、平移与旋转
第2讲视图与投影
第3讲尺规作图
第4讲图形的相似
第5讲解直角三角形。
江苏省南通市2018届九年级中考模拟考试三数学试题(解析版)
九年级数学模拟试卷一、选择题(每小题3分,共30分)1.)A.±B. C. ±2 D. 2【答案】D【解析】分析:根据立方根的定义求解即可,如果一个数x 的立方等于a ,即x 3=a ,那么x 叫做a 的立方根,即x故选D. 点睛:本题考查了立方根的求法,熟练掌握立方根的定义是解答本题的关键.2. 太阳半径约为696 000 km ,将696 000用科学记数法表示为( )A. 6.96×105B. 69.6×104C. 6.96×103D. 0.696×108【答案】A【解析】 试题解析:696000=6.96×105. 故选A3. 下列计算,正确的是( )A. a 2-a =aB. a 2·a 3=5aC. a 9÷a 3=a 3D. (a 3)2=5a【答案】B【解析】 分析:根据合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方运算法则逐项及计算即可得到答案. 详解:A. ∵ a 2与a 不是同类项,不能合并,故不正确;B. ∵ a 2·a 3=5a ,故正确;C. ∵ a 9÷a 3=a 6 ,故不正确;D. (a 3)2=6a ,故不正确;故选B.点睛:本题考查了整式的运算,熟练掌握合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方运算法则是解答本题的关键.4. 下列图形中既是轴对称图形又是中心对称图形的是()A. 正五角星B. 等腰梯形C. 平行四边形D. 矩形【答案】A【解析】分析:根据轴对称图形和中心对称图形的定义逐项分析即可.详解:A. 正五角星既是轴对称图形又是中心对称图形,故正确;B. 等腰梯形是轴对称图形,不是中心对称图形,故不正确;C. 平行四边形不是轴对称图形,是中心对称图形,故不正确;D. 矩形是轴对称图形,不是中心对称图形,故不正确;故选A.点睛:本题考查了轴对称图形和中心对称图形的识别.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形.一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5. 一个几何体的三视图如图所示,则这个几何体是()A. 球体B. 圆锥C. 棱柱D. 圆柱【答案】D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.6. 如图,圆锥的底面半径为3,母线长为6,则侧面积为()A. 8πB. 6πC. 12πD. 18π【答案】D【解析】分析:把圆锥的底面半径为3,母线长为6,代入圆锥的侧面积公式S=πrl计算即可.详解:由题意得,S=π×3×6=18π.故选D.点睛:本题考查了圆锥的侧面积计算公式,熟练掌握圆锥的侧面积公式S=πrl是解答本题的关键.7. 如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是()A. 以点B为圆心,OD为半径的弧B. 以点C为圆心,DC为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DC为半径的弧【答案】D【解析】分析:根据题意,所作出的是∠OBF=∠AOB,,根据作一个角等于已知角的作法,MN是以点E为圆心,DC为半径的弧.故选D.8. 在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.9. 如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.53B.35C.222D.23【答案】B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.10. 如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC的度数为()A. 60°B. 75°C. 90°D. 67.5°【答案】D【解析】分析:由题意知,当CD⊥CE时,CD取得最大值,此时A、C、E、D共圆,由AC=C E可得∠ADC=∠CDE,从而可求出∠CDE的度数,再根据直角三角形两直角互余求出∠DEC的度数.详解::由题意知,当CD⊥CE时,CD取得最大值,此时A、C、E、D共圆.∵点C为线段AB的中点,∴AC=BC.∵CE=CB,∴AC=CE,∴∠ADC=∠CDE,∵∠ADE=45º,∴∠DEC=45º÷2=22.5º,∴∠DEC =90º-22.5º=67.5º.故选D.点睛:本题考查了共圆的条件,圆周角定理的推论,直角三角形两锐角互余,判断出A 、C 、E 、D 共圆是解答本题的关键.二、填空题(每小题3分,共24分)11. 单项式3x 2y 的次数为 _____.【答案】3【解析】单项式.【分析】根据单项式的概念,把原题单项式变为数字因式与字母因式的积,其中数字因式即为单项式的系数,所以单项式3x 2y 的系数为3.12. 分解因式:3m (2x ―y )2―3mn 2=______.【答案】()()322m x y n x y n -+--.【解析】先提取公因式3m ,再根据平方差公式进行二次分解.平方差公式:a 2-b 2=(a-b )(a+b ).解:3m (2x-y )2-3mn 2=3m[(2x-y )2-n 2]=3m (2x-y-n )(2x-y+n ).故答案为3m (2x-y-n )(2x-y+n ).本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.【答案】52【解析】分析:因为AC =AD =DB ,所以可设∠B =x °,即可表示∠BAD =x °,∠ADC =∠ACD =2x °; 根据三角形的内角和等于180°,列方程求得x 的值,便可得到∠ADC 的度数.详解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C .∵∠ADC =∠B +∠BAD ,∴∠ADC =∠C =2∠B .设∠B =x °,则∠C =2x °.∵在△ABC 中,∠BAC +∠B +∠C =180°,∴x +2x +102=180.解得:x =26.∴∠ADC =2x =52°.故答案为52.点睛:本题考查了等腰三角形的性质,三角形外角的性质及三角形内角和的问题,解答本题的关键是熟练掌握等腰三角形的性质和三角形外角的性质.14. 设一元二次方程x 2-3x -1=0的两根分别为x 1,x 2,则x 1+x 2(x 22-3x 2)=____.【答案】3【解析】试题解析:有题意可知,222310,x x --=2223 1.x x ∴-= 由韦达定理可得,12123, 1.b c x x x x a a+=-=⋅==-2122212(3)x x x x x x --=-===故答案为 点睛:一元二次方程20(a 0)++=≠ax bx c 根与系数的关系满足: 1212,.b c x x x x a a+=-⋅= 15. 如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =_____cm .【答案】4【解析】【分析】【详解】∵AB=2cm ,AB=AB 1,∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE,∴∠ABE=∠AB 1E=90°∵AE=CE∴AB 1=B 1C∴AC=4cm .16. 如图,已知⊙C 的半径为3,圆外一点O 满足5OC =,点P 为⊙C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=°,l 不经过点C ,则AB 的最小值为_____.【答案】4【解析】分析:连接OP 、OC 、PC ,如图所示,则有OP ≥OC -PC ,当O 、P 、C 三点共线时,OP =OC -PC ; 由∠APB =90°可知点P 在以AB 为直径的圆上,则⊙O 与⊙C 相切时,OP 取得最小值,据此求解即可. 详解:连接OP 、OC 、PC ,如图所示,则有OP ≥OC -PC ,当O 、P 、C 三点共线时,OP =OC -PC . ∵∠APB =90°,OA =OB ,∴点P 在以AB 为直径的圆上,∴⊙O 与⊙C 相切时,OP 取得最小值,则OP ′=OC -CP ′=2,∴AB =2OP ′=4.故答案为4.点睛:本题考查了圆与圆的位置关系,两点之间线段最短,判断出当⊙O与⊙C相切时,OP取得最小值是解答本题的关键.17. 已知实数m,n满足m-n2=2,则代数式m2+2n2+4m-1的最小值等于______.【答案】11【解析】分析:已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.详解:∵m-n2=2,即n2=m-2≥0,m≥2,∴原式=m2+2m-4+4m-1=m2+6m+9-14=(m+3)2-14,∴代数式m2+2n2+4m-1的最小值等于(2+3)2-14=11.故答案为11.点睛:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.18. 当实数b0=_______,对于给定的两个实数m和n,使得对任意的实数b,有(m-b0)²+(n-b0)²≤(m-b)²+(n-b)².【答案】m n 2【解析】分析:由于b是任意的,所以可令b=x,把(m-b)²+(n-b)²整理配方,根据二次函数的性质即可求得答案. 详解:令b=x,则(m-b)²+(n-b)²=(m-x)²+(n-x)²=2x2-2mx-2nx+m2+n2=2x2-2mx-2nx+m2+n2=2[x2-(m+n)x] +m2+n2=2(x -2m n +)2 +m 2+n 2-2()2m n + =2(x -2m n +)2 + 2()2m n -, ∴当x =2m n +时,2(x -2m n +) + 2()2m n -取得最小值, ∴当b 0=2m n +时,有(m -b 0)²+(n -b 0)²≤ (m -b )²+(n -b )²总成立. 故答案为2m n +. 点睛:本题考查了配方法的应用和利用二次函数求最值,熟练掌握配方的方法和二次函数的性质是解答本题的关键.三、解答题(本大题共10小题,共96分)19. (1)计算(-2)2-tan45°+(-3)0-21()3-; (2)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.【答案】(1)5;(2)12. 【解析】分析:(1)根据乘方的意义、特殊角的三角函数值、零指数幂和负整数幂的意义计算即可;(2)按照先算乘除,后算加减的顺序计算,根据多项式除以单项式的法则结算(4ab 3-8a 2b 2)÷4ab ,根据平方差公式计算(2a +b )(2a -b ),合并同类项后把a =2,b =1代入求值.详解:(1).原式=4-1+1-9=-5( 2).原式=b 2-2ab+4a 2-b2=4a 2-2ab ,当a=2,b=1时,原式=4×22-2×2×1=12点睛:本题考查了实数的运算和整式的混合运算,熟练掌握实数的运算法则是解(1)的关键,熟练掌握整式的运算法则是解(2)的关键. 20. 若关于x 的不等式组()x x 10{233x 544x 13a a++>++>++恰有三个整数解,求实数a 的取值范围. 【答案】312a <≤【解析】【分析】根据不等式组恰有三个整数解,即可确定不等式组的解集,从而即可得到一个关于a 不等式组,解之即可.【详解】解:解x x 1023++>得:2x 5>-; 解()3x 544x 13a a ++>++得:x 2a <.∴不等式组的解为2x 25a -<<. ∵关于x 的不等式组()x x 10233x 544x 13a a +⎧+>⎪⎨⎪++>++⎩恰有三个整数解,∴223a <≤,解得312a <≤. ∴实数a 的取值范围为312a <≤. 21. 为增强学生环保意识,某中学组织全校3000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第二组(69.5~79.5)”的扇形的圆心角 度;(2)若成绩在90分以上(含90分)的同学可获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为多少?【答案】(1)72°;(2)960名;(3)23.【解析】 试题分析:(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.试题解析:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角=2050×360°=144°, (2)估计该校获奖的学生数=16100%50×2000=640(人); (3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P (选出的两名主持人“恰好为一男一女”)=812=23.故答案为23. 22. 如图,某测量船位于海岛P 的北偏西60°方向,距离海岛200海里的A 处,它沿正南方向航行一段时间后,到达位于海岛P 的西南方向上的B 处.求测量船从A 处航行到B 处的路程(结果保留根号). 【答案】3)海里.【解析】解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值.【分析】构造直角三角形,将AB 分为AE 和BE 两部分,分别在Rt△BEP 和Rt△BEP 中求解.23. 从三角形一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的优美线.(1)如图,在△ABC 中,AD 为角平分线,∠B=50°,∠C=30°,求证:AD 为△ABC 的优美线;(2)在△ABC 中,∠B=46°,AD 是△ABC 的优美线,且△ABD 是以AB 为腰的等腰三角形,求∠BAC 的度数;(3)在△ABC 中,AB=4,AC=2,AD 是△A B C 的优美线,且△ABD 是等腰三角形,直接写出优美线AD 的长.【答案】(1)证明见解析;(2)113°.(3)优美线AD 433或2-4 【解析】 试题分析:(1)根据三角形的优美线的定义,只要证明△ABD 是等腰三角形,△CAD ∽△CBA 即可解决问题,(2)如图2中,分两种情形讨论求解①若AB =AD ,△CAD ∽△CBA ,则∠B =∠ADB =∠CAD ,则AC ∥BC ,这与△ABC 这个条件矛盾, ②若AB =BD , △CAD ∽△CBA ,(3)如图3中,分三种情形讨论①若AD =BD , △CAD ∽△CBA ,则,AD CD AC AB AC BC==设BD =AD =x ,CD =y ,可得242x y x y ==+,解方程即可, ②若AB =AD =4,由AD CD AC AB AC BC==,设BD =AD =x ,CD =y ,可得2424x y y ==+,解方程即可, ③若AB =AD ,显然不可能.(1)证明:∵∠B=50°,∠C=30°,∴∠BAC=100°, ∵AD 平分∠BAC ,∴∠BAD=∠DAC=50°, ∴∠B=∠BAD=50°,∴DB=DA , ∴△ABD 是等腰三角形,∵∠C=∠C ,∠DAC=∠B=50°, ∴△CAD ∽△CBA ,∴线段AD 是△ABC 的优美线.(2)若AB=AD ,舍去,(理由若△CAD ∽△CBA ,则∠B=∠ADB=∠CAD ,则AC ∥BC ,)若AB=BD,∠B=46°,∴∠BAD=∠BDA=67°,∵△CAD∽△CBA,∴∠CAD=∠B=46°,∴∠BAC=67°+46°=113°.(3)43AD=或42-4AD=.24. 如图1,已知抛物线2y ax bx c=++与y轴交于点A(0,﹣4),与x轴相交于B(﹣2,0)、C(4,0)两点,O为坐标原点.(1)求抛物线的解析式;(2)设点E在x轴上,∠OEA+∠OAB=∠ACB,求BE的长;(3)如图2,将抛物线y=ax2+bx+c向右平移n(n>0)个单位得到的新抛物线与x轴交于M、N(M在N左侧),P为x轴下方的新抛物线上任意一点,连PM、PN,过P作PQ⊥MN于Q,PQ PQMQ NQ+是否为定值?请说明理由.图1 图2【答案】(1)y=12x2-x-4;(2)14或10;(3)是定值,理由见解析.【解析】分析:(1)由题意设抛物线解析式为y=a(x+2)(x-4),把(0,-4)代入求出a即可.(2)由tan∠ACB=OAOC=1,tan∠OAB=OBOA=12,可得tan∠OEA=13,即OAOE=13,从而根据正切函数的定义求出OE的值,进而可求BE的值;(3)设平移后的解析式为y=12(x+2-n)(x-4-n) ,点P的坐标为P(t,12(t+2-n)(t-4-n)),表示出PQ、MQ、NQ后,代入PQMQ+PQNQ化简即可.详解:设(1)y=a(x+2)(x-4),将(0,-4)代入,得-8a=-4a,∴a=12,∴y=12(x+2)(x-4),即y=12x2-x-4;(2). Rt△AOC中,tan∠ACB=OAOC=1;Rt△AOC中,tan∠OAB=OBOA=12,∵∠OEA=∠ACB-∠OAB,∴tan∠OEA=112111x2-+=13,即OAOE=13,∵OA=4,∴OE=12,∴BE=12+2=14或BE=12-2=10,答:BE的长为14或10;(3)平移后:y=12(x+2-n)(x-4-n) ,∴ M(-2+n,0), N(4+n,0),设P(t,12(t+2-n)(t-4-n)),则PQ=-12(t+2-n)(t-4-n),MQ=t-(-2-n)=t+2-n, NQ=4+n-t,∴PQMQ+PQNQ=()()1t2n t4n2t2n-+---+-+()()1t2n t4n24n t-+---+-=-12(t-4-n)+12(t+2-n)=3为定值.点睛:本题是二次函数综合题,考查了待定系数法求函数解析式,锐角三角函数的定义及性质,二次函数的平移变换,题目比较难,属于中考压轴题.。
2018年九年级数学3
2018年初中毕业学业水平考试模拟检测试卷(3)数 学一、选择题(本大题共8个小题,每小题3分,满分24分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.下列计算正确的是( )A .a 3+a 2=2a 5B .a 6÷a 2=a 3 C .(a -b)2=a 2-b 2 D .(-2a 3)2=4a 62.根据央视报道,去年我国汽车尾气排放总量大约为47 000 000吨.将47 000 000用科学记数法表示为( )A .0.47×108B .4.7×107C .47×107D .4.7×1063.若代数式11x -有意义,则实数x 的取值范围是( )A .x ≠1B .x ≥0C .x ≠0 D.x ≥0且x ≠1 4.下列说法正确的是:( )A .一个游戏的中奖概率是110,则做10次这样的游戏一定会中奖B .多项式22x x -分解因式的结果为(2)(2)x x x +-C .一组数据6,8,7,8,8,9,10的众数和中位数都是8D .若甲组数据的方差S 2甲=0.01,乙组数据的方差S 2乙=0.1,则乙组数据比甲组数据稳定5.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A .10πB .15πC .20πD .30π6.如图2,AD 是在Rt △ABC 斜边BC 上的高,将△ADC 沿AD 所在直线折叠,点C 恰好落在BC 的中点E 处,则∠B 等于( ) A .25° B .30° C .45° D .60° 7.如图3,在⊙O 中,OC ∥AB ,∠A =20°,则∠1等于( )图2ECBADAB OC图31A .40°B .45° B .50° D .608.如图,抛物线y =a x 2+b x +c 的图象交x 轴于A(-2,0)和点B ,交y 轴负半轴于点C ,且OB =OC.下列结论:①2b -c =2;②a =12;③ac =b -1;④a +b c>0.其中正确的结论有( )A .1个B .2个C .3个D .4个二、填空题(本大题共6小题,每小题3分,共18分)9. 4的算术平方根是 ;9的平方根是 ;8-的相反数是 ;10.若代数式25x +与121x +的值相等,则x = ;11.已知⊙O 的直径是16cm ,点O 到同一平面内直线l 的距离为9cm ,则直线l 与⊙O的位置关系是 ; 12.如下图,Rt △ABC 中,∠ABC =90°,DE 垂直平分AC ,垂足为O ,AD ∥BC ,且AB =3,BC =4,则AD 的长为 ;13.如图,点A 在双曲线y = 1 x 上,点B 在双曲线y = 3x上,且AB ∥x 轴,C 、D 在x轴上,若四边形ABCD 为矩形,则它的面积为 ;(第12题图) (第13题图) (第14题图)14.正方形A 1B 1C 1O ,A 2B 2C 2C 1,A 3B 3C 3C 2,…按如图的方式放置,点A 1,A 2,A 3,…和点C 1,C 2,C 3,…分别在直线y =x +1和x 轴上,则点B 2 018的纵坐标是 .三、解答题(本大题共9小题,共58分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分5分)计算:8+||22-3-(13)- 2-(2018+2)0.16.(本题满分5分)先化简,再求值:2221()211x xx x x x+÷--+-,请你从﹣1≤x<3的范围内选取一个你喜欢的整数作为x的值.17.(本题满分5分)解不等式组3(1)511242x xxx-<+⎧⎪⎨-≥-⎪⎩并求它的所有的非负整数解.18.(本题满分6分) 某地为了鼓励居民节约用水,决定实行两级收费制,即每月用水量不超过12吨(含12吨)时,每吨按政府补贴优惠价收费;每月超过12吨,超过部分每吨按市场调节价收费,小黄家1月份用水24吨,交水费42元.2月份用水20吨,交水费32元.(1)求每吨水的政府补贴优惠价和市场调节价分别是多少元;(2)设每月用水量为x吨,应交水费为y元,写出y与x之间的函数关系式;(3)小黄家3月份用水26吨,他家应交水费多少元?19.(本题满分6分)如图,△ABC 各顶点坐标分别为:A (-4,4),B (-1,2),C (-5,1). (1)画出△ABC 关于原点O 为中心对称的△A 1B 1C l ;(2)以O 为位似中心,在x 轴下方将△ABC 放大为原来的2倍形成△A 2B 2C 2;请写出下列各点坐标A 2: , B 2: ,C 2: ;(3)观察图形,若△A l B l C l 中存在点P 1(,)m n --,则在△A 2B 2C 2中对应点P 2的坐标为: .20.(本题满分6分) 如图,禁渔期间,我渔政船在A 处发现正北方向B 处有一艘可疑船只,测得A ,B 两处距离为200海里,可疑船只正沿南偏东45°方向航行.我渔政船迅速沿北偏东30°方向前去拦截,经历4小时刚好在C 处将可疑船只拦截.求该可疑船只航行的平均速度(结果保留根号).21.( 本题满分7分)如图,AB是⊙O的直径,∠BAC=90°,四边形EBOC是平行四边形,EB交⊙O于点D,连接CD并延长交AB的延长线于点F.(1)求证:CF是⊙O的切线;(2)若∠F=30°,EB=4,求图中阴影部分的面积(结果保留根号和π)22.(8分))某中学需在短跑、长跑、跳远、跳高四类体育项目中各选拔一名同学参加市中学生运动会.根据平时成绩,把各项目进入复选的学生情况绘制成如下不完整的统计图:(1)参加复选的学生总人数为人,扇形统计图中短跑项目所对应圆心角的度数为度;(2)补全条形统计图,并标明数据;(3)求在跳高项目中男生被选中的概率.23.(10分)如图,抛物线y=x2+b x+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,-3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B 和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.2018年初中毕业学业水平考试模拟检测试卷参考答案(3)数 学一、选择题:二.填空题;9. 2, 3, 8 10. 1 11. 相离 12.82513. 2 . 14. 22017.三.解答题: 15.(5分)解:原式=22+3-22-9-1 ……………………………4分=-7. ……………………………………5分16.(5分)解:原式=2(1)21(1)(1)x x x x x x x +-+÷--= 22(1)(1)(1)11x x x x x x x x +-=-+- …………………………3分由﹣1≤x <3,x 为整数,得到x =﹣1,0,1,2,经检验x =﹣1,0,1不合题意,舍去,…………………….………4分 则当x =2时,原式=4.……………………………5分17.(5分)解:3(1)51,124,2x x x x -<+⎧⎪⎨-≥-⎪⎩ ① ②解不等式①,得x >-2 …………………2分解不等式②,得x ≤73……………………4分∴不等式组的解集为-2<x ≤73它的所有的非负整数解为0,1,2 ……………5分18.(6分)解:(1)设每吨水的政府补贴优惠价为a 元,市场调节价为b 元.根据题意得⎩⎪⎨⎪⎧12a +(24-12)b =42,12a +(20-12)b =32............2分解得:⎩⎪⎨⎪⎧a =1,b =2.5.答:每吨水的政府补贴优惠价为1元,市场调节价为2.5元.……. 3分 (2)∵当0≤x ≤12时,y =x ; 当x >12时,y =12+(x -12)×2.5=2.5x -18,……………4分答案图∴所求函数关系式为:y =⎩⎪⎨⎪⎧x (0≤x ≤12),2.5x -18 (x >12)...........5分(3)∵x =26>12,9分∴把x =26代入y =2.5x -18,得:y =2.5×26-18=47(元). …………6分19. (6分)解: (第1小题2分,2小题每空1分,3小题1分,共6分) (1)图略; (2) (-4,4) (2,-4) (10,-2) (3)(2m,2n )20. (6分)解:如图,过点C 作CH ⊥AB 于H ,则△BCH 是等腰直角三角形.…1分设CH =x ,则BH =x ,AH =CH ÷tan 30°.……...2分 ∵AB =200,∴x=200.∴x=1).………………..3分 ∴BC=).…………………4分∵两船行驶4小时相遇,∴可疑船只航行的平均速度=4 =).………………6分21.(7分)(1)证明:如图连接OD .∵四边形OBEC 是平行四边形, ∴OC ∥BE ,∴∠AOC=∠OBE ,∠COD=∠ODB ,…………….1分 ∵OB=OD ,∴∠OBD=∠ODB , ∴∠DOC=∠AOC , 在△COD 和△COA 中,OC OC COD COA OD OA =⎧⎪∠=∠⎨⎪=⎩, ∴△COD ≌△COA ,……………………2分 ∴∠CAO=∠CDO=90°, ∴CF ⊥OD ,∴CF 是⊙O 的切线.…………………………3分 (2)解:∵∠F=30°,∠ODF=90°,∴∠DOF=∠AOC=∠COD=60°, ∵OD=OB ,∴△OBD 是等边三角形,………………………4分 ∴∠DBO =60°,∵∠DBO=∠F+∠FDB , ∴∠FDB=∠EDC=30°, ∵EC ∥OB ,∴∠E=180°﹣∠OBD=120°, ∴∠ECD=180°﹣∠E ﹣∠EDC=30°, ∴EC=ED=BO=DB , ∵EB=4,∴OB=OD═OA=2,………………………5分 在RT △AOC 中,∵∠OAC=90°,OA=2,∠AOC=60°,∴∴S 阴=2•S △AOC ﹣S 扇形OAD =2×12 43……… 7分22.(8分)解:(1)25 , 72;………….4分 (2).如下图:….………………6分(3)∵复选中的跳高总人数为9人,跳高项目中的男生共有4人, ∴跳高项目中男生被选中的概率=49.………………………8分23.(10分)解:(1)把B 、C 两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y =x 2﹣2x ﹣3;…… 2分 (2)如图1,连接BC ,过Py 轴的平行线,交BC 于点M ,交x 轴于点H ,在y =x 2﹣2x ﹣3中,令y =0可得0=x 2﹣2x﹣3,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S△ABC=12AB•OC=12×4×3=6,∵B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,………………………….3分设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),∵P点在第四限,∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,∴S△PBC=12PM•OH+12PM•HB=12PM•(OH+HB)=12PM•OB=32PM,∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,……..4分∵PM=﹣x2+3x=﹣(x﹣32)2+94,∴当x=32时,PM max=94,则S△PBC=32×94=278,此时P点坐标为(32,﹣154),……………………..5分S四边形ABPC=S△ABC+S△PBC=6+278=758,即当P点坐标为(32,﹣154)时,四边形ABPC的面积最大,最大面积为758;…6分(3)如图2,设直线m交y轴于点N,交直线l于点G,则∠AGP=∠GNC+∠GCN,当△AGB和△NGC相似时,必有∠AGB=∠CGB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AON和Rt△NOB中九年级数学 (3)答案第5页(共5页)∴Rt △AON ≌Rt △NOB (ASA ),∴ON=OA=1,……………………..8分∴N 点坐标为(0,﹣1),设直线m 解析式为y =kx +d ,把B 、N两点坐标代入可得,解得, ∴直线m 解析式为y =13x ﹣1,………………9分 即存在满足条件的直线m ,其解析式为y =13x ﹣1. 当Q 点在x 轴上方时直线m 的解析式为:y =﹣13x +1………………………10分。
【中考复习】2018年 九年级数学中考 课后练习卷 3.28(含答案)
2018年九年级数学中考课后练习卷 3.28一、选择题:1.2016年4月14日日本熊本县发生6.2级地震,据NHK报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为()A.2.36×108B.2.36×109C.2.36×1010D.2.36×10112.式子x+y,﹣2x,ax2+bx﹣c,0,,﹣a,中()A.有5个单项式,2个多项式B.有4个单项式,2个多项式C.有3个单项式,3个多项式D.有5个整式3.下列各式计算正确的是()A.2a2+3a2=5a4B.(﹣2ab)3=﹣6ab3C.(3a+b)(3a﹣b)=9a2﹣b2D.a3•(﹣2a)=﹣2a34.下列说法:①线段AB、CD互相垂直平分,则AB是CD的对称轴,CD是AB的对称轴;②如果两条线段相等,那么这两条线段关于直线对称;③角是轴对称图形,对称轴是这个角的平分线.其中错误的个数有()A.0个B.1个C.2个D.3个5.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A.BC=B′C′B.∠A=∠A′C.AC=A′C′D.∠C=∠C′6.下列解方程过程中,变形正确的是()。
A.由2x-1=3,得2x=3-1 (B)由2x-3(x+4) =5, 得2x-3x-4=5C.由-75x=76,得x=-D.由2x-(x-1)=1,得2x-x=07.化简÷(1+)的结果是( )8.不等式组的解集在数轴上表示为()9.3tan60°的值为()A.B.C.D.310.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是( )11.下列函数表达式中,y是x的正比例函数的是()A.y=﹣2x2B.y=C.y=D.y=x﹣212.如图,在以点O为圆心的半圆中,AB为直径,且AB=4,将该半圆折叠,使点A和点B落在点O处,折痕分别为EC和FD,则图中阴影部分面积为()A.4﹣B.4﹣C.2﹣D.2﹣二、填空题:13.若的平方根为±3,则a=14.在平面直角坐标系中,点A的坐标为(-1,3),线段AB∥x轴,且AB=4,则点B的坐标为.15.如图,在△ABC中,∠B=50°,在同一平面内,将△ABC绕点A逆时针方向旋转到△AB′C′的位置,使得AB′⊥BC,连接CC′,则∠AC′C= 度.16.在同一时刻物体的高度与它的影长成比例,在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为20米,那么高楼的实际高度是米.17.抛物线y=x2+mx+n可以由抛物线y=x2向下平移2个单位,再向右平移3个单位得到,则mn值为.18.如图,四边形ABCD内接于圆,AD=DC,点E在CD的延长线上.若∠ADE=80°,则∠ABD的度数是.三、解答题:19.如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,则∠BDF的度数是多少?20.如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,(1)求证:AE平分∠DAO;(2)若AB=6,AC=8,求OE的长.21.某商店需要购进A.B两种商品共160件,其进价和售价如表:(1)当A.B1100元;(2)若商店计划购进A种商品不少于66件,且销售完这批商品后获利多于1260元,请你帮该商店老板预算有几种购货方案?获利最大是多少元?22.已知函数y=ax2+x+1的图象与x轴只有一个公共点.(1)求这个函数关系式;(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB 为直径的圆与直线AB相切于点B,求P点的坐标;(3)在(2)中,若圆与x轴另一交点关于直线PB的对称点为M,试探索点M是否在抛物线y=ax2+x+1上,若在抛物线上,求出M点的坐标;若不在,请说明理由.参考答案1.C.2.B.3.C4.D.5.C6.D7.A8.A.9.D10.B.11.B12.D.13.答案为:81;14.答案为:(-5,3)或(3,3).15.答案为70.16.答案为:1217.答案是:66.18.答案为:40°.19.(1)证明:∵AO=CO,BO=DO∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴OC=OD,∴∠ODC=54°∴∠BDF=∠ODC﹣∠FDC=18°.20.(1)证明:连接OA,∵BC是⊙O的直径,∴∠BAC=90°,∴∠C+∠B=90°,∵AD⊥BC,∴∠B+∠BAD=90°,∴∠BAD=∠C,∵OA=OC,∴∠OAC=∠C,∴∠BAD=∠OAC,∵F是弧BC中点,∴∠BAF=∠CAF,∴∠DAE=∠OAE,即AE平分∠DAO;(2)解:连接OF,∵∠BOF=2∠BAF=∠BAC=90°,∴OF⊥BC,∵AD⊥BC,∴OF∥AD,∴DE:OE=AD:OF,∵AB=6,AC=8,∴BC=AB2+AC2=10,∴AD=AB•ACBC=4.8,∴BD=AB2−AD2=3.6,∴OD=OB-BD=5-3.6=1.4,∴DE:OE=4.8:5=24:25,∴OE=5/7.21.解:(1)设甲种商品应购进x件,乙种商品应购进y件.根据题意得:.解得:.答:甲种商品购进100件,乙种商品购进60件.(2)设甲种商品购进a件,则乙种商品购进(160﹣a)件.根据题意得.解不等式组,得66≤a<68.∵a为非负整数,∴a取66,67.∴160﹣a相应取94,93.方案一:甲种商品购进66件,乙种商品购进94件.方案二:甲种商品购进67件,乙种商品购进93件.最大获利为;66×5+94×10=1270元;答:有两种购货方案,其中获利最大的是方案一.22.解:(1)当a = 0时,y = x+1,图象与x轴只有一个公共点,当a≠0时,△=1- 4a=0,a = ,此时,图象与x轴只有一个公共点.∴函数的解析式为:y=x+1 或`y=x2+x+1(2)设P为二次函数图象上的一点,过点P作PC⊥x轴于点C.∵是二次函数,由(1)知该函数关系式为:y=x2+x+1,则顶点为B(-2,0),图象与y轴的交点坐标为A(0,1)∵以PB为直径的圆与直线AB相切于点B ∴PB⊥AB 则∠PBC=∠BAO∴Rt△PCB∽Rt△BOA ∴,故PC=2BC,设P点的坐标为(x,y),∵∠ABO是锐角,∠PBA是直角,∴∠PBO是钝角,∴x<-2∴BC=-2-x,PC=-4-2x,即y=-4-2x, P点的坐标为(x,-4-2x)∵点P在二次函数y=x2+x+1的图象上,∴-4-2x=x2+x+1解之得:x1=-2,x2=-10∵x<-2 ∴x=-10,∴P点的坐标为:(-10,16)(3)点M不在抛物线上由(2)知:C为圆与x 轴的另一交点,连接CM,CM与直线PB的交点为Q,过点M作x轴的垂线,垂足为D,取CD的中点E,连接QE,则CM⊥PB,且CQ=MQ∴QE∥MD,QE=MD,QE⊥CE∵CM⊥PB,QE⊥CE PC⊥x 轴∴∠QCE=∠EQB=∠CPB∴tan∠QCE= tan∠EQB= tan∠CPB =CE=2QE=2×2BE=4BE,又CB=8,故BE=,QE=∴Q点的坐标为(-,)可求得M点的坐标为(,)∵=≠∴C点关于直线PB的对称点M不在抛物线上。
2018学年度第二学期九年级数学单元试题(三)
12018学年度第二学期九年级数学单元试题(三)一、选择题(每小题5分,共25分)1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,…解答下列问题:3+32+33+34+…+32013的末位数字是( )A .0B .1C .3D .72.观察下列一组图形中点的个数,其中第1个图中共有4个点,第2个图中共有10个点,第3个图中共有19个点,…按此规律第5个图中点的个数是( )A .31B .46C .51D .663.根据如图中箭头的指向规律,从2013到2014再到2015,箭头的方向是以下图示中的( )A. B. C. D.4.下列图形都是按照一定规律组成,第一个图形中共有2个三角形,第二个图形中共有8个三角形,第三个图形中共有14个三角形,…,依此规律,第五个图形中三角形的个数是( )A .22B .24C .26D .285.如图,已知A 1n +1是x 轴上的点,且OA 1=A 1A 2=1,分别过点A 1,A 2,A 3,…,A n ,A n +1作x 轴的垂线交直线y =2x 于点B 1,B 2,B 3,…,B n ,B n+1,连接A 1B 2,B 1A 2,B 2A 3,…,A n B n +1,B n A n +1,依次相交于点P 1,P 2,P 3,…,P 。
△A 1B 1P 1,△A 2B 2P 2,△A n B n P n 的面积依次记为S 1,S 2,S 3,…,S n ,则S n 为( ) A.n +12n +1 B.n 3n -1 C.n 22n -1 D.n 22n +1 二、填空题(每小题5分,共25分)6.观察下列一组数:14,39,516,725,936,…,它们是按一定规律排列的,那么这一组数的第n 个数是____________。
7.如图是一组有规律的图案,第一个图案由4个▲组成,第二个图案由7个▲组成,第三个图案由10个▲组成,第四个图案由13个▲组成,…,则第n(n 为正整数)个图案由__________个▲组成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第8题)
A
B
C
D E
2018届中考复习基础题测试(3)
(满分:114分,时间:50分钟)
一.选择题:(每小题4分,共48分) 1. -3的绝对值是( )
A .3
B .-3
C .- 13
D .13
2.在下列交通标志中,既是轴对称图形,又是中心对称图形的是(
)
3. 下列运算正确的是( )
A .a 2+a 3=a 5
B .(-2a 3)2=4a 6
C . a 6÷a 3=a 2
D .(a+2b)2=a 2+2ab+b 2 4.某学习小组为了了解某小区2000个成年人大约有多少人吸烟,随机抽查了200个成年人,结果其中有10个成年人吸烟,对于这个数据收集与处理的问题,下列说法正确的是( )
A .该调查的方式是普查
B .样本容量是200
C .该小区只有190个成年人不吸烟
D .该小区一定有100人吸烟 5. 无理数a 满足: 2<a <3,那么a 可能是( ) A .10 B .6 C .5.2 D .7
20
6. 若a=2,b=﹣1,则a+2b+3的值为( )
A .﹣1
B .3
C .6
D .5
7. 当分式
2
1
+-x x 的值为0时,x 的值是( ) A .0 B .1 C .-1 D .-2
8.如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为 ( )
A .32
B .33
C .34
D .36
9.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC=BC=,
则图中阴影部分的面积是( )
A .
B .
C .
D . +
10. 下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )
A .64
B .77
C .80
D .85
11. 某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜
坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i=1:2.4,那么大树CD 的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)( )
A .8.1米
B .17.2米
C .19.7米
D .25.5米
12.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a ,若数a
使关于x 的不等式组无解,且使关于x 的分式方程﹣
=﹣1有整数解,那么这5个数中所有满足条件的a 的值之和是( )
A .﹣3
B .﹣2
C .﹣
D .
二.填空题:(每小题4分,共20分)
13. 重庆地铁1号线尖顶坡至璧山的延长线线路全长约5600米,将5600这个数用科学记数法可表示为 .
14. 计算:
+(﹣2)0= .
15.如图,OA ,OB 是⊙O 的半径,点C 在⊙O 上,连接AC ,BC ,若∠AOB=120°,则∠ACB= 度.
16. 如图是某射击选手5次射击成绩的折线图,根据图示信息,这5次成绩
的众数、中位数分别是_________
17. 从数﹣2,2
1
,0,4中任取一个数记为m ,再从余下的三个数中,任取一个数记为n ,若k=mn ,则正比例函数y=kx 的图象经过第三、第一象限的概率是 .
三.解答题:(每小题8分,共16分)
18.如图,点D ,E 在△ABC 的边BC 上,AB=AC ,BD=CE .求证:AD=AE .
19.中学生带手机上学的现象越来越受到社会的关注,为此某记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:(A)无所谓;(B)基本赞成;(C)赞成;(D)反对),并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了名中学生家长;
(2)将图1补充完整;
(3)根据抽样调查结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度.
四.解答题(每小题10分,共30分)
21.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点
A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).
(1)求△AHO的周长;
(2)求该反比例函数和一次函数的解析式.
22.重庆实验外国语学校初2017级学生会进行了爱心义卖活动,准备将义卖获得的利润全部用于易书吧购买图书,免费借阅给全校学生,首次购进的义卖商品单价为25元,共卖出120件,第二次购进的义卖商品的单价是20元,共卖出150件.已知首次义卖的每件售价比第二次多20元,但第二次比第一次少获得600元.
(1)求第二次义卖的商品每件售价是多少元?
(2)为了让全校更多同学借阅到图书,初2017级学生会决定再进行一次义卖活动,此次义卖购进的商品单价为15元,每件售价比第二次上调了a%,则卖出的件数比第二次减少2a%,若第三次获利4500元,求a的值.
2018届中考复习基础题测试(3)
(满分:114分,时间:50分钟)
一.选择题:(每小题4分,共48分) 二.填空题:(每小题4分,共20分)
13. 5.6×103 14. 3 15. 60 16. 7;8 17 .6
1
三.解答题:(每小题8分,共16分)
18.证明:AB AC = ,B C ∴∠=∠(2分) 在ABD △与ACE △中,
AB AC B C BD CE =⎧⎪
∠=∠⎨⎪=⎩
,,
,ABD ACE ∴△≌△.(6分)AD AE ∴=.(8分) 19.解:(1)200;( 2分) (2)如图:(5分)
(3)6000×60%=3600(名).
答:该市城区6000名中学生家长中有3600名家长持反对态度. (8分)
四.解答题(每小题10分,共30分)
20. 解:(1)解:原式1214=+--(4分)2-=(5分)
(2) 解:原式 =()()()
113
6212
-+-⋅
-+x x x x x 分)(3
=
()()()113
321-+-⋅-+x x x x x 分)(4
=2
21
-+x x 分)(5
21.解:(1)由OH=3,tan ∠AOH=,得 AH=4.即A (﹣4,3).
由勾股定理,得
AO=
=5,
△AHO 的周长=AO+AH+OH=3+4+5=12;
(2)将A 点坐标代入y=(k ≠0),得
k=﹣4×3=﹣12,
反比例函数的解析式为y=;
当y=﹣2时,﹣2=
,解得x=6,即B (6,﹣2).
将A 、B 点坐标代入y=ax+b ,得
,
解得,
一次函数的解析式为y=﹣x+1.
22.(1)设第二次义卖的商品每件售价为x元,则第一次义卖的商品每件售价为(x+20)元,
根据题意得:120(x+20﹣25)=150(x﹣20)+600,
解得:x=60.
答:第二次义卖的商品每件售价是60元.
(2)第三次义卖的商品每件售价为60(1+a%)元,售出的件数为150(1+2a%),
根据题意得:150(1﹣2a%)[60(1+a%)﹣15]=4500,
解得:a=25或a=﹣50(舍去).
答:a的值为25.。