四川省雅安市2012年中考数学试题(含答案)
四川省雅安市中考数学试卷(含答案)
四川省雅安市中考数学试卷参考答案与试题解析一、单项选择题(共12小题,每小题3分,共36分)1.(3分)(2014•雅安)π0的值是()A.πB.0C.1D.3.14考点:零指数幂.分析:根据零指数幂的运算法则计算即可.解答:解:π0=1,故选:C.点评:本题主要考查了零指数幂的运算.任何非0数的0次幂等于1.2.(3分)(2014•雅安)在下列四个立体图形中,俯视图为正方形的是()A.B.C.D.考点:简单几何体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:A、俯视图是一个圆,故本选项错误;B 、俯视图是带圆心的圆,故本选项错误;C、俯视图是一个圆,故本选项错误;D、俯视图是一个正方形,故本选项正确;故选:D.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图的定义.从上面看得到的图形是俯视图.3.(3分)(2014•雅安)某市约有4500000人,该数用科学记数法表示为()A.0.45×107B.4.5×106C.4.5×105D.45×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4500000有7位,所以可以确定n=7﹣1=6.解答:解:4 500 000=4.5×106.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2014•雅安)数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A.1B.3C.1.5 D.2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)(2014•雅安)下列计算中正确的是()A.+=B.=3C.a6=(a3)2D.b﹣2=﹣b2考点:幂的乘方与积的乘方;有理数的加法;立方根;负整数指数幂.分析:根据分数的加法,可判断A;根据开方运算,可判断B;根据幂的乘方底数不变指数相乘,可判断C;根据负整指数幂,可判断D.解答:解:A、先通分,再加减,故A错误;B、负数的立方根是负数,故B错误;C、幂的乘方底数不变指数相乘,故C正确;D、b﹣2=,故D错误;故选:C.点评:本题考查了幂的乘方,幂的乘方底数不变指数相乘.6.(3分)(2014•雅安)若m+n=﹣1,则(m+n)2﹣2m﹣2n的值是()A.3B.0C.1D.2考点:代数式求值.专题:整体思想.分析:把(m+n)看作一个整体并代入所求代数式进行计算即可得解.解答:解:∵m+n=﹣1,∴(m+n)2﹣2m﹣2n=(m+n)2﹣2(m+n)=(﹣1)2﹣2×(﹣1)=1+2=3.故选A.点评:本题考查了代数式求值,整体思想的利用是解题的关键.7.(3分)(2014•雅安)不等式组的最小整数解是()A.1B.2C.3D.4考点:一元一次不等式组的整数解.分析:分别解两个不等式,然后求出不等式组的解集,最后找出最小整数解.解答:解:,解①得:x≥1,解②得:x>2,则不等式的解集为x>2,故不等式的最小整数解为3.故选C.点评:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(3分)(2014•雅安)如图,ABCD为正方形,O为对角线AC、BD的交点,则△COD 绕点O经过下列哪种旋转可以得到△DOA()A.顺时针旋转90°B.顺时针旋转45°C.逆时针旋转90°D.逆时针旋转45°考点:旋转的性质.分析:因为四边形ABCD为正方形,所以∠COD=∠DOA=90°,OC=OD=OA,则△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,据此可得答案.解答:解:∵四边形ABCD为正方形,∴∠COD=∠DOA=90°,OC=OD=OA,∴△COD绕点O逆时针旋转得到△DOA,旋转角为∠COD或∠DOA,故选:C.点评:本题考查了旋转的性质,旋转要找出旋转中心、旋转方向、旋转角.9.(3分)(2014•雅安)a、b、c是△ABC的∠A、∠B、∠C的对边,且a:b:c=1::,则cosB的值为()A.B.C.D.考点:勾股定理的逆定理;锐角三角函数的定义.分析:先由勾股定理的逆定理判定△ABC是直角三角形,再利用余弦函数的定义即可求解.解答:解:∵a:b:c=1::,∴b=a,c=a,∴a2+b2=a2+(a)2=3a2=c2,∴△ABC是直角三角形,∠C=90°,∴cosB===.故选B.点评:本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形,同时考查了余弦函数的定义:锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cosA.10.(3分)(2014•雅安)在平面直角坐标系中,P点关于原点的对称点为P1(﹣3,﹣),P 点关于x轴的对称点为P2(a、b),则=()A.﹣2 B.2C.4D.﹣4考点:关于原点对称的点的坐标;立方根;关于x轴、y轴对称的点的坐标.分析:利用关于原点对称点的坐标性质得出P点坐标,进而利用关于x轴对称点的坐标性质得出P2坐标,进而得出答案.解答:解:∵P点关于原点的对称点为P1(﹣3,﹣),∴P(3,),∵P点关于x轴的对称点为P2(a,b),∴P2(3,﹣),∴==﹣2.故选:A.点评:此题主要考查了关于原点对称点的性质以及关于x轴对称点的性质,得出P点坐标是解题关键.11.(3分)(2014•雅安)在平行四边形ABCD中,点E在AD上,且AE:ED=3:1,CE 的延长线与BA的延长线交于点F,则S△AFE:S四边形ABCE为()A.3:4 B.4:3 C.7:9 D.9:7考点:平行四边形的性质;相似三角形的判定与性质.分析:利用平行四边形的性质得出△FAE∽△FBC,进而利用相似三角形的性质得出=,进而得出答案.解答:解:∵在平行四边形ABCD中,∴AE∥BC,AD=BC,∴△FAE∽△FBC,∵AE:ED=3:1,∴=,∴=,∴S△AFE:S四边形ABCE=9:7.故选:D.点评:此题主要考查了平行四边形的性质和相似三角形的判定与性质,得出=是解题关键.12.(3分)(2014•雅安)如图,ABCD为正方形,O为AC、BD的交点,△DCE为Rt△,∠CED=90°,∠DCE=30°,若OE=,则正方形的面积为()A.5B.4C.3D.2考点:正方形的性质;全等三角形的判定与性质;勾股定理.分析:过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,判断出四边形OMEN 是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON,根据正方形的性质可得OC=OD,然后利用“角角边”证明△COM和△DON全等,根据全等三角形对应边相等可得OM=ON,然后判断出四边形OMEN是正方形,设正方形ABCD的边长为2a,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=CD,再利用勾股定理列式求出CE,根据正方形的性质求出OC=OD=a,然后利用四边形OCED 的面积列出方程求出a2,再根据正方形的面积公式列式计算即可得解.解答:解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM,∴∠COM=∠DON,∵四边形ABCD是正方形,∴OC=OD,在△COM和△DON中,,∴△COM≌△DON(AAS),∴OM=ON,∴四边形OMEN是正方形,设正方形ABCD的边长为2a,则OC=OD=×2a=a,∵∠CED=90°,∠DCE=30°,∴DE=CD=a,由勾股定理得,CE===a,∴四边形OCED的面积=a•a+•(a)•(a)=×()2,解得a2=1,所以,正方形ABCD的面积=(2a)2=4a2=4×1=4.故选B.点评:本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题(共5小题,每小题3分,共15分)13.(3分)(2014•雅安)函数y=的自变量x的取值范围为x≥﹣1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0列式计算即可得解.解答:解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.点评:本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(3分)(2014•雅安)已知:一组数1,3,5,7,9,…,按此规律,则第n个数是2n ﹣1.考点:规律型:数字的变化类.分析:观察1,3,5,7,9,…,所给的数,得出这组数是从1开始连续的奇数,由此表示出答案即可.解答:解:1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,9=2×5﹣1,…,则第n个数是2n﹣1.故答案为:2n﹣1.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决实际问题.15.(3分)(2014•雅安)若我们把十位上的数字比个位和百位上数字都小的三位数,称为“V”数,如756,326,那么从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为.考点:概率公式.分析:首先将所有由2,3,4这三个数字组成的无重复数字列举出来,然后利用概率公式求解即可.解答:解:由2,3,4这三个数字组成的无重复数字为234,243,324,342,432,423六个,而“V”数有2个,故从2,3,4这三个数字组成的无重复数字的三位数中任意抽取一个数,则该数是“V”数的概率为=,故答案为:.点评:本题考查的是用列举法求概率的知识.注意概率=所求情况数与总情况数之比.16.(3分)(2014•雅安)在平面直角坐标系中,O为坐标原点,则直线y=x+与以O点为圆心,1为半径的圆的位置关系为相切.考点:直线与圆的位置关系;坐标与图形性质.分析:首先求得直线与坐标轴的交点坐标,然后求得原点到直线的距离,利用圆心到直线的距离和圆的半径的大小关系求解.解答:解:令y=x+=0,解得:x=﹣,令x=0,解得:y=,所以直线y=x+与x轴交于点(﹣,0),与y轴交于点(0,),设圆心到直线y=x+的距离为r,则r==1,∵半径为1,∴d=r,∴直线y=x+与以O点为圆心,1为半径的圆的位置关系为相切,故答案为:相切.点评:本题考查了直线与圆的位置关系及坐标与图形的性质,属于基础题,比较简单.17.(3分)(2014•雅安)关于x的方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,且x12+x22=3,则m=0.考点:根与系数的关系;根的判别式.分析:根据方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,得出x1+x2与x1x2的值,再根据x12+x22=3,即可求出m的值.解答:解:∵方程x2﹣(2m﹣1)x+m2﹣1=0的两实数根为x1,x2,∴x1+x2=2m﹣1,x1x2=m2﹣1,∵x12+x22=(x1+x2)2﹣2x1x2=(2m﹣1)2﹣2(m2﹣1)=3,解得:x1=0,x2=2(不合题意,舍去),∴m=0;故答案为:0.点评:本题考查了根与系数的关系及根的判别式,难度适中,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.三、解答题(共69分,解答时要求写出必要的文字说明、演算步骤或推理过程)18.(12分)(2014•雅安)(1)|﹣|+(﹣1)2014﹣2cos45°+.(2)先化简,再求值:÷(﹣),其中x=+1,y=﹣1.考点:分式的化简求值;实数的运算;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用乘方的意义化简,第三项利用特殊角的三角函数值计算,最后一项利用平方根定义化简,计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x与y的值代入计算即可求出值.解答:解:(1)原式=+1﹣2×+4=5;(2)原式=÷=•=,当x=+1,y=﹣1时,xy=1,x+y=2,则原式==.点评:此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.19.(8分)(2014•雅安)某老师对本班所有学生的数学考试成绩(成绩为整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:分组49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5频数 2 a 20 16 8频率0.04 0.08 0.40 0.32 b(1)求a,b的值;(2)补全频数分布直方图;(3)老师准备从成绩不低于80分的学生中选1人介绍学习经验,那么被选中的学生其成绩不低于90分的概率是多少?考点:频数(率)分布直方图;频数(率)分布表;概率公式.分析:(1)根据第一组的频数和频率求出总人数,再用总人数乘以59.5~69.5的频率,求出a的值,再用8除以总人数求出b的值;(2)根据(1)求出的a的值可补全频数分布直方图;(3)根据图表所给出的数据得出成绩不低于80分的学生中选1人有24种结果,其成绩不低于90分的学生有8种结果,再根据概率公式即可得出答案.解答:解:(1)学生总数是:=50(人),a=50×0.08=4(人),b==0.16;(2)根据(1)得出的a的值,补图如下:(3)从成绩不低于80分的学生中选1人有24种结果,其中成绩不低于90分的学生有8种结果,故所求概率为=.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.20.(8分)(2014•雅安)某地要在规定的时间内安置一批居民,若每个月安置12户居民,则在规定时间内只能安置90%的居民户;若每个月安置16户居民,则可提前一个月完成安置任务,问要安置多少户居民?规定时间为多少个月?(列方程(组)求解)考点:二元一次方程组的应用.分析:设安置x户居民,规定时间为y个月.等量关系为:,若每个月安置12户居民,则在规定时间内只能安置90%的居民户;若每个月安置16户居民,则可提前一个月完成安置任务.解答:解:设安置x户居民,规定时间为y个月.则:,所以12y=0.9×16(y﹣1),所以y=6,则x=16(y﹣1)=80.即原方程组的解为:.答:需要安置80户居民,规定时间为6个月.点评:本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.21.(9分)(2014•雅安)如图:在▱ABCD中,AC为其对角线,过点D作AC的平行线与BC的延长线交于E.(1)求证:△ABC≌△DCE;(2)若AC=BC,求证:四边形ACED为菱形.考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)利用AAS判定两三角形全等即可;(2)首先证得四边形ACED为平行四边形,然后证得AC=AD,利用邻边相等的平行四边形是菱形判定即可.解答:证明:(1)∵四边形ABCD为平行四边形,∴AB平行且等于CD,∠B=∠DAC,∴∠B=∠1,又∵DE∥AC∴∠2=∠E,在△ABC与△DCE中,,∴△ABC≌△DCE;(2)∵平行四边形ABCD中,∴AD∥BC,即AD∥CE,由DE∥AC,∴ACED为平行四边形,∵AC=BC,∴∠B=∠CAB,由AB∥CD,∴∠CAB=∠ACD,又∵∠B=∠ADC,∴∠ADC=∠ACD,∴AC=AD,∴四边形ACED为菱形.点评:本题考查了菱形的判定等知识,解题的关键是熟练掌握菱形的判定定理,难度不大.22.(10分)(2014•雅安)如图,已知反比例函数y=的图象与正比例函数y=kx的图象交于点A(m,﹣2).(1)求正比例函数的解析式及两函数图象另一个交点B的坐标;(2)试根据图象写出不等式≥kx的解集;(3)在反比例函数图象上是否存在点C,使△OAC为等边三角形?若存在,求出点C的坐标;若不存在,请说明理由.考点:反比例函数与一次函数的交点问题.分析:(1)把点A的坐标代入y=求出m的值,再运用A的坐标求出k,两函数解析式联立得出B点的坐标.(2)把k的值代入不等式,讨论当a>0和当a<0时分别求出不等式的解.(3)讨论当C在第一象限时,△OAC不可能为等边三角形,当C在第三象限时,根据|OA|=|OC|,求出点C的坐标,再看AC的值看是否构成等边三角形.解答:解:(1)把A(m,﹣2)代入y=,得﹣2=,解得m=﹣1,∴A(﹣1,﹣2)代入y=kx,∴﹣2=k×(﹣1),解得,k=2,∴y=2x,又由2x=,得x=1或x=﹣1(舍去),∴B(1,2),(2)∵k=2,∴≥kx为≥2x,①当x>0时,2x2≤2,解得0<x≤1,②当x<0时,2x2≥2,解得x≤﹣1;(3)①当点C在第一象限时,△OAC不可能为等边三角形,②如图,当C在第三象限时,要使△OAC为等边三角形,则|OA|=|OC|,设C(t,)(t<0),∵A(﹣1,﹣2)∴OA=∴t2+=5,则t4﹣5t2+4=0,∴t2=1,t=﹣1,此时C与A重合,舍去,t2=4,t=﹣2,C(﹣2,﹣1),而此时|AC|=,|AC|≠|AO|,∴不存在符合条件的点C.点评:本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出点C的坐标,看是否构成等边三角形.23.(10分)(2014•雅安)如图,⊙O的直径CD垂直于弦AB,垂足为E,F为DC延长线上一点,且∠CBF=∠CDB.(1)求证:FB为⊙O的切线;(2)若AB=8,CE=2,求sin∠F.考点:切线的判定;相似三角形的判定与性质.分析:(1)连接OB,根据圆周角定理证得∠CBD=90°,然后根据等边对等角以及等量代换,证得∠OBF=90°即可证得;(2)首先利用垂径定理求得BE的长,然后根据△OBE∽△OBF,利用相似三角形的性质求得OF的长,则sinF即可求解.解答:(1)证明:连接OB.∵CD是直径,∴∠CBD=90°,又∵OB=OD,∴∠OBD=∠D,又∠CBF=∠D,∴∠CBF=∠OBD,∴∠OBF=90°,即OB⊥BF,∴FB是圆的切线;(2)解:∵CD是圆的直径,CD⊥AB,∴BE=AB=4,设圆的半径是R,在直角△OEB中,根据勾股定理得:R2=(R﹣2)2+42,解得:R=5,∵∠BOE=∠FOB,∠BEO=∠OBF,∴△OBE∽△OBF,∴OB2=OE•OF,∴OF==,则在直角△OBF中,sinF===.点评:本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.24.(12分)(2014•雅安)如图,直线y=﹣3x﹣3与x轴、y轴分别相交于点A、C,经过点C且对称轴为x=1的抛物线y=ax2+bx+c与x轴相交于A、B两点.(1)试求点A、C的坐标;(2)求抛物线的解析式;(3)若点M在线段AB上以每秒1个单位长度的速度由点B向点A运动,同时,点N在线段OC上以相同的速度由点O向点C运动(当其中一点到达终点时,另一点也随之停止运动),又PN∥x轴,交AC于P,问在运动过程中,线段PM的长度是否存在最小值?若有,试求出最小值;若无,请说明理由.考点:二次函数综合题.分析:(1)根据直线解析式y=﹣3x﹣3,将y=0代入求出x的值,得到直线与x轴交点A 的坐标,将x=0代入求出y的值,得到直线与y轴交点C的坐标;(2)根据抛物线y=ax2+bx+c的对称轴为x=1,且过点A(﹣1,0)、C(0,﹣3),列出方程组,解方程组即可求出抛物线的解析式;(3)由对称性得点B(3,0),设点M运动的时间为t秒(0≤t≤3),则M(3﹣t,0),N(0,﹣t),P(x P,﹣t),先证明△CPN∽△CAO,根据相似三角形对应边成比例列出比例式=,求出x P=﹣1.再过点P作PD⊥x轴于点D,则D(﹣1,0),在△PDM中利用勾股定理得出PM2=MD2+PD2=(﹣+4)2+(﹣t)2=(25t2﹣96t+144),利用二次函数的性质可知当t=时,PM2最小值为,即在运动过程中,线段PM 的长度存在最小值.解答:解:(1)∵y=﹣3x﹣3,∴当y=0时,﹣3x﹣3=0,解得x=﹣1,∴A(﹣1,0);∵当x=0时,y=﹣3,∴C(0,﹣3);(2)∵抛物线y=ax2+bx+c的对称轴为x=1,过点A(﹣1,0)、C(0,﹣3),∴,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(3)由对称性得点B(3,0),设点M运动的时间为t秒(0≤t≤3),则M(3﹣t,0),N(0,﹣t),P(x P,﹣t).∵PN∥OA,∴△CPN∽△CAO,∴=,即=,∴x P=﹣1.过点P作PD⊥x轴于点D,则D(﹣1,0),∴MD=(3﹣t)﹣(﹣1)=﹣+4,∴PM2=MD2+PD2=(﹣+4)2+(﹣t)2=(25t2﹣96t+144),又∵﹣=<3,∴当t=时,PM2最小值为,故在运动过程中,线段PM的长度存在最小值.点评:本题是二次函数的综合题型,其中涉及到的知识点有一次函数图象上点的坐标特征,运用待定系数法求二次函数的解析式,相似三角形的判定与性质,勾股定理,二次函数的性质,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。
2012年中考数学卷精析版——四川巴中卷
2012年中考数学卷精析版——巴中卷(本试卷满分150分,考试时间120分钟)一、选择题(本题有10个小题,每小题3分,共30分)3. (2012四川巴中3分)三角形的下列线段中,能将三角形的面积分成相等两部分的是【】A. 中线B. 角平分线C. 高D. 中位线【答案】A。
【考点】三角形的面积,三角形的角平分线、中线和高。
【分析】根据等底等高的三角形的面积相等解答:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分。
故选A。
4. (2012四川巴中3分)由5个相同的正方体搭成的几何体如图所示,则它的左视图是【】【答案】D。
【考点】简单组合体的三视图。
【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中:从左面看易得上层左侧有1个正方形,下层有2个正方形。
故选D。
6. (2012四川巴中3分)已知两圆的半径分别为1和3,当这两圆内含时,圆心距d的范围是【】A. 0<d<2B. 1<d<2C. 0<d<3D. 0≤d<2【答案】D。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
因此,由题意知,两圆内含,则0≤d<3-1。
故选D。
7. (2012四川巴中3分)如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是【】【答案】C 。
【考点】动点问题的函数图象,正三角形的性质。
【分析】设等边三角形的边长为a ,高为3h=a 2,点P 的运动速度为v ,根据等 边三角形的性质可得出点P 在AB 上运动时△ACP 的面积为13avS=vth=t 24,也可得出点P 在BC 上运动时△ACP 1的面积为()2133av 3a S=2a vt a=t+2242--。
[2015年中考必备]2012年中考数学卷精析版——四川巴中卷
2012年中考数学卷精析版——巴中卷(本试卷满分150分,考试时间120分钟)一、选择题(本题有10个小题,每小题3分,共30分)3. (2012四川巴中3分)三角形的下列线段中,能将三角形的面积分成相等两部分的是【】A. 中线B. 角平分线C. 高D. 中位线【答案】A。
【考点】三角形的面积,三角形的角平分线、中线和高。
【分析】根据等底等高的三角形的面积相等解答:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分。
故选A。
4. (2012四川巴中3分)由5个相同的正方体搭成的几何体如图所示,则它的左视图是【】【答案】D。
【考点】简单组合体的三视图。
【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中:从左面看易得上层左侧有1个正方形,下层有2个正方形。
故选D。
6. (2012四川巴中3分)已知两圆的半径分别为1和3,当这两圆内含时,圆心距d的范围是【】A. 0<d<2B. 1<d<2C. 0<d<3D. 0≤d<2【答案】D。
【考点】圆与圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
因此,由题意知,两圆内含,则0≤d<3-1。
故选D。
7. (2012四川巴中3分)如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是【】【答案】C 。
【考点】动点问题的函数图象,正三角形的性质。
【分析】设等边三角形的边长为a ,高为3h=a 2,点P 的运动速度为v ,根据等 边三角形的性质可得出点P 在AB 上运动时△ACP 的面积为13av S=vth=t 24,也可 得出点P 在BC 上运动时△ACP 1的面积为()2133av 3a S=2a vt a=t+2242--。
四川省雅安市中考数学试题(含答案)
义务教育基础课程初中教学资料四川省雅安市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)每小题的四个选项中,有且仅有一个正确的。
1.(3分)(2013•雅安)﹣的相反数是()A.2B.﹣2 C.D.﹣考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣的相反数是.故选C.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2013•雅安)五边形的内角和为()A.720°B.540°C.360°D.180°考点:多边形内角与外角.分析:利用多边形的内角和定理即可求解.解答:解:五边形的内角和为:(5﹣2)×180=540°.故选B.点评:本题考查了多边形的内角和定理的计算公式,理解公式是关键.3.(3分)(2013•雅安)已知x1,x2是一元二次方程x2﹣2x=0的两根,则x1+x2的值是()A.0B.2C.﹣2 D.4考点:根与系数的关系.专题:计算题.分析:利用根与系数的关系即可求出两根之和.解答:解:∵x1,x2是一元二次方程x2﹣2x=0的两根,∴x1+x2=2.故选B点评:此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.4.(3分)(2013•雅安)如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为()A.50°B.60°C.70°D.100°考点:平行线的性质;角平分线的定义.分析:根据角平分线的定义可得∠BAD=∠CAD,再根据两直线平行,内错角相等可得∠BAD=∠D,从而得到∠CAD=∠D,再利用三角形的内角和定理列式计算即可得解.解答:解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB∥CD,∴∠BAD=∠D,∴∠CAD=∠D,在△ACD中,∠C+∠D+∠CAD=180°,∴80°+∠D+∠D=180°,解得∠D=50°.故选A.点评:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图是解题的关键.5.(3分)(2013•雅安)下列计算正确的是()A.(﹣2)2=﹣2 B.a2+a3=a5C.(3a2)2=3a4D.x6÷x2=x4考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据乘方意义可得(﹣2)2=4,根据合并同类项法则可判断出B的正误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可判断出C的正误;根据同底数幂的除法法则:底数不变,指数相减可判断出D的正误.解答:解:A、(﹣2)2=4,故此选项错误;B、a2、a3不是同类项,不能合并,故此选项错误;C、(3a2)2=9a4,故此选项错误;D、x6÷x2=x4,故此选项正确;故选:D.点评:此题主要考查了乘方、合并同类项法则、幂的乘方、同底数幂的除法,关键是熟练掌握计算法则.6.(3分)(2013•雅安)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,3考点:众数;算术平均数;中位数.分析:根据题意可知x=2,然后根据平均数、中位数的定义求解即可.解答:解:∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=3.5中位数为:3.故选A.点评:本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键.7.(3分)(2013•雅安)不等式组的整数解有()个.A.1B.2C.3D.4考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再确定符合题意的整数解的个数即可得出答案.解答:解:由2x﹣1<3,解得:x<2,由﹣≤1,解得x≥﹣2,故不等式组的解为:﹣2≤x<2,所以整数解为:﹣2,﹣1,0,1.共有4个.故选D.点评:本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.8.(3分)(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()A.1:3 B.2:3 C.1:4 D.2:5考点:相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理.分析:先利用SAS证明△ADE≌△CFE(SAS),得出S△ADE=S△CFE,再由DE为中位线,判断△ADE∽△ABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到S△ADE:S△ABC=1:4,则S△ADE:S四边形BCED=1:3,进而得出S△CEF:S四边形BCED=1:3.解答:解:∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.故选A.点评:本题考查了全等三角形、相似三角形的判定与性质,三角形中位线定理.关键是利用中位线判断相似三角形及相似比.9.(3分)(2013•雅安)将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x2考点:二次函数图象与几何变换.分析:根据“左加右减、上加下减”的原则进行解答即可.解答:解:将抛物线y=(x﹣1)2+3向左平移1个单位所得直线解析式为:y=(x﹣1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+3﹣3,即y=x2.故选D.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.(3分)(2013•雅安)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A.B.C.D.考点:切线的性质;圆周角定理;特殊角的三角函数值.分析:首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E的度数,则可求得sin∠E的值.解答:解:连接OC,∵CE是⊙O切线,∴OC⊥CE,即∠OCE=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠E=90°﹣∠COB=30°,∴sin∠E=.故选A.点评:此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.11.(3分)(2013•雅安)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比)例函数y=在同一平面直角坐标系中的大致图象为(考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.解答:解:∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线x=﹣>0,∴b<0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一三象限,且与y轴的负半轴相交,反比例函数y=图象在第一三象限,只有B选项图象符合.故选B.点评:本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.12.(3分)(2013•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF和2S△ABE再通过比较大小就可以得出结论解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,①正确.∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°②正确,∵BC=CD,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(共5小题,每小题3分,满分15分)13.(3分)(2013•雅安)已知一组数2,4,8,16,32,…,按此规律,则第n个数是2n.考点:规律型:数字的变化类.分析:先观察所给的数,得出第几个数正好是2的几次方,从而得出第n个数是2的n次方.解答:解:∵第一个数是2=21,第二个数是4=22,第三个数是8=23,∴第n个数是2n;故答案为:2n.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决实际问题,本题的关键是第几个数就是2的几次方.14.(3分)(2013•雅安)从﹣1,0,,π,3中随机任取一数,取到无理数的概率是.考点:概率公式;无理数.分析:数据﹣1,0,,π,3中无理数只有π,根据概率公式求解即可.解答:解∵数据﹣1,0,,π,3中无理数只有π,∴取到无理数的概率为:,故答案为:点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.15.(3分)(2013•雅安)若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为5.考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系.专题:分类讨论.分析:先根据非负数的性质列式求出a、b再分情况讨论求解即可.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.故答案为:5.点评:本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.16.(3分)(2013•雅安)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..考点:相似三角形的判定与性质;平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,继而可判定△BEF∽△DCF,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=.故答案为:.点评:此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DCF,再利用相似三角形的对应边成比例的性质求解.17.(3分)(2013•雅安)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标(0,2),(0,﹣2),(﹣3,0),(3,0).考点:勾股定理;坐标与图形性质.专题:分类讨论.分析:需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求得点C的坐标;②当点C位于y轴上时,根据勾股定理求点C的坐标.解答:解:如图,①当点C位于y轴上时,设C(0,b).则+=6,解得,b=2或b=﹣2,此时C(0,2),或C(0,﹣2).如图,②当点C位于x轴上时,设C(a,0).则|﹣﹣a|+|a﹣|=6,即2a=6或﹣2a=6,解得a=3或a=﹣3,此时C(﹣3,0),或C(3,0).综上所述,点C的坐标是:(0,2),(0,﹣2),(﹣3,0),(3,0).故答案是:(0,2),(0,﹣2),(﹣3,0),(3,0).点评:本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标.三、解答题(共7小题,满分69分)18.(12分)(2013•雅安)(1)计算:8+|﹣2|﹣4sin45°﹣(2)先化简,再求值:(1﹣)÷,其中m=2.考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据绝对值、特殊角的三角函数值、负指数幂的定义解答;(2)将括号内的部分通分后相减,再将除式因式分解,然后将除法转化为乘法解答.解答:解:(1)原式=8+2﹣4×﹣=8+2﹣2﹣3=7﹣2;(2)原式=(﹣)÷=•=,当m=2时,原式==.点评:本题考查了实数的运算及分式的化简求值,熟悉绝对值、特殊角的三角函数值、负指数幂的运算法则及能熟练因式分解是解题的关键.19.(9分)(2013•雅安)在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.点评:此题主要考查了全等三角形的判定,以及菱形的判定,关键是掌握全等三角形的判定定理,以及菱形的判定定理,平行四边形的性质.20.(8分)(2013•雅安)甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)考点:二元一次方程组的应用.分析:设乙的速度为x米/分,则甲的速度为2.5x米/分,环形场地的周长为y米,根据环形问题的数量关系,同时、同地、同向而行首次相遇快者走的路程﹣慢者走的路程=环形周长建立方程求出其解即可.解答:解:设乙的速度为x米/秒,则甲的速度为2.5x米/秒,环形场地的周长为y米,由题意,得,解得:,∴甲的速度为:2.5×150=375米/分.答:乙的速度为150米/分,则甲的速度为375米/分,环形场地的周长为900米.点评:本题考查了列二元一次方程组解环形问题的运用,二元一次方程组的解法的运用,解答时运用环形问题的数量关系建立方程是关键.21.(8分)(2013•雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.解答:解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,其中符合要求的只有2种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.22.(10分)(2013•雅安)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)考点:反比例函数综合题.专题:综合题.分析:(1)过点A作AD⊥x轴于D,根据A、C的坐标求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把点的坐标代入解析式即可求得反比例函数和一次函数解析式;(2)求出反比例函数和一次函数的另外一个交点即可;(3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可.解答:解:(1)过点A作AD⊥x轴于D,∵C的坐标为(﹣2,0),A的坐标为(n,6),∴AD=6,CD=n+2,∵tan∠ACO=2,∴==2,解得:n=1,故A(1,6),∴m=1×6=6,∴反比例函数表达式为:y=,又∵点A、C在直线y=kx+b上,∴,解得:,∴一次函数的表达式为:y=2x+4;(2)由得:=2x+4,解得:x=1或x=﹣3,∵A(1,6),∴B(﹣3,﹣2);(3)分两种情况:①当AE⊥x轴时,即点E与点D重合,此时E1(1,0);②当EA⊥AC时,此时△ADE∽△CDA,则=,DE==12,又∵D的坐标为(1,0),∴E2(13,0).点评:本题考查了反比例函数的综合题,涉及了点的坐标的求法以及待定系数法求函数解析式的知识,主要考查学生的计算能力和观察图形的能力.23.(10分)(2013•雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)考点:切线的判定与性质;扇形面积的计算.分析:(1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S=S扇形OBD﹣S△BOD,即可求得答案.阴影解答:(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.点评:此题考查了切线的判定与性质、垂径定理以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.(12分)(2013•雅安)如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C (0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y 轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,△PBC的周长最小,根据点的坐标求得相应线段的长即可;(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,﹣m2﹣2m+3),最后表示出EF的长,从而表示出S于m的函数关系,然后求二次函数的最值即可.解答:解:(1)由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3,BC=;(3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2).点评:此题主要考查了待定系数法求二次函数解析式以及二次函数的最值,根据点的坐标表示出线段的长是表示出三角形的面积的基础.。
四川省雅安市中考数学试题(含答案)
4.(3分)(2013• A.50°雅安)不等式组的整数解有( )C△CEF四边形BCED,∴△ADE≌△CFE(例函数y=在同一平面直角坐标系中的大致图象为( ) A.B.C.D.x=﹣>EF,④BE+DF=EF, A.2,Rt△ABE≌Rt△ADF(HL),∴BE=DF,①正确.∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°②正确,∵BC=CD,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,DF=.故答案为:.(﹣,(,则+=6|﹣﹣a|+|a﹣|=6°﹣÷,其中×﹣2﹣32;÷=•=,==(2)若DF=BF,求证:四边形∵在△ADE和,∴△ADE≌△CBF,解得:,÷=200 P==(3)在x轴上求点E,使△ACE为直角三角形.∴==2又∵点A、C在直线∴,解得:,)由得:则=,DE==12∴E2(13,0).点评:本题考查了反比例函数的综合题,涉及了点的坐标的求法以及待定系数法求函数解析BF=,BD=2BF=2,BOD=2∠BOF=120°,=﹣×2×π﹣.②S是否存在最大值?若存在,求出最大值及此时点E的坐标;)由题意可知:解得:AC=3,BC=;。
四川省雅安市中考数学试题(含解析)
2015年四川省雅安市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中最小的是()A.﹣5 B.﹣4 C.3 D.42.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.93.已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3 B.4 C.5 D.64.下列大写英文字母,既可以看成是轴对称图形,又可以看成是中心对称图形的是()A.O B.L C.M D.N5.已知某同学近几次的数学成绩(单位:分)分别为92,90,88,92,93,则该同学这几次数学成绩的平均数和众数分别是()A.90分,90分B.91分,92分C.92分,92分D.89分,92分6.如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友7.下列计算正确的是()A.x2+x3=x5B.(x2)3=x5C.x6÷x3=x3D.2xy2•3x2y=6x2y38.如图所示,已知AB∥CD,直线EF交AB于点E,交CD于点F,且EG平分∠FEB,∠1=50°,则∠2等于()A .50°B .60°C .70°D .80°9.已知等腰三角形的腰和底的长分别是一元二次方程x 2﹣4x+3=0的根,则该三角形的周长可以是( )A .5B .7C .5或7D .10 10.下列命题是真命题的是( )A .任何数的0次幂都等于1B .顺次连接菱形四边中点的线段组成的四边形是正方形C .图形的旋转和平移会改变图形的形状和大小D .角平分线上的点到角两边的距离相等11.在二次函数y=x 2﹣2x ﹣3中,当0≤x ≤3时,y 的最大值和最小值分别是( )A .0,﹣4B .0,﹣3C .﹣3,﹣4D .0,012.如图所示,MN 是⊙O 的直径,作AB ⊥MN ,垂足为点D ,连接AM ,AN ,点C 为上一点,且=,连接CM ,交AB 于点E ,交AN 于点F ,现给出以下结论:①AD=BD ;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB ;⑤AE=MF . 其中正确结论的个数是( )A .2B .3C .4D .5二、填空题(本大题共5小题,每小题3分,共15分)13.函数y=中,自变量x 的取值范围是 .14.已知一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外均相同,现从盒中任意摸出1个球,则摸到红球的概率是 .15.不等式组的解集是 .16.为美化小区环境,决定对小区的一块空地实施绿化,现有一长为20m 的栅栏,要围成一扇形绿化区域,则该扇形区域的面积的最大值为.17.若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为.三、解答题(本大题共7小题,共63分,解答时应写出必要的文字说明、证明过程或演算步骤)18.(1)计算:|﹣2|+2cos45°﹣+()﹣1(2)先化简,再求值:(1﹣)÷,其中x=﹣2.19.某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?20.为了培养学生的兴趣,我市某小学决定再开设A.舞蹈,B.音乐,C.绘画,D.书法四个兴趣班,为了解学生对这四个项目的兴趣爱好,随机抽取了部分学生进行调查,并将调查结果绘制成如图1,2所示的统计图,且结合图中信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)请将两幅统计图补充完整;(3)若本校一共有2000名学生,请估计喜欢“音乐”的人数;(4)若调查到喜欢“书法”的4名学生中有2名男生,2名女生,现从这4名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到相同性别的学生的概率.21.在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m,第一次在D处测得旗杆顶端A的仰角为60°,第二次向后退12m到达E处,又测得旗杆顶端A的仰角为30°,求旗杆AB的高度.(结果保留根号)22.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(1,5)和点B,与y轴相交于点C(0,6).(1)求一次函数和反比例函数的解析式;(2)现有一直线l与直线y=kx+b平行,且与反比例函数y=的图象在第一象限有且只有一个交点,求直线l的函数解析式.23.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.24.如图,已知抛物线C1:y=﹣x2,平移抛物线y=x2,使其顶点D落在抛物线C1位于y轴右侧的图象上,设平移后的抛物线为C2,且C2与y轴交于点C(0,2).(1)求抛物线C2的解析式;(2)抛物线C2与x轴交于A,B两点(点B在点A的右侧),求点A,B的坐标及过点A,B,C的圆的圆心E的坐标;(3)在过点(0,)且平行于x轴的直线上是否存在点F,使四边形CEBF为菱形?若存在,求出点F的坐标;若不存在,请说明理由.2015年四川省雅安市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各数中最小的是()A.﹣5 B.﹣4 C.3 D.4【考点】有理数大小比较.【分析】利用有理数大小的比较方法,比较得出答案即可.【解答】解:∵﹣5<﹣4<3<4,∴最小的是﹣5.故选:A.【点评】此题考查有理数的大小比较,掌握负数小于正数,两个负数绝对值大的反而小比较方法是解决问题的关键.2.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.9【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将361 000 000用科学记数法表示为:3.61×108.故m=8.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.已知正多边形的一个外角等于60°,则该正多边形的边数为()A.3 B.4 C.5 D.6【考点】多边形内角与外角.【分析】利用外角和360°÷外角的度数即可得到边数.【解答】解:360°÷60°=6.故该正多边形的边数为6.故选:D.【点评】此题主要考查了多边形内角与外角,关键是掌握多边形外角和为360°.4.下列大写英文字母,既可以看成是轴对称图形,又可以看成是中心对称图形的是()A.O B.L C.M D.N【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、O既可以看成是轴对称图形,又可以看成是中心对称图形,故A正确;B、L既不可以看成是轴对称图形,又不可以看成是中心对称图形,故B错误;C、M是轴对称图形,不是中心对称图形,故C错误;D、N既不可以看成是轴对称图形,又不可以看成是中心对称图形,故D错误;故选:A.【点评】本题考查了中心对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.已知某同学近几次的数学成绩(单位:分)分别为92,90,88,92,93,则该同学这几次数学成绩的平均数和众数分别是()A.90分,90分B.91分,92分C.92分,92分D.89分,92分【考点】众数;算术平均数.【分析】观察这组数据发现92出现的次数最多,进而得到这组数据的众数为92,将五个数据相加求出之和,再除以5即可求出这组数据的平均数.【解答】解:∵这组数据中,92出现了2次,最多,∴这组数据的众数为92,∵这组数据分别为:92,90,88,92,93,∴这组数据的平均数=91.故选B.【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.6.如图是某正方体的表面展开图,则展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【考点】专题:正方体相对两个面上的文字.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.7.下列计算正确的是()A.x2+x3=x5B.(x2)3=x5C.x6÷x3=x3D.2xy2•3x2y=6x2y3【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据同底数幂的乘法,可判断A;根据幂的乘方,可判断B;根据同底数幂的除法,可判断C;根据单项式的乘法,可判断D.【解答】解:A、不是同底数幂的乘法指数不能相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、系数乘系数,同底数的幂相乘,单独出现在一个单项式中的字母作为积的因式出现,故D错误;故选:C.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.8.如图所示,已知AB∥CD,直线EF交AB于点E,交CD于点F,且EG平分∠FEB,∠1=50°,则∠2等于()A.50° B.60° C.70° D.80°【考点】平行线的性质.【分析】根据角平分线定义求出∠BEF,根据平行线的性质得出∠2+∠BEF=180°,代入求出即可.【解答】解:∵EG平分∠FEB,∠1=50°,∴∠BEF=2∠1=100°,∵AB∥CD,∴∠2+∠BEF=180°,∴∠2=80°,故选D.【点评】本题考查了角平分线定义,平行线的性质的应用,能得出∠2+∠BEF=180°是解此题的关键,注意:两直线平行,同旁内角互补.9.已知等腰三角形的腰和底的长分别是一元二次方程x2﹣4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.10【考点】解一元二次方程﹣因式分解法;三角形三边关系;等腰三角形的性质.【分析】先通过解方程求出等腰三角形两边的长,然后利用三角形三边关系确定等腰三角形的腰和底的长,进而求出三角形的周长.【解答】解:解方程x2﹣4x+3=0,(x﹣1)(x﹣3)=0解得x1=3,x2=1;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形;∴等腰三角形的底为1,腰为3;∴三角形的周长为1+3+3=7.故选:B.【点评】此题考查用因式分解一元二次方程,三角形三边关系,注意计算结果的分类检验.10.下列命题是真命题的是()A.任何数的0次幂都等于1B.顺次连接菱形四边中点的线段组成的四边形是正方形C.图形的旋转和平移会改变图形的形状和大小D.角平分线上的点到角两边的距离相等【考点】命题与定理.【分析】根据根据0指数幂的定义即可判断A;根据矩形的判定方法即可判定B;根据平移的性质对C进行判断;根据角平分线性质对A进行判断.【解答】解:A、除0外,任何数的0次幂都等于1,错误,是假命题;B、顺次连接菱形四边中点的线段组成的四边形是矩形,错误,是假命题;C、图形的旋转和平移不会改变图形的形状和大小,错误,是假命题;D、角平分线上的点到角两边的距离相等,正确,是真命题.故选D.【点评】本题考查了0指数幂的定义,矩形的判定,平移和旋转的性质,角平分线性质,能理解性质和法则是解此题的关键.11.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4 B.0,﹣3 C.﹣3,﹣4 D.0,0【考点】二次函数的最值.【分析】首先求得抛物线的对称轴,抛物线开口向上,在顶点处取得最小值,在距对称轴最远处取得最大值.【解答】解:抛物线的对称轴是x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选A.【点评】本题考查了二次函数的图象和性质,正确理解取得最大值和最小值的条件是关键.12.如图所示,MN是⊙O的直径,作AB⊥MN,垂足为点D,连接AM,AN,点C为上一点,且=,连接CM,交AB于点E,交AN于点F,现给出以下结论:①AD=BD;②∠MAN=90°;③=;④∠ACM+∠ANM=∠MOB;⑤AE=MF.其中正确结论的个数是()A.2 B.3 C.4 D.5【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】根据AB⊥MN,垂径定理得出①③正确,利用MN是直径得出②正确, ==,得出④正确,结合②④得出⑤正确即可.【解答】解:∵MN是⊙O的直径,AB⊥MN,∴AD=BD, =,∠MAN=90°(①②③正确)∵=,∴==,∴∠ACM+∠ANM=∠MOB(④正确)∵∠MAE=∠AME,∴AE=ME,∠EAF=∠AFM,∴AE=EF,∴AE=MF(⑤正确).正确的结论共5个.故选:D.【点评】此题考查圆周角定理,垂径定理,以及直角三角形斜边上的中线等于斜边的一半等知识.二、填空题(本大题共5小题,每小题3分,共15分)13.函数y=中,自变量x的取值范围是x>1 .【考点】函数自变量的取值范围.【分析】根据二次根式被开放数大于等于0和分式的分母不为0回答即可.【解答】解:由题意得:x﹣1≥0,且x﹣1≠0.解得:x>1.故答案为:x>1.【点评】本题主要考查的函数自变量的取值范围问题,明确二次根式被开放数大于等于0和分式的分母不为0是解题的关键.14.已知一个不透明的盒子中装有3个红球,2个白球,这些球除颜色外均相同,现从盒中任意摸出1个球,则摸到红球的概率是.【考点】概率公式.【专题】计算题.【分析】直接根据概率公式计算.【解答】解:摸到红球的概率==.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.不等式组的解集是1≤x<2 .【考点】解一元一次不等式组.【分析】首先求出两个不等式的解集,再取两个解集的公共部分,即可得出原不等式组的解集.【解答】解:,由①得:x≥1,由②得:x<2,∴原不等式组的解集为1≤x<2;故答案为:1≤x<2.【点评】本题考查了一元一次不等式组的解法、一元一次不等式的解法;熟练掌握一元一次不等式的解法是解决问题的关键.16.为美化小区环境,决定对小区的一块空地实施绿化,现有一长为20m的栅栏,要围成一扇形绿化区域,则该扇形区域的面积的最大值为25m2.【考点】扇形面积的计算.【分析】首先设扇形区域的半径为xm,则扇形的弧长为(20﹣2x)m,该扇形区域的面积为ym2,则可得函数:y=x(20﹣2x)=﹣x2+10x=﹣(x﹣5)2+25,继而求得答案.【解答】解:设扇形区域的半径为xm,则扇形的弧长为(20﹣2x)m,该扇形区域的面积为ym2,则y=x(20﹣2x)=﹣x2+10x=﹣(x﹣5)2+25,∴该扇形区域的面积的最大值为25m2.故答案为:25m2.【点评】此题考查了扇形的面积计算以及二次函数最值问题.注意根据题意得到函数的解析式是关键.17.若m1,m2,…m2015是从0,1,2这三个数中取值的一列数,若m1+m2+…+m2015=1525,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,则在m1,m2,…m2015中,取值为2的个数为510 .【考点】完全平方公式.【专题】压轴题.【分析】通过m1,m2,…m2015是从0,1,2这三个数中取值的一列数,(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510从而得到1的个数,由m1+m2+…+m2015=1525得到2的个数.【解答】解:∵(m1﹣1)2+(m2﹣1)2+…+(m2015﹣1)2=1510,∵m1,m2,…,m2015是从0,1,2这三个数中取值的一列数,∴m1,m2,…,m2015中为1的个数是2015﹣1510=505,∵m1+m2+…+m2015=1525,∴2的个数为(1525﹣505)÷2=510个.故答案为:510.【点评】此题考查完全平方的性质,找出运算的规律.利用规律解决问题.三、解答题(本大题共7小题,共63分,解答时应写出必要的文字说明、证明过程或演算步骤)18.(1)计算:|﹣2|+2cos45°﹣+()﹣1(2)先化简,再求值:(1﹣)÷,其中x=﹣2.【考点】分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用特殊角的三角函数值计算,第三项利用立方根定义计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:(1)原式=2﹣+2×﹣2+2=2;(2)原式=•=,当x=﹣2时,原式=.【点评】此题考查了分式的化简求值,以及实数的运算,熟练掌握运算法则是解本题的关键.19.某车间按计划要生产450个零件,由于改进了生产设备,该车间实际每天生产的零件数比原计划每天多生产20%,结果提前5天完成任务,求该车间原计划每天生产的零件个数?【考点】分式方程的应用.【分析】设该车间原计划每天生产的零件为x个,然后根据计划用的天数比实际用的天数多5列出方程,再求解即可.【解答】解:设该车间原计划每天生产的零件为x个,由题意得,﹣=5,解得x=15,经检验,x=15是原方程的解.答:该车间原计划每天生产的零件为15个.【点评】本题考查了分式方程在实际生活中的应用,难度较小,找出题目中的等量关系是解题的关键,解分式方程时要注意验根.20.为了培养学生的兴趣,我市某小学决定再开设A.舞蹈,B.音乐,C.绘画,D.书法四个兴趣班,为了解学生对这四个项目的兴趣爱好,随机抽取了部分学生进行调查,并将调查结果绘制成如图1,2所示的统计图,且结合图中信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)请将两幅统计图补充完整;(3)若本校一共有2000名学生,请估计喜欢“音乐”的人数;(4)若调查到喜欢“书法”的4名学生中有2名男生,2名女生,现从这4名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到相同性别的学生的概率.【考点】列表法与树状图法;频数(率)分布直方图;扇形统计图.【专题】数形结合.【分析】(1)用C类人数除以它所占的百分比即可得到调查的总人数;(2)先分别计算出B类人数和A、B两类所占的百分比,然后补全统计图;(3)利用样本估计总体,用样本中B类人数的百分比作为全校喜欢“音乐”的人数的百分比,然后用此百分比乘以全校人数即可得到全校喜欢“音乐”的人数;(4)先画树状图展示所有12种等可能的结果数,再找出相同性别的学生的结果数,然后根据概率公式求解.【解答】解:(1)120÷40%=300(名),所以在这次调查中,共调查了300名学生;(2)B类学生人数=300﹣90﹣120﹣30=60(名),A类人数所占百分比=×100%=30%;B类人数所占百分比=×100%=20%;统计图为:(3)2000×20%=400(人),所以估计喜欢“音乐”的人数约为400人;(4)画树状图为:共有12种等可能的结果数,其中相同性别的学生的结果数为4,所以相同性别的学生的概率==.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,求出概率.也考查了统计图和用样本估计总体.21.在学习解直角三角形的相关知识后,九年级1班的全体同学带着自制的测倾仪随老师来到了操场上,准备分组测量该校旗杆的高度,其中一个小组的同学在活动过程中获得了一些数据,并以此画出了如图所示的示意图,已知该组同学的测倾仪支杆长1m ,第一次在D 处测得旗杆顶端A 的仰角为60°,第二次向后退12m 到达E 处,又测得旗杆顶端A 的仰角为30°,求旗杆AB 的高度.(结果保留根号)【考点】解直角三角形的应用﹣仰角俯角问题.【分析】由∠AFC 为△AFG 的外角,利用外角性质得到∠AGF=∠FAG ,利用等角对等边得到AF=GF=ED ,在直角三角形ACF 中,利用锐角三角函数定义求出AC 的长,由AC+BC 求出AB 的长即可.【解答】解:∵∠AFC=60°,∴∠AFG=120°,∵∠CGA=30°,∴∠GAF=30°,∴FA=FG=ED=12m,∴AC=AF•sin60°=6(m),∵BC=FD=1,∴AB=AC+BC=(6+1)m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握运算法则是解本题的关键.22.如图,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(1,5)和点B,与y轴相交于点C(0,6).(1)求一次函数和反比例函数的解析式;(2)现有一直线l与直线y=kx+b平行,且与反比例函数y=的图象在第一象限有且只有一个交点,求直线l的函数解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)由点A(1,5)在y=的图象上,得到5=,解得:m=5,于是求得反比例函数的解析式为y=,由于一次函数y=kx+b的图象经过A(1,5)和点C(0,6),列,解得,于是得到一次函数的解析式y=﹣x+6;(2)设直线l的函数解析式为:y=﹣x+t,由于反比例函数y=的图象在第一象限有且只有一个交点,联立方程组,化简得:x2﹣tx+5=0,得到△=t2﹣20=0,同时解得t=2,求得结果.【解答】解:(1)∵点A(1,5)在y=的图象上,∴5=,解得:m=5,∴反比例函数的解析式为:y=,∵一次函数y=kx+b的图象经过A(1,5)和点C(0,6),∴,解得:,∴一次函数的解析式为:y=﹣x+6;(2)设直线l的函数解析式为:y=﹣x+t,∵反比例函数y=的图象在第一象限有且只有一个交点,∴,化简得:x2﹣tx+5=0,∴△=t2﹣20=0,解得:t=±2,∵t=﹣2不合题意,∴直线l的函数解析式为:y=﹣x+2.【点评】本题考查了一次函数和反比例函数的交点问题,待定系数法求函数的解析式,认真审题弄清题意是解题的关键.23.如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)试判断四边形ABED的形状,并说明理由.【考点】旋转的性质;全等三角形的判定与性质;菱形的判定.【专题】证明题.【分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED为菱形.【解答】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴四边形ABED为菱形.【点评】本题考查了旋转的性质,解答本题的关键是掌握全等三角形的判定和性质以及菱形的判定,涉及知识点较多,难度较大.24.如图,已知抛物线C1:y=﹣x2,平移抛物线y=x2,使其顶点D落在抛物线C1位于y轴右侧的图象上,设平移后的抛物线为C2,且C2与y轴交于点C(0,2).(1)求抛物线C2的解析式;(2)抛物线C2与x轴交于A,B两点(点B在点A的右侧),求点A,B的坐标及过点A,B,C的圆的圆心E的坐标;(3)在过点(0,)且平行于x轴的直线上是否存在点F,使四边形CEBF为菱形?若存在,求出点F的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)设D(a,﹣ a2),进而求出a的值得出函数解析式即可;(2)利用y=0求出A,B点坐标,再利用|CE|=|AE|,求出m的值进而得出答案;(3)利用菱形的性质结合|BF|=|CF|=|CE|,再求出|FC|,进而得出答案.【解答】解:(1)由题意设D(a,﹣ a2),假设抛物线C2的解析式为:y=(x﹣a)2﹣a2,∵点C在抛物线C2上,∴将C(0,2)代入上式,解得:a=±2,∵点D在y轴右侧,∴a=2,∴抛物线C2的解析式为:y=(x﹣2)2﹣2;(2)由题意,在y=(x﹣2)2﹣2中,令y=0,则x=2±,∵点B在点A的右侧,∴A(2﹣,0),B(2+,0),又∵过点A,B,C的圆的圆心一定在线段AB的垂直平分线上,∴设E(2,m),且|CE|=|AE|,则22+(2﹣m)2=m2+(2﹣2+)2,解得:m=,∴圆心E的坐标为:(2,);21(3)假设存在点F (t ,),使得四边形CEBF 为菱形,则|BF|=|CF|=|CE|,∴()2+(2+﹣t )2=(2﹣)2+t 2, 解得:t=, 当t=时,F (2,),此时|EC|=,|FC|===, ∴|CF|=|BF|=|BE|=|EC|,即存在点F (,),使得四边形CEBF 为菱形.【点评】此题主要考查了二次函数综合以及菱形的判定与性质以及勾股定理等知识,利用数形结合得出F 点位置是解题关键.。
2012年四川省广安市中考数学试卷及解析
2012年四川省广安市中考数学试卷及解析说明:本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷满分为100分,第Ⅱ卷满分为50分,共150分,全卷共九大题。
第Ⅰ卷一、选择答案(本题共有18小题,每小题满分2分,共36分)注意:每小题有四个选项,其中有且仅有一项是符合题意的。
所有选择题必须在答案卡上用规定的铅笔作答,选错、不选、多选或涂改不清的,均不给分。
1.5的平方根是( )。
(A )25 (B )25± (C )5 (D )5±2.设甲数是x ,若甲数是乙数的2倍,则乙数是( )。
(A )x 21 (B )x 2 (C )x 31(D )x 3 3.下列函数中,自变量x 的取值范围为x ≥3的是( )。
(A )3+=x y (B )3-=x y (C )31+=x y (D )31-=x y 4.若0<a <1,则点M (a -1,a )在( )。
(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限5.不等式组⎩⎨⎧<-<-133042x x 的解集为( )。
(A )x <1 (B )x >2(C )x <1或x >2 (D )1<x <2 6.已知a >b ,则下列不等式中,正确的是( )。
(A )―3a >―3b (B )3a ->3b-(C )3-a >3-b (D )a -3>b -37.下列运算中,正确的是( )。
(A )()532x x = (B )633x x x =+(C )43x x x =⋅ (D )236x x x =÷8.若数据80,82,79,69,74,78,81,x 的众数是82,则( )。
(A )x =79 (B )x =80 (C )x =81 (D )x =82 9.已知某5个数的和是a ,另6个数的和是b ,则这11个数的平均数是( )。
(A )2b a + (B )11b a + (C )1165b a + (D ))65(21ba +10.函数y=-x 的图象与函数y=x +1的图象的交点在( )。
历年四川省雅安市中考数学模拟试题(含答案)
2016年四川省雅安市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2016•雅安)﹣2016的相反数是()A.﹣2016 B.2016 C.﹣D.2.(3分)(2016•雅安)下列各式计算正确的是()A.(a+b)2=a2+b2 B.x2•x3=x6C.x2+x3=x5D.(a3)3=a93.(3分)(2016•雅安)已知a2+3a=1,则代数式2a2+6a﹣1的值为()A.0 B.1 C.2 D.34.(3分)(2016•雅安)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)5.(3分)(2016•雅安)将如图绕AB边旋转一周,所得几何体的俯视图为()A.B.C.D.6.(3分)(2016•雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,407.(3分)(2016•雅安)已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,28.(3分)(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.39.(3分)(2016•雅安)如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm10.(3分)(2016•雅安)“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60 B.70 C.80 D.9011.(3分)(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.12.(3分)(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2 B.C.2D.3二、填空题(共5小题,每小题3分,满分15分)13.(3分)(2016•雅安)1.45°=.14.(3分)(2016•雅安)P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=.15.(3分)(2016•雅安)一书架有上下两层,其中上层有2本语文1本数学,下层有2本语文2本数学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为.16.(3分)(2016•雅安)如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为.17.(3分)(2016•雅安)已知a+b=8,a2b2=4,则﹣ab=.三、解答题(共7小题,满分69分)18.(12分)(2016•雅安)(1)计算:﹣22+(﹣)﹣1+2sin60°﹣|1﹣|(2)先化简,再求值:(﹣x﹣1)÷,其中x=﹣2.19.(7分)(2016•雅安)解下列不等式组,并将它的解集在数轴上表示出来..20.(10分)(2016•雅安)甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差S 甲2=,平均成绩=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.S2=[(x1﹣)2+(x2﹣)2…(x n﹣)2].21.(8分)(2016•雅安)我们规定:若=(a,b),=(c,d),则•=ac+bd.如=(1,2),=(3,5),则=1×3+2×5=13.(1)已知=(2,4),=(2,﹣3),求;(2)已知=(x ﹣a ,1),=(x ﹣a ,x +1),求y=,问y=的函数图象与一次函数y=x ﹣1的图象是否相交,请说明理由.22.(10分)(2016•雅安)已知Rt △ABC 中,∠B=90°,AC=20,AB=10,P 是边AC 上一点(不包括端点A 、C ),过点P 作PE ⊥BC 于点E ,过点E 作EF ∥AC ,交AB 于点F .设PC=x ,PE=y .(1)求y 与x 的函数关系式;(2)是否存在点P 使△PEF 是Rt △?若存在,求此时的x 的值;若不存在,请说明理由.23.(12分)(2016•雅安)已知直线l 1:y=x +3与x 轴交于点A ,与y 轴交于点B ,且与双曲线y=交于点C (1,a ).(1)试确定双曲线的函数表达式;(2)将l 1沿y 轴翻折后,得到l 2,画出l 2的图象,并求出l 2的函数表达式;(3)在(2)的条件下,点P 是线段AC 上点(不包括端点),过点P 作x 轴的平行线,分别交l 2于点M ,交双曲线于点N ,求S △AMN 的取值范围.24.(10分)(2016•雅安)如图1,AB 是⊙O 的直径,E 是AB 延长线上一点,EC 切⊙O 于点C ,OP ⊥AO 交AC 于点P ,交EC 的延长线于点D .(1)求证:△PCD 是等腰三角形;(2)CG ⊥AB 于H 点,交⊙O 于G 点,过B 点作BF ∥EC ,交⊙O 于点F ,交CG 于Q 点,连接AF ,如图2,若sinE=,CQ=5,求AF 的值.2016年四川省雅安市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2016•雅安)﹣2016的相反数是()A.﹣2016 B.2016 C.﹣D.【分析】直接利用互为相反数的定义分析得出答案.【解答】解:∵2006+(﹣2006)=0,∴﹣2016的相反数是:2006.故选:B.【点评】此题主要考查了相反数的定义,正确把握定义是解题关键.2.(3分)(2016•雅安)下列各式计算正确的是()A.(a+b)2=a2+b2 B.x2•x3=x6C.x2+x3=x5D.(a3)3=a9【分析】根据完全平方公式判断A;根据同底数幂的乘法法则判断B;根据合并同类项的法则判断C;根据幂的乘方法则判断D.【解答】解:A、(a+b)2=a2+2ab+b2,故本选项错误;B、x2•x3=x5,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、(x3)3=x9,故本选项正确;故选D.【点评】本题考查完全平方公式、同底数幂的乘法、合并同类项、幂的乘方,熟练掌握运算性质和法则是解题的关键.3.(3分)(2016•雅安)已知a2+3a=1,则代数式2a2+6a﹣1的值为()A.0 B.1 C.2 D.3【分析】直接利用已知将原式变形,进而代入代数式求出答案.【解答】解:∵a2+3a=1,∴2a2+6a﹣1=2(a2+3a)﹣1=2×1﹣1=1.故选:B.【点评】此题主要考查了代数式求值,正确将原式变形是解题关键.4.(3分)(2016•雅安)已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为()A.(7,1)B.B(1,7)C.(1,1)D.(2,1)【分析】根据点A的坐标以及平移后点A的对应点A1的坐标可以找出三角形平移的方向与距离,再结合点B的坐标即可得出结论.【解答】解:∵点A(0,6)平移后的对应点A1为(4,10),4﹣0=4,10﹣6=4,∴△ABC向右平移了4个单位长度,向上平移了4个单位长度,∴点B的对应点B1的坐标为(﹣3+4,﹣3+4),即(1,1).故选C.【点评】本题考查了坐标与图形变化中的平移,解题的关键是找出三角形平移的方向与距离.本题属于基础题,难度不大,解决该题型题目时,根据图形一个顶点以及平移后对应点的坐标找出平移方向和距离是关键.5.(3分)(2016•雅安)将如图绕AB边旋转一周,所得几何体的俯视图为()A.B.C.D.【分析】根据旋转抽象出该几何体,俯视图即从上向下看,看到的棱用实线表示;实际存在,没有被其他棱挡住,看不到的棱用虚线表示.【解答】解:将该图形绕AB旋转一周后是由上面一个圆锥体、下面一个圆柱体的组合而成的几何体,从上往下看其俯视图是外面一个实线的大圆(包括圆心),里面一个虚线的小圆,故选:B.【点评】本题考查了简单组合体的三视图,从上面看得到的视图是俯视图.6.(3分)(2016•雅安)某校为开展第二课堂,组织调查了本校150名学生各自最喜爱的一项体育活动,制成了如下扇形统计图,则在该被调查的学生中,跑步和打羽毛球的学生人数分别是()A.30,40 B.45,60 C.30,60 D.45,40【分析】先求出打羽毛球学生的比例,然后用总人数×跑步和打羽毛球学生的比例求出人数.【解答】解:由题意得,打羽毛球学生的比例为:1﹣20%﹣10%﹣30%=40%,则跑步的人数为:150×30%=45,打羽毛球的人数为:150×40%=60.故选B.【点评】本题考查了扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.7.(3分)(2016•雅安)已知关于x的一元二次方程x2+mx﹣8=0的一个实数根为2,则另一实数根及m的值分别为()A.4,﹣2 B.﹣4,﹣2 C.4,2 D.﹣4,2【分析】根据题意,利用根与系数的关系式列出关系式,确定出另一根及m的值即可.【解答】解:由根与系数的关系式得:2x2=﹣8,2+x2=﹣m=﹣2,解得:x2=﹣4,m=2,则另一实数根及m的值分别为﹣4,2,故选D【点评】此题考查了根与系数的关系式,熟练掌握一元二次方程根与系数的关系是解本题的关键.8.(3分)(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.【点评】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.9.(3分)(2016•雅安)如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长为()A.52cm B.40cm C.39cm D.26cm【分析】可定四边形ABCD为菱形,连接AC、BD相交于点O,则可求得BD的长,在Rt △AOB中,利用勾股定理可求得AB的长,从而可求得四边形ABCD的周长.【解答】解:如图,连接AC、BD相交于点O,∵四边形ABCD的四边相等,∴四边形ABCD为菱形,∴AC⊥BD,S四边形ABCD=AC•BD,∴×24BD=120,解得BD=10cm,∴OA=12cm,OB=5cm,在Rt△AOB中,由勾股定理可得AB==13(cm),∴四边形ABCD的周长=4×13=52(cm),故选A.【点评】本题主要考查菱形的判定和性质,掌握菱形的面积分式是解题的关键,注意勾股定理的应用.10.(3分)(2016•雅安)“一方有难,八方支援”,雅安芦山4•20地震后,某单位为一中学捐赠了一批新桌椅,学校组织初一年级200名学生搬桌椅.规定一人一次搬两把椅子,两人一次搬一张桌子,每人限搬一次,最多可搬桌椅(一桌一椅为一套)的套数为()A.60 B.70 C.80 D.90【分析】设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据总人数列不等式求解可得.【解答】解:设可搬桌椅x套,即桌子x张、椅子x把,则搬桌子需2x人,搬椅子需人,根据题意,得:2x+≤200,解得:x≤80,∴最多可搬桌椅80套,故选:C.【点评】本题主要考查一元一次不等式的应用能力,设出桌椅的套数,表示出搬桌子、椅子的人数是解题的关键.11.(3分)(2016•雅安)若式子+(k﹣1)0有意义,则一次函数y=(1﹣k)x+k﹣1的图象可能是()A.B.C.D.【分析】先求出k的取值范围,再判断出1﹣k及k﹣1的符号,进而可得出结论.【解答】解:∵式子+(k﹣1)0有意义,∴,解得k>1,∴1﹣k<0,k﹣1>0,∴一次函数y=(1﹣k)x+k﹣1的图象过一、二、四象限.故选C.【点评】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.12.(3分)(2016•雅安)如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ的最小值为()A.2 B.C.2D.3【分析】在Rt△ABE中,利用三角形相似可求得AE、DE的长,设A点关于BD的对称点A′,连接A′D,可证明△ADA′为等边三角形,当PQ⊥AD时,则PQ最小,所以当A′Q⊥AD时AP+PQ最小,从而可求得AP+PQ的最小值等于DE的长,可得出答案..【解答】解:设BE=x,则DE=3x,∵四边形ABCD为矩形,且AE⊥BD,∴△ABE∽△DAE,∴AE2=BE•DE,即AE2=3x2,∴AE=x,在Rt△ADE中,由勾股定理可得AD2=AE2+DE2,即62=(x)2+(3x)2,解得x=,∴AE=3,DE=3,如图,设A点关于BD的对称点为A′,连接A′D,PA′,则A′A=2AE=6=AD,AD=A′D=6,∴△AA′D是等边三角形,∵PA=PA′,∴当A′、P、Q三点在一条线上时,A′P+PQ最小,又垂线段最短可知当PQ⊥AD时,A′P+PQ最小,∴AP+PQ=A′P+PQ=A′Q=DE=3,故选D.【点评】本题主要考查轴对称的应用,利用最小值的常规解法确定出A的对称点,从而确定出AP+PQ的最小值的位置是解题的关键,利用条件证明△A′DA是等边三角形,借助几何图形的性质可以减少复杂的计算.二、填空题(共5小题,每小题3分,满分15分)13.(3分)(2016•雅安)1.45°=87′.【分析】直接利用度分秒的转化将0.45°转会为分即可.【解答】解:1.45°=60′+0.45×60′=87′.故答案为:87′.【点评】此题主要考查了度分秒的转化,正确掌握度分秒之间的关系是解题关键.14.(3分)(2016•雅安)P为正整数,现规定P!=P(P﹣1)(P﹣2)…×2×1.若m!=24,则正整数m=4.【分析】根据规定p!是从1,开始连续p个整数的积,即可.【解答】解:∵P!=P(P﹣1)(P﹣2)…×2×1=1×2×3×4××(p﹣2)(p﹣1),∴m!=1×2×3×4×…×(m﹣1)m=24,∴m=4,故答案为4.【点评】此题是有理数的乘法,主要考查了新定义的理解,理解新定义是解本题的关键.15.(3分)(2016•雅安)一书架有上下两层,其中上层有2本语文1本数学,下层有2本语文2本数学,现从上下层随机各取1本,则抽到的2本都是数学书的概率为.【分析】通过列表列出所有可能结果,找到使该事件发生的结果数,根据概率公式计算可得.1本,共有12种等可能结果,其中抽到的2本都是数学书的有2种结果,∴抽到的2本都是数学书的概率为=,故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.16.(3分)(2016•雅安)如图,在△ABC中,AB=AC=10,以AB为直径的⊙O与BC交于点D,与AC交于点E,连OD交BE于点M,且MD=2,则BE长为8.【分析】连接AD,由圆周角定理得出∠AEB=∠ADB=90°,由等腰三角形的性质得出BD=CD,由三角形中位线定理得出OD∥AC,CE=2MD=4,求出AE,再由勾股定理求出BE即可.【解答】解:连接AD,如图所示:∵以AB为直径的⊙O与BC交于点D,∴∠AEB=∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∵OA=OB,∴OD∥AC,∴BM=EM,∴CE=2MD=4,∴AE=AC﹣CE=6,∴BE==;故答案为:8.【点评】本题考查了圆周角定理、等腰三角形的性质、勾股定理、三角形中位线定理;熟练掌握圆周角定理,由三角形中位线定理求出CE是解决问题的关键.17.(3分)(2016•雅安)已知a+b=8,a2b2=4,则﹣ab=28或36.【分析】根据条件求出ab,然后化简﹣ab=﹣2ab,最后代值即可.【解答】解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.【点评】此题是完全平方公式,主要考查了完全平方公式的计算,平方根的意义,解本题的关键是化简原式,难点是求出ab.三、解答题(共7小题,满分69分)18.(12分)(2016•雅安)(1)计算:﹣22+(﹣)﹣1+2sin60°﹣|1﹣|(2)先化简,再求值:(﹣x﹣1)÷,其中x=﹣2.【分析】(1)分别根据有理数乘方的法则、负整数指数幂的运算法则、特殊角的三角函数值及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法,最后把x=﹣2代入进行计算即可.【解答】解:(1)原式=﹣4﹣3+2×﹣(﹣1)=﹣4﹣3+﹣+1=﹣7+1=﹣6.(2)原式=[﹣(x+1)]•=•﹣(x+1)•=1﹣(x﹣1)=1﹣x+1=2﹣x.当x=﹣2时,原式=2+2=4.【点评】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.19.(7分)(2016•雅安)解下列不等式组,并将它的解集在数轴上表示出来..【分析】先分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解答】解:由①得,x<﹣1,由②得,x≤2,故此不等式组的解集为:x<﹣1在数轴上表示为:【点评】本题考查的是在数轴上表示一元一次不等式组的解集及解一元一次不等式组,熟知实心圆点与空心圆点的区别是解答此题的关键20.(10分)(2016•雅安)甲乙两人进行射击训练,两人分别射击12次,如图分别统计了两人的射击成绩,已知甲射击成绩的方差S 甲2=,平均成绩=8.5.(1)根据图上信息,估计乙射击成绩不少于9环的概率是多少?(2)求乙射击的平均成绩的方差,并据此比较甲乙的射击“水平”.S2=[(x1﹣)2+(x2﹣)2…(x n﹣)2].【分析】(1)根据条形统计图求出乙的射击总数与不少于9环的次数,根据概率公式即可得出结论;(2)求出乙的平均成绩及方差,再与甲的平均成绩及方差进行比较即可.【解答】解:(1)∵由图可知,乙射击的总次数是12次,不少于9环的有7次,∴乙射击成绩不少于9环的概率=;(2)==8.5(环),=[(7﹣8.5)2×2+(8﹣8.5)2×3+(9﹣8.5)2×6+(10﹣8.5)2]==.∵=,<,∴甲的射击成绩更稳定.【点评】本题考查的是概率公式,熟记随机事件的概率公式及方差的定义是解答此题的关键.21.(8分)(2016•雅安)我们规定:若=(a,b),=(c,d),则•=ac+bd.如=(1,2),=(3,5),则=1×3+2×5=13.(1)已知=(2,4),=(2,﹣3),求;(2)已知=(x﹣a,1),=(x﹣a,x+1),求y=,问y=的函数图象与一次函数y=x﹣1的图象是否相交,请说明理由.【分析】(1)直接利用=(a,b),=(c,d),则•=ac+bd,进而得出答案;(2)利用已知的出y与x之间的函数关系式,再联立方程,结合根的判别式求出答案.【解答】解:(1)∵=(2,4),=(2,﹣3),∴=2×2+4×(﹣3)=﹣8;(2)∵=(x﹣a,1),=(x﹣a,x+1),∴y==(x﹣a)2+(x+1)=x2﹣(2a﹣1)x+a2+1∴y=x2﹣(2a﹣1)x+a2+1联立方程:x2﹣(2a﹣1)x+a2+1=x﹣1,化简得:x2﹣2ax+a2+2=0,∵△=b2﹣4ac=﹣8<0,∴方程无实数根,两函数图象无交点.【点评】此题主要考查了根的判别式以及新定义,正确得出y与x之间的函数关系式是解题关键.22.(10分)(2016•雅安)已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.(1)求y与x的函数关系式;(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.【分析】(1)在Rt△ABC中,根据三角函数可求y与x的函数关系式;(2)分三种情况:①如图1,当∠FPE=90°时,②如图2,当∠PFE=90°时,③当∠PEF=90°时,进行讨论可求x的值.【解答】解:(1)在Rt△ABC中,∠B=90°,AC=20,AB=10,∴sinC=,∵PE⊥BC于点E,∴sinC==,∵PC=x,PE=y,∴y=x(0<x<20);(2)存在点P使△PEF是Rt△,①如图1,当∠FPE=90°时,四边形PEBF是矩形,BF=PE=x,四边形APEF是平行四边形,PE=AF=x,∵BF+AF=AB=10,∴x=10;②如图2,当∠PFE=90°时,Rt△APF∽Rt△ABC,∠ARP=∠C=30°,AF=40﹣2x,平行四边形AFEP中,AF=PE,即:40﹣2x=x,解得x=16;③当∠PEF=90°时,此时不存在符合条件的Rt△PEF.综上所述,当x=10或x=16,存在点P使△PEF是Rt△.【点评】考查了相似三角形的判定与性质,平行四边形的性质,矩形的性质,解直角三角形,注意分类思想的运用,综合性较强,难度中等.23.(12分)(2016•雅安)已知直线l1:y=x+3与x轴交于点A,与y轴交于点B,且与双曲线y=交于点C(1,a).(1)试确定双曲线的函数表达式;(2)将l1沿y轴翻折后,得到l2,画出l2的图象,并求出l2的函数表达式;(3)在(2)的条件下,点P是线段AC上点(不包括端点),过点P作x轴的平行线,分别交l2于点M,交双曲线于点N,求S△AMN的取值范围.【分析】(1)令x=1代入一次函数y=x+3后求出C的坐标,然后把C代入反比例函数解析式中即可求出k的值;(2)设直线l2与x轴交于D,由题意知,A与D关于y轴对称,所以可以求出D的坐标,再把B点坐标代入y=ax+b即可求出直线l2的解析式;(3)设M的纵坐标为t,由题意可得M的坐标为(3﹣t,t),N的坐标为(,t),进而得MN=+t﹣3,又可知在△ABM中,MN边上的高为t,所以可以求出S△AMN与t的关系式.【解答】解:(1)令x=1代入y=x+3,∴y=1+3=4,∴C(1,4),把C(1,4)代入y=中,∴k=4,∴双曲线的解析式为:y=;(2)如图所示,设直线l2与x轴交于点D,由题意知:A与D关于y轴对称,∴D的坐标为(3,0),设直线l2的解析式为:y=ax+b,把D与B的坐标代入上式,得:,∴解得:,∴直线l2的解析式为:y=﹣x+3;(3)设M(3﹣t,t),∵点P在线段AC上移动(不包括端点),∴0<t<4,∴PN∥x轴,∴N的纵坐标为t,把y=t代入y=,∴x=,∴N的坐标为(,t),∴MN=﹣(3﹣t)=+t﹣3,过点A作AE⊥PN于点E,∴AE=t,∴S△AMN=AE•MN,=t(+t﹣3)=t2﹣t+2=(t﹣)2+,由二次函数性质可知,当0≤t≤时,S△AMN随t的增大而减小,当<t≤4时,S△AMN 随t的增大而增大,∴当t=时,S△AMN可取得最小值为,当t=4时,S△AMN可取得最大值为4,∵0<t<4∴≤S△AMN<4.【点评】本题考查函数的综合问题,涉及待定系数法求一次函数解析式和反比例函数解析式,三角形面积等知识,由于有动点,所以难度较高,需要学生利用参数去表示相关坐标,然后求出函数关系式.24.(10分)(2016•雅安)如图1,AB是⊙O的直径,E是AB延长线上一点,EC切⊙O于点C,OP⊥AO交AC于点P,交EC的延长线于点D.(1)求证:△PCD是等腰三角形;(2)CG⊥AB于H点,交⊙O于G点,过B点作BF∥EC,交⊙O于点F,交CG于Q点,连接AF,如图2,若sinE=,CQ=5,求AF的值.【分析】(1)连接OC,由切线性质和垂直性质得∠1+∠3=90°、∠2+∠4=90°,继而可得∠3=∠5得证;(2)连接OC、BC,先根据切线性质和平行线性质及垂直性质证∠BCG=∠QBC得QC=QB=5,而sinE=sin∠ABF=,可知QH=3、BH=4,设圆的半径为r,在RT在△OCH中根据勾股定理可得r的值,在RT△ABF中根据三角函数可得答案.【解答】解:(1)连接OC,∵EC切⊙O于点C,∴OC⊥DE,∴∠1+∠3=90°,又∵OP⊥OA,∴∠2+∠4=90°,∵OA=OC,∴∠1=∠2,∴∠3=∠4,又∵∠4=∠5,∴∠3=∠5,∴DP=DC,即△PCD为等腰三角形.(2)如图2,连接OC、BC,∵DE与⊙O相切于点E,∴∠OCB+∠BCE=90°,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC+∠BCE=90°,又∵CG⊥AB,∴∠OBC+∠BCG=90°,∴∠BCE=∠BCG,∵BF∥DE,∴∠BCE=∠QBC,∴∠BCG=∠QBC,∴QC=QB=5,∵BF∥DE,∴∠ABF=∠E,∵sinE=,∴sin∠ABF=,∴QH=3、BH=4,设⊙O的半径为r,∴在△OCH中,r2=82+(r﹣4)2,解得:r=10,又∵∠AFB=90°,sin∠ABF=,∴AF=12.【点评】本题主要考查切线的性质、平行线的性质及三角函数的应用等知识的综合,根据切线性质和平行线性质及垂直性质证∠BCG=∠QBC是解题的关键.21。
雅安市中考数学试卷及答案(Word解析版)
2013年四川省雅安市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)每小题的四个选项中,有且仅有一个正确的。
1.(3分)(2013•雅安)﹣的相反数是()A.2B.﹣2 C.D.﹣考点:相反数.分析:根据只有符号不同的两个数叫做互为相反数解答.解答:解:﹣的相反数是.故选C.点评:本题考查了相反数的定义,是基础题,熟记概念是解题的关键.2.(3分)(2013•雅安)五边形的内角和为()A.720°B.540°C.360°D.180°考点:多边形内角与外角.分析:利用多边形的内角和定理即可求解.解答:解:五边形的内角和为:(5﹣2)×180=540°.故选B.点评:本题考查了多边形的内角和定理的计算公式,理解公式是关键.3.(3分)(2013•雅安)已知x1,x2是一元二次方程x2﹣2x=0的两根,则x1+x2的值是()A.0B.2C.﹣2 D.4考点:根与系数的关系.专题:计算题.分析:利用根与系数的关系即可求出两根之和.解答:解:∵x1,x2是一元二次方程x2﹣2x=0的两根,∴x1+x2=2.故选B点评:此题考查了根与系数的关系,熟练掌握根与系数的关系是解本题的关键.4.(3分)(2013•雅安)如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为()A.50°B.60°C.70°D.100°考点:平行线的性质;角平分线的定义.分析:根据角平分线的定义可得∠BAD=∠CAD,再根据两直线平行,内错角相等可得∠BAD=∠D,从而得到∠CAD=∠D,再利用三角形的内角和定理列式计算即可得解.解答:解:∵AD平分∠BAC,∴∠BAD=∠CAD,∵AB∥CD,∴∠BAD=∠D,∴∠CAD=∠D,在△ACD中,∠C+∠D+∠CAD=180°,∴80°+∠D+∠D=180°,解得∠D=50°.故选A.点评:本题考查了平行线的性质,角平分线的定义,三角形的内角和定理,熟记性质并准确识图是解题的关键.5.(3分)(2013•雅安)下列计算正确的是()A.(﹣2)2=﹣2 B.a2+a3=a5C.(3a2)2=3a4D.x6÷x2=x4考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据乘方意义可得(﹣2)2=4,根据合并同类项法则可判断出B的正误;根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘可判断出C的正误;根据同底数幂的除法法则:底数不变,指数相减可判断出D的正误.解答:解:A、(﹣2)2=4,故此选项错误;B、a2、a3不是同类项,不能合并,故此选项错误;C、(3a2)2=9a4,故此选项错误;D、x6÷x2=x4,故此选项正确;故选:D.点评:此题主要考查了乘方、合并同类项法则、幂的乘方、同底数幂的除法,关键是熟练掌握计算法则.6.(3分)(2013•雅安)一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,3考点:众数;算术平均数;中位数.分析:根据题意可知x=2,然后根据平均数、中位数的定义求解即可.解答:解:∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=3.5中位数为:3.故选A.点评:本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键.7.(3分)(2013•雅安)不等式组的整数解有()个.A.1B.2C.3D.4考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再确定符合题意的整数解的个数即可得出答案.解答:解:由2x﹣1<3,解得:x<2,由﹣≤1,解得x≥﹣2,故不等式组的解为:﹣2≤x<2,所以整数解为:﹣2,﹣1,0,1.共有4个.故选D.点评:本题主要考查了一元一次不等式组的解法,难度一般,关键是会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.8.(3分)(2013•雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S△CEF:S四边形BCED的值为()A.1:3 B.2:3 C.1:4 D.2:5考点:相似三角形的判定与性质;全等三角形的判定与性质;三角形中位线定理.分析:先利用SAS证明△ADE≌△CFE(SAS),得出S△ADE=S△CFE,再由DE为中位线,判断△ADE∽△ABC,且相似比为1:2,利用相似三角形的面积比等于相似比,得到S△ADE:S△ABC=1:4,则S△ADE:S四边形BCED=1:3,进而得出S△CEF:S四边形BCED=1:3.解答:解:∵DE为△ABC的中位线,∴AE=CE.在△ADE与△CFE中,,∴△ADE≌△CFE(SAS),∴S△ADE=S△CFE.∵DE为△ABC的中位线,∴△ADE∽△ABC,且相似比为1:2,∴S△ADE:S△ABC=1:4,∵S△ADE+S四边形BCED=S△ABC,∴S△ADE:S四边形BCED=1:3,∴S△CEF:S四边形BCED=1:3.故选A.点评:本题考查了全等三角形、相似三角形的判定与性质,三角形中位线定理.关键是利用中位线判断相似三角形及相似比.9.(3分)(2013•雅安)将抛物线y=(x﹣1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2B.y=(x﹣2)2+6 C.y=x2+6 D.y=x2考点:二次函数图象与几何变换.分析:根据“左加右减、上加下减”的原则进行解答即可.解答:解:将抛物线y=(x﹣1)2+3向左平移1个单位所得直线解析式为:y=(x﹣1+1)2+3,即y=x2+3;再向下平移3个单位为:y=x2+3﹣3,即y=x2.故选D.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.(3分)(2013•雅安)如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB的延长线于E,则sin∠E的值为()A.B.C.D.考点:切线的性质;圆周角定理;特殊角的三角函数值.分析:首先连接OC,由CE是⊙O切线,可得OC⊥CE,由圆周角定理,可得∠BOC=60°,继而求得∠E的度数,则可求得sin∠E的值.解答:解:连接OC,∵CE是⊙O切线,∴OC⊥CE,即∠OCE=90°,∵∠CDB=30°,∴∠COB=2∠CDB=60°,∴∠E=90°﹣∠COB=30°,∴sin∠E=.故选A.点评:此题考查了切线的性质、圆周角定理以及特殊角的三角函数值.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.11.(3分)(2013•雅安)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:根据二次函数图象开口向上得到a>0,再根据对称轴确定出b,根据与y轴的交点确定出c>0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.解答:解:∵二次函数图象开口方向向上,∴a>0,∵对称轴为直线x=﹣>0,∴b<0,∵与y轴的正半轴相交,∴c>0,∴y=ax+b的图象经过第一三象限,且与y轴的负半轴相交,反比例函数y=图象在第一三象限,只有B选项图象符合.故选B.点评:本题考查了二次函数的图形,一次函数的图象,反比例函数的图象,熟练掌握二次函数的有关性质:开口方向、对称轴、与y轴的交点坐标等确定出a、b、c的情况是解题的关键.12.(3分)(2013•雅安)如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE.其中正确结论有()个.A.2B.3C.4D.5考点:正方形的性质;全等三角形的判定与性质;等边三角形的性质.分析:通过条件可以得出△ABE≌△ADF而得出∠BAE=∠DAF,BE=DF,由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,设EC=x,BE=y,由勾股定理就可以得出x与y的关系,表示出BE与EF,利用三角形的面积公式分别表示出S△CEF 和2S△ABE再通过比较大小就可以得出结论解答:解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,①正确.∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°②正确,∵BC=CD,∴BC﹣BE=CD﹣DF,及CE=CF,∵AE=AF,∴AC垂直平分EF.③正确.设EC=x,由勾股定理,得EF=x,CG=x,AG=x,∴AC=,∴AB=,∴BE=﹣x=,∴BE+DF=x﹣x≠x,④错误,∵S△CEF=,S△ABE==,∴2S△ABE==S△CEF,⑤正确.综上所述,正确的有4个,故选C.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(共5小题,每小题3分,满分15分)13.(3分)(2013•雅安)已知一组数2,4,8,16,32,…,按此规律,则第n个数是2n.考点:规律型:数字的变化类.分析:先观察所给的数,得出第几个数正好是2的几次方,从而得出第n个数是2的n次方.解答:解:∵第一个数是2=21,第二个数是4=22,第三个数是8=23,∴第n个数是2n;故答案为:2n.点评:此题考查了数字的变化类,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决实际问题,本题的关键是第几个数就是2的几次方.14.(3分)(2013•雅安)从﹣1,0,,π,3中随机任取一数,取到无理数的概率是.考点:概率公式;无理数.分析:数据﹣1,0,,π,3中无理数只有π,根据概率公式求解即可.解答:解∵数据﹣1,0,,π,3中无理数只有π,∴取到无理数的概率为:,故答案为:点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.15.(3分)(2013•雅安)若(a﹣1)2+|b﹣2|=0,则以a、b为边长的等腰三角形的周长为5.考点:等腰三角形的性质;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系.专题:分类讨论.分析:先根据非负数的性质列式求出a、b再分情况讨论求解即可.解答:解:根据题意得,a﹣1=0,b﹣2=0,解得a=1,b=2,①若a=1是腰长,则底边为2,三角形的三边分别为1、1、2,∵1+1=2,∴不能组成三角形,②若a=2是腰长,则底边为1,三角形的三边分别为2、2、1,能组成三角形,周长=2+2+1=5.故答案为:5.点评:本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.16.(3分)(2013•雅安)如图,在▱ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,则DF=..考点:相似三角形的判定与性质;平行四边形的性质.分析:由四边形ABCD是平行四边形,可得AB∥CD,AB=CD,继而可判定△BEF∽△DCF,根据相似三角形的对应边成比例,即可得BF:DF=BE:CD问题得解.解答:解:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE:BE=4:3,∴BE:AB=3:7,∴BE:CD=3:7.∵AB∥CD,∴△BEF∽△DCF,∴BF:DF=BE:CD=3:7,即2:DF=3:7,∴DF=.故答案为:.点评:此题考查了相似三角形的判定与性质与平行四边形的性质.此题比较简单,解题的关键是根据题意判定△BEF∽△DCF,再利用相似三角形的对应边成比例的性质求解.17.(3分)(2013•雅安)在平面直角坐标系中,已知点A(﹣,0),B(,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标(0,2),(0,﹣2),(﹣3,0),(3,0).考点:勾股定理;坐标与图形性质.专题:分类讨论.分析:需要分类讨论:①当点C位于x轴上时,根据线段间的和差关系即可求得点C的坐标;②当点C位于y轴上时,根据勾股定理求点C的坐标.解答:解:如图,①当点C位于y轴上时,设C(0,b).则+=6,解得,b=2或b=﹣2,此时C(0,2),或C(0,﹣2).如图,②当点C位于x轴上时,设C(a,0).则|﹣﹣a|+|a﹣|=6,即2a=6或﹣2a=6,解得a=3或a=﹣3,此时C(﹣3,0),或C(3,0).综上所述,点C的坐标是:(0,2),(0,﹣2),(﹣3,0),(3,0).故答案是:(0,2),(0,﹣2),(﹣3,0),(3,0).点评:本题考查了勾股定理、坐标与图形的性质.解题时,要分类讨论,以防漏解.另外,当点C在y轴上时,也可以根据两点间的距离公式来求点C的坐标.三、解答题(共7小题,满分69分)18.(12分)(2013•雅安)(1)计算:8+|﹣2|﹣4sin45°﹣(2)先化简,再求值:(1﹣)÷,其中m=2.考点:分式的化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)根据绝对值、特殊角的三角函数值、负指数幂的定义解答;(2)将括号内的部分通分后相减,再将除式因式分解,然后将除法转化为乘法解答.解答:解:(1)原式=8+2﹣4×﹣=8+2﹣2﹣3=7﹣2;(2)原式=(﹣)÷=•=,当m=2时,原式==.点评:本题考查了实数的运算及分式的化简求值,熟悉绝对值、特殊角的三角函数值、负指数幂的运算法则及能熟练因式分解是解题的关键.19.(9分)(2013•雅安)在▱ABCD中,点E、F分别在AB、CD上,且AE=CF.(1)求证:△ADE≌△CBF;(2)若DF=BF,求证:四边形DEBF为菱形.考点:菱形的判定;全等三角形的判定与性质;平行四边形的性质.专题:证明题.分析:(1)首先根据平行四边形的性质可得AD=BC,∠A=∠C,再加上条件AE=CF可利用SAS证明△ADE≌△CBF;(2)首先证明DF=BE,再加上条件AB∥CD可得四边形DEBF是平行四边形,又DF=FB,可根据邻边相等的平行四边形为菱形证出结论.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,∵在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵AE=CF,∴DF=EB,∴四边形DEBF是平行四边形,又∵DF=FB,∴四边形DEBF为菱形.点评:此题主要考查了全等三角形的判定,以及菱形的判定,关键是掌握全等三角形的判定定理,以及菱形的判定定理,平行四边形的性质.20.(8分)(2013•雅安)甲、乙二人在一环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)考点:二元一次方程组的应用.分析:设乙的速度为x米/分,则甲的速度为2.5x米/分,环形场地的周长为y米,根据环形问题的数量关系,同时、同地、同向而行首次相遇快者走的路程﹣慢者走的路程=环形周长建立方程求出其解即可.解答:解:设乙的速度为x米/秒,则甲的速度为2.5x米/秒,环形场地的周长为y米,由题意,得,解得:,∴甲的速度为:2.5×150=375米/分.答:乙的速度为150米/分,则甲的速度为375米/分,环形场地的周长为900米.点评:本题考查了列二元一次方程组解环形问题的运用,二元一次方程组的解法的运用,解答时运用环形问题的数量关系建立方程是关键.21.(8分)(2013•雅安)某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球B.乒乓球C.羽毛球D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有200人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)由喜欢篮球的人数除以所占的百分比即可求出总人数;(2)由总人数减去喜欢A,B及D的人数求出喜欢C的人数,补全统计图即可;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.解答:解:(1)根据题意得:20÷=200(人),则这次被调查的学生共有200人;(2)补全图形,如图所示:(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,其中符合要求的只有2种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.22.(10分)(2013•雅安)如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象交于A、B两点,与x轴交于C点,点A的坐标为(n,6),点C的坐标为(﹣2,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)在x轴上求点E,使△ACE为直角三角形.(直接写出点E的坐标)考点:反比例函数综合题.专题:综合题.分析:(1)过点A作AD⊥x轴于D,根据A、C的坐标求出AD=6,CD=n+2,已知tan∠ACO=2,可求出n的值,把点的坐标代入解析式即可求得反比例函数和一次函数解析式;(2)求出反比例函数和一次函数的另外一个交点即可;(3)分两种情况:①AE⊥x轴,②EA⊥AC,分别写出E的坐标即可.解答:解:(1)过点A作AD⊥x轴于D,∵C的坐标为(﹣2,0),A的坐标为(n,6),∴AD=6,CD=n+2,∵tan∠ACO=2,∴==2,解得:n=1,故A(1,6),∴m=1×6=6,∴反比例函数表达式为:y=,又∵点A、C在直线y=kx+b上,∴,解得:,∴一次函数的表达式为:y=2x+4;(2)由得:=2x+4,解得:x=1或x=﹣3,∵A(1,6),∴B(﹣3,﹣2);(3)分两种情况:①当AE⊥x轴时,即点E与点D重合,此时E1(1,0);②当EA⊥AC时,此时△ADE∽△CDA,则=,DE==12,又∵D的坐标为(1,0),∴E2(13,0).点评:本题考查了反比例函数的综合题,涉及了点的坐标的求法以及待定系数法求函数解析式的知识,主要考查学生的计算能力和观察图形的能力.23.(10分)(2013•雅安)如图,AB是⊙O的直径,BC为⊙O的切线,D为⊙O上的一点,CD=CB,延长CD交BA的延长线于点E.(1)求证:CD为⊙O的切线;(2)若BD的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)考点:切线的判定与性质;扇形面积的计算.分析:(1)首先连接OD,由BC是⊙O的切线,可得∠ABC=90°,又由CD=CB,OB=OD,易证得∠ODC=∠ABC=90°,即可证得CD为⊙O的切线;(2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的长,∠BOD的度数,又由S=S扇形OBD﹣S△BOD,即可求得答案.阴影解答:(1)证明:连接OD,∵BC是⊙O的切线,∴∠ABC=90°,∵CD=CB,∴∠CBD=∠CDB,∵OB=OD,∴∠OBD=∠ODB,∴∠ODC=∠ABC=90°,即OD⊥CD,∵点D在⊙O上,∴CD为⊙O的切线;(2)解:在Rt△OBF中,∵∠ABD=30°,OF=1,∴∠BOF=60°,OB=2,BF=,∵OF⊥BD,∴BD=2BF=2,∠BOD=2∠BOF=120°,∴S阴影=S扇形OBD﹣S△BOD=﹣×2×1=π﹣.点评:此题考查了切线的判定与性质、垂径定理以及扇形的面积.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.24.(12分)(2013•雅安)如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C (0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y 轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.考点:二次函数综合题.专题:综合题.分析:(1)根据函数图象经过的三点,用待定系数法确定二次函数的解析式即可;(2)根据BC是定值,得到当PB+PC最小时,△PBC的周长最小,根据点的坐标求得相应线段的长即可;(3)设点E的横坐标为m,表示出E(m,2m+6),F(m,﹣m2﹣2m+3),最后表示出EF的长,从而表示出S于m的函数关系,然后求二次函数的最值即可.解答:解:(1)由题意可知:解得:∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)∵△PBC的周长为:PB+PC+BC∵BC是定值,∴当PB+PC最小时,△PBC的周长最小,∵点A、点B关于对称轴I对称,∴连接AC交l于点P,即点P为所求的点∵AP=BP∴△PBC的周长最小是:PB+PC+BC=AC+BC∵A(﹣3,0),B(1,0),C(0,3),∴AC=3,BC=;(3)①∵抛物线y=﹣x2﹣2x+3顶点D的坐标为(﹣1,4)∵A(﹣3,0)∴直线AD的解析式为y=2x+6∵点E的横坐标为m,∴E(m,2m+6),F(m,﹣m2﹣2m+3)∴EF=﹣m2﹣2m+3﹣(2m+6)=﹣m2﹣4m﹣3∴S=S△DEF+S△AEF=EF•GH+EF•AC=EF•AH=(﹣m2﹣4m﹣3)×2=﹣m2﹣4m﹣3;②S=﹣m2﹣4m﹣3=﹣(m+2)2+1;∴当m=﹣2时,S最大,最大值为1此时点E的坐标为(﹣2,2).点评:此题主要考查了待定系数法求二次函数解析式以及二次函数的最值,根据点的坐标表示出线段的长是表示出三角形的面积的基础.。
2012年四川省雅安市中考数学试题
2012年四川省雅安市中考试题数 学(满分120分,考试时间120分钟)第一部分(选择题 共36分)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. (2012四川雅安,1,3分)9的平方根是( )A .3B .-3C .±3D .6 【答案】C2. (2012四川雅安,2,3分)如图1,已知⊙O 是△ABC 的外接圆,∠AOB=110º,则∠C 的度数为( ) A .55º B .70º C .60º D .45ºOABC图1 【答案】A3. (2012四川雅安,3,3分)如果单项式21-2a x y 与313bx y 是同类项,那么a,b 的值分别为( ) A .2,2B .-3,2C .2,3D .3,2【答案】D4. (2012四川雅安,4,3分)已知1l ∥2l ,且∠1=120º,则∠2=()图2A .40ºB .50ºC .60ºD .70º 【答案】C5. (2012四川雅安,5,3分)计算222(a+b)(a b)+a a b -等于( )A .4a B .6aC .22a bD .22a b -【答案】A6. (2012四川雅安,6,3分)圆柱形水桶的底面周长为3.2m π,高为0.6m ,它的侧面积是( )A .21.536m π B .21.92m πC .20.96m πD .22.56m π【答案】B7. (2012四川雅安,7,3分)已知二次函数2=1y ax -的图象开口向下,则直线=1y ax -经过的象限是( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限 【答案】D8. (2012四川雅安,8,3分)下左图是一个有多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,则这个几何体的主视图是( )A B C D 【答案】C9. (2012四川雅安,9,3分)由方程组2=13=m x m y +⎧⎨-⎩可得出x 与y 的关系是( )A.2+=4x yB.2=4x y -C. 2=4x y +-D. 2=4x y --【答案】A10. (2012四川雅安,10,3分)某校图书馆梨园情理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图3不完整的统计图,已知甲类书有30本,则丙类书的本数是( )图3A.90B.144C.200D.80 【答案】D11. (2012四川雅安,11,3分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(4,5),B(1,2),C(4,2),将△ABC 向左平移5个单位后,A 的对应点A 1的坐标是( )A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)\ 【答案】B12. (2012四川雅安,12,3分)在一次比赛中,有5位裁判分别给某位选手的打分情况如表裁判人数 2 2 1 选手得分9.19.39.7则这位选手得分的平均数和方差分别是( )A.9.3,0.04B.9.3,0.048C.9.22,0.048D.9.37,0.04【答案】B第二部分(非选择题 共84分)二、填空题(本大题共5个小题,每小题3分,共15分)请将答案直接写在相应题的横线上。
【精选试卷】四川雅安市中考数学解答题专项练习经典习题(答案解析)
一、解答题1.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).2.问题:探究函数y=x+2x的图象和性质.小华根据学习函数的方法和经验,进行了如下探究,下面是小华的探究过程,请补充完整:(1)函数的自变量x的取值范围是:____;(2)如表是y与x的几组对应值,请将表格补充完整:x…﹣3﹣2﹣32﹣1−121213223…y…﹣323﹣3−256﹣3﹣412412256323…(3)如图,在平面直角坐标系中描点并画出此函数的图象;(4)进一步探究:结合函数的图象,写出此函数的性质(一条即可).3.计算:()()()21a b a 2b (2a b)-+--;()221m 4m 421m 1m m -+⎛⎫-÷ ⎪--⎝⎭. 4.将平行四边形纸片ABCD 按如图方式折叠,使点C 与A 重合,点D 落到D '处,折痕为EF .(1)求证:ABE AD F '≌;(2)连结CF ,判断四边形AECF 是什么特殊四边形?证明你的结论. 5.小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:?1322x x+=--. (1)她把这个数“?”猜成5,请你帮小华解这个分式方程;(2)小华的妈妈说:“我看到标准答案是:方程的增根是2x =,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?6.将A B C D ,,,四人随机分成甲、乙两组参加羽毛球比赛,每组两人. (1)A 在甲组的概率是多少? (2)A B ,都在甲组的概率是多少?7.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩8.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况 频数 频率 非常好0.21 较好 70 0.35一般 m 不好36请根据图表中提供的信息,解答下列问题: (1)本次抽样共调查了 名学生; (2)m= ;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A 1、A 2),1本“较好”(记为B ),1本“一般”(记为C ),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率. 9.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.10.已知:如图,在ABC 中,AB AC =,AD BC ⊥,AN 为ABC 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明11.如图,BD 是△ABC 的角平分线,过点D 作DE∥BC 交AB 于点E ,DF∥AB 交BC 于点F . (1)求证:四边形BEDF 为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF 的面积.12.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?13.某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y 1(元/件),销量y 2(件)与第x(1≤x<90)天的函数图象如图所示(销售利润=(售价-成本)×销量). (1)求y 1与y 2的函数解析式.(2)求每天的销售利润W 与x 的函数解析式.(3)销售这种文化衫的第多少天,销售利润最大,最大利润是多少?14.甲乙两人做某种机械零件,已知甲每小时比乙多做4个,甲做120个所用的时间与乙做100个所用的时间相等,求甲乙两人每小时各做几个零件?15.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m 3污水所用的时间比现在多用10小时. (1)原来每小时处理污水量是多少m 2?(2)若用新设备处理污水960m 3,需要多长时间?16.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数 随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.17.2x=600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.18.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润电脑款式A B C D利润(元/台)160200240320表2:甲、乙两店电脑销售情况电脑款式A B C D甲店销售数量(台)2015105乙店销售数量(台)88101418试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为;(2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.19.解分式方程:232 11xx x+= +-20.国家自2016年1月1日起实行全面放开二胎政策,某计生组织为了解该市家庭对待这项政策的态度,准备采用以下调查方式中的一种进行调查:A.从一个社区随机选取1 000户家庭调查;B.从一个城镇的不同住宅楼中随机选取1 000户家庭调查;C .从该市公安局户籍管理处随机抽取1 000户城乡家庭调查.(1)在上述调查方式中,你认为比较合理的一个是 .(填“A”、“B”或“C”) (2)将一种比较合理的调查方式调查得到的结果分为四类:(A )已有两个孩子;(B )决定生二胎;(C )考虑之中;(D )决定不生二胎.将调查结果绘制成如下两幅不完整的统计图.请根据以上不完整的统计图提供的信息,解答下列问题: ①补全条形统计图.②估计该市100万户家庭中决定不生二胎的家庭数.21.某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度,方法如下:如图,首先在测量点A 处用高为1.5m 的测角仪AC 测得人民英雄纪念碑MN 项部M 的仰角为37°,然后在测量点B 处用同样的测角仪BD 测得人民英雄纪念碑MN 顶部M 的仰角为45°,最后测量出A ,B 两点间的距离为15m ,并且N ,B ,A 三点在一条直线上,连接CD 并延长交MN 于点E .请你利用他们的测量结果,计算人民英雄纪念碑MN 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan35°≈0.75)22.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 23.如图,在Rt△ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D . (1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.24.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.25.2018年“妇女节”前夕,扬州某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?26.如图,某地修建高速公路,要从A地向B地修一座隧道(A、B在同一水平面上),为了测量A、B两地之间的距离,某工程师乘坐热气球从B地出发,垂直上升100米到达C处,在C处观察A地的俯角为39°,求A、B两地之间的距离.(结果精确到1米)(参考数据:sin39°=0.63,cos39°=0.78,tan39°=0.81)27.如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据2≈1.41,3≈1.73)28.在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .29.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y (元)与绿化面积x (平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元. (1)求如图所示的y 与x 的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.30.计算:(1)2(m ﹣1)2﹣(2m+1)(m ﹣1) (2)(1﹣1x+2)÷x 2−1x+2【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、解答题 1. 2. 3. 4. 5.6.7.8.9.10.11.12.13.14.15.16.17.无18.19.20.21.22.23.24.25.26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、解答题1.(1)280名;(2)补图见解析;108°;(3)0.1.【解析】【分析】(1)根据“平等”的人数除以占的百分比得到调查的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【详解】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.2.(1)x≠0;(2)3,3;(3)详见解析;(4)此函数有最小值和最大值.【解析】【分析】(1)由分母不为零,确定x的取值范围即可;(2)将x=1,x=2代入解析式即可得答案;(3)描点画图即可;(4)观察函数图象有最低点和最高点,得到一个性质;【详解】(1)因为分母不为零,∴x≠0;故答案为a≠0.(2)x=1时,y=3;x=2时,y=3;故答案为3,3.(3)如图:(4)此函数有最小值和最大值; 【点睛】本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.3.(1)223a 5ab 3b -+-;(2)mm 2-. 【解析】 【分析】()1根据多项式乘多项式、完全平方公式展开,然后再合并同类项即可; ()2括号内先通分进行分式的减法运算,然后再进行分式的除法运算即可.【详解】()()()21a b a 2b (2a b)-+--=2222a 2ab ab 2b 4a 4ab b +---+-223a 5ab 3b =-+-;(2)221m 4m 41m 1m m -+⎛⎫-÷ ⎪--⎝⎭=()2m m 1m 2m 1(m 2)--⋅-- mm 2=-. 【点睛】 本题考查了整式的混合运算、分式的混合运算,熟练掌握它们的运算法则是解题的关键.4.(1)证明见解析;(2)四边形AECF 是菱形.证明见解析. 【解析】【分析】(1)根据平行四边形的性质及折叠的性质我们可以得到∠B=∠D′,AB=AD′,∠1=∠3,从而利用ASA 判定△ABE ≌△AD′F ;(2)四边形AECF 是菱形,我们可以运用菱形的判定,有一组邻边相等的平行四边形是菱形来进行验证. 【详解】解:(1)由折叠可知:∠D=∠D′,CD=AD′, ∠C=∠D′AE .∵四边形ABCD 是平行四边形, ∴∠B=∠D ,AB=CD ,∠C=∠BAD . ∴∠B=∠D′,AB=AD′,∠D′AE=∠BAD , 即∠1+∠2=∠2+∠3. ∴∠1=∠3. 在△ABE 和△AD′F 中∵{13D B AB AD ∠'=∠='∠=∠ ∴△ABE ≌△AD′F (ASA ).(2)四边形AECF 是菱形.证明:由折叠可知:AE=EC ,∠4=∠5. ∵四边形ABCD 是平行四边形, ∴AD ∥BC . ∴∠5=∠6. ∴∠4=∠6. ∴AF=AE . ∵AE=EC , ∴AF=EC . 又∵AF ∥EC ,∴四边形AECF 是平行四边形. 又∵AF=AE ,∴平行四边形AECF 是菱形.考点:1.全等三角形的判定;2.菱形的判定.5.(1)0x=;(2)原分式方程中“?”代表的数是-1.【解析】【分析】(1)“?”当成5,解分式方程即可,(2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.【详解】(1)方程两边同时乘以()2x-得()5321x+-=-解得0x=经检验,0x=是原分式方程的解.(2)设?为m,方程两边同时乘以()2x-得()321m x+-=-由于2x=是原分式方程的增根,所以把2x=代入上面的等式得()3221m+-=-1m=-所以,原分式方程中“?”代表的数是-1.【点睛】本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.6.(1)12(2)16【解析】解:所有可能出现的结果如下:(1)所有的结果中,满足A 在甲组的结果有3种,所以A 在甲组的概率是12,··· 2分 (2)所有的结果中,满足A B ,都在甲组的结果有1种,所以A B ,都在甲组的概率是16. 利用表格表示出所有可能的结果,根据A 在甲组的概率=3162=, A B ,都在甲组的概率=167.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】 【分析】先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可. 【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.8.(1)200;(2)52;(3)840人;(4)16【解析】分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数; (2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m 的值;(3)利用总人数乘以对应的频率即可; (4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人); (2)非常好的频数是:200×0.21=42(人), 一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等, 其中两次抽到的错题集都是“非常好”的情况有2种, ∴两次抽到的错题集都是“非常好”的概率是21=126. 点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.(1)12,32-;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可. (2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可. 试题解析:(1)设方程的另一根为x 1,∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.10.(1)见解析 (2) 12AD BC =,理由见解析. 【解析】 【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得AD DC =,结合等腰三角形的性质可以得到答案. 【详解】(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC , ∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE , ∴∠DAE=∠DAC+∠CAE=12×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°, ∴四边形ADCE 为矩形. (2)当12AD BC =时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴=12AD BC =,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =时,四边形ADCE 是一个正方形. 【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.11.(1)见解析. 【解析】 【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可. 【详解】证明:(1)∵DE ∥BC ,DF ∥AB , ∴四边形BFDE 是平行四边形, ∵BD 是△ABC 的角平分线, ∴∠EBD=∠DBF ,∵DE ∥BC , ∴∠EDB=∠DBF , ∴∠EBD=∠EDB , ∴BE=ED ,∴平行四边形BFDE 是菱形; (2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°, ∴∠ABC=60°, ∵BD 平分∠ABC , ∴∠DBC=30°, ∴BD=DC=12, ∵DF ∥AB , ∴∠FDC=∠A=90°, ∴4333== 在Rt △DOF 中,()222243623DF OD -=-=∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.12.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元. 【解析】 【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可. 【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩,∴y 与x 之间的函数关系式为10100y x =+; (2)由题意得:(6040)(10100)2090x x --+=, 整理得:21090x x -+=,解得:11x =.29x =, ∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元. 【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.13.(1)y 2与x 的函数关系式为y 2=-2x+200(1≤x<90);(2)W=22x 180x 2?000(1x 50),120?x 12?000(50x 90).⎧-++≤<⎨-+≤<⎩ (3)销售这种文化衫的第45天,销售利润最大,最大利润是6050元. 【解析】 【分析】(1)待定系数法分别求解可得;(2)根据:销售利润=(售价-成本)×销量,分1≤x <50、50≤x <90两种情况分别列函数关系式可得;(3)当1≤x <50时,将二次函数关系式配方后依据二次函数性质可得此时最值情况,当50≤x <90时,依据一次函数性质可得最值情况,比较后可得答案. 【详解】(1)当1≤x<50时,设y 1=kx+b , 将(1,41),(50,90)代入, 得k b 41,50k b 90,+=⎧⎨+=⎩解得k 1,b 40,=⎧⎨=⎩∴y 1=x+40,当50≤x<90时,y 1=90,故y 1与x 的函数解析式为y 1=x 40(1x 50),90(50x 90);+≤<⎧⎨≤<⎩设y 2与x 的函数解析式为y 2=mx+n(1≤x<90), 将(50,100),(90,20)代入,得50m n 100,90m n 20,+=⎧⎨+=⎩解得:m 2,n 200,=-⎧⎨=⎩故y 2与x 的函数关系式为y 2=-2x+200(1≤x<90). (2)由(1)知,当1≤x<50时,W=(x+40-30)(-2x+200)=-2x 2+180x+2000; 当50≤x<90时,W=(90-30)(-2x+200)=-120x+12000;综上,W=22x180x2?000(1x50), 120?x12?000(50x90).⎧-++≤<⎨-+≤<⎩(3)当1≤x<50时,∵W=-2x2+180x+2000=-2(x-45)2+6050,∴当x=45时,W取得最大值,最大值为6050元;当50≤x<90时,W=-120x+12000,∵-120<0,W随x的增大而减小,∴当x=50时,W取得最大值,最大值为6000元;综上,当x=45时,W取得最大值6050元.答:销售这种文化衫的第45天,销售利润最大,最大利润是6050元.14.甲每小时做24个零件,乙每小时做20个零件.【解析】【分析】设甲每小时做x个零件,则乙每小时做(x-4)个零件,根据工作时间=工作总量÷工作效率结合甲做120个所用的时间与乙做100个所用的时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】解:设甲每小时做x个零件,则乙每小时做(x﹣4)个零件,根据题意得:1201004x x=-,解得:x=24,经检验,x=24是分式方程的解,∴x﹣4=20.答:甲每小时做24个零件,乙每小时做20个零件.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.15.(1)原来每小时处理污水量是40m2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m2,新设备每小时处理污水量是1.5x m2,根据原来处理1200m3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m2,新设备每小时处理污水量是1.5x m2,根据题意得:1200120010,1.5x x-=去分母得:1800120015x,-=解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.16.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.17.18.(1)310(2)应对甲店作出暂停营业的决定 【解析】【分析】(1)用利润不少于240元的数量除以总数量即可得;(2)先计算出每售出一台电脑的平均利润值,比较大小即可得.【详解】解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为1053201510510+=+++, 故答案为310; (2)甲店每售出一台电脑的平均利润值为160202001524010320550⨯+⨯+⨯+⨯=204(元), 乙店每售出一台电脑的平均利润值为160820010240143201850⨯+⨯+⨯+⨯=248(元),∵248>204, ∴乙店每售出一台电脑的平均利润值大于甲店;又两店每月的总销量相当,∴应对甲店作出暂停营业的决定.【点睛】本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.19.x =-5【解析】【分析】本题考查了分式方程的解法,把方程的两边都乘以最简公分母(x +1)( x -1),化为整式方程求解,求出x 的值后不要忘记检验.【详解】解:方程两边同时乘以(x +1)( x -1)得: 2x (x -1)+3(x +1)=2(x +1)( x -1)整理化简,得 x =-5经检验,x =-5是原方程的根∴原方程的解为:x =-5.20.(1)C ;(2)①作图见解析;②35万户.【解析】【分析】(1)C 项涉及的范围更广;(2)①求出B,D的户数补全统计图即可;①100万乘以不生二胎的百分比即可.【详解】解:(1)A、B两种调查方式具有片面性,故C比较合理;故答案为:C;(2)①B:100030%300⨯=户1000-100-300-250=350户补全统计图如图所示:(3)因为350100351000⨯=(万户),所以该市100万户家庭中决定不生二胎的家庭数约为35万户.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.人民英雄纪念碑MN的高度约为36.5米.【解析】【分析】在Rt△MED中,由∠MDE=45°知ME=DE,据此设ME=DE=x,则EC=x+15,在Rt△MEC 中,由ME=EC•tan∠MCE知x≈0.7(x+15),解之求得x的值,根据MN=ME+EN可得答案.【详解】由题意得四边形ABDC、ACEN是矩形,∴EN=AC=1.5,AB=CD=15,在Rt△MED中,∠MED=90°,∠MDE=45°,∴ME=DE,设ME=DE=x,则EC=x+15,在Rt△MEC中,∠MEC=90°,∠MCE=35°,∵ME=EC•tan∠MCE,∴x≈0.7(x+15),解得:x≈35,∴ME≈35,∴MN=ME+EN≈36.5,答:人民英雄纪念碑MN 的高度约为36.5米.【点睛】本题考查了解直角三角形中的仰俯角问题,解题的关键是从实际问题中整理出直角三角形并利用解直角三角形的知识解题.22.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题. 试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 23.(1)AD=95;(2)当点E 是AC 的中点时,ED 与⊙O 相切;理由见解析. 【解析】【分析】 (1)由勾股定理易求得AB 的长;可连接CD ,由圆周角定理知CD ⊥AB ,易知△ACD ∽△ABC ,可得关于AC 、AD 、AB 的比例关系式,即可求出AD 的长.(2)当ED 与 O 相切时,由切线长定理知EC=ED ,则∠ECD=∠EDC ,那么∠A 和∠DEC 就是等角的余角,由此可证得AE=DE ,即E 是AC 的中点.在证明时,可连接OD ,证OD ⊥DE 即可.【详解】(1)在Rt △ACB 中,∵AC=3cm ,BC=4cm ,∠ACB=90°,∴AB=5cm ;连接CD ,∵BC 为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A ,∠ADC=∠ACB ,∴Rt △ADC ∽Rt △ACB ;∴,∴;(2)当点E 是AC 的中点时,ED 与⊙O 相切;证明:连接OD ,∵DE 是Rt △ADC 的中线;∴ED=EC ,∴∠EDC=∠ECD ;∵OC=OD ,∴∠ODC=∠OCD ;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED ⊥OD ,∴ED 与⊙O 相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.24.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=, ∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 25.20元/束.【解析】【分析】设第一批花每束的进价是x 元/束,则第一批进的数量是:4000x,再根据等量关系:第二批进的数量=第一批进的数量×1.5可得方程. 【详解】设第一批花每束的进价是x 元/束,依题意得:4000x×1.5=45005x-,解得x=20.经检验x=20是原方程的解,且符合题意.答:第一批花每束的进价是20元/束.【点睛】本题考查了分式方程的应用.关键是根据等量关系:第二批进的数量=第一批进的数量×1.5列方程.26.123米.【解析】【分析】在Rt△ABC中,利用tanBC CABAB∠=即可求解.【详解】解:∵CD∥AB,∴∠CAB=∠DCA=39°.在Rt△ABC中,∠ABC=90°,tanBC CABAB∠=.∴100123tan0.81BCABCAB==≈∠.答:A、B两地之间的距离约为123米.【点睛】本题考查解直角三角形,选择合适的锐角三角函数是解题的关键.27.A、C之间的距离为10.3海里.【解析】【分析】【详解】解:作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD.又∵BC=20,∴x=20,解得:x =1).∴AC1) 1.4110(1.731)10.29310.3=≈⨯⨯-=≈ (海里).答:A、C之间的距离为10.3海里.28.(1)见解析(2)见解析【解析】试题分析:(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DF A=∠F AB,根据等腰三角形的判定与性质,可得∠DAF=∠DF A,根据角平分线的判定,可得答案.试题分析:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DF A=∠F AB.在Rt△BCF中,由勾股定理,得BC=,∴AD=BC=DF=5,∴∠DAF=∠DF A,∴∠DAF=∠F AB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DF A是解题关键.29.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b,则有400100900bk b=⎧⎨+=⎩,解得5400kb=⎧⎨=⎩,。
四川省雅安市中考数学试题.doc
四川省雅安市中考数学卷(全卷1考试时间1)一、选择题(12×3=36分)1、3-的相反数是( ) A 31 B 31- C 3 D 3- 2、光的传播速度为300000km/s ,该数用科学记数法表示为( )A 5103⨯B 6103.0⨯C 6103⨯D 5103-⨯3、下列运算正确的是( )A 3332a a a =•B 633a a a =+C 336)2(x x -=-D 426a a a =÷ 4、由4个大小相同的正方体组成的几何体如图所示,那么它的俯视图是( )5、如图,直线21,l l 被直线3l 所截,且21l l ∥,若∠1=72°,∠2=58°,则∠3=( )A 45°B 50°C 60°D 58°6、点P 关于x 轴对称点为)4,3(1P ,则点P 的坐标为( )A )4,3(-B )4,3(--C )3,4(--D )4,3(-7、一组数据为1,5,3,4,5,6,这组数据的极差、众数、中位数分别为( )A 3,4,5B 5,5,4.5C 5,5,4D 5,3,28、已知线段AB=10cm ,点C 是线段AB 的黄金分割点(AC >BC ),则AC 的长为( )A cm )1055(-B cm )5515(-C cm )555(-D cm )5210(-9、如图,D 、E 、F 分别为△ABC 三边的中点,则下列说法中不正确的为( )A △ADE ∽△ABCB AFC ABF S S △△= C ABC ADE S S △△41= D DF=EF 10、已知一次函数b kx y +=,k 从3,2-中随机取一个值,b 从2,1,1--中随机取一个值,则该一次函数的图像经过二、三、四象限的概率为( ) A 31 B 32 C 61 D 65 11、已知△ABC 的外接圆O 的半径为3,AC=4,则=B sin ( ) A 31 B 43 C 54 D 32 12、已知二次函数c bx ax y ++=2的图像如图,其对称轴1-=x ,给出下列结果①ac b 42>②0>abc ③02=+b a ④0>++c b a ⑤0<+-c b a ,则正确的结论是( )A ①②③④B ②④⑤C ②③④D ①④⑤二、填空(5×3=15分)13、随意掷一枚正反方体骰子,均落在图中的小方格内(每个方格除颜色外完全相同),那么这枚骰子落在中阴影小方格中的概率为 ;14、分解因式:=+-x x x 9623 ;15、将二次函数3)2(2+-=x y 的图像向右平移2个单位,再向下平移2个单位,所得二次函数的解析式为 ;16、在一列数.......,,321a a a 中,74....342312==-=-=-a a a a a a ,则=19a ; 17、如图,在平面直角坐标系中,菱形OABC 的顶点B 的坐标为(8,4)则C 点的坐标为 。
四川省雅安中学2012-2013学年高一上学期期中考试 数学 Word版含答案.pdf
数 学 试 题 (命题人:刘仁康 审题人:王民军) 本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分,考试时间150分钟。
考试结束后,将答题卷和机读卡一并收回。
第I卷(选择题,共60分) 选择题:(本大题共12小题,每小题5分,共60分。
) 1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A∩=( ) A. B. C . D. 2.下列各式正确的是( ) 3. lg8+3lg5的值为( )A.-3B.-1C.1D.3 5.已知,则 ( ) A . B. 8 C. 18 D . 6.化简的结果( ) A. B.C.D. 7. 若全集,则集合的真子集共有( ) A.个 B.个 C.个 D.个 8.函数的定义域是( ) A. B. C. D. 9.当0<a<1时,在同一坐标系中,函数与的图象是( ) 10.三个数,,的大小关系式是A. <<B. <<C. <<D. << 11.函数在上为减函数,则实数a的取值范围是( ) A. B. C. D. 12. 在这三个函数中,当时, 使恒成立的函数的个数是( ) A.个 B.个 C.个 D.个 第II卷(非选择题共90分) 二、填空题:(本大题共4小题,每小题4分,共16分.把答案填在题中横线上.) 13. 14.函数恒过定点 。
16.一个服装加工厂计划从2008年至2018年10年间将加工服装的生产能力翻两番,那么按 照计划其生产力的年平均增长率应为________________________. 三、解答题:(本大题共6小题,共74分.解答应写出文字说明、证题过程或演算步骤.) 17.(本题满分12分) 不用计算器计算:。
18.已知集合。
(1)求;(2)求;(3)若,求a的取值范围。
20.已知函数. 判断的奇偶性; 若,求a,b的值. 21设是R上的奇函数。
四川省雅安市2013年中考数学试题(有答案)
2013年中考数学试题(四川雅安卷)(本试卷满分120分,考试时间120分钟)一、选择题(共12小题,每小题3分,满分36分)每小题的四个选项中,有且仅有一个正确的。
1.1 2 -的相反数是【】A.2 B.-2 C.12D.12-2.五边形的内角和为【】A.720°B.540°C.360°D.180°3.已知x1,x2是一元二次方程的两根,则x1+x2的值是【】A.0 B.2 C.-2 D.44.如图,AB∥CD,AD平分∠BAC,且∠C=80°,则∠D的度数为【】A.50°B.60°C.70°D.100°5.下列计算正确的是【】A.(﹣2)2=﹣2 B.a2+a3=a5C.(3a2)2=3a4D.x6÷x2=x46.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为【】A.3.5,3 B.3,4 C.3,3.5 D.4,37.不等式组3x1<3x12-⎧⎪⎨-≤⎪⎩的整数解有【】个.A.1 B.2 C.3 D.48.如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则CEF BCEDS S∆四形:边的值为【】A.1:3 B.2:3 C.1:4 D.2:59.将抛物线()2y x13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为【】A.()2y x2=-B.()2y x26=-+C.2y x6=+D.2y x=10.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的点,∠CDB=30°,过点C 作⊙O 的切线交AB 的延长线于E ,则sin ∠E 的值为【 】A .12B .32C .22D .33 11.二次函数2y ax bx c =++的图象如图所示,则一次函数y ax b =+与反比例函数c y x=在同一平面直角坐标系中的大致图象为【 】 A . B . C . D .12.如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF=15°,③AC 垂直平分EF ,④BE+DF=EF ,⑤S △CEF =2S △ABE .其中正确结论有【 】个.A .2B .3C .4D .5二、填空题(共5小题,每小题3分,满分15分)13.已知一组数2,4,8,16,32,…,按此规律,则第n 个数是 ▲ .14.从-1,0,,π,3中随机任取一数,取到无理数的概率是 ▲ .15.若()2a 1b 20-+-=,则以a 、b 为边长的等腰三角形的周长为 ▲ .16.如图,在▱ABCD 中,E 在AB 上,CE 、BD 交于F ,若AE :BE=4:3,且BF=2,则DF= ▲ ..17.在平面直角坐标系中,已知点A (5-,0),B (5,0),点C 在坐标轴上,且AC+BC=6,写出满足条件的所有点C 的坐标 ▲ .三、解答题(共7小题,满分69分)18.(1)计算:11824sin453-⎛⎫+--︒- ⎪⎝⎭ (2)先化简,再求值:221m 11m m 2m 1-⎛⎫-÷ ⎪++⎝⎭,其中m=2. 19.在ABCD 中,点E 、F 分别在AB 、CD 上,且AE=CF .(1)求证:△ADE ≌△CBF ;(2)若DF=BF ,求证:四边形DEBF 为菱形.20.甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程( 组) 求解)21.某学校为了增强学生体质,决定开设以下体育课外活动项目:A .篮球 B .乒乓球C .羽毛球 D .足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有 ▲ 人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)22.如图,在平面直角坐标系中,一次函数y kx b =+(k≠0)的图象与反比例函数m y x=(m≠0)的图象交于A 、B 两点,与x 轴交于C 点,点A 的坐标为(n ,6),点C 的坐标为(﹣2,0),且tan ACO 2∠=.(1)求该反比例函数和一次函数的解析式;(2)求点B 的坐标;(3)在x 轴上求点E ,使△ACE 为直角三角形.(直接写出点E 的坐标)23.如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E .(1)求证:CD 为⊙O 的切线;(2)若BD 的弦心距OF=1,∠ABD=30°,求图中阴影部分的面积.(结果保留π)24.如图,已知抛物线2y ax bx c =++经过A (-3,0),B (1,0),C (0,3)三点,其顶点为D ,对称轴是直线l ,l 与x 轴交于点H .(1)求该抛物线的解析式;(2)若点P 是该抛物线对称轴l 上的一个动点,求△PBC 周长的最小值;(3)如图(2),若E 是线段AD 上的一个动点( E 与A 、D 不重合),过E 点作平行于y 轴的直线交抛物线于点F ,交x 轴于点G ,设点E 的横坐标为m ,△ADF 的面积为S .①求S 与m 的函数关系式;②S 是否存在最大值?若存在,求出最大值及此时点E 的坐标; 若不存在,请说明理由.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年四川雅安中考数学试题第一部分(选择题 共36分)一、选择题(本大题共12小题,每小题3分,满分36分,在每小题给出的四个选项中,只有一项是符合 题目要求的。
)1. (2012四川雅安3分)9的平方根是【 】A .3B .-3C .±3D .6【答案】C 。
2. (2012四川雅安3分)如图,已知⊙O 是△ABC 的外接圆,∠AOB =110º,则∠C 的度数为【 】A .55ºB .70ºC .60ºD .45º【答案】A 。
3.(2012四川雅安3分)如果单项式a21x y 2-与31x y 3b是同类项,那么a ,b 的值分别为【 】A .2,2B .-3,2C .2,3D .3,2【答案】D 。
4. (2012四川雅安3分)已知1l ∥2l ,且∠1=120º,则∠2=【 】A .40ºB .50ºC .60ºD .70º【答案】 C 。
5.(2012四川雅安3分)计算222a (a+b)(a b)+ab -等于【 】A .4aB .6aC .22a bD .22a b -【答案】A 。
6.(2012四川雅安3分)圆柱形水桶的底面周长为3.2m π,高为0.6m ,它的侧面积是【 】A .21.536m πB .21.92m πC .20.96m πD .22.56m π【答案】B 。
7.(2012四川雅安3分)已知二次函数2y=ax 1-的图象开口向下,则直线y=ax 1-经过的象限是【 】A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】D 。
8.(2012四川雅安3分)下左图是一个有多个相同小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小正方形的个数,则这个几何体的主视图是【 】【答案】C 。
9.(2012四川雅安3分)由方程组2x m =1y 3=m+⎧⎨-⎩可得出x 与y 的关系是【 】A .2x+y=4B .2x y=4-C . 2x+y=4-D . 2x y=4-- 【答案】A 。
10.(2012四川雅安3分)某校图书馆梨园情理阅览室的课外书籍时,将其中甲、乙、丙三类书籍的有关数据制成如图不完整的统计图,已知甲类书有30本,则丙类书的本数是【 】A .90B .144C .200D .80【答案】D 。
11. (2012四川雅安3分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (4,5),B (1,2),C (4,2),将△ABC 向左平移5个单位后,A 的对应点A 1的坐标是【 】A.(0,5)B.(-1,5)C.(9,5)D.(-1,0)\【答案】B。
12.(2012四川雅安3分)在一次比赛中,有5位裁判分别给某位选手的打分情况如表则这位选手得分的平均数和方差分别是【】A.9.3,0.04B.9.3,0.048C.9.22,0.048D.9.37,0.04【答案】B。
第二部分(非选择题共84分)二、填空题(本大题共5个小题,每小题3分,共15分)请将答案直接写在相应题的横线上。
13.(2012四川雅安3分)若一元二次方程2x+2x+m=0无实数解,则m的取值范围是▲ .【答案】m>1。
14.(2012四川雅安3分)化简▲ .【答案】15.(2012四川雅安3分)如图,AB是⊙O的直径,O是圆心,BC与⊙O相切于B点,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是▲ .【答案】6。
16.(2012四川雅安3分)在一个暗盒中放有若干个红色球和3个黑色球(这些球除颜色外,无其他区别),从中随机取出1个球是红球的概率是25.若在暗盒中增加1个黑球,则从中随机取出一个球是红球的概率是▲ .【答案】13。
17.(2012四川雅安3分)在△ADB和△ADC中,下列条件:①BD=DC,AB=AC;②∠B=∠C,∠BAD=∠CAD;③∠B =∠C ,BD =DC ;④∠ADB =∠ADC ,BD =DC .能得出△ADB ≌△ADC 的序号是 ▲ . 【答案】①②④。
三、解答题(本大题69分)解答要求写出必要的文字说明、演算步骤及推理过程 18.(2012四川雅安6分)①(2012四川雅安3分)计算:01012012++2sin 30+42--()【答案】解:原式=1+2+1+4=8。
②(2012四川雅安3分)化简221x 2x+11+x x 1-- () 【答案】解:原式=2x+1(x 1)x 1=x(x+1)(x 1)x--⋅-。
19.(2012四川雅安6分)解不等式组()2x 13x 22x 4⎧--⎪⎨-⎪⎩≥<【答案】解:原不等式可化为2x 13x 6x 2--⎧⎨-⎩≥>,即 x 5x 2≤⎧⎨-⎩>。
∴不等式组的解集为-2<x ≤5。
20.(2012四川雅安7分)用一根绳子环绕一个圆柱形油桶,若环绕油桶3周,则绳子还多4尺;若环绕油桶4周,则绳子又少了3尺。
这根绳子有多长?环绕油桶一周需要多少尺? 【答案】解:设这根绳子长为x 尺,环绕油桶一周需y 尺。
由题意的方程组3y+4=x 4y 3=x⎧⎨-⎩,解得x= 25y=7⎧⎨⎩。
答:这根绳子长为25尺,环绕油桶一周需7尺。
21.(2012四川雅安10分)如图, ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA .(1)求∠APB 的度数;(2)如果AD =5cm ,AP =8cm ,求△APB 的周长.【答案】解:(1)∵ABCD 是平行四边形,∴AD ∥CB 。
∴∠DAB +∠CBA =180°。
又∵AP 和BP 分别平分∠DAB 和∠CBA , ∴∠P AB +∠PBA =12(∠DAB +∠CBA )=90°。
∴在△APB 中,∠APB =1800-(∠PAB +∠PBA )=90°。
(2)∵AP 平分∠DAB 且AB ∥CD ,∴∠DAP =∠PAB =∠DPA 。
∴△ADP 是等腰三角形。
∴AD =DP =5cm 。
同理,PC =CB =5cm 。
∴AB =DP +PC =10cm 。
在Rt △APB 中,AB =10cm ,AP =8cm ,∴BP (cm )。
∴△APB 的周长是6+8+10=24(cm )。
22.(2012四川雅安12分)如图,一次函数y=x+1与反比例函数k y=x的图象相交于点A (2,3)和点B .(1)求反比例函数的解析式; (2)求点B 的坐标;(3)过点B 作BC ⊥x 轴于C ,求ABC S ∆.【答案】解:(1)将A 点坐标代入反比例函数k y=x得k =6。
∴反比例函数的解析式为6y=x。
(2)由题意得方程组:y=x+16y=x⎧⎪⎨⎪⎩,得:x (x +1)=6, 即 2x +x 6=0-, 解得 12x =3, x =2-。
∴B 点坐标为(-3,-2)。
(3)在△ABC 中,以BC 为底边,则高为2-(-3)=5。
∴ABC 1S =2552∆⨯⨯=。
23.(2012四川雅安10分)已知⊙O 的弦CD 与直径AB 垂直于F ,点E 在CD 上,且AE =CE . 求证:(1)CA 2=CE ·CD ;(2)已知CA =5,EA =3,求sin ∠EAF.【答案】解:(1)在△CEA 和△CAD 中,∵弦CD 垂直于直径AB ,∴弧AC =弧AD 。
∴∠D =∠C 。
又∵AE =EC ,∴∠CAE =∠C 。
∴△CEA ∽△CAD 。
∴CA CE CDCA=,即CA 2=CE ·CD 。
(2)∵CA 2=CE ·CD ,AC =5,EC =3, ∴25CD 3=⋅,CD =253。
又∵CF =FD ,∴112525CF CD 2236==⨯=,257EF CF CE 366=-=-=。
在Rt △AFE 中,sin ∠EAF =7EF76A E 318==。
24.(2012四川雅安12分)在直角坐标系中,已知抛物线2y=ax +bx+c 与x 轴交于点A (1,0)和点B ,顶点为P .(1)若点P 的坐标为(-1,4),求此时抛物线的解析式;(2)若点P 的坐标为(-1,k ),k <0,点Q 是y 轴上一个动点,当k 为何值时,QB +QP 取得最小值为5;(3)试求满足(2)时动点Q 的坐标.【答案】解:(1)由题可设抛物线解析式为2y=a(x+1)+4 将A 点坐标代入,得a =-1∴抛物线解析式为2y=(x+1)+4-,即2y=x x+--23。
(2)作P 关于y 轴对称点1P (1,k ),∴QP =Q 1P 。
由题意知B (-3,0),若QB +QP 最小,即QB + Q 1P 最小,则B 、Q 、1P 三点共线,即1P B =5。
又AB =4。
连结1P A ,得△1P AB 是直角三角形, 则1P A =3。
∴k =-3。
(3)由(2)知,△BOQ ∽△BA 1P , ∴1B O O Q B AA P =,即3O Q 43=。
∴OQ =94∴Q 点的坐标为(0,94-)。