师宗二中初一下学期数学期中测试
七年级数学第二学期期中试卷题
七年级数学第二学期期中试卷题独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程,今天小编就给大家看看七年级数学,需要的就收藏一下哦初二年级数学下期中试卷一.选择题:相信你一定能选对!(下列各小题的四个选项中,有且只有一个是符合题意的,把你认为符合题意的答案代号填入答题表中,每小题3分,共36分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案1.49的平方根是A.7B.﹣7C.±7D.2.在平面直角坐标系中,点P(﹣3,4)位于A.第一象限B.第二象限C.第三象限D.第四象限3.若式子在实数范围内有意义,则x的取值范围是A.x>5B.x≥5C.x≠5D.x≥04.在下列各数:3.1415926、、0.2、、、、中无理数的个数是A.2B.3C.4D.55.如图所示的图案分别是大众、奥迪、奔驰、三菱汽车的车标,其中,可以看作由“基本图案”经过平移得到的是A. B. C. D.6.已知点A(-2 ,4),将点A 往上平移2个单位长度,再往左平移3个单位长度得到点A′,则点A′的坐标是A.(-5, 6)B.(1, 2)C.(1, 6)D.(-5, 2)7.下列语句中,假命题的是( )A.对顶角相等B.若直线a、b、c满足b∥a,c∥a,那么b∥cC.两直线平行,同旁内角互补D.互补的角是邻补角8.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=36°,那么∠2的度数为A. 44°B. 54°C. 60°D.36°9.如图,∠1=∠2,则下列结论一定成立的是A.AB∥CDB.AD∥BCC.∠B=∠DD.∠3=∠410.如图,已知直线相交于点,,,则∠BOD的度数为A.28°B.52°C.62°D.118°11.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是)A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0)D.(0,12)或(0,﹣8)12.若定义:f(a,b)=(﹣a,b),g(m,n)=(m,﹣n),例如f(1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f(2,﹣3))=A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)二.填空题:你能填得又对又快吗?(每小题3分,共18分)13.若,则.14.在平面直角坐标系中,点P( , +1)在轴上,那么点的值是_________.15.在数轴上离原点距离是的点表示的数是_________.16用“※”定义新运算:对于任意实数a、b,都有a※b=2a2+b.例如3※4=2×32+4=22,那么※2=.17.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC'= .18.观察下列各式:(1) ,(2) ,(3) ,…,请用你发现的规律写出第8个式子是 .三.解答题:一定要细心,你能行!(本大题共7小题,共66分)19.(10分)计算:(1) (2)解方程:20.(本小题满分7分)请把下面证明过程补充完整:已知:如图,∠ADC=∠ABC,BE、DF分别平分∠ABC、∠ADC,且∠1=∠2.求证:∠A=∠C.证明:∵BE、DF分别平分∠ABC、∠ADC(已知),∴∠1= ∠ABC,∠3= ∠ADC(角平分线定义).∵∠ABC=∠ADC(已知),∴∠1=∠3(等量代换),∵∠1=∠2(已知),∴∠2=∠3(等量代换).∴_____∥_____ (___ __).∴∠A+∠_____=180°,∠C+∠_____=180°(___ __).∴∠A=∠C(___ __).21.(本小题满分8分)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵ < < ,即2< <3,∴ 的整数部分为2,小数部分为( ﹣2).请解答:(1) 的整数部分是______,小数部分是______(2)如果的小数部分为,的整数部分为,求的值.22.(本小题满分9分)已知 , 满足 =0,解关于的方程 .23.(本小题满分10分)如图,△ABC在直角坐标系中,(1)请写出△ABC各点的坐标.(2)若把△ABC向上平移2个单位,再向左平移1个单位得到△A′B′C′,写出A′、B′、C′的坐标,并在图中画出平移后图形.(3)求出三角形ABC的面积.24.(本小题满分10分)已知如图,DE⊥AC,∠AGF=∠ABC,∠1+∠2=180°,试判断BF与AC的位置关系,并说明理由.25. (本小题满分12分)(1)问题发现如图①,直线AB∥CD,E是AB与AD之间的一点,连接BE,CE,可以发现∠B+∠C=∠BEC.请把下面的证明过程补充完整:证明:过点E作EF∥AB,∵AB∥DC(已知),EF∥AB(辅助线的作法),∴EF∥DC∴∠C= .∵EF∥AB,∴∠B= ,∴∠B+∠C= .即∠B+∠C=∠BEC.(2)拓展探究如果点E运动到图②所示的位置,其他条件不变,求证:∠B+∠C=360°﹣∠BEC.(3)解决问题如图③,AB∥DC,∠C=120°,∠AEC=80°,则∠A=.(直接写出结论,不用写计算过程)温馨提示:请仔细认真检查,特别是计算题,不要因为自己的粗心大意造成失误而后悔哟!参考答案一.选择:CBBAB ADBBD CC二.填空:13. ±8 ; 14. -1 15. ± 16. 8 17. 5 18.三.解答题19.(1) 解:……………………………………………………3分………………………………………………5分(2)解:……………………………………………………1分或………………………………………3分解得或………………………………………5分20.(每空1分,共7分)证明:∵BE、DF分别平分∠ABC、∠ADC(已知),∴∠1= ∠ABC,∠3= ∠ADC(角平分线定义).∵∠ABC=∠ADC(已知),<∴∠1=∠3(等量代换),∵∠1=∠2(已知),∴∠2=∠3(等量代换).∴AB ∥DC (内错角相等,两直线平行).∴∠A+∠ADC =180°,∠C+∠ABC =180°(_两直线平行,同旁内角互补).∴∠A=∠C(等角的补角相等).21.解:(1) 的整数部分是3,……………………………………………2分小数部分是:; ……………………………………………………4分(2)∵ < < ,∴ 的小数部分为: = ,…………………………………………5分∵ < < ,∴ 的整数部分为:,…………………………………………6分∴ = . ………………………………………8分22.由题意得: -4=0, -7=0∴ =4, =7 (6)分将 =4, =7代入( -3) -1=5 ,得(4-3) -1=5×7∴ =36 ……………………………………………………8分=±6 ……………………………………………………9分23.解:(1)A(﹣2,﹣2),B (3,1),C(0,2);…3分(2)△A′B′C′如图所示,………4分A′(﹣3,0)、B′(2,3),C′(﹣1,4);………7分(3)△ABC的面积=5×4﹣×2×4﹣×5×3﹣×1×3,=20﹣4﹣7.5﹣1.5,=20﹣13,=7.………………………………………………………………………………………10分24. BF与AC的位置关系是:BF⊥AC.……………………………2分理由:∵∠AGF=∠ABC,∴BC∥GF(同位角相等,两直线平行),∴∠1=∠3;………………………………………………………5分又∵∠1+∠2=180°,∴∠2+∠3=180°,∴BF∥DE;……………………………………………8分∵DE⊥AC,∴BF⊥AC (1)0分25.解:(1)∠CEF;∠BEF;∠BEF+∠CEF. …………………………………3分(2)证明:如图②,过点E作EF∥AB,…………………………………………4分∵AB∥DC,EF∥AB,∴EF∥DC,…………………………………5分∴∠C+∠CEF=180°,∠B+∠BEF=180°,………………………………………7分∴∠B+∠C+∠BEC=360°,∴∠B+∠C=360°﹣∠BEC; ……………………9分(3)∠A=20°. …………………12分七年级数学下学期期中试题一、选择题:(每小题只有一个正确答案,每小题3分,共30分)1.下列计算正确的是( )A.x2+x3=2x5B.x2 x3=x6C.(﹣x3)2=﹣x6D.x6÷x3=x32.将0.00000573用科学记数法表示为( )A.0.573×10﹣5B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣63.下列各式中不能用平方差公式计算的是( )A.(x﹣y)(﹣x+y)B.(﹣x+y)(﹣x﹣y)C.(﹣x﹣y)(x﹣y)D.(x+y)(﹣x+y)4.计算(a﹣b)2的结果是( )A.a2﹣b2B.a2﹣2ab+b2C.a2+2ab﹣b2D.a2+2ab+b25.如果一个角的补角是150°,那么这个角的余角的度数是( )A.30°B.60°C.90°D.120°6.两直线被第三条直线所截,则( )A.内错角相等B.同位角相等C.同旁内角互补D.以上结论都不对7.星期天,小王去朋友家借书,如图是他离家的距离y(千米)与时间x(分)的函数图象,根据图象信息,下列说法正确的是( )A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分C.小王去时所花的时间少于回家所花的时间D.小王去时走上坡路,回家时走下坡路8.如图,AB∥CD,∠AGE=128°,HM平分∠EHD,则∠MHD的度数是( )A.46°B.23°C.26°D.24°9.设(5a+3b)2=(5a﹣3b)2+A,则A=( )A.30abB.60abC.15abD.12ab10.一学员在广场上练习驾驶汽车,两次拐弯后,行驶方向与原来的方向相同,这两次拐弯的角度可能是( )A.第一次向右拐50°第二次向左拐130°B.第一次向左拐30°第二次向右拐30°C.第一次向右拐50°第二次向右拐130°D.第一次向左拐50°第二次向左拐130°二、填空题(每小题4分,共16分)11.若,b=(﹣1)﹣1,,则a、b、c从小到大的排列是< < .12.若多项式a2+2ka+1是一个完全平方式,则k的值是.13.已知3m=4,3n=5,3m﹣n的值为.14.某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升______元.三、计算题(共20分)15.(20分)计算下列各题(1)(x3)2.(﹣x4)3 (2)( x5y4﹣ x4y3) x3y3(3)2mn.[(2mn)2﹣3n(mn+m2n)] (4)(2a+1)2﹣(2a+1)(2a﹣1)(5)102+ ×(π﹣3.14)0﹣|﹣302|四、解答题(每小题6分,共18分)16.(6分)化简求值:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2,其中 .17.(6分)已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3、x2项.求m+n的值.18.(6分)如图,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.解:∠A=∠3,理由如下:∵DE⊥BC,AB⊥BC(已知)∴∠DEB=∠ABC=90° ()∴∠DEB+()=180°∴DE∥AB ()∴∠1=∠A()∠2=∠3()∵∠l=∠2(已知)∴∠A=∠3()19.(6分)已知x+y=6,xy=5,求下列各式的值:(1) (2)(x﹣y)2 (3)x2+y220.(10分)如图,AB∥DE,∠1=∠ACB,∠CAB= ∠BAD,试说明AD∥BC.B卷满分50分一、填空题:(每小题4分,共20分)21.若2m=3,4n=8,则23m﹣2n+3的值是.22.若∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=60°,则∠2=.23.已知x2+3x﹣1=0,求:x3+5x2+5x+18的值.24.若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为.25.如图,已知AB∥CD,则∠A、∠C、∠P的关系为.二.解答题(共10分)26.(10分)已知:如图,AB∥CD,求:(1)在图(1)中∠B+∠D=?(2)在图(2)中∠B+∠E1+∠D=?(3)在图(3)中∠B+∠E1+∠E2+…+∠En﹣1+∠En+∠D=?27.(10分)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图像如图10所示.根据图像解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中? (不包括起点和终点)28.(10分)如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).七年级(下)期中数学试卷参考答案A卷一、选择题:(每小题只有一个正确答案,把答案填入下面表格中,每小题3分,共30分)DCABB DBCBB二.填空题(每小题4分,共16分)11.(4分)若,b=(﹣1)﹣1,,则a 、b、c从小到大的排列是 b < c < a .12.(4分)若多项式a2+2ka+1是一个完全平方式,则k的值是±1.13.(4分)已知3m=4,3n=5,3m﹣n的值为.14.(4分)某型号汽油的数量与相应金额的关系如图,那么这种汽油的单价为每升_7.09_____元.三.计算题(共20分)15.(20分)计算下列各题(1)(x3)2•(﹣x4 )3(2)( x5y4﹣ x4y3) x3y3(3)2mn•[(2mn)2﹣3n(mn+m2n)](4)(2a+1)2﹣(2a+1)(2a﹣1)(5)102+ ×(π﹣3.14)0﹣|﹣302|解:(1)(x3)2•(﹣x4)3=x6•(﹣x12)=﹣x18;(2)( x5y4﹣ x4y3) x3y3= ;(3)2mn•[(2mn)2﹣3n(mn+m2n)]=2mn•[4m2n2﹣3mn2﹣3m2n2]=2mn•(m2n2﹣3mn2)=2m3n3﹣6m 2n3;(4)(2a+1)2﹣(2a+1)(2a﹣1)=4a2+4a+1﹣4a2+1=4a+2;(5)102+ ×(π﹣3.14)0﹣|﹣302|=100+900×1﹣900=100+900﹣900=100.四.解答题(每小题6分,共18分)16.(6分)化简求值:(x+2y)2﹣(x+y)(3x﹣y)﹣5y2,其中 .解:(x+2y )2﹣(x+y)(3x﹣y)﹣5y2=x2+4xy+4y2﹣(3x2+2xy﹣y2)﹣5y2=﹣2x2+2xy,当x=﹣2,y= 时,原式=﹣2×(﹣2)2+2×(﹣2)×=﹣8﹣2=﹣10.17.(6分)已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3、x2项.求m+n的值.解:(x3+mx+n)(x2﹣3x+1)=x5﹣3x4+x3+mx3﹣3mx2+mx+nx2﹣3nx+n=x5﹣3x4+(1+m)x3+(﹣3m+n)x2+(m﹣3n)x+n因为展开后的结果中不含x3、x2项所以1+m=0﹣3m+n=0所以m=﹣1 n=﹣3 m+n=﹣1+(﹣3 )=﹣4.18.(6分)如图,∠l=∠2,DE⊥BC,AB⊥BC,那么∠A=∠3吗?说明理由.解:∠A=∠3,理由如下:∵DE⊥BC,AB⊥B C(已知)∴∠DEB=∠ABC=90° (垂直的定义)∴∠DEB+(∠ABC)=180°∴DE∥AB (同旁内角互补,两直线平行)∴∠1=∠A(两直线平行,同位角相等)∠2=∠3(两直线平行,内错角相等)∵∠l=∠2(已知)∴∠A=∠3(等量代换)解:理由如下:∵DE⊥BC,AB ⊥BC(已知)∴∠DEC=∠ABC=90°(垂直的定义),∴∠DEB+(∠ABC)=180O∴DE∥AB(同旁内角互补相等,两直线平行),∴∠1=∠A (两直线平行,同位角相等),由DE∥BC还可得到:∠2=∠3 (两直线平行,内错角相等),又∵∠l=∠2(已知)∴∠A=∠3 (等量代换).故答案为垂直的定义;∠ABC;同旁内角互补,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等;等量代换.五.(第19题6分,第20题10分,共16分)19.(6分)已知x+y=6,xy=5,求下列各式的值:(1)(2)(x﹣y)2(3)x2+y2.解:∵x+y=6,xy=5,(1) ;(2)(x﹣y)2=(x+y)2﹣4xy=62﹣4×5=16.(3)x2+y2=(x+y)2﹣2xy=62﹣2×5=26.20.(10分)如图,AB∥DE,∠1=∠ACB,∠CAB= ∠BAD,试说明AD∥BC.证明:∵AB∥DE,∴∠BAC=∠1,∵∠1=∠ACB,∴∠ACB=∠BAC,∵∠CAB= ∠BAD,∴∠ACB=∠DAC,∴AD∥BC.B卷一.填空题:(每小题4分,共20分)21.(4分)若2m=3,4n=8,则23m﹣2n+3的值是27 .解:∵2m=3,4n=8,∴23m﹣2n+3=(2m)3÷(2n)2×23,=(2m)3÷4n×23,=33÷8×8,=27.22.(4分)∠1与∠2有一条边在同一直线上,且另一边互相平行,∠1=60°,则∠2=60°或120°.解:如图:当α=∠2时,∠2=∠1=6 0°,当β=∠2时,∠β=180°﹣60°=120°,23.(4分)已知x2+3x﹣1=0,求:x3+5x2+5x+18的值.解:∵x2+3x﹣1=0,∴x2+3x=1,x3+5x2+5x+18=x(x2+3x)+2x2+5x+18=x+2x2+5x+18=2(x2+3x)+18=2+18=20.24.(4分)若a=2009x+2007,b=2009x+2008,c=2009x+2009,则a2+b2+c2﹣ab﹣bc﹣ca的值为 3 .解:∵a=2009x+2007,b=2009x+2008,c=2009x+2009,∴a﹣b=﹣1,b﹣c=﹣1,c﹣a=2,∴a2+b2+c2﹣ab﹣bc﹣ca= (2a2+2b2+2c2﹣2ab﹣2b c﹣2ca)= [(a﹣b)2+(b﹣c)2+(c﹣a)2]= (1+1+4)=3.25.(4分)如图,已知AB∥CD,则∠A、∠C、∠P的关系为∠A+∠C﹣∠P=180°.解:如右图所示,作PE∥CD,∵PE∥CD,∴∠C+∠CPE=180°,又∵AB∥CD,∴PE∥AB,∴∠A=∠APD,∴∠A+∠C﹣∠P=180°,26.(10分)已知:如图,AB∥CD,求:(1) 在图(1)中∠B+∠D=?(2)在图(2)中∠B+∠E1+∠D=?(3)在图(3)中∠B+∠E1+∠E2+…+∠En﹣1+∠En+∠D=?解:(1)∵AB∥CD,∴∠B+∠D=180°.(2)在图(2)中,过点E1作E1F1∥CD,则E1F1∥AB,∴∠B+∠BE1F1=180°,∠D+∠DE1F1=180°,∴∠B+∠BE1F1+∠DE1F1+ ∠D=∠B+∠BE1D+∠D=360°.(3)在图(3)中,过点E1作E1F1∥CD,过点E2作E2F2∥CD,…,过点En作EnFn∥CD,∴∠B+∠BE1F1=180°,∠F1E1E2+∠E1E2F2=180°,…,∠FnEnD+∠D=180°,∴∠B+∠BE1E2+∠E1E2E3+…+∠En﹣2En﹣1En+∠En﹣1EnD+∠D=∠B+∠BE1F1+∠F1E1E2+∠E1E2F2+…+∠FnEnD+∠D=1 80°•(n+1).27.(10分)甲骑自行车、乙骑摩托车沿相同路线由A地到B地,行驶过程中路程与时间关系的图像如图10所示.根据图像解答下列问题:(1)谁先出发?先出发多少时间?谁先到达终点?先到多少时间?(2)分别求出甲、乙两人的行驶速度;(3)在什么时间段内,两人均行驶在途中? (不包括起点和终点)解:(1)由图可得:甲先出发,先出发时间为:10分钟乙先到达终点:先到5分钟(2)甲速为:6÷30=0.2(km/分),乙速为:6÷(25-10)=0.4(km/分)(3)10四.解答题(共10分)28.(10分)如图,已知l1∥l2,MN分别和直线l1、l2交于点A、B,ME分别和直线l1、l2交于点C、D,点P在MN上(P点与A、B、M三点不重合).(1)如果点P在A、B两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P在A、B两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).解:(1)如图,过点P做AC的平行线PO,∵AC∥PO,∴∠β=∠CPO,又∵AC∥BD,∴PO∥BD,∴∠α=∠DPO,∴∠α+∠β=∠γ.(2)①P在A点左边时,∠α﹣∠β=∠γ;②P在B点右边时,∠β﹣∠α=∠γ.(提示:两小题都过P作AC的平行线).下学期七年级数学期中考试卷一、选择题.(每空3分,共18分)1. 如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于( )A.130°B.140°C.150°D.160°2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )A.30°B.25°C.20°D.15°3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( )A.(-1,1)B.(-2,-1)C.(-3,1)D.(1,-2)4.下列现象属于平移的是( )A.冷水加热过程中小气泡上升成为大气泡B急刹车时汽车在地面上的滑动C.投篮时的篮球运动D.随风飘动的树叶在空中的运动5.下列各数中,是无理数的为( )A. B. 3.14 C. D.6.若a2=9, =-2,则a+b=( )A. -5B. -11C. -5 或 -11D. 5或 11得分评卷人二、填空.(每小题3分,共27分)7.把命题“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式:_____________________________________________________________8.一大门的栏杆如右图所示,BA⊥AE,若CD∥AE,则∠ABC+∠BCD=____度.9.如右图,有下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角。
完整版初一数学下册期中测试卷及答案
完整版初一数学下册期中测试卷及答案一、选择题1.4的平方根为()A .2B .2±C .4D .4±2.下列图形中,哪个可以通过图1平移得到( )A .B .C .D . 3.在平面直角坐标系中有四个点()2,3A ,()2,3B -,()2,3C --,()2,3D -.其中在第一象限的点是( ).A .AB .BC .CD .D4.下列命题中假命题有( )①两条直线被第三条直线所截,同位角相等②如果两条直线都与第三条直线平行,那么这两条直线也互相平行③点到直线的垂线段叫做点到直线的距离④过一点有且只有一条直线与已知直线平行⑤若两条直线都与第三条直线垂直,则这两条直线互相平行.A .5个B .4个C .3个D .2个5.如图,已知AP 平分BAC ∠,CP 平分ACD ∠,1290∠+∠=︒.下列结论正确的有( ) ①//AB CD ;②180ABE CDF ∠+∠=︒;③//AC BD ;④若2ACD E ∠=∠,则2CAB F ∠=∠.A .1个B .2个C .3个D .4个 6.下列说法不正确的是( ) A .125的平方根是±15 B .﹣9是81的平方根C .0.4的算术平方根是0.2D 327-=﹣3 7.如图,//AB CD ,FG 平分EFD ∠,168∠=︒,则BGF ∠=( )A .112°B .126°C .136°D .146°8.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (2,0)同时出发,沿长方形BCDE 的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是( )A .(2 ,1)B .(-1,-1)C .(﹣2,0)D .(2,0)二、填空题9.()29-的算术平方根是____.10.小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_______.11.如图,,BO CO 是ABC ACB ∠∠、的两条角平分线,100A ∠=︒,则BOC ∠的度数为_________.12.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.13.将长方形纸带沿EF 折叠(如图1)交BF 于点G ,再将四边形EDCF 沿BF 折叠,得到四边形GFC D '',EF 与GD '交于点O (如图2),最后将四边形GFC D ''沿直线AE 折叠(如图3),使得A 、E 、Q 、H 四点在同一条直线上,且D ''恰好落在BF 上若在折叠的过程中,//''EG QD ,且226∠=︒,则1∠=________.14.观察下列等式:1﹣12=12,2﹣25=85,3﹣310=2710,4﹣417=6417,…,根据你发现的规律,则第20个等式为_____.15.已知点A (0,0),|AB|=5,点B 和点A 在同一坐标轴上,那么点B 的坐标是________.16.在平面直角坐标系中,111,4P ⎛⎫ ⎪⎝⎭,()22,1P ,393,4P ⎛⎫ ⎪⎝⎭,()44,4P ,5255,4P ⎛⎫ ⎪⎝⎭,…,按照此规律排列下去,点10P 的坐标为________.三、解答题17.计算:(1)33832)已知(x –2)2=16,求x 的值.18.求满足下列各式x 的值(1)2x 2﹣8=0;(2)12(x ﹣1)3=﹣4.19.推理填空:如图,已知∠B =∠CGF ,∠DGF =∠F ;求证:∠B +∠F =180°. 请在括号内填写出证明依据.证明:∵∠B =∠CGF (已知),∴AB ∥CD ( ).∵∠DGF =∠F (已知),∴ //EF ( ).∴AB //EF ( ).∴∠B +∠F =180°( ).20.如图, 在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A 、B 、C 的对应点分别为A B C '''、、.(1)在图中画出平移后的三角形A B C ''';(2)写出点A '的坐标;(3)三角形ABC 的面积为 .21.22的小数部分我们不可能全部写出来,122<212.请解答下列问题: (117的整数部分是________,小数部分是________.(25a 13b ,求5a b +.(3)已知:103x y =+,其中x 是整数,且01y <<,求x y -的相反数.22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm 2,则此正方形的对角线AC 的长为 dm . (2)若一圆的面积与这个正方形的面积都是2πcm 2,设圆的周长为C 圆,正方形的周长为C 正,则C 圆 C 正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm 2,李明同学想沿这块正方形边的方向裁出一块面积为12cm2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.已知,AB∥CD.点M在AB上,点N在CD上.(1)如图1中,∠BME、∠E、∠END的数量关系为:;(不需要证明)如图2中,∠BMF、∠F、∠FND的数量关系为:;(不需要证明)(2)如图3中,NE平分∠FND,MB平分∠FME,且2∠E+∠F=180°,求∠FME的度数;(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,且EQ∥NP,则∠FEQ的大小是否发生变化,若变化,请说明理由,若不变化,求出∠FEQ的度数.【参考答案】一、选择题1.B解析:B【分析】根据平方根的定义,如果一个数的平方等于a,则a±.【详解】解:因为22=4,(-2)2=4,所以4的平方根是2±,故选B.【点睛】本题主要考查平方根的定义,解决本题的关键是要熟练掌握平方根的定义.2.A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A ,故选A .考点:平移的性质.解析:A【详解】试题分析:因为图形平移前后,不改变图形的形状和大小,只是位置发生改变,所以由图1平移可得A ,故选A .考点:平移的性质.3.A【分析】根据各象限内点的坐标特征解答即可.【详解】解:(2,3)A 在第一象限;(2,3)B -在第二象限;(2,3)C --在第三象限;(2,3)D -在第四象限;故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.B【分析】根据平行线的性质和判定,点到直线距离定义一一判断即可.【详解】解:①两条直线被第三条直线所截,同位角相等,错误,缺少平行的条件;②如果两条直线都与第三条直线平行,那么这两条直线也互相平行,正确;③点到直线的垂线段叫做点到直线的距离,错误,应该是垂线段的长度;④过一点有且只有一条直线与已知直线平行,错误,应该是过直线外一点;⑤若两条直线都与第三条直线垂直,则这两条直线互相平行,错误,条件是同一平面内. 故选B .【点睛】本题主要考查命题与定理,解决本题的关键是要熟练掌握平行线的性质和判定,点到直线距离定义.5.C【分析】由三个已知条件可得AB ∥CD ,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC ∥BD ,可知③错误;由2ACD E ∠=∠及CP 平分ACD ∠,可得∠ACP =∠E ,得AC ∥BD ,从而由平行线的性质易得2CAB F ∠=∠,即④正确.【详解】∵AP 平分BAC ∠,CP 平分ACD ∠∴∠ACD =2∠ACP =2∠2,∠CAB =2∠1=2∠CAP∵1290∠+∠=︒∴∠ACD +∠CAB =2(∠1+∠2)=2×90゜=180゜∴//AB CD故①正确∵//AB CD∴∠ABE =∠CDB∵∠CDB +∠CDF =180゜∴180ABE CDF ∠+∠=︒故②正确由已知条件无法推出AC ∥BD故③错误∵2ACD E ∠=∠,∠ACD =2∠ACP =2∠2∴∠ACP =∠E∴AC ∥BD∴∠CAP =∠F∵∠CAB =2∠1=2∠CAP∴2CAB F ∠=∠故④正确故正确的序号为①②④故选:C .【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键.6.C【分析】根据立方根与平方根的定义即可求出答案.【详解】解:0.4,故C 错误, 故选C .【点睛】考查平方根与立方根,解题的关键是正确理解概念,本题属于基础题型.7.D【分析】利用平行线的性质及角平分线的定义求解即可;【详解】解:∵//AB CD ,168∠=︒,∴=1=68EFD ∠∠︒,∵FG 平分EFD ∠, ∴11683422GFD EFD ∠=∠=⨯=, ∵//AB CD ,∴180********BGF GFD ∠=-∠=︒-︒=︒,故选:D .【点睛】本题考查了平行线的性质,角平分线的定义;熟练掌握平行线的性质,并能进行推理计算是解决问题的关键.8.B【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同,∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);解析:B【分析】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,可得到物体甲和物体乙第一次相遇点为(-1,1);第二次相遇点为(-1,-1);第三次相遇点为(2,0);由此得出规律,即可求解.【详解】根据题意得:矩形的边长为4和2,物体乙是物体甲的速度的2倍,时间相同, ∴物体甲与物体乙的路程比为1:2,由题意知:第一次相遇物体甲与物体乙运动的路程和为12112⨯= ,物体甲运动的路程为11243⨯=,物体乙运动的路程为21283⨯= ,此时在BC 边相遇,即第一次相遇点为(-1,1); 第二次相遇物体甲与物体乙运动的路程和为12224⨯= ,物体甲运动的路程为12483⨯=,物体乙运动的路程为224163⨯=,在DE 边相遇,即第二次相遇点为(-1,-1); 第三次相遇物体甲与物体乙运动的路程和为12336⨯= ,物体甲运动的路程为136123⨯=,物体乙运动的路程为236243⨯=,在A 点相遇,即第三次相遇点为(2,0); 此时甲乙回到原出发点,则每相遇三次,两点回到出发点,∵202136732 , 故两个物体运动后的第2021次相遇地点的是:第二次相遇地点,即点(-1,-1)故选:B【点睛】本题主要考查了点的变化规律,以及行程问题中的相遇问题,通过计算发现规律就可以解决问题,解题的关键是找出规律每相遇三次,甲乙两物体同时回到原点.二、填空题9.9;【分析】根据算术平方根的定义计算可得.【详解】∵(−9)2=81,∴(−9)2的算术平方根是9,故答案为:9【点睛】本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义.解析:9;【分析】根据算术平方根的定义计算可得.【详解】∵(−9)2=81,∴(−9)2的算术平方根是9,故答案为:9【点睛】本题主要考查算术平方根,解题的关键是熟练掌握算术平方根的定义.10.21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05.故答案为21:05【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.11.140°.【分析】△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【详解析:140°.【分析】△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【详解】△ABC中,∠ABC+∠ACB=180°−∠A=180°−100°=80°,∵BO、CO是∠ABC,∠ACB的两条角平分线.∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°.故填:140°.【点睛】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.12.55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠解析:55°【分析】先由矩形的对边平行及平行线的性质知∠B′FC=∠2=70°,再根据折叠的性质可得答案.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠B′FC=∠2=70°,∴∠1+∠B′FE=180°-∠B′FC=110°,由折叠知∠1=∠B′FE ,∴∠1=∠B′FE=55°,故答案为:55°.【点睛】本题主要考查折叠的性质和平行线的性质,解题的关键是掌握矩形的对边平行、两直线平行同位角相等性质.13.32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到,,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴∥∴∵∥解析:32°【分析】连接EQ ,根据A 、E 、Q 、H 在同一直线上得到EQ GD ''∥,=QEG EGB ∠∠,根据EG QD ''∥得到=QD G EGB ''∠∠,从而求得=QEG QD G ''∠∠,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ ,∵A 、E 、Q 、H 在同一直线上∴EQ ∥GD ''∴=QEG EGB ∠∠∵EG ∥QD ''=QD G EGB ''∠∠∴=QEG QD G ''∠∠∵226∠=︒,QD C ''''∠=90°∴=QEG QD G ''∠∠=180°-90°-26°=64°由折叠的性质可知:1=QEO ∠∠ ∴1=2QEG ∠1∠=32° 故答案为:32°.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.14.20﹣.【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为等式右边的解析:20﹣208000=401401. 【分析】观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.【详解】观察已知等式,等式左边的第一个数的规律为1,2,3,,第二个数的规律为:分子为1,2,3,,分母为222112,215,3110,+=+=+=等式右边的规律为:分子为3331,2,3,,分母为222112,215,3110,+=+=+= 归纳类推得:第n 个等式为32211n n n n n -=++(n 为正整数) 当20n =时,这个等式为322202020201201-=++,即20800020401401-= 故答案为:20800020401401-=. 【点睛】 本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键. 15.(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A (0,0)及点B 和点A 在同一坐标轴上可知点B 在x 轴上或在y 轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解解析:(5,0)或(﹣5,0)或(0,5)或(0,﹣5)【分析】根据点A (0,0)及点B 和点A 在同一坐标轴上可知点B 在x 轴上或在y 轴上,再根据坐标轴上到一点距离相等的点有两个,可得答案.【详解】解:∵点A (0,0),点B 和点A 在同一坐标轴上,∴点B 在x 轴上或在y 轴上,∵|AB|=5,∴当点B 在x 轴上时,点B 的坐标为(5,0)或(﹣5,0),当点B 在y 轴上时,点B 的坐标为(0,5)或(0,﹣5);故答案为:(5,0)或(﹣5,0)或(0,5)或(0,﹣5).【点睛】本题考查了点的坐标,解决本题的关键是要注意坐标轴上到一点距离相等的点有两个,以防遗漏.16.【分析】观察前面几个点的坐标得到的横坐标为,纵坐标为,即可求解.【详解】解:观察前面几个点的坐标得到的横坐标为,纵坐标为,将代入得∴故答案为:【点睛】此题考查了平面直角坐标系中点坐解析:()10,25【分析】观察前面几个点的坐标得到n P 的横坐标为n ,纵坐标为24n ,即可求解. 【详解】解:观察前面几个点的坐标得到n P 的横坐标为n ,纵坐标为24n , 将10n =代入得2254n = ∴10(10,25)P故答案为:()10,25【点睛】此题考查了平面直角坐标系中点坐标规律的探索,根据已知点找到规律是解题的关键.三、解答题17.(1)原式=;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式;(2)【点睛】本题考查平解析:(1)原式=4;(2)x=-2或x=6.【分析】(1)根据绝对值、立方根和二次根式的性质计算即可;(2)利用平方根的性质解方程即可.【详解】解:(1)原式224=+=+(2)()2216x -=,24x -=±,1262x x ==-,, 【点睛】本题考查平方根、立方根和二次根式的性质,熟练掌握运算法则是解题关键.18.(1)或者;(2)【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x2﹣8=0,,,解得或者;(2)(x ﹣1)3=﹣4,,,解得.【解析:(1)2x =或者2x =-;(2)1x =-【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x 2﹣8=0,228x =,24x =,解得2x =或者2x =-;(2)12(x ﹣1)3=﹣4,3(1)8x -=-, 12x -=-,解得1x =-.【点睛】本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键. 19.同位角相等,两直线平行;CD ;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【分析】根据平行线的判定得出AB ∥CD ,CD ∥EF ,求出AB ∥EF解析:同位角相等,两直线平行;CD ;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补【分析】根据平行线的判定得出AB ∥CD ,CD ∥EF ,求出AB ∥EF ,根据平行线的性质得出即可.【详解】证明:∵∠B =∠CGF (已知),∴AB ∥CD (同位角相等,两直线平行),∵∠DGF =∠F (已知 ),∴CD ∥EF (内错角相等,两直线平行),∴AB ∥EF ( 两条直线都与第三条直线平行,这两条直线也互相平行 ),∴∠B +∠F =180°(两直线平行,同旁内角互补),故答案为:同位角相等,两直线平行;CD ;内错角相等,两直线平行;两条直线都与第三条直线平行,这两条直线也互相平行;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键. 20.(1)见解析;(2);(3)【分析】(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形; (2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面 解析:(1)见解析;(2)()3,1-;(3)7【分析】(1)根据平移规律确定A ',B ',C '的坐标,再连线即为平移后的三角形A B C '''; (2)根据平移规律写出A '的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可.【详解】(1)如图所示,三角形A B C '''即为所求;(2)若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A '的坐标为(-3,1);(3)三角形ABC 的面积为:4×5-12×2×4-12×1×3-12×3×5=7.【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 21.(1)4, −4;(2)1;(3)−12+;【解析】【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、 的范围,求出a 、b 的值,再代入求解即可;(3)先估算出的范围,求出x 、y 的解析:(1)174;(2)1;(3)−3【解析】【分析】(1的范围,即可得出答案;(2的范围,求出a、b的值,再代入求解即可;(3x、y的值,再代入求解即可.【详解】(1)∵,∴4,小数部分是4,故答案为:−4;(2)∵,∴2,∵,∴b=3,∴;(3)∵1<3<4,∴,∴,∵,其中x是整数,且0<y<1,∴1,∴∴x−y的相反数是−【点睛】此题考查估算无理数的大小,解题关键在于掌握估算方法.22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法;(3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB2=1,则AB=1,由勾股定理,AC;(2)由圆面积公式,可得圆半径为2,周长为22π,正方形周长为42π. 22===12424C C ππππ<圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm 和2xcm∴长方形面积为:2x •3x =12解得x =2∴长方形长边为32>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.23.(1)∠BME =∠MEN ﹣∠END ;∠BMF =∠MFN +∠FND ;(2)120°;(3)不变,30°【分析】(1)过E 作EH ∥AB ,易得EH ∥AB ∥CD ,根据平行线的性质可求解;过F 作FH ∥AB解析:(1)∠BME =∠MEN ﹣∠END ;∠BMF =∠MFN +∠FND ;(2)120°;(3)不变,30°【分析】(1)过E 作EH ∥AB ,易得EH ∥AB ∥CD ,根据平行线的性质可求解;过F 作FH ∥AB ,易得FH ∥AB ∥CD ,根据平行线的性质可求解;(2)根据(1)的结论及角平分线的定义可得2(∠BME +∠END )+∠BMF -∠FND =180°,可求解∠BMF =60°,进而可求解;(3)根据平行线的性质及角平分线的定义可推知∠FEQ =12∠BME ,进而可求解.【详解】解:(1)过E 作EH ∥AB ,如图1,∴∠BME =∠MEH ,∵AB ∥CD ,∴HE ∥CD ,∴∠END =∠HEN ,∴∠MEN =∠MEH +∠HEN =∠BME +∠END ,即∠BME=∠MEN﹣∠END.如图2,过F作FH∥AB,∴∠BMF=∠MFK,∵AB∥CD,∴FH∥CD,∴∠FND=∠KFN,∴∠MFN=∠MFK﹣∠KFN=∠BMF﹣∠FND,即:∠BMF=∠MFN+∠FND.故答案为∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.(2)由(1)得∠BME=∠MEN﹣∠END;∠BMF=∠MFN+∠FND.∵NE平分∠FND,MB平分∠FME,∴∠FME=∠BME+∠BMF,∠FND=∠FNE+∠END,∵2∠MEN+∠MFN=180°,∴2(∠BME+∠END)+∠BMF﹣∠FND=180°,∴2∠BME+2∠END+∠BMF﹣∠FND=180°,即2∠BMF+∠FND+∠BMF﹣∠FND=180°,解得∠BMF=60°,∴∠FME=2∠BMF=120°;(3)∠FEQ的大小没发生变化,∠FEQ=30°.由(1)知:∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=12∠MEN=12(∠BME+∠END),∠ENP=12∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=12(∠BME+∠END)﹣12∠END=12∠BME,∵∠BME=60°,∴∠FEQ=12×60°=30°.【点睛】本题主要考查平行线的性质及角平分线的定义,作平行线的辅助线是解题的关键.。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.14的算术平方根为()A .116 B .12±C .12D .12-2.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D3.坐标平面内的下列各点中,在y 轴上的是( )A .()0,3B .()2,3--C .1,2 D .3,04.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②一个三角形被截成两个三角形,每个三角形的内角和是90度; ③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个5.如图,AB ∥CD ,∠1=∠2,∠3=130°,则∠2等于( )A .30°B .25°C .35°D .40° 6.下列计算正确的是( )A 93=±B 311-=-C .||0a a -=D .43a a -=7.在同一平面内,若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠A 的度数为( ) A .20°B .55°C .20°或125°D .20°或55°8.如图所示,平面直角坐标系中,x 轴负半轴有一点()1,0A -,点A 先向上平移1个单位至()11,1A -,接着又向右平移1个单位至点()20,1A ,然后再向上平移1个单位至点()30,2A ,向右平移1个单位至点()41,2A ,照此规律平移下去,点A 平移至点2021A 时,点2021A 的坐标为( )A .()1008,1010B .()1010,1010C .()1009,1011D .()1008,1011二、填空题9.已知非零实数a.b 满足|2a-4|+|b+2|+()23a b -+4=2a ,则2a+b=_______.10.平面直角坐标系中,点(3,1)--关于y 轴的对称点的坐标为________.11.在△ABC 中,AD 为高线,AE 为角平分线,当∠B=40º,∠ACD=60º,∠EAD 的度数为_________.12.如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.13.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.14.当1x ≠-时,我们把11x -+称为x 为“和1负倒数”.如:1的“和1负倒数”为11112-=-+;-3的“和1负倒数”为11312-=-+.若134x =-,2x 是1x 的“和1负倒数”,3x 是2x 的“和1负倒数”…依次类推,则4x =______;123•••x x x …•2021x = _____.15.在平面直角坐标系中,点P 的坐标为()22,1a ---,则点P 在第________象限.16.如图,弹性小球从点P (0,1)出发,沿所示方向运动,每当小球碰到正方形OABC 的边时反弹,反弹的反射角等于入射角(反射前后的线与边的夹角相等),当小球第1次碰到正方形的边时的点为P 1(2,0),第2次碰到正方形的边时的点为P 2,…,第n 次碰到正方形的边时的点为P n ,则点P 2021的坐标为______.三、解答题17.计算下列各式的值: (1)23(7)-- (2)313(3)83+-18.求下列各式中x 的值: (1)23126x -= (2)()3180x --=19.如图//EF AD ,12∠=∠,110AGD ∠=︒,求BAC ∠度数.完成说理过程并注明理由. 解:∵//EF AD , ∴2∠=________( ) 又∵12∠=∠, ∴13∠=∠,∴//AB __________( ) ∴______180AGD ∠+=︒( ) ∵110AGD ∠=︒, ∴BAC ∠=______度.20.以学校为坐标原点建立平面直角坐标系,图中标明了这所学校附近的一些地方, (1)公交车站的坐标是 ,宠物店的坐标是 ; (2)在图中标出公园()300,200-,书店()100,100的位置; (3)将医院的位置怎样平移得到人寿保险公司的位置.21.对于实数a ,我们规定:用符号[]表示不大于的最大整数,称[]为a 的根整数,例如:[]=3,[]=3.(1)仿照以上方法计算:[]= ;[]= .(2)若[]=1,写出满足题意的x 的整数值 .(3)如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[]=3→[]=1,这时候结果为1.对145连续求根整数, 次之后结果为1.22.如图,用两个边长为103的小正方形拼成一个大的正方形. (1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm 2?23.综合与探究 (问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,//EF MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出PAF ∠、PBN ∠和APB ∠之间的数量关系;(问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线//m n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动,①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设ADP α∠=∠,BCP β∠=∠.则CPD ∠,α∠,β∠之间有何数量关系?请说明理由.②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出CPD ∠,α∠,β∠之间的数量关系.【参考答案】一、选择题 1.C 解析:C 【分析】根据算术平方根的定义求解. 【详解】解:因为21124⎛⎫= ⎪⎝⎭,所以14的算术平方根为12.故选C. 【点睛】本题主要考查算术平方根的定义,解决本题的关键是要熟练掌握算术平方根的定义.2.B 【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案. 【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C选项中,三角形和四边形位置不对,故C错误故选:B【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离.3.A【分析】根据y轴上点的横坐标为0,即可判断.【详解】解:∵y轴上点的横坐标为0,∴点()0,3符合题意.故选:A.【点睛】本题主要考查了点的坐标的特征,解题的关键是熟练掌握y轴上点的横坐标为0.4.B【分析】依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可.【详解】解:①如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;②一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;③在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;④两个无理数的和不一定是无理数,是假命题;⑤坐标平面内的点与有序数对是一一对应的,是真命题;其中真命题是①③⑤,个数是3.故选:B.【点睛】本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键.5.B【分析】根据AB∥CD,∠3=130°,求得∠GAB=∠3=130°,利用平行线的性质求得∠BAE=180°﹣∠GAB=180°﹣130°=50°,由∠1=∠2 求出答案即可.【详解】解:∵AB∥CD,∠3=130°,∴∠GAB=∠3=130°,∵∠BAE+∠GAB=180°,∴∠BAE=180°﹣∠GAB=180°﹣130°=50°,∵∠1=∠2,∴∠2=12∠BAE=12×50°=25°.故选:B.【点睛】此题考查平行线的性质:两直线平行同位角相等,两直线平行同旁内角互补,熟记性质定理是解题的关键.6.B【分析】直接利用算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项法则分别化简得出答案.【详解】A3,故此选项错误;B1-,故此选项正确;C、|a|﹣a=0(a≥0),故此选项错误;D、4a﹣a=3a,故此选项错误;故选:B.【点睛】此题主要考查了算术平方根的定义、立方根的定义以及绝对值的性质、合并同类项,正确掌握相关运算法则是解题关键.7.C【分析】根据∠A与∠B的两边分别平行,可得两个角大小相等或互补,因此分两种情况,分别求∠A得度数.【详解】解:∵两个角的两边分别平行,∴这两个角大小相等或互补,①这两个角大小相等,如下图所示:由题意得,∠A =∠B ,∠A =3∠B -40°, ∴∠A =∠B =20°,②这两个角互补,如下图所示:由题意得,180A B ∠+∠=︒,340A B ∠=∠-︒, ∴55B ∠=︒,125A ∠=︒,综上所述,∠A 的度数为20°或125°, 故选:C . 【点睛】本题考查了平行线的性质,解题的关键是根据平行线的性质找出图中角度之间的关系.8.C 【分析】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2,4),得出规律,利用规律解决问题即可. 【详解】由题意,A1(-1,1),A3(0,2),A5(1,3),A7(2解析:C 【分析】由题意,A 1(-1,1),A 3(0,2),A 5(1,3),A 7(2,4),得出规律,利用规律解决问题即可. 【详解】由题意,A 1(-1,1),A 3(0,2),A 5(1,3),A 7(2,4),……,A 2n -1(-2+n ,n ), ∵2021101121=⨯- , ∴A 2021(1009,1011), 故选:C . 【点睛】本题考查坐标与图形变化一平移,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:解析:4【分析】首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.【详解】解:由题意可得a≥3,∴2a-4>0,已知等式整理得:,∴a=3,b=-2,∴2a+b=2×3-2=4.故答案为4.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键.10.(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴解析:(3,-1)【分析】让纵坐标不变,横坐标互为相反数可得所求点的坐标.【详解】解:∵-3的相反数为3,∴所求点的横坐标为3,纵坐标为-1,故答案为(3,-1).【点睛】本题考查关于y轴对称的点特点;用到的知识点为:两点关于y轴对称,横坐标互为相反数,纵坐标不变.11.10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即解析:10°或40°;【分析】首先根据三角形的内角和定理求得∠BAC,再根据角平分线的定义求得∠BAE,再根据三角形的一个外角等于和它不相邻的两个内角和求得∠AED,最后根据直角三角形的两个锐角互余即可求解.【详解】解:当高AD在△ABC的内部时.∵∠B=40°,∠C=60°,∴∠BAC=180°-40°-60°=80°,∵AE平分∠BAC,∴∠BAE=1∠BAC=40°,2∵AD⊥BC,∴∠BDA=90°,∴∠BAD=90°-∠B=50°,∴∠EAD=∠BAD-∠BAE=50°-40°=10°.当高AD在△ABC的外部时.同法可得∠EAD=10°+30°=40°故答案为10°或40°.【点睛】此题考查三角形内角和定理,角平分线的定义,三角形的外角性质,解题关键在于求出∠BAE 的度数12.40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.【详解】解:如图:过作平行于,,,,,即,.故答案为:40.【解析:40【分析】过F 作FG 平行于AB ,由AB 与CD 平行,得到FG 与CD 平行,利用两直线平行同位角相等,同旁内角互补,得到1100EFG ∠=∠=︒,2180GFC ∠+∠=︒,即可确定出3∠的度数.【详解】解:如图:过F 作FG 平行于AB ,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.14.【分析】根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和可得:,,,……由此可得出从开 解析:34-【分析】根据“和1负倒数”的定义分别计算2x 、3x 、4x 、5x …,可得到数字的变化规律:从1x 开始每3个数为一周期循环,由此即可解答.【详解】解:由“和1负倒数”定义和134x =-可得:214314x =-=--+, 311413x =-=-+, 4131413x =-=-+,514314x =-=--+ ……由此可得出从1x 开始每3个数为一周期循环,∵2021÷3=673…2,∴20214x =-,202034x =-,又1x ·2x .3x = 31(4)43-⨯-⨯=1, ∴123•••x x x …•2021x =3(4)4-⨯-=3, 故答案为:34-;3. 【点睛】本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键.15.三【分析】先判断出点P 的纵坐标的符号,再根据各象限内点的符号特征判断点P 所在象限即可.【详解】解:∵a2为非负数,∴-a2-1为负数,∴点P 的符号为(-,-)∴点P 在第三象限.故答案解析:三【分析】先判断出点P 的纵坐标的符号,再根据各象限内点的符号特征判断点P 所在象限即可.【详解】解:∵a 2为非负数,∴-a 2-1为负数,∴点P 的符号为(-,-)∴点P在第三象限.故答案为:三.【点睛】本题考查了点的坐标.解题的关键是掌握象限内的点的符号特点,注意a2加任意一个正数,结果恒为正数.牢记点在各象限内坐标的符号特征是正确解答此类题目的关键.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.(4,3)【分析】按照反弹规律依次画图即可.【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点解析:(4,3)【分析】按照反弹规律依次画图即可.【详解】解:如图:根据反射角等于入射角画图,可知小球从P2反射后到P3(0,3),再反射到P4(2,4),再反射到P5(4,3),再反射到P点(0,1)之后,再循环反射,每6次一循环,2021÷6=336…5,即点P2021的坐标是(4,3).故答案为:(4,3).【点睛】本题考查了生活中的轴对称现象,点的坐标.解题的关键是能够正确找到循环数值,从而得到规律.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4-;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵∴∴∴;(2)解:∵∴∴∴.解析:(1)3x =±;(2)3x =【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵23126x -=∴2327x =∴29x =∴3x =±;(2)解:∵()3180x --=∴()318x -= ∴12x -=∴3x =.【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.19.∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等解析:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70【分析】根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB ∥DG ,然后根据两直线平行,同旁内角互补解答即可.【详解】解:∵EF ∥AD ,∴∠2=∠3(两直线平行,同位角相等).又∵∠1=∠2,∴∠1=∠3,∴AB ∥DG (内错角相等,两直线平行).∴∠AGD +∠BAC =180°(两直线平行,同旁内角互补).∵∠AGD =110°,∴∠BAC =70度.故答案为:∠3;两直线平行,同位角相等;DG ;内错角相等,两直线平行;∠BAC ;两直线平行,同旁内角互补;70.【点睛】本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB ∥DG 是解题的关键.20.(1),;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离 轴2个单位,距离 轴3个单位,即解析:(1)()100,0-,()300,200-;(2)见解析;(3)向右5个单位,再向上5个单位【分析】(1)观察平面直角坐标系得:公交车站在x 轴负半轴距离坐标原点1个单位;宠物店在第四象限内,距离x 轴2个单位,距离y 轴3个单位,即可求解;(2)公园在第二象限内,距离x 轴2个单位,距离y 轴3个单位;书店在第一象限内,距离x 轴1个单位,距离y 轴1个单位;即可解答;(3)将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置,即可.【详解】解:(1)观察平面直角坐标系得:公交车站在x 轴负半轴距离坐标原点1个单位,故公交车站的坐标是()100,0-;宠物店在第四象限内,距离x 轴2个单位,距离y 轴3个单位,故宠物店的坐标是()300,200-;(2)∵公园()300,200-,书店()100,100∴公园在第二象限内,距离x 轴2个单位,距离y 轴3个单位;书店在第一象限内,距离x 轴1个单位,距离y 轴1个单位;位置如图所示:(3))将医院的位置向右5个单位,再向上5个单位得到人寿保险公司的位置.【点睛】本题主要考查了平面直角坐标系,用坐标来表示点的位置,根据位置写出点的坐标,熟练掌握平面直角坐标系内每个象限内点的坐标的特征是解题的关键.21.(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值.【详解】解:(1)仿照以上方法计算:[16]=4;[24]=4;(2)若[x]=1,写出满足题意的解析:(1)4;4;(2)1,2,3;(3)3【解析】【分析】根据题中的新定义计算即可求出值.【详解】解:(1)仿照以上方法计算:;(2)若[]=1,写出满足题意的x的整数值1,2,3;(3)对145连续求根整数,第1次之后结果为12,第2次之后结果为3,第3次之后结果为1.故答案为:(1)4;4;(2)1,2,3;(3)3【点睛】考查了估算无理数的大小,以及实数的运算,弄清题中的新定义是解本题的关键.22.(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是1062)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是106(2)设长方形纸片的长为3xcm,宽为2xcm,则3x•2x=480,解得:80因为380106>,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为2:3,且面积为480cm 2.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.23.(1);(2)①,理由见解析;②图见解析,或【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过作交于,由平行线的性质,得到,,即可得到答案;②根据题意,可对点P 进行分类讨论解析:(1)360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠,理由见解析;②图见解析,CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PQ ∥EF ,由平行线的性质,即可得到答案;(2)①过P 作//PE AD 交CD 于E ,由平行线的性质,得到DPE α∠=∠,CPE β∠=∠,即可得到答案;②根据题意,可对点P 进行分类讨论:当点P 在BA 延长线时;当P 在BO 之间时;与①同理,利用平行线的性质,即可求出答案.【详解】解:(1)作PQ ∥EF ,如图:∵//EF MN ,∴////EF MN PQ ,∴180PAF APQ ∠+∠=°,180PBN BPQ ∠+∠=°,∵APB APQ BPQ ∠=∠+∠∴360PAF PBN APB ∠+∠+∠=°;(2)①CPD αβ∠=∠+∠;理由如下:如图,过P 作//PE AD 交CD 于E ,∵//AD BC ,∴////AD PE BC ,∴DPE α∠=∠,CPE β∠=∠,∴CPD DPE CPE αβ∠=∠+∠=∠+∠;②当点P 在BA 延长线时,如备用图1:∵PE ∥AD ∥BC ,∴∠EPC=β,∠EPD =α,∴CPD βα∠=∠-∠;当P 在BO 之间时,如备用图2:∵PE ∥AD ∥BC ,∴∠EPD =α,∠CPE =β,∴CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质,解题的关键是熟练掌握两直线平行同旁内角互补,两直线平行内错角相等,从而得到角的关系.。
(完整版)七年级数学下册期中试卷及答案 - 百度文库
(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.9的算术平方根是()A .3±B .9±C .3D .-32.下列图案可以由部分图案平移得到的是( )A .B .C .D . 3.在平面直角坐标系中,点(﹣1,m 2+1)一定在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题:①过直线外一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③图形平移的方向一定是水平的;④内错角相等.其中真命题为( )A .①②B .①④C .①②③D .①②④ 5.如图,直线////AB CD EF ,点O 在直线AB 上,下列结论正确的是( )A .12390∠+∠-∠=︒B .12390∠+∠+∠=︒C .321180∠+∠-∠=︒D .132180∠+∠-∠=︒ 6.下列说法中,正确的是( )A .(﹣2)3的立方根是﹣2B .0.4的算术平方根是0.2C .64的立方根是4D .16的平方根是4 7.如图,//AB CD ,EF 分别交AB ,CD 于点G ,H ,若139∠=︒,则2∠的度数为( )A .51︒B .39︒C .129︒D .78︒8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为()()()1,0,2,0,2,1,()()()1,1,1,2,2,2……根据这个规律,第2021个点的坐标为( )A .()45,4B .()45,5C .()44,4D .()44,5二、填空题9.已知223130x x y -+--=,则x +y=___________10.已知点()12P m -,与点()1,2Q 关于y 轴对称,那么m =________. 11.如图//AB CD ,分别作AEF ∠和CFE ∠的角平分线交于点1P ,称为第一次操作,则1P ∠=_______;接着作1AEP ∠和1CFP ∠的角平分线交于2P ,称为第二次操作,继续作2AEP ∠和2CFP ∠的角平分线交于2P ,称方第三次操作,如此一直操作下去,则n P ∠=______.12.将一副直角三角板如图放置(其中60A ∠=︒,45F ∠=︒),点E 在AC 上,//ED BC ,则AEF ∠的度数是______.13.在“妙折生平——折纸与平行”的拓展课上,小潘老师布置了一个任务:如图,有一张三角形纸片ABC ,30B ∠=︒,50C ∠=︒,点D 是AB 边上的固定点(12BD AB <),请在BC 上找一点E ,将纸片沿DE 折叠(DE 为折痕),点B 落在点F 处,使EF 与三角形ABC 的一边平行,则BDE ∠为________度.14.已知有理数1a ≠,我们把11a -称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是()11112=--,如果13a =-,2a 是1a 的差倒数,4a 是3a 的差倒数,4a 是5a 的差倒数…依此类推,那么的12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-值是______.15.已知ABC ∆的面积为16,其中两个顶点的坐标分别是()()7,0,1,0A B -,顶点C 在y 轴上,那么点C 的坐标为 ____________16.如图,在直角坐标系中,A (1,3),B (2,0),第一次将△AOB 变换成△OA 1B 1,A 1(2,3),B 1(4,0);第二次将△OA 1B 1变换成△OA 2B 2,A 2(4,3),B 2(8,0),第三次将△OA 2B 2变换成△OA 3B 3,……,则B 2021的横坐标为______.三、解答题17.计算:(1)|﹣2|+(﹣3)2﹣4;(2)23252+-;(3)220183|3|27(4)(1)-+---+-.18.求下列各式中x 的值(1)2280x -=(2)()352125x -=-19.如图,三角形ABC 中,点D ,E 分别是BC ,AC 上的点,且//DE AB ,12∠=∠.(1)求证://EF BC ;(完成以下填空)证明://DE AB (已知)2B ∴∠=∠(______________),又12∠=∠(已知)1B ∠=∠∴(等量代换),//EF BC ∴(_______________).(2)DEF ∠与ACB ∠的平分线交于点G ,CG 交DE 于点H ,①若40DEF ∠=︒,60ACB ∠=︒,则G ∠=_______︒;②已知FEG DCG α∠+∠=,求DEC ∠.(用含α的式子表示)20.在平面坐标系中描出下列各点且标该点字母:(1)点A (32)--,,B (21)--,,C (10)-,,D (12),; (2)点E 在x 轴上,位于原点右侧,距离原点2个单位长度;(3)点F 在x 轴下方,y 轴左侧,距离每条坐标轴都是3个单位长度.21.阅读理解. ∵4<5<9,即2<5<3. ∴1<5﹣1<2∴5﹣1的整数部分为1, ∴5﹣1的小数部分为5﹣2. 解决问题:已知a 是17﹣3的整数部分,b 是17﹣3的小数部分.(1)求a ,b 的值;(2)求(﹣a )3+(b +4)2的平方根,提示:(17)2=17.22.如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米,求正方形纸板的边长.23.如图,已知直线//AB 射线CD ,100CEB ∠=︒.P 是射线EB 上一动点,过点P 作PQ //EC 交射线CD 于点Q ,连接CP .作PCF PCQ ∠=∠,交直线AB 于点F ,CG 平分ECF ∠.∠的度数;(1)若点P,F,G都在点E的右侧,求PCG∠的度数;(2)若点P,F,G都在点E的右侧,30∠-∠=︒,求CPQEGC ECG(3)在点P的运动过程中,是否存在这样的情形,使:4:3∠∠=?若存在,求出EGC EFC∠的度数;若不存在,请说明理由.CPQ【参考答案】一、选择题1.C解析:C【分析】根据一个非负数的正的平方根,即为这个数的算术平方根解答即可.【详解】解:9的算术平方根是3,故选C.【点睛】本题考查的是算术平方根的性质,掌握一个非负数的正的平方根,即为这个数的算术平方根是解题的关键.2.C【分析】根据平移的定义,逐一判断即可.【详解】解:、是旋转变换,不是平移,选项错误,不符合题意;、轴对称变换,不是平移,选项错误,不符合题意;、是平移,选项正确,符合题意;、图形的大解析:C【分析】根据平移的定义,逐一判断即可.【详解】解:A、是旋转变换,不是平移,选项错误,不符合题意;B、轴对称变换,不是平移,选项错误,不符合题意;C、是平移,选项正确,符合题意;D、图形的大小发生了变化,不是平移,选项错误,不符合题意.故选:C.【点睛】本题考查平移变换,解题的关键是判断图形是否由平移得到,要把握两个“不变”,图形的形状和大小不变;一个“变”,位置改变.3.B【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限.【详解】解:因为点(﹣1,m2+1),横坐标﹣1<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选:B.【点睛】本题主要考查平面直角坐标系里象限的坐标,熟练掌握每个象限的坐标符号特点是解题的关键.4.A【分析】根据两直线的位置关系即可判断.【详解】①过直线外一点有且只有一条直线与已知直线平行,正确;②在同一平面内,过一点有且只有一条直线与已知直线垂直,正确;③图形平移的方向不一定是水平的,故错误;④两直线平行,内错角才相等,故错误.故①②正确,故选A.【点睛】此题主要考查两直线的位置关系,解题的关键是熟知两直线的位置关系.5.D【分析】根据两直线平行,同旁内角互补可得∠1+∠AOF=180°,再根据两直线平行,内错角相等可得∠3=∠AOC,而通过∠AOF=∠AOC-∠2,整理可得∠1+∠3-∠2=180°.【详解】解:∵AB∥EF,∴∠1+∠AOF=180°,∵CD∥AB,∴∠3=∠AOC,又∵∠AOF=∠AOC−∠2=∠3-∠2,∴∠1+∠3-∠2=180°.故选:D.【点睛】本题主要考查平行线的性质,从复杂图形中找出内错角,同旁内角是解题的关键.6.A【分析】根据立方根的定义及平方根的定义依次判断即可得到答案.【详解】解:A .(﹣2)3的立方根是﹣2,故本选项符合题意;B .0.04的算术平方根是0.2,故本选项不符合题意;C2,故本选项不符合题意;D .16的平方根是±4,故本选项不符合题意;故选:A .【点睛】此题考查立方根的定义及平方根的定义,熟记定义是解题的关键.7.B【分析】根据平行线的性质和对顶角相等即可得∠2的度数.【详解】解:∵//AB CD ,∴∠2=∠FHD ,∵∠FHD =∠1=39°,∴∠2=39°.故选:B .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律,通过计算即可得到答案.【详解】解:根据题意,第个点的坐标为:解析:A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第1个点的坐标为:()1,0,第9个点的坐标为()3,0,第25个点的坐标为:()5,0, 再总结规律,通过计算即可得到答案.【详解】解:根据题意,第1个点的坐标为:()1,0,第9个点的坐标为()3,0,第25个点的坐标为:()5,0,······所以第()221n -个点的坐标为:()21,0n -,∵2452025=,∴第2025个数为:()45,045,4∴第2021个数为第2025个数向上推4个数,即()故选:A.【点睛】本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解.二、填空题9.-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+解析:-1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】解:由题意得,x-2=0,x2-3y-13=0,解得x=2,y=-3,所以,x+y=2+(-3)=-1.故答案为:-1.【点睛】本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.0;【分析】平面直角坐标系中任意一点,关于轴的对称点的坐标是,依此列出关于的方程求解即可.【详解】解:根据对称的性质,得,解得.故答案为:0.【点睛】考查了关于轴、轴对称的点的坐标,解析:0;【分析】平面直角坐标系中任意一点(,)P x y ,关于y 轴的对称点的坐标是(,)x y -,依此列出关于m 的方程求解即可.【详解】解:根据对称的性质,得11m -=-,解得0m =.故答案为:0.【点睛】考查了关于x 轴、y 轴对称的点的坐标,这一类题目是需要识记的基础题,解决的关键是对知识点的正确记忆.11.90°【分析】过P1作P1Q ∥AB ,则P1Q ∥CD ,根据平行线的性质得到∠AEF+∠CFE=180°,∠AEP1=∠EP1Q ,∠CFP1=∠FP1Q ,结合角平分线的定义可计算∠E 解析:90°902n︒ 【分析】过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,根据平行线的性质得到∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,结合角平分线的定义可计算∠EP 1F ,再同理求出∠P 2,∠P 3,总结规律可得n P ∠.【详解】解:过P 1作P 1Q ∥AB ,则P 1Q ∥CD ,∵AB ∥CD ,∴∠AEF +∠CFE =180°,∠AEP 1=∠EP 1Q ,∠CFP 1=∠FP 1Q ,∵AEF ∠和CFE ∠的角平分线交于点1P ,∴∠EP 1F =∠EP 1Q +∠FP 1Q =∠AEP 1+∠CFP 1=12(∠AEF +∠CFE )=90°;同理可得:∠P 2=14(∠AEF +∠CFE )=45°, ∠P 3=18(∠AEF +∠CFE )=22.5°, ..., ∴902n nP ︒∠=, 故答案为:90°,902n ︒.【点睛】本题主要考查了平行线的性质,角平分线的定义,规律性问题,解决问题的关键是作辅助线构造内错角,依据两直线平行,内错角相等进行计算求解.12.【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED∥BC,解析:165【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED∥BC,∴∠DEC=∠ACB=30°∴∠CEF=∠DEF-∠DEC =45°-30°=15°,∴∠AEF=180°-∠CEF=165°故答案为:165°.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质. 13.35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折解析:35°或75°或125°【分析】由于EF不与BC平行,则分EF∥AB和EF∥AC,画出图形,结合折叠和平行线的性质求出∠BDE的度数.【详解】解:当EF∥AB时,∠BDE=∠DEF,由折叠可知:∠DEF=∠DEB,∴∠BDE=∠DEB,又∠B=30°,∴∠BDE=1(180°-30°)=75°;2当EF∥AC时,如图,∠C=∠BEF=50°,由折叠可知:∠BED=∠FED=25°,∴∠BDE=180°-∠B=∠BED=125°;如图,EF∥AC,则∠C=∠CEF=50°,由折叠可知:∠BED=∠FED,又∠BED+∠CED=180°,则∠CED+50°=180°-∠CED,解得:∠CED=65°,∴∠BDE=∠CED-∠B=65°-30°=35°;综上:∠BDE的度数为35°或75°或125°.【点睛】本题考查了平行线的性质,三角形内角和,折叠问题,解题的关键是注意分类讨论,画图图形推理求解.14..【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵,∴,,,,……∴,每三个数一个循环,∵,∴,则+--3 -3-++ 解析:1312. 【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值.【详解】∵13a =-,∴()211134a ==--,3441131a ,443131a ,()511134a ==--, ……∴1a ,2n a a ⋅⋅⋅每三个数一个循环,∵202036731÷=⋅⋅⋅,∴202013a a ==-,则12342017201820192020a a a a a a a a -+-⋅⋅⋅+-+-143343=--+++14-43-3 -3-14+43+3 =-3-14+43+3 1312=. 故答案为:1312. 【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值.15.或【分析】已知,可知AB=8,已知的面积为,即可求出OC 长,得到C 点坐标.【详解】∵∴AB=8∵的面积为∴=16∴OC=4∴点的坐标为(0,4)或(0,-4)故答案为:(0,4)解析:(0,4)或(0,4) -【分析】已知()()7,0,1,0A B -,可知AB=8,已知ABC ∆的面积为16,即可求出OC 长,得到C 点坐标.【详解】∵()()7,0,1,0A B -∴AB=8∵ABC ∆的面积为16 ∴12AB OC ⨯⨯=16 ∴OC=4∴点C 的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了直角坐标系中坐标的性质,已知两点坐标可得出两点间距离长度,如果此两点在坐标轴上,求解距离很简单,如果不在坐标轴上,可通过两点间距离公式求解. 16.【分析】根据点B(2,0),B1(4,0),B2(8,0),B3(16,0)可得规律为横坐标为,由此问题可求解.【详解】解:由B(2,0),B1(4,0),B2(8,0),B3(16,0)可解析:20222【分析】根据点B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得规律为横坐标为12n +,由此问题可求解.【详解】解:由B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)可得:()12,0n n B +,∴B 2021的横坐标为20222;故答案为20222.【点睛】本题主要考查图形与坐标,解题的关键是根据题意得到点的坐标规律.三、解答题17.(1)9;(2)-;(3)-3.【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5) =﹣ ,(3)原式=3﹣3﹣4解析:【解析】【分析】根据运算法则和运算顺序,依次计算即可.【详解】解:(1)原式=2+9﹣2=9,(2)原式=(1+3﹣5,(3)原式=3﹣3﹣4+1=﹣3.【点睛】本题考查了实数的运算,熟练掌握相关运算法则是解题关键.18.(1);(2)【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x 的方程,解之可得.【详解】解:(1)∴即(2)解得,解析:(1)122,2x x ==-;(2)35x =- 【分析】(1)先移项,再根据平方根的性质开平方即可得;(2)方程变形后,再根据立方根的性质开立方可得关于x 的方程,解之可得.【详解】解:(1)2280x -=22=8x2=4x∴2x =±即122,2x x ==-(2)()352125x -=- 525x -=- 解得,35x =- 【点睛】本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质. 19.(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①;②【分析】(1)根据平行线的判定及性质即可证明;(2)①由已知得,,由(1)知,可得,在中,,由对顶角得,由三角形内角和定理即可解析:(1)两直线平行,同位角相等;同位角相等,两直线平行;(2)①50︒;②1802α︒-【分析】(1)根据平行线的判定及性质即可证明;(2)①由已知得20GEH ∠=︒,30DCH ∠=︒,由(1)知//EF BC ,可得240DEF ∠=∠=︒,在DHC 中,1802DHC DCH ∠=︒-∠-∠,由对顶角得GHE ∠,由三角形内角和定理即可计算出G ∠;②根据条件,可得2FED DCE α∠+∠=,由//EF BC ,得出2FED =∠∠,通过等量代换得22DCE α∠+∠=,由三角形内角和定理即可求出.【详解】解:证明(1)证//EF BC ;证明://DE AB (已知),2B ∴∠=∠(两直线平行,同位角相等),又12∠=∠(已知)1B ∠=∠∴(等量代换),//EF BC ∴(同位角相等,两直线平行),故答案是:两直线平行,同位角相等;同位角相等,两直线平行.(2)①DEF ∠与ACB ∠的平分线交于点G ,CG 交DE 于点H ,且40DEF ∠=︒,60ACB ∠=︒,1202GEH DEF ∴∠=∠=︒, 1302DCH ACB ∠=∠=︒, 由(1)知//EF BC ,240DEF ∴∠=∠=︒,在DHC 中,1802110DHC DCH ∴∠=︒-∠-∠=︒,110GHE DHC ∴∠=∠=︒,18050G GHE GEH ∴∠=︒-∠-∠=︒,故答案是:50︒;②FEG DCG α∠+∠=,2FED DCE α∴∠+∠=,由(1)知//EF BC ,2FED ∴∠=∠,22DCE α∠+∠=,在DCE 中,18021802DEC DCE α∠=︒-∠-∠=︒-,故答案是:1802α︒-.【点睛】本题考查了平行线的判定及性质、角平分线的定义、三角形内角和定理、对顶角,解题的关键是掌握相关定理找到角之间的等量关系,再通过等量代换的思想进行求解. 20.(1)见解析;(2)见解析;(3)见解析【分析】(1)直接在平面直角坐标系内描出各点即可;(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可; (3)根据题意确定点 的坐标,然后解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)直接在平面直角坐标系内描出各点即可;(2)根据题意确定点E 的坐标,然后在平面直角坐标系内描出各点即可;(3)根据题意确定点F 的坐标,然后在平面直角坐标系内描出各点即可.【详解】解:(1)如图 ,(2)∵点E在x轴上,位于原点右侧,距离原点2个单位长度,E;∴点()2,0(3)点F在x轴下方,y轴左侧,距离每条坐标轴都是3个单位长度,∴点()F--.3,3【点睛】本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键.21.(1)a=1,b=﹣4;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1)∴,∴4<5,∴1<﹣3<2,∴解析:(1)a=1,b174;(2)±4.【分析】(1)根据被开饭数越大算术平方根越大,可得a,b的值,(2)根据开平方运算,可得平方根.【详解】解:(1)∴161725<∴417<5,∴117﹣3<2,∴a=1,b174;(2)(﹣a)3+(b+4)2=(﹣1)3+17﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:16±4.【点睛】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出4175是解题关键.22.正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为厘米,即得正方形纸板的边长是厘米,根据题意得:,∴,取正值,可得,解析:正方形纸板的边长是18厘米【分析】根据正方形的面积公式进行解答.【详解】解:设小长方形的宽为x 厘米,则小长方形的长为2x 厘米,即得正方形纸板的边长是2x 厘米,根据题意得:2162x x ⋅=,∴281x =,取正值9x =,可得218x =,∴答:正方形纸板的边长是18厘米.【点评】本题考查了算术平方根的实际应用,解题的关键是熟悉正方形的面积公式.23.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数; (2)依据平行线的性质以及角平分线的定义,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依据平行线的性质以及角平分线的定义,即可得到∠PCG 的度数;(2)依据平行线的性质以及角平分线的定义,即可得到∠ECG =∠GCF =25°,再根据PQ ∥CE ,即可得出∠CPQ =∠ECP =65°;(3)设∠EGC =4x ,∠EFC =3x ,则∠GCF =4x -3x =x ,分两种情况讨论:①当点G 、F 在点E 的右侧时,②当点G 、F 在点E 的左侧时,依据等量关系列方程求解即可.【详解】解:(1)∵∠CEB =100°,AB ∥CD ,∴∠ECQ =80°,∵∠PCF =∠PCQ ,CG 平分∠ECF ,∴∠PCG=∠PCF+∠FCG=12∠QCF+12∠FCE=12∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=12(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)设∠EGC=4x,∠EFC=3x,则∠GCF=∠FCD=4x-3x=x,①当点G、F在点E的右侧时,则∠ECG=x,∠PCF=∠PCD=32 x,∵∠ECD=80°,∴x+x+32x+32x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+32x=56°;②当点G、F在点E的左侧时,则∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=12∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.。
初一下第二学期期中试卷--数学(含答案)
初一第二学期数学期中试卷一、选择题(本题共20分,每小题2分)1.若a b >,则下列不等式变形正确的是()A .55a b +<+B .33a b < C .44a b ->- D .3232a b ->- 2.不等式3>x 的解集在数轴上表示为()A 、B 、C 、3 3.计算x 5·x 5的值为()A .x 5B .x 10C .x 25D .2x 54.下列运算中正确的是( ) A .5552a a a += B .326a a a = C .x x x 63·2= D .347()a a = 5.已知21x y =⎧⎨=-⎩是关于x ,y 的二元一次方程27x my +=的解,则m 的值为()A .3B .3-C .92D .11- 6.二元一次方程39x y +=的非负整数解有()A. 无数个B. 2个C. 3个D. 4个7.计算20152013425.0⨯A .1B .8C .16D .28.某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( )A. 14016615x y x y +=⎧⎨+=⎩B.14061615x y x y +=⎧⎨+=⎩C.15166140x y x y +=⎧⎨+=⎩ D.15616140x y x y +=⎧⎨+=⎩ 9.若关于x 的不等式组无解,则a 的取值范围是()A a ≥-3B a ≤-3C a <-3D a >-310.关于x ,y 的二元一次方程组3+1,33x y a x y =+⎧⎨+=⎩的解满足x y <, 则a 的取值范围是() A a >-3 B a <-3C a >2D a <2二、填空题(本题共20分,每小题2分) 1.已知x 的一半与5的差小于3,用不等式表示为.2.已知12=+y x ,用含x 的代数式表示y ,y = .3.已知方程3x m+1+y 2-n =8是二元一次方程,则m=,n= .4.不等式4+3x ≦10的正整数解是.5.已知︱4x+y+7︳+(x-y+3)2=0,则x =,y = 6.计算:32)(23)x x --=(-.7.将一筐橘子分给几个儿童,若每人分4个,则剩下9个橘子;若每人分6个,则最后一个孩子分得的橘子将少于3个,则共有_______ 个儿童,_______个橘子.8.若==a 32,32则a ;若3m a =,2n a =,则23m n a +=.9.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为10.定义新运算:22*=-a b a ab ,运用新运算计算:43*=,=-*)(y x x .三、计算(本题共12分,每小题4分)1、2、(-2x 2)﹒(-y)+3xy(1-2x) 3 、)5)(1()4)(32(+-+-+x x x x四、解答题(本题共10分,每小题5分)533222()(2)4x x x x ⋅-+-⋅1、解不等式:463+-x x ≤4-x 并在数轴上表示解集.2.解不等式组⎪⎩⎪⎨⎧≤+--->-0)2(3)3(2132x x x x五、解下列方程组:(本题共10分,每小题5分)1. 解方程组320,1.x y x y -=⎧⎨-=⎩2.解方程组()23452610x y x y y -=⎧⎪⎨+=+⎪⎩六、解答题(本题10分,每题5分)1、若0352=-+y x ,求y x 324⋅的值.(5分)2、先化简,再求值:(6分))52)(13()1(2)1(---++-x x x x x x ,其中2=x 。
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库
完整版(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.16的平方根是()A .4±B .4C .2±D .22.把“笑脸”进行平移,能得到的图形是( )A .B .C .D . 3.在平面直角坐标系中,点()1,0所在的位置是( )A .x 轴B .y 轴C .第一象限D .第四象限 4.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个5.直线12//l l ,125A ∠=︒,85B ∠=︒,115∠=︒,则2∠=( )A .15°B .25°C .35D .20° 6.下列关于立方根的说法中,正确的是( ) A .9-的立方根是3- B .立方根等于它本身的数有1,0,1-C .64-的立方根为4-D .一个数的立方根不是正数就是负数 7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是( )A .15°B .60°C .30°D .75°8.如图,在平面直角坐标系中,一动点从原点O 出发,向右平移3个单位长度到达点1A ,再向上平移6个单位长度到达点2A ,再向左平移9个单位长度到达点3A ,再向下平移12个单位长度到达点4A ,再向右平移15个单位长度到达点5A ……按此规律进行下去,该动点到达的点2021A 的坐标是( )A .(3030,3030)--B .(3030,3033)-C .(3033,3030)-D .(3030,3033)二、填空题9.324-=________.10.已知点P 关于x 轴的对称点为(,1)a -,关于y 轴的对称点为(2,)b -,那么点P 的坐标是________.11.如图,AD ∥BC ,∠ABC 的角平分线BP 与∠BAD 的角平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为_____.12.如图所示,直线AB ,BC ,AC 两两相交,交点分别为A ,B ,C ,点D 在直线AB 上,过点D 作DE ∥BC 交直线AC 于点E ,过点E 作EF ∥AB 交直线BC 于点F ,若∠ABC =50°,则∠DEF 的度数___.13.如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为AB 、CD ,若//CD BE ,且156∠=︒,则2∠=_____.14.材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____. 15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____. 16.如图所示,动点P 在平面直角坐标系中,按箭头所示方向呈台阶状移动,第一次从原点运动到点(0,1),第二次接着运动到点(1,1),第三次接着运动到点(1,2),…,按这样的运动规律,经过2021次运动后,动点P 的坐标是________.三、解答题17.计算:(1)()4129-⨯()432054⎛⎫-⨯- ⎪⎝⎭18.求下列各式中的x :(1)x 2﹣12149=0. (2)(x ﹣1)3=64.19.已知:AB BC ⊥,AB DE ⊥,垂足分别为B ,D ,12∠=∠,求证:180BEC FGE ∠+∠=︒,请你将证明过程补充完整.证明:∵AB BC ⊥,AB DE ⊥,垂足分别为B ,D (已知).∴90ABC ADE ∠=∠=︒(垂直定义).∴______________∥______________()∴1∠=______________()又∵12∠=∠(已知)∴∠2=(),∴______________∥______________()∴180BEC FGE ∠+∠=︒()20.如图, 在平面直角坐标系xOy 中,三角形ABC 三个顶点的坐标分别为(-2,-2),(3,1),(0,2),若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A 、B 、C 的对应点分别为A B C '''、、.(1)在图中画出平移后的三角形A B C ''';(2)写出点A '的坐标;(3)三角形ABC 的面积为 .21.222﹣12的小数部分,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分又例如:因为4<7<9,即2<7<3,所以7的整数部分为2,小数部分为(7﹣2)请解答:(1)10的整数部分是,小数部分是;(2)如果5的小数部分为a,13的整数部分为b,求a+b﹣5的值.22.小丽想用一块面积为400cm2的正方形纸片,沿着边的方向裁处一块面积为300cm2的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁处符合要求的纸片吗?若能,请帮小丽设计一种裁剪方案,若不能,请简要说明理由.23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.A解析:A【分析】如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作x=±.【详解】解:16的平方根是4±.故选A.【点睛】本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,0的平方根是0;正数有两个不同的平方根,它们是互为相反数,0的平方根是0,负数没有平方根.2.D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.3.A【分析】1,0的纵坐标为0,则可判断点(1,0)在x轴上.由于点()【详解】1,0的纵坐标为0,解:点()故在x轴上,故选:A.【点睛】本题考查了点的坐标,解题的关键是记住各象限内的点的坐标特征和坐标轴上点的坐标特点.4.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.5.A【分析】分别过A、B作直线1l的平行线AD、BC,根据平行线的性质即可完成.【详解】分别过A、B作直线1l∥AD、1l∥BC,如图所示,则AD∥BC∵l∥2l1∴l∥BC2∴∠CBF=∠2∵l∥AD1∴∠EAD=∠1=15゜∴∠DAB=∠EAB-∠EAD=125゜-15゜=110゜∵AD∥BC∴∠DAB+∠ABC=180゜∴∠ABC=180゜-∠DAB=180゜-110゜=70゜∴∠CBF=∠ABF-∠ABC=85゜-70゜=15゜∴∠2=15゜故选:A.【点睛】本题考查了平行线的性质与判定等知识,关键是作两条平行线.6.B【分析】各项利用立方根定义判断即可.【详解】解:A、-9的立方根是39-,故该选项错误;B、立方根等于它本身的数有-1,0,1,故该选项正确;C、648-=-,-8的立方根为-2,故该选项错误;D、0的立方根是0,故该选项错误.故选:B.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.7.C【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【详解】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.【点睛】本题主要考查了两直线平行,内错角相等的性质,需要注意隐含条件,直尺的对边平行,等腰直角三角板的锐角是45°的利用.8.C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0解析:C【分析】求出A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,探究规律可得A2021(3033,-3030),从而求解.【详解】解:由题意A1(3,0),A5(9,-6),A9(15,-12),A13(21,-18),•••,可以看出,9=1532+,15=2732+,21=3932+,得到规律:点A2n+1的横坐标为()32136622n n+++=,其中0n≥的偶数,点A2n+1的纵坐标等于横坐标的相反数+3,2021210101=⨯+,即1010n=,故A2021的横坐标为61010630332⨯+=,A2021的纵坐标为303333030-+=-,∴A2021(3033,-3030),故选:C.【点睛】本题考查了坐标与图形变化-平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型.二、填空题9.6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.解析:6【分析】根据算术平方根、有理数的乘方运算即可得.【详解】32826-=故答案为:6.【点睛】本题考查了算术平方根、有理数的乘方运算,熟记各运算法则是解题关键.10.【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:(2,1)【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点P关于x轴的对称点为(,1)a-,则点P的纵坐标为1点P关于y轴的对称点为(2,)b-,则点P的横坐标为2则点P的坐标为(2,1)故答案为:(2,1).【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.11.4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线A解析:4【分析】根据角平分线的性质以及平行线的性质即可得出PM=PE=2,PE=PN=2,即可得出答案.【详解】解:过点P作MN⊥AD,∵AD∥BC,∠ABC的角平分线BP与∠BAD的角平分线AP相交于点P,PE⊥AB于点E,∴AP⊥BP,PN⊥BC,∴PM=PE=2,PE=PN=2,∴MN=2+2=4.故答案为4.12.130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵E解析:130°.【分析】先求出∠ABC=∠ADE=50°,再求出∠DEF=180°﹣50°=130°即可.【详解】解:∵DE∥BC,∴∠ABC=∠ADE=50°(两直线平行,同位角相等),∵EF∥AB,∴∠ADE+∠DEF=180°(两直线平行,同旁内角互补),∴∠DEF=180°﹣50°=130°.故答案为:130°.【点睛】本题考查了平行线线段的性质,熟练掌握平行线的性质定理是解题关键.13.68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,解析:68°【分析】利用平行线的性质以及翻折不变性即可得到∠5=∠DCF=∠4=∠3=∠1=56°,进而得出∠2=68°.【详解】解:如图,延长BC到点F,∵纸带对边互相平行,∠1=56°,∴∠4=∠3=∠1=56°,由折叠可得,∠DCF=∠5,∵CD∥BE,∴∠DCF=∠4=56°,∴∠5=56°,∴∠2=180°-∠DCF-∠5=180°-56°-56°=68°,故答案为:68°.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直线平行,内错角相等.14.3; .【分析】由可求出,由,可分别求出,,继而可计算出结果.【详解】解:(1)由题意可知:,则,(2)由题意可知:,,则,,∴,故答案为:3;.【点睛】本题主解析:3; 1173. 【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果.【详解】解:(1)由题意可知:239=,则2log 93=,(2)由题意可知:4216=,43=81,则2log 164=,3log 814=, ∴223141(log 16)log 811617333+=+=, 故答案为:3;1173. 【点睛】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.15.(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐解析:(4,0).【分析】根据x 轴上点的纵坐标为0列方程求出m 的值,再求解即可.【详解】∵点P (m+3,m-1)在x 轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P 的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.16.(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四解析:(1010,1011)【分析】仔细观察图形,找到图形变化的规律,利用规律求解即可.【详解】解:观察发现:第一次运动到点(0,1),第二次运动到点(1,1);第三次运动到点(1,2),第四次运动到点(2,2);第五次运动到点(2,3),第六次运动到点(3,3),…,当n 为奇数时,第n 次运动到点(12n -,12n +), 当n 为偶数时,第n 次运动到点(2n ,2n ), 所以经过2021次运动后,动点P 的坐标是(1010,1011),故答案为:(1010,1011).【点睛】本题主要考查了点坐标的变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到每个对应点的坐标.三、解答题17.(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)(2)【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是解析:(1)-1;(2)-1【分析】(1)根据乘方及二次根式的化简即可求解;(2)根据乘法的分配率计算即可.【详解】(1)()412-⨯ (2)()()()434320=-20--20=-1615=-15454⎛⎫-⨯-⨯⨯+ ⎪⎝⎭【点睛】本题考查的是实数的运算,掌握运算法则及乘法的分配率是关键.18.(1);(2)【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵,∴,∴;(2)∵,∴,∴.【点睛】本题主要考查解析:(1)117x=±;(2)5x=【分析】(1)用求平方根的方法解方程即可得到答案;(2)用求立方根的方法解方程即可得到答案.【详解】解:(1)∵21210 49x-=,∴212149x=,∴117x=±;(2)∵()3164x-=,∴14x-=,∴5x=.【点睛】本题主要考查了平方根和立方根,解题的关键在于能够熟练掌握平方根和立方根的求解方法.19.答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己解析:答案见详解.【分析】根据AB⊥BC,AB⊥DE可以得到BC∥DE,从而得到∠1=∠EBC=∠2,即可得到BE∥GF,即可得到答案.【详解】证明:∵AB⊥BC,AB⊥DE,垂足分别为B,D(己知),∴∠ABC=∠ADE=90°(垂直定义),∴BC∥DE(同位角相等,两直线平行),∴∠1=∠EBC(两直线平行,内错角相等),又∵∠l=∠2 (已知),∴∠2=∠EBC(等量代换),∴BE∥GF(同位角相等,两直线平行),∴∠BEC+∠FGE=180°(两直线平行,同旁内角互补).【点睛】本题主要考查了垂直的定义,平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.20.(1)见解析;(2);(3)【分析】(1)根据平移规律确定,,的坐标,再连线即为平移后的三角形;(2)根据平移规律写出的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面解析:(1)见解析;(2)()3,1-;(3)7【分析】(1)根据平移规律确定A ',B ',C '的坐标,再连线即为平移后的三角形A B C '''; (2)根据平移规律写出A '的坐标即可;(3)可将三角形补成一个矩形,用矩形的面积减去三个直角形的面积即可.【详解】(1)如图所示,三角形A B C '''即为所求;(2)若把三角形ABC 向上平移 3 个单位长度,再向左平移1个单位长度得到三角形A B C ''',点A '的坐标为(-3,1);(3)三角形ABC 的面积为:4×5-12×2×4-12×1×3-12×3×5=7.【点睛】本题主要考查了图形的平移,以及三角形在坐标轴上的计算,切割法的运用,掌握平移规律和运用切割法求面积是解题的关键. 21.(1)3, ﹣3;(2)1.【分析】(1)根据解答即可;(2)根据2<<3得出a ,根据3<<4得出b ,再把a ,b 的值代入计算即可.【详解】(1)∵,∴的整数部分是3,小数部分是﹣3,解析:(1)3,3;(2)1.【分析】(1)根据34解答即可;(2)根据23得出a,根据34得出b,再把a,b的值代入计算即可.【详解】(1)∵34<<,∴3﹣3,故答案为:3﹣3;(2)∵23,a2,∵34,∴b=3,a+b2+31.【点睛】此题考查无理数的估算,正确掌握数的平方是解题的关键.22.(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴解析:(1)可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形;(2)不能,理由见解析.【解析】(1)解:设面积为400cm2的正方形纸片的边长为a cm∴a2=400又∵a>0∴a=20又∵要裁出的长方形面积为300cm2∴若以原正方形纸片的边长为长方形的长,则长方形的宽为:300÷20=15(cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm的线段作为宽即可裁出符合要求的长方形(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm,则宽为2x cm∴6x 2=300∴x 2=50又∵x>0∴x=52∴长方形纸片的长为152又∵()2152=450>202即:152>20∴小丽不能用这块纸片裁出符合要求的纸片23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED =∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =30°,∠EDC =12∠ADC =35°,∴∠BED =∠EBA +∠EDC =65°.答:∠BED 的度数为65°;②如图2,过点E 作EF ∥AB ,有∠BEF +∠EBA =180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD , ∴EF ∥CD . ∴∠FED =∠EDC . ∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
完整版七年级数学下册期中考试试卷及答案 - 百度文库
完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.16的算术平方根是()A .4B .4-C .2D .2-2.下列生活现象中,属于平移的是( ).A .钟摆的摆动B .拉开抽屉C .足球在草地上滚动D .投影片的文字经投影转换到屏幕上3.点()3,5A -在平面直角坐标系中所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限 4.下列说法中,真命题的个数为( )①两条平行线被第三条直线所截,同位角相等;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行; ③过一点有且只有一条直线与这条直线平行;④点到直线的距离是这一点到直线的垂线段;A .1个B .2个C .3个D .4个5.如图,直线AB ∥CD ,AE ⊥CE ,∠1=125°,则∠C 等于( )A .35°B .45°C .50°D .55° 6.下列说法正确的是( )A .a 2的正平方根是aB .819=±C .﹣1的n 次方根是1D .321a --一定是负数7.一把直尺和一块直角三角尺(含30°、60°角)如图所示摆放,直尺的一边与三角尺的两直角边BC 、AC 分别交于点D 、点E ,直尺的另一边过A 点且与三角尺的直角边BC 交于点F ,若∠CAF =42°,则∠CDE 度数为( )A .62°B .48°C .58°D .72°8.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A .1B .﹣1010C .1011D .2021二、填空题9.8116的算术平方根是__________. 10.已知点P (3,﹣1)关于y 轴的对称点Q 的坐标是_____________.11.如图,在△ABC 中,∠ACB =90°,AD 是△ABC 的角平分线,BC =10cm ,BD :DC =3:2,则点D 到AB 的距离为_____.12.如图,AE BC ∥,45BDA ∠=︒,30C ∠=︒,则∠CAD 的度数为____________.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若44EFB ∠=︒,则EDC ∠=___º.14.22的小数部分我们不可能2的整数部分是1,将这个数减去其整数部分,差就是小数部分,于是21225x y +,其中x 是整数,且01y <<,写出x ﹣y 的相反数_____.15.已知点()6,23A m m --,且点A 到两坐标轴的距离相等,则点A 的坐标是____. 16.如图,每一个小正方形的边长为1个单位长,一只蚂蚁从格点.A 出发,沿着A →B →C →D →A →B →...路径循环爬行,当爬行路径长为2020个单位长时,蚂蚁所在格点坐标为___.三、解答题17.(1)()()2249-⨯-- (2)331632701464---+- 18.求下列各式中的x 的值.(1)21(1)24x -=; (2)32(2)160x --=.19.如图,直线AB ,CD 被直线MN ,PM 所截,//AB CD ,直线MN 分别交AB 和CD 于点E ,F .点Q 在直线PM 上,AEP CFQ ∠=∠,求证:180∠+∠=︒EPQ FQP .请在下列括号中填上理由:证明:因为//AB CD (已知),所以AEM CFM ∠=∠(_______).又因为AEP CFQ ∠=∠(已知),所以∠+∠=∠+∠AEM AEP CFM CFQ ,即∠=∠MEP MFQ ,所以_______(同位角相等,两直线平行),所以180∠+∠=︒EPQ FQP (_______). 20.如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.21.我们知道2是无理数,其整数部分是1,于是小明用2-1来表示2的小数部分. 请解答下列问题:(1)10的整数部分是 ,小数部分是 .(2)如果5的小数部分为a ,13的整数部分为b ,求a +b -5的值;(3)已知10+3=x +y ,其中x 是整数,且0<y <1,求x -y 的相反数. 22.已知在44⨯的正方形网格中,每个小正方形的边长为1.(1)计算图①中正方形ABCD 的面积与边长.(2)利用图②中的正方形网格,作出面积为8的正方形,并在此基础上建立适当的数轴,在数轴上表示实数8和8-.23.如图,//MN GH ,点A 、B 分别在直线MN 、GH 上,点O 在直线MN 、GH 之间,若116NAO ∠=︒,144OBH ∠=︒.(1)AOB ∠= ︒;(2)如图2,点C 、D 是NAO ∠、GBO ∠角平分线上的两点,且35CDB ∠=︒,求ACD ∠ 的度数;(3)如图3,点F 是平面上的一点,连结FA 、FB ,E 是射线FA 上的一点,若MAE ∠= n OAE ∠,HBF n OBF ∠=∠,且60AFB ∠=︒,求n 的值.【参考答案】一、选择题1.A解析:A【分析】根据算术平方根的意义求解即可.【详解】解:16的算术平方根为4,故选:A.【点睛】本题考查了算术平方根,理解算术平方根的意义是解决问题的关键.2.B【分析】根据平移的定义,对选项进行分析,排除错误答案.【详解】A选项:为旋转,故A错误;C选项:滚动,故C错误;D选项:缩放,投影,故D错误.只有B选项为平移.故选:B.【点睛】解析:B【分析】根据平移的定义,对选项进行分析,排除错误答案.【详解】A选项:为旋转,故A错误;C选项:滚动,故C错误;D选项:缩放,投影,故D错误.只有B选项为平移.故选:B.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状大小和方向,注意平移是沿着一条直线方向移动,熟练运用平移的性质是解答本题的关键. 3.B【分析】根据坐标的特点即可求解.【详解】点()3,5A -在平面直角坐标系中所在的象限是第二象限故选B .【点睛】此题主要考查坐标所在象限,解题的关键是熟知直角坐标系的特点.4.B【分析】根据平行线的性质与判定,点到直线的距离的定义逐项分析判断即可【详解】①两条平行线被第三条直线所截,同位角相等,故①是真命题;②在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故②是真命题;③在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故③不是真命题, ④点到直线的距离是这一点到直线的垂线段的长度,故④不是真命题,故真命题是①②,故选B【点睛】本题考查了判断真假命题,平行线的性质与判定,点到直线的距离的定义,掌握相关性质定理是解题的关键.5.A【分析】过点E 作EF ∥AB ,则EF ∥CD ,利用“两直线平行,内错角相等”可得出∠BAE =∠AEF 及∠C =∠CEF ,结合∠AEF +∠CEF =90°可得出∠BAE +∠C =90°,由邻补角互补可求出∠BAE 的度数,进而可求出∠C 的度数.【详解】解:过点E 作EF ∥AB ,则EF ∥CD ,如图所示.∵EF ∥AB ,∴∠BAE =∠AEF .∵EF ∥CD ,∴∠C =∠CEF .∵AE ⊥CE ,∴∠AEC =90°,即∠AEF +∠CEF =90°,∴∠BAE +∠C =90°.∵∠1=125°,∠1+∠BAE =180°,∴∠BAE =180°﹣125°=55°,∴∠C =90°﹣55°=35°.故选:A .【点睛】本题考查了平行线的性质、垂线以及邻补角,牢记“两直线平行,内错角相等”是解题的关键.6.D【分析】根据平方根、算术平方根、立方根的定义判断A 、B 、D ,根据乘方运算法则判断C 即可.【详解】A :a 2的平方根是a ±,当0a ≥时,a 2的正平方根是a ,错误;B 9,错误;C :当n 是偶数时,()1=1n - ;当n 时奇数时,()1=-1n -,错误;D :∵210a --< ,∴【点睛】本题考查平方根、算术平方根、立方根的定义以及乘方运算,掌握相关的定义与运算法则是解题关键.7.B【分析】先根据平行线的性质求出∠CED ,再根据三角形的内角和等于180°即可求出∠CDE .【详解】解:∵DE ∥AF ,∠CAF =42°,∴∠CED =∠CAF =42°,∵∠DCE =90°,∠CDE +∠CED +∠DCE =180°,∴∠CDE =180°-∠CED -∠DCE =180°-42°-90°=48°,故选:B .【点睛】本题主要考查了平行线的性质以及三角形内角和等于180°,熟练掌握平行线的性质:两直线平行,同位角相等是解决问题的关键. 8.A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:、、、、、、解析:A【分析】根据各点横坐标数据得出规律,进而得出128x x x ++⋯+;经过观察分析可得每4个数的和为2-,把2020个数分为505组,求出20211011x =,即可得到相应结果.【详解】解:根据平面坐标系结合各点横坐标得出:1x 、2x 、3x 、4x 、5x 、6x 、7x 、8x 的值分别为:1,1,2-,2-,3,3,4-,4-;1284x x x ∴++⋯+=-,123411222x x x x +++=+--=-,567833442x x x x +++=+--=-,⋯,9798991002x x x x +++=-,⋯,1220202(20204)1010x x x ∴++⋯+=-⨯÷=-,20211011x =,12320211x x x x ∴+++⋯+=,故选:A .【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律.二、填空题9.【分析】直接利用算术平方根的定义得出答案.【详解】解:,的算术平方根是:.故答案为:.【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键. 解析:32【分析】直接利用算术平方根的定义得出答案.【详解】解:94=,∴的算术平方根是:32.故答案为:32.【点睛】此题主要考查了算术平方根,正确掌握相关定义是解题关键.10.(-3,-1)【分析】根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答. 【详解】解:∵点Q与点P(3,﹣1)关于y轴对称,∴Q(-3,-1).故答案为(-3,-1).解析:(-3,-1)【分析】根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.【详解】解:∵点Q与点P(3,﹣1)关于y轴对称,∴Q(-3,-1).故答案为(-3,-1).【点睛】本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点. 11.4cm【详解】∵BC=10cm,BD:DC=3:2,∴BD=6cm,CD=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.解析:4cm【详解】∵BC=10cm,BD:DC=3:2,∴BD=6cm,CD=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.12.【分析】根据两直线平行内错角相等可得,,再根据角之间的关系即可求出的度数.【详解】解:∵∥,,∴,∴故答案为:【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是 解析:15︒【分析】根据两直线平行内错角相等可得45BDA DAE ∠=∠=︒,30C CAE ∠=∠=︒,再根据角之间的关系即可求出CAD ∠的度数.【详解】解:∵AE ∥BC ,45BDA ∠=︒,30C ∠=︒∴45BDA DAE ∠=∠=︒,30C CAE ∠=∠=︒∴15CAD DAE CAE ∠=∠-∠=︒故答案为:15︒【点睛】本题主要考查了平行线的相关知识,熟练运用两直线平行内错角相等是解答此题的关键. 13.23【分析】根据∠EFB 求出∠BEF ,根据翻折的性质,可得到∠DEC=∠DEF ,从而求出∠DEC 的度数,即可得到∠EDC .【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC=∠FED解析:23【分析】根据∠EFB 求出∠BEF ,根据翻折的性质,可得到∠DEC =∠DEF ,从而求出∠DEC 的度数,即可得到∠ED C .【详解】解:∵△DFE 是由△DCE 折叠得到的,∴∠DEC =∠FED ,又∵∠EFB =44°,∠B =90°,∴∠BEF =46°,∴∠DEC =12(180°-46°)=67°,∴∠EDC =90°-∠DEC =23°,故答案为:23.【点睛】本题考查角的计算,熟练掌握翻折的性质,找到相等的角是解决本题的关键. 14.【分析】根据题意得方法,估算的大小,求出的值,进而求出x ﹣y 的值,再通过相反数的定义,即可得到答案.【详解】解:∵∴的整数部分是2由题意可得的整数部分即,则小数部分则∴x ﹣y 的相反6【分析】2的值,进而求出x ﹣y 的值,再通过相反数的定义,即可得到答案.【详解】解:∵∴2由题意可得2的整数部分即4x =,则小数部分2y =则42)6x y -=-=∴x ﹣y 66.【点睛】本题主要考查二次根式的估算,解题的关键是估算无理数的小数部分和整数部分. 15.或;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为,∴,∴或,解得:或,∴点A 的坐标为:或;故答案为:或解析:()4,4--或()8,8-;【分析】根据点A 到两坐标轴的距离相等,列出绝对值方程,解方程即可得到答案.【详解】解:∵点A 到两坐标轴的距离相等,且点A 为()6,23m m --, ∴623m m -=-,∴623m m -=-或6(23)m m -=--,解得:2m =或2m =-,∴点A 的坐标为:()4,4--或()8,8-;故答案为:()4,4--或()8,8-;【点睛】本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点.16.(2,2)【分析】由格点确定点A 、B 、C 的坐标,从而得出AB 、BC 的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解析:(2,2)【分析】由格点确定点A 、B 、C 的坐标,从而得出AB 、BC 的长度,从而可找出爬行一圈的长度,再根据2020=126×16+4,即可得出当蚂蚁爬了2020个单位时,它所处位置的坐标.【详解】解:∵A 点坐标为(−2,2),B 点坐标为(3,2),C 点坐标为(3,−1),∴AB =3−(−2)=5,BC =2−(−1)=3,∴从A →B →C →D →A →B →…一圈的长度为2(AB +BC )=16.∵2020=126×16+4,∴当蚂蚁爬了2020个单位时,它所处位置在点A 右边4个单位长度处,即(2,2). 故答案为:(2,2).【点睛】本题考查了规律型中点的坐标以及矩形的性质,根据蚂蚁的运动规律找出蚂蚁每运动16个单位长度是一圈.三、解答题17.(1);(2).【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案.【详解】解:(1)(2)【点睛】解析:(1)11-;(2)134 -.【分析】(1)先求算术平方根,再计算乘法,后加减即可得到答案;(2)先求立方根,算术平方根,再计算加减即可得到答案.【详解】解:(1)()2-()243=-⨯-8311.=--=-(21302=---+7124=-+13.4=-【点睛】本题考查的是实数的加减运算,考查了求一个数的算术平方根,立方根,掌握以上知识是解题的关键.18.(1)或;(2).【分析】(1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x﹣2)3=8,开立方根得出x﹣2=2,求出即可.【详解】解:(1),,,或解析:(1)52x =或12x =-;(2)4x =. 【分析】 (1)两边开平方即可得出两个一元一次方程,求出方程的解即可;(2)先整理变形为(x ﹣2)3=8,开立方根得出x ﹣2=2,求出即可.【详解】解:(1)29(1)4x -=, 312x -=±, 312x =±, 52x =或12x =-; (2)32(2)160x --=,32(2)16x -=,3(2)8x -=,22x -=,4x =.【点睛】本题是根据平方根和立方根的定义解方程,将方程系数化为1变形为:x 2=a (a ≥0)或x 3=b 的形式,再根据定义开平方或开立方,注意开平方时,有两个解.19.两直线平行,同位角相等;;两直线平行,同旁内角互补.【分析】要证明与互补,需证明,可通过同位角与(或与相等来实现.【详解】证明:因为(已知),所以 两直线平行,同位角相等).又因为(已知解析:两直线平行,同位角相等;//PE FQ ;两直线平行,同旁内角互补.【分析】要证明EPQ ∠与FQP ∠互补,需证明//PE FQ ,可通过同位角MEP ∠与MFQ ∠(或NEP ∠与)NFQ ∠相等来实现.【详解】证明:因为//AB CD (已知),所以(AEM CFM ∠=∠ 两直线平行,同位角相等).又因为AEP CFQ ∠=∠(已知),所以∠+∠=∠+∠AEM AEP CFM CFQ ,即∠=∠MEP MFQ ,所以//PE FQ (同位角相等,两直线平行),所以180∠+∠=︒EPQ FQP (两直线平行,同旁内角互补).故答案为:两直线平行,同位角相等;//PE FQ ;两直线平行,同旁内角互补.【点睛】本题考查了平行线的性质和判定,解题的关键是掌握平行线的性质和判定.20.(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O1、B1、C1的坐标,然后顺次连接O1、B1、C1即可;(2)根据的面积=其所在的长方形面积减去周围三个三角形的面积解析:(1)见解析;(2)5【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法. 21.(1)3,;(2)1;(3)【分析】(1)根据题意即可求解;(2)估算出的小数部分为a ,的整数部分为b ,即可确定出a +b 的值; (3)根据题意确定出x 与y 的值,求出x -y 的相反数即可.【详解解析:(1)33;(2)1;(312【分析】(1)根据题意即可求解;(2a b ,即可确定出a +b 的值; (3)根据题意确定出x 与y 的值,求出x -y 的相反数即可.【详解】(1)3104<<,33;(2)253<<,22,2a ∴=,3134<<,3,3b ∴=,231a b ∴++=;(3)132<<,11,10x +y ,其中x 是整数,且0<y <1,)1,1011111111112y x x y ∴==+=∴-=-==12x y ∴-=x y ∴-的相反数是:(1212-=.【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 22.(1)正方形的面积为10,正方形的边长为;(2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画解析:(1)正方形ABCD 的面积为10,正方形ABCD 2)见解析【分析】(1)利用正方形的面积减去4个直角三角形的面积即可求出正方形ABCD 的面积,然后根据算术平方根的意义即可求出边长;(2)根据(1)的方法画出图形,然后建立数轴,根据算术平方根的意义即可表示出结论.【详解】解:(1)正方形ABCD 的面积为4×4-4×12×3×1=10则正方形ABCD 的边长为10;(2)如下图所示,正方形的面积为4×4-4×12×2×2=8,所以该正方形即为所求,如图建立数轴,以数轴的原点为圆心,正方形的边长为半径作弧,分别交数轴于两点∴8∴弧与数轴的左边交点为8888【点睛】此题考查的是求网格中图形的面积和实数与数轴,掌握算术平方根的意义和利用数轴表示无理数是解题关键.23.(1)100;(2)75°;(3)n=3.【分析】(1)如图:过O 作OP//MN ,由MN//OP//GH 得∠NAO+∠POA=180°,∠POB+∠OBH=180°,即∠NAO+∠AOB+∠OB解析:(1)100;(2)75°;(3)n =3.【分析】(1)如图:过O 作OP //MN ,由MN //OP //GH 得∠NAO +∠POA =180°,∠POB +∠OBH =180°,即∠NAO +∠AOB +∠OBH =360°,即可求出∠AOB ;(2)如图:分别延长AC 、CD 交GH 于点E 、F ,先根据角平分线求得58NAC ∠=︒,再根据平行线的性质得到58CEF ∠=︒;进一步求得18DBF ∠=︒,17DFB ∠=︒,然后根据三角形外角的性质解答即可;(3)设BF 交MN 于K ,由∠NAO =116°,得∠MAO =64°,故∠MAE =641n n ︒⨯+,同理∠OBH =144°,∠HBF =n ∠OBF ,得∠FBH =1441n n ︒⨯+,从而=n BKA FBH n ∠∠=⨯︒+1441,又∠FKN =∠F +∠FAK ,得144606411n n n n ︒︒︒⨯=+⨯++,即可求n . 【详解】解:(1)如图:过O 作OP //MN ,∵MN //GHl∴MN //OP //GH∴∠NAO +∠POA =180°,∠POB +∠OBH =180°∴∠NAO +∠AOB +∠OBH =360°∵∠NAO =116°,∠OBH =144°∴∠AOB =360°-116°-144°=100°;(2)分别延长AC 、CD 交GH 于点E 、F ,∵AC 平分NAO ∠且116NAO ∠=︒,∴58NAC ∠=︒,又∵MN //GH ,∴58CEF ∠=︒;∵144OBH ∠=︒,36OBG ∠=︒∵BD 平分OBG ∠,∴18DBF ∠=︒,又∵,CDB ∠=︒35∴351817DFB CDB DBF ∠=∠-∠=-=︒;∴175875ACD DFB AEF ∠=∠+∠=︒+︒=︒;(3)设FB 交MN 于K ,∵116NAO ∠=︒,则MAO ∠=︒64; ∴641n MAE n ∠=⨯︒+ ∵144OBH ∠=︒, ∴+1n FBH n ∠=⨯︒144,=n BKA FBH n ∠∠=⨯︒+1441, 在△FAK 中,64601n BKA FKA F n ∠=∠+∠=⨯︒+︒+, ∴144646011n n n n ⨯︒=⨯︒+︒++, ∴3n =.经检验:3n =是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键.。
完整版七年级数学下册期中考试试卷及答案 - 百度文库
完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.一个有理数的平方等于36,则这个数是()A .6B .6或6-C .36D .6-2.下列车标,可看作图案的某一部分经过平移所形成的是( )A .B .C .D . 3.若点P 在第四象限内,则点P 的坐标可能是( )A .()4,3B .()3,4-C .()3,4--D .()3,4- 4.下列说法中,错误的个数为( ).①两条不相交的直线叫做平行线;②过一点有且只有一条直线与已知直线平行;③在同一平面内不平行的两条线段一定相交;④两条直线与第三条直线相交,那么这两条直线也相交.A .1个B .2个C .3个D .4个5.如图,//AB CD ,点E 为AB 上方一点,,FB CG 分别为,EFG ECD ∠∠的角平分线,若2210E G ∠+∠=︒,则EFG 的度数为( )A .140︒B .150︒C .130︒D .160︒ 6.若24,a =31b =-,则+a b 的值是( ) A .1 B .-3 C .1或-3 D .-1或3 7.如图:AB ∥CD ,OE 平分∠BOC ,OF ⊥OE ,OP ⊥CD ,∠ABO =40°,则下列结论:①OF 平分∠BOD ;②∠POE =∠BOF ;③∠BOE =70°;④∠POB =2∠DOF ,其中结论正确的序号是( )A .①②③B .①②④C .①③④D .①②③④8.如图,已知在平面直角坐标系中,点A 坐标是(1,1).若记点A 坐标为(a 1,a 2),则一个点从点A 出发沿图中路线依次经过B (a 3,a 4),C (a 5,a 6),D (a 7,a 8),…,每个点的横纵坐标都是整数,按此规律一直运动下去,则a 2016+a 2017+a 2018的值为( )A .1009B .1010C .1513D .2521二、填空题9.若21(2)30x y z -+-+-=,则x+y+z=________.10.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则(m +n )2020的值是_____.11.如图,,BO CO 是ABC ACB ∠∠、的两条角平分线,100A ∠=︒,则BOC ∠的度数为_________.12.如下图,C 岛在A 岛的北偏东65°方向,在B 岛的北偏西35°方向,则ACB =∠______度.13.如图所示,是用一张长方形纸条折成的,如果1128∠=︒,那么2∠=___°.14.[x )表示小于x 的最大整数,如[2.3)=2,[-4)=-5,则下列判断:①[385-)= 8-;②[x )–x 有最大值是0;③[x ) –x 有最小值是-1;④x 1-≤[x )<x ,其中正确的是__________ (填编号).15.下列四个命题:①直角坐标系中的点与有序实数对一一对应;②若a 大于0,b 不小于0,则点(),P a b --在第三象限;③过一点有且只有一条直线与已知直线平行;④若()214=--+y x ,则x y 的算术平方根是12.其中,是真命题的有______.(写出所有真命题的序号)16.在平面直角坐标系xoy 中,对于点(,)P x y 我们把(1,1)P y x -++叫做点P 的伴随点,已知1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,这样依次得到123,,,n A A A A ⋯,若点1A 的坐标为(3,1),则点2021A 的坐标为_______三、解答题17.计算:(1)3-(-5)+(-6)(2)()211162--⨯ 18.求下列各式中的x 值:(1)169x 2=144;(2)(x -2)2-36=0.19.如图,∠1=∠2,∠3=∠C ,∠4=∠5.请说明BF //DE 的理由.(请在括号中填上推理依据)解:∵∠1=∠2(已知)∴CF //BD ( )∴∠3+∠CAB =180°( )∵∠3=∠C (已知)∴∠C +∠CAB =180°(等式的性质)∴AB //CD ( )∴∠4=∠EGA (两直线平行,同位角相等)∵∠4=∠5(已知)∴∠5=∠EGA (等量代换)∴ED //FB ( )20.如图,已知ABC 在平面直角坐标系中的位置如图所示.(1)写出ABC 三个顶点的坐标;(2)求出ABC 的面积;(3)在图中画出把ABC 先向左平移5个单位,再向上平移2个单位后所得的A B C '''. 21.已知:a 173的整数部分,b 173的小数部分.求:(1)a ,b 值(2)()()224a b -++的平方根.22.工人师傅准备从一块面积为36平方分米的正方形工料上裁剪出一块面积为24平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下的长方形的长宽的比为4:3,问这块正方形工料是否满足需要?(参考数2 1.414≈3 1.732≈)23.直线AB ∥CD ,点P 为平面内一点,连接AP ,CP .(1)如图①,点P 在直线AB ,CD 之间,当∠BAP =60°,∠DCP =20°时,求∠APC 的度数;(2)如图②,点P 在直线AB ,CD 之间,∠BAP 与∠DCP 的角平分线相交于K ,写出∠AKC 与∠APC 之间的数量关系,并说明理由;(3)如图③,点P 在直线CD 下方,当∠BAK =23∠BAP ,∠DCK =23∠DCP 时,写出∠AKC 与∠APC 之间的数量关系,并说明理由.【参考答案】一、选择题1.B解析:B【分析】根据一个数a,如果2a b=,那么a就叫做b的平方根求解即可.【详解】±=,解:∵()2636∴36的平方根为6或-6,故选B.【点睛】本题主要考查了平方根,解题的关键在于能够熟练掌握平方根的定义.2.D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平解析:D【分析】根据平移定义:一个基本图案按照一定的方向平移一定的距离进行分析即可.【详解】解:A、不是经过平移所形成的,故此选项错误;B、不是是经过平移所形成的,故此选项错误;C、不是经过平移所形成的,故此选项错误;D、是经过平移所形成的,故此选项正确;故选:D.【点睛】此题主要考查了利用平移设计图案,关键是掌握平移定义.3.B【分析】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.【详解】根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有()3,4-满足要求, 故选:B .【点睛】本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.4.D【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案.【详解】①在同一平面内,两条不相交的直线叫做平行线,故本小题错误,②过直线外一点有且只有一条直线与已知直线平行,故本小题错误,③在同一平面内不平行的两条直线一定相交;故本小题错误,④两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误. 综上所述:错误的个数为4个.故选D .【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键.5.A【分析】过G 作GM //AB ,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC =∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.【详解】解:过G 作GM //AB ,∴∠2=∠5,∵AB //CD ,∴MG //CD ,∴∠6=∠4,∴∠FGC =∠5+∠6=∠2+∠4,∵FG 、CG 分别为∠EFG ,∠ECD 的角平分线,∴∠1=∠2=12∠EFG ,∠3=∠4=12∠ECD ,∵∠E +2∠G =210°,∴∠E +∠1+∠2+∠ECD =210°,∵AB //CD ,∴∠ENB =∠ECD ,∴∠E +∠1+∠2+∠ENB =210°,∵∠1=∠E +∠ENB ,∴∠1+∠1+∠2=210°,∴3∠1=210°,∴∠1=70°,∴∠EFG =2×70°=140°.故选:A .【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等.6.C【分析】根据题意,利用平方根,立方根的定义求出a ,b 的值,再代入求解即可.【详解】解:24,a =31,b -2,a ∴=±1b =-,∴当2,a =-1b =-时,213a b +=--=-;∴当2,a =1b =-时,211a b +=-=.故选:C .【点睛】本题考查的知识点是平方根以及立方根的定义,根据定义求出a ,b 的值是解此题的关键. 7.A【分析】根据AB ∥CD 可得∠BOD =∠ABO =40°,利用平角得到∠COB =140°,再根据角平分线的定义得到∠BOE =70°,则③正确;利用OP ⊥CD ,AB ∥CD ,∠ABO =40°,可得∠POB =50°,∠BOF =20°,∠FOD =20°,进而可得OF 平分∠BOD ,则①正确;由∠EOB =70°,∠POB =50°,∠POE =20°,由∠BOF =∠POF -∠POB =20°,进而可得∠POE =∠BOF ,则②正确;由②可知∠POB=50°,∠FOD=20°,则④不正确.【详解】③∵AB∥CD,∴∠BOD=∠ABO=40°,∴∠COB=180°-40°=140°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12×140°=70°,故③正确;①∵OP⊥CD,∴∠POD=90°,又∵AB∥CD,∴∠BPO=90°,又∵∠ABO=40°,∴∠POB=90°-40°=50°,∴∠BOF=∠POF-∠POB=70°-50°=20°,∠FOD=40°-20°=20°,∴OF平分∠BOD,故①正确;②∵∠EOB=70°,∠POB=90°-40°=50°,∴∠POE=70°-50°=20°,又∵∠BOF=∠POF-∠POB=70°-50°=20°,∴∠POE=∠BOF,故②正确;④由①可知∠POB=90°-40°=50°,∠FOD=40°-20°=20°,故∠POB≠2∠DOF,故④不正确.故结论正确的是①②③,故选A.【点睛】本题考查了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答.8.B【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数解析:B【分析】观察已知点的坐标可得,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a 2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,进而可得结果.【详解】解:由直角坐标系可知A (1,1),B (2,﹣1),C (3,2),D (4,﹣2), ……,即a 1=1,a 2=1,a 3=2,a 4=﹣1,a 5=3,a 6=2,a 7=4,a 8=﹣2,……,所有数列奇数个都是从1开始逐渐递增的,且都等于所在的个数加上1再除以2,则a 2017=1009,偶数列等于所在的个数除以4,能够整除的,结果的相反数就是所求出的数,不能整除的,等于结果的整数部分加1,且符号为正,∴a 2016=﹣504,2018÷4=504……2,∴a 2018=505,故 a 2016+a 2017+a 2018=1010,故选:B .【点睛】本题主要考查了规律型:点的坐标,探索数字与字母规律是解题关键.二、填空题9.6【分析】根据非负数的性质列出方程求出x 、y 、z 的值,代入所求代数式计算即可.【详解】解:∵∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6解析:6【分析】根据非负数的性质列出方程求出x 、y 、z 的值,代入所求代数式计算即可.【详解】解:∵21(2)0x y -+-=∴x-1=0,y-2=0,z-3=0,∴x=1,y=2,z=3.∴x+y+z=1+2+3=6.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=解析:1【分析】直接利用关于y轴对称点的性质得出横坐标互为相反数,纵坐标相等,进而得出答案.【详解】解:∵点A(1+m,1-n)与点B(-3,2)关于y轴对称,∴1+m=3,1-n=2,∴m=2,n=-1,∴(m+n)2020=(2-1)2020=1;故答案为:1.【点睛】此题主要考查了关于y轴对称点的性质,正确掌握点的坐标特点是解题关键.11.140°.【分析】△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【详解析:140°.【分析】△ABC中,已知∠A即可得到∠ABC与∠ACB的和,而BO和CO分别是∠ABC,∠ACB的两条角平分线,即可求得∠OBC与∠OCB的度数,根据三角形的内角和定理即可求解.【详解】△ABC中,∠ABC+∠ACB=180°−∠A=180°−100°=80°,∵BO、CO是∠ABC,∠ACB的两条角平分线.∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=40°,在△OBC中,∠BOC=180°−(∠OBC+∠OCB)=140°.故填:140°.【点睛】本题主要考查了三角形的内角和定理,以及三角形的角平分线的定义.12.100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴=65°.∵CE ∥BF ,∴=35°.解析:100【分析】根据方位角的概念,过点C 作辅助线,构造两组平行线,利用平行线的性质即可求解.【详解】如图,作CE ∥AD ,则CE ∥BF .∵CE ∥AD ,∴DAC ACE ∠=∠=65°.∵CE ∥BF ,∴B CBF E C =∠∠=35°.∴C C A B A E C B E =+∠∠∠=65°+35°=100°.故答案为:100.【点睛】本题考查了方位角的概念,解答题目的关键是作辅助线,构造平行线.两直线平行,内错角相等.13.64【分析】如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.【详解】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣128°=52°,由翻解析:64【分析】如图,根据两直线平行,同旁内角互补求出∠3,再根据翻折变换的性质列式计算即可得解.【详解】解:∵长方形的对边互相平行,∴∠3=180°﹣∠1=180°﹣128°=52°,由翻折的性质得,∠212=(180°﹣∠3)12=(180°﹣52°)=64°.故答案为:64.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质是解题的关键.14.③,④【分析】①[x) 示小于x的最大整数,由定义得[x)x≤[x)+1,[)<<-8,[)=-9即可,②由定义得[x)x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义解析:③,④【分析】①[x) 示小于x的最大整数,由定义得[x)<x≤[x)+1,[385-)<385-<-8,[385-)=-9即可,②由定义得[x)<x变形可以直接判断,③由定义得x≤[x)+1,变式即可判断,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),又[x)<x联立即可判断.【详解】由定义知[x)<x≤[x)+1,①[385-)=-9①不正确,②[x)表示小于x的最大整数,[x)<x,[x) -x<0没有最大值,②不正确③x≤[x)+1,[x)-x≥-1,[x)–x有最小值是-1,③正确,④由定义知[x)<x≤[x)+1,由x≤[x)+1变形的x-1≤[x),∵[x)<x,∴x 1-≤[x )<x ,④正确.故答案为:③④.【点睛】本题考查实数数的新规定的运算 ,阅读题给的定义,理解其含义,掌握性质[x )<x≤[x )+1,利用性质解决问题是关键.15.①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若大于0,不小于0,则>0,≥0,点在第三象限解析:①④【分析】根据平面直角坐标系,平行线,算术平方根的概念进行判断【详解】解:①直角坐标系中的点与有序实数对一一对应;正确;故此命题是真命题; ②若a 大于0,b 不小于0,则a >0,b ≥0,点(),P a b --在第三象限或x 轴的负半轴上;故此命题是假命题;③过直线外一点有且只有一条直线与已知直线平行;故此命题是假命题;④若4=y ,则x =1,y =4,则x y的算术平方根是12,正确,故此命题是真命题.故答案为:①④【点睛】此题主要考查了命题与定理,正确掌握相关定义是解题关键. 16.【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A解析:()3,1【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A 2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(−3,1),A4(0,−2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505…1,∴2021A的坐标与A1的坐标相同,为(3,1).故答案是:(3,1).【点睛】考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.三、解答题17.(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】(1)解:3-(-5)+(-6)=3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果.【详解】(1)解:3-(-5)+(-6)=3+5-6=2(2)解:(-1)21 2=1-4× 1 2=1-2=-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(1)x=±;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=,解得:x=±.解析:(1)x=±1213;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=144 169,解得:x=±12 13.(2)(x-2)2-36=0,移项得:(x-2)2=36,开方得:x-2=6或x-2=-6解得:x=8或x=-4.故答案为(1)x=±1213;(2)x=8或x=-4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.19.内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:(已知)(内错角相等,两直线平解析:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行【分析】运用平行线的性质定理和判定定理可得结论.【详解】解:12∠=∠(已知)//CF BD∴(内错角相等,两直线平行),3180CAB(两直线平行,同旁内角互补),3C ∠=∠(已知),180C CAB ∴∠+∠=︒(等式的性质),//AB CD ∴(同旁内角互补,两直线平行),4EGA (两直线平行,同位角相等),45∠=∠(已知), 5EGA (等量代换), //ED FB ∴(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;同位角相等,两直线平行.【点睛】本题主要考查了平行线的判定定理和性质定理,熟悉相关性质是解答此题的关键. 20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.21.(1),.(2).【分析】(1)首先得出接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】,∴整数部分,小数部分.(2)原式,则的平方根为.【点睛】此题解析:(1)1a =,174b =.(2)32±【分析】(117接近的整数,进而得出a ,b 的值;(2)根据平方根即可解答.【详解】 1754<<∴ 132<<,∴整数部分1a =,小数部分314b -=.(2)()()224a b -++原式())22144=-++ 11718=+=,则()()224a b -++的平方根为±【点睛】此题主要考查了估算无理数的大小,正确得出a ,b 的值是解题关键. 22.(1)6分米;(2)满足.【分析】(1)由正方形面积可知,求出的值即可;(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出,求出长方形的长和宽和6比较即可.【详解】解:(解析:(1)6分米;(2)满足.【分析】(1(2)设长方形的长宽分别为4a 分米、3a 分米,根据面积得出方程,求出a ,求出长方形的长和宽和6比较即可.【详解】解:(16分米;(2)设长方形的长为4a 分米,则宽为3a 分米.则4324a a ⋅=,解得:a =∴长为4 5.6566a ≈<,宽为3 4.242 6.a ≈<∴满足要求.【点睛】本题主要考查了算术平方根及实数大小比较,用了转化思想,即把实际问题转化成数学问题.23.(1)80°;(2)∠AKC =∠APC ,理由见解析;(3)∠AKC =∠APC ,理由见解析【分析】(1)先过P 作PE ∥AB ,根据平行线的性质即可得到∠APE =∠BAP ,∠CPE =∠DCP,再根据∠解析:(1)80°;(2)∠AKC=12∠APC,理由见解析;(3)∠AKC=23∠APC,理由见解析【分析】(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,进而得到∠AKC=12∠APC;(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23∠APC,进而得到∠BAK﹣∠DCK=23∠APC.【详解】(1)如图1,过P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=∠BAP,∠CPE=∠DCP,∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;(2)∠AKC=12∠APC.理由:如图2,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠AKE=∠BAK,∠CKE=∠DCK,∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP+∠DCP,∵∠BAP与∠DCP的角平分线相交于点K,∴∠BAK+∠DCK=12∠BAP+12∠DCP=12(∠BAP+∠DCP)=12∠APC,∴∠AKC=12∠APC;(3)∠AKC=23∠APC理由:如图3,过K作KE∥AB,∵AB∥CD,∴KE∥AB∥CD,∴∠BAK=∠AKE,∠DCK=∠CKE,∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,过P作PF∥AB,同理可得,∠APC=∠BAP﹣∠DCP,∵∠BAK=23∠BAP,∠DCK=23∠DCP,∴∠BAK﹣∠DCK=23∠BAP﹣23∠DCP=23(∠BAP﹣∠DCP)=23∠APC,∴∠AKC=23∠APC.【点睛】本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.。
完整版七年级下学期期中考试数学试卷
完整版七年级下学期期中考试数学试卷一、选择题1.25的平方根是()A .±5B .5C .±5D .﹣52.下列图中的“笑脸”,是由上面教师寄语中的图像平移得到的是( )A .B .C .D . 3.在平面直角坐标系中有四个点()2,3A ,()2,3B -,()2,3C --,()2,3D -.其中在第一象限的点是( ).A .AB .BC .CD .D 4.下列命题是假命题...的是( ). A .同一平面内,两直线不相交就平行 B .对顶角相等C .互为邻补角的两角和为180°D .相等的两个角一定是对顶角 5.如图,AB //CD ,AD ⊥AC ,∠BAD =35°,则∠ACD =( )A .35°B .45°C .55°D .70° 6.下列各式中,正确的是( ) A .16=±4 B .±16=4 C .3273-=- D .2(4)4-=- 7.如图,将△OAB 绕点O 逆时针旋转55°后得到△OCD ,此时//CD OB ,若20AOB ∠=︒,则A ∠的度数是( )A .20°B .25°C .30°D .35°8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为()()()1,0,2,0,2,1,()()()1,1,1,2,2,2……根据这个规律,第2021个点的坐标为( )A .()45,4B .()45,5C .()44,4D .()44,5二、填空题9.如果,a 的平方根是3±,则317a -=__________.10.点()3,2A -关于y 轴对称的点的坐标是______.11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B =50°,∠C =70°,则∠DAE =_____________°.12.如图,//a b ,直角三角板直角顶点在直线b 上.已知150∠=︒,则2∠的度数为______°.13.如图所示,一个四边形纸片ABCD ,B D 90︒∠=∠=,把纸片按如图所示折叠,使点B 落在AD 边上的B '点,AE 是折痕,C 130︒∠=,则AEB ∠=________度.14.已知57a ,57b ,则2019()a b +=________. 15.已知AB ∥x 轴,A (-2,4),AB =5,则B 点横纵坐标之和为______.16.如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下、向右的方向不断地移动,每移动一个单位,得到点()10,1A 、()21,1A 、()31,0A 、()42,0A …,那么点25A 的坐标为_______.三、解答题17.计算:(1)20183(1)128-+--(2)20319()(2018)1252π---+-- 18.求下列各式中的x :(1)3641250x -=; (2)3(1)8x +=; (3)3(21)270x -+=.19.如图,已知∠AED =∠C ,∠DEF =∠B ,试说明∠EFG +∠BDG =180∘,请完成下列填空:∵∠AED =∠C (_________)∴ED ∥BC (_________)∴∠DEF =∠EHC (___________)∵∠DEF =∠B (已知)∴_______(等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵_________________(邻补角的意义)∴∠EFG +∠BDG =180∘(___________)20.如图,在平面直角坐标系中,∆ABC 的顶点 C 的坐标为(1,3).点A 、B 分别在格点上.(1)直接写出A 、B 两点的坐标;(2)若把∆ABC 向上平移3个单位,再向右平移2个单位得∆A 'B 'C ',画出∆A 'B 'C '; (3)若∆ABC 内有一点 M (m ,n ),按照(2)的平移规律直接写出平移后点M 的对应点 M '的坐标.21.我们知道2是无理数,其整数部分是1,于是小明用2-1来表示2的小数部分. 请解答下列问题:(1)10的整数部分是 ,小数部分是 .(2)如果5的小数部分为a ,13的整数部分为b ,求a +b -5的值;(3)已知10+3=x +y ,其中x 是整数,且0<y <1,求x -y 的相反数.22.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形的长宽的比为3:2,问这块正方形工料是否合格?(参考数据:2=1.414,3=1.732,5=2.236)23.如图,已知AM //BN ,点P 是射线AM 上一动点(与点A 不重合),BC BD 、分别平分ABP ∠和PBN ∠,分别交射线AM 于点,C D .(1)当60A ∠=︒时,ABN ∠的度数是_______;(2)当A x ∠=︒,求CBD ∠的度数(用x 的代数式表示);(3)当点P 运动时,ADB ∠与APB ∠的度数之比是否随点P 的运动而发生变化?若不变化,请求出这个比值;若变化,请写出变化规律.(4)当点P 运动到使ACB ABD =∠∠时,请直接写出14DBN A +∠∠的度数. 【参考答案】一、选择题1.A解析:A【分析】根据平方根的定义,进行计算求解即可.解:∵(±5)2=25∴25的平方根±5.故选A .【点睛】本题主要考查了平方根的定义,解题的关键在于能够熟练掌握平方根的定义.2.D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都不是由平移得到的,D 是由平移得到的.故选:D .【点睛】解析:D【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等.【详解】解:A 、B 、C 都不是由平移得到的,D 是由平移得到的.故选:D .【点睛】本题考查平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.3.A【分析】根据各象限内点的坐标特征解答即可.【详解】解:(2,3)A 在第一象限;(2,3)B -在第二象限;(2,3)C --在第三象限;(2,3)D -在第四象限;故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.D根据相交线、对顶角以及邻补角的有关性质对选项逐个判断即可.【详解】解:A:同一平面内,两条不相交的直线平行,选项正确,不符合题意;B:对顶角相等,选项正确,不符合题意;C:互为邻补角的两角和为180°,选项正确,不符合题意;D:相等的两个角不一定是对顶角,选项错误,符合题意;故答案选D.【点睛】此题主要考查了相交线、对顶角以及邻补角的有关性质,熟练掌握相关基本性质是解题的关键.5.C【分析】由平行线的性质可得∠ADC=∠BAD=35°,再由垂线的定义可得△ACD是直角三角形,进而根据直角三角形两锐角互余的性质即可得出∠ACD的度数.【详解】∵AB∥CD,∠BAD=35°,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.【点睛】本题主要考查平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;熟练掌握平行线的性质是解题关键.6.C【分析】根据算术平方根与平方根、立方根的定义逐项判断即可得.【详解】A4,此项错误;B、4±,此项错误;C3-,此项正确;D4,此项错误;故选:C.【点睛】本题考查了算术平方根与平方根、立方根,熟记各定义是解题关键.7.D【分析】由旋转的性质得出∠AOC=55°,∠A=∠C,根据平行线的性质得出∠BOC=∠C=35°,则可得出答案.【详解】解:∵将△OAB 绕点O 逆时针旋转55°后得到△OCD ,∴∠AOC =55°,∠A =∠C ,∵∠AOB =20°,∴∠BOC =∠AOC −∠AOB =55°−20°=35°,∵CD ∥OB ,∴∠BOC =∠C =35°,∴∠A =35°,故选:D .【点睛】本题考查了旋转的性质,平行线的性质,求出∠BOC 的度数是解题的关键.8.A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律,通过计算即可得到答案.【详解】解:根据题意,第个点的坐标为:解析:A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第1个点的坐标为:()1,0,第9个点的坐标为()3,0,第25个点的坐标为:()5,0, 再总结规律,通过计算即可得到答案.【详解】解:根据题意,第1个点的坐标为:()1,0,第9个点的坐标为()3,0,第25个点的坐标为:()5,0,······所以第()221n -个点的坐标为:()21,0n -, ∵2452025=,∴第2025个数为:()45,0∴第2021个数为第2025个数向上推4个数,即()45,4故选:A .【点睛】本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解.二、填空题9.-4【分析】根据题意先求出 ,再代入,即可.【详解】解:∵的平方根是,∴ ,∴ ,∴,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值. 解析:-4【分析】根据题意先求出a ,即可.【详解】解:∵3±, ∴2(3)9=±= , ∴81a = , ∴4==-,故答案为:4-【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出a 的值. 10.【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变, 则点关于y 轴对称的点的坐标是,故答案为:.【点睛】本题考查了点坐标解析:()3,2--【分析】根据点坐标关于y 轴对称的变换规律即可得.【详解】点坐标关于y 轴对称的变换规律:横坐标互为相反数,纵坐标不变,则点()3,2A -关于y 轴对称的点的坐标是()3,2--,故答案为:()3,2--.【点睛】本题考查了点坐标规律探索,熟练掌握点坐标关于y 轴对称的变换规律是解题关键. 11.10【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAD ,根据直角三角形两锐角互余求出∠BAE ,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=1解析:10【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAD ,根据直角三角形两锐角互余求出∠BAE ,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°,∵AD 是角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵AE 是高,∴∠BAE=90°-∠B=90°-50°=40°,∴∠DAE=∠BAE-∠BAD=40°-30°=10°.故答案为:10.【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键. 12.40【分析】根据a ∥b ,可以得到∠1=∠DAE ,∠2=∠CAB ,再根据∠DAC=90°,即可求解.【详解】解:如图所示∵a ∥b∴∠1=∠DAE ,∠2=∠CAB∵∠DAC=90°∴∠D解析:40【分析】根据a∥b,可以得到∠1=∠DAE,∠2=∠CAB,再根据∠DAC=90°,即可求解.【详解】解:如图所示∵a∥b∴∠1=∠DAE,∠2=∠CAB∵∠DAC=90°∴∠DAE+∠CAB=180°-∠DAC=90°∴∠1+∠2=90°∴∠2=90°-∠1=40°故答案为:40.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.13.【分析】根据四边形的内角和等于求出,根据翻折的性质可得,然后求出,再根据直角三角形两锐角互余列式计算即可得解.【详解】解:,,,由翻折的性质得,,,,.故答案为:.【点睛】解析:【分析】根据四边形的内角和等于360︒求出BAD∠=∠,然后求∠,根据翻折的性质可得BAE DAE出 BAE ∠,再根据直角三角形两锐角互余列式计算即可得解.【详解】解:90B D ∠=∠=︒,130C ∠=︒,360909013050BAD ,由翻折的性质得,BAE DAE ∠=∠, 11502522BAE BAD ,90B ∠=︒,902565AEB .故答案为:65.【点睛】本题考查了翻折变换的性质,四边形的内角和定理,直角三角形两锐角互余的性质. 14.1【分析】根据4<7<9可得,2<<3,从而有7<5+<8,由此可得出5+的整数部分是7,小数部分a 用5+减去其整数部分即可,同理可得b 的值,再将a ,b 的值代入所求式子即可得出结果.【详解】解析:1【分析】根据4<7<9可得,2<3,从而有7<<8,由此可得出7,小数部分a 用b 的值,再将a ,b 的值代入所求式子即可得出结果.【详解】解:∵4<7<9,∴23,∴-3<<-2,∴7<<8,2<3,∴7,2,∴,∴2019()a b +=12019=1.故答案为:1.【点睛】此题主要考查了估算无理数的大小,正确得出各数的小数部分是解题关键.15.-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的坐标或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标解析:-3或7【分析】由AB ∥x 轴可知B 点的纵坐标和A 点的纵坐标相同,再根据线段AB 的长度为5,B 点在A 点的坐标或右边,分别求出B 点的坐标,即可得到答案.【详解】解:∵AB ∥x 轴,∴B 点的纵坐标和A 点的纵坐标相同,都是4,又∵A (-2,4),AB =5,∴当B 点在A 点左侧的时候,B (-7,4),此时B 点的横纵坐标之和是-7+4=-3,当B 点在A 点右侧的时候,B (3,4),此时B 点的横纵坐标之和是3+4=7;故答案为:-3或7.【点睛】本题考查了与坐标轴平行的线上点的坐标特征以及分情况讨论的思想,要注意根据B 点位置的不确定得出两种情况分别求解.16.【分析】结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故的纵坐标与的纵坐标相同,根据题中每一个周期第一点的坐标可推出,即可求解.【详解】结合图像可知,纵坐标每四个点一个循环,…解析:()12,1【分析】结合图象可知,纵坐标每四个点循环一次,而25=4×6+1,故25A 的纵坐标与()10,1A 的纵坐标相同,根据题中每一个周期第一点的坐标可推出()412,1n A n +=,即可求解.【详解】结合图像可知,纵坐标每四个点一个循环,254=6÷……1,∴25A 是第七个周期的第一个点,每一个周期第一点的坐标为:()10,1A ,()()592,1,4,1A A ,()412,1n A n +∴=,25=46+1⨯,∴25A (12,1).故答案为:(12,1).【点睛】本题属于循环类规律探究题,考查了学生归纳猜想的能力,结合图象找准循周期是解决本题的关键.三、解答题17.(1);(2)-5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.【详解】(1)=1+-2=(2)=3-4+解析:(12;(2)-5.【分析】(1)直接利用算术平方根以及立方根的定义化简得出答案;(2)直接利用算术平方根以及立方根的定义化简得出答案.【详解】(1)2018(1)1-+1-22(2201()(2018)2π--+-=3-4+1-5=-5【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.(1);(2)1;(3)-1.【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1),∴ ,∴,∴;(2解析:(1)54;(2)1;(3)-1. 【分析】(1)根据立方根的定义解方程即可;(2)根据立方根的定义解方程即可;(3)根据立方根的定义解方程即可.【详解】解:(1)3641250x -=,∴ ()334=5x , ∴4=5x , ∴5=4x ; (2)3(1)8x +=∴33(1)2x +=∴12x +=∴1x =;(3)3(21)270x -+=,∴()33(21)3x -=-, ∴213x -=-,∴1x =-.【点睛】本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键. 19.已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B ;∠DFE+∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED ∥BC ,通过两直线平行,内错角相等推出∠解析:已知;同位角相等,两直线平行;两直线平行,内错角相等;∠EHC =∠B ;∠DFE +∠EFG =180∘;等量代换【分析】根据同位角相等,两直线平行推出ED ∥BC ,通过两直线平行,内错角相等推出∠DEF =∠EHC ,再运用等量代换得到∠EHC =∠B ,最后推出BD ∥EH ,∠BDG =∠DFE ,再利用邻补角的意义推出结论,据此回答问题.【详解】解:∵∠AED =∠C (已知)∴ED ∥BC (同位角相等,两直线平行)∴∠DEF =∠EHC (两直线平行,内错角相等)∵∠DEF =∠B (已知)∴∠EHC =∠B (等量代换)∴BD ∥EH (同位角相等,两直线平行)∴∠BDG =∠DFE (两直线平行,内错角相等)∵∠DFE +∠EFG =180∘(邻补角的意义)∴∠EFG +∠BDG =180∘(等量代换).【点睛】本题主要考查平行线的判定和性质,属于综合题,难度一般,熟练掌握平行线的判定和性质是解题关键.20.(1),;(2)见解析;(3).【分析】(1)根据原点的位置确定点的坐标即可;(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可; (3)将M (m ,n )向上平移3个单位,再向右平移解析:(1)(1,1)A --,(4,2)B ;(2)见解析;(3)(2,3)M m n '++.【分析】(1)根据原点的位置确定点的坐标即可;(2)将,,A B C 三点向上平移3个单位,再向右平移2个单位得到,,A B C ''',连接,,A B C '''即可;(3)将M (m ,n )向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到M '的坐标.【详解】(1)根据原点的位置确定点的坐标,则(1,1)A --,(4,2)B ;(2)将,,A B C 三点向上平移3个单位,再向右平移2个单位得到,,A B C ''',(1,1),(4,2),(1,3)A B C --,(1,2),(6,5),(3,6)A B C '''∴,在图中描出点,,A B C ''',连接,,A B C ''',∆A 'B 'C '即为所求.(3)将M (m ,n )向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3 ∴(2,3)M m n '++.【点睛】本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键.21.(1)3,;(2)1;(3)【分析】(1)根据题意即可求解;(2)估算出的小数部分为a ,的整数部分为b ,即可确定出a +b 的值; (3)根据题意确定出x 与y 的值,求出x -y 的相反数即可.【详解解析:(1)3103;(2)1;(3312【分析】(1)根据题意即可求解;(25a 13b ,即可确定出a +b 的值; (3)根据题意确定出x 与y 的值,求出x -y 的相反数即可.【详解】(1)3104<<,103103;(2)253<<,5252,52a ∴=,3134<<,3,3b ∴=,231a b ∴++=;(3)132<<,11,10x +y ,其中x 是整数,且0<y <1,)1,1011111111112y x x y ∴==+=∴-=-==12x y ∴-=x y ∴-的相反数是:(1212-=.【点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题. 22.(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1)根据正方形的面积公式求出的值即可;(2)设长方形的长宽分别为3x 分米、2x 分米,得出方程3解析:(1)正方形工料的边长是 5 分米;(2)这块正方形工料不合格,理由见解析.【详解】试题分析:(1的值即可;(2)设长方形的长宽分别为3x 分米、2x 分米,得出方程3x•2x=18,求出长方形的长和宽和5比较即可得出答案.试题解析:(1)∵正方形的面积是 25 平方分米,∴正方形工料的边长是 5 分米;(2)设长方形的长宽分别为 3x 分米、2x 分米,则 3x•2x=18,x 2=3,x 1,x 2=5,,即这块正方形工料不合格.23.(1)120°;(2)90°-x°;(3)不变,;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠解析:(1)120°;(2)90°-12x°;(3)不变,12;(4)45°【分析】(1)由平行线的性质:两直线平行同旁内角互补可得;(2)由平行线的性质可得∠ABN=180°-x°,根据角平分线的定义知∠ABP=2∠CBP、∠PBN=2∠DBP,可得2∠CBP+2∠DBP=180°-x°,即∠CBD=∠CBP+∠DBP=90°-12x°;(3)由AM∥BN得∠APB=∠PBN、∠ADB=∠DBN,根据BD平分∠PBN知∠PBN=2∠DBN,从而可得∠APB:∠ADB=2:1;(4)由AM∥BN得∠ACB=∠CBN,当∠ACB=∠ABD时有∠CBN=∠ABD,得∠ABC+∠CBD=∠CBD+∠DBN,即∠ABC=∠DBN,根据角平分线的定义可得∠ABP=∠PBN=12∠ABN=2∠DBN,由平行线的性质可得12∠A+12∠ABN=90°,即可得出答案.【详解】解:(1)∵AM∥BN,∠A=60°,∴∠A+∠ABN=180°,∴∠ABN=120°;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°-x°,∴∠ABP+∠PBN=180°-x°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=180°-x°,∴∠CBD=∠CBP+∠DBP=12(180°-x°)=90°-12x°;(3)不变,∠ADB:∠APB=12.∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1,∴∠ADB:∠APB=12;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN,∴∠ABC=∠DBN,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠ABC,∠PBN=2∠DBN,∴∠ABP=∠PBN=2∠DBN=12∠ABN,∵AM∥BN,∴∠A+∠ABN=180°,∴12∠A+12∠ABN=90°,∴12∠A+2∠DBN=90°,∴14∠A+∠DBN=12(12∠A+2∠DBN)=45°.【点睛】本题主要考查平行线的性质和角平分线的定义,熟练掌握平行线的性质是解题的关键.。
完整版初一数学下册期中测试卷及答案
完整版初一数学下册期中测试卷及答案一、选择题1.实数4的算术平方根是()A .2B .2C .2±D .162.如图为一只小兔,将图进行平移,得到的图形可能是下列选项中的( )A .B .C .D .3.在平面直角坐标系中,点()2,1-位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中,是假命题的是( )A .经过一个已知点能画一条且只能画一条直线与已知直线平行B .从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C .在同一平面内,一条直线的垂线可以画无数条D .连接直线外一点与直线上各点的所有线段中,垂线段最短5.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70° 6.下列等式正确的是( ) A 93-=- B 49714412=± C 23(8)4-= D .327382-- 7.如图,ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,//ED AC ,34BAE ∠=︒,则BED ∠的度数为( )A .134°B .124°C .114°D .104°8.如图,在平面直角坐标系中,点A 1,A 2,A 3,A 4,A 5,A 6的坐标依次为A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…按此规律排列,则点A 2021的坐标是( )A .(10101),B .(10100),C .(10111),D .(10110),二、填空题9.若a 、b 为实数,且满足|a ﹣2|+3b -=0,则a ﹣b 的立方根为_____.10.若()1,1A m n +-与点()-3,2B 关于y 轴对称,则()2019m n +的值是___________; 11.已知点A (3a+5,a ﹣3)在二、四象限的角平分线上,则a=__________. 12.如图,把一张长方形纸片ABCD 沿EF 折叠后,D 、C 分别落在D ,C '的位置上,ED '与BC 交于G 点,若56EFG ∠=︒,则AEG ∠=______.13.图,直线//AB CD ,直线l 与直线AB ,CD 相交于点E 、F ,点P 是射线EA 上的一个动.点.(不包括端点E ),将EPF 沿PF 折叠,使顶点E 落在点Q 处.若∠PEF =75°,2∠CFQ =∠PFC ,则EFP ∠=________.14.已知M 是满足不等式36a <<N 是满足不等式372-大整数,则M +N 的平方根为________.15.()2260a b ++-=,则(),a b 在第_____象限. 16.如图,长方形BCDE 的各边分别平行于x 轴或y 轴,物体甲和物体乙分别由点A (4,0),沿长方形BCDE 的边作环绕运动.物体甲按逆时针方向以2个单位/秒匀速运动,物体乙按顺时针方向以4个单位秒匀速运动,则两个物体运动后的第2021次相遇地点的坐标是___.三、解答题17.计算题(1)122332-+-+-. (2)3314827-+-; 18.求下列各式中x 的值.(1)x 2﹣81=0;(2)2x 2﹣16=0;(3)(x ﹣2)3=﹣27.19.根据下列证明过程填空:已知:如图,AD BC ⊥于点D ,EF BC ⊥于点F ,4C ∠=∠.求证:12∠=∠.证明:∵AD BC ⊥,EF BC ⊥(已知)∴______=90ADC ∠=︒(______________)∴//AD EF (_____________)∴1______∠=(_____________)又∵4C ∠=∠(已知)∴//______AC (_________)∴2______∠=(_________)∴12∠=∠(__________)20.如图,在平面直角坐标系中,三角形ABC 经过平移得到三角形A 1B 1C 1,结合图形,完成下列问题:(1)三角形ABC 先向左平移 个单位,再向 平移 个单位得到三角形A 1B 1C 1. (2)三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是 .(3)三角形ABC 的面积是 .21.任意无理数都是由整数部分和小数部分构成的.已知一个无理数a ,它的整数部分是b ,则它的小数部分可以表示为-a b .例如:469<<,即263<<,显然6的整数部分是2,小数部分是62-.根据上面的材料,解决下列问题:(1)若11的整数部分是m ,5的整数部分是n ,求5m n -+的值.(2)若714+的整数部分是2x ,小数部分是y ,求142x y -+的值. 22.某市在招商引资期间,把已倒闭的油泵厂出租给外地某投资商,该投资商为减少固定资产投资,将原来的400m 2的正方形场地改建成300m 2的长方形场地,且其长、宽的比为5:3.(1)求原来正方形场地的周长;(2)如果把原来的正方形场地的铁栅栏围墙全部利用,围成新场地的长方形围墙,那么这些铁栅栏是否够用?试利用所学知识说明理由.23.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD ∥AB ,点E 在PQ 上,∠ECN =∠CAB ,求证:∠MCA =∠DCE ;(3)如图3,BF 平分∠ABP ,CG 平分∠ACN ,AF ∥CG .若∠CAB =60°,求∠AFB 的度数.【参考答案】一、选择题1.B解析:B【分析】根据算术平方根的定义,求一个非负数a的算术平方根,也就是求一个非负数x,使得x2=a,则x就是a的算术平方根,特别地,规定0的算术平方根是0.【详解】解:∵22=4,∴4的算术平方根是2.故选B.【点睛】本题主要考查了算术平方根的定义,解题的关键在于能够掌握一个非负数的算术平方根具有非负性.2.C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C.【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.解析:C【分析】根据平移的特点即可判断.【详解】将图进行平移,得到的图形是故选C.【点睛】此题主要考查平移的特点,解题的关键是熟知平移的定义.3.B【分析】根据平面直角坐标系的四个象限内的坐标特征回答即可.【详解】解:解:在平面直角坐标系中,点P(−2,1)位于第二象限,故选:B.【点睛】本题考查了点的坐标,横坐标小于零,纵坐标大于零的点在第二象限.4.A【分析】分别利用平行线以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可.【详解】解:A、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;B、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;C、一条直线的垂线可以画无数条,正确,不符合题意;D、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意;故选:A.【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键.5.A【分析】根据平行线的性质得出∠2=∠D,进而利用邻补角得出答案即可.【详解】解:如图,∵AB∥CD,∴∠2=∠D,∵∠1=140°,∴∠D=∠2=180°−∠1=180°−140°=40°,故选:A.【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.6.C【分析】根据算术平方根、立方根的定义计算即可【详解】A、负数没有平方根,故错误B 712,故错误C ,故正确D 、3322⎛⎫--= ⎪⎝⎭,故错误 故选:C【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键 7.B【分析】已知AE 平分∠BAC ,ED ∥AC ,根据两直线平行,同旁内角互补可知∠DEA 的度数,再由周角为360°,求得∠BED 的度数即可.【详解】解:∵AE 平分∠BAC ,∴∠BAE =∠CAE =34°,∵ED ∥AC ,∴∠CAE +∠AED =180°,∴∠DEA =180°-34°=146°,∵BE ⊥AE ,∴∠AEB =90°,∵∠AEB +∠BED +∠AED =360°,∴∠BED =360°-146°-90°=124°,故选:B .【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键. 8.A【分析】根据图象可得移动4次图象完成一个循环,找规律得出的坐标,再确定的坐标,从而可得出点A2021的坐标.【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5解析:A【分析】根据图象可得移动4次图象完成一个循环,找规律得出4n A 的坐标,再确定2020A 的坐标,从而可得出点A 2021的坐标.【详解】解:A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…, ∴4A 的横坐标为2,纵坐标为0,8A 的横坐标为224⨯=,纵坐标为0,……以此类推,4n A 的横坐标为22n n ⨯=,纵坐标为0,∵202145051÷=,∴2020A 的坐标为(5052,0)⨯,∴2021A 的坐标为(1010,1)故选:A .【点睛】本题考查了点的坐标变化规律,解答本题的关键是仔细观察图形,得到点的坐标变化规律.二、填空题9.-1【分析】根据非负数的性质,求出a 、b 的值,再进而计算所给代数式的立方根.【详解】解:∵|a ﹣2|+=0,|a ﹣2|≥0,≥0∴a ﹣2=0,3﹣b =0∴a =2,b =3∴,故答案为:解析:-1【分析】根据非负数的性质,求出a 、b 的值,再进而计算所给代数式的立方根.【详解】解:∵|a ﹣0,|a ﹣2|≥0∴a ﹣2=0,3﹣b =0∴a =2,b =3 ∴1==-,故答案为:﹣1.【点睛】本题主要考查了非负数的性质,立方根的性质,关键是根据“两个非负数和为0,则这两个数都为0”列出方程求得a 、b 的值.10.1【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得m 、n 的值,代入计算可得答案.【详解】由点与点的坐标关于y 轴对称,得:,,解得:,,∴.故答案为:.【点睛】本题解析:1【分析】根据关于y 轴对称的点,纵坐标相同,横坐标互为相反数,可得m 、n 的值,代入计算可得答案.【详解】由点()11A m n +-,与点()32B -,的坐标关于y 轴对称,得: 13m +=,12n -=,解得:2m =,1n =-,∴20192019()(21)1m n +=-=.故答案为:1.【点睛】本题考查了关于y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.11.﹣【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣.故答案是:﹣.解析:﹣12【详解】∵点A (3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,∴3a+5+a-3=0,∴a=﹣12.故答案是:﹣12. 12.68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD//BC ,,∴∠DEF=∠EFG=56°,由折叠可得,∠GEF解析:68°【分析】先根据平行线的性质求得∠DEF 的度数,再根据折叠求得∠DEG 的度数,最后计算∠AEG 的大小.【详解】解:∵AD //BC ,56EFG ∠=︒,∴∠DEF =∠EFG =56°,由折叠可得,∠GEF =∠DEF =56°,∴∠DEG =112°,∴∠AEG =180°-112°=68°.故答案为:68°.【点睛】本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.13.或【分析】分两种情形:①当点Q 在平行线AB ,CD 之间时.②当点Q 在CD 下方时,分别构建方程即可解决问题.【详解】解:①当点Q 在平行线AB ,CD 之间时,如图1.∵AB//CD∴∠PEF+解析:35︒或63︒【分析】分两种情形:①当点Q 在平行线AB ,CD 之间时.②当点Q 在CD 下方时,分别构建方程即可解决问题.【详解】解:①当点Q在平行线AB,CD之间时,如图1.∵AB//CD∴∠PEF+∠CFE=180°设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFQ=∠CFQ=x,∴75°+3x=180°,∴x=35°,∴∠EFP=35°.②当点Q在CD下方时,如图2设∠PFQ=x,由折叠可知∠EFP=x,∵2∠CFQ=∠CFP,∴∠PFC=2x,3∴75°+2x+x=180°,3解得x=63°,∴∠EFP=63°.故答案为:35︒或63︒【点睛】本题主要考查了平行线的性质以及翻折问题的综合应用,正确掌握平行线的性质和轴对称的性质是解题的关键.14.±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M是满足不等式-的所有整数a的和,∴M=-1+0+1+2=2,∵N是满足不等式x≤的解析:±2【分析】首先估计出a的值,进而得出M的值,再得出N的值,再利用平方根的定义得出答案.【详解】解:∵M a<a的和,∴M=-1+0+1+2=2,∵N是满足不等式x∴N=2,∴M+N的平方根为:±2.故答案为:±2.【点睛】此题主要考查了估计无理数的大小,得出M,N的值是解题关键.15.二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答解析:二【分析】根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答.【详解】解:由题意得,a+2=0,b-6=0,解得a=-2,b=6,所以,点(-2,6)在第二象限;故答案为:二【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】解:矩形的周长为,所以,第一次相遇的时间为秒,此时,解析:(2,2)--【分析】利用行程问题中的相遇问题,根据矩形的边长为8和4,物体乙是物体甲的速度的2倍,求得每一次相遇的地点,找出规律即可解答.【详解】解:矩形的周长为2(84)24⨯+=,所以,第一次相遇的时间为24(24)4÷+=秒,此时,甲走过的路程为428⨯=,相遇坐标为(2,2)-,第二次相遇又用时间为428⨯=(秒),甲又走过的路程为8216⨯=,相遇坐标为(2,2)--,∵3824=÷,∴第3次相遇时在点A 处,则以后3的倍数次相遇都在点A 处,∵202136732,∴第2021次相遇地点与第2次相遇地点的相同,∴第2021次相遇地点的坐标为(2,2)--.故填:(2,2)--.【点睛】此题主要考查了点的变化规律以及行程问题中的相遇问题及按比例分配的运用,通过计算发现规律就可以解决问题,解本题的关键是找出规律每相遇三次,甲乙两物体回到出发点.三、解答题17.(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可. 【详解】解:(1)原式=;(2)原式=.解析:(1)1;(2)1 3 -.【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式121;(2)原式=11 2233 --=-.【点睛】本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键. 18.(1)x=±9;(2);(3)x=﹣1.【分析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用平方根的定义求解即可;(3)利用立方根的定义求解即可.【详解】解:(1)解析:(1)x=±9;(2)x=±3)x=﹣1.【分析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用平方根的定义求解即可;(3)利用立方根的定义求解即可.【详解】解:(1)x2﹣81=0,x2=81,x=±9;(2)2x2﹣16=0,2x2=16,x2=8,x=±(3)(x﹣2)3=﹣27,x﹣2=﹣3,x=2﹣3,x =﹣1.【点睛】本题主要考查了平方根与立方根的定义:求a 的立方根,实际上就是求哪个数的立方等于a ,熟记相关定义是解答本题的关键.19.;垂直的定义;同位角相等,两直线平行;;两直线平行,同位角相等;GD ;同位角相等,两直线平行;;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可.【详解】解析:FEC ∠;垂直的定义;同位角相等,两直线平行;3∠;两直线平行,同位角相等;GD ;同位角相等,两直线平行;3∠;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可.【详解】证明:证明:∵AD BC ⊥,EF BC ⊥(已知)∴=90ADC FEC ∠=∠︒(垂直的定义)∴//AD EF (同位角相等,两直线平行)∴13∠=∠(两直线平行,同位角相等)又∵4C ∠=∠(已知)∴//AC GD (同位角相等,两直线平行)∴23∠∠=(两直线平行,内错角相等)∴12∠=∠(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键. 20.(1)5,下,4;(2)(,);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图解析:(1)5,下,4;(2)(5x -,4y -);(3)7.【分析】(1)根据题图直接判断即可;(2)由平移的性质:上加下减,左减右加解答即可;(3)利用分割法求出三角形的面积即可.【详解】解:(1)根据题图可知,三角形ABC 先向左平移5个单位,再向下平移4个单位得到三角形A 1B 1C 1;故答案是:5,下,4;(2)由平移的性质:上加下减,左减右加可知,三角形ABC 内有一点P (x ,y ),则在三角形A 1B 1C 1内部的对应点P 1的坐标是(5x -,4y -),故答案是:(5x -,4y -);(3)11144142423162437222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=---=, 故答案是:7.【点睛】本题考查作图:平移变换,三角形的面积等知识,熟练掌握基本知识,学会用分割法求三角形的面积是解题的关键.21.(1)0;(2)【分析】(1)仿照题例,可直接求出的整数部分和小数部分,代入计算;(2)先求出的整数部分,再得到的整数部分和小数部分,代入计算.【详解】解:(1)∵,∴,∴的整数部分是解析:(1)0;(2)112 【分析】(1(27【详解】解:(1)∵∴34<,∴3,即m=3, ∵∴23<<,∴2,即n=2,∴;(2)∵< ∴10711<, ∴710,即2x=10,∴x=5, ∴77103,即3,∴2x y -)532-112. 【点睛】本题考查了二次根式的整数和小数部分.看懂题例并熟练运用是解决本题的关键. 22.(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可; (2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为解析:(1)原来正方形场地的周长为80m ;(2)这些铁栅栏够用.【分析】(1)正方形边长=面积的算术平方根,周长=边长×4,由此解答即可;(2)长、宽的比为5:3,设这个长方形场地宽为3am ,则长为5am ,计算出长方形的长与宽可知长方形周长,同理可得正方形的周长,比较大小可知是否够用.【详解】解:(1(m ),4×20=80(m ),答:原来正方形场地的周长为80m ;(2)设这个长方形场地宽为3am ,则长为5am .由题意有:3a ×5a =300,解得:a ,∵3a 表示长度,∴a >0,∴a∴这个长方形场地的周长为 2(3a +5a )=16a (m ),∵∴这些铁栅栏够用.【点睛】本题考查了算术平方根的实际应用,解答本题的关键是明确题意,求出长方形和正方形的周长.23.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A 作AD ∥MN ,根据两直线平行,内错角相等得到∠MCA =∠DAC ,∠PBA =∠DAB ,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.。
完整版七年级下册数学期中考试试卷及答案
完整版七年级下册数学期中考试试卷及答案一、选择题1.下列各式中,没有平方根的是() A .-22B .(-2)2C .-(-2)D .∣-2∣2.下列四幅图案中,通过平移能得到图案E 的是( )A .AB .BC .CD .D 3.下列各点中,在第四象限的是( ) A .3,0 B .()2,5-C .()5,2--D .()2,3-4.下列命题是假命题的是( )A .垂线段最短B .内错角相等C .在同一平面内,不重合的两条直线只有相交和平行两种位置关系D .若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直5.如图,//,AB CD ABK ∠的平分线BE 的反向延长线和DCK ∠的平分线CF 的反向延长线相交于点 24H K H ∠-∠=︒,,则K ∠=( )A .76︒B .78︒C .80︒D .82︒6.下列说法中正确的是( )A .81的平方根是9B .16的算术平方根是4C .3a -与3a -相等D .64的立方根是4±7.如图,直线a ∥b ,∠1=74°,∠2=34°,则∠3的度数是( )A .75°B .55°C .40°D .35°8.在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的幸运点.已知点A 1的幸运点为A 2,点A 2的幸运点为A 3,点A 3的幸运点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n .若点A 1的坐标为(3,1),则点A 2021的坐标为( ) A .(﹣3,1)B .(0,﹣2)C .(3,1)D .(0,4)二、填空题9.比较大小,请在横线上填“>”或“<”或“=”9________327. 10.点()2,3P -关于x 轴对称的点的坐标为_________.11.三角形ABC 中,∠A=60°,则内角∠B ,∠C 的角平分线相交所成的角为_____. 12.如图,已知AB ∥CD ,如果∠1=100°,∠2=120°,那么∠3=_____度.13.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图2中115AEF ∠=︒,则图3中CFE ∠的度数为_______.14.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n 值为正整数,最后输出的结果为656,则开始输入的n 值可以是________.15.已知点(1,0)A 、(0,2)B ,点P 在x 轴上,且PAB △的面积为5,则点P 的坐标为__________.16.如图,点()00,0A ,()11,2A ,()22,0A ,()33,2A -,()44,0A ,……根据这个规律,探究可得点2021A 的坐标是________.三、解答题17.(1)计算:16125-(2)计算: 3223-- (3)计算:310.0484+--(4)计算:16122+--18.已知6a b +=,4ab =-,求下列各式的值: (1)22a b +; (2)22a ab b -+.19.如图所示,已知BD ⊥CD 于D ,EF ⊥CD 于F ,∠A =80°,∠ABC =100°.求证:∠1=∠2.证明:∵BD ⊥CD ,EF ⊥CD (已知) ∴∠BDC =∠EFC =90°(垂直的定义) ∴ (同位角相等,两直线平行) ∴∠2=∠3∵∠A =80°,∠ABC =100°(已知) ∴∠A +∠ABC =180° ∴AD //BC∴ (两直线平行,内错角相等) ∴∠1=∠2 .20.已知:如图,把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′,(1)画出△A ′B ′C ′,写出A ′、B ′、C ′的坐标;(2)点P 在y 轴上,且S △BCP =4S △ABC ,直接写出点P 的坐标.21.已知某正数的两个平方根分别是12a -和4,421a a b ++-的立方根是3,c 是13的整数部分.(1)求, , a b c 的值;(2)求2a b c ++的算术平方根.22.如图,用两个边长为103的小正方形拼成一个大的正方形. (1)求大正方形的边长?(2)若沿此大正方形边的方向出一个长方形,能否使裁出的长方形的长宽之比为3:2,且面积为480cm 2?23.问题情境:如图1,AB ∥CD ,∠PAB =130°,∠PCD =120°.求∠APC 的度数.小明的思路是:过P 作PE ∥AB ,通过平行线性质,可得∠APC =∠APE +∠CPE =50°+60°=110°. 问题解决:(1)如图2,AB ∥CD ,直线l 分别与AB 、CD 交于点M 、N ,点P 在直线I 上运动,当点P 在线段MN 上运动时(不与点M 、N 重合),∠PAB =α,∠PCD =β,判断∠APC 、α、β之间的数量关系并说明理由;(2)在(1)的条件下,如果点P 在线段MN 或NM 的延长线上运动时.请直接写出∠APC、α、B之间的数量关系;(3)如图3,AB∥CD,点P是AB、CD之间的一点(点P在点A、C右侧),连接PA、PC,∠BAP和∠DCP的平分线交于点Q.若∠APC=116°,请结合(2)中的规律,求∠AQC 的度数.【参考答案】一、选择题1.A解析:A【分析】把各数进行化简,再根据平方根的性质即可进行求解.【详解】解:A、-22=-4,是负数,负数没有平方根,故该选项符合题意;B、(-2)2=4,是正数,正数有平方根,故该选项不符合题意;C、-(-2)=2,是正数,正数有平方根,故该选项不符合题意;D、∣-2∣=2,是正数,正数有平方根,故该选项不符合题意;故选:A.【点睛】本题主要考查了平方根,熟练掌握平方根的性质是解本题的关键.2.B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件解析:B【分析】根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为答案.【详解】根据平移不改变图形的形状、大小和方向,将题图所示的图案通过平移后可以得到的图案是E,满足条件的原图是B;A,D选项改变了方向,故错误,C 选项中,三角形和四边形位置不对,故C 错误 故选:B 【点睛】在平面内,把一个图形整体沿某一个方向移动,这种图形的平行移动,叫做平移变换,简称平移.平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等.确定一个图形平移的方向和距离,只需确定其中一个点平移的方向和距离. 3.B 【分析】根据第四象限的点的横坐标是正数,纵坐标是负数解答. 【详解】解:A 、(3,0)在x 轴上,不合题意; B 、(2,-5)在第四象限,符合题意; C 、(-5,-2)在第三象限,不合题意; D 、(-2,3),在第二象限,不合题意. 故选:B . 【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 4.B 【分析】根据点到直线的距离、平行线的判定定理及平行线和相交线的基本性质等进行判断即可得出答案. 【详解】A 、垂线段最短,正确,是真命题,不符合题意;B 、内错角相等,错误,是假命题,必须加前提条件(两直线平行,内错角相等),符合题意;C 、在同一平面内,不重合的两条直线只有相交和平行两种位置关系,正确,是真命题,不符合题意;D 、若两条直线相交所形成的四个角中有三个角相等,则这两条直线互相垂直,正确,相交所成的四个角中,形成两组对顶角,有三个角相等,则四个角一定全相等,都是90︒,所以互相垂直,不符合题意; 故选:B . 【点睛】题目主要考察真假命题与定理的联系,解题关键是准确掌握各个定理. 5.A 【分析】分别过K 、H 作AB 的平行线MN 和RS ,根据平行线的性质和角平分线的性质可用ABK ∠和DCK ∠分别表示出H ∠和K ∠,从而可找到H ∠和K ∠的关系,结合条件可求得K ∠.【详解】解:如图,分别过K 、H 作AB 的平行线MN 和RS ,//AB CD ,//////AB CD RS MN ∴,12RHB ABE ABK ∴∠=∠=∠,12SHC DCF DCK ∠=∠=∠,180NKB ABK MKC DCK ∠+∠=∠+∠=︒,1180180()2BHC RHB SHC ABK DCK ∴∠=︒-∠-∠=︒-∠+∠,180BKC NKB MKC ∠=︒-∠-∠180ABK DCK =∠+∠-︒,36021801802BKC BHC BHC ∴∠=︒-∠-︒=︒-∠,又24BKC BHC ∠-∠=︒,24BHC BKC ∴∠=∠-︒, 1802(24)BKC BKC ∴∠=︒-∠-︒, 76BKC ∴∠=︒,故选:A .【点睛】本题主要考查平行线的性质,掌握平行线的判定和性质是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补,④//a b ,////⇒b c a c . 6.C 【分析】根据平方根,立方根,算术平方根的定义解答即可. 【详解】A .81的平方根为9±,故选项错误;B 162,故选项错误;C 33--a aD .64的立方根是4,故选项错误; 故选:C . 【点睛】本题考查了平方根,立方根,算术平方根的定义,熟练掌握是解题关键. 7.C 【分析】根据平行线的性质得出∠4=∠1=74°,然后根据三角形外角的性质即可求得∠3的度数.【详解】解:∵直线a∥b,∠1=74°,∴∠4=∠1=74°,∵∠2+∠3=∠4,∴∠3=∠4-∠2=74°-34°=40°.故选:C.【点睛】本题考查了平行线的性质和三角形外角的性质,熟练掌握性质定理是解题的关键.8.C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴解析:C【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2021除以4,根据商和余数的情况确定点A2021的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2021÷4=505•••1,∴点A2021的坐标与A1的坐标相同,为(3,1).故选:C.【点睛】本题是对点的变化规律的考查,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.二、填空题9.=【分析】先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可 【详解】 解:∵, ∴=故答案为:= 【点睛】本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌解析:= 【分析】先根据算数平方根和立方根的定义进行化简,再根据实数大小的比较方法进行比较即可 【详解】解:∵ ∴故答案为:= 【点睛】本题考查的是实数的大小比较以及算数平方根、立方根,熟练掌握相关的知识是解答此题的关键.10.【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解. 【详解】解:由点关于轴对称点的坐标为:, 故答案为. 【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析:()2,3--【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解. 【详解】解:由点()2,3P -关于x 轴对称点的坐标为:()2,3--, 故答案为()2,3--. 【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.11.120°和60° 【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),解析:120°和60°【详解】试题分析:因为三角形的内角和是180度,所以∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,再代入∠DFE=∠BFC=180°-(∠FBC+∠FCB),即可解答.试题解析:∠B+∠C=180°-∠A=180°-60°=120°,又因为∠DFE=∠BFC,∠BFC=180°-(∠FBC+∠FCB),因为角平分线CD、EF相交于F,所以∠FBC+∠FCB=(∠B+∠C)÷2=120°÷2=60°,∠DFE=180°-(∠FBC+∠FCB),=180°-60°,=120°;∠DFE的邻补角的度数为:180°-120°=60°.考点:角的度量.12.40【分析】过作平行于,由与平行,得到与平行,利用两直线平行同位角相等,同旁内角互补,得到,,即可确定出的度数.【详解】解:如图:过作平行于,,,,,即,.故答案为:40.【解析:40【分析】过F作FG平行于AB,由AB与CD平行,得到FG与CD平行,利用两直线平行同位角相∠的度数.等,同旁内角互补,得到1100∠+∠=︒,即可确定出3∠=∠=︒,2180GFCEFG【详解】解:如图:过F作FG平行于AB,//AB CD ,//FG CD ∴,1100EFG ∴∠=∠=︒,2180GFC ∠+∠=︒,即60GFC ∠=︒,31006040EFG GFC ∴∠=∠-∠=︒-︒=︒.故答案为:40.【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.13.15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE ,利用折叠的性质求出∠BFC 的度数,再利用角的和差求出∠CFE .【详解】解:∵AE ∥BF ,∴∠BFE=180°-∠AEF=65°解析:15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE ,利用折叠的性质求出∠BFC 的度数,再利用角的和差求出∠CFE .【详解】解:∵AE ∥BF ,∴∠BFE =180°-∠AEF =65°,∵2∠BFE +∠BFC =180°,∴∠BFC =180°-2∠BFE =50°,∴∠CFE =∠BFE -∠BFC =15°,故答案为:15°.【点睛】本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE 的度数是解题的关键.14.131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.解析:131或26或5.【解析】试题解析:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5.15.(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图,设P(m,0),由题意:•|1-m|•2=5,∴m=-4或6,∴P(-4解析:(-4,0)或(6,0)【分析】设P(m,0),利用三角形的面积公式构建绝对值方程求出m即可;【详解】如图,设P(m,0),•|1-m|•2=5,由题意:12∴m=-4或6,∴P(-4,0)或(6,0),故答案为:(-4,0)或(6,0)【点睛】此题考查三角形的面积、坐标与图形性质,解题的关键是学会利用参数构建方程解决问题.16.【分析】由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、解析:()2021,2【分析】由图形得出点的横坐标依次是0、1、2、3、4、⋯、n ,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、⋯、n ,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,202145051÷=⋯,故点2021A 坐标是(2021,2).故答案是:(2021,2).【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.三、解答题17.(1);(2);(3);(4)【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,解析:(1)35;(2)3)2310-;(4)3 【分析】(1)根据算术平方根的求法计算即可;(2)先化简绝对值,再合并即可;(3)分别进行二次根式的化简、开立方,然后合并求解;(4)先化简绝对值和二次根式,再合并即可.【详解】解:(1==35=(2)==(310.222=-- 2205)(1010+=- 2310=-(414=3=【点睛】本题考查了实数的运算,涉及了二次根式的化简、绝对值的化简、开立方等知识. 18.(1)44;(2)48【分析】(1)把a+b=6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;(2)将a2+b2与ab 的值代入原式计算即可求出值.【详解】解:(1)把解析:(1)44;(2)48【分析】(1)把a +b =6两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出原式的值;(2)将a 2+b 2与ab 的值代入原式计算即可求出值.【详解】解:(1)把6a b +=两边平方得:()222236a b a b ab +=++=,把4ab =-代入得:()222436a b ++⨯-=,∴2244a b +=;(2)∵2244a b +=,4ab =-,∴22a ab b -+=22a b ab +-=()444--=48.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.19.BD ∥EF ;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【分析】根据垂直推出BD ∥EF ,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC +∠A =180°,根据解析:BD ∥EF ;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【分析】根据垂直推出BD ∥EF ,根据平行线的性质即可求出∠2=∠3,根据已知求出∠ABC +∠A =180°,根据平行线的判定得出AD ∥BC ,再根据平行线的性质求出∠3=∠1,即可得到∠1=∠2.【详解】证明:∵BD ⊥CD ,EF ⊥CD (已知),∴∠BDC =∠EFC =90°(垂直的定义),∴BD ∥EF (同位角相等,两直线平行),∴∠2=∠3(两直线平行,同位角相等),∵∠A =80°,∠ABC =100°(已知),∴∠A +∠ABC =180°,∴AD ∥BC (同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∴∠1=∠2(等量代换).故答案为:BD ∥EF ;两直线平行,同位角相等;同旁内角互补,两直线平行;∠1=∠3;等量代换.【点睛】本题考查了平行线的性质和判定的应用,能熟练地运用平行线的判定和性质定理进行推理是解此题的关键.20.(1)作图见解析,A′(1,5),B′(0,2),C′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A′,B′,C′即可解决问题;(2)设P (0,m解析:(1)作图见解析,A ′(1,5),B ′(0,2),C ′(4,2);(2)P (0,10)或(0,-12).【分析】(1)分别作出A ,B ,C 的对应点A ′,B ′,C ′即可解决问题;(2)设P (0,m ),构建方程解决问题即可.【详解】解:(1)如图,△A ′B ′C ′即为所求,A ′(1,5),B ′(0,2),C ′(4,2);(2)设P (0,m ), 由题意:12×4×|m +2|=4×12×4×3, 解得m =10或-12,∴P (0,10)或(0,-12).【点睛】本题考查了坐标与图形的性质,平移变换,三角形的面积等知识,解题的关键是熟练掌握平移变换的性质.21.(1),,c=4;(2)4【分析】(1)由题意可得出,得出a 的值,代入中得出b 的值,再根据即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某解析:(1)5a =,4b =,c=4;(2)4【分析】(1)由题意可得出(12)(4)0a a -++=,得出a 的值,代入3421327a b +-==中得出b 的值,再根据3134<即可得出c 的值;(2)代入a 、b 、c 的值求出代数式的值,再求算术平方根即可.【详解】解:(1)∵某正数的两个平方根分别是12a -和4a∴(12)(4)0a a -++=∴5a =又∵421a b +-的立方根是3∴3421327a b +-==∴4b =又∵34<,c∴3c =(2)2524316a b c ++=+⨯+=故2a b c ++的算术平方根是4.【点睛】本题考查的知识点是平方根、算术平方根、立方根、估算无理数的大小,属于基础题目,解此题的难点在于c 值的确定,学会用“逼近法”求无理数的整数部分是解此题的关键. 22.(1)大正方形的边长是;(2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸解析:(1)大正方形的边长是2)不能【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可.【详解】(1)大正方形的边长是(2)设长方形纸片的长为3xcm ,宽为2xcm ,则3x•2x=480,解得:因为片的长宽之比为2:3,且面积为480cm 2.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式.23.(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P 作PE ∥AB ,根据平行线的判定与性质即可求解;(2)分点P 在线段MN 或NM 的延长线解析:(1)∠APC=α+β,理由见解析;(2)∠APC=α-β或∠APC=β-α;(3)58°【分析】(1)过点P作PE∥AB,根据平行线的判定与性质即可求解;(2)分点P在线段MN或NM的延长线上运动两种情况,根据平行线的判定与性质及角的和差即可求解;(3)过点P,Q分别作PE∥AB,QF∥AB,根据平行线的判定与性质及角的和差即可求解.【详解】解:(1)如图2,过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠APE=α,∠CPE=β,∴∠APC=∠APE+∠CPE=α+β.(2)如图,在(1)的条件下,如果点P在线段MN的延长线上运动时,∵AB∥CD,∠PAB=α,∴∠1=∠PAB=α,∵∠1=∠APC+∠PCD,∠PCD=β,∴α=∠APC+β,∴∠APC=α-β;如图,在(1)的条件下,如果点P在线段NM的延长线上运动时,∵AB∥CD,∠PCD=β,∴∠2=∠PCD=β,∵∠2=∠PAB+∠APC,∠PAB=α,∴β=α+∠APC,∴∠APC=β-α;(3)如图3,过点P,Q分别作PE∥AB,QF∥AB,∵AB∥CD,∴AB∥QF∥PE∥CD,∴∠BAP=∠APE,∠PCD=∠EPC,∵∠APC=116°,∴∠BAP+∠PCD=116°,∵AQ平分∠BAP,CQ平分∠PCD,∴∠BAQ=12∠BAP,∠DCQ=12∠PCD,∴∠BAQ+∠DCQ=12(∠BAP+∠PCD)=58°,∵AB∥QF∥CD,∴∠BAQ=∠AQF,∠DCQ=∠CQF,∴∠AQF+∠CQF=∠BAQ+∠DCQ=58°,∴∠AQC=58°.【点睛】此题考查了平行线的判定与性质,添加辅助线将两条平行线相关的角联系到一起是解题的关键.。
完整版初一数学下册期中测试卷及答案
完整版初一数学下册期中测试卷及答案一、选择题1.下列各式中,正确的是()A .4=±2B .±16=4C .2(4)-=-4D .38-=-2 2.下列现象属于平移的是() A .投篮时的篮球运动B .随风飘动的树叶在空中的运动C .刹车时汽车在地面上的滑动D .冷水加热过程中小气泡变成大气泡 3.在平面直角坐标系中,点P (5,﹣1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.给出下列 4 个命题:①不是对顶角的两个角不相等;②三角形最大内角不小于 60°;③多边形的外角和小于内角和;④平行于同一直线的两条直线平行.其中真命题的个数是 ( )A .1B .2C .3D .45.如图,点E 在CA 延长线上,DE 、AB 交于F ,且BDE AEF ∠=∠,B C ∠=∠,EFA 比FDC ∠的余角小10︒,P 为线段DC 上一动点,Q 为PC 上一点,且满足FQP QFP ∠=∠,FM 为EFP ∠的平分线.则下列结论:①//AB CD ;②FQ 平分AFP ∠;③140B E ∠+∠=︒;④QFM ∠的角度为定值.其中正确结论的个数有( )A .1个B .2个C .3个D .4个6.下列说法:①两个无理数的和可能是有理数:②任意一个有理数都可以用数轴上的点表示;③33mn π-+是三次二项式;④立方根是本身的数有0和1;其中正确的是( ) A .①② B .①③ C .①②③ D .①②④ 7.如图,ABC 中,AE 平分BAC ∠,BE AE ⊥于点E ,//ED AC ,34BAE ∠=︒,则BED ∠的度数为( )A .134°B .124°C .114°D .104°8.如图,()11,0A ,()21,1A ,()31,1A -,()41,1A --,()52,1A -…按此规律,点2022A 的坐标为( )A .()505,505B .()506,505-C .()506,506D .()506,506-二、填空题9.已知 325.6≈18.044,那么± 3.256≈___________.10.点()2,3P -关于x 轴对称的点的坐标为_________.11.如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,若△ABC 的面积为15,DE =3,AB =6,则AC 的长是 _______12.如图,己知AB ∥CD .OE 平分∠AOC ,OE ⊥OF ,∠C =50°,则∠AOF 的度数为___.13.如图, 把一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G ,D 、C 分别在M 、N 的位置上,若∠EFG=54°,则∠EGB=_______.14.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x <1时,化简[x]+(x )+[x )的结果是_____.15.在平面直角坐标系中,已知()()()0,,,0,,6A a B b C b 三点,其中a ,b 满足关系式()2340a b -+-=,若在第二象限内有一点(),1P m ,使四边形ABOP 的面积与三角形ABC 的面积相等,则点P 的坐标为________.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2021个点的坐标是___.三、解答题17.计算(1)31252724+-+ (2)22|21|--18.求下列各式中的x 值:(1)169x 2=144;(2)(x -2)2-36=0.19.如图,点F 在线段AB 上,点E 、G 在线段CD 上,AB ∥CD .(1)若BC 平分∠ABD ,∠D =100°,求∠ABC 的度数;解:∵AB ∥CD (已知),∴∠ABD +∠D =180°( ).∵∠D =100°(已知),∴∠ABD =80°.又∵BC 平分∠ABD ,(已知),∴∠ABC =12∠ABD = °( ).(2)若∠1=∠2,求证:AE ∥FG (不用写依据).20.如图,已知ABC 在平面直角坐标系中的位置如图所示.(1)写出ABC 三个顶点的坐标;(2)求出ABC 的面积;(3)在图中画出把ABC 先向左平移5个单位,再向上平移2个单位后所得的A B C '''. 21.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部写出来,122<<,于是可用21-来表示2的小数部分.请解答下列问题: (1)17的整数部分是________,小数部分是________.(2)如果5的小数部分为a ,13的整数部分为b ,求5a b +-的值.(3)已知:103x y +=+,其中x 是整数,且01y <<,求x y -的相反数.22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的边长.23.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)【参考答案】一、选择题1.D解析:D【分析】依据算术平方根、平方根、立方根的性质求解即可.【详解】解:A42=,故选项错误;B、164±,故选项错误;C2(4)4-=,故选项错误;D382-=-,故选项正确;故选D.【点睛】本题主要考查的是立方根、平方根、算术平方根的定义,熟练掌握相关知识是解题的关键.2.C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B解析:C【分析】判断是否是平移现象,要根据平移的性质进行,即图形平移前后的形状和大小没有变化,只是位置发生变化.【详解】解:A. 投篮时的篮球运动,不是沿直线运动,此选项不是平移现象;B. 随风飘动的树叶在空中的运动,在空中不是沿直线运动,此选项不是平移现象;C. 刹车时汽车在地面上的滑动,此选项是平移现象;D. 冷水加热过程中小气泡变成大气泡,大小发生了变化,此选项不是平移现象. 故选:C .【点睛】本题考查的知识点是平移的概念,掌握平移的性质是解此题的关键.3.D【分析】根据点的横纵坐标的符号可得所在象限.【详解】解:∵点P 的横坐标是正数,纵坐标是负数,∴点P (5,-1)在第四象限,故选:D .【点睛】本题主要考查点的坐标,熟练掌握各象限内点的坐标的特点是解本题的关键,第一、二、三、四象限内的点的坐标符号分别是(+,+)、(-,+)、(-,-)、(+,-). 4.B【分析】①举反例说明即可,②利用三角形内角和定理判断即可,③举反例说明即可,④根据平行线的判定方法判断即可.【详解】解:①如:两直线平行同位角相等,所以不是对顶角的两个角不相等,错误,; ②若三角形最大内角小于60°,则三角形内角和小于180°,所以三角形最大内角不小于60°,正确;③如:三角形的外角和大于内角和,所以多边形的外角和小于内角和,错误; ④平行于同一直线的两条直线平行,正确.故选:B .【点睛】本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.要指出一个命题是假命题,只要能够举出一个例子,使它具备命题的条件,而不符合命题的结论就可以了,这样的例子叫做反例. 5.D【分析】①由BDE AEF ∠=∠可得AE ∥BD ,进而得到B EAF ∠=∠,结合B C ∠=∠即可得到结论;②由//AB CD 得出AFQ FQP ∠=∠,结合FQP QFP ∠=∠即可得解;③由平行线的性质和内角和定理判断即可;④根据角平分线的性质求解即可;【详解】∵BDE AEF ∠=∠,∴AE ∥BD ,∴B EAF ∠=∠,∵B C ∠=∠,∴EAF C ∠=∠,∴//AB CD ,结论①正确;∵//AB CD ,∴AFQ FQP ∠=∠,∵FQP QFP ∠=∠,∴AFQ QFP ∠=∠,∴FQ 平分AFP ∠,结论②正确;∵//AB CD ,∴EFA FDC ∠=∠,∵EFA 比FDC ∠的余角小10︒,∴40EFA ∠=︒,∵B EAF ∠=∠,180EFA E EAF ∠+∠+∠=︒,∴180140B E EFA ∠+∠=︒-∠=︒,结论③正确;∵FM 为EFP ∠的平分线, ∴111222MFP EFP EFA AFP ∠=∠=∠+∠, ∵AFQ QFP ∠=∠, ∴12QFP AFP ∠=∠, ∴1202QFM MFP QFP EFA ∠=∠-∠=∠=︒,结论④正确; 故正确的结论是①②③④;故答案选D .【点睛】本题主要考查了平行线的判定与性质、余角和补角的性质,准确分析计算是解题的关键. 6.A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可.【详解】①两个无理数的和可能是有理数,说法正确(0=,0是有理数②有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确③3327mn mn ππ=-+-+是二次二项式,说法错误④立方根是本身的数有0和±1,说法错误综上,说法正确的是①②故选:A .【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键.7.B【分析】已知AE平分∠BAC,ED∥AC,根据两直线平行,同旁内角互补可知∠DEA的度数,再由周角为360°,求得∠BED的度数即可.【详解】解:∵AE平分∠BAC,∴∠BAE=∠CAE=34°,∵ED∥AC,∴∠CAE+∠AED=180°,∴∠DEA=180°-34°=146°,∵BE⊥AE,∴∠AEB=90°,∵∠AEB+∠BED+∠AED=360°,∴∠BED=360°-146°-90°=124°,故选:B.【点睛】本题考查了平行线的性质和周角的定义,熟记两直线平行,同旁内角互补是解题的关键.8.C【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象解析:C【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标÷4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象限的点A2(1,1),A6(2,2),A10(3,3)…观察易得到点的坐标=24n.【详解】解:由题可知第一象限的点:A2,A6,A10...角标除以4余数为2;第二象限的点:A3,A7,A11...角标除以4余数为3;第三象限的点:A4,A8,A12...角标除以4余数为0;第四象限的点:A5,A9,A13...角标除以4余数为1;由上规律可知:2022÷4=505 (2)∴点A 2022在第一象限.观察图形,可知:点A 2的坐标为(1,1),点A 6的坐标为(2,2),点A 10的坐标为(3,3),…,∴第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标) ∴点A 4n-2的坐标为(24n +,24n +)(n 为正整数), ∴点A 2022的坐标为(506,506).故选C .【点睛】本题考查了点的坐标正方形为单位格点变化规律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=24n +(n 为角标)求解. 二、填空题9.±1.8044【详解】∵,∴,即.故答案为±1.8044解析:±1.8044【详解】 ∵,∴,即 1.8044±.故答案为±1.804410.【分析】关于轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点关于轴对称点的坐标为:,故答案为.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握 解析:()2,3--【分析】关于x 轴对称,横坐标不变,纵坐标互为相反数,进而可求解.【详解】解:由点()2,3P -关于x 轴对称点的坐标为:()2,3--,故答案为()2,3--.【点睛】本题主要考查平面直角坐标系中点的坐标关于坐标轴对称问题,熟练掌握点的坐标关于坐标轴对称的方法是解题的关键.11.4【分析】过点D 作DF ⊥AC,则由AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,可以得到DE=DF,可由三角形的面积的,,进而解得AC 的长.【详解】过点D 作DF ⊥AC∵AD 是△AB解析:4【分析】过点D 作DF ⊥AC,则由AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,可以得到DE=DF,可由三角形的面积的ADB ADC ABC S S S ∆∆∆+=,⨯+⨯=11AB DE AC DF 1522,进而解得AC 的长.【详解】过点D 作DF ⊥AC∵AD 是△ABC 的角平分线,DF ⊥AC , DE ⊥AB ,∴DE=DF,又三角形的面积的ADB ADC ABC S S S ∆∆∆+=,即⨯+⨯=11AB DE AC DF 1522, 解得AC=4【点睛】主要考查了角平分线的性质,三角形的面积,掌握角平分线的性质及三角形的面积是解题的关键.12.115°【分析】要求∠AOF 的度数,结合已知条件只需要求出∠AOE 的度数,根据角平分线的定义可以得到∠AOE=∠AOC ,再利用平行线的性质得到∠C=∠AOC 即可求解.【详解】解:∵AB ∥CD解析:115°【分析】要求∠AOF 的度数,结合已知条件只需要求出∠AOE 的度数,根据角平分线的定义可以得到∠AOE =∠AOC ,再利用平行线的性质得到∠C =∠AOC 即可求解.【详解】解:∵AB ∥CD ,∠C =50°,∴∠C =∠AOC =50°,∵OE 平分∠AOC , ∴12AOE COE AOC ===∠∠∠25°, ∵OE ⊥OF ,∴∠EOF =90°,∴∠AOF =∠AOE +∠EOF =115°,故答案为:115°.【点睛】本题主要考查了平行线的性质,角平分线的性质,垂直的定义,解题的关键在于能够熟练掌握相关知识进行求解.13.108°【分析】由折叠的性质可得:∠DEF=∠GEF ,根据平行线的性质:两直线平行,内错角相等可得:∠DEF=∠EFG=54°,从而得到∠GEF=54°,根据平角的定义即可求得∠1,再由平行线的解析:108°【分析】由折叠的性质可得:∠DEF =∠GEF ,根据平行线的性质:两直线平行,内错角相等可得:∠DEF =∠EFG =54°,从而得到∠GEF =54°,根据平角的定义即可求得∠1,再由平行线的性质求得∠EG B .【详解】解:∵AD ∥BC ,∠EFG =54°,∴∠DEF=∠EFG=54°,∠1+∠2=180°,由折叠的性质可得:∠GEF=∠DEF=54°,∴∠1=180°-∠GEF-∠DEF=180°-54°-54°=72°,∴∠EGB=180°-∠1=108°.故答案为:108°.【点睛】此题主要考查折叠的性质,平行线的性质和平角的定义,解决问题的关键是根据折叠的方法找准对应角,求出∠GEF的度数.14.﹣2或﹣1或0或1或2.【分析】有三种情况:①当时,[x]=-1,(x)=0,[x)=-1或0,∴[x]+(x)+[x)=-2或-1;②当时,[x]=0,(x)=0,[x)=0,∴[x]解析:﹣2或﹣1或0或1或2.【分析】有三种情况:①当10-<<时,[x]=-1,(x)=0,[x)=-1或0,x∴[x]+(x)+[x)=-2或-1;x=时,[x]=0,(x)=0,[x)=0,②当0∴[x]+(x)+[x)=0;③当01<<时,[x]=0,(x)=1,[x)=0或1,x∴[x]+(x)+[x)=1或2;综上所述,化简[x]+(x)+[x)的结果是-2或﹣1或0或1或2.故答案为-2或﹣1或0或1或2.点睛:本题是一道阅读理解题.读懂题意并进行分类讨论是解题的关键.【详解】请在此输入详解!15.(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.【详解】解:∵,∴a=3,b=4,∴A(0,3),B(4,0),C(4,6),∴△ABC的面积解析:(-4,1)【分析】根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.【详解】解:∵()2340a b-+-=,∴a=3,b=4,∴A(0,3),B(4,0),C(4,6),∴△ABC的面积=12×6×4=12,四边形ABOP的面积=△AOP的面积+△AOB的面积=12×3×(-m)+12×3×4=6-32m,由题意得,6-32m=12,解得,m=-4,∴点P的坐标为(-4,1),故答案为:(-4,1).【点睛】本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键.16.(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0解析:(64,4)【分析】横坐标为1的点有1个,纵坐标只是0;横坐标为2的点有2个,纵坐标是0或1;横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.【详解】解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有()12n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2021个数一定在第64列,由下到上是第5个数.因而第2021个点的坐标是(64,4).故答案为:(64,4).【点睛】本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.三、解答题17.(1);(2)【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果.(2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1),,.(解析:(1)72;(21 【分析】(1)依次利用平方根以及立方根定义对原式计算,然后再依次计算,即可得到结果. (2)首先计算绝对值,然后从左向右依次计算,求出算式的值即可.【详解】(1 3532=-+, 72=.(2)1|,1=,1.【点睛】本题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,要从高级到低级,即先乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外有理数的运算律在实数范围内仍然适用.18.(1)x =±;(2)x =8或x =-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=,解得:x=±.解析:(1)x=±1213;(2)x=8或x=-4.【分析】(1)移项后,根据平方根定义求解;(2)移项后,根据平方根定义求解.【详解】解:(1)169x2=144,移项得:x2=144 169,解得:x=±12 13.(2)(x-2)2-36=0,移项得:(x-2)2=36,开方得:x-2=6或x-2=-6解得:x=8或x=-4.故答案为(1)x=±1213;(2)x=8或x=-4.【点睛】本题考查利用平方根解方程,解答此题的关键是掌握平方根的概念.19.(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可;(2)根据平行线的性质得到∠1=∠FGC,等解析:(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可;(2)根据平行线的性质得到∠1=∠FGC,等量代换得到∠2=∠FGC,即可判定AE∥FG.【详解】(1)∵AB∥CD(已知),∴∠ABD+∠D=180°(两直线平行,同旁内角互补),∵∠D=100°(已知),∴∠ABD=80°,又∵BC平分∠ABD(已知),∴∠ABC=12∠ABD=40°(角平分线的定义).故答案为:两直线平行,同旁内角互补;40;角平分线的定义;(2)证明:∵AB ∥CD ,∴∠1=∠FGC ,又∵∠1=∠2,∴∠2=∠FGC ,∴AE ∥FG .【点睛】此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的关键.20.(1);(2);(3)图见解析.【分析】(1)根据点在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:解析:(1)()()()4,3,3,1,1,2A B C ;(2)52;(3)图见解析. 【分析】(1)根据点,,A B C 在平面直角坐标系中的位置即可得;(2)利用一个长方形的面积减去三个直角三角形的面积即可得;(3)根据平移作图的方法即可得.【详解】解:(1)由点,,A B C 在平面直角坐标系中的位置:()()()4,3,3,1,1,2A B C ;(2)ABC 的面积为1152312213222⨯-⨯⨯⨯-⨯⨯=; (3)如图所示,A B C '''即为所求.【点睛】本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键.21.(1)4, −4;(2)1;(3)−12+;【解析】【分析】(1)先估算出的范围,即可得出答案;(2)先估算出、的范围,求出a、b的值,再代入求解即可;(3)先估算出的范围,求出x、y的解析:(1)174;(2)1;(3)−3【解析】【分析】(117的范围,即可得出答案;(2513的范围,求出a、b的值,再代入求解即可;(33x、y的值,再代入求解即可.【详解】(1)∵17,∴174,小数部分是174,故答案为:17−4;(2)∵5,∴52,∵13,∴b=3,∴;(3)∵1<3<4,∴,∴,∵,其中x是整数,且0<y<1,∴1,∴∴x−y的相反数是−【点睛】此题考查估算无理数的大小,解题关键在于掌握估算方法.22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x,则364x=,所以4x=,即正方体的棱长为4.(2)因为正方体的棱长为4,所以AB=【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.23.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图解析:(1)见解析;(2)55°;(3)11 18022αβ︒-+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数; ②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠; (2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒.答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠. 即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠,1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+. 答:BFD ∠的度数为1118022αβ︒-+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
七年级数学试题-师宗二中初一下学期数学期中测试北师
师宗二中初一下学期数学期中测试(考试时间:120分钟;全卷满分:120分;试卷编号:9A18;试卷编辑:李雄飞;备注:内部资料,请勿外传)班级: 姓名: 总分:(考试时间120分钟,满分120分)一、认真思索,慎重选择(''30103=⨯) 1、下列各式中计算正确的是( )A 、523)(x x =-B 、632])[(x x =-C 、1221)(--=n n x xD 、1025x x x =⋅ 2、下列各式中计算正确的是( )A 、222)2)(2(b a b a b a -=-+B 、224)2)(2(b a b a b a -=-+-C 、(-a-2b )(a-2b )=224b a +-D 、224)2)(2(b a b a b a -=+--3、某种冠状病毒的直径是120纳米,1纳米=10-9米,则这种冠状病毒的直径用科学记数法表示为( )A 、1.2×10-9米B 、1.2×10-8米C 、1.2×10-7米D 、1.2×10-6米4、一个两位数,个位数字为y ,十位数字比个位数字大1,那么这个两位数可以表示为( ) A 、 111-y B 、 1011-y C 、111+y D 、 1011+y5、下列各式中,不能用乘法公式计算的是( ) (注:乘法公式是指平方差公式或完全平方公式)A 、 )32)(32(a b b a -+B 、)21)(5.0(-+x xC 、)2)(2(y x y x +---D 、))((2222b a b a ++ 6、如图∠1、∠2是一对( )A 、同位角B 、内错角C 、同旁内角D 、对顶角 7、一个角与它的余角相等,则这个角为( ) A 、 45 B 、 90 C 、 9045或 D 、 508、在同一平面内,直线a ∥b, b ⊥c,则a 与c 的位置关系为( ) A 、垂直 B 、平行 C 、相交但不垂直 D 、不能确定9、已知,∠α的两边与∠β的两边分别平行,则∠α与∠β的关系是( ) A 、相等 B 、互余 C 、互补 D 、相等或互补10、如图所示的圆盘中三个扇形大小相同,则指针落在黄色区域的概率是( )A 、21B 、31C 、41D 、61二、开动脑筋,填补空白()22112''=⨯1 2 (第6题图)(第10题图)1、32z xy -的系数是 ,次数是 ;2、)((y x + )=22y x -, =-2)2(b a ;3、用科学记数法表示: -31800= , 0.001818= ;4、近似数3.20精确到 位,有 个有效数字;5、近似数4103.2⨯-精确到 位,有 个有效数字;6、=---)()()(23n m m n n m , =⨯2002200352.0 ;7、在12瓶外观一样的饮料中,有2瓶过了保质期,从中任意抽取一瓶,恰好抽到已过保质期的饮料的概率是 ;8、如图,直线a 、b 交于点O ,∠1+∠2=260,则∠1= ,∠3= ; 9、若∠α=67°12′,则∠α的余角= ,∠α的补角=;10、已知:如图OC ⊥AB 于O ,∠DOE= 90则∠BOE 的余角有∠ ,∠;11、如图,B 、A 、E 在一条直线上,则∠1是同位角,∠2与∠ 是内错角。
完整版七年级数学下册期中考试试卷及答案 - 百度文库
完整版七年级数学下册期中考试试卷及答案 - 百度文库一、选择题1.下列各式中,没有平方根的是()A .-22B .(-2)2C .-(-2)D .∣-2∣ 2.下列图案可以由部分图案平移得到的是( )A .B .C .D . 3.在平面直角坐标系中,点()2,3P 所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列命题中,假命题是( )A .如果两条直线都与第三条直线平行,那么这两条直线也互相平行B .在同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线被第三条直线所截,同旁内角互补D .两点的所有连线中,线段最短5.如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB ,CD ,若//CD BE ,若1∠=α,则2∠的度数是( )A .3αB .1803α︒-C .4αD .1804︒-α 6.对于有理数a .b ,定义min {a ,b }的含义为:当a <b 时,min {a ,b }=a ,当b <a 时,min {a ,b }=b .例如:min {1,﹣2}=﹣2,已知min {30,a }=a ,min {30,b }=30,且a 和b 为两个连续正整数,则a ﹣b 的立方根为( )A .﹣1B .1C .﹣2D .27.如图,将一张长方形纸片ABCD 沿EF 折叠.使顶点C ,D 分别落在点C ',D 处,C E '交AF 于点G ,若70CEF ∠=︒,则GFD '∠=( )A .30B .40︒C .45︒D .60︒8.如图,在平面直角坐标系xOy 中,一只蚂蚁从原点O 出发向右移动1个单位长度到达点P 1;然后逆时针转向90°移动2个单位长度到达点P 2;然后逆时针转向90°,移动3个单位长度到达点P 3;然后逆时针转向90°,移动4个单位长度到达点P 4;…,如此继续转向移动下去.设点P n (x n ,y n ),n =1,2,3,…,则x 1+x 2+x 3+…+x 2021=( )A .1B .﹣1010C .1011D .2021二、填空题9.算术平方根是5的实数是___________.10.已知点P (3,﹣1)关于y 轴的对称点Q 的坐标是_____________.11.如图,DB 是ABC 的高,AE 是角平分线,26BAE ∠=,则BFE ∠=______.12.如图将一张长方形纸片沿EF 折叠后,点A 、B 分别落在A ′、B ′的位置,如果∠2=70°,则∠1的度数是___________.13.如图,将长方形ABCD 沿DE 折叠,使点C 落在边AB 上的点F 处,若45EFB ∠=︒,则DEC ∠=________°14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.在平面直角坐标系中,第二象限内的点M 到横轴的距离为2,到纵轴的距离为3,则点M 的坐标是________.16.在平面直角坐标系中,已知点A (﹣4,0),B (0,3),对△AOB 连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4)…,那么第(2013)个三角形的直角顶点坐标是______三、解答题17.(116125-(2)计算: 3223(3310.0484-(41612218.求下列各式中的x 值.(1)2164x -=(2)3(1)64x -=19.完成下列证明:已知:如图,△ABC 中,AD 平分∠BAC ,E 为线段BA 延长线上一点,G 为BC 边上一点,连接EG 交AC 于点H ,且∠ADC +∠EGD =180°,过点D 作DF ∥AC 交EG 的延长线于点F .求证:∠E =∠F .证明:∵AD 平分∠BAC (已知),∴∠1=∠2( ),又∵∠ADC +∠EGD =180°(已知),∴EF ∥ (同旁内角互补,两直线平行).∴∠1=∠E (两直线平行,同位角相等),∠2=∠3( ).∴∠E = (等量代换).又∵AC ∥DF (已知),∴∠3=∠F ( ).∴∠E =∠F (等量代换).20.如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:A →B (+1,+4),从B 到A 记为:A →B (﹣1,﹣4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)A →C ( , ),B →D ( , ),C → (+1, );(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+1,﹣1),(﹣2,+3),(﹣1,﹣2),请在图中标出P 的位置.21.6的整数部分是a,小数部分是b,求a+1b的值。
完整版(完整版)七年级数学下册期中试卷及答案
完整版(完整版)七年级数学下册期中试卷及答案一、选择题1.4的平方根为()A .2B .2±C .4D .4±2.把“笑脸”进行平移,能得到的图形是( )A .B .C .D . 3.点()5,4A --在( )A .第一象限B .第二象限C .第三象限D .第四象限 4.下列四个命题其中正确的个数是( )①对顶角相等;②在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交;③邻补角的平分线互相垂直;④在同一平面内,垂直于同一条直线的两条直线互相垂直A .1个B .2个C .3个D .4个5.如图,直线AB ,CD 被直线ED 所截,//AB CD ,1140∠=︒,则D ∠的度数为( ).A .40°B .60°C .45°D .70° 6.下列说法正确的是( )A .64的平方根是8B .-16的立方根是-4C .只有非负数才有立方根D .-3的立方根是33-7.如图,已知直线//AB CD ,点F 为直线AB 上一点,G 为射线BD 上一点.若:2:1HDG CDH ∠∠=,:2:1GBE EBF ∠∠=,HD 交BE 于点E ,则E ∠的度数为( )A .45°B .55°C .60°D .75°8.如图,将边长为1的正方形OABC 沿x 轴正方向连续翻转2020次,点A 依次落在点1A 、2A 、3A 、4A …2021A 的位置上,则点2021A 的坐标为( ).A .()2019,0B .()2019,1C .()2020,0D .()2020,1二、填空题9.若8x -+2y -=0,则xy =__________.10.已知点(),2019A a 与点202()0,B b 关于y 轴对称,则+a b 的值为__________. 11.如图,在ABC 中,90C ∠=︒,30B ∠=︒,AD 是ABC 的角平分线,DE AB ⊥,垂足为E ,1DE =,则BC =__________.12.如图,直线//a b ,//AB CD ,160∠=︒,则4∠=________.13.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图2中115AEF ∠=︒,则图3中CFE ∠的度数为_______.14.按一定规律排列的一列数依次为:2-,5,10-,17,26-,,按此规律排列下去,这列数中第9个数及第n 个数(n 为正整数)分别是__________.15.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________. 16.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,且CD 边的中点坐标为(2,0),AD 边的中点坐标为(0,2).点M ,N 分别从点(2,0)同时出发,沿正方形ABCD 的边作环绕运动.点M 按逆时针方向以1个单位/秒的速度匀速运动,点N 按顺时针方向以3个单位/秒的速度匀速运动,则M ,N 两点出发后的第2021次相遇地点的坐标是_________.三、解答题17.计算:(1)3981++- (2)23427(3)+---(3)2(23)+(4)353325-++18.求下列各式中的x 值:(1)()3101250x ++=(2)()22360x --=19.如图,点F 在线段AB 上,点E 、G 在线段CD 上,AB ∥CD .(1)若BC 平分∠ABD ,∠D =100°,求∠ABC 的度数;解:∵AB ∥CD (已知),∴∠ABD +∠D =180°( ).∵∠D =100°(已知),∴∠ABD =80°.又∵BC 平分∠ABD ,(已知),∴∠ABC =12∠ABD = °( ).(2)若∠1=∠2,求证:AE ∥FG (不用写依据).20.如图,在平面直角坐标系中,已知三角形ABC 三点的坐标分别为()1,4A -,()B-,()3,2C.1,1(1)求三角形ABC的面积;(2)在x轴上存在一点N,使三角形BON的面积等于三角形ABC面积,求点N的坐标.21.阅读下面的文字,解答问题:2是一个无理数,而无理数是无限不循环小数,因此<<即2的小数部分无法全部写出来,但是我们可以想办法把它表示出来.因为124 <<,所以2的整数部分为1,将2减去其整数部分后,得到的差就是小数部分,122于是2的小数部分为21-(1)求出6的整数部分和小数部分;(2)求出13+的整数部分和小数部分;a b的值.(3)如果25+的整数部分是a,小数部分是b,求出-22.如图,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分的边长.23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).【参考答案】一、选择题1.B解析:B【分析】根据平方根的定义,如果一个数的平方等于a,则a±.【详解】解:因为22=4,(-2)2=4,所以4的平方根是2±,故选B.【点睛】本题主要考查平方根的定义,解决本题的关键是要熟练掌握平方根的定义.2.D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小. 3.C【分析】根据平面直角坐标系象限的符合特点可直接进行排除选项.【详解】解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点()5,4A --在第三象限; 故选C .【点睛】本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键.4.D【分析】分别根据对顶角、邻补角、平行线的判定方法即可解答.【详解】①对顶角相等,正确;②在同一平面内,若//a b ,c 与a 相交,则b 与c 也相交,正确;③邻补角之和为180°,所以它们平分线的夹角为180=902︒︒,即邻补角的平分线互相垂直,正确;④在同一平面内,垂直于同一条直线的两条直线互相垂直,正确.故选:D .【点睛】本题考查了平行线定理,两直线位置关系和对顶角、邻补角等知识,熟练掌握定理并灵活运用是解题关键.5.A【分析】根据平行线的性质得出∠2=∠D ,进而利用邻补角得出答案即可.【详解】解:如图,∵AB ∥CD ,∴∠2=∠D ,∵∠1=140°,∴∠D =∠2=180°−∠1=180°−140°=40°,故选:A .【点睛】此题考查平行线的性质,关键是根据两直线平行,内错角相等解答.6.D【分析】根据平方根和立方根的定义逐项判断即可得.【详解】A 、64的平方根是8±,则此项说法错误,不符题意;B 、因为()346416-=-≠- ,所以16-的立方根不是4-,此项说法错误,不符题意;C 、任何实数都有立方根,则此项说法错误,不符题意;D =3-的立方根是故选:D .【点睛】本题考查了平方根和立方根,熟练掌握定义是解题关键.7.C【分析】利用180ABG GBF ∠+∠=︒,及平行线的性质,得到180CDG GBF ∠+∠=︒,再借助角之间的比值,求出120BDE GBE ∠+∠=︒,从而得出E ∠的大小.【详解】解://AB CD ,ABG CDG ∴∠=∠,180ABG GBF ∠+∠=︒,180CDG GBF ∴∠+∠=︒,:2:1HDG CDH ∠∠=,:2:1GBE EBF ∠∠=,2222()1801203333HDG GBE CDG GBF CDG GBF ∴∠+∠=∠+∠=∠+∠=⨯︒=︒, BDE HDG ∠=∠,120BDE GBE ∴∠+∠=︒,180()18012060E BDE GBE ∴∠=︒-∠+∠=︒-︒=︒,故选:C .【点睛】本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想.8.D【分析】探究规律,利用规律即可解决问题.【详解】解:由题意,,,,,,,,,每4个一循环,则2021个纵坐标等于1轴,坐标应该是,故选:D .【点睛】本题考查了点的坐标的规律变化解析:D【分析】探究规律,利用规律即可解决问题.【详解】解:由题意1(0,1)A ,2(2,1)A ,3(3,0)A ,4(3,0)A ,5(4,1)A ,6(6,1)A ,()77,0A ,8(7,0)A ,9(8,1)A ,⋯每4个一循环,202150541=⨯+则2021个纵坐标等于1轴,坐标应该是(2020,1),故选:D .【点睛】本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点P 向右前行4个单位.二、填空题9.16【分析】根据算术平方根的性质列式求出x 、y 的值,然后代入代数式进行计算即可求解.【详解】∵+=0,∴x−8=0,y−2=0,∴x=8,y=2,∴xy=.故答案为16.【点睛】解析:16【分析】根据算术平方根的性质列式求出x 、y 的值,然后代入代数式进行计算即可求解.【详解】 ∵,∴x −8=0,y −2=0,∴x =8,y =2,∴xy =8216⨯=.故答案为16.【点睛】性:(1)被开方数a 是非负数,即a ≥0;(2. 10.-1【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.【详解】解:∵点A (a ,2019)与点是关于y 轴的对称点,∴a=-2020,b=2019,∴a+b=-1.故答案为:解析:-1【分析】直接利用关于y 轴对称点的性质得出a ,b 的值进而得出答案.【详解】解:∵点A (a ,2019)与点202()0,B b 是关于y 轴的对称点,∴a=-2020,b=2019,∴a+b=-1.故答案为:-1.【点睛】本题考查关于y 轴对称的点的坐标性质,解题关键是熟练掌握横纵坐标的关系. 11.【解析】已知∠C=90°,AD 是△ABC 的角平分线,DE ⊥AB ,根据角平分线的性质可得DC=DE=1;因,根据30°直角三角形的性质可得BD=2DE=2,所以BC=CD+DB=1+2=3.解析:【解析】已知∠C =90°,AD 是△ABC 的角平分线,DE ⊥AB ,根据角平分线的性质可得DC=DE =1;因30B DE AB ∠=︒⊥,,根据30°直角三角形的性质可得BD =2DE =2,所以BC=CD+DB =1+2=3. 12.120°.【分析】延长AB 交直线b 于点E ,可得,则 ,再由,可得 ,即可求解.【详解】解:如图,延长AB 交直线b 于点E ,∵,∴,∴ ,∵,,∴ ,∴.故答案为: .【点睛】解析:120°.【分析】延长AB 交直线b 于点E ,可得//AE CD ,则4180AED ∠+∠=︒ ,再由//a b ,可得1AED ∠=∠ ,即可求解.【详解】解:如图,延长AB 交直线b 于点E ,∵//AB CD ,∴//AE CD ,∴4180AED ∠+∠=︒ ,∵//a b ,160∠=︒,∴160AED ∠=∠=︒ ,∴4180120∠=︒-∠=︒AED .故答案为:120︒ .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质定理是解题的关键. 13.15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE ,利用折叠的性质求出∠BFC 的度数,再利用角的和差求出∠CFE .【详解】解:∵AE ∥BF ,∴∠BFE=180°-∠AEF=65°解析:15°【分析】利用“两直线平行,同旁内角互补”可求出∠BFE ,利用折叠的性质求出∠BFC 的度数,再利用角的和差求出∠CFE .【详解】解:∵AE ∥BF ,∴∠BFE =180°-∠AEF =65°,∵2∠BFE +∠BFC =180°,∴∠BFC =180°-2∠BFE =50°,∴∠CFE =∠BFE -∠BFC =15°,故答案为:15°.【点睛】本题考查了平行线的性质、折叠的性质以及角的计算,通过角的计算,求出∠BFE 的度数是解题的关键.14.;【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有, 又因为,,,,,所以第n 个数的绝对值是,所以第个数是,第n 个数是,故答案为-82,.点睛:本题主要考查了有理数的混合运解析:82-;2(1)(1)n n -⋅+【详解】观察这一列数,各项的符号规律是奇数项为负,偶数项为正,故有(1)n -,又因为2211=+,2521=+,21031=+,21741=+,,所以第n 个数的绝对值是21n +,所以第9个数是92(1)(91)82-⋅+=-,第n 个数是2(1)(1)n n -⋅+,故答案为-82,2(1)(1)n n -⋅+.点睛:本题主要考查了有理数的混合运算,规律探索问题通常是按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律,揭示的式子的变化规律,常常把变量和序列号放在一起加以比较,就比较容易发现其中的规律.15.或【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=, 当0≤x<3时,2x≥0,x-3解析:2或2 -3【详解】【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=23 -,当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=83<3(不合题意,舍去),综上,x的值为2或23 -,故答案为2或2 3 -.【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键. 16.(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单解析:(0,2).【分析】利用行程问题中的相遇问题,由于正方形的边边长为4,根据两个点的速度,求得每一次相遇的地点,找出规律即可解答.【详解】解:由已知,正方形周长为16,∵M、N速度分别为1单位/秒,3单位/秒,则两个物体每次相遇时间间隔为1613+=4秒,则两个物体相遇点依次为(0,2)、(﹣2,0)、(0,﹣2)、(2,0)∵2021=4×505…1,∴第2021次两个物体相遇位置为(0,2),故答案为:(0,2).【点睛】本题考查了平面直角坐标系中点的规律,找到规律是解题的关键.三、解答题17.(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3)2+;(4)【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式.【详解】解:(11-=3+2+1=6;(2=2-3-3=-4;(33)=2+;(4+=故答案为(1)6;(2)-4;(3)2+4)【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算.18.(1)x=-15;(2)x=8或x=-4【分析】(1)利用直接开立方法求得x的值;(3)利用直接开平方法求得x的值.【详解】解:(1),∴,∴,解得:x=-15;(2),∴,∴解析:(1)x =-15;(2)x =8或x =-4【分析】(1)利用直接开立方法求得x 的值;(3)利用直接开平方法求得x 的值.【详解】解:(1)()3101250x ++=,∴()310125x +=-, ∴105x +=-,解得:x =-15;(2)()22360x --=,∴()2236x -=, ∴26x -=±,解得:x =8或x =-4.【点睛】本题考查了立方根和平方根.正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.19.(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出∠ABD=80°,再根据角平分线的定义求解即可; (2)根据平行线的性质得到∠1=∠FGC ,等解析:(1)两直线平行,同旁内角互补;40;角平分线的定义;(2)见解析【分析】(1)根据平行线的性质求出∠ABD =80°,再根据角平分线的定义求解即可;(2)根据平行线的性质得到∠1=∠FGC ,等量代换得到∠2=∠FGC ,即可判定AE ∥FG .【详解】(1)∵AB ∥CD (已知),∴∠ABD +∠D =180°(两直线平行,同旁内角互补),∵∠D =100°(已知),∴∠ABD =80°,又∵BC 平分∠ABD (已知),∴∠ABC =12∠ABD =40°(角平分线的定义). 故答案为:两直线平行,同旁内角互补;40;角平分线的定义;(2)证明:∵AB ∥CD ,∴∠1=∠FGC ,又∵∠1=∠2,∴∠2=∠FGC ,∴AE ∥FG .【点睛】此题考查了平行线的判定与性质,熟记“两直线平行,同旁内角互补”、“两直线平行,内错角相等”、“同位角相等,两直线平行”是解题的关键.20.(1)的面积为5;(2)或【分析】(1)根据割补法可直接进行求解;(2)由(1)可得,进而△的面积以点B 的纵坐标为高,ON 为底,然后可得ON=5,最后问题可求解.【详解】解:(1)由图象可解析:(1)ABC 的面积为5;(2)()5,0N -或()5,0N【分析】(1)根据割补法可直接进行求解;(2)由(1)可得5BON S =,进而△BON 的面积以点B 的纵坐标为高,ON 为底,然后可得ON =5,最后问题可求解.【详解】解:(1)由图象可得: 111342223145222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯=; (2)设点(),0N a ,由题意得:5BON ABC S S ==,∴△BON 的面积以点B 的纵坐标为高,ON 为底,即1252BON Sa =⨯⨯=, ∴5a =±,∴()5,0N -或()5,0N .【点睛】 本题主要考查图形与坐标,熟练掌握点的坐标表示的几何意义及割补法是解题的关键. 21.(1)2,;(2)2,;(3)【分析】(1)仿照题例,可直接求出的整数部分和小数部分;(2)先求出的整数部分,再得到的整数部分,减去其整数部分,即得其小数部分;(3)根据题例,先确定a 、b ,解析:(1)22;(2)21;(3)6【分析】(1的整数部分和小数部分;(21+1数部分;(3)根据题例,先确定a、b,再计算a-b即可.【详解】解:(1)∵23<.∴22;(2)∵,即12<<,∴1,∴12,∴1121=.(3)∵,即23<<,∴2,24,即a=4,所以2242=,即2,∴)-=-=a b426【点睛】本题考查了无理数的估算,二次根式的加减.看懂题例并熟练运用是解决本题的关键.22.(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4.解析:(1)棱长为4;(2【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案.【详解】解:(1)设正方体的棱长为x,则364x=,即正方体的棱长为4.x=,所以4(2)因为正方体的棱长为4,所以AB=【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键.23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC . 即∠BED =180°﹣∠EBA +∠EDC , ∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
(完整版)七年级数学下册期中试卷及答案 - 百度文库
(完整版)七年级数学下册期中试卷及答案 - 百度文库一、选择题1.“9的平方根”这句话用数学符号表示为()A .9B .±9C .3D .±32.把“笑脸”进行平移,能得到的图形是( )A .B .C .D . 3.在平面直角坐标系中,下列各点位于第三象限的是( )A .(0,3)B .(2,1)-C .(1,2)-D .(1,1)-- 4.在同一平面内,下列命题是假命题的是( )A .过直线外一点有且只有一条直线与已知直线相交B .已知a ,b ,c 三条直线,若a c ⊥,b c ⊥,则//a bC .过直线外一点有且只有一条直线与已知直线垂直D .若三条直线两两相交,则它们有一个或三个交点5.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .46.下列说法正确的是( )A .23π-是分数 B .互为相反数的数的立方根也互为相反数 C .25xy -的系数是15- D .64的平方根是4±7.如图,//AB CD ,EF 分别交AB ,CD 于点G ,H ,若139∠=︒,则2∠的度数为( )A .51︒B .39︒C .129︒D .78︒8.在平面直角坐标系中,对于点P (x ,y ),我们把点P '(1﹣y ,x ﹣1)叫做点P 的友好点已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,…,这样依次得到点A 1、A 2、A 3、A 4…,若点A 1的坐标为(3,2),则点A 2020的坐标为( )A .(3,2)B .(﹣1,2)C .(﹣1,﹣2)D .(3,﹣2)二、填空题9.如果,a 的平方根是3±,则317a -=__________.10.已知点P 关于x 轴的对称点为(,1)a -,关于y 轴的对称点为(2,)b -,那么点P 的坐标是________.11.如图,在△ABC 中,∠A=50°,∠C=72°,BD 是△ABC 的一条角平分线,求∠ADB=__度.12.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=54º时,∠1=______.13.把一张对边互相平行的纸条折成如图所示,EF 是折痕,若38EFB ∠=︒,则BFD ∠=______.14.对于三个数a ,b ,c ,用M{a ,b ,c}表示这三个数的平均数,用min{a ,b ,c}表示这三个数中最小的数.例如:M{-1,2,3}=123433-++=,min{-1,2,3}=-1,如果M{3,2x +1,4x -1}=min{2,-x +3,5x},那么x =_______.15.若点P (3,1)m m +-在x 轴上,则点P 的坐标为____.16.如图所示,已知A 1(1,0),A 2(1,﹣1)、A 3(﹣1,﹣1),A 4(﹣1,1),A 5(2,1),…,按一定规律排列,则点A 2021的坐标是________.三、解答题17.(1)计算:238127(2)|32|+-+-+-(2)解方程:()31125x -=-18.求下列各式中的 x .(1)228x = (2)3338x -= 19.补全下列推理过程:如图,已知EF //AD ,∠1=∠2,∠BAC =70°,求∠AGD .解:∵EF //AD∴∠2= ( )又∵∠1=∠2( )∴∠1=∠3( )∴AB // ( )∴∠BAC + =180°( )∵∠BAC =70°∴∠AGD = .20.如图,在正方形网格中,三角形ABC 的三个顶点和点D 都在格点上(正方形网格的交点称为格点).点A ,B ,C 的坐标分别为()2,4-,()4,0-,()0,1.平移三角形ABC ,使点A 平移到点D ,点E ,F 分别是B ,C 的对应点.(1)请画出平移后的三角形DEF ,并分别写出点E 、F 的坐标;(2)求ABC 的面积;(3)在x 轴上是否存在一点M ,使得BCM ABC S S =△△,若存在,请求出M 的坐标,若不存在,请说明理由.21.请回答下列问题:(1)17介于连续的两个整数a 和b 之间,且a b <,那么a = ,b = ; (2)x 是172+的小数部分,y 是171-的整数部分,求x = ,y = ; (3)求()17yx -的平方根. 22.喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为3dm ,宽为2dm ,且两块纸片面积相等.(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号) (2)在长方形纸片上截出两个完整的正方形纸片,面积分别为22dm 和23dm ,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸2 1.414≈3 1.732)23.已知AB //CD .(1)如图1,E 为AB ,CD 之间一点,连接BE ,DE ,得到∠BED .求证:∠BED =∠B +∠D ;(2)如图,连接AD ,BC ,BF 平分∠ABC ,DF 平分∠ADC ,且BF ,DF 所在的直线交于点F .①如图2,当点B 在点A 的左侧时,若∠ABC =50°,∠ADC =60°,求∠BFD 的度数. ②如图3,当点B 在点A 的右侧时,设∠ABC =α,∠ADC =β,请你求出∠BFD 的度数.(用含有α,β的式子表示)【参考答案】一、选择题1.B解析:B【分析】b≥),那么a就叫做b的平方根,解答即可.根据平方根的定义:如果2a b=(0【详解】解:∵(299=∴“9的平方根”这句话用数学符号表示为:9,故选B.【点睛】本题考查了平方根的定义,是基础概念题,熟记概念是解题的关键.2.D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断.【详解】解:观察图形可知图形进行平移,能得到图形D.故选:D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小.3.D【分析】根据各象限内点的坐标特征对各选项分析判断后利用排除法求解.解:A 、(0,3)在y 轴上,故本选项不符合题意;B 、(−2,1)在第二象限,故本选项不符合题意;C 、(1,−2)在第四象限,故本选项不符合题意;D 、(-1,-1)在第三象限,故本选项符合题意.故选:D .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.A【分析】根据直线相交的概念,平行线的判定,垂线的性质逐一进行判断即可得答案.【详解】解:A 、在同一平面内,过直线外一点有无数条直线与已知直线相交,原命题是假命题; B 、在同一平面内,已知a ,b ,c 三条直线,若a c ⊥,b c ⊥,则//a b ,是真命题; C 、在同一平面内,过直线外一点有且只有一条直线与已知直线垂直,是真命题; D 、在同一平面内,若三条直线两两相交,则它们有一个或三个交点,是真命题; 故选:A .【点睛】本题考查几何方面的命题真假性判断,准确理解这些命题是解题关键.5.B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.B【分析】根据分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,即可得到答案.∵23π-是无理数, ∴A 错误,∵互为相反数的数的立方根也互为相反数,∴B 正确, ∵25xy -的系数是52-, ∴C 错误,∵64的平方根是±8,∴D 错误,故选B .【点睛】本题主要考查分数的定义,立方根的性质,单项式的系数的定义,平方根的定义,掌握上述定义和性质,是解题的关键.7.B【分析】根据平行线的性质和对顶角相等即可得∠2的度数.【详解】解:∵//AB CD ,∴∠2=∠FHD ,∵∠FHD =∠1=39°,∴∠2=39°.故选:B .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.8.D【分析】根据友好点的定义及点A1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:∵点A1的坐标为(3,2),∴根据友好点的定义可得:A1(3,2),A解析:D【分析】根据友好点的定义及点A 1的坐标为(3,2),顺次写出几个友好点的坐标,可发现循环规律,据此可解.【详解】解:∵点A 1的坐标为(3,2),∴根据友好点的定义可得:A1(3,2),A2(-1,2),A3(-1,-2),A4(3,-2),A5(3,2),A6(-1,2),•••,∴以此类推,每4个点为一个循环,∵2020÷4=505,∴点A2020的坐标与A4的坐标相同,为(3,-2).故选D.【点睛】本题考查了规律型的点的坐标,从已知条件得出循环规律是解题的关键.二、填空题9.-4【分析】根据题意先求出,再代入,即可.【详解】解:∵的平方根是,∴,∴,∴,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.解析:-4【分析】根据题意先求出a,即可.【详解】解:∵3±,∴2=±=,(3)9a=,∴81∴==-,4故答案为:4-【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出a的值.10.【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变点关于轴解析:(2,1)【分析】根据点坐标关于坐标轴的对称规律即可得.【详解】点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变a-,则点P的纵坐标为1点P关于x轴的对称点为(,1)-,则点P的横坐标为2点P关于y轴的对称点为(2,)b则点P的坐标为(2,1)故答案为:(2,1).【点睛】本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键.11.101【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC中,∠A=50°,∠C=72°,∴∠ABC=180°−50°解析:101【分析】直接利用三角形内角和定理得出∠ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案.【详解】∵在△ABC中,∠A=50°,∠C=72°,∴∠ABC=180°−50°−72°=58°,∵BD是△ABC的一条角平分线,∴∠ABD=29°,∴∠ADB=180°−50°−29°=101°.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.12.36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故解析:36°【分析】如图,根据平行线的性质可得∠3=∠2,然后根据平角的定义解答即可.【详解】解:如图,∵三角尺的两边a∥b,∴∠3=∠2=54º,∴∠1=180°-90°-∠3=36°.故答案为:36°.【点睛】本题以三角板为载体,主要考查了平行线的性质和和平角的定义,属于基础题型,熟练掌握平行线的性质是解题关键.13.【分析】需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解.【详解】,,是折痕,折叠后,,,,,故答案为:.【点睛】本题考查了平行解析:104【分析】需理清楚折叠后,得到的新的角与原来的角相等,再结合平行线的性质:两直线平行,内错角相等即可求解.【详解】'//',38AC BD EFB∠=︒,'180********EFD EFB∴∠=︒-∠=︒-︒=︒,EF是折痕,折叠后,'142EFD∠=︒,'142EFD EFD∴∠=∠=︒,38EFB∠=︒,14238104BFD EFD EFB∴∠=∠-∠=︒-︒=︒,故答案为:104︒.【点睛】本题考查了平行线的性质,折叠问题,体现了数学的转化思想,模型思想.14.或【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}==2x+1解析:12或13【详解】【分析】根据题中的运算规则得到M{3,2x+1,4x-1}=1+2x,然后再根据min{2,-x+3,5x}的规则分情况讨论即可得.【详解】M{3,2x+1,4x-1}=321413x x+++-=2x+1,∵M{3,2x+1,4x-1}=min{2,-x+3,5x},∴有如下三种情况:①2x+1=2,x=12,此时min{2,-x+3,5x}= min{2,52,52}=2,成立;②2x+1=-x+3,x=23,此时min{2,-x+3,5x}= min{2,73,103}=2,不成立;③2x+1=5x,x=13,此时min{2,-x+3,5x}= min{2,83,53}=53,成立,∴x=12或13,故答案为12或13.【点睛】本题考查了阅读理解题,一元一次方程的应用,分类讨论思想的运用等,解决问题的关键是读懂题意,依题意分情况列出一元一次方程进行求解.15.(4,0).【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,m-1)在x轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P的坐解析:(4,0).【分析】根据x轴上点的纵坐标为0列方程求出m的值,再求解即可.【详解】∵点P(m+3,m-1)在x轴上,∴m-1=0,解得m=1,所以,m+3=1+3=4,所以,点P的坐标为(4,0).故答案为:(4,0).【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.16.(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1解析:(506,505)【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加﹣1,纵坐标依次加1;在第三象限的点的横坐标依次加﹣1,纵坐标依次加﹣1,在第四象限的点的横坐标依次加1,纵坐标依次加﹣1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A2021的坐标.【详解】解:根据题意得4的整数倍的各点如A4,A8,A12等点在第二象限,∵2021÷4=505…1;∴A2021的坐标在第一象限,横坐标为|(2021﹣1)÷4+1|=506;纵坐标为505,∴点A2021的坐标是(506,505).故答案为:(506,505).【点睛】本题考查了学生阅读理解及总结规律的能力,解决本题的关键是找到所求点所在的象限,难点是得到相应的计算规律.三、解答题17.(1);(2)【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解再求解即可.【详解】(1)原式=(2)解:【点睛】本题考查的是实数的运算,求一个数的立方根解析:(1)102)4x =-【分析】(1)根据实数的运算法则直接计算即可,(2)利用立方根的含义求解1,x -再求解x 即可.【详解】(1)原式= 9(3)22+-++10=(2)解:15x -=-4x =-【点睛】本题考查的是实数的运算,求一个数的立方根,掌握求解的方法是解题关键.18.(1)或;(2).【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.【详解】解:(1),∴,∴;(2),∴,解析:(1)2x =或2x =-;(2)32x =. 【分析】(1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.【详解】解:(1)228x=,∴24x=,∴2x=±;(2)33 38x-=,∴3278x,∴32x=.【点睛】本题考查了平方根与立方根,理解相关定义是解决本题的关键.19.∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得解析:∠3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补;110°【分析】根据平行线的性质得出∠2=∠3,求出∠1=∠3,根据平行线的判定得出AB//DG,根据平行线的性质推出∠BAC+∠AGD=180°,代入求出即可求得∠AGD.【详解】解:∵EF//AD,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB//DG,(内错角相等,两直线平行)∴∠BAC+∠AGD=180°,(两直线平行,同旁内角互补)∵∠BAC=70°,∴∠AGD=110°故答案为:∠3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补;110°.【点睛】本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键.20.(1)画图见解析,E(2,-2),F(6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF ,并写出点E ,F 的坐标; (2)利用割补法计解析:(1)画图见解析,E (2,-2),F (6,-1);(2)7;(3)(10,0)或(-18,0)【分析】(1)根据平移的性质即可画出平移后的三角形DEF ,并写出点E ,F 的坐标; (2)利用割补法计算即可;(3)根据△ABC 的面积得到△BCM 的面积,从而计算出BM ,可得点M 的坐标;【详解】解:(1)如图,三角形DEF 即为所求,点E (2,-2),F (6,-1);(2)S △ABC =11144423241222⨯-⨯⨯-⨯⨯-⨯⨯=7;(3)∵7BCM ABC S S ==△△,点C 的坐标为(0,1),∴BM =72114⨯÷=,∵B (-4,0),∴点M 的坐标为(10,0)或(-18,0).【点睛】本题考查了作图-平移变换,三角形的面积,解决本题的关键是掌握平移的性质. 21.(1)4;b =(2)−4;3(3)±8【分析】((1)由16<17<25,可以估计的近似值,然后就可以得出a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即解析:(1)4;b =(2174;3(3)±8【分析】((1)由16<17<2517a ,b 的值; (2)根据(1)的结论即可确定x 与y 的值;(3)把(2)的结论代入计算即可.【详解】解:(1)∵16<17<25,∴417<5,∴a =4,b =5,故答案为:4;5;(2)∵45,∴6+2<7,由此整数部分为64,∴x −4,∵4<5,∴3-1<4,∴y =3;4;3(3)当x 4,y =3时,)y x =)3=64, ∴64的平方根为±8.【点睛】此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“逐步逼近”是估算的一般方法,也是常用方法.22.(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1;(2)不同意,理由见解析【分析】(1)设正方形边长为dm x ,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x 的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答.【详解】解:(1)设正方形边长为dm x ,则223x =⨯,由算术平方根的意义可知x =.(2)不同意.因为:两个小正方形的面积分别为22dm 和23dm 和3.1≈,即两个正方形边长的和约为3.1dm ,所以3.13>,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为22dm 和23dm 的正方形纸片.【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念. 23.(1)见解析;(2)55°;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;②如图解析:(1)见解析;(2)55°;(3)1118022αβ︒-+ 【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图2,过点F 作//FE AB ,当点B 在点A 的左侧时,根据50ABC ∠=︒,60ADC ∠=︒,根据平行线的性质及角平分线的定义即可求BFD ∠的度数;②如图3,过点F 作//EF AB ,当点B 在点A 的右侧时,ABC α∠=,ADC β∠=,根据平行线的性质及角平分线的定义即可求出BFD ∠的度数.【详解】解:(1)如图1,过点E 作//EF AB ,则有BEF B ∠=∠,//AB CD ,//EF CD ∴,FED D ∴∠=∠,BED BEF FED B D ∴∠=∠+∠=∠+∠;(2)①如图2,过点F 作//FE AB ,有BFE FBA ∠=∠.//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.BFE EFD FBA FDC ∴∠+∠=∠+∠.即BFD FBA FDC ∠=∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1252FBA ABC ∴∠=∠=︒,1302FDC ADC ∠=∠=︒, 55BFD FBA FDC ∴∠=∠+∠=︒. 答:BFD ∠的度数为55︒;②如图3,过点F 作//FE AB ,有180BFE FBA ∠+∠=︒.180BFE FBA ∴∠=︒-∠,//AB CD ,//EF CD ∴.EFD FDC ∴∠=∠.180BFE EFD FBA FDC ∴∠+∠=︒-∠+∠. 即180BFD FBA FDC ∠=︒-∠+∠, BF 平分ABC ∠,DF 平分ADC ∠, 1122FBA ABC α∴∠=∠=,1122FDC ADC β∠=∠=, 1118018022BFD FBA FDC αβ∴∠=︒-∠+∠=︒-+. 答:BFD ∠的度数为1118022αβ︒-+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.。
师宗县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
师宗县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列图形中,1与2是对顶角的有()A. B. C. D.【答案】A【考点】对顶角、邻补角【解析】【解答】解:A、此图形中的∠1与∠2是两条直线相交所形成的角,它们是对顶角,故A符合题意;B、此图形中的∠1与∠2不是两条直线相交所形成的角,它们不是对顶角,故B不符合题意;C、此图形中的∠1与∠2不是两条直线相交所形成的角,它们不是对顶角,故C不符合题意;D、此图形中的∠1与∠2不是两条直线相交所形成的角,它们不是对顶角,故D不符合题意;故答案为;A【分析】根据两条直线相交,具有公共的顶点,角的两边互为反向延长线,这样的两个角是对顶角,对各选项逐一判断即可。
2、(2分)小明、小敏、小新商量要在毕业前夕给老师办公室的4道窗户剪贴窗花表达大伙的尊师之情,今年是农历鸡年,他们设计了金鸡报晓的剪纸图案.小明说:“我来出一道数学题:把剪4只金鸡的任务分配给3个人,每人至少1只,有多少种分配方法”小敏想了想说:“设各人的任务为x、y、z,可以列出方程x+y+z=4.”小新接着说:“那么问题就成了问这个方程有几个正整数解.”现在请你说说看:这个方程正整数解的个数是()A. 6个B. 5个C. 4个D. 3个【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:①当x=1时,y=1,z=2或y=2,z=1;②当y=1时,x=1,z=2或x=2,z=1;③当z=1时,x=1,y=2或y=1,x=2.故答案为:D.【分析】根据题意列出三元一次方程,根据每人至少1只,分三种情况:当x=1;当y=1;当z=1,求出其整数解即可。
3、(2分)不等式x-2>1的解集是()A.x>1B.x>2C.x>3D.x>4【答案】C【考点】解一元一次不等式【解析】【解答】解:x>1+2,x>3.故答案为:C.【分析】直接利用一元一次不等式的解法得出答案.一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.4、(2分)代入法解方程组有以下步骤:(1)由①,得2y=7x-3③;(2)把③代入①,得7x-7x-3=3;(3)整理,得3=3;(4)∴x可取一切有理数,原方程组有无数组解.以上解法造成错误步骤是()A.第(1)步B.第(2)步C.第(3)步D.第(4)步【答案】B【考点】解二元一次方程组【解析】【解答】解:错的是第步,应该将③代入②.故答案为:B.【分析】用代入法解二元一次方程组的时候,由原方程组中的①方程变形得出的③方程只能代入原方程组的②方程,由原方程组中的②方程变形得出的③方程只能代入原方程组的①方程,不然就会出现消去未知数得到恒等式。
完整版七年级数学下册期中测试试卷及答案
完整版七年级数学下册期中测试试卷及答案一、选择题1.116的平方根是() A .14 B .12 C .±14 D .±12 2.下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )A .B .C .D .3.在平面直角坐标系中位于第二象限的点是( )A .()2,3B .()2,3-C .()2,3-D .()2,3-- 4.下列命题中是假命题的是( ) A .对顶角相等B .两直线平行,同位角互补C .在同一平面内,经过一点有且只有一条直线与已知直线垂直D .平行于同一直线的两条直线平行5.如图,已知AP 平分BAC ∠,CP 平分ACD ∠,1290∠+∠=︒.下列结论正确的有( ) ①//AB CD ;②180ABE CDF ∠+∠=︒;③//AC BD ;④若2ACD E ∠=∠,则2CAB F ∠=∠.A .1个B .2个C .3个D .4个 6.若a 2=16,3b =2,则a +b 的值为( ) A .12 B .4 C .12或﹣4 D .12或4 7.如图,已知////AB CD EF ,FC 平分AFE ∠,26C ∠=︒,则A ∠的度数是( )A .35︒B .45︒C .50︒D .52︒8.如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),……,按此规律下去,则点A2021的坐标是().A.(673,2021)B.(674,2021)C.(-673,2021)D.(-674,2021)二、填空题9.如果,a的平方根是3±,则317a-=__________.10.已知点P(3,﹣1)关于y轴的对称点Q的坐标是_____________.11.如图,AD、AE分别是△ABC的角平分线和高,∠B=50°,∠C=70°,则∠DAE=_____________°.12.将直角三角板与两边平行的纸条如图放置,若154∠=__________︒.∠=︒,则2∠=,将纸带沿EF折叠成图②,再沿BF折叠成图13.如图①是长方形纸带,DEFα∠的度数是________.③,则图③中的CFE14.实数a 、b 在数轴上所对应的点如图所示,则|3﹣b |+|a +3|+2a 的值_____.15.在平面直角坐标系中,若点()3,1P a a -+在第二象限,则a 的取值范围为_______. 16.如图,点()00,0A ,()11,2A ,()22,0A ,()33,2A -,()44,0A ,……根据这个规律,探究可得点2021A 的坐标是________.三、解答题17.计算:333|3-333 18.求下列各式中的x 的值:(1)()225111x -=;(2)()3125180x --=.19.如图,已知EF ∥AD ,1 2.∠=∠试说明180.DGA BAC ∠+∠=︒请将下面的说明过程填写完整.解:EF ∥AD ,(已知)2∴∠=______.(______).又12∠=∠,(已知)13∴∠=∠,(______).AB ∴∥______,(______)180.(DGA BAC ∴∠+∠=︒______)20.如图,在平面直角坐标系中,已知P (a ,b )是△ABC 的边AC 上一点,△ABC 经平移后点P 的对应点为P 1(a +6,b +2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 1,C 1的坐标;(2)写出平移的过程;(3)求出以A ,C ,A 1,C 1为顶点的四边形的面积.21.已知:31a +的立方根是2-,21b -的算术平方根3,c 43 (1)求,,a b c 的值;(2)求922a b c -+的平方根. 22.如图是一块正方形纸片.(1)如图1,若正方形纸片的面积为1dm 2,则此正方形的对角线AC 的长为 dm . (2)若一圆的面积与这个正方形的面积都是2πcm 2,设圆的周长为C 圆,正方形的周长为C 正,则C 圆 C 正(填“=”或“<”或“>”号)(3)如图2,若正方形的面积为16cm 2,李明同学想沿这块正方形边的方向裁出一块面积为12cm 2的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.已知:直线AB∥CD,直线MN分别交AB、CD于点E、F,作射线EG平分∠BEF交CD 于G,过点F作FH⊥MN交EG于H.(1)当点H在线段EG上时,如图1①当∠BEG=36︒时,则∠HFG=.②猜想并证明:∠BEG与∠HFG之间的数量关系.(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:∠BEG与∠HFG之间的数量关系.【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义开平方求解即可;【详解】解:∵11416⎛⎫±=⎪⎝⎭,∴116的平方根是14±;故答案选C.【点睛】本题主要考查了平方根的计算,准确计算是解题的关键.2.B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案.【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B.【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键.3.B【分析】第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.【详解】解:根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有B(-2,3)符合,故选:B.【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).4.B【分析】根据对顶角的性质、平行线的性质、平行公理判断即可.【详解】解:A、对顶角相等,是真命题;B、两直线平行,同位角相等,故原命题是假命题;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题;D、平行于同一直线的两条直线互相平行,是真命题,故选:B.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.C由三个已知条件可得AB ∥CD ,从而①正确;由①及平行线的性质则可推得②正确;由条件无法推出AC ∥BD ,可知③错误;由2ACD E ∠=∠及CP 平分ACD ∠,可得∠ACP =∠E ,得AC ∥BD ,从而由平行线的性质易得2CAB F ∠=∠,即④正确.【详解】∵AP 平分BAC ∠,CP 平分ACD ∠∴∠ACD =2∠ACP =2∠2,∠CAB =2∠1=2∠CAP∵1290∠+∠=︒∴∠ACD +∠CAB =2(∠1+∠2)=2×90゜=180゜∴//AB CD故①正确∵//AB CD∴∠ABE =∠CDB∵∠CDB +∠CDF =180゜∴180ABE CDF ∠+∠=︒故②正确由已知条件无法推出AC ∥BD故③错误∵2ACD E ∠=∠,∠ACD =2∠ACP =2∠2∴∠ACP =∠E∴AC ∥BD∴∠CAP =∠F∵∠CAB =2∠1=2∠CAP∴2CAB F ∠=∠故④正确故正确的序号为①②④故选:C .【点睛】本题考查了平行线的判定与性质,角平分线的定义,掌握这些知识是关键.6.D【分析】根据平方根和立方根的意义求出a 、b 即可.【详解】解:∵a 2=16,∴a =±4, ∵2,∴b =8,∴a +b =4+8或﹣4+8,即a +b =12或4.故选:D .本题考查了平方根和立方根以及有理数加法,解题关键是明确平方根和立方根的意义,准确求出a 、b 的值,注意:一个正数的平方根有两个.7.D【分析】由题意易得26EFC C ∠=∠=︒,则有52EFA ∠=︒,然后根据平行线的性质可求解.【详解】解:∵//CD EF ,26C ∠=︒,∴26EFC C ∠=∠=︒,∵FC 平分AFE ∠,∴26EFC CFA ∠=∠=︒,∴52EFA ∠=︒,∵//AB CD ,∴52A EFA ∠=∠=︒;故选D .【点睛】本题主要考查平行线的性质及角平分线的定义,熟练掌握平行线的性质及角平分线的定义是解题的关键.8.B【分析】根据已知点的坐标寻找规律并应用解答即可.【详解】解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),∴A5(2,5),A6(-2,6),A7(-2,7),A解析:B【分析】根据已知点的坐标寻找规律并应用解答即可.【详解】解:∵A 1(0,1),A 2(1,2),A 3(-1,3),A 4(-1,4),∴A 5(2,5),A 6(-2,6),A 7(-2,7),A 8(3,8),∴A 3n -1(n ,3n -1),A 3n (-n ,3n ),A 3n +1(-n ,3n +1)(n 为正整数),∵3×674-1=2021,∴n =674,所以A 2021(674,2021).故选B .【点睛】本题主要考查了点的坐标规律,根据已知点坐标找到A 3n -1(n ,3n -1),A 3n (-n ,3n ),A 3n +1(-n ,3n +1)(n 为正整数)的规律是解答本题的关键.二、填空题9.-4【分析】根据题意先求出,再代入,即可.【详解】解:∵的平方根是,∴,∴,∴,故答案为:【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出的值.解析:-4【分析】根据题意先求出a,即可.【详解】解:∵3±,∴2=±=,(3)9a=,∴81∴==-,4故答案为:4-【点睛】本题主要考查了平方根、算术平方根、立方根的定义,解题的关键求出a的值.10.(-3,-1)【分析】根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答. 【详解】解:∵点Q与点P(3,﹣1)关于y轴对称,∴Q(-3,-1).故答案为(-3,-1).解析:(-3,-1)【分析】根据关于y轴对称的点的坐标为,纵坐标不变,横坐标互为相反数即可解答.【详解】解:∵点Q与点P(3,﹣1)关于y轴对称,∴Q(-3,-1).故答案为(-3,-1).【点睛】本题主要考查关于对称轴对称的点的坐标特征,解此题的关键在于熟练掌握其知识点. 11.10【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=1解析:10【分析】根据三角形内角和定理求出∠BAC,再根据角平分线的定义求出∠BAD,根据直角三角形两锐角互余求出∠BAE,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°,∵AD是角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵AE是高,∴∠BAE=90°-∠B=90°-50°=40°,∴∠DAE=∠BAE-∠BAD=40°-30°=10°.故答案为:10.【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.12.36【分析】先根据平角的定义求出的度数,再根据平行线的性质即可得求解.【详解】∵,∴,∵,故答案为:.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.解析:36【分析】先根据平角的定义求出3∠的度数,再根据平行线的性质即可得求解.【详解】∵154∠=︒,∴3180190180549036∠=︒-∠-︒=︒-︒-︒=︒,∵12//l l ,2336∴∠=∠=︒故答案为:36.【点睛】本题考查了平角的定义、平行线的性质,掌握平行线的性质是解题关键.13.180°-3α【分析】由AD ∥BC ,利用平行线的性质可得出∠BFE 和∠CFE 的度数,再结合∠CFG=∠CFE-∠BFE 及∠CFE=∠CFG-∠BFE ,即可求出∠CFE 的度数.【详解】解:∵A解析:180°-3α【分析】由AD ∥BC ,利用平行线的性质可得出∠BFE 和∠CFE 的度数,再结合∠CFG =∠CFE -∠BFE 及∠CFE =∠CFG -∠BFE ,即可求出∠CFE 的度数.【详解】解:∵AD ∥BC ,∴∠BFE =∠DEF =α,∠CFE =180°-∠DEF =180°-α,∴图②中∠CFG =∠CFE -∠BFE =180°-α-α=180°-2α,∴图③中∠CFE =∠CFG -∠BFE =180°-2α-α=180°-3α.故答案为:180°-3α.【点睛】本题考查了平行线的性质,牢记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键.14.﹣2a ﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a <﹣,0<b <,故|﹣b|+|a+|+=﹣b ﹣(a+)﹣a=﹣b ﹣a ﹣﹣a=﹣2a ﹣b解析:﹣2a ﹣b【分析】直接利用数轴结合绝对值以及平方根的性质化简得出答案.【详解】解:由数轴可得:a 0<b故b |+|ab ﹣(a ab ﹣a a=﹣2a ﹣b .故答案为:﹣2a ﹣b .【点睛】此题主要考查了实数的运算以及实数与数轴,正确化简各式是解题关键.15.-1<a <3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (a-3,a+1)在第二象限,∴,解不等式①得,a <3,解不等式②得,a >解析:-1<a <3【分析】根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.【详解】解:∵点P (a-3,a+1)在第二象限,∴3010a a -⎧⎨+⎩<①>②, 解不等式①得,a <3,解不等式②得,a>-1,∴-1<a<3.故答案为:-1<a<3.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).16.【分析】由图形得出点的横坐标依次是0、1、2、3、4、、,纵坐标依次是0、2、0、、0、2、0、、,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、2021,2解析:()【分析】由图形得出点的横坐标依次是0、1、2、3、4、⋯、n,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,继而求得答案.【详解】解:观察图形可知,点的横坐标依次是0、1、2、3、4、⋯、n,纵坐标依次是0、2、0、2-、0、2、0、2-、⋯,四个一循环,÷=⋯,202145051A坐标是(2021,2).故点2021故答案是:(2021,2).【点睛】本题考查了规律型:点的坐标,学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律.三、解答题17.(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式==0;(2)解原式==3+1解析:(1)0;(2)4【分析】(1)根据绝对值的性质去绝对值然后合并即可;(2)根据乘法分配律计算即可.【详解】(1)解原式=0;(2)解原式=3+1=4.故答案为(1)0;(2)4.【点睛】本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键. 18.(1);(2).【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案.【详解】解:(1),,,解析:(1)65x =±;(2)75x =. 【分析】(1)先将原式变形为2x a =形式,再利用平方根的定义开平方求出答案;(2)把先(1)x -看作一个整体,将原式变形为3x a =形式,再利用立方根的定义开立方求出答案.【详解】解:(1)()225111x -=,2252511x -=,22536x =,23625x = 65x =±; (2)()3125180x --=,()312518x -=, ()381251125x -=, 215x ∴-= 解得:75x =. 【点睛】 此题主要考查了平方根以及立方根的定义,正确把握相关定义解方程是解题关键. 19.;两直线平行,同位角相等 ;等量代换;;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】解:EF ∥AD ,(已知)(两直线平行,同位角相等)解析:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【分析】根据平行线的判定和性质解答即可.【详解】 解:EF ∥AD ,(已知)23∴∠=∠(两直线平行,同位角相等)又12∠=∠,(已知)13∠∠∴=,(等量代换)AB DG ∴∥,(内错角相等,两直线平行)180DGA BAC ∴∠+∠=︒(两直线平行,同旁内角互补)故答案为:3∠ ;两直线平行,同位角相等 ;等量代换;DG ;内错角相等,两直线平行;两直线平行,同旁内角互补【点睛】本题考查平行线的判定与性质,熟记判定定理和性质定理是解题的关键.20.(1)图见详解;;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A1,C1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P1(a+6,b+2)可分别解析:(1)图见详解;()()113,4,4,2A C ;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A ,C ,A 1,C 1为顶点的四边形的面积为14.【分析】(1)根据点P 的对应点P 1(a +6,b +2)可分别得出A 、B 、C 的对应点A 1,B 1,C 1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积.【详解】解:(1)由点P 的对应点P 1(a +6,b +2)可得如图所示图象:∴由图象可得()()113,4,4,2A C ;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度; (3)连接11,,AA CC ,如图所示:∵点()()13,2,4,2A C -,∴点1,A C 在同一条直线上,且与x 轴平行, ∴1111272142AC C ACC A S S =⨯=⨯=四边形.【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键.21.(1);(2)其平方根为.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出的值;(2)将(1)题求出的值代入,求出值之后再求出平方根.【详解】解:(1)由题得..又,解析:(1)3,5,6a b c =-==;(2)其平方根为4±.【分析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值;(2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 【详解】解:(1)由题得318,219a b +=--=.3,5a b ∴=-=.<67∴<.6c ∴=.3,5,6a b c ∴=-==.(2)当3,5,6a b c =-==时,()99223561622a b c -+=⨯--+⨯=. ∴其平方根为4±.【点睛】本题考查了立方根,平方根,无理数的估算.正确把握相关定义是解题的关键. 22.(1);(2)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采解析:(12)<;(3)不能;理由见解析.【分析】(1)由正方形面积,易求得正方形边长,再由勾股定理求对角线长;(2)由圆面积公式,和正方形面积可求周长,比较两数大小可以采用比商法; (3)采用方程思想求出长方形的长边,与正方形边长比较大小即可.【详解】解:(1)由已知AB 2=1,则AB =1,由勾股定理,AC ;(2,周长为2.1C C <圆正;即C 圆<C 正; 故答案为:<(3)不能;由已知设长方形长和宽为3xcm和2xcm∴长方形面积为:2x•3x=12解得x∴长方形长边为>4∴他不能裁出.【点睛】本题主要考查了算术平方根在正方形、圆、长方形面积中的应用,灵活的进行算术平方根的计算与无理数大小比较是解题的关键.23.(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.解析:(1)①18°;②2∠BEG+∠HFG=90°,证明见解析;(2)2∠BEG-∠HFG=90°证明见解析部【分析】(1)①证明2∠BEG+∠HFG=90°,可得结论.②利用平行线的性质证明即可.(2)如图2中,结论:2∠BEG-∠HFG=90°.利用平行线的性质证明即可.【详解】解:(1)①∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°,∵∠BEG=36°,∴∠HFG=18°.故答案为:18°.②结论:2∠BEG+∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°+∠HFG=180°,∴2∠BEG+∠HFG=90°.(2)如图2中,结论:2∠BEG-∠HFG=90°.理由:∵EG平分∠BEF,∴∠BEG=∠FEG,∵FH⊥EF,∴∠EFH=90°,∵AB∥CD,∴∠BEF+∠EFG=180°,∴2∠BEG+90°-∠HFG=180°,∴2∠BEG-∠HFG=90°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
完整版七年级下册数学期中考试试卷及答案
完整版七年级下册数学期中考试试卷及答案一、选择题1.116的平方根是() A .-14B .14C .14±D .12± 2.下列图形中,能将其中一个图形平移得到另一个图形的是 ( )A .B .C .D . 3.在平面直角坐标系中有四个点()2,3A ,()2,3B -,()2,3C --,()2,3D -.其中在第一象限的点是( ).A .AB .BC .CD .D4.有下列四个命题:①对顶角相等;②同位角相等;③两点之间,直线最短;④连接直线外一点与直线上各点的所有线段中,垂线段最短.其中是真命题的个数有( ) A .0个 B .1个 C .2个. D .3个5.如图,AB ∥CD ,∠EBF =∠FBA ,∠EDG =∠GDC ,∠E =45°,则∠H 为( )A .22°B .22.5°C .30°D .45° 6.下列计算正确的是( ) A .2(3)3-=- B .366=± C .393= D .382--= 7.两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,DE 与AC 交于点M ,若//BC EF ,则DMC ∠的大小为( )A .95°B .105°C .115°D .125°8.如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序为()()()1,0,2,0,2,1,()()()1,1,1,2,2,2……根据这个规律,第2021个点的坐标为( )A .()45,4B .()45,5C .()44,4D .()44,5二、填空题9.已知1x -=8,则x 的值是________________.10.已知点P (3,﹣1),则点P 关于x 轴对称的点Q _____.11.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠BFD =45°;③∠ADC =∠GCD ;④CA 平分∠BCG .其中正确的结论是______(填序号).12.如图,a ∥b ,∠1=68°,∠2=42°,则∠3=_____________.13.将一张长方形纸条ABCD 沿EF 折叠后,EC ′交AD 于点G ,若∠FGE =62°,则∠GFE 的度数是___.14.请阅读下列材料,现在规定一种新的运算:a b ad bc c d =-,例如:()2324311114-=⨯--⨯=.按照这种计算的规定,当23682x x =-,x 的值为___. 15.已知,(0,4)A ,0()2,B ﹣,1(3,)C ﹣,则ABC S =________.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A 依次平移得到A 1,A 2,A 3,…,其中A 点坐标为(1,0),A 1坐标为(0,1),则A 20的坐标为__________.三、解答题17.计算下列各式的值:(1)23(7)--(2)313(3)83+-18.求下列各式中x 的值:(1)23126x -=(2)()3180x --=19.如图,已知://AB CD ,180B D ∠+∠=︒.求证://BC DE .证明:∵//AB CD (已知),∴∠______=∠______(______).∵180B D ∠+∠=︒(______),∴∠______180D +∠=︒(等量代换).∴//BC DE (______).20.如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):(I )在方格纸内将三角形ABC 经过一次平移后得到三角形A B C ''',图中标出了点B 的对应点B ',画出三角形A B C ''';(2)过点A 画线段AD 使//AD BC 且AD BC =;(3)图中AD 与C B ''的关系是______;(4)点E 在线段AD 上,4CE =,点H 是直线CE 上一动点线段BH 的最小值为______. 21.阅读材料,解答问题:材料:∵479,<<即273<<,∴7的整数部分为2,小数部分为72-. 问题:已知52a +的立方根是3,31a b +-的算术平方根是4,c 是13的整数部分. (1)求13的小数部分.(2)求3a b c -+的平方根.22.(1)如图,分别把两个边长为1cm 的小正方形沿一条对角线裁成4个小三角形拼成一个大正方形,则大正方形的边长为_______cm ;(2)若一个圆的面积与一个正方形的面积都是22cm π,设圆的周长为C 圆,正方形的周长为C 正,则C 圆_____C 正(填“=”或“<”或“>”号);(3)如图,若正方形的面积为2400cm ,李明同学想沿这块正方形边的方向裁出一块面积为2300cm 的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由?23.已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E .(1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.【参考答案】一、选择题1.C解析:C【分析】根据平方根的定义(如果一个数的平方等于a,那么这个数叫做a的平方根)即可得.【详解】解:因为211416⎛⎫±=⎪⎝⎭,所以116的平方根是14±,故选:C.【点睛】本题考查了平方根,熟练掌握平方根的定义是解题关键.2.A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案.【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B 、图形由轴对称得到,不属于平移得到,不属于平移得到;C 、图形由旋转变换得到,不符合平移的性质,不属于平移得到;D 、图形的大小发生变化,不属于平移得到;故选:A .【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向.掌握平移的性质是解题的关键.3.A【分析】根据各象限内点的坐标特征解答即可.【详解】解:(2,3)A 在第一象限;(2,3)B -在第二象限;(2,3)C --在第三象限;(2,3)D -在第四象限;故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.4.C【分析】根据对顶角的性质、线段的性质、平行线的性质、垂线段的性质进行解答即可.【详解】解:①对顶角相等,原命题是真命题;②两直线平行,同位角相等,不是真命题;③两点之间,线段最短,原命题不是真命题;④直线外一点与直线上各点连接的所有线段中,垂线段最短,原命题是真命题. 故选:C .【点睛】此题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.B【分析】过E 作//EQ AB ,过H 作//HI AB ,利用平行线的性质解答即可.【详解】解:过E 作//EQ AB ,过H 作//HI AB ,//AB CD ,//////EQ AB CD HI ∴,180QEB ABE ∴∠+∠=︒,180QED EDC ∠+∠=︒,180IHD CDH ∠+∠=︒,180IHB ABH ∠+∠=︒,EBF FBA ∠=∠,EDG GDC ∠=∠,45BED ∠=︒,2245FBA GDC BED ∴∠-∠=∠=︒, 1180(180)22.52BHD CDH ABH GDC FBA FBA GDC BED ∴∠=∠-∠=︒-∠-︒-∠=∠-∠=∠=︒. 故选:B .【点睛】此题考查平行线的性质,关键是作出辅助线,利用平行线的性质解答.6.D 【分析】分别根据算术平方根的定义以及立方根的定义逐一判断即可.【详解】解:A ()233-,故本选项不合题意;B 366=,故本选项不合题意;C 393≠,故本选项不合题意;D 、382-=,故本选项符合题意;故选:D .【点睛】本题主要考查算术平方根及立方根,熟练掌握求一个数的算术平方根及立方根是解题的关键.7.B【分析】根据BC ∥EF ,∠E =45°可以得到∠EDC =∠E =45°,然后根据C =30°,∠C +∠MDC +∠DMC =180°,即可求解.【详解】解:∵BC ∥EF ,∠E =45°∴∠EDC =∠E =45°,∵∠C =30°,∠C +∠MDC +∠DMC =180°,∴∠DMC =180°-∠C -∠MDC =105°,故选B.【点睛】本题主要考查了三角形的内角和定理,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8.A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第个点的坐标为: 第个点的坐标为 第个点的坐标为: 再总结规律,通过计算即可得到答案.【详解】解:根据题意,第个点的坐标为:解析:A【分析】根据图形和数字规律、直角坐标系的性质,首先根据题意,第1个点的坐标为:()1,0,第9个点的坐标为()3,0,第25个点的坐标为:()5,0, 再总结规律,通过计算即可得到答案.【详解】解:根据题意,第1个点的坐标为:()1,0,第9个点的坐标为()3,0,第25个点的坐标为:()5,0,······所以第()221n -个点的坐标为:()21,0n -, ∵2452025=,∴第2025个数为:()45,0∴第2021个数为第2025个数向上推4个数,即()45,4故选:A .【点睛】本题考查了直角坐标系、图形和数字规律的知识;解题的关键是熟练掌握直角坐标系、图形和数字规律的性质,从而完成求解.二、填空题9.65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵=8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键解析:65【解析】【分析】根据算术平方根的定义确定x-1的值,解方程即可.【详解】∵8∴x-1=64x=65故答案为65【点睛】本题考查了算术平方根的定义,掌握算术平方根的定义是关键.10.(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:∵点P(3,﹣1)∴点P关于x轴对称的点Q(3,1)故答案为(3,1).【点睛】本题主要解析:(3,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:∵点P(3,﹣1)∴点P关于x轴对称的点Q(3,1)故答案为(3,1).【点睛】本题主要考查了平面直角坐标系点关于坐标轴的对称关系,熟记对称的特点是解题的关键.11.①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA=2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠B解析:①②③.【分析】由EG∥BC,且CG⊥EG于G,可得∠GEC=∠BCA,由CD平分∠BCA,可得∠GEC=∠BCA =2∠DCB,可判定①;由CD,BE平分∠BCA,∠ABC,根据外角性质可得∠BFD=∠BCF+∠CBF=45°,可判定②;根据同角的余角性质可得∠GCE=∠ABC,由角的和差∠GCD=∠ABC+∠ACD=∠ADC,可判定③;由∠GCE+∠ACB=90°,可得∠GCE与∠ACB互余,可得CA平分∠BCG不正确,可判定④.【详解】解:∵EG∥BC,且CG⊥EG于G,∴∠BCG+∠G=180°,∵∠G=90°,∴∠BCG=180°﹣∠G=90°,∵GE∥BC,∴∠GEC=∠BCA,∵CD平分∠BCA,∴∠GEC=∠BCA=2∠DCB,∴①正确.∵CD,BE平分∠BCA,∠ABC∴∠BFD=∠BCF+∠CBF=1(∠BCA+∠ABC)=45°,2∴②正确.∵∠GCE+∠ACB=90°,∠ABC+∠ACB=90°,∴∠GCE=∠ABC,∵∠GCD=∠GCE+∠ACD=∠ABC+∠ACD,∠ADC=∠ABC+∠BCD,∴∠ADC=∠GCD,∴③正确.∵∠GCE+∠ACB=90°,∴∠GCE与∠ACB互余,∴CA平分∠BCG不正确,∴④错误.故答案为:①②③.【点睛】本题考查平行线的性质,角平分线定义,垂线性质,角的和差,掌握平行线的性质,角平分线定义,垂线性质,角的和差是解题关键.12.110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a∥b,∴∠4=∠1=68°,∴∠5=∠4=68解析:110°【分析】如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.【详解】如图,∵a∥b,∴∠4=∠1=68°,∴∠5=∠4=68°,∵∠2=42°,∴∠5+∠2=68°+42°=110°,∵a∥b,∴∠3=∠2+∠5,∴∠3=110°,故答案为:110°.【点睛】本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键.13.59°【分析】由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.【详解】解:如图,∵长方形ABCD沿解析:59°【分析】由长方形的性质及折叠的性质可得∠1=∠2,AD∥BC,根据平行线的性质可求解∠GEC的度数,进而可求解∠2的度数,再利用平行线的性质可求解.【详解】解:如图,∵长方形ABCD沿EF折叠,∴∠1=∠2,AD∥BC,∴∠FGE+∠GEC=180°,∵∠FGE=62°,∴∠GEC=180°-62°=118°,∠GEC=59°,∴∠1=∠2=12∵AD∥BC,∴∠GFE=∠2,∴∠GFE=59°.故答案为59°.【点睛】本题主要考查翻折问题,平行线的性质,求解∠GEC的度数是解题的关键.14.【分析】根据题中的新定义化简所求式子,计算即可求出的值.【详解】解:根据题中的新定义得:,移项合并得:,解得:,故答案是:.【点睛】此题考查了解一元一次方程,解题的关键是掌握其步骤解析:2【分析】根据题中的新定义化简所求式子,计算即可求出x的值.【详解】解:根据题中的新定义得:21636x x --=,移项合并得:1836x -=,解得:2x =-,故答案是:2-.【点睛】此题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.15.11【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.【详解】解:如图示,根据,,三点坐标建立坐标系得:则.故答案为:11【点睛】此题考查利用直角坐标系求三角形的解析:11【分析】根据三角形的面积等于正方形面积减去三个小三角形面积解答即可.【详解】解:如图示,根据(0,4)A ,0()2,B ﹣,1(3,)C ﹣三点坐标建立坐标系得: 则1115524351511222ABC S .故答案为:11【点睛】此题考查利用直角坐标系求三角形的面积,关键是根据三角形的面积等于正方形面积减去三个小三角形面积解答.16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A3n横坐标为1−3n,∴A18横坐标为:1−3×6=−17,∴A18(−17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.三、解答题17.(1);(2)【分析】(1)先求绝对值,同时利用计算,再合并即可;(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.【详解】解:(1)(2)【点睛】本题考解析:(1)4 ;(2)2.【分析】(1)先求绝对值,同时利用()20a a =≥计算2,再合并即可; (2)利用乘法的分配率先进行乘法运算,同时求解8的立方根,再合并即可.【详解】解:(1)23--37 4.=-=-(2312=+-2.=【点睛】本题考查的是实数的运算,考查()20a a =≥,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键. 18.(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵∴∴∴;(2)解:∵∴∴∴.解析:(1)3x =±;(2)3x =【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解.【详解】(1)解:∵23126x -=∴2327x =∴29x =∴3x =±;(2)解:∵()3180x --=∴()318x -=∴12x -=∴3x =.【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键.19.;C ;两直线平行,内错角相等;已知;C ;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得∠B=∠C ,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得C解析:B ;C ;两直线平行,内错角相等;已知;C ;同旁内角互补,两直线平行【分析】首先根据平行线的性质可得∠B=∠C ,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得CB ∥DE .【详解】证明:∵AB ∥CD ,∴∠B=∠C (两直线平行,内错角相等),∵∠B+∠D=180°(已知),∴∠C+∠D=180°(等量代换),∴CB ∥DE (同旁内角互补,两直线平行).故答案为:B ;C ;两直线平行,内错角相等;已知;C ;同旁内角互补,两直线平行【点睛】本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明.20.(1)见解析;(2)见解析;(3),AD ∥;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD=BC ,即可;(3)由平移的性质可得,∥BC ,,从而可以解析:(1)见解析;(2)见解析;(3)AD B C ''=,AD ∥B C '';(4)154【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A 画线段AD ∥BC ,AD =BC ,即可;(3)由平移的性质可得B C BC ''=,B C ''∥BC ,,从而可以得到AD B C ''=,AD ∥B C ''; (4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,由此利用三角形面积公式求解即可.【详解】解:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得B C BC ''= ,B C ''∥BC ,由AD =BC ,AD ∥BC ,从而可以得到AD B C ''=,AD ∥B C '';故答案为:AD B C ''=,AD ∥B C '';(4)根据点到直线的距离垂线段最短,可知当BH ⊥CE 时BH 最短,如图所示:∵AD ∥BC , ∴1115==3134=222BCE ABC S S ⨯⨯+⨯⨯△△ , ∴115=22CE BH , ∴154BH =, ∴点H 是直线CE 上一动点线段BH 的最小值为154. 故答案为:154.【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21.(1);(2).【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.【详解】(1)∵即,∴的整数部分为3,小数部分为,解析:(13;(2)4±.【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.【详解】(1)∵即34<, ∴33,∴3;(2)∵52a +的立方根是3,31a b +-的算术平方根是4,c ∴5227a +=,3116a b +-=,3c =,∴5a =,2b =,3c =,∴316a b c -+=,3a b c -+的平方根是4±.【点睛】本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.22.(1);(2);(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形解析:(12)<;(3)不能裁剪出,详见解析【分析】(1)根据所拼成的大正方形的面积为2即可求得大正方形的边长;(2)由圆和正方形的面积公式可分别求的圆的半径及正方形的边长,进而可求得圆和正方形的周长,利用作商法比较这两数大小即可;(3)利用方程思想求出长方形的长边,与正方形边长比较大小即可;【详解】解:(1)∵小正方形的边长为1cm ,∴小正方形的面积为1cm 2,∴两个小正方形的面积之和为2cm 2,即所拼成的大正方形的面积为2 cm 2,∴,(2)∵22r ππ=, ∴r = ∴2=2C r π=圆设正方形的边长为a∵22a π=, ∴a∴=4C a =正∴1C C =<圆正故答案为:<;(3)解:不能裁剪出,理由如下:∵长方形纸片的长和宽之比为3:2,∴设长方形纸片的长为3x ,宽为2x ,则32300x x ⋅=,整理得:250x =,∴22(3)9950450x x ==⨯=,∵450>400,∴22(3)20x >,∴320x >,∴长方形纸片的长大于正方形的边长,∴不能裁出这样的长方形纸片.【点睛】本题通过圆和正方形的面积考查了对算术平方根的应用,主要是对学生无理数运算及比较大小进行了考查.23.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H 作HP ∥AB ,根据平行线的性质解答即可;(3)过点H 作HP ∥AB ,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H 作HP ∥AB ,根据平行线的性质解答即可;(3)过点H 作HP ∥AB ,根据平行线的性质解答即可.【详解】证明:(1)∵AB ∥CD ,∴∠AFE =∠FED ,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∴HP∥CD,∵GM平分∠HGB,∠BGH,∴∠BGM=∠HGM=12∵EM平分∠HED,∠HED,∴∠HEM=∠DEM=12∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=12∠AFE,即1(18010)132x x︒-=,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
师宗二中初一下学期数学期中测试
(考试时间:120分钟;全卷满分:120分;试卷编号:9A02;试卷编辑:李雄飞;备注:内部资料,请勿外传)
班级: 姓名: 总分:
(考试时间120分钟,满分120分)
一、认真思索,慎重选择(''30103=⨯) 1、下列各式中计算正确的是( )
A 、523)(x x =-
B 、632])[(x x =-
C 、1221)(--=n n x x
D 、1025x x x =⋅ 2、下列各式中计算正确的是( )
A 、222)2)(2(b a b a b a -=-+
B 、224)2)(2(b a b a b a -=-+-
C 、(-a-2b )(a-2b )=224b a +-
D 、224)2)(2(b a b a b a -=+--
3、某种冠状病毒的直径是120纳米,1纳米=10-9米,则这种冠状病毒的直径用科学记数法表示为( )
A 、1.2×10-9米
B 、1.2×10-8米
C 、1.2×10-7米
D 、1.2×10-6米
4、一个两位数,个位数字为y ,十位数字比个位数字大1,那么这个两位数可以表示为( ) A 、 111-y B 、 1011-y C 、111+y D 、 1011+y
5、下列各式中,不能用乘法公式计算的是( ) (注:乘法公式是指平方差公式或完全平方公式)
A 、 )32)(32(a b b a -+
B 、)21
)(5.0(-+x x
C 、)2)(2(y x y x +---
D 、))((2222b a b a ++ 6、如图∠1、∠2是一对( )
A 、同位角
B 、内错角
C 、同旁内角
D 、对顶角 7、一个角与它的余角相等,则这个角为( ) A 、 45 B 、 90 C 、 9045或 D 、 50
8、在同一平面内,直线a ∥b, b ⊥c,则a 与c 的位置关系为( ) A 、垂直 B 、平行 C 、相交但不垂直 D 、不能确定
9、已知,∠α的两边与∠β的两边分别平行,则∠α与∠β的关系是( ) A 、相等 B 、互余 C 、互补 D 、相等或互补
10、如图所示的圆盘中三个扇形大小相同,则指针落在黄色区域的概率是( )
A 、21
B 、31
C 、41
D 、61
二、开动脑筋,填补空白()22112''=⨯
1 2 (第6题图)
(第10题图)
1、3
2z xy -的系
,次数是 ;
2、)((y x + )=22y x -, =-2)2(b a ;
3、用科学记数法表示: -30200= , 0.000809= ;
4、近似数3.20精确到 位,有 个有效数字;
5、近似数4103.2⨯-精确到 位,有 个有效数字;
6、=---)()()(23n m m n n m , =⨯2002200352.0 ;
7、在12瓶外观一样的饮料中,有2瓶过了保质期,从中任意抽取一瓶,恰好抽到已过保质
期的饮料的概率是 ;
8、如图,直线a 、b 交于点O ,∠1+∠2=
260,
则∠1= ,∠3= ; 9、若∠α=67°12′,则∠α的余角= ,
∠α的补角=
;
10、已知:如图OC ⊥AB 于O ,∠DOE= 90
则∠BOE 的余角有∠ ,∠
;11、如图,B 、A 、E 在一条直线上,则∠1是同位角,∠2与∠ 是内错角。
三、细心对待,精确计算()2464''=⨯
(1)、)4
3
6532(12222y xy x y x +-- (2)、)23)(53()72)(72(x x x x -+--+
(3)x x x x x ÷--+⋅72342)( (4)2220)2(222---++-
(5)、)4()4816(2234a a a a -÷-- (6)、)32)(32(c b a c b a +---
四、用平方差公式或完全平方公式计算(必须写出运算过程)()824''=⨯ (1)、 202198⨯ (2)、2102
五、阅读下题并填空)551(''=⨯
已知:△ABC, ∠A 、∠B 、∠C 之和为多少?为什么? 解:∠A+ ∠∴AB ∴∠而∠∴∠ACB+ + = 180(等量代换) 六、几何世界、巧妙解决。
)1226(''=⨯
1、已知如图 ,直线a 、b 被直线c 所截且a ∥b ,如果∠1= 60,则∠2是多少度?说明理由。
2、已知:AB ∥CD,∠B+∠D= 180,则BC 与DE 平行吗?为什么?
七、亲自动手试一试,谁的设计最准确(本题4分)
设计一个摸球游戏,使摸到红球的概率为3
1。
E
八、作图分析题(每小题3分,本题共6分)
(1)已知:∠AOB,点P在OA上,请以P为顶点,PA为一边作∠APC=∠O
(2)根据上面您作出的图分析回答:PC与OB一定平行吗?答:
我这样回答的详细理由是
9分)
(2)制作适当的统计图来表示上表中的数据。
(4分)
(3)请写出两条根据上面您所画的统计图得出的信息。
(2分)
①
②。