2015中考试题汇编__特殊平行四边形

合集下载

特殊平行四边形经典例题汇编(青岛版)

特殊平行四边形经典例题汇编(青岛版)

特殊平行四边形典型习题汇编一1、已知:如图,AC ,BD 是矩形ABCD 的两条对线,AC ,BD 相交于点O ,∠AOD =120°,AB =2.5cm.求矩形对角线的长.2、若已知∠CAB=40°,则∠OCB= _____, ∠OBA= _______,∠AOB=( ) ∠AOD=( ); 若已知∠DOC=120°,AD =6㎝,则AC= ________㎝3、如图四边形ABCD 中,∠ABC=∠ADC=900,E 是AC 中点,EF 平分∠BED 交BD 于点F ,(1)猜想EF 与BD 具有怎样的关系? (2)试证明你的猜想。

4、已知:如图,在 ABCD 中,E 、F 分别为边 AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于G . (1)求证:DE =BF ;(2)若四边形 BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论.5、在下列性质中,平行四边形具有的是_______,矩形具有的是_________,菱形具有的____________,正方形具有的是_______________。

(1)四边都相等; (2)对角线互相平分; 6、如图,将矩形ABCD 沿AE 折叠,使点D 落 在BC 边上的F 点处。

(1)若∠BAF =60°,求∠EAF 的度数;(2)若AB =6cm ,AD =10cm ,求线段CE 的长及△AEF 的面积.(3)对角线相等;(4)对角线互相垂直; (5)四个角都是直角;(6)每条对角线 平分一组对角;(7)对边相等且平行; (8)有两条对称轴。

D B C A O B B FAC DE7、如图,矩形纸片ABCD 中,现将A 、C 重合,使纸片折叠压平,设折痕为EF 。

(1)连结CF ,四边形AECF 是什么特殊的四边形?为什么? 8、在四边形ABCD 中O 是对角线的交点,能判定这个四边形是正方形的是( )A 、AC = BD ,AB ∥CD ,AB = CDB 、AD ∥BC ,∠A =∠ C C 、AO=BO=CO=DO ,AC ⊥BD D 、AO=CO ,BO=DO ,AB=BC9、如图,边长为a 的菱形ABCD 中,∠DAB=60度,E 是异于A 、D 两点的动点,F 是CD 上的动点,满足AE+CF=a 。

2015河北省数学中考特殊平行四边形

2015河北省数学中考特殊平行四边形

图 24-6 ①当四边形 A ′CDF 为正方形时,EF= 2; ②当 EF= 2时,四边形 A ′CDF 为正方形;
冀考解读
考点聚焦
冀考探究
第24课时┃特殊四边形
解 析 综合考查了折叠、矩形的性质、勾股定理、正 方形等知识.当四边形 A′CDF 为正方形时,折痕 EF 过点 B 且平分∠ABC,此时 EF= 2,故①正确;当折痕 EF 保持与①中的折痕平行时,折痕 EF= 2,此时四边形 A ′CDF 为直角梯形,故②不正确。
一点,所以可证△CDF≌△CBF,于是∠CDF=∠CBF, DF=BF.又由∠CDF=∠BEG,可得∠CBF=∠BEG,所 以BF∥EG.又已知EF∥CD,所以EF∥AG,所以四边形 FBGE是平行四边形.故DF=BF=EG.
冀考解读
考点聚焦
冀考探究
第24课时┃特殊四边形
• 例3.(11分)(2014•河北)如图, △ABC中,AB=AC,∠BAC=40°,将 △ABC绕点A按逆时针方向旋转100°.得 到△ADE,连接BD,CE交于点F. • (1)求证:△ABD≌△ACE; • (2)求∠ACE的度数; • (3)求证:四边形ABEF是菱形.
冀考解读 考点聚焦 冀考探究
第24课时┃特殊四边形
解 (1)BD=CD.理由如下: ∵AF∥BC, ∴∠AFE=∠DCE,∠FAE=∠CDE. 又E是AD的中点,∴AE=DE. ∴△AFE≌△DCE.∴AF=CD. 又AF=BD,∴BD=CD. (2)△ABC满足AB=AC时,四边形AFBD是矩形. 理由如下:∵AF∥BC,AF=BD, ∴四边形AFBD是平行四边形. ∵AB=AC,BD=CD, ∴AD⊥BC.∴∠ADB=90°. 又∵四边形AFBD是平行四边形, ∴四边形AFBD是矩形.

2015年中考真题《平行四边形及特殊平行四边形》试题及答案

2015年中考真题《平行四边形及特殊平行四边形》试题及答案

2015年中考真题《平⾏四边形及特殊平⾏四边形》试题及答案2015年中考真题《平⾏四边形及特殊平⾏四边形》试题 2015.12.25⼀、选择题1. (2015四川省绵阳市,7,3分)如图,在四边形ABCD 中,对⾓线AC 、BD 相交于点E ,∠CBD =90°,BC=4,BE =ED =3,AC =10,则四边形ABCD 的⾯积为()A .6B .12C .20D .24(7题图)EB ACD2. (2015浙江省衢州市,4,3分)在ABCD 中,已知AD =12cm ,AB =8cm ,AE 平分∠BAD 交BC 边于点E ,则CE 的长为()BA 、8cmB 、6cmC 、4cmD 、2cm3. (2015浙江宁波,7,4分)如图,□ABCD 中,E ,F 是对⾓线BD 上的两点,如果添加⼀个条件,使△ABE ≌△CDF ,则添加的条件不能为( )A. BE = DFB. BF = DEC. AE= CF D.∠1= ∠24. (2015江西省,第5题,3分)如图,⼩贤为了体验四边形的不稳定性,将四根⽊条⽤钉⼦钉成⼀个矩形框动框架,观察所架ABCD ,B 与D 两点之间⽤⼀根橡⽪筋...拉直固定,然后向右扭得四边形的变化.下⾯判断错误..的是( ) A .四边形ABCD 由矩形变为平⾏四边形B .BD 的长度增⼤C .四边形ABCD 的⾯积不变D .四边形ABCD 的周长不变5. (2015四川省⾃贡市,10,4分)如图,在矩形ABCD 中,AB =4,AD =6,E 是AB 边的中点,F 是线段BC 上的动点,将△EBF 沿EF 所在直线折叠得到△EB ′F ,连接B ′D ,则B ′D 的最⼩值是()A.2B .6 C.2 D .46. (2015⼭东省青岛市,7,3分)如图,菱形ABCD 的对⾓线AC 、BD 相交于O 点,E 、F 分别是AB 、BC 边上的中点,连接EF .若,BD=4,则菱形ABCD 的周长为()A.4B.C. D.287. (2015四川省遂宁市,6,4分)在正⽅形、矩形、菱形、平⾏四边形、等腰梯形中,其中中⼼对称图形的个数是( ).A .2B .3C .4D .58. (2015四川省泸州市)菱形具有⽽平⾏四边形不具有的性质是A.两组对边分别平⾏B.两组对⾓分别相等C.对⾓线互相平分D. 对⾓线互相垂直9. (2015湖南省益阳市,5,5分)如图2,在矩形ABCD 中,对⾓线AC 、BD 交于点O ,以下说法错误..的是 A .90ABC ∠=? B .AC BD =C .OA OB =D .OA AD = 10.(2015浙江省湖州市,3,分)如图,AC 是矩形ABCD 的对⾓线,⊙O 是△ABC 的内切圆,现将矩形ABD 按如图所⽰的⽅式折叠,使点D 与点O 重合,折痕为FG ,点F 、G 分别在边AD 、BC 上,连结OG 、DG ,若OG ⊥DG ,且⊙O 的半径长为1,则下列结论不成⽴的是( ).A .CD +DF =4B .CD -DF =-3 C .BC +AB =+4 D .BC -AB =211. (2015浙江台州,9,4分)如图,在菱形ABCD 中,AB=8,点E ,F 分别在AB ,AD 上,且AE=AF ,过点E 作EG ∥AD 交CD 于电G ,过点F 作FH ∥AB 交BC 于电H ,EG 与FH 交于点O .当四边形AEOF 与四边形CGOH 的周长之差为12时,AE 的值为()A .6.5B .6C .5.5D .5DG C F O HA EB 第9题图 A BC DE F B'12. (2015浙江省台州市,9,4)如图,在菱形ABCD 中,AB =8,点E ,F 分别在AB ,AD 上,且AE =AF ,过点E 作EG //AD 交CD 于点G ,过点F 作FH //AB 交BC 于点H ,EG 与FH 交于点O .当四边形AEOF 与四边形CGOH 的周长之差为12时,AE 的值为()A .6.5B .6C .5.5D .5O F H E G DCBA13.(2015安徽,8,3分)在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED=60°则⼀定有A.∠ADE =20°B.∠ADE =30°C.∠ADE = 12∠ADCD.∠ADE = 13∠ADC 14. (2015安徽,9,3分)如图,矩形ABCD 中,AB = 8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对⾓线AC 上,若四边形EGFH 是菱形,则AE 的长是A.B. C.5D.615. (2015⼭东临沂,12,3分)如图,四边形ABCD 为平⾏四边形,延长AD 到E ,使DE=AD ,连接EB ,EC ,DB 。

2015年中考试题整理特殊的四边形经典

2015年中考试题整理特殊的四边形经典

特殊的四边形单元复习学案一、知识点总结:(一)、平行四边形的定义、性质及判定.1.定义:两组对边平行的四边形是平行四边形.2.性质:(1)平行四边形的对边相等且平行;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分.3.判定:(1)两组对边分别平行的四边形是平行四边形: (2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形; (4)两组对角分别相等的四边形是平行四边形:(5)对角线互相平分的四边形是平行四边形.4.对称性:平行四边形是中心对称图形,对角线的交点是它的对称中心。

(二)、矩形的定义、性质及判定.1.定义:有一个角是直角的平行四边形叫做矩形.2.性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形;(2)有三个角是直角的四边形是矩形:(3)两条对角线相等的平行四边形是矩形.4.对称性:矩形是轴对称图形也是中心对称图形.(三)、菱形的定义、性质及判定.1.定义:有一组邻边相等的平行四边形叫做菱形.2.性质:(1)菱形的四条边都相等;(2)菱形的对角线互相垂直,并且每一条对角线平分一组对角。

(3)菱形被两条对角线分成四个全等的直角三角形.(4)菱形的面积等于两条对角线长的积的一半:3.判定:(1)有一组邻边相等的平行四边形叫做菱形 ;(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.4.对称性:菱形是轴对称图形也是中心对称图形.(四)、正方形的性质及判定.'.1.性质:(1)正方形四个角都是直角,四条边都相等;(2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;2.判定:(1)先判定一个四边形是矩形,再判定出有一组邻边相等;(2)先判定一个四边形是菱形,再判定出有一个角是直角.3.对称性:正方形是轴对称图形也是中心对称图形.(五)、梯形的判定和性质二、典型例题讲解:例1 下列命题中,真命题是 ( )A .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形例2、如图,矩形ABCD 中,AB =8㎝,CB =4㎝, E 是DC 的中点,BF =41BC ,则四边形DBFE 的面积为 。

中考数学 专题21 特殊的平行四边形试题(含解析)

中考数学 专题21 特殊的平行四边形试题(含解析)

专题21 特殊的平行四边形☞解读考点☞2年中考【2015年题组】1.(2015崇左)下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形.B.对角线互相垂直的矩形是正方形.C.对角线相等的菱形是正方形.D.对角线互相垂直平分的四边形是正方形.【答案】D.考点:1.正方形的判定;2.平行四边形的判定;3.菱形的判定;4.矩形的判定.2.(2015连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形【答案】B.【解析】试题分析:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选B.考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定.3.(2015徐州)如图,菱形中,对角线AC、BD交于点O,E为AD边中点,菱形ABCD的周长为28,则OE 的长等于()A.3.5 B.4 C.7 D.14【答案】A.【解析】试题分析:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵E为AD边中点,∴OE是△ABD的中位线,∴OE=12AB=12×7=3.5.故选A.考点:菱形的性质.4.(2015柳州)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=12GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个 B.2个 C.3个 D.4个【答案】B.考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.5.(2015内江)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A .3B .23C .26D .6【答案】B .考点:1.轴对称-最短路线问题;2.最值问题;3.正方形的性质.6.(2015南充)如图,菱形ABCD 的周长为8cm ,高AE 长为3cm ,则对角线AC 长和BD 长之比为( )A .1:2B .1:3C .1:2D .1:3【答案】D .【解析】试题分析:如图,设AC ,BD 相较于点O ,∵菱形ABCD 的周长为8cm ,∴AB =BC =2cm ,∵高AE 长为3cm ,∴BE 22AB AE -=1(cm ),∴CE =BE =1cm ,∴AC =AB =2cm ,∵OA =1cm ,AC ⊥BD ,∴OB 22AB OA -=3(cm ),∴BD =2OB =3,∴AC :BD =1:3.故选D .考点:菱形的性质.7.(2015安徽省)如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.25 B.35 C.5 D.6【答案】C.考点:1.菱形的性质;2.矩形的性质.3,且∠ECF=45°,8.(2015十堰)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=5则CF的长为()A .102B .53C .5103 D .1053【答案】A .考点:1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质;4.综合题;5.压轴题.9.(2015鄂州)在平面直角坐标系中,正方形A 1B 1C 1D 1、D 1E 1E 2B 2、A 2B 2C 2D 2、D 2E 3E 4B 3、A 3B 3C 3D 3…按如图所示的方式放置,其中点B 1在y 轴上,点C 1、E 1、E 2、C 2、E 3、E 4、C 3…在x 轴上,已知正方形A 1B 1C 1D 1的边长为1,∠B 1C 1O =60°,B 1C 1∥B 2C 2∥B 3C 3…则正方形A 2015B 2015C 2015D 2015的边长是( )A .201421)( B .201521)( C .201533)( D .201433)(【答案】D.考点:1.正方形的性质;2.规律型;3.综合题.10.(2015广安)如图,已知E、F、G、H分别为菱形ABCD四边的中点,AB=6cm,∠ABC=60°,则四边形EFGH的面积为cm2.【答案】93【解析】试题分析:连接AC,BD,相交于点O,如图所示,∵E、F、G、H分别是菱形四边上的中点,∴EH=12BD=FG,EH∥BD∥FG,EF=12AC=HG,∴四边形EHGF是平行四边形,∵菱形ABCD中,AC⊥BD,∴EF⊥EH,∴四边形EFGH是矩形,∵四边形ABCD是菱形,∠ABC=60°,∴∠ABO=30°,∵AC⊥BD,∴∠AOB=90°,∴AO=12AB=3,∴AC =6,在Rt △AOB 中,由勾股定理得:OB =22AB OA -=33,∴BD =63,∵EH =12BD ,EF =12AC ,∴EH =33,EF =3,∴矩形EFGH 的面积=EF •FG =93cm 2.故答案为:93.考点:1.中点四边形;2.菱形的性质.11.(2015凉山州)菱形ABCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,﹣1),当EP +BP 最短时,点P 的坐标为 .【答案】(33,23-.的交点,∴点P 的坐标为方程组3(13)1y x y x ⎧=⎪⎨⎪=+-⎩的解,解方程组得:23323x y ⎧=-⎪⎨=-⎪⎩,所以点P 的坐标为(233-,23-),故答案为:(233-,23-).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题.12.(2015潜江)菱形ABCD 在直角坐标系中的位置如图所示,其中点A 的坐标为(1,0),点B 的坐标为(0,3),动点P 从点A 出发,沿A →B →C →D →A →B →…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P 的坐标为 .【答案】(0.5,32-).考点:1.菱形的性质;2.坐标与图形性质;3.规律型;4.综合题.13.(2015北海)如图,已知正方形ABCD的边长为4,对角线AC与BD相交于点O,点E在DC边的延长线上.若∠CAE=15°,则AE= .【答案】8.【解析】试题分析:∵正方形ABCD的边长为4,对角线AC与BD相交于点O,∴∠BAC=45°,AB∥DC,∠ADC=90°,∵∠CAE=15°,∴∠E=∠BAE=∠BAC﹣∠CAE=45°﹣15°=30°.∵在Rt△ADE中,∠ADE=90°,∠E=30°,∴AE=2AD=8.故答案为:8.考点:1.含30度角的直角三角形;2.正方形的性质.14.(2015南宁)如图,在正方形ABCD的外侧,作等边△ADE,则∠BED的度数是.【答案】45°.考点:1.正方形的性质;2.等边三角形的性质.15.(2015玉林防城港)如图,已知正方形ABCD 边长为3,点E 在AB 边上且BE =1,点P ,Q 分别是边BC ,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形AEPQ 的面积是 .【答案】92. 【解析】试题分析:如图1所示,作E 关于BC 的对称点E ′,点A 关于DC 的对称点A ′,连接A ′E ′,四边形AEPQ 的周长最小,∵AD =A ′D =3,BE =BE ′=1,∴AA ′=6,AE ′=4.∵DQ ∥AE ′,D 是AA ′的中点,∴DQ 是△AA ′E ′的中位线,∴DQ =12AE ′=2;CQ =DC ﹣CQ =3﹣2=1,∵BP ∥AA ′,∴△BE ′P ∽△AE ′A ′,∴'''BP BE AA AE =,即164BP =,BP =32,CP =BC ﹣BP =332-=32,S 四边形AEPQ =S 正方形ABCD ﹣S △ADQ ﹣S △PCQ ﹣S BEP =9﹣12AD •DQ ﹣12CQ •CP ﹣12BE •BP =9﹣12×3×2﹣12×1×32﹣12×1×32=92,故答案为:92.考点:1.轴对称-最短路线问题;2.正方形的性质.16.(2015达州)在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A 1B 1C 1O 、A 2B 2C 2C 1、A 3B 3C 1C 2…,A 1、A 2、A 3…在直线1y x =+上,点C 1、C 2、C 3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S 、3S 、…n S ,则n S 的值为(用含n 的代数式表示,n 为正整数).2n-.【答案】232n-.故答案为:23考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型;4.综合题.17.(2015齐齐哈尔)如图,正方形ABCB1中,AB=1.AB与直线l的夹角为30°,延长CB1交直线l于点A1,作正方形A1B1C1B2,延长C1B2交直线l于点A2,作正方形A2B2C2B3,延长C2B3交直线l于点A3,作正方形A3B3C3D4,…,依此规律,则A2014A2015= .3).【答案】2014考点:1.相似三角形的判定与性质;2.正方形的性质;3.规律型;4.综合题.18.(2015梧州)如图,在正方形ABCD中,点P在AD上,且不与A、D重合,BP的垂直平分线分别交CD、AB于E、F两点,垂足为Q,过E作EH⊥AB于H.(1)求证:HF=AP;(2)若正方形ABCD的边长为12,AP=4,求线段EQ的长.1010【答案】(1)证明见试题解析;(2【解析】考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.综合题.19.(2015恩施州)如图,四边形ABCD、BEFG均为正方形,连接AG、CE.(1)求证:AG=CE;(2)求证:AG⊥CE.【答案】(1)证明见试题解析;(2)证明见试题解析.【解析】试题分析:(1)由ABCD、BEFG均为正方形,得出AB=CB,∠ABC=∠GBE=90°,BG=BE,得出∠ABG=∠CBE,从而得到△ABG≌△CBE,即可得到结论;(2)由△ABG≌△CBE,得出∠BAG=∠BCE,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可.试题解析:(1)∵四边形ABCD、BEFG均为正方形,∴AB=CB,∠ABC=∠GBE=90°,BG=BE,∴∠ABG=∠CBE,在△ABG和△CBE中,∵AB=CB,∠ABG=∠CBE,BG=BE,∴△ABG≌△CBE(SAS),∴AG=CE;(2)如图所示:∵△ABG≌△CBE,∴∠BAG=∠BCE,∵∠ABC=90°,∴∠BAG+∠AMB=90°,∵∠AMB=∠CMN,∴∠BCE+∠CMN=90°,∴∠CNM=90°,∴AG⊥CE.考点:1.全等三角形的判定与性质;2.正方形的性质.20.(2015武汉)已知锐角△ABC中,边BC长为12,高AD长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求EFAK的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.【答案】(1)①32;②3(8)2S x x=-,S的最大值是24;(2)245或24049.试题解析:(1)①∵EF∥BC,∴AK EFAD BC=,∴EF BCAK AD==128=32,即EFAK的值是32;考点:1.相似三角形的判定与性质;2.二次函数的最值;3.矩形的性质;4.正方形的性质;5.分类讨论;6.综合题;7.压轴题.21.(2015荆州)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP 与线段CE的数量关系,并说明理由.【答案】(1)证明见试题解析;(2)90°;(3)AP=CE.【解析】试题分析:(1)先证出△ABP≌△CBP,得到PA=PC,由PA=PE,得到PC=PE;(2)由△ABP≌△CBP,得到∠BAP=∠BCP,进而得到∠DAP=∠DCP,由PA=PC,得到∠DAP=∠E,∠DCP=∠E,最后∠CPF=∠EDF=90°得到结论;(3)借助(1)和(2)的证明方法容易证明结论.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的性质;4.探究型;5.综合题;6.压轴题.【2014年题组】1.(2014·宜宾)如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.(14)n﹣1 D.14n【答案】B.【解析】试题分析:由题意可得一个阴影部分面积等于正方形面积的14,即是14×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n个这样的正方形重叠部分(阴影部分)的面积和为:1×(n﹣1)=n﹣1.故选B.考点:1.正方形的性质2.全等三角形的判定与性质.2.(2014·山东省淄博市)如图,矩形纸片ABCD中,点E是AD的中点,且AE=1,BE的垂直平分线MN恰好过点C.则矩形的一边AB的长度为()A. 1 B.2C.3D. 2【答案】C.考点:1.勾股定理;2.线段垂直平分线的性质;3.矩形的性质.3.(2014山东省聊城市)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为()A.3 B.3 C.3 D.93 2【答案】B.【解析】试题分析:∵四边形ABCD 是矩形,∴∠A =90°,即BA ⊥BF ,∵四边形BEDF 是菱形,∴EF ⊥BD ,∠EBO =∠DBF ,∴AB =BO =3,∠ABE =∠EBO ,∴∠ABE =∠EBD =∠DBC =30°,∴BE =23cos30BO=︒,∴BF =BE =23,∵EF =AE +FC ,AE =CF ,EO =FO∴CF =AE =3,∴BC =BF +CF =33,故选B . 考点:1.矩形的性质;2.菱形的性质.4.(2014·广西来宾市)顺次连接菱形各边的中点所形成的四边形是( ) A . 等腰梯形 B . 矩形C . 菱形D . 正方形【答案】B .考点:1.正方形的判定;2.三角形中位线定理;3.菱形的性质.5.(2014·贵州铜仁市)如图所示,在矩形ABCD 中,F 是DC 上一点,AE 平分∠BAF 交BC 于点E ,且DE ⊥AF ,垂足为点M ,BE =3,AE =26,则MF 的长是( )A .15B .1510C .1D . 1515【答案】D .考点:1.相似三角形的判定与性质;2.角平分线的性质;3.勾股定理;4.矩形的性质.6.(2014·襄阳)如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE =13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF =2BE ;②PF =2PE ;③FQ =4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④【答案】D . 【解析】试题分析:∵AE =13AB ,∴BE =2AE .由翻折的性质得,PE=BE,∴∠APE=30°.∴∠AEP=90°﹣30°=60°,∴∠BEF=12(180°﹣∠AEP)=12(180°﹣60°)=60°.∴∠EFB=90°﹣60°=30°.∴EF=2BE.故①正确.∵BE=PE,∴EF=2PE.∵EF>PF,∴P F>2PE.故②错误.由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°.∴BE=2EQ,EF=2BE.∴FQ=3EQ.故③错误.由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°.∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°.∴△PBF是等边三角形.故④正确;综上所述,结论正确的是①④.故选D.考点:1.矩形的性质;2.含30度角直角三角形的判定和性质;3.等边三角形的判定.7.(2014·宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= cm.【答案】5.考点:1.菱形的性质;2.勾股定理.8.(2014·山东省聊城市)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF交BE与G点,交DF 与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.【答案】证明见解析.考点:1.平行四边形的性质;2.全等三角形的判定.9.(2014·梅州)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【答案】(1)证明见解析;(2)GE=BE+GD成立,理由见解析.【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.试题解析:(1)在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)GE=BE+GD成立.理由是:考点:1.正方形的性质;2.全等三角形的判定和性质;3.等腰直角三角形的性质.☞考点归纳归纳 1:矩形基础知识归纳:1、矩形的概念有一个角是直角的平行四边形叫做矩形.2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形基本方法归纳:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.注意问题归纳:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.【例1】如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB的大小为()A、30°B、60°C、90°D、120°【答案】B.考点:矩形的性质.归纳 2:菱形基础知识归纳:1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半注意问题归纳:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.【例2】如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【答案】B.考点:菱形的性质.归纳 3:正方形基础知识归纳:1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等.注意问题归纳:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定.【例3】如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙 B.甲丙乙C.乙丙甲 D.丙甲乙【答案】B.考点:正方形的性质.☞1年模拟1.(2015届山东省潍坊市昌乐县中考一模)下列说法中,错误的是()A.平行四边形的对角线互相平分B.对角线互相平分的四边形是平行四边形C.菱形的对角线互相垂直D.对角线互相垂直的四边形是菱形【答案】D.【解析】试题分析:根据平行四边形的菱形的性质得到A、B、C选项均正确,而D不正确,因为对角线互相垂直的四边形也可能是梯形.故选D.考点:1.菱形的判定与性质;2.平行四边形的判定与性质.2.(2015届广东省广州市中考模拟)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB 的大小为( )A .30°B .60°C .90°D .120° 【答案】B .考点:矩形的性质.3.(2015届山东省日照市中考模拟)如图,在边长为2的菱形ABCD 中,∠B =45°,AE 为BC 边上的高,将△ABE 沿AE 所在直线翻折得△AB 1E ,则△AB 1E 与四边形AECD 重叠部分的面积为( )A .0.7B .0.9C .22−2D .2【答案】C . 【解析】试题分析:如图,∵∠B =45°,AE ⊥BC ,∴∠BAE =∠B =45°,∴AE =BE ,由勾股定理得:BE 2+AE 2=22,解得:BE =2,由题意得:△ABE ≌△AB 1E ,∴∠BAB 1=2∠BAE =90°,BE =B 1E =2,∴BB 1=22,B 1C =22-2,∵四边形ABCD 为菱形,∴∠FCB 1=∠B =45°,∠CFB 1=∠BAB 1=90°,∴∠CB 1F =45°,CF =B 1F ,∵CF ∥AB ,∴△CFB 1∽△BAB 1,∴11B C CF AB BB =,解得:CF =2-2,∴△AEB 1、△CFB 1的面积分别为:12212⨯⨯=,21(22)3222⨯=-AB 1E 与四边形AECD 重叠部分的面积=1(32)22--=.故选C .考点:1.菱形的性质;2.翻折变换(折叠问题).4.(2015届山东省济南市平阴县中考二模)如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(-2,2) B.(2,-2) C.(2,-2) D.(3,-3)【答案】B.考点:1.菱形的性质;2.坐标与图形变化-旋转.5.(2015届山东省青岛市李沧区中考一模)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13 AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①② B.②③ C.①③ D.①④【答案】D.综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.6.(2015届山东省日照市中考一模)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A .①②B .②③C .①③D .②④ 【答案】B .考点:正方形的判定.7.(2015届山东省青岛市李沧区中考一模)如图,在矩形ABCD 中,AB =3,AD =1,把该矩形绕点A 顺时针旋转α度得矩形AB ′C ′D ′,点C ′落在AB 的延长线上,则图中阴影部分的面积是 .34π-.考点:1.旋转的性质;2.矩形的性质;3.扇形面积的计算.8.(2015届河北省中考模拟二)如图,在矩形ABCD中,AB=3,⊙O与边BC,CD相切,现有一条过点B的直线与⊙O相切于点E,连接BE,△ABE恰为等边三角形,则⊙O的半径为.【答案】3【解析】试题分析:过O点作GH⊥BC于G,交BE于H,连接OB、OE,∴G是BC的切点,OE⊥BH,∴BG=BE,∵△ABE 为等边三角形,∴BE=AB=3,∴BG=BE=3,∵∠HBG=30°,∴GH3BH3OG=OE=x,则EH3,OH3x,在RT△OEH中,EH2+OE2=OH2,即(3)2+x2=3-x)2,解得x3,∴⊙O的半径为33考点:1.切线的性质;2.矩形的性质.9.(2015届山东省日照市中考一模)边长为1的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.【答案】14.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形.10.(2015届山东省青岛市李沧区中考一模)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.5考点:1.正方形的性质;2.直角三角形斜边上的中线;3.勾股定理.11.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【答案】(1)FG⊥ED.理由见解析;(2)证明见解析.【解析】考点:1.旋转的性质;2.正方形的判定;3.平移的性质;4.探究型.12.(2015届北京市平谷区中考二模)如图,已知点E,F分别是□ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.【答案】(1)见解析(2253 2【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF是菱形;(2)连接EF交于点O,运用解直角三角形的知识点,可以求得AC与EF的长,再利用菱形的面积公式即可求得菱形AECF的面积.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.在Rt△ABC中,∠BAC=90°,点E是BC边的中点,∴AE=CE=12 BC.同理,AF=CF=12 AD.∴AF=CE.∴四边形AECF是平行四边形.∴平行四边形AECF是菱形.考点:1.菱形的性质;2.平行四边形的性质;3.解直角三角形.13.(2015届山东省日照市中考模拟)如图,▱ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x 的一元二次方程x2-7x+12=0的两个根,且OA>OB.(1)求sin∠ABC的值;(2)若E为x轴上的点,且S△AOE=163,求经过D、E两点的直线的解析式,并判断△AOE与△DAO是否相似?(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.【答案】(1)45.(2)△AOE∽△DAO.(3)F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).【解析】试题分析:(1)求得一元二次方程的两个根后,判断出OA、OB长度,根据勾股定理求得AB长,那么就能求得sin∠ABC的值;(2)易得到点D的坐标为(6,4),还需求得点E的坐标,OA之间的距离是一定的,那么点E的坐标可能在点O的左边,也有可能在点O的右边.根据所给的面积可求得点E的坐标,把A、E代入一次函数解析式即可.然后看所求的两个三角形的对应边是否成比例,成比例就是相似三角形;(3)根据菱形的性质,分AC 与AF 是邻边并且点F 在射线AB 上与射线BA 上两种情况,以及AC 与AF 分别是对角线的情况分别进行求解计算.试题解析:(1)解x 2-7x +12=0,得x 1=4,x 2=3.∵OA >OB ,∴OA =4,OB =3.在Rt △AOB 中,由勾股定理有AB =225OA OB +=,∴sin ∠ABC =54OA AB =;(3)根据计算的数据,OB =OC =3,∴AO 平分∠BAC ,①AC 、AF 是邻边,点F 在射线AB 上时,AF =AC =5,所以点F 与B 重合,即F (-3,0);②AC 、AF 是邻边,点F 在射线BA 上时,M 应在直线AD 上,且FC 垂直平分AM ,点F (3,8);③AC 是对角线时,做AC 垂直平分线L ,AC 解析式为y =-43x +4,直线L 过(32,2),且k 值为34(平面内互相垂直的两条直线k 值乘积为-1),L 解析式为y =34x +78,联立直线L 与直线AB 求交点,∴F (4751-,722-);④AF 是对角线时,过C 做AB 垂线,垂足为N ,根据等积法求出CN =245,勾股定理得出,AN =75,做A 关于N 的对称点即为F ,AF =145,过F 做y 轴垂线,垂足为G ,FG =145×35=4225,∴F (-4225,4425).综上所述,满足条件的点有四个:F 1(3,8);F 2(-3,0);F 3(4751-,722-),F 4(-4225,4425).考点:1.相似三角形的判定;2.解一元二次方程-因式分解法;3.待定系数法求一次函数解析式;4.平行四边形的性质;5.菱形的判定;6.分类讨论;7.存在型;8.探究型.14.(2015届河北省中考模拟二)如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,连接BF、EF,恰有BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作EF的垂线,交EF于点M,交DA的延长线于点N,连接NG.(1)求证:BE=2CF;(2)试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.【答案】(1)证明见解析.(2)四边形BFGN为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.15.(2015届广东省广州市中考模拟)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为¼CC',则图中阴影部分的面积为.【答案】33 42π+.【解析】试题分析:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线∴AC3,∴扇形ACC230(3)4ππ⨯⨯=.∵AC=AC′,AD′=AB,∴在△OCD′和△OC'B中,CD BCACO AC DCOD C OB''=⎧⎪''∠=∠⎨⎪''∠=∠⎩,∴△OCD′≌△OC′B(AAS),∴OB=OD′,CO=C′O.∵∠CBC′=60°,∠BC′O=30°,∴∠COD′=90°.∵CD′=AC-AD3,OB+C′O=1,∴在Rt△BOC′中,BO2+(1-BO)2=(3-1)2,解得BO=312-,332C O'=-,∴考点:1.菱形的性质;2.全等三角形的判定与性质;3.扇形面积的计算;4.旋转的性质.。

2015年中考特殊平行四边形证明及计算经典习题及标准答案

2015年中考特殊平行四边形证明及计算经典习题及标准答案

2015年初中数学中考特殊四边形证明及计算组卷参考答案与试题解析姓名______________学号_____________一.解答题(共30小题)1.(2012•威海)(1)如图①,▱ABCD的对角线AC,BD交于点O,直线EF过点O,分别交AD,BC于点E,F.求证:AE=CF.(2)如图②,将▱ABCD(纸片)沿过对角线交点O的直线EF折叠,点A落在点A1处,点B落在点B1处,设FB1交CD于点G,A1B1分别交CD,DE于点H,I.求证:EI=FG.考点: 平行四边形的性质;全等三角形的判定与性质;翻折变换(折叠问题).分析:(1)由四边形ABCD是平行四边形,可得AD∥BC,OA=OC,又由平行线的性质,可得∠1=∠2,继而利用ASA,即可证得△AOE≌△COF,则可证得AE=CF.(2)根据平行四边形的性质与折叠性质,易得A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,继而可证得△A1IE≌△CGF,即可证得EI=FG.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠1=∠2,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴AE=CF;(2)∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,由(1)得AE=CF,由折叠的性质可得:AE=A1E,∠A1=∠A,∠B1=∠B,∴A1E=CF,∠A1=∠A=∠C,∠B1=∠B=∠D,又∵∠1=∠2,∴∠3=∠4,∵∠5=∠3,∠4=∠6,∴∠5=∠6,在△A1IE与△CGF中,,∴△A1IE≌△CGF(AAS),∴EI=FG.点评:此题考查了平行四边形的性质、折叠的性质以及全等三角形的判定与性质.此题难度适中,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.2.(2011•贵阳)[阅读]在平面直角坐标系中,以任意两点P( x1,y1)、Q(x2,y2)为端点的线段中点坐标为.[运用](1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为(2,1.5).(2)在直角坐标系中,有A(﹣1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标.考点: 平行四边形的性质;坐标与图形性质;矩形的性质.专题: 几何综合题.分析:(1)根据矩形的对角线互相平分及点E的坐标即可得出答案.(2)根据题意画出图形,然后可找到点D的坐标.解答:解:(1)M(,),即M(2,1.5).(2)如图所示:根据平行四边形的对角线互相平分可得:设D点的坐标为(x,y),∵以点A、B、C、D构成的四边形是平行四边形,①当AB为对角线时,∵A(﹣1,2),B(3,1),C(1,4),∴BC=,∴AD=,∵﹣1+3﹣1=1,2+1﹣4=﹣1,∴D点坐标为(1,﹣1),②当BC为对角线时,∵A(﹣1,2),B(3,1),C(1,4),∴AC=2,BD=2,D点坐标为(5,3).③当AC为对角线时,∵A(﹣1,2),B(3,1),C(1,4),∴AB=,CD=,D点坐标为:(﹣3,5),综上所述,符合要求的点有:D'(1,﹣1),D″(﹣3,5),D″′(5,3).点评:本题考查了平行四边形的性质及矩形的性质,关键是掌握已知两点求其中点坐标的方法.3.(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:。

2015年全国中考数学试卷解析分类汇编(第三期)专题24多边形与平行四边形.

2015年全国中考数学试卷解析分类汇编(第三期)专题24多边形与平行四边形.

多边形与平行四边形一、选择题1. (2015?宁德第9题4分)一个多边形的每个外角都等于60°,则这个多边形的边数为()A.8 B.7C.6D.5考点:多边形内角与外角.分析:根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.解答:解:360°÷60°=6.故这个多边形是六边形.故选C.点评:本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.2. (2015?福建第6题4分)如图,在?ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.A C=BD D.OA=OC考点:平行四边形的性质..分析:根据平行四边形的性质推出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.点评:本题考查了平行四边形的性质的应用,能熟记平行四边形的性质是解此题的关键,注意:平行四边形的对边相等且平行,平行四边形的对角线互相平分.3.(2015,福建南平,6,4分)八边形的内角和等于()A.360°B.1080°C.1440°D.2160°考点:多边形内角与外角.分析:利用多边形内角和定理:(n﹣2)?180°计算即可.解答:解:(8﹣2)×180°=1080°,故选B.点评:本题主要考查了多边形的内角和定理,掌握多边形内角和定理:(n﹣2)?180°是解答此题的关键.4.(2015,广西玉林,9,3分)如图,在?ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,?ABCD的周长是在14,则DM等于()A. 1 B.2C.3D.4考点:平行四边形的性质.分析:根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据?ABCD的周长是14,求出CD=5,得到DM的长.解答:解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵?ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.点评:本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD是解题的关键,注意等腰三角形的性质的正确运用.5. (2015?梧州,第11题3分)如图,在菱形ABCD中,∠B=60°,AB=1,延长AD到点E,使DE=AD,延长CD到点F,使DF=CD,连接AC、CE、EF、AF,则下列描述正确的是()A.四边形ACEF是平行四边形,它的周长是 4B.四边形ACEF是矩形,它的周长是2+2C.四边形ACEF是平行四边形,它的周长是4D.四边形ACEF是矩形,它的周长是4+4考点:菱形的性质;平行四边形的判定与性质;矩形的判定与性质.所有分析:首先判断其是平行四边形,然后判定其是矩形,然后根据菱形的边长求得矩形的周长即可.解答:解:∵DE=AD,DF=CD,∴四边形ACEF是平行四边形,∵四边形ABCD为菱形,∴AD=CD,∴AE=CF,∴四边形ACEF是矩形,∵△ACD是等边三角形,∴AC=1,∴EF=AC=1,过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=,∴AF=CE=2AG=,∴四边形ACEF的周长为:AC+CE+EF+AF=1++1+=2+2,故选B.点评:本题考查了菱形的性质、平行四边形的判定与性质及矩形的判定与性质的知识,解题的关键是了解有关的判定定理,难度不大.6. (2015?天津,第11题3分)(2015?天津)如图,已知?ABCD中,AE⊥BC于点E,以点,连接DA′.若∠B为中心,取旋转角等于∠ABC,把△BAE顺时针旋转,得到△BA′E′的大小为()ADC=60°,∠ADA′=50°,则∠DA′E′A.130°B.150°C.160°D.170°考点:旋转的性质;平行四边形的性质.分析:根据平行四边形对角相等、邻角互补,得∠ABC=60°,∠DCB=120°,再由∠∠A′DC=10°,可运用三角形外角求出∠DA′B=130°,再根据旋转的性质得到∠BA′E′=BAE=30°,从而得到答案.解答:解:∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=60°,∠DCB=120°,∵∠ADA′=50°,∴∠A′DC=10°,∴∠DA′B=130°,∵AE⊥BC于点E,∴∠BAE=30°,∵△BAE顺时针旋转,得到△BA′E′,∠BAE=30°,∴∠BA′E′=∠DA′B+∠BA′E′=160°.∴∠DA′E′=故选:C.点评:本题主要考查了平行四边形的性质,三角形内角和定理及推论,旋转的性质,此题难度不大,关键是能综合运用以上知识点求出∠DA′B和∠BA′E′.7.(2015?葫芦岛)(第8题,3分)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60°B.65°C.55°D.50°考点:多边形内角与外角;三角形内角和定理.分析:根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.解答:解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.点评:本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.二、填空题1.(3分)(2015?广东茂名12,3分)一个多边形的内角和是720°,那么这个多边形是六边形.考点:多边形内角与外角.分析:n边形的内角和可以表示成(n﹣2)?180°,设这个正多边形的边数是n,就得到方程,从而求出边数.解答:解:这个正多边形的边数是n,则(n﹣2)?180°=720°,解得:n=6.则这个正多边形的边数是六,故答案为:六.点评:考查了多边形内角和定理,此题比较简单,只要结合多边形的内角和公式,寻求等量关系,构建方程求解.2.(4分)(2015?广东东莞11,4分)正五边形的外角和等于360(度).考点:多边形内角与外角.分析:根据多边形的外角和等于360°,即可求解.解答:解:任意多边形的外角和都是360°,故正五边形的外角和为360°.故答案为:360°.点评:本题主要考查多边形的外角和定理,解答本题的关键是掌握任意多边形的外角和都是360°.3. (2015?甘南州第10题4分)如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点得△A3B3C3,…,则△A5B5C5的周长为1.考点:三角形中位线定理..专题:规律型.分析:由三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半,以此类推可求出△A5B5C5的周长为△A1B1C1的周长的.解答:解:∵A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,∴以此类推:△A5B5C5的周长为△A1B1C1的周长的,∴则△A5B5C5的周长为(7+4+5)÷16=1.故答案为: 1点评:本题主要考查了三角形的中位线定理,关键是根据三角形的中位线定理得:A2B2、B2C2、C2A2分别等于A1B1、B1C1、C1A1的一半,所以△A2B2C2的周长等于△A1B1C1的周长的一半.4.(2015,福建南平,15,4分)将正方形纸片以适当的方式折叠一次,沿折痕剪开后得到两块小纸片,用这两块小纸片拼接成一个新的多边形(不重叠、无缝隙),给出以下结论:①可以拼成等腰直角三角形;②可以拼成对角互补的四边形;③可以拼成五边形;④可以拼成六边形.其中所有正确结论的序号是①②③④.考点:图形的剪拼.分析:分剪开的两个部分是等腰直角三角形和梯形和全等的梯形三种情况,将正方形的边重合或剪开的相等的边重合作出图形即可得解.解答:解:如图1,剪成两个等腰直角三角形时可以拼成等腰直角三角形;如图2,剪成两个梯形可以拼成对角互补的四边形;如图3,图4,剪成两个全等的梯形可以拼成五边形和六边形;所以,正确结论的序号①②③④.故答案为:①②③④.点评:本题考查了图形的简拼,此类题目,关键在于确定出重叠的边和图形的方法,难点在于考虑问题要全面.5.(2015?内蒙古赤峰15,3分)如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD延长线于点F,请你只添加一个条件:BD∥FC使得四边形BDFC 为平行四边形.考点:平行四边形的判定.分析:利用两组对边互相平行的四边形是平行四边形,进而得出答案.解答:解:∵AD∥BC,当BD∥FC时,∴四边形BDFC为平行四边形.故答案为:BD∥FC.点评:此题主要考查了平行四边形的判定,正确把握判定方法是解题关键.6.(2015?湖北十堰,第14题3分)如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.考点:平行四边形的判定;等边三角形的性质.分析:由三角形ABE为等边三角形,EF垂直于AB,利用三线合一得到EF为角平分线,得到∠AEF=30°,进而确定∠BAC=∠AEF,再由一对直角相等,及AE=AB,利用AAS即可得证△ABC≌△EAF;由∠BAC与∠DAC度数之和为90°,得到DA垂直于AB,而EF 垂直于AB,得到EF与AD平行,再由全等得到EF=AC,而AC=AD,可得出一组对边平行且相等,即可得证.解答:解:当=时,四边形ADFE是平行四边形.理由:∵=,∴∠CAB=30°,∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形.故答案为:.点评:此题考查了平行四边形的判定、平行线的判定与性质、全等三角形的判定与性质以及等边三角形的性质,熟练掌握判定与性质是解本题的关键7. (2015?河北,第19题3分)平面上,将边长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠在一起,如图,则∠3+∠1﹣∠2=24°.考点:多边形内角与外角.分析:首先根据多边形内角和定理,分别求出正三角形、正方形、正五边形、正六边形的每个内角的度数是多少,然后分别求出∠3、∠1、∠2的度数是多少,进而求出∠3+∠1﹣∠2的度数即可.解答:解:正三角形的每个内角是:180°÷3=60°,正方形的每个内角是:360°÷4=90°,正五边形的每个内角是:(5﹣2)×180°÷5=3×180°÷5=540°÷5=108°,正六边形的每个内角是:(6﹣2)×180°÷6=4×180°÷6=720°÷6=120°,则∠3+∠1﹣∠2=(90°﹣60°)+(120°﹣108°)﹣(108°﹣90°)=30°+12°﹣18°=24°.故答案为:24°.点评:此题主要考查了多边形内角和定理,要熟练掌握,解答此题的关键是要明确:(1)n 边形的内角和=(n﹣2)?180 (n≥3)且n为整数).(2)多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.8.(2015?辽宁阜新)(第10题,3分)如图,点E是?ABCD的边AD的中点,连接CE交BD于点F,如果S△DEF=a,那么S△BCF=4a.考点:相似三角形的判定与性质;平行四边形的性质.分析:根据平行四边形的性质得到AD∥BC和△EFD∽△CFB,根据相似三角形的面积比是相似比的平方得到答案.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴△EFD∽△CFB,∵E是边AD的中点,∴DE=BC,∴S△DEF:S△BCF=1:4,∵S△DEF=a,∴S△BCF=4a,故答案为:4a.点评:本题考查的是平行四边形的性质和相似三角形的判定和性质,掌握三角形相似的判定定理和性质定理是解题的关键,注意:相似三角形的面积比是相似比的平方.三、解答题1. (2015?宁德第20题4分)如图,在边长为1的小正方形网格中,三角形的三个顶点均落在格点上.(1)以三角形的其中两边为边画一个平行四边形,并在顶点处标上字母A,B,C,D;(2)证明四边形ABCD是平行四边形.考点:平行四边形的判定;勾股定理.专题:作图题.分析:(1)过A点作AB∥CD,切AB=CD,即可得到平行四边形ABCD,如图;(2)根据一组对边平行且相等的四边形是平行四边形进行证明.解答:(1)解:如图,四边形ABCD为平行四边形;(2)证明:∵AB=CD,AB∥CD,∴四边形ABCD为平行四边形.点评:本题考查了平行四边形的判定:两组对边分别平行的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形.2.(2015,广西柳州,24,10分)如图,在四边形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,点P从点A出发以2cm/s的速度沿A→D→C运动,点P从点A出发的同时点Q从点C出发,以1cm/s的速度向点B运动,当点P到达点C时,点Q也停止运动.设点P,Q运动的时间为t秒.(1)从运动开始,当t取何值时,PQ∥CD?(2)从运动开始,当t取何值时,△PQC为直角三角形?考点:平行四边形的判定与性质;勾股定理的逆定理;直角梯形.专题:动点型.分析:(1)已知AD∥BC,添加PD=CQ即可判断以PQDC为顶点的四边形是平行四边形.(2)点P处可能为直角,点Q处也可能是直角,而后求解即可.解答:解:(1)当PQ∥CD时,四边形PDCB是平行四边形,此时PD=QC,∴12﹣2t=t,∴t=4.∴当t=4时,四边形PQDC是平行四边形.(2)过P点,作PE⊥BC于E,DF⊥BC,∴DF=AB=8.FC=BC﹣AD=18﹣12=6.①当PQ⊥BC,则BE+CE=18.即:2t+t=18,∴t=6;②当QP⊥PC,∴PE=4,CE=3+t,QE=12﹣2t﹣(3+t)=9﹣3t,∴16=(3+t)(9﹣3t),解得:t=,③情形:当PC⊥BC时,因∠DCB<90°,此种情形不存在.∴当t=3或时,△PQC是直角三角形.点评:此题主要考查了一组对边平行且相等的四边形是平行四边形以及圆与圆的位置关系等知识,注意分情况讨论和常见知识的应用.3.(2015,广西钦州,20,6分)如图,在矩形ABCD中,点E、F分别是边AB、CD的中点.求证:DE=BF.考点:矩形的性质;全等三角形的判定.专题:证明题.分析:根据矩形的性质和已知证明DF=BE,AB∥CD,得到四边形DEBF是平行四边形,根据平行四边形的性质得到答案.解答:解:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,又E、F分别是边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE=BF.点评:本题考查的是矩形的性质、平行四边形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.4.(2015,广西玉林,23,9分)如图,在⊙O中,AB是直径,点D是⊙O上一点且∠BOD=60°,过点D作⊙O的切线CD交AB的延长线于点C,E为的中点,连接DE,EB.(1)求证:四边形BCDE是平行四边形;(2)已知图中阴影部分面积为6π,求⊙O的半径r.考点:切线的性质;平行四边形的判定;扇形面积的计算.分析:(1)由∠BOD=60°E为的中点,得到,于是得到DE∥BC,根据CD是⊙O的切线,得到OD⊥CD,于是得到BE∥CD,即可证得四边形BCDE是平行四边形;(2)连接OE,由(1)知,,得到∠BOE=120°,根据扇形的面积公式列方程即可得到结论.解答:解:(1)∵∠BOD=60°,∴∠AOD=120°,∴=,∵E为的中点,∴,∴DE∥AB,OD⊥BE,即DE∥BC,∵CD是⊙O的切线,∴OD⊥CD,∴BE∥CD,∴四边形BCDE是平行四边形;(2)连接OE,由(1)知,,∴∠BOE=120°,∵阴影部分面积为6π,∴=6π,∴r=6.点评:本题考查了切线的性质,平行四边形的判定,扇形的面积公式,垂径定理,证明是解题的关键.5.(2015?湖南郴州,第23题8分)如图,AC是?ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是OA的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.点评:本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.6.(2015?湖南张家界,第24题10分)如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)由全等三角形的判定定理SAS证得结论;(2)易证四边形EFGH是平行四边形,那么EF∥GH,那么∠HGE=∠FEG,而EG是角平分线,易得∠HEG=∠FEG,根据等量代换可得∠HEG=∠HGE,从而有HE=HG,易证四边形EFGH 是菱形.解答:(1)证明:如图,∵四边形ABCD是平行四边形,∴∠A=∠C,在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠B=∠D.又∵AE=CG,AH=CF,∴BE=DG,BF=DH,在△BEF与△DGH中,∴△BEF≌△DGH(SAS),∴EF=GH.又由(1)知,△AEH≌△CGF,∴EH=GF,∴四边形EFGH是平行四边形,∴HG∥EF,∴∠HGE=∠FEG,∵EG平分∠HEF,∴∠HEG=∠FEG,∴∠HEG=∠HGE,∴HE=HG,∴四边形EFGH是菱形.点评:本题考查了全等三角形的判定和性质、平行四边形的判定和性质、菱形的判定.解题的关键是掌握两组对边相等的四边形是平行四边形,一组邻边相等的平行四边形是菱形.7.(2015?吉林,第18题5分)如图,在?ABCD中,AE⊥BC,交边BC于点E,点F为边CD上一点,且DF=BE.过点F作FG⊥CD,交边AD于点G.求证:DG=DC.考点:全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:先根据平行四边形的性质得到∠B=∠D,AB=CD,再利用垂直的定义得∠AEB=∠GFD=90°,于是可根据“ASA”判定△AEB≌△GFD,根据全等的性质得AB=DC,所以有DG=DC.解答:证明:∵四边形ABCD为平行四边形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.点评:本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.也考查了平行四边形的性质.8. (2015?河北,第22题10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图1的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(1)在方框中填空,以补全已知和求证;(2)按嘉淇的想法写出证明;(3)用文字叙述所证命题的逆命题为平行四边形两组对边分别相等.考点:平行四边形的判定;命题与定理.分析:(1)命题的题设为“两组对边分别相等的四边形”,结论是“是平行四边形”,根据题设可得已知:在四边形ABCD中,BC=AD,AB=CD,求证:四边形ABCD是平行四边形;(2)连接BD,利用SSS定理证明△ABD≌△CDB可得∠ADB=∠DBC,∠ABD=∠CDB,进而可得AB∥CD,AD∥CB,根据两组对边分别平行的四边形是平行四边形可得四边形ABCD 是平行四边形;(3)把命题“两组对边分别相等的四边形是平行四边形”的题设和结论对换可得平行四边形两组对边分别相等.解答:解:(1)已知:如图1,在四边形ABCD中,BC=AD,AB=CD求证:四边形ABCD是平行四边形.(2)证明:连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADB=∠DBC,∠ABD=∠CDB,∴AB∥CD,AD∥CB,∴四边形ABCD是平行四边形;(2)用文字叙述所证命题的逆命题为:平行四边形两组对边分别相等.点评:此题主要考查了平行四边形的判定,关键是掌握两组对边分别平行的四边形是平行四边形.9. (2015?黄冈,第17题6分)已知:如图,在四边形ABCD 中,AB ∥CD,E,F 为对角线AC 上两点,且AE=CF,DF∥BE.求证:四边形ABCD 为平行四边形.考点:平行四边形的判定;全等三角形的判定与性质.专题:证明题.分析:首先证明△AEB≌△CFD 可得AB=CD ,再由条件AB∥CD 可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD 为平行四边形.解答:证明:∵AB∥CD,∴∠DCA= ∠BAC,∵DF ∥BE,∴∠DFA= ∠BEC,∴∠AEB= ∠DFC,在△AEB 和△CFD 中,∴△AEB≌△CFD (ASA),∴AB=CD ,∵AB∥CD,∴四边形ABCD 为平行四边形.点评:此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.10. (2015?黑龙江哈尔滨,第24题8分)(2015?哈尔滨)如图1,?ABCD中,点O是对角线AC的中点,EF过点O,与AD,BC分别相交于点E,F,GH过点O,与AB,CD分别相交于点G,H,连接EG,FG,FH,EH.(1)求证:四边形EGFH是平行四边形;(2)如图2,若EF∥AB,GH∥BC,在不添加任何辅助线的情况下,请直接写出图2中与四边形AGHD面积相等的所有平行四边形(四边形AGHD除外).考点:平行四边形的判定与性质;全等三角形的判定与性质.分析:(1)由四边形ABCD是平行四边形,得到AD∥BC,根据平行四边形的性质得到∠EAO=∠FCO,证出△OAE≌△OCF,得到OE=OF,同理OG=OH,根据对角线互相平分的四边形是平行四边形得到结论;(2)根据两组对边分别平行的四边形是平行四边形即可得到结论.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,在△OAE与△OCF中,∴△OAE≌△OCF,∴OE=OF,同理OG=OH,∴四边形EGFH是平行四边形;(2)解:与四边形AGHD面积相等的所有平行四边形有?GBCH,?ABFE,?EFCD,?EGFH;∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵EF∥AB,GH∥BC,∴四边形GBCH,ABFE,EFCD,EGFH为平行四边形,∵EF过点O,GH过点O,∵OE=OF,OG=OH,∴?GBCH,?ABFE,?EFCD,?EGFH,?ACHD它们面积=?ABCDA的面积,∴与四边形AGHD面积相等的所有平行四边形有?GBCH,?ABFE,?EFCD,?EGFH.点评:本题考查了平行四边形的判定和性质,全等三角形的判定和性质,熟练掌握平行四边形的判定定理是解题的关键.11. (2015?黑龙江哈尔滨,第27题10分)(2015?哈尔滨)如图,在平面直角坐标系中,点O为坐标原点,直线y=kx+1(k≠0)与x轴交于点A,与y轴交于点C,过点C的抛物线y=ax2﹣(6a﹣2)x+b(a≠0)与直线AC交于另一点B,点B坐标为(4,3).(1)求a的值;(2)点P是射线CB上的一个动点,过点P作PQ⊥x轴,垂足为点Q,在x轴上点Q的右侧取点M,使MQ=,在QP的延长线上取点N,连接PM,AN,已知tan∠NAQ﹣tan∠MPQ=,求线段PN的长;(3)在(2)的条件下,过点C作CD⊥AB,使点D在直线AB下方,且CD=AC,连接PD,NC,当以PN,PD,NC的长为三边长构成的三角形面积是时,在y轴左侧的抛物线上是否存在点E,连接NE,PE,使得△ENP与以PN,PD,NC的长为三边长的三角形全等?若存在,求出E点坐标;若不存在,请说明理由.考点:二次函数综合题;全等三角形的判定与性质;勾股定理;平行四边形的判定与性质;锐角三角函数的定义.专题:综合题.分析:(1)易得点C的坐标为(0,1),然后把点B、点C的坐标代入抛物线的解析式,即可解决问题;(2)把B(4,3)代入y=kx+1中,即可得到k的值,从而可求出点A的坐标,就可求出tan∠CAO=(即tan∠PAQ=),设PQ=m,则QA=2m,根据条件tan∠NAQ﹣tan∠MPQ=,即可求出PN的值;(3)由条件CD⊥AB,CD=AC,想到构造全等三角形,过点D作DF⊥CO于点F,易证△ACO≌△CDF,从而可以求出FD、CF、OF.作PH∥CN,交y轴于点H,连接DH,易证四边形CHPN是平行四边形,从而可得CN=HP,CH=PN,通过计算可得DH=PN,从而可得△PHD是以PN、PD、NC的长为三边长的三角形,则有S△PHD=.延长FD、PQ交于点G,易得∠G=90°.由点P在y=x+1上,可设P(t,t+1),根据S四边形HFGP=S△HFD+S △PHD+S△PDG,可求出t的值,从而得到点P、N的坐标及tan∠DPG的值,从而可得tan∠DPG=tan ∠HDF,则有∠DPG=∠HDF,进而可证到∠HDP=90°.若△ENP与△PDH全等,已知PN=DH,可分以下两种情况(①∠ENP=∠PDH=90°,EN=PD,②∠NPE=∠HDP=90°,BE=PD)进行讨论,即可解决问题.解答:解:(1)当x=0时,由y=kx+1得y=1,则C(0,1).∵抛物线y=ax2﹣(6a﹣2)x+b(a≠0)经过C(0,1),B(4,3),∴,解得:,∴a=;(2)把B(4,3)代入y=kx+1中,得3=4k+1,解得:k=,∴直线AB的解析式为y=x+1.由y=0得0=x+1,解得:x=﹣2,∴A(﹣2,0),OA=2,∵C(0,1),∴OC=1,∴tan∠CAO==.∵PQ⊥x轴,∴tan∠PAQ==,设PQ=m,则QA=2m,∵tan∠NAQ﹣tan∠MPQ=,∴=,∵MQ=,∴﹣=,∴PN=;(3)在y轴左侧抛物线上存在E,使得△ENP与以PN,PD,NC的长为三边长的三角形全等.过点D作DF⊥CO于点F,如图2,∵DF⊥CF,CD⊥AB,∴∠CDF+∠DCF=90°,∠DCF+∠ACO=90°,∴∠CDF=∠ACO,∵CO⊥x轴,DF⊥CO,∴∠AOC=∠CFD=90°,在△ACO和△CDF中,,∴△ACO≌△CDF(AAS),∴CF=AO=2,DF=CO=1,∴OF=CF﹣CO=1,作PH∥CN,交y轴于点H,连接DH,∵CH∥PN,∴四边形CHPN是平行四边形,∴CN=HP,CH=PN=,∴HF=CF﹣CH=,DH==,∴DH=PN.∴△PHD是以PN,PD,NC的长为三边长的三角形,∴S△PHD=.延长FD、PQ交于点G,∵PQ∥y轴,∴∠G=180°﹣∠CFD=90°,∴S四边形HFGP=S△HFD+S△PHD+S△PDG,∴(HF+PG)FG=HF?FD++DG?PG.∵点P在y=x+1上,∴可设P(t,t+1),∴(+t+1+1)?t=××1++(t﹣1)?(t+1+1),∴t=4,P(4,3),∴N(4,),tan∠DPG==.∵tan∠HDF==,∴∠DPG=∠HDF.∵∠DPG+∠PDG=90°,∴∠HDF+∠PDG=90°,∴∠HDP=90°.∵PN=DH,若△ENP与△PDH全等,则有两种情况:①当∠ENP=∠PDH=90°,EN=PD时,∵PD==5,∴EN=5,∴E(﹣1,).由(1)得:抛物线y=x2﹣x+1.当x=﹣1时,y=,所以点E在此抛物线上.②当∠NPE=∠HDP=90°,BE=PD时,则有E(﹣1,3),此时点E不在抛物线上,∴存在点E,满足题中条件,点E的坐标为(﹣1,).点评:本题主要考查了运用待定系数法求直线及二次函数的解析式、全等三角形的判定与性质、平行四边形的判定与性质、三角函数的定义、抛物线上点的坐标特征、勾股定理等知识,通过平移CN,将PN、PD、NC归结到△PHD中,是解决本题的关键.在解决问题的过程中,用到了分类讨论、平移变换、割补法、运算推理等重要的数学思想方法,应学会使用.13. (2015?内蒙古呼伦贝尔兴安盟,第22题7分)如图,在平行四边形ABCD中,E、F 分别为边AB、CD的中点,BD是对角线.(1)求证:△ADE≌△CBF;(2)若∠ADB是直角,则四边形BEDF是什么四边形?证明你的结论.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)由四边形ABCD是平行四边形,即可得AD=BC,AB=CD,∠A=∠C,又由E、F分别为边AB、CD的中点,可证得AE=CF,然后由SAS,即可判定△ADE≌△CBF;(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形,再连接EF,可以证明四边形AEFD是平行四边形,所以AD∥EF,又AD⊥BD,所以BD ⊥EF,根据菱形的判定可以得到四边形是菱形.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∠A=∠C,∵E、F分别为边AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,∵,∴△ADE≌△CBF(SAS);(2)若∠ADB是直角,则四边形BEDF是菱形,理由如下:解:由(1)可得BE=DF,又∵AB∥CD,∴BE∥DF,BE=DF,∴四边形BEDF是平行四边形,连接EF,在?ABCD中,E、F分别为边AB、CD的中点,∴DF∥AE,DF=AE,∴四边形AEFD是平行四边形,∴EF∥AD,∵∠ADB是直角,∴AD⊥BD,∴EF⊥BD,又∵四边形BFDE是平行四边形,∴四边形BFDE是菱形.点评:本题主要考查了平行四边形的性质,全等三角形的判定以及菱形的判定,利用好E、F是中点是解题的关键.14. (2015?天津,第21题10分)(2015?天津)已知A、B、C是⊙O上的三个点.四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D.(Ⅰ)如图①,求∠ADC的大小.(Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.考点:切线的性质;平行四边形的性质.分析:(Ⅰ)由CD是⊙O的切线,C为切点,得到OC⊥CD,即∠OCD=90°由于四边形OABC是平行四边形,得到AB∥OC,即AD∥OC,根据平行四边形的性质即可得到结果.(Ⅱ)如图,连接OB,则OB=OA=OC,由四边形OABC是平行四边形,得到OC=AB,△AOB是等边三角形,证得∠AOB=60°,由OF∥CD,又∠ADC=90°,得∠AEO=∠ADC=90°,根据垂径定理即可得到结果.解答:解:(Ⅰ)∵CD是⊙O的切线,C为切点,∴OC⊥CD,即∠OCD=90°∵四边形OABC是平行四边形,∴AB∥OC,即AD∥OC,有∠ADC+∠OCD=180°,∴∠ADC=180°﹣∠OCD=90°;(Ⅱ)如图②,连接OB,则OB=OA=OC,。

2015中考试题汇编--特殊平行四边形

2015中考试题汇编--特殊平行四边形

一、选择题1. (2014•上海,第6题4分)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是()A.△ABD与△ABC的周长相等B.△ABD与△ABC的面积相等C.菱形的周长等于两条对角线之和的两倍D.菱形的面积等于两条对角线之积的两倍2.(2014•山东枣庄,第7题3分)如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为()A.22 B.18 C.14 D.113. (2014•山东烟台,第6题3分)如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为()A.28°B.52°C.62°D.72°4.(2014•山东聊城,第9题,3分)如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BEDF是菱形,且EF=AE+FC,则边BC的长为() A .2 B.3 C. 6D,5. (2014•浙江杭州,第5题,3分)下列命题中,正确的是()A.梯形的对角线相等B.菱形的对角线不相等C.矩形的对角线不能相互垂直D.平行四边形的对角线可以互相垂直6.(2014年贵州黔东南10.(4分))如图,在矩形ABCD中,AB=8,BC=16,将矩形ABCD沿EF折叠使点C与点A重合,则折痕EF的长为()A.6 B.12 C.2D.47(2014•十堰9.(3分))如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()9. (2014•江苏A.2B.C.2D.徐州,第7题3分)若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是()A.矩形B.等腰梯形C.对角线相等的四边形D.对角线互相垂直的四边形10.(2014•山东淄博,第9题4分)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC 相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A ﹣F﹣E﹣C﹣D的路径行走至D,丙沿着A﹣F﹣C﹣D的路径行走至D.若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是()A.甲乙丙 B.甲丙乙C.乙丙甲D.丙甲乙图2-①图2-②11.(2014•福建福州,第9题4分)如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为【】A.45°B.55°C.60°D.75°12.(2014•甘肃兰州,第7题4分)下列命题中正确的是()A.有一组邻边相等的四边形是菱形 B. 一组对边平行的四边形是平行四边形C. 有一个角是直角的平行四边形是矩形D.对角线垂直的平行四边形是正方形13.(2014•广州,第8题3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当时,如图,().(A)(B)2 (C)(D)14.(2014•广州,第10题3分)如图3,四边形、都是正方形,点在线段上,连接,和相交于点.设,().下列结论:①;②;③;④.其中结论正确的个数是().(A)4个(B)3个(C)2个(D)1个二、填空题1.(2014•上海,第18题4分)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG的周长为(用含t的代数式表示).2. (2014•山东枣庄,第17题4分)如图,将矩形ABCD沿CE向上折叠,使点B落在AD边上的点F处.若AE=BE,则长AD与宽AB的比值是.3.(2014•甘肃白银、临夏,第17题4分)如图,四边形ABCD是菱形,O是两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.4.(2014•江苏苏州,第13题3分)已知正方形ABCD的对角线AC=,则正方形ABCD的周长为.5.(2014•山东淄博,第15题4分)已知▱ABCD,对角线AC,BD相交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你添加的条件是.6.(2014•四川宜宾,第12题)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是cm.7.(2014•甘肃兰州,第17题4分)如果菱形的两条对角线的长为a和b,且a,b满足(a﹣1)2+=0,那么菱形的面积等于.三、解答题1. (2014•四川巴中,第28题10分)如图,在四边形ABCD中,点H 是BC的中点,作射线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件是,并证明.(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩形,请说明理由.2.(2014•十堰14.(3分))如图,在△ABC中,点D是BC的中点,点E,F分别在线AD及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).请说明理由.3.(2014•江苏盐城,第25题10分)菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若EF⊥AB,垂足为M,tan∠MBO=,求EM:MF的值.4.(2014•四川遂宁,第20题,9分)已知:如图,在矩形ABCD中,对角线AC、BD相交于点O,E 是CD中点,连结OE.过点C作CF∥BD交线段OE的延长线于点F,连结DF.求证:(1)△ODE≌△FCE;(2)四边形ODFC是菱形.5.(2014•山东临沂,第25题11分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.。

新人教版初中数学八年级下册中考试题汇编含精讲解析-特殊的平行四边形2及答案-精品试卷

新人教版初中数学八年级下册中考试题汇编含精讲解析-特殊的平行四边形2及答案-精品试卷

特殊的平行四边形2一.填空题(共14小题)1.(2015•苏州)如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为.2.(2015•铜仁市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为.3.(2015•淮安)如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是米.4.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.5.(2015•大连)如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB= cm.6.(2015•桂林)如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数y=的图象交BC于D,连接AD,则四边形AOCD的面积是.7.(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.8.(2015•临沂)如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是.9.(2015•曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是度.10.(2015•镇江)如图,▱ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△DEF的面积为1,则▱ABCD的面积等于.11.(2015•百色)如图,平行四边形ABCD的对角线AC、BD相交于点O,BC=9,AC=8,BD=14,则△AOD的周长为.12.(2015•十堰)如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当= 时,四边形ADFE是平行四边形.13.(2015•牡丹江)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.14.(2015•赤峰)如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD延长线于点F,请你只添加一个条件:使得四边形BDFC为平行四边形.二.解答题(共16小题)15.(2015•自贡)如图,在△ABC中,D、E分别是AB、AC边的中点.求证:DE BC.16.(2015•茂名)补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.17.(2015•邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.18.(2015•呼和浩特)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.19.(2015•郴州)如图,AC是▱ABCD的一条对角线,过AC中点O 的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.20.(2015•自贡)在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.21.(2015•武汉)如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.22.(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.23.(2015•南宁)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF.(2)若∠DEB=90°,求证:四边形DEBF是矩形.24.(2015•广元)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证,再写出证明过程).25.(2015•潜江)如图,▱ABCD放置在平面直角坐标系中,已知点A (2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.26.(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.27.(2015•广西)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,(1)写出图中所有的全等三角形;(2)求证:DE∥BF.28.(2015•锦州)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.29.(2015•徐州)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE= 时,四边形BFCE是菱形.30.(2015•黄冈)已知:如图,在四边形ABCD中,AB∥CD,E,F 为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.18.2 特殊的平行四边形2参考答案与试题解析一.填空题(共14小题)1.(2015•苏州)如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为27 .考点:三角形中位线定理;等腰三角形的性质;轴对称的性质.分析:先根据点A、D关于点F对称可知点F是AD的中点,再由CD⊥AB,FG∥CD可知FG是△ACD的中位线,故可得出CG的长,再根据点E是AB的中点可知GE是△ABC的中位线,故可得出GE 的长,由此可得出结论.解答:解:∵点A、D关于点F对称,∴点F是AD的中点.∵CD⊥AB,FG∥CD,∴FG是△ACD的中位线,AC=18,BC=12,∴CG=AC=9.∵点E是AB的中点,∴GE是△ABC的中位线,∵CE=CB=12,∴GE=BC=6,∴△CEG的周长=CG+GE+CE=9+6+12=27.故答案为:27.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.2.(2015•铜仁市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为8 .考点:三角形中位线定理;直角三角形斜边上的中线.分析:先根据点D是AB的中点,BF∥DE可知DE是△ABF的中位线,故可得出DE的长,根据CE=CD可得出CD的长,再根据直角三角形的性质即可得出结论.解答:解:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.3.(2015•淮安)如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是720 米.考点:三角形中位线定理.专题:应用题.分析:首先根据D、E分别是CA,CB的中点,可得DE是△ABC的中位线,然后根据三角形的中位线定理,可得DE∥AB,且DE=,再根据DE的长度为360米,求出A、B两地之间的距离是多少米即可.解答:解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且DE=,∵DE=360(米),∴AB=360×2=720(米).即A、B两地之间的距离是720米.故答案为:720.点评:此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.4.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20 .考点:平行四边形的性质.分析:根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.解答:解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+D E=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.点评:本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.5.(2015•大连)如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB= cm.考点:平行四边形的性质;勾股定理.分析:由平行四边形的性质得出BC=AD=8cm,OA=OC=AC,由勾股定理求出AC,得出OC,再由勾股定理求出OB即可.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=8cm,OA=OC=AC,∵AC⊥BC,∴∠ACB=90°,∴AC===6,∴OC=3,∴OB===;故答案为:.点评:本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.6.(2015•桂林)如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数y=的图象交BC于D,连接AD,则四边形AOCD的面积是9 .考点:平行四边形的性质;反比例函数系数k的几何意义.分析:先求出反比例函数和直线BC的解析式,再求出由两个解析式组成方程组的解,得出点D的坐标,得出D为BC的中点,△ABD的面积=平行四边形ABCD的面积,即可求出四边形AOCD的面积.解答:解:∵四边形ABCD是平行四边形,A、C的坐标分别是(2,4)、(3,0),∴点B的坐标为:(5,4),把点A(2,4)代入反比例函数y=得:k=8,∴反比例函数的解析式为:y=;设直线BC的解析式为:y=kx+b,把点B(5,4),C(3,0)代入得:,解得:k=2,b=﹣6,∴直线BC的解析式为:y=2x﹣6,解方程组得:,或(不合题意,舍去),∴点D的坐标为:(4,2),即D为BC的中点,∴△ABD的面积=平行四边形ABCD的面积,∴四边形AOCD的面积=平行四边形ABCO的面积﹣△ABD的面积=3×4﹣×3×4=9;故答案为:9.点评:本题考查了平行四边形的性质、用待定系数法求一次函数的解析式、平行四边形和三角形面积的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.7.(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.考点:平行四边形的性质.分析:首先求出∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.解答:解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=70°=35°.故答案为:55°或35°.点评:此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键.8.(2015•临沂)如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是3.考点:平行四边形的性质;解直角三角形.分析:先由三角函数求出BD,再根据勾股定理求出AD,▱ABCD 的面积=AD•BD,即可得出结果.解答:解:∵AD⊥BD,∴∠ADB=90°,∵AB=4,sinA=,∴BD=AB•sinA==4×=3,∴AD===,∴▱ABCD的面积=AD•BD=3;故答案为:3.点评:本题考查了平行四边形的性质、三角函数、勾股定理以及平行四边形面积的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.(2015•曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是120 度.考点:平行四边形的性质.分析:根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠C即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠C=×180°=120°,故答案为:120.点评:本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.10.(2015•镇江)如图,▱ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△DEF的面积为1,则▱ABCD的面积等于 4 .考点:平行四边形的性质;全等三角形的判定与性质.分析:通过△ABE≌△DFE求得△ABE的面积为1,通过△FBC∽△FED,求得四边形BCDE的面积为3,然后根据▱ABCD的面积=四边形BCDE的面积+△ABE的面积即可求得.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵AB∥CD,∴∠A=∠EDF,在△ABE和△DFE中,,∴△ABE≌△DFE(SAS),∵△DEF的面积为1,∴△ABE的面积为1,∵AD∥BC,∴△FBC∽△FED,∴=()2∵AE=ED=AD.∴ED=BC,∴=,∴四边形BCDE的面积为3,∴▱ABCD的面积=四边形BCDE的面积+△ABE的面积=4.故答案为4.点评:本题考查了平行四边形的性质,三角形全等的判定和性质,三角形相似的判定和性质,熟练掌握三角形全等的性质和三角形相似的性质是解题的关键.11.(2015•百色)如图,平行四边形ABCD的对角线AC、BD相交于点O,BC=9,AC=8,BD=14,则△AOD的周长为20 .考点:平行四边形的性质.分析:首先根据平行四边形的对边相等、对角线互相平分,求出AD、OA、OD的长度,代入AD+OA+OD计算即可求出所填答案.解答:解:∵四边形ABCD是平行四边形,∴AD=BC,OA=OC,OB=OD,∵BC=9,BD=14,AC=8,∴AD=9,OA=4,OD=7,∴△AOD的周长为:AD+OA+OD=20.故答案为:20.点评:本题用到的知识点是平行四边形的性质,利用性质(平行四边形的对边相等、对角线互相平分)进行计算是解此题的关键.12.(2015•十堰)如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.考点:平行四边形的判定;等边三角形的性质.分析:由三角形ABE为等边三角形,EF垂直于AB,利用三线合一得到EF为角平分线,得到∠AEF=30°,进而确定∠BAC=∠AEF,再由一对直角相等,及AE=AB,利用AAS即可得证△ABC≌△EAF;由∠BAC与∠DAC度数之和为90°,得到DA垂直于AB,而EF垂直于AB,得到EF与AD平行,再由全等得到EF=AC,而AC=AD,可得出一组对边平行且相等,即可得证.解答:解:当=时,四边形ADFE是平行四边形.理由:∵=,∴∠CAB=30°,∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形.故答案为:.点评:此题考查了平行四边形的判定、平行线的判定与性质、全等三角形的判定与性质以及等边三角形的性质,熟练掌握判定与性质是解本题的关键.13.(2015•牡丹江)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件BO=DO (只添一个即可),使四边形ABCD是平行四边形.考点:平行四边形的判定.专题:开放型.分析:根据题目条件结合平行四边形的判定方法:对角线互相平分的四边形是平行四边形分别进行分析即可.解答:解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.故答案为:BO=DO.点评:此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.14.(2015•赤峰)如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD延长线于点F,请你只添加一个条件:BD∥FC 使得四边形BDFC为平行四边形.考点:平行四边形的判定.分析:利用两组对边互相平行的四边形是平行四边形,进而得出答案.解答:解:∵AD∥BC,当BD∥FC时,∴四边形BDFC为平行四边形.故答案为:BD∥FC.点评:此题主要考查了平行四边形的判定,正确把握判定方法是解题关键.二.解答题(共16小题)15.(2015•自贡)如图,在△ABC中,D、E分别是AB、AC边的中点.求证:DE BC.考点:三角形中位线定理;相似三角形的判定与性质.专题:证明题.分析:根据D、E分别是AB、AC边的中点,得出=,即可证明△ADE∽△ABC,从而得出结论即可.解答:证明:∵D是AB中点E是AC中点∴=,=,∴=,又∵∠A=∠A,∴△ADE∽△ABC,∴==,∠ADE=∠B∴BC=2DE,BC∥DE,即:DE BC.点评:本题考查了三角形的中位线定理以及相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.16.(2015•茂名)补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.考点:三角形中位线定理.分析:(1)根据三角形的中位线定理填写即可;(2)延长DE到F,使FE=DE,连接CF,利用“边角边”证明△ADE 和△CFE全等,根据全等三角形对应角相等可得∠A=∠ECF,全等三角形对应边相等可得AD=CF,然后求出四边形BCFD是平行四边形,根据平行四边形的性质证明即可.解答:(1)解:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;故答案为:平行于第三边,且等于第三边的一半;(2)证明:如图,延长DE到F,使FE=DE,连接CF,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=BC.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键,难点在于作辅助线构造出全等三角形和平行四边形.17.(2015•邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质.分析:(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF的长.解答:(1)证明:∵D、E分别为AB、AC的中点,∴DE BC,∵延长BC至点F,使CF=BC,∴DE FC,即DE=CF;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.点评:此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出DE BC是解题关键.18.(2015•呼和浩特)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.考点:平行四边形的性质;全等三角形的判定与性质.分析:(1)先证出OE=OF,再由SAS即可证明△BOE≌△DOF;(2)由对角线互相平分证出四边形EBFD是平行四边形,再由对角线相等,即可得出四边形EBFD是矩形.解答:(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(SAS);(2)解:四边形EBFD是矩形;理由如下:∵OB=OD,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点评:本题考查了平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.19.(2015•郴州)如图,AC是▱ABCD的一条对角线,过AC中点O 的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE 是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是OA的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.点评:本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(2015•自贡)在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.考点:平行四边形的性质.专题:证明题.分析:根据平行四边形的性质和已知条件易证△EBC是等腰三角形,由等腰三角形的性质:三线合一即可证明CH=EH.解答:证明:∵在□ABCD中,BE∥CD,∴∠E=∠2,∵CE平分∠BCD,∴∠1=∠2,∴∠1=∠E,∴BE=BC,又∵BH⊥BC,∴CH=EH(三线合一).点评:本题考查了平行四边形的性质、角平分线的定义以及等腰三角形的判定和性质,证题的关键是得到△EBC是等腰三角形.21.(2015•武汉)如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.考点:平行四边形的性质;坐标与图形性质;平移的性质.分析:(1)利用中心对称图形的性质得出C,D两点坐标;(2)利用平行四边形的性质以及结合平移的性质得出即可;(3)利用S的可以转化为边长为;5和4的矩形面积,进而求出即ABCD可.解答:解:(1)∵四边形ABCD是平行四边形,∴四边形ABCD关于O中心对称,∵A(﹣4,2),B(﹣1,﹣2),∴C(4,﹣2),D(1,2);(2)线段AB到线段CD的变换过程是:绕点O旋转180°;(3)由(1)得:A到y轴距离为:4,D到y轴距离为:1,A到x轴距离为:2,B到x轴距离为:2,的可以转化为边长为;5和4的矩形面积,∴SABCD=5×4=20.∴SABCD点评:此题主要考查了平行四边形的性质以及中心对称图形的性质,的可以转化为矩形面积是解题关键.根据题意得出SABCD22.(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.考点:平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.专题:证明题.分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.解答:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.点评:本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.23.(2015•南宁)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF.(2)若∠DEB=90°,求证:四边形DEBF是矩形.考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.专题:证明题.分析:(1)由在▱ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在▱ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形ABCD是平行四边形,∵∠DEB=90°,∴四边形DEBF是矩形.点评:此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD是平行四边形是关键.24.(2015•广元)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证,再写出证明过程).考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:首先根据题意画出图形,再写出命题的已知和求证,最后通过证明三角形全等即可证明命题是正确的.解答:已知:平行四边形ABCD的对角线AC,BD相交于点O,求证:OA=OC,OB=OD证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,在△AOD和△COB中,∴△AOD≌△COB(AAS),∴OA=OC,OB=OD.点评:此题主要考查了平行四边形的性质以及全等三角形的判定和性质,解题的关键是熟记平行四边形的各种性质以及全等三角形的各种判定的各种方法.25.(2015•潜江)如图,▱ABCD放置在平面直角坐标系中,已知点A (2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.考点:平行四边形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.专题:计算题.分析:(1)由A与B的坐标求出AB的长,根据四边形ABCD为平行四边形,求出DC的长,进而确定出C坐标,设反比例解析式为y=,把C坐标代入求出k的值,即可确定出反比例解析式;(2)根据平移的性质得到B与B′横坐标相同,代入反比例解析式求出B′纵坐标得到平移的距离,即为AA′的长,求出D′纵坐标,即为E纵坐标,代入反比例解析式求出E横坐标,即可确定出E坐标.解答:解:(1)∵▱ABCD中,A(2,0),B(6,0),D(0,3),∴AB=CD=4,DC∥AB,∴C(4,3),设反比例解析式为y=,把C坐标代入得:k=12,则反比例解析式为y=;(2)∵B(6,0),∴把x=6代入反比例解析式得:y=2,即B′(6,2),∴平行四边形ABCD向上平移2个单位,即AA′=2,∴D′(0,5),把y=5代入反比例解析式得:x=,即E(,5).点评:此题考查了平行四边形的性质,反比例函数图象上点的坐标特征,以及待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.26.(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.考点:平行四边形的性质;等腰三角形的判定与性质.分析:首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB∥DC,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF﹣CD即可算出DF的长.解答:解:∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=10,AB∥DC.∵AB∥DC,∴∠1=∠3,又∵BF平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF﹣DC=10﹣6=4.点评:此题主要考查了平行线的性质,以及平行线的性质,关键是证明∠2=∠3推出BC=CF.27.(2015•广西)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,(1)写出图中所有的全等三角形;(2)求证:DE∥BF.考点:平行四边形的性质;全等三角形的判定与性质.分析:(1)由平行四边形的性质得出AB=CD,AD=CB,AB∥CD,AD∥CB,证出内错角相等∠BAF=∠DCE,∠DAE=∠BCF,由SSS 证明△ABC≌△CDA;由SAS证明△ABF≌△CDE;由SAS证明△ADE≌△CBF(SAS);(2)由△ABF≌△△CDE,得出对应角相等∠AFB=∠CED,即可证出DE∥BF..解答:(1)解:△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;理由如下:∵四边形ABCD是平行四边形,∴AB=CD,AD=CB,AB∥CD,AD∥CB,∴∠BAF=∠DCE,∠DAE=∠BCF,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS);∵AE=CF,∴AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS);在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)证明:∵△ABF≌△△CDE,∴∠AFB=∠CED,∴DE∥BF.点评:本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和全等三角形的判定方法是解决问题的关键.28.(2015•锦州)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.考点:平行四边形的判定;三角形中位线定理.分析:根据三角形中位线的性质可得DE∥BF,DE=AB,再根据对边平行且相等的四边形是平行四边形即可判定四边形ADEF的形状.解答:解:∵点D,E分别是边BC,AC的中点,∴DE∥BF,DE=AB,∵AF=AB,∴DE=AF,∴四边形ADEF是平行四边形.点评:本题考查了平行四边形的判定,三角形中位线的性质,熟练掌握各性质定理是解题的关键.。

特殊的平行四边形中考试题汇编

特殊的平行四边形中考试题汇编

特殊的平行四边形 (选择题)一、选择题1.(湖北荆州)如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( )A .3cmB .4cmC .5cmD .6cm【关键词】正方形 【答案】2..(山西省)如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n - B .m n - C .2mD .2n【关键词】整式的运算;特殊平行四边形相关的面积问题 【答案】A3.( 黑龙江大兴安岭)在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BDCE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③CH CA =;④ED BE 3=,正确的( )A .②③B .③④C .①②④D .②③④【关键词】平行四边形有关的计算mnn(2)(1)NE【答案】D4.(河北)如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15 C . 10D .5【关键词】菱形和等边三角形的性质【答案】D5.(兰州)如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是【关键词】正方形、折叠 【答案】D6.(济南)如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.4BACDA .B .C .D .【关键词】矩形的性质、勾股定理 【答案】D7.(凉山州)如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=B .EBD EDB ∠=∠C .ABE CBD △∽△D .sin AEABE ED∠=【关键词】矩形的性质、折叠 【答案】C8.(济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是A .1B . 14C . 15D . 110【关键词】正方形 【答案】C9.(衡阳市) 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确的个数为( )①DE =3cm ; ②EB =1cm ; ③2ABCD 15S cm =菱形. A .3个 B .2个 C .1个D .0个C D C 'A BE【关键词】菱形 【答案】A10.(衡阳市)如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B .34 C .23D .2【关键词】矩形折叠 【答案】C11.(广西南宁)如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( )A .210cmB .220cmC .240cmD .280cm【关键词】菱形的性质与判定 【答案】A12.(宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形ACD图2G B ABC【关键词】菱形 【答案】C13.(桂林百色)如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放 在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿 图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点 出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个 过程中,线段QR 的中点M 所经过的路线围成的图形的面积为 ( ).A .2B .4π-C .πD .π1-【关键词】正方形、动点、面积 【答案】B14.(河池)已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( )A . 23cmB . 24cmC .2 D .2【关键词】菱形、面积 【答案】D15.(杭州市)如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( )A .35°B .45°C .50°D .55°DDBCA NM O【关键词】菱形的性质与判定 【答案】D16.(义乌)如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积为A .4x A .12x A .8x A .16x【关键词】平面图形的面积 【答案】B17.(台湾) 如图(八),长方形ABCD 中,E 点在BC 上,且AE 平分 BAC 。

特殊与平行四边形中考试题汇编

特殊与平行四边形中考试题汇编

特殊的平行四边形 (选择题)一、选择题1.(湖北荆州)如图,将边长为8㎝的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN ,则线段CN 的长是( ) A .3cmB .4cmC .5cmD .6cm【关键词】正方形 【答案】2..(山西省)如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( ) A .2m n - B .m n - C .2mD .2n【关键词】整式的运算;特殊平行四边形相关的面积问题 【答案】A3.( 黑龙江大兴安岭)在矩形ABCD 中,1=AB ,3=AD ,AF 平分DAB ∠,过C 点作BD CE ⊥于E ,延长AF 、EC 交于点H ,下列结论中:①FH AF =;②BF BO =;③CH CA =;④ED BE 3=,正确的( )A .②③B .③④C .①②④D .②③④【关键词】平行四边形有关的计算mnn(2)(1)NE【答案】D4.(河北)如图1,在菱形ABCD 中,AB = 5,∠BCD = 120°,则对 角线AC 等于( ) A .20 B .15 C . 10D .5【关键词】菱形和等边三角形的性质【答案】D5.(兰州)如图7所示,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是【关键词】正方形、折叠 【答案】D6.(济南)如图,矩形ABCD 中,35AB BC ==,.过对角线交点O 作OE AC ⊥交AD 于E ,则AE 的长是( )A .1.6B .2.5C .3D .3.4BACDA .B .C .D .【关键词】矩形的性质、勾股定理 【答案】D7.(凉山州)如图,将矩形ABCD 沿对角线BD 折叠,使C 落在C '处,BC '交AD 于E ,则下列结论不一定成立的是( )A .AD BC '=B .EBD EDB ∠=∠C .ABE CBD △∽△D .sin AEABE ED∠=【关键词】矩形的性质、折叠 【答案】C8.(济宁市)“赵爽弦图”是四个全等的直角三角形与中间一个小正方形拼成的大正方形.如图,是一“赵爽弦图”飞镖板,其直角三角形的两条直角边的长分别是2和4.小明同学距飞镖板一定距离向飞镖板投掷飞镖(假设投掷的飞镖均扎在飞镖板上), 则投掷一次飞镖扎在中间小正方形区域(含边线)的概率是 A .12 B . 14 C . 15 D . 110【关键词】正方形 【答案】C9.(衡阳市) 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确 的个数为( )①DE =3cm ; ②EB =1cm ; ③2A BCD 15S cm =菱形. A .3个B .2个C .1个D .0个C D C 'A BE【关键词】菱形 【答案】A10.(衡阳市)如图,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B .34 C .23D .2【关键词】矩形折叠 【答案】C11.(广西南宁)如图2,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ) A .210cmB .220cmC .240cmD .280cm【关键词】菱形的性质与判定 【答案】A12.(宁波市)如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 分别是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形B .四边形MBON 和四边形MODN 都是菱形C .四边形AMON 与四边形ABCD 是位似图形 D .四边形MBCO 和四边形NDCO 都是等腰梯形ACD图2G B ABC【关键词】菱形 【答案】C13.(桂林百色)如图,正方形ABCD 的边长为2,将长为2的线段QR 的两端放 在正方形的相邻的两边上同时滑动.如果Q 点从A 点出发,沿 图中所示方向按A→B→C→D→A 滑动到A 止,同时点R 从B 点 出发,沿图中所示方向按B→C→D→A→B 滑动到B 止,在这个 过程中,线段QR 的中点M 所经过的路线围成的图形的面积为 ( ).A .2B .4π-C .πD .π1-【关键词】正方形、动点、面积 【答案】B14.(河池)已知菱形的边长和一条对角线的长均为2cm ,则菱形的面积为( )A . 23cmB . 24cm C .2 D .2【关键词】菱形、面积 【答案】D15.(杭州市)如图,在菱形ABCD 中,∠A =110°,E ,F 分别是边AB 和BC 的中点,EP ⊥CD 于点P ,则∠FPC =( )A .35°B .45°C .50°D .55°DDBCA NM O【关键词】菱形的性质与判定 【答案】D16.(义乌)如图,一块砖的外侧面积为x ,那么图中残留部分墙面的面积为 A .4x A .12x A .8x A .16x【关键词】平面图形的面积 【答案】B17.(台湾) 如图(八),长方形ABCD 中,E 点在BC 上,且AE 平分 BAC 。

人教数学八年级下册中考试题汇编含精讲解析18.2特殊的平行四边形2

人教数学八年级下册中考试题汇编含精讲解析18.2特殊的平行四边形2

初中数学试卷灿若寒星整理制作18.2 特殊的平行四边形2一.填空题(共14小题)1.(2015•苏州)如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为.2.(2015•铜仁市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为.3.(2015•淮安)如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是米.4.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.5.(2015•大连)如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB=cm.6.(2015•桂林)如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数y=的图象交BC于D,连接AD,则四边形AOCD的面积是.7.(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为.8.(2015•临沂)如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是.9.(2015•曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是度.10.(2015•镇江)如图,▱ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△DEF的面积为1,则▱ABCD的面积等于.11.(2015•百色)如图,平行四边形ABCD的对角线AC、BD相交于点O,BC=9,AC=8,BD=14,则△AOD的周长为.12.(2015•十堰)如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.13.(2015•牡丹江)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件(只添一个即可),使四边形ABCD是平行四边形.14.(2015•赤峰)如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD延长线于点F,请你只添加一个条件:使得四边形BDFC为平行四边形.二.解答题(共16小题)15.(2015•自贡)如图,在△ABC中,D、E分别是AB、AC边的中点.求证:DE BC.16.(2015•茂名)补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.17.(2015•邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.18.(2015•呼和浩特)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.19.(2015•郴州)如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.20.(2015•自贡)在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.21.(2015•武汉)如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.22.(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.23.(2015•南宁)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF.(2)若∠DEB=90°,求证:四边形DEBF是矩形.24.(2015•广元)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证,再写出证明过程).25.(2015•潜江)如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.26.(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.27.(2015•广西)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,(1)写出图中所有的全等三角形;(2)求证:DE∥BF.28.(2015•锦州)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.29.(2015•徐州)如图,点A,B,C,D在同一条直线上,点E,F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:四边形BFCE是平行四边形;(2)若AD=10,DC=3,∠EBD=60°,则BE=时,四边形BFCE是菱形.30.(2015•黄冈)已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.18.2 特殊的平行四边形2参考答案与试题解析一.填空题(共14小题)1.(2015•苏州)如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为27.考点:三角形中位线定理;等腰三角形的性质;轴对称的性质.分析:先根据点A、D关于点F对称可知点F是AD的中点,再由CD⊥AB,FG∥CD可知FG是△ACD的中位线,故可得出CG的长,再根据点E是AB的中点可知GE是△ABC的中位线,故可得出GE的长,由此可得出结论.解答:解:∵点A、D关于点F对称,∴点F是AD的中点.∵CD⊥AB,FG∥CD,∴FG是△ACD的中位线,AC=18,BC=12,∴CG=AC=9.∵点E是AB的中点,∴GE是△ABC的中位线,∵CE=CB=12,∴GE=BC=6,∴△CEG的周长=CG+GE+CE=9+6+12=27.故答案为:27.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.2.(2015•铜仁市)如图,∠ACB=9O°,D为AB中点,连接DC并延长到点E,使CE=CD,过点B作BF∥DE交AE的延长线于点F.若BF=10,则AB的长为8.考点:三角形中位线定理;直角三角形斜边上的中线.分析:先根据点D是AB的中点,BF∥DE可知DE是△ABF的中位线,故可得出DE的长,根据CE=CD可得出CD的长,再根据直角三角形的性质即可得出结论.解答:解:∵点D是AB的中点,BF∥DE,∴DE是△ABF的中位线.∵BF=10,∴DE=BF=5.∵CE=CD,∴CD=5,解得CD=4.∵△ABC是直角三角形,∴AB=2CD=8.故答案为:8.点评:本题考查的是三角形中位线定理,熟知三角形的中位线平行于第三边,并且等于第三边的一半是解答此题的关键.3.(2015•淮安)如图,A,B两地被一座小山阻隔,为测量A,B两地之间的距离,在地面上选一点C,连接CA,CB,分别取CA,CB的中点D、E,测得DE的长度为360米,则A、B两地之间的距离是720米.考点:三角形中位线定理.专题:应用题.分析:首先根据D、E分别是CA,CB的中点,可得DE是△ABC的中位线,然后根据三角形的中位线定理,可得DE∥AB,且DE=,再根据DE的长度为360米,求出A、B两地之间的距离是多少米即可.解答:解:∵D、E分别是CA,CB的中点,∴DE是△ABC的中位线,∴DE∥AB,且DE=,∵DE=360(米),∴AB=360×2=720(米).即A、B两地之间的距离是720米.故答案为:720.点评:此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.4.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于20.考点:平行四边形的性质.分析:根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.解答:解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AD=BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.点评:本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.5.(2015•大连)如图,在▱ABCD中,AC,BD相交于点O,AB=10cm,AD=8cm,AC⊥BC,则OB=cm.考点:平行四边形的性质;勾股定理.分析:由平行四边形的性质得出BC=AD=8cm,OA=OC=AC,由勾股定理求出AC,得出OC,再由勾股定理求出OB即可.解答:解:∵四边形ABCD是平行四边形,∴BC=AD=8cm,OA=OC=AC,∵AC⊥BC,∴∠ACB=90°,∴AC===6,∴OC=3,∴OB===;故答案为:.点评:本题考查了平行四边形的性质、勾股定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.6.(2015•桂林)如图,以▱ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数y=的图象交BC于D,连接AD,则四边形AOCD的面积是9.考点:平行四边形的性质;反比例函数系数k的几何意义.分析:先求出反比例函数和直线BC的解析式,再求出由两个解析式组成方程组的解,得出点D的坐标,得出D为BC的中点,△ABD的面积=平行四边形ABCD的面积,即可求出四边形AOCD的面积.解答:解:∵四边形ABCD是平行四边形,A、C的坐标分别是(2,4)、(3,0),∴点B的坐标为:(5,4),把点A(2,4)代入反比例函数y=得:k=8,∴反比例函数的解析式为:y=;设直线BC的解析式为:y=kx+b,把点B(5,4),C(3,0)代入得:,解得:k=2,b=﹣6,∴直线BC的解析式为:y=2x﹣6,解方程组得:,或(不合题意,舍去),∴点D的坐标为:(4,2),即D为BC的中点,∴△ABD的面积=平行四边形ABCD的面积,∴四边形AOCD的面积=平行四边形ABCO的面积﹣△ABD的面积=3×4﹣×3×4=9;故答案为:9.点评:本题考查了平行四边形的性质、用待定系数法求一次函数的解析式、平行四边形和三角形面积的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.7.(2015•湖北)在▱ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为55°或35°.考点:平行四边形的性质.分析:首先求出∠ADB的度数,再利用三角形内角和定理以及等腰三角形的性质,得出∠A的度数.解答:解:情形一:当E点在线段AD上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠ADB=90°﹣20°=70°,∵AD=BD,∴∠A=∠ABD==55°.情形二:当E点在AD的延长线上时,如图所示,∵BE是AD边上的高,∠EBD=20°,∴∠BDE=70°,∵AD=BD,∴∠A=∠ABD=∠BDE=70°=35°.故答案为:55°或35°.点评:此题主要考查了平行四边形的性质以及等腰三角形的性质等知识,得出∠ADB的度数是解题关键.8.(2015•临沂)如图,在▱ABCD中,连接BD,AD⊥BD,AB=4,sinA=,则▱ABCD的面积是3.考点:平行四边形的性质;解直角三角形.分析:先由三角函数求出BD,再根据勾股定理求出AD,▱ABCD的面积=AD•BD,即可得出结果.解答:解:∵AD⊥BD,∴∠ADB=90°,∵AB=4,sinA=,∴BD=AB•sinA==4×=3,∴AD===,∴▱ABCD的面积=AD•BD=3;故答案为:3.点评:本题考查了平行四边形的性质、三角函数、勾股定理以及平行四边形面积的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.(2015•曲靖)若平行四边形中两个内角的度数比为1:2,则其中较大的内角是120度.考点:平行四边形的性质.分析:根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠C 即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠C=×180°=120°,故答案为:120.点评:本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.10.(2015•镇江)如图,▱ABCD中,E为AD的中点,BE,CD的延长线相交于点F,若△DEF的面积为1,则▱ABCD的面积等于4.考点:平行四边形的性质;全等三角形的判定与性质.分析:通过△ABE≌△DFE求得△ABE的面积为1,通过△FBC∽△FED,求得四边形BCDE的面积为3,然后根据▱ABCD的面积=四边形BCDE的面积+△ABE的面积即可求得.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵AB∥CD,∴∠A=∠EDF,在△ABE和△DFE中,,∴△ABE≌△DFE(SAS),∵△DEF的面积为1,∴△ABE的面积为1,∵AD∥BC,∴△FBC∽△FED,∴=()2∵AE=ED=AD.∴ED=BC,∴=,∴四边形BCDE的面积为3,∴▱ABCD的面积=四边形BCDE的面积+△ABE的面积=4.故答案为4.点评:本题考查了平行四边形的性质,三角形全等的判定和性质,三角形相似的判定和性质,熟练掌握三角形全等的性质和三角形相似的性质是解题的关键.11.(2015•百色)如图,平行四边形ABCD的对角线AC、BD相交于点O,BC=9,AC=8,BD=14,则△AOD的周长为20.考点:平行四边形的性质.分析:首先根据平行四边形的对边相等、对角线互相平分,求出AD、OA、OD的长度,代入AD+OA+OD计算即可求出所填答案.解答:解:∵四边形ABCD是平行四边形,∴AD=BC,OA=OC,OB=OD,∵BC=9,BD=14,AC=8,∴AD=9,OA=4,OD=7,∴△AOD的周长为:AD+OA+OD=20.故答案为:20.点评:本题用到的知识点是平行四边形的性质,利用性质(平行四边形的对边相等、对角线互相平分)进行计算是解此题的关键.12.(2015•十堰)如图,分别以Rt△ABC的直角边AC及斜边AB为边向外作等边△ACD、等边△ABE,EF⊥AB,垂足为F,连接DF,当=时,四边形ADFE是平行四边形.考点:平行四边形的判定;等边三角形的性质.分析:由三角形ABE为等边三角形,EF垂直于AB,利用三线合一得到EF为角平分线,得到∠AEF=30°,进而确定∠BAC=∠AEF,再由一对直角相等,及AE=AB,利用AAS即可得证△ABC≌△EAF;由∠BAC与∠DAC度数之和为90°,得到DA垂直于AB,而EF垂直于AB,得到EF与AD平行,再由全等得到EF=AC,而AC=AD,可得出一组对边平行且相等,即可得证.解答:解:当=时,四边形ADFE是平行四边形.理由:∵=,∴∠CAB=30°,∵△ABE为等边三角形,EF⊥AB,∴EF为∠BEA的平分线,∠AEB=60°,AE=AB,∴∠FEA=30°,又∠BAC=30°,∴∠FEA=∠BAC,在△ABC和△EAF中,,∴△ABC≌△EAF(AAS);∵∠BAC=30°,∠DAC=60°,∴∠DAB=90°,即DA⊥AB,∵EF⊥AB,∴AD∥EF,∵△ABC≌△EAF,∴EF=AC=AD,∴四边形ADFE是平行四边形.故答案为:.点评:此题考查了平行四边形的判定、平行线的判定与性质、全等三角形的判定与性质以及等边三角形的性质,熟练掌握判定与性质是解本题的关键.13.(2015•牡丹江)如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件BO=DO (只添一个即可),使四边形ABCD是平行四边形.考点:平行四边形的判定.专题:开放型.分析:根据题目条件结合平行四边形的判定方法:对角线互相平分的四边形是平行四边形分别进行分析即可.解答:解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形.故答案为:BO=DO.点评:此题主要考查了平行四边形的判定,关键是掌握平行四边形的判定定理.14.(2015•赤峰)如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD延长线于点F,请你只添加一个条件:BD∥FC使得四边形BDFC为平行四边形.考点:平行四边形的判定.分析:利用两组对边互相平行的四边形是平行四边形,进而得出答案.解答:解:∵AD∥BC,当BD∥FC时,∴四边形BDFC为平行四边形.故答案为:BD∥FC.点评:此题主要考查了平行四边形的判定,正确把握判定方法是解题关键.二.解答题(共16小题)15.(2015•自贡)如图,在△ABC中,D、E分别是AB、AC边的中点.求证:DE BC.考点:三角形中位线定理;相似三角形的判定与性质.专题:证明题.分析:根据D、E分别是AB、AC边的中点,得出=,即可证明△ADE∽△ABC,从而得出结论即可.解答:证明:∵D是AB中点E是AC中点∴=,=,∴=,又∵∠A=∠A,∴△ADE∽△ABC,∴==,∠ADE=∠B∴BC=2DE,BC∥DE,即:DE BC.点评:本题考查了三角形的中位线定理以及相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.16.(2015•茂名)补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.考点:三角形中位线定理.分析:(1)根据三角形的中位线定理填写即可;(2)延长DE到F,使FE=DE,连接CF,利用“边角边”证明△ADE和△CFE全等,根据全等三角形对应角相等可得∠A=∠ECF,全等三角形对应边相等可得AD=CF,然后求出四边形BCFD是平行四边形,根据平行四边形的性质证明即可.解答:(1)解:三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半;故答案为:平行于第三边,且等于第三边的一半;(2)证明:如图,延长DE到F,使FE=DE,连接CF,在△ADE和△CFE中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,∴CF=BD,∴四边形BCFD是平行四边形,∴DF∥BC,DF=BC,∴DE∥BC,DE=BC.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理是解题的关键,难点在于作辅助线构造出全等三角形和平行四边形.17.(2015•邵阳)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF的长.考点:三角形中位线定理;等边三角形的性质;平行四边形的判定与性质.分析:(1)直接利用三角形中位线定理得出DE BC,进而得出DE=FC;(2)利用平行四边形的判定与性质得出DC=EF,进而利用等边三角形的性质以及勾股定理得出EF 的长.解答:(1)证明:∵D、E分别为AB、AC的中点,∴DE BC,∵延长BC至点F,使CF=BC,∴DE FC,即DE=CF;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.点评:此题主要考查了等边三角形的性质以及平行四边形的判定与性质和三角形中位线定理等知识,得出DE BC是解题关键.18.(2015•呼和浩特)如图,▱ABCD的对角线AC、BD相交于点O,AE=CF.(1)求证:△BOE≌△DOF;(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,无需说明理由.考点:平行四边形的性质;全等三角形的判定与性质.分析:(1)先证出OE=OF,再由SAS即可证明△BOE≌△DOF;(2)由对角线互相平分证出四边形EBFD是平行四边形,再由对角线相等,即可得出四边形EBFD 是矩形.解答:(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△BOE和△DOF中,,∴△BOE≌△DOF(SAS);(2)解:四边形EBFD是矩形;理由如下:∵OB=OD,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.点评:本题考查了平行四边形的性质与判定、全等三角形的判定与性质、矩形的判定;熟练掌握平行四边形的性质,并能进行推理论证是解决问题的关键.19.(2015•郴州)如图,AC是▱ABCD的一条对角线,过AC中点O的直线分别交AD,BC于点E,F.(1)求证:△AOE≌△COF;(2)当EF与AC满足什么条件时,四边形AFCE是菱形?并说明理由.考点:平行四边形的性质;全等三角形的判定与性质;菱形的判定.分析:(1)由平行四边形的性质得出AD∥BC,得出∠EAO=∠FCO,由ASA即可得出结论;(2)由△AOE≌△COF,得出对应边相等AE=CF,证出四边形AFCE是平行四边形,再由对角线EF⊥AC,即可得出四边形AFCE是菱形.解答:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAO=∠FCO,∵O是OA的中点,∴OA=OC,在△AOE和△COF中,,∴△AOE≌△COF(ASA);(2)解:EF⊥AC时,四边形AFCE是菱形;理由如下:∵△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形,∵EF⊥AC,∴四边形AFCE是菱形.点评:本题考查了平行四边形的性质与判定、全等三角形的判定与性质、菱形的判定;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.20.(2015•自贡)在▱ABCD中,∠BCD的平分线与BA的延长线相交于点E,BH⊥EC于点H,求证:CH=EH.考点:平行四边形的性质.专题:证明题.分析:根据平行四边形的性质和已知条件易证△EBC是等腰三角形,由等腰三角形的性质:三线合一即可证明CH=EH.解答:证明:∵在□ABCD中,BE∥CD,∴∠E=∠2,∵CE平分∠BCD,∴∠1=∠2,∴∠1=∠E,∴BE=BC,又∵BH⊥BC,∴CH=EH(三线合一).点评:本题考查了平行四边形的性质、角平分线的定义以及等腰三角形的判定和性质,证题的关键是得到△EBC是等腰三角形.21.(2015•武汉)如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.考点:平行四边形的性质;坐标与图形性质;平移的性质.分析:(1)利用中心对称图形的性质得出C,D两点坐标;(2)利用平行四边形的性质以及结合平移的性质得出即可;(3)利用S ABCD的可以转化为边长为;5和4的矩形面积,进而求出即可.解答:解:(1)∵四边形ABCD是平行四边形,∴四边形ABCD关于O中心对称,∵A(﹣4,2),B(﹣1,﹣2),∴C(4,﹣2),D(1,2);(2)线段AB到线段CD的变换过程是:绕点O旋转180°;(3)由(1)得:A到y轴距离为:4,D到y轴距离为:1,A到x轴距离为:2,B到x轴距离为:2,∴S ABCD的可以转化为边长为;5和4的矩形面积,∴S ABCD=5×4=20.点评:此题主要考查了平行四边形的性质以及中心对称图形的性质,根据题意得出S ABCD的可以转化为矩形面积是解题关键.22.(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.考点:平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.专题:证明题.分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.解答:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.点评:本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.23.(2015•南宁)如图,在▱ABCD中,E、F分别是AB、DC边上的点,且AE=CF,(1)求证:△ADE≌△CBF.(2)若∠DEB=90°,求证:四边形DEBF是矩形.考点:平行四边形的性质;全等三角形的判定与性质;矩形的判定.专题:证明题.分析:(1)由在▱ABCD中,AE=CF,可利用SAS判定△ADE≌△CBF.(2)由在▱ABCD中,且AE=CF,利用一组对边平行且相等的四边形是平行四边形,可证得四边形DEBF是平行四边形,又由∠DEB=90°,可证得四边形DEBF是矩形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AE=CF,∴BE=DF,∴四边形ABCD是平行四边形,∵∠DEB=90°,∴四边形DEBF是矩形.点评:此题考查了平行四边形的判定与性质、矩形的判定以及全等三角形的判定与性质.注意有一个角是直角的平行四边形是矩形,首先证得四边形ABCD是平行四边形是关键.24.(2015•广元)求证:平行四边形的对角线互相平分(要求:根据题意先画出图形并写出已知、求证,再写出证明过程).考点:平行四边形的性质;全等三角形的判定与性质.专题:证明题.分析:首先根据题意画出图形,再写出命题的已知和求证,最后通过证明三角形全等即可证明命题是正确的.解答:已知:平行四边形ABCD的对角线AC,BD相交于点O,求证:OA=OC,OB=OD证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠1=∠2,在△AOD和△COB中,∴△AOD≌△COB(AAS),∴OA=OC,OB=OD.点评:此题主要考查了平行四边形的性质以及全等三角形的判定和性质,解题的关键是熟记平行四边形的各种性质以及全等三角形的各种判定的各种方法.25.(2015•潜江)如图,▱ABCD放置在平面直角坐标系中,已知点A(2,0),B(6,0),D(0,3),反比例函数的图象经过点C.(1)求反比例函数的解析式;(2)将▱ABCD向上平移,使点B恰好落在双曲线上,此时A,B,C,D的对应点分别为A′,B′,C′,D′,且C′D′与双曲线交于点E,求线段AA′的长及点E的坐标.考点:平行四边形的性质;反比例函数图象上点的坐标特征;待定系数法求反比例函数解析式.专题:计算题.分析:(1)由A与B的坐标求出AB的长,根据四边形ABCD为平行四边形,求出DC的长,进而确定出C坐标,设反比例解析式为y=,把C坐标代入求出k的值,即可确定出反比例解析式;(2)根据平移的性质得到B与B′横坐标相同,代入反比例解析式求出B′纵坐标得到平移的距离,即为AA′的长,求出D′纵坐标,即为E纵坐标,代入反比例解析式求出E横坐标,即可确定出E坐标.解答:解:(1)∵▱ABCD中,A(2,0),B(6,0),D(0,3),∴AB=CD=4,DC∥AB,∴C(4,3),设反比例解析式为y=,把C坐标代入得:k=12,则反比例解析式为y=;(2)∵B(6,0),∴把x=6代入反比例解析式得:y=2,即B′(6,2),∴平行四边形ABCD向上平移2个单位,即AA′=2,∴D′(0,5),把y=5代入反比例解析式得:x=,即E(,5).点评:此题考查了平行四边形的性质,反比例函数图象上点的坐标特征,以及待定系数法求反比例函数解析式,熟练掌握待定系数法是解本题的关键.26.(2015•通辽)如图,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF的长.考点:平行四边形的性质;等腰三角形的判定与性质.分析:首先根据平行四边形的性质可得AB=DC=6,AD=BC=10,AB∥DC,再根据平行线的性质与角平分线的性质证明∠2=∠3,根据等角对等边可得BC=CF=10,再用CF﹣CD即可算出DF的长.解答:解:∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=10,AB∥DC.∵AB∥DC,∴∠1=∠3,又∵BF平分∠ABC,∴∠1=∠2,∴∠2=∠3,∴BC=CF=10,∴DF=CF﹣DC=10﹣6=4.点评:此题主要考查了平行线的性质,以及平行线的性质,关键是证明∠2=∠3推出BC=CF.27.(2015•广西)如图,在▱ABCD中,E、F为对角线AC上的两点,且AE=CF,连接DE、BF,(1)写出图中所有的全等三角形;(2)求证:DE∥BF.考点:平行四边形的性质;全等三角形的判定与性质.分析:(1)由平行四边形的性质得出AB=CD,AD=CB,AB∥CD,AD∥CB,证出内错角相等∠BAF=∠DCE,∠DAE=∠BCF,由SSS证明△ABC≌△CDA;由SAS证明△ABF≌△CDE;由SAS证明△ADE≌△CBF(SAS);(2)由△ABF≌△△CDE,得出对应角相等∠AFB=∠CED,即可证出DE∥BF..解答:(1)解:△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;理由如下:∵四边形ABCD是平行四边形,∴AB=CD,AD=CB,AB∥CD,AD∥CB,∴∠BAF=∠DCE,∠DAE=∠BCF,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS);∵AE=CF,∴AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS);在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)证明:∵△ABF≌△△CDE,∴∠AFB=∠CED,∴DE∥BF.点评:本题考查了平行四边形的性质、全等三角形的判定与性质;熟练掌握平行四边形的性质和全等三角形的判定方法是解决问题的关键.28.(2015•锦州)如图,△ABC中,点D,E分别是边BC,AC的中点,连接DE,AD,点F在BA的延长线上,且AF=AB,连接EF,判断四边形ADEF的形状,并加以证明.考点:平行四边形的判定;三角形中位线定理.。

中考2015年中考数学真题分类汇编 多边形与平行四边形

中考2015年中考数学真题分类汇编 多边形与平行四边形

多边形与平行四边形一.选择题1.(2015,广东)下列所述图形中,既是中心对称图形,又是轴对称图形的是A.矩形B.平行四边形C.正五边形D.正三角形答案:A.分析:平行四边形只是中心对称图形,正五边形、正三角形只是轴对称图形,只有矩形符合。

60,则这个正多边形是2.(2015,湖北孝感)已知一个正多边形的每个外角等于A.正五边形B.正六边形C.正七边形D.正八边形考点:多边形内角与外角..分析:多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成60°n,列方程可求解.解答:设所求正n边形边数为n,则60°•n=360°,解得n=6.故正多边形的边数是6.故选B.点评:本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.3.(2015•河北)如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB 的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③ B.②⑤ C.①③④ D.④⑤考点:三角形中位线定理;平行线之间的距离.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解答:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选B.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.4.(2015•山西)如图,在△ABC中,点D、E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是()A.8 B.10 C.12 D.14考点:三角形中位线定理.分析:首先根据点D、E分别是边AB,BC的中点,可得DE是三角形BC的中位线,然后根据三角形中位线定理,可得DE=AC,最后根据三角形周长的含义,判断出△ABC的周长和△DBE的周长的关系,再结合△DBE的周长是6,即可求出△ABC的周长是多少.解答:解:∵点D、E分别是边AB,BC的中点,∴DE是三角形BC的中位线,AB=2BD,BC=2BE,∴DE∥BC且DE=AC,又∵AB=2BD,BC=2BE,∴AB+BC+AC=2(BD+BE+DE),即△ABC的周长是△DBE的周长的2倍,∵△DBE的周长是6,∴△ABC的周长是:6×2=12.故选:C.点评:(1)此题主要考查了三角形中位线定理的应用,要熟练掌握,解答此题的关键是要明确:三角形的中位线平行于第三边,并且等于第三边的一半.(2)此题还考查了三角形的周长和含义的求法,要熟练掌握.5.(2015•铁岭)如图,点D、E、F分别为△ABC各边中点,下列说法正确的是()A.DE=DF B.EF=AB C.S△ABD=S△ACD D.AD平分∠BAC考点:三角形中位线定理.分析:根据三角形中位线定理逐项分析即可.解答:解:A、∵点D、E、F分别为△ABC各边中点,∴DE=AC,DF=AB,∵AC≠AB,∴DE≠DF,故该选项错误;B、由A选项的思路可知,B选项错误、C、∵S△ABD=BD•h,S△ACD=CD•h,BD=CD,∴S△ABD=S△ACD,故该选项正确;D、∵BD=CD,AB≠AC,∴AD不平分∠BAC,故选C.点评:本题考查了三角形中位线定理的运用,解题的根据是熟记其定理:三角形的中位线平行于第三边,并且等于第三边的一半.6.(2015•安顺)如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于()A.3:2 B.3:1 C.1:1 D.1:2考点:平行四边形的性质;相似三角形的判定与性质.专题:几何图形问题.分析:根据题意得出△DEF∽△BCF,进而得出=,利用点E是边AD的中点得出答案即可.解答:∵▱ABCD,故AD∥BC,∴△DEF∽△BCF,∴=,∵点E是边AD的中点,∴AE=DE=AD,∴=.故选:D.点评:此题主要考查了平行四边形的性质以及相似三角形的判定与性质等知识,得出△DEF∽△BCF是解题关键.7.(2015•衢州)如图,在▱ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC边于点E,则CE的长等于()A.8cm B.6cm C.4cm D.2cm考点:平行四边形的性质.分析:由平行四边形的性质得出BC=AD=12cm,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.解答:∵四边形ABCD是平行四边形,∴BC=AD=12cm,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=8cm,∴CE=BC﹣BE=4cm;故答案为:C.点评:本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.8.(2015•玉林)如图,在▱ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,▱ABCD的周长是在14,则DM等于()A.1 B. 2 C. 3 D. 4考点:平行四边形的性质.分析:根据BM是∠ABC的平分线和AB∥CD,求出BC=MC=2,根据▱ABCD的周长是14,求出CD=5,得到DM的长.解答:解:∵BM是∠ABC的平分线,∴∠ABM=∠CBM,∵AB∥CD,∴∠ABM=∠BMC,∴∠BMC=∠CBM,∴BC=MC=2,∵▱ABCD的周长是14,∴BC+CD=7,∴CD=5,则DM=CD﹣MC=3,故选:C.点评:本题考查的是平行四边形的性质和角平分线的定义,根据平行四边形的对边相等求出BC+CD 是解题的关键,注意等腰三角形的性质的正确运用.9.(2015•绥化)如图,▱ABCD的对角线AC、BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,AB=BC,连接OE.下列结论:①∠CAD=30°;②S▱ABCD=AB•AC;③OB=AB;④OE=BC,成立的个数有()A.1个B.2个C.3个D.4个考点:平行四边形的性质;等腰三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形.分析:由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据AE平分∠BAD,得到∠BAE=∠EAD=60°推出△ABE是等边三角形,由于AB=BC,得到AE=BC,得到△ABC是直角三角形,于是得到∠CAD=30°,故①正确;由于AC⊥AB,得到S▱ABCD=AB•AC,故②正确,根据AB=BC,OB=BD,且BD>BC,得到AB≠OB,故③错误;根据三角形的中位线定理得到OE=AB,于是得到OE=BC,故④正确.解答:解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵AE平分∠BAD,∴∠BAE=∠EAD=60°∴△ABE是等边三角形,∴AE=AB=BE,∵AB=BC,∴AE=BC,∴∠BAC=90°,∴∠CAD=30°,故①正确;∵AC⊥AB,∴S▱ABCD=AB•AC,故②正确,∵AB=BC,OB=BD,∵BD>BC,∴AB≠OB,故③错误;∵CE=BE,CO=OA,∴OE=AB,∴OE=BC,故④正确.故选C.点评:本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式,熟练掌握性质定理和判定定理是解题的关键.10.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B. 6 C.8 D.10考点:平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.专题:计算题.分析:由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.解答:解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.点评:本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.11.(2015•本溪)如图,▱ABCD的周长为20cm,AE平分∠BAD,若CE=2cm,则AB的长度是()A.10cm B.8cm C.6cm D.4cm考点:平行四边形的性质.分析:根据平行四边形的性质得出AB=CD,AD=BC,AD∥BC,推出∠DAE=∠BAE,求出∠BAE=∠AEB,推出AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,得出方程x+x+2=10,求出方程的解即可.解答:解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠DAE=∠BAE,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠AEB,∴AB=BE,设AB=CD=xcm,则AD=BC=(x+2)cm,∵▱ABCD的周长为20cm,∴x+x+2=10,解得:x=4,即AB=4cm,故选D.点评:本题考查了平行四边形的在,平行线的性质,等腰三角形的判定的应用,解此题的关键是能推出AB=BE,题目比较好,难度适中.12.(2015•福建)如图,在▱ABCD中,O是对角线AC,BD的交点,下列结论错误的是()A.AB∥CD B.AB=CD C.AC=BD D.OA=OC考点:平行四边形的性质.分析:根据平行四边形的性质推出即可.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,OA=OC,但是AC和BD不一定相等,故选C.点评:本题考查了平行四边形的性质的应用,能熟记平行四边形的性质是解此题的关键,注意:平行四边形的对边相等且平行,平行四边形的对角线互相平分.13.(2015•营口)▱ABCD中,对角线AC与BD交于点O,∠DAC=42°,∠CBD=23°,则∠COD是()A.61° B.63° C.65° D.67°考点:平行四边形的性质.分析:由平行四边形的性质可知:AD∥BC,进而可得∠DAC=∠BCA,再根据三角形外角和定理即可求出∠COD的度数.解答:解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA=42°,∴∠COD=∠CBD+∠BCA=65°,故选C.点评:本题考查了平行四边形的性质以及三角形的外角和定理,题目比较简单,解题的关键是灵活运用平行四边形的性质,将四边形的问题转化为三角形问题.14.(2015•巴彦淖尔)如图,P为平行四边形ABCD的边AD上的一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=3,则S1+S2的值为()A.24 B.12 C.6 D.3考点:平行四边形的性质;三角形中位线定理.分析:过P作PQ平行于DC,由DC与AB平行,得到PQ平行于AB,可得出四边形PQCD与ABQP都为平行四边形,进而确定出△PDC与△PCQ面积相等,△PQB与△ABP面积相等,再由EF为△BPC的中位线,利用中位线定理得到EF为BC的一半,且EF平行于BC,得出△PEF与△PBC 相似,相似比为1:2,面积之比为1:4,求出△PBC的面积,而△PBC面积=△CPQ面积+△PBQ 面积,即为△PDC面积+△PAB面积,即为平行四边形面积的一半,即可求出所求的面积.解答:解:过P作PQ∥DC交BC于点Q,由DC∥AB,得到PQ∥AB,∴四边形PQCD与四边形APQB都为平行四边形,∴△PDC≌△CQP,△ABP≌△QPB,∴S△PDC=S△CQP,S△ABP=S△QPB,∵EF为△PCB的中位线,∴EF∥BC,EF=BC,∴△PEF∽△PBC,且相似比为1:2,∴S△PEF:S△PBC=1:4,S△PEF=3,∴S△PBC=S△CQP+S△QPB=S△PDC+S△ABP=S1+S2=12.故选:B.点评:此题考查了平行四边形的性质,相似三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.15.(2015•陕西)在▱ABCD中,AB=10,BC=14,E,F分别为边BC,AD上的点,若四边形AECF 为正方形,则AE的长为()A.7 B.4或10 C.5或9 D.6或8考点:平行四边形的性质;勾股定理;正方形的性质.专题:分类讨论.分析:设AE的长为x,根据正方形的性质可得BE=14﹣x,根据勾股定理得到关于x的方程,解方程即可得到AE的长.解答:解:如图:设AE的长为x,根据正方形的性质可得BE=14﹣x,在△ABE中,根据勾股定理可得x2+(14﹣x)2=102,解得x1=6,x2=8.故AE的长为6或8.故选:D.点评:考查了平行四边形的性质,正方形的性质,勾股定理,关键是根据勾股定理得到关于AE的方程.16.(2015•常州)如图,▱ABCD的对角线AC、BD相交于点O,则下列说法一定正确的是()A.AO=OD B.AO⊥OD C.AO=OC D.AO⊥AB考点:平行四边形的性质.分析:根据平行四边形的性质:对边平行且相等,对角线互相平分进行判断即可.解答:解:对角线不一定相等,A错误;对角线不一定互相垂直,B错误;对角线互相平分,C正确;对角线与边不一定垂直,D错误.故选:C.点评:本题考查度数平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.17.(2015•淄博)如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有()A.4个B.3个C.2个D.1个考点:平行四边形的性质;等边三角形的判定;翻折变换(折叠问题).分析:根据折叠的性质可得∠E=∠B=60°,进而可证明△BEC是等边三角形,再根据平行四边形的性质可得:AD∥BC,所以可得∠EAF=60°,进而可证明△EFA是等边三角形,由等边三角形的性质可得∠EFA=∠DFC=60°,又因为∠D=∠B=60°,进而可证明△DFC是等边三角形,问题得解.解答:解:∵将△ABC沿对角线AC折叠,点B的对应点落在点E处,∴∠E=∠B=60°,∴△BEC是等边三角形,∵四边形ABCD是平行四边形,∴AD∥BC,∠D=∠B=60°,∴∠B=∠EAF=60°,∴△EFA是等边三角形,∵∠EFA=∠DFC=60°,∠D=∠B=60°,∴△DFC是等边三角形,∴图中等边三角形共有3个,故选B.点评:本题考查了平行四边形的性质、折叠的性质以及等边三角形的判定和性质,解题的关键是熟记等边三角形的各种判定方法特别是经常用到的判定方法:三个角都相等的三角形是等边三角形.18.(2015•连云港)已知四边形ABCD,下列说法正确的是()A.当AD=BC,AB∥DC时,四边形ABCD是平行四边形B.当AD=BC,AB=DC时,四边形ABCD是平行四边形C.当AC=BD,AC平分BD时,四边形ABCD是矩形D.当AC=BD,AC⊥BD时,四边形ABCD是正方形考点:平行四边形的判定;矩形的判定;正方形的判定.分析:由平行四边形的判定方法得出A不正确、B正确;由矩形和正方形的判定方法得出C、D不正确.解答:解:∵一组对边平行且相等的四边形是平行四边形,∴A不正确;∵两组对边分别相等的四边形是平行四边形,∴B正确;∵对角线互相平分且相等的四边形是矩形,∴C不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D不正确;故选:B.点评:本题考查了平行四边形的判定、矩形的判定、正方形的判定;熟练掌握平行四边形、矩形、正方形的判定方法是解决问题的关键.19.(2015•绵阳)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A.6 B.12 C.20 D.24考点:平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.分析:根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.解答:解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BC•BD=4×(3+3)=24,故选:D.点评:本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.二.填空题1. (2015广东)正五边形的外角和等于(度).【答案】360.【解析】n边形的外角和都等于360度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1. (2014•上海,第6题4分)如图,已知AC 、BD 是菱形ABCD 的对角线,那么下列结论一定正确的是( )
A . △ABD 与△ABC 的周长相等
B .△ABD 与△AB
C 的面积相等
C .菱形的周长等于两条对角线之和的两倍
D .菱形的面积等于两条对角线之积的两倍 2. (2014•山东枣庄,第7题3分)如图,菱形ABCD 的边长为4,过点A 、C 作对角线AC 的垂线,分别交CB 和AD 的延长线于点
E 、
F ,AE=3,则四边形AECF 的周长为( )
A . 22
B . 18
C . 14
D .
11 3. (2014•山东烟台,第6题3分)如图,在菱形ABCD 中,M ,N 分别在AB ,CD 上,且AM =CN ,MN 与AC 交于点O ,连接BO .若∠DAC =28°,则∠OBC 的度数为( ) A . 28° B . 52° C . 62° D . 72°
4.(2014•山东聊城,第9题,3分)如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF=AE+FC ,则边BC 的长为( ) A . 2
B. 3
C. 6
D,
5. (2014•浙江杭州,第5题,3分)下列命题中,正确的是( ) A . 梯形的对角线相等 B . 菱形的对角线不相等 C . 矩形的对角线不能相互垂直 D . 平行四边形的对角线可以互相垂直
6.(2014年贵州黔东南10.(4分))如图,在矩形ABCD 中,AB=8,BC=16,将矩形ABCD 沿EF 折叠使点C 与点A 重合,则折痕EF 的长为( )A .6 B .12 C .2 D .4 7(2014•十堰9.(3分))如图,在四边形ABCD 中,AD ∥BC ,DE ⊥BC ,垂足为点E ,连接AC 交DE 于点F ,点G 为AF 的中点,∠ACD=2∠ACB .若DG=3,EC=1,则DE 的长为
( )
9. (2014•江苏徐州,第7题3分)若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形 B . 等腰梯形 C .对角线相等的四边形 D . 对角线互相垂直的四边形
A . 2
B .
C . 2
D .
10.(2014•山东淄博,第9题4分)如图,ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.有甲、乙、丙三名同学同时从点A出发,甲沿着A﹣B﹣F﹣C的路径行走至C,乙沿着A﹣F﹣E﹣C﹣D
的路径行走至D,丙沿着A﹣F﹣C﹣D
的路径行走至D.若三名同学行走的速
度都相同,则他们到达各自的目的地的
先后顺序(由先至后)是()A.甲
乙丙B.甲丙乙C.乙丙甲D.丙
甲乙
图2-①图2-②
11.(2014•福建福州,第9题4分)如图,在正方形ABCD的外侧,作等边三角形ADE. AC,BE相交于点F,则∠BFC为【】A.45°B.55°C.60°D.75°12.(2014•甘肃兰州,第7题4分)下列命题中正确的是()
A.有一组邻边相等的四边形是菱形 B. 一组对边平行的四边形是平行四边形
C. 有一个角是直角的平行四边形是矩形
D.对角线垂直的平行四边形是正方形13.(2014•广州,第8题3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形,转动这个四边形,使它形状改变,当时,如图,测得,当
时,如图,().(A)(B)2 (C)(D)14.(2014•广州,第10题3分)如图
3,四边形、都是正方
形,点在线段上,连接
,和相交于点.设,().下
列结论:①;②;③;
④.其中结论正确的个数是().(A)
4个(B)3个(C)2个(D)1个
二、填空题
1. (2014•上海,第18题4分)如图,已知在矩形ABCD中,点E在边BC上,BE=2CE,将矩形沿着过点E的直线翻折后,点C、D分别落在边BC下方的点C′、D′处,且点C′、D′、B在同一条直线上,折痕与边AD交于点F,D′F与BE交于点G.设AB=t,那么△EFG
的周长为(用含t的代数式表示).

3.(2014•甘肃白银、临夏,第17题4分)如图,四边形ABCD是菱形,O是两条对角线的交点,过O点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为.
4.(2014•江苏苏州,第13题3分)已知正方形ABCD的对角线AC=,
则正方形ABCD的周长为.
5.(2014•山东淄博,第15题4分)已知▱ABCD,对角线AC,BD相
交于点O,请你添加一个适当的条件,使▱ABCD成为一个菱形,你
添加的条件是.
6.(2014•四川宜宾,第12题)菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线长度是cm.
7.(2014•甘肃兰州,第17题4分)如果菱形的两条对角线的长为a和b,且a,b满足(a ﹣1)2+=0,那么菱形的面积等于.
三、解答题
1. (2014•四川巴中,第28题10分)如图,在四边形ABCD中,点H是BC的中点,作射
线AH,在线段AH及其延长线上分别取点E,F,连结BE,CF.
(1)请你添加一个条件,使得△BEH≌△CFH,你添加的条件
是,并证明.
(2)在问题(1)中,当BH与EH满足什么关系时,四边形BFCE是矩
形,请说明理由.
2.(2014•十堰14.(3分))如图,在△ABC中,点D是BC的中点,点E,F分别在线AD 及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是(只填写序号).请说明理由.
5.(2014•山东临沂,第25题11分)【问题情境】
如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】
(1)证明:AM=AD+MC;
(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.
【拓展延伸】
(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.。

相关文档
最新文档