余弦定理的八种证明方法

合集下载

证明余弦定理的三种方法

证明余弦定理的三种方法

证明余弦定理的三种方法方法一:向量法证明假设在平面内有一个三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。

以A为原点,分别向B和C引出向量AB和AC。

根据向量的定义,可以得到向量AB和向量AC的长度分别为a和c,且向量AB与向量AC之间的夹角为角A。

根据向量的加法和减法,可以得到向量AC-向量AB的长度为c-a。

同样地,可以得到向量AB-向量AC的长度为a-c。

根据向量的模长和夹角的余弦关系,可以得到:(c-a)^2 = (b*cosA)^2 + (b*sinA)^2(a-c)^2 = (b*cosA)^2 + (b*sinA)^2将上述两个式子相加,可以得到:(c-a)^2 + (a-c)^2 = 2*(b*cosA)^2 + 2*(b*sinA)^2化简上述式子,可以得到:c^2 + a^2 - 2ac = 2b^2*cos^2A + 2b^2*sin^2A化简上述式子,可以得到:c^2 + a^2 - 2ac = 2b^2*(cos^2A + sin^2A)根据三角恒等式cos^2A + sin^2A = 1,可以得到:c^2 + a^2 - 2ac = 2b^2化简上述式子,可以得到:c^2 + a^2 - 2ac - 2b^2 = 0即:a^2 + b^2 - 2ab*cosC = 0即:a^2 + b^2 = 2ab*cosC这就是余弦定理的向量法证明。

方法二:几何法证明假设在平面内有一个三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。

以A为原点,向B和C引出向量AB和AC。

根据三角形的定义,可以得到:AB = b*cosA + b*sinAAC = c根据向量的减法,可以得到:AB - AC = b*cosA + b*sinA - c根据向量的模长和夹角的余弦关系,可以得到:(AB - AC)^2 = (b*cosA + b*sinA - c)^2化简上述式子,可以得到:(AB - AC)^2 = (b*cosA)^2 + (b*sinA)^2 - 2*b*cosA*c + c^2 - 2*b*sinA*c + 2*b*cosA*b*sinA化简上述式子,可以得到:(AB - AC)^2 = b^2*(cos^2A + sin^2A) - 2*b*c*cosA + c^2 - 2*b*c*sinA + 2*b^2*cosA*sinA根据三角恒等式cos^2A + sin^2A = 1,可以得到:(AB - AC)^2 = b^2 - 2*b*c*cosA + c^2 - 2*b*c*sinA + 2*b^2*cosA*sinA化简上述式子,可以得到:(AB - AC)^2 = b^2 + c^2 - 2*b*c*cosA根据向量的模长和夹角的余弦关系,可以得到:(AB - AC)^2 = a^2即:b^2 + c^2 - 2*b*c*cosA = a^2即:a^2 = b^2 + c^2 - 2*b*c*cosA这就是余弦定理的几何法证明。

余弦定理的八种证明方法

余弦定理的八种证明方法

余弦定理的八种证明方法1. 平面解析几何证明:设平面内三角形ABC,其中$\\overrightarrow{AB}=\\mathbf{a}$,$\\overrightarrow{BC}=\\mathbf{b}$,$\\overrightarrow{CA}=\\mathbf{c}$,则有以下关系:$$\\begin{cases}\\|\\mathbf{a}+\\mathbf{b}\\|^2=(\\mathbf{a}+\\mathbf{b})\\cd ot (\\mathbf{a}+\\mathbf{b})\\\\ \\|\\mathbf{a}-\\mathbf{b}\\|^2=(\\mathbf{a}-\\mathbf{b})\\cdot (\\mathbf{a}-\\mathbf{b})\\\\\\|\\mathbf{c}\\|^2=\\mathbf{c}\\cdot \\mathbf{c}\\end{cases}$$将这三个式子展开并简化运算,再利用向量的数量积展开,得到余弦定理的表达式。

2. 向量证明:设向量$\\mathbf{a}$和$\\mathbf{b}$的夹角为$\\theta$,则有向量$\\mathbf{a}-\\mathbf{b}$的模长为$\\|\\mathbf{a}-\\mathbf{b}\\|=\\sqrt{\\|\\mathbf{a}\\|^2+\\|\\mathbf{b}\\|^2-2\\|\\mathbf{a}\\|\\|\\mathbf{b}\\|\\cos\\theta}$,再利用向量的数量积展开,即可得到余弦定理的表达式。

3. 平面三角形面积证明:设平面内三角形ABC,其三边长度分别为$a$,$b$,$c$,其对应的高分别为$h_a$,$h_b$,$h_c$,则有以下关系:$$\\begin{cases}S=\\frac{1}{2}bh_a\\\\ S=\\frac{a\\sin C}{2}=\\frac{b\\sinA}{2}=\\frac{c\\sin B}{2}\\end{cases}$$将这两个式子联立并消去$S$,再利用正弦定理展开,得到余弦定理的表达式。

余弦定理的八种证明方法1500字

余弦定理的八种证明方法1500字

余弦定理的八种证明方法1500字余弦定理是高中数学中一个非常重要的定理,它可以描述三角形边长和角度之间的关系。

余弦定理有很多种证明方法,以下我们简单介绍其中的八种证明方法。

方法一:向量法证明推导过程如下:设三角形ABC的顶点坐标分别为A(x1,y1),B(x2,y2),C(x3,y3)。

根据向量的定义和运算法则,可以得到向量AB=a,向量AC=b,向量BC=c。

由向量的点积公式可知,向量a·b=|a||b|cos(∠{向量AB,向量AC}),即(a-b)·(a-c)=-|a|²cosA。

对称地,还可以得到(b-c)·(b-a)=-|b|²cosB,(c-a)·(c-b)=-|c|²cosC。

进一步推导可知,(a-b)·(a-c)+(b-c)·(b-a)+(c-a)·(c-b)=-(|a|²+|b|²+|c|²),即2(a·b+b·c+c·a)=|a|²+|b|²+|c|²,最终可得到余弦定理的向量形式。

方法二:面积法证明推导过程如下:设∠ACB=C,根据三角形的面积公式可知,△ABC的面积S=1/2|AC||BC|sinC。

又根据正弦定理可知,sinC=a/2R,其中R为△ABC的外接圆半径。

将sinC带入上述公式可得S=1/4R|AC||BC|a。

同样地,也可以得到S=1/4R|AB||BC|c和S=1/4R|AB||AC|b。

将这三个式子相加,并将△ABC的面积用△ABC的周长p和半周长s表示,可得2S/abc=(ac+ab-bc)/2sb+(ab+bc-ac)/2sc+(ac+bc-ab)/2sa。

经过化简可以得到余弦定理的面积形式。

方法三:勾股定理证明推导过程如下:考虑△ABC的边AB与边AC之间的夹角∠BAC=A,根据勾股定理可得AB²=BC²+AC²-2BC·ACcosA。

余弦定理的多种证明方法

余弦定理的多种证明方法

余弦定理的多种证明方法法一(平面几何):在△ABC 中,已知,,AC b BC a C ==∠及,求c 。

过A 作sin sin AD BC D AD AC C BC C ⊥=于,是=,cos cos ,CD AC b c ==在Rt ABD ∆中,2222222(sin )(cos )2cos AB AD BD b c a b c a b ab c =+=+-=+-,法二(平面向量):222()()22||||AB AB AC BC AC BC AC AC BC BC AC AC BC ⋅=+⋅+=⋅⋅+=+⋅ 222cos(180)2cos B BC b ab B a -+=-+,即:2222cos c a b ab c =+-法三(解析几何):把顶点C 置于原点,CA 落在x 轴的正半轴上,由于△ABC 的AC=b ,CB=a ,AB=c ,则A ,B ,C 点的坐标分别为A(b ,0),B(acosC ,asinC),C(0,0).|AB|2=(acosC -b)2+(asinC -0)2 =a 2cos2C -2abcosC+b 2+a 2sin2C =a 2+b 2-2abcosC , 即c 2=a 2+b 2-2abcosC .法四(利用正弦定理):先证明如下等式:C B A C B A cos sin sin 2sin sin sin 222=-+ ⑴ 证明:C B A 222sin sin sin -+()()()()()[]CB A B A B AC C B A B A C B A coos CB A cos sin sin 2cos cos cos cos cos cos 22cos 12cos 22122cos 122cos 122cos 12=+--=+-+-=+++-=---+-=故⑴式成立,再由正弦定理变形,得)2(sin 2sin 2sin 2⎪⎩⎪⎨⎧===C R c BR b A R a结合⑴、)2(有().cos 2cos sin sin 24sin sin sin 422222222C ab C B A R CB A R c b a =⋅=-+=-+即 C ab b a c cos 2222-+=.同理可证 A bc c b a cos 2222-+=;B ca a c b cos 2222-+=.法五(用相交弦定理证明余弦定理):如图,在三角形ABC 中,∠A=α,AB=a ,BC=b ,AC=c 。

余弦定理及其证明

余弦定理及其证明

余弦定理及其证明篇一:余弦定理的证明方法大全(共十法)余弦定理证明方法全集(共十种)一、余弦定理余弦定理:三角形任意边的平方等于其他边的平方和减去这两条边和它们之间的夹角的余弦乘积的两倍,也就是说,in?在ABC,我们知道AB吗?c、卑诗省?a、 ca?b、然后呢a2?b2?c2?2bccosa,b2?c2?a2?2cacosb,c2?a2?b2?2abcosc.二、定理证明为了叙述的方便与统一,我们证明以下问题即可:哪里在ABC,我们知道AB吗?c、空调?b、角度a,验证:A2?b2?c2?2bccosa。

证据1:如图1所示,在哪里?美国广播公司?ab?AC可用:cb?cb?(ab?ac)?(ab?ac)ab?交流电?2ab?交流电b2c22bccosa图12二即,a2?b2?c2?2bccosa.证候方法2:此方法应注意什么?讨论(1)当?a是直角时,由b2?c2?2bccosa?b2?c2?2bccos90??b2?c2?a2知结论成立.(2)当?a是锐角时,如图2-1,过点c作cd?ab,交ab于点d,则在RT?在ACD,广告?bcosa,cd?贝西娜。

从而,bd?ab?ad?c?bcosa.在RT?在BCD中,根据勾股定理,我们可以得到:BC2?bd2?cd2(cbcosa)2(bsina)2c2?2cbcosa?b2a图2-1即,a2?b2?c2?2bccosa.注:图2-1仅适用于?B是锐角,和?B也可以是直角或钝角,如果?B是一个直角,如图所示点d就与点b重合;若?b是钝角,图中的点d就在ab的延长线上.(3)什么时候?当a为钝角时,如图2-2所示,交叉点C为CD?AB,在D点与Ba 延长线相交,然后在RT?在ACD,广告?bcos(?a)??bcosa,cd?bsin(?a)?贝西娜。

从而,bd?ab?ad?c?bcosa.在RT?在BCD中,根据勾股定理:bc?bd?cd(c?bcosa)2?(b)2c22cbcosab2图2-2222那是,a?BC2bccosa。

余弦定理的八种证明方法

余弦定理的八种证明方法

余弦定理的八种证明方法研究背景:2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。

目的意义:用多种方法证明余弦定理,扩展思维,了解更多的过程。

内容摘要:余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。

成果展示:一余弦定理的内容对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质a² = b² + c²- 2·b·c·cosAb² = a² + c² - 2·a·c·cosBc² = a² + b² - 2·a·b·cosC二证明方法方法一:平面几何法∵如图,有a+b=c ∴c·c=(a+b)·(a+b)∴c²=a·a+2a·b+b·b ∴c²=a²+b²+2|a||b|cos(π-θ)又∵Cos(π-θ)=-Cosθ∴c²=a²+b²-2|a||b|cosθ再拆开,得c^2=a²+b²-2*a*b*cosC方法二:勾股法在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c根据勾股定理可得:AC²=AD²+DC²b²=(sinB*c)²+(a-cosB*c)²b²=(sinB*c)²+a²-2ac*cosB+(cosB)²*c²b²=(sinB²+cosB²)*c²-2ac*cosB+a²b²=c²+a²-2ac*cosB方法三:解析法在三角形ABC建立直角坐标系,使A点为原点,B点落在x轴正半轴上,设三角形三边abc则有三点坐标为A(0,0)B(c,0)C(bcosA,bsinA)∵BC=a则由距离公式得a=(c-bcosA)2-(bsinA)²化简得a=c²+b²-2bccosA∴a²=c²+b²-2bccosA方法四:面积法S△ACQ=(1/2)bc(cos∠BAC),S△PBC=(1/2)ac(cos∠CBA),bc(cos∠BAC)+ac(cos∠CBA)=2(S△ACQ+S△PBC)=c²,同理,ac(cos∠CBA)+ab(cos∠ACB)=a²,ab(cos∠ACB)+bc(cos∠BAC)=b².联立三个方程,bc(cos∠BAC)+ac(cos∠CBA)=c²(1)ac(cos∠CBA)+ab(cos∠ACB)=a²(2)ab(cos∠ACB)+bc(cos∠BAC)=b²(3)易得余弦定理方法五:正弦法∵==∴=bsin²B=csin²C=absinAsinB∴a²+b²-c²sin²A+sin²B-sin²C=absinAsinB∴a²+b²-c²=absinAsinB(sin²A+sin²B-sin²C)(1)又∵sin²A=1-cos2A2sin²B=1-cos2B2∴sin²A+sin²B=1-(cos2A+cos2B)=1-cos(A+B)cos(A-B)ΔABC中cos(A+B)=cos(180°-C)=-cosC∴sin²A+cos²B=1-cosCcos(A-B)(2)(2)带入(1)得a²+b²-c²=[1+cosCcos(A-B)-sin²C]=[cos²C+cosCcos(A-B)]=cosC[cosC+cos(A-B)]=cosC[-cos(A+B)+cos(A-B)]=2abcosC∴c²=a²+b²-2abcosC同理可证b²=a²+c²-2accosBa²=c²+b²-2bccosA方法六:摄影定理法∵a=bcosC+ccosB(1)b=acosC+ccosA(2)c=bcosA+acosB(3)∴(1)×a+(2)×b-(3)×c得c²=a²+b²-2abcosC同理可证b²=a²+c²-2accosBa²=c²+b²-2bccosA方法七:复数法如下图,在复平面内作△ABC,则=a(cosB+i sinB),= =b[cos(-A)+i sin(-A)],这里C'是平行四边形ACBC'的顶点,根据复数加法的几何意义可知,=+=+。

余弦定理的十一种证明方法

余弦定理的十一种证明方法

余弦定理的十一种证明方法余弦定理和勾股定理一样,证明方法也有很多种,下面给出比较经典的十一种证明方法,供大家参考!余弦定理:三角形任一边的平方等于另外两边的平方和减去这两边与其夹角余弦的积的二倍。

如图1所示,在△ABC中,若AB=c,BC=a,CA=b,则有:c2=a2+b2-2ab cosCa2=b2+c2-2bc cosAb2=c2+a2-2c a cosB.【证法1】如图2,在锐角△ABC中,作AD⊥BC于D,则CD=b cosC,AD=b sinC,在△ABD中,由勾股定理,得AB2=BD2+AD2,即AB2=(a-b cosC)2+(b sinC)2=a2-2ab cosC+b2cos2C+b2sinC2=a2-2ab cosC+b2,即c2=a2+b2-2ab cosC。

当C重合于D时,在Rt△ABC中,∠C=90°,因cosC=0,所以c2=a2+b2。

当C在D左侧时,△ABC为钝角三角形,如图3所示,∠ACD=180°-C,cos∠ACD=cos(180°-C)=-cosC,sin∠ACD=sin(180°-C)=sinC,所以CD=b cos(180°-C)=-b cosC,AD=b sin(180°-C)=b sinC,在Rt△ABD中,由勾股定理,得AB2=BD2+AD2,即AB2=(a-b cosC)2+(b sinC)2=a2-2ab cosC+b2cos2C+b2sinC2=a2-2ab cosC+b2,即c2=a2+b2-2ab cosC。

【证法2】将△ABC 的顶点C 置于原点,CA 落在x 轴的正半轴上,如图4所示,则A ,B ,C 三点的坐标分别为A (b ,0),B (a cosC ,a sinC),C (0,0).由此得|AB|2=(a cosC -b )2+(a sinC -0)2=a 2cos 2C -2ab cosC +b 2+a 2sin 2C=a 2+b 2-2ab cosC ,即c 2=a 2+b 2-2ab cosC 。

余弦定理的证明方法(精选多篇)

余弦定理的证明方法(精选多篇)

余弦定理的证明方法(精选多篇)第一篇:余弦定理的证明方法余弦定理的证明方法在△abc中,ab=c、bc=a、ca=b则c =a +b -2ab*cosca =b +c -2bc*cosab =a +c -2ac*cosb下面在锐角△中证明第一个等式,在钝角△中证明以此类推。

过a作ad⊥bc于d,则bd+cd=a由勾股定理得:c =(ad) +(bd) ,(ad) =b -(cd)所以c =(ad) -(cd) +b=(a-cd) -(cd) +b=a -2a*cd+(cd) -(cd) +b=a +b -2a*cd因为cosc=cd/b所以cd=b*cosc所以c =a +b -2ab*cosc在任意△abc中,作ad⊥bc.∠c对边为c,∠b对边为b,∠a对边为a-->bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c勾股定理可知:ac²=ad²+dc²b²=(sinb*c)²+(a-cosb*c)²b²=sin²b*c²+a²+cos²b*c²-2ac*c osbb²=(sin²b+cos²b)*c²-2ac*cosb+a²b²=c²+a²-2ac*cosb所以,cosb=(c²+a²-b²)/2ac2如右图,在abc中,三内角a、b、c所对的边分别是a、b、c.以a为原点,ac所在的直线为x轴建立直角坐标系,于是c点坐标是(b,0),由三角函数的定义得b点坐标是(ccosa,csina).∴cb=(ccosa-b,csina).现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a,∠dac=π-∠bca=π-c,根据三角函数的定义知d点坐标是(acos(π-c),asin(π-c))即d点坐标是(-acosc,asinc),∴ad=(-acosc,asinc)而ad=cb∴(-acosc,asinc)=(ccosa-b,csina)∴asinc=csina…………①-acosc=ccosa-b……②由①得asina=csinc,同理可证asina=bsinb,∴asina=bsinb=csinc.由②得acosc=b-ccosa,平方得:a2cos2c=b2-2bccosa+c2cos2a,即a2-a2sin2c=b2-2bccosa+c2-c2sin2a.而由①可得a2sin2c=c2s in2a∴a2=b2+c2-2bccosa.同理可证b2=a2+c2-2accosb,c2=a2+b2-2abcosc.到此正弦定理和余弦定理证明完毕。

余弦定理的八种证明方法

余弦定理的八种证明方法

余弦定理的八种证明方法余弦定理是解决三角形中两边和夹角之间关系的重要定理之一、下面将介绍八种证明余弦定理的方法。

1.向量法证明:假设三角形的三个顶点为A、B、C,它们所对的角为a、b、c,相应的边分别为a、b、c,连接AB、AC,并设向量AB为向量a,向量AC为向量b。

则根据向量的加法,可以得到向量OB加向量OC等于向量AC,即向量OC等于向量AB-向量AC。

利用向量的点积,可以得到OC的模平方等于AB的模平方加上AC的模平方减去2次AC与AB的夹角的余弦值与AB、AC的模的积的乘积,即OC的模的平方等于AB的模的平方加上AC的模的平方减去2次AC与AB的夹角的余弦值与AB、AC的模的乘积。

将a、b、c、A、B、C表示为边和角的符号形式,即可得到余弦定理。

2.直角三角形法证明:假设三角形中角C为直角,即C=90°,则根据勾股定理,可以得到AB的平方等于AC的平方加上BC的平方。

将AB、AC、BC分别表示为a、b、c,则可得到a的平方等于b的平方加上c的平方。

3.直线法证明:利用三角形内部的三角形两边之和大于第三边的性质,可以得到AB加上AC大于BC、AB加上BC大于AC、AC加上BC大于AB。

设角B等于a、角A等于b、角C等于c,则上述不等式可以表示为cosc大于cosa、cosc大于cosb、cosa加cosb大于cosc。

将这些不等式利用三角函数的性质进行推导,可以得到余弦定理。

4.面积法证明:假设三角形的三个顶点为A、B、C,它们所对的边分别为a、b、c,面积为S。

将S表示为a、b、c的函数,利用海伦公式,可以得到S的平方等于s(s-a)(s-b)(s-c),其中s为周长的一半。

将这个等式利用三角函数的性质化简,即可得到余弦定理。

5.解析几何法证明:设A、B、C的坐标分别为(x1,y1)、(x2,y2)、(x3,y3),则根据距离公式,可以得到AB的平方等于(x2-x1)的平方加上(y2-y1)的平方。

(经典)最全余弦定理的10种证明方法

(经典)最全余弦定理的10种证明方法

(经典)最全余弦定理的10种证明方法——王彦文 青铜峡一中一、余弦定理余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在ABC ∆中,已知AB c =,BC a =,CA b =,则有2222cos a b c bc A =+-, 2222cos b c a ca B =+-, 2222cos c a b ab C =+-.二、定理证明为了叙述的方便与统一,我们证明以下问题即可:在ABC ∆中,已知AB c =,AC b =,及角A ,求证:2222cos a b c bc A =+-. 证法一:如图1,在ABC ∆中,由CB AB AC =-可得:()()CB CB AB AC AB AC ⋅=-⋅-222AB AC AB AC =+-⋅222cos b c bc A =+-即,2222cos a b c bc A =+-.证法二:本方法要注意对A ∠进行讨论.(1)当A ∠是直角时,由22222222cos 2cos90b c bc A b c bc b c a +-=+-︒=+=知结论成立. (2)当A ∠是锐角时,如图2-1,过点C 作CD AB ⊥,交AB 于点D ,则在Rt ACD ∆中,cos AD b A =,sin CD b A =.从而,cos BD AB AD c b A =-=-.在Rt BCD ∆中,由勾股定理可得: 222BC BD CD =+22(cos )(sin )c b A b A =-+222cos c cb A b =-+图1图2-1A即,2222cos a b c bc A =+-.说明:图2-1中只对B ∠是锐角时符合,而B ∠还可以是直角或钝角.若B ∠是直角,图中的点D 就与点B 重合;若B ∠是钝角,图中的点D 就在AB 的延长线上.(3)当A ∠是钝角时,如图2-2,过点C 作CD AB ⊥,交BA 延长线于点D ,则 在Rt ACD ∆中,cos()cos AD b A b A π=-=-,sin()sin CD b A b A π=-=.从而,cos BD AB AD c b A =+=-.在Rt BCD ∆中,由勾股定理可得:222BC BD CD =+22(cos )(sin )c b A b A =-+222cos c cb A b =-+即,2222cos a b c bc A =+-.综上(1),(2),(3)可知,均有2222cos a b c bc A =+-成立. 证法三:过点A 作AD BC ⊥,交BC 于点D ,则在Rt ABD ∆中,sin BD c α=,cos ADc α=.在Rt ACD ∆中,sin CD b β=,cos ADbβ=.由cos cos()cos cos sin sin A αβαβαβ=+=-可得:2cos AD AD BD CD AD BD CDA c b c b bc-⋅=⋅-⋅= 2222AD BD CD bc -⋅=222222c BD b CD BD CD bc -+--⋅=222()2b c BD CD bc +-+=2222b c a bc+-=整理可得2222cos a b c bc A =+-. 证法四:在ABC ∆中,由正弦定理可得sin sin sin sin()a b c cA B C A B ===+. 从而有sin sin b A a B =,………………………………………………………………①sin sin()sin cos cos sin c A a A B a A B a A B =+=+. …………………………②图2-2图3将①带入②,整理可得cos cos a B c b A =-.…………………………………………③ 将①,③平方相加可得22222(cos )(sin )2cos a c b A b A b c bc A =-+=+-. 即,2222cos a b c bc A =+-.证法五:建立平面直角坐标系(如图4),则由题意可得点(0,0)A ,(,0)B c ,(cos ,sin )C b A b A ,再由两点间距离公式可得2a =22(cos )(sin )c b A b A -+222cos c cb A b =-+.即,2222cos a b c bc A =+-.证法六:在ABC ∆中,由正弦定理可得2sin a R A =,2sin b R B =,2sin c R C =. 于是,222224sin 4sin ()a R A R B C ==+222224(sin cos cos sin 2sin sin cos cos )R B C B C B C B C =++ 222224(sin sin 2sin sin 2sin sin cos cos )R B C B C B C B C =+-+ 2224(sin sin 2sin sin cos())R B C B C B C =+++ 2224(sin sin 2sin sin cos )R B C B C A =+-22(2sin )(2sin )2(2sin )(2sin )cos R B R C R B R B A =+-222cos b c bc A =+-即,结论成立.证法七:在ABC ∆中,由正弦定理可得2sin a R A =,2sin b R B =,2sin c R C =. 于是,2222cos a b c bc A =+-22222224sin 4sin 4sin 8sin sin cos R A R B R C R B C A ⇔=+-2222sin 2sin 2sin 4sin sin cos A B C B C A ⇔=+- 22sin 2cos 2cos 24sin sin cos A B C B C A ⇔=-+-222cos 22cos()cos()4sin sin cos A B C B C B C A ⇔-=-+--由于cos()cos()cos B C A A π+=-=-,因此2cos cos()cos()2sin sin cos A B C B C B C A ⇔=+-+cos cos()2sin sin A B C B C ⇔=--+cos cos cos sin sin cos()A B C B C B C ⇔=-+=-+. 这,显然成立.即,结论成立.证法八:如图5,以点C 为圆心,以CA b =为半径作C ,直线BC 与C 交于点,D E ,延长AB 交C 于F ,延长AC 交C 于G .则由作图过程知2cos AF b A =, 故2cos BF b A c =-.由相交弦定理可得:BA BF BD BE ⋅=⋅, 即,(2cos )()()c b A c b a b a ⋅-=+⋅-, 整理可得:2222cos a b c bc A =+-.证法九:如图6,过C 作CD ∥AB ,交ABC ∆的外接圆于D ,则AD BC a ==,BD AC b ==.分别过,C D 作AB 的垂线,垂足分别为,E F ,则cos AE BF b A ==,故2cos CD c b A =-.由托勒密定理可得AD BC AB CD AC BD ⋅=⋅+⋅, 即,(2cos )a a c c b A b b ⋅=⋅-+⋅.整理可得:2222cos a b c bc A =+-.证法十:由图7-1和图7-2可得2a =22(cos )(sin )c b A b A -+, 整理可得:2222cos a b c bc A =+-.c-bcosA图7-2图7-1余弦定理的证明方法还有很多,比如可以用物理方法证明、可以构造相似三角形证明、可以利用图形面积证明等.感兴趣的读者可以到图书馆或互联网中进行查询.图5GA图6。

(完整版)余弦定理的证明方法大全(共十法)

(完整版)余弦定理的证明方法大全(共十法)

余弦定理的证明方法大全(共十法)一、余弦定理余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与他们夹角的余弦的积的两倍,即在ABC ∆中,已知AB c =,BC a =,CA b =,则有2222cos a b c bc A =+-, 2222cos b c a ca B =+-, 2222cos c a b ab C =+-.二、定理证明为了叙述的方便与统一,我们证明以下问题即可:在ABC ∆中,已知AB c =,AC b =,及角A ,求证:2222cos a b c bc A =+-. 证法一:如图1,在ABC ∆中,由CB AB AC =-可得:()()CB CB AB AC AB AC ⋅=-⋅-222AB AC AB AC =+-⋅222cos b c bc A =+-即,2222cos a b c bc A =+-.证法二:本方法要注意对A ∠进行讨论.(1)当A ∠是直角时,由22222222cos 2cos90b c bc A b c bc b c a +-=+-︒=+=知结论成立. (2)当A ∠是锐角时,如图2-1,过点C 作CD AB ⊥,交AB 于点D ,则在Rt ACD ∆中,cos AD b A =,sin CD b A =.从而,cos BD AB AD c b A =-=-.在Rt BCD ∆中,由勾股定理可得: 222BC BD CD =+22(cos )(sin )c b A b A =-+222cos c cb A b =-+即,2222cos a b c bc A =+-.说明:图2-1中只对B ∠是锐角时符合,而B ∠还可以是直角或钝角.若B ∠是直角,图中的图1图2-1A点D 就与点B 重合;若B ∠是钝角,图中的点D 就在AB 的延长线上.(3)当A ∠是钝角时,如图2-2,过点C 作CD AB ⊥,交BA 延长线于点D ,则 在Rt ACD ∆中,cos()cos AD b A b A π=-=-,sin()sin CD b A b A π=-=.从而,cos BD AB AD c b A =+=-.在Rt BCD ∆中,由勾股定理可得:222BC BD CD =+22(cos )(sin )c b A b A =-+222cos c cb A b =-+即,2222cos a b c bc A =+-.综上(1),(2),(3)可知,均有2222cos a b c bc A =+-成立. 证法三:过点A 作AD BC ⊥,交BC 于点D ,则在Rt ABD ∆中,sin BD c α=,cos ADc α=.在Rt ACD ∆中,sin CD b β=,cos ADbβ=.由cos cos()cos cos sin sin A αβαβαβ=+=-可得:2cos AD AD BD CD AD BD CDA c b c b bc-⋅=⋅-⋅=2222AD BD CD bc -⋅=222222c BD b CD BD CD bc -+--⋅=222()2b c BD CD bc +-+=2222b c a bc+-=整理可得2222cos a b c bc A =+-. 证法四:在ABC ∆中,由正弦定理可得sin sin sin sin()a b c cA B C A B ===+. 从而有sin sin b A a B =,………………………………………………………………①sin sin()sin cos cos sin c A a A B a A B a A B =+=+. …………………………②将①带入②,整理可得cos cos a B c b A =-.…………………………………………③ 将①,③平方相加可得22222(cos )(sin )2cos a c b A b A b c bc A =-+=+-.图2-2图3即,2222cos a b c bc A =+-.证法五:建立平面直角坐标系(如图4),则由题意可得点(0,0)A ,(,0)B c ,(cos ,sin )C b A b A ,再由两点间距离公式可得2a =22(cos )(sin )c b A b A -+222cos c cb A b =-+.即,2222cos a b c bc A =+-.证法六:在ABC ∆中,由正弦定理可得2sin a R A =,2sin b R B =,2sin c R C =. 于是,222224sin 4sin ()a R A R B C ==+222224(sin cos cos sin 2sin sin cos cos )R B C B C B C B C =++ 222224(sin sin 2sin sin 2sin sin cos cos )R B C B C B C B C =+-+ 2224(sin sin 2sin sin cos())R B C B C B C =+++ 2224(sin sin 2sin sin cos )R B C B C A =+-22(2sin )(2sin )2(2sin )(2sin )cos R B R C R B R B A =+-222cos b c bc A =+-即,结论成立.证法七:在ABC ∆中,由正弦定理可得2sin a R A =,2sin b R B =,2sin c R C =. 于是,2222cos a b c bc A =+-22222224sin 4sin 4sin 8sin sin cos R A R B R C R B C A ⇔=+-2222sin 2sin 2sin 4sin sin cos A B C B C A ⇔=+- 22sin 2cos 2cos 24sin sin cos A B C B C A ⇔=-+-222cos 22cos()cos()4sin sin cos A B C B C B C A ⇔-=-+--由于cos()cos()cos B C A A π+=-=-,因此2cos cos()cos()2sin sin cos A B C B C B C A ⇔=+-+cos cos()2sin sin A B C B C ⇔=--+cos cos cos sin sin cos()A B C B C B C ⇔=-+=-+. 这,显然成立.即,结论成立.证法八:如图5,以点C 为圆心,以CA b =为半径作C ,直线BC 与C 交于点,D E ,延长AB 交C 于F ,延长AC 交C 于G .则由作图过程知2cos AF b A =, 故2cos BF b A c =-.由相交弦定理可得:BA BF BD BE ⋅=⋅, 即,(2cos )()()c b A c b a b a ⋅-=+⋅-, 整理可得:2222cos a b c bc A =+-.证法九:如图6,过C 作CD ∥AB ,交ABC ∆的外接圆于D ,则AD BC a ==,BD AC b ==.分别过,C D 作AB 的垂线,垂足分别为,E F ,则cos AE BF b A ==,故2cos CD c b A =-.由托勒密定理可得AD BC AB CD AC BD ⋅=⋅+⋅, 即,(2cos )a a c c b A b b ⋅=⋅-+⋅.整理可得:2222cos a b c bc A =+-.证法十:由图7-1和图7-2可得2a =22(cos )(sin )c b A b A -+, 整理可得:2222cos a b c bc A =+-.c-bcosA图7-2图7-1余弦定理的证明方法还有很多,比如可以用物理方法证明、可以构造相似三角形证明、可以利用图形面积证明等.感兴趣的读者可以到图书馆或互联网中进行查询.图5GA图6。

余弦定理的证明方法四种

余弦定理的证明方法四种

余弦定理的证明方法四种方法一:向量法文章一朋友们,今天咱们来聊聊余弦定理的证明,咱们先说用向量法怎么证明。

咱们先画个三角形 ABC,顶点分别是 A、B、C。

然后咱们设向量AB 是 c,向量 BC 是 a,向量 CA 是 b。

那向量 AB 和向量 AC 的数量积就等于 AB 的模长乘以 AC 的模长再乘以它们夹角的余弦值。

也就是c·b = |c|×|b|×cos(π A) ,因为夹角是π A 嘛。

然后展开这个数量积,c·b = |c|×|b|×(cosA) 。

又因为c·b = |c|×|b|×(cosA) = cx×bx + cy× ,这里的x、y 是向量的坐标。

把 |c| = |b a| 代入,然后两边平方,一顿操作之后,就能得到a² = b² + c² 2bc×cosA 。

同样的道理,咱们能证明出b² = a² + c² 2ac×cosB ,c² = a² + b² 2ab×cosC 。

咋样,向量法证明余弦定理是不是还挺简单易懂的?文章二嗨,大家好!今天咱们来搞明白用向量法证明余弦定理。

想象一下有个三角形 ABC,三个顶点在那呆着呢。

咱们弄出向量来,AB 叫 c,BC 叫 a,CA 叫 b 。

向量这东西相乘有讲究,AB 和 AC 相乘,就是 c 和 b 相乘,等于它们长度乘上夹角的余弦。

但注意哦,这个夹角是π A ,所以c·b = |c|×|b|×cos(π A) ,这就等于|c|×|b|×cosA 。

再仔细看看,c·b 还能写成坐标形式,就是 c 的横坐标乘 b 的横坐标加上纵坐标乘纵坐标。

而且 |c| 其实就是 |b a| ,把这个带进去平方一下,算一算,嘿,就出来a² = b² + c² 2bc×cosA 啦!用同样的思路,其他两个式子b² = a² + c² 2ac×cosB 和c² = a² + b² 2ab×cosC 也能得出来。

余弦定理的证明

余弦定理的证明

余弦定理的证明余弦公式a^2=b^2+c^2-2bc cosA余弦定理余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决两类问题:第一类是已知三角形两边及夹角,求第三边;第二类是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

余弦定理性质对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——a^2 = b^2 + c^2 - 2·b·c·c os Ab^2 = a^2 + c^2 - 2·a·c·c os Bc^2 = a^2 + b^2 - 2·a·b·cos Cc os C = (a^2 + b^2 - c^2) /(2·a·b)c os B = (a^2 + c^2 - b^2) / (2·a·c)c os A = (c^2 + b^2 - a^2) /(2·b·c)(物理力学方面的平行四边形定则以及电学方面正弦电路向量分析也会用到)第一余弦定理(任意三角形射影定理)设△ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有a=b·cos C+c·cos B,b=c·cos A+a·cos C,c=a·cos B+b·cos A。

余弦定理证明平面几何证法在任意△ABC中做AD⊥BC.∠C所对的边为c,∠B所对的边为b,∠A所对的边为a则有BD=cosB*c,AD=sinB*c ,DC=BC-BD=a-cosB*c根据勾股定理可得:AC^2=AD^2+DC^2b^2=(sinB*c)^2+(a-cosB*c)^2b^2=(sinB*c)^2+a^2-2ac*cosB+(cosB)^2*c^2b^2=(sinB^2+cosB^2)*c^2-2ac*cosB+a^2b^2=c^2+a^2-2ac*cosBcosB=(c^2+a^2-b^2)/(2*a*c)作用(1)已知三角形的三条边长,可求出三个内角(2)已知三角形的两边及夹角,可求出第三边。

余弦定理的证明方法(精选多篇)

余弦定理的证明方法(精选多篇)
定理:在△abc中,ab=c,ac=b,bc=a,则
(1)(正弦定理)==;
(2)(余弦定理)
c2=a2+b2-2abcos c,
b2=a2+c2-2accos b,
a2=b2+c2-2bccos a。
证明:建立如下图所示的直角坐标系,则a=(0,0)、b=(c,0),又由任意角三角函数的定义可得:
正、余弦定理是解三角形强有力的工具,关于这两个定理有好几种不同的证明方法,[1]人教版中等职业教育国家规划教材《数学》(提高版)是用向量的数量积(内积)给出证明的,如是在证明正弦定理时用到:作辅助单位向量并对向量的等式作同一向量的数量积,这种构思方法过于独特,不易被初学者接受。本文通过三角函数的定义,利用向量相等和向量的模统一正、余弦定理的证明,方法较为简单。从本文的证明中又一次显示数学中“数”与“形”的完美结合。
=。
第1页共2页
同理可得:=。
∴==。
(2)由=(b-cos a-c)2+(bsin a)2=b2+c2-2bccos a,
又||=a,
∴a2=b2+abcos c;
b2=a2+c2-2accos b。
第2页共2页
第三篇:余弦定理证明过程在△abc中,设bc=a,ac=b,ab=c,试根据b,c,a来表示a。分析:由于初中平面几何所接触的是解直角三角形问题,所以应添加辅助线构造直角三角形,在直角三角形内通过边角关系作进一步的转化工作,故作cd垂直于ab于d,那么在rt△bdc中,边a可利用勾股定理用cd、db表示,而cd可在rt△adc中利用边角关系表示,db可利用ab-ad转化为ad,进而在rt△adc内求解。
b²=c²+a²-2ac*cosb

余弦定理的证明方法(精选多篇)

余弦定理的证明方法(精选多篇)

余弦定理的证明方法(精选多篇)第一篇:余弦定理的证明方法余弦定理的证明方法在△abc中,ab=c、bc=a、ca=b则c^2=a^2+b^2-2ab某cosca^2=b^2+c^2-2bc某cosab^2=a^2+c^2-2ac某cosb下面在锐角△中证明第一个等式,在钝角△中证明以此类推。

过a作ad⊥bc于d,则bd+cd=a由勾股定理得:c^2=(ad)^2+(bd)^2,(ad)^2=b^2-(cd)^2所以c^2=(ad)^2-(cd)^2+b^2=(a-cd)^2-(cd)^2+b^2=a^2-2a某cd+(cd)^2-(cd)^2+b^2=a^2+b^2-2a某cd因为cosc=cd/b所以cd=b某cosc所以c^2=a^2+b^2-2ab某cosc在任意△abc中,作ad⊥bc.∠c对边为c,∠b对边为b,∠a对边为a-->bd=cosb某c,ad=sinb某c,dc=bc-bd=a-cosb某c 勾股定理可知:ac²=ad²+dc²b²=(sinb某c)²+(a-cosb某c)²b²=sin²b某c²+a²+cos²b某c²-2ac某cosbb²=(sin²b+cos²b)某c²-2ac某cosb+a²b²=c²+a²-2ac某cosb所以,cosb=(c²+a²-b²)/2ac2如右图,在abc中,三内角a、b、c所对的边分别是a、b、c.以a为原点,ac所在的直线为某轴建立直角坐标系,于是c点坐标是(b,0),由三角函数的定义得b点坐标是(ccosa,csina).∴cb=(ccosa-b,csina).现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a,∠dac=π-∠bca=π-c,根据三角函数的定义知d点坐标是(acos(π-c),asin(π-c))即d点坐标是(-acosc,asinc),∴ad=(-acosc,asinc)而ad=cb∴(-acosc,asinc)=(ccosa-b,csina)∴asinc=csina。

余弦定理的证明方法

余弦定理的证明方法

余弦定理的证明方法余弦定理的证明方法在△ABC中,AB=c、BC=a、CA=b则c^2=a^2+b^2-2ab*cosCa^2=b^2+c^2-2bc*cosAb^2=a^2+c^2-2ac*cosB下面在锐角△中证明第一个等式,在钝角△中证明以此类推。

过A作AD⊥BC于D,则BD+CD=a由勾股定理得:c^2=(AD)^2+(BD)^2,(AD)^2=b^2-(CD)^2所以c^2=(AD)^2-(CD)^2+b^2=(a-CD)^2-(CD)^2+b^2=a^2-2a*CD +(CD)^2-(CD)^2+b^2=a^2+b^2-2a*CD因为cosC=CD/b所以CD=b*cosC所以c^2=a^2+b^2-2ab*cosC在任意△ABC中, 作AD⊥BC.∠C对边为c,∠B对边为b,∠A对边为a -->BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c勾股定理可知:AC=AD+DCb=(sinB*c)+(a-cosB*c)b=sinB*c+a+cosB*c-2ac*cosBb=(sinB+cosB)*c-2ac*cosB+ab=c+a-2ac*cosB所以,cosB=(c+a-b)/2ac2如右图,在ABC中,三内角A、B、C所对的边分别是a、b、c . 以A 为原点,AC所在的直线为x轴建立直角坐标系,于是C点坐标是(b,0),由三角函数的定义得B点坐标是(ccosA,csinA) . ∴CB = (ccosA-b,csinA). 现将CB平移到起点为原点A,则AD = CB . 而|AD| = |CB| = a ,∠DAC = π-∠BCA = π-C ,根据三角函数的定义知D点坐标是 (acos(π-C),asin(π-C)) 即 D点坐标是(-acosC,asinC), ∴ AD = (-acosC,asinC) 而 AD = CB ∴ (-acosC,asinC) = (ccosA-b,csinA) ∴ asinC = csinA …………① -acosC = ccosA-b ……②由①得 asinA = csinC ,同理可证 asinA = bsinB ,∴ asinA = bsinB = csinC . 由②得 acosC = b-ccosA ,平方得: a2cos2C = b2-2bccosA + c2cos2A ,即 a2-a2sin2C = b2-2bccosA + c2-c2sin2A . 而由①可得 a2sin2C = c2sin2A ∴ a2 = b2 + c2-2bccosA . 同理可证 b2 = a2 + c2-2accosB , c2 = a2 + b2-2abcosC . 到此正弦定理和余弦定理证明完毕。

余弦定理的推导方法

余弦定理的推导方法

a B
b sin
2
A 2 bc cos A cos b
A
b c22bccos A
2
同理有:
2 2 2accos B b a c 2 2 2 c a b 2abcosC 2
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
B
A
c
当角C为锐角时
A
当角C为钝角时
A c
b
C
c a D
B D
b
C a B
证明:在三角形ABC中,已知AB=c,AC=b和 A, 作CD⊥AB,则CD=bsinA,BD=c-bcosA
C
2
2 2 a CD BD
2
(bsin A) (cbcos A)
2A 2 2 c 2
2
b c D
2 2 2
推论:
b c a cos A 2bc
2 2
2
a c b cos B 2ac
2 2
2
a b c cos C 2ab
2 2
2
a b c 2bc cos A 2 2 2 b a c 2ac cos B 2 2 2 c a b 2ab cos C
2 2 2
C b a B
A
cห้องสมุดไป่ตู้
(2)解析法
证明:以CB所在的直线为x y 轴,过C点垂直于CB的直线 为y轴,建立如图所示的坐标 系,则A、B、C三点的坐标 分别为: C (0, 0) B(a, 0) A(b cos C, b sin C)
2 c c c ( a b) ( a b)

怎么证明余弦定理

怎么证明余弦定理

怎么证明余弦定理第一篇:怎么证明余弦定理怎么证明余弦定理证明余弦定理:因为过 c 作cd 垂直于ab, ad=bcosa;所以(c-bcosa) +(bsina) =a 又因为 b ・(bcosa) =(bsina),所以(c-x) +b ・(bcosa) =a , 所以c -2cbcosa+(bcosa) +b -(bcosa) =a ,所以 c -2cbcosa+b =a ,所以 c +b -a =2cbcosa,所以cosa=(c +b -a )/2bc同理cosb=(a +c ・b )/2ac, cosc=(a +b ・c )/2ab2在任意中,作ad丄be.Ze对边为c, Zb对边为b, Za对边为a・・>bd=cosb*c, ad=sinb*c, dc=bc-bd=a-cosb*c勾股定理可知:ac2=ad2+dc2b2=(sinb * c)2+(a-cosb *c)2b2=sin2b * c2+a2+cos2b*c2-2 ac * cosbb2=(sin2b+cos2b)*c2-2ac*cosb+a2b2=c2+a2-2ac*cosb所以,cosb=(c2-l-a2-b2)/2ac如右图,在abc中,三内角a、b、c所对的边分别是a、b、c.以3为原点,ac 所在的直线为x轴建立直角坐标系,于是c点坐标是(b, 0), 由三角函数的定义得b点坐标是(ccosa, csiiia). /.cb=(ccosa-b, csina). 现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a, Zdac=7t-Z bca=7t-c,根据三角函数的定义知d点坐标是(acos(Tt-c), asin(7c-c))即d 点坐标是(-acosc, asinc), ad=(-acosc, asinc)而ad=cb (-acosc, asinc)=(ccosa-b, csiiia) /. asinc=csina ............................ ®-acosc=ccosa-b ........ ②由①得asina=csinc, 同理可证asiiia=bsinb,・\asina=bsinb=csinc.由② 得acosc=b-ccosa , 平方得:a2cos2c=b2-2bccosa+c2cos2a , 即a2-a2siii2c=b2-2bccosa+c2-c2siii2a.而由①可得a2siii2c=c2siii2a /. a2=b2+c2-2bccosa.同理nJ证b2=a2+c2-2accosb, c2=a2+b2・2abcosc.到此正弦定理和余弦定理证明完毕。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余弦定理的八种证明方法
研究背景:
2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。

目的意义:
用多种方法证明余弦定理,扩展思维,了解更多的过程。

内容摘要:
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。

成果展示:
一余弦定理的内容
对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质
a² = b² + c²- 2·b·c·cosA
b² = a² + c² - 2·a·c·cosB
c² = a² + b² - 2·a·b·cosC
二证明方法
方法一:平面几何法
∵如图,有a+b=c ∴c·c=(a+b)·(a+b)
∴c²=a·a+2a·b+b·b ∴c²=a²+b²+2|a||b|cos(π-θ)
又∵Cos(π-θ)=-Cosθ∴c²=a²+b²-2|a||b|cosθ
再拆开,得c^2=a²+b²-2*a*b*cosC
方法二:勾股法
在任意△ABC中
做AD⊥BC.
∠C所对的边为c,∠B所对的边为b,∠A所对的边为a
则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c
根据勾股定理可得:
AC²=AD²+DC²
b²=(sinB*c)²+(a-cosB*c)²
b²=(sinB*c)²+a²-2ac*cosB+(cosB)²*c²
b²=(sinB²+cosB²)*c²-2ac*cosB+a²
b²=c²+a²-2ac*cosB
方法三:解析法
在三角形ABC建立直角坐标系,使A点为原点,B点落在x轴正半轴上,设三角形三边abc
则有三点坐标为A(0,0)B(c,0)C(bcosA,bsinA)
∵BC=a
则由距离公式得a=(c-bcosA)2-(bsinA)²
化简得a=c²+b²-2bccosA
∴a²=c²+b²-2bccosA
方法四:面积法
S△ACQ=(1/2)bc(cos∠BAC),
S△PBC=(1/2)ac(cos∠CBA),
bc(cos∠BAC)+ac(cos∠CBA)=2(S△ACQ+S△PBC)=c²,
同理,ac(cos∠CBA)+ab(cos∠ACB)=a²,
ab(cos∠ACB)+bc(cos∠BAC)=b².
联立三个方程,
bc(cos∠BAC)+ac(cos∠CBA)=c²(1)
ac(cos∠CBA)+ab(cos∠ACB)=a²(2)
ab(cos∠ACB)+bc(cos∠BAC)=b²(3)
易得余弦定理
方法五:正弦法
∵==
∴=bsin²B=csin²C=absinAsinB
∴a²+b²-c²sin²A+sin²B-sin²C=absinAsinB
∴a²+b²-c²=absinAsinB(sin²A+sin²B-sin²C)(1)又∵sin²A=1-cos2A2
sin²B=1-cos2B2
∴sin²A+sin²B=1-(cos2A+cos2B)=1-cos(A+B)cos(A-B)ΔABC中cos(A+B)=cos(180°-C)=-cosC
∴sin²A+cos²B=1-cosCcos(A-B)(2)
(2)带入(1)得
a²+b²-c²=[1+cosCcos(A-B)-sin²C]
=[cos²C+cosCcos(A-B)]
=cosC[cosC+cos(A-B)]
=cosC[-cos(A+B)+cos(A-B)]
=2abcosC
∴c²=a²+b²-2abcosC
同理可证
b²=a²+c²-2accosB
a²=c²+b²-2bccosA
方法六:摄影定理法
∵a=bcosC+ccosB(1)
b=acosC+ccosA(2)
c=bcosA+acosB(3)
∴(1)×a+(2)×b-(3)×c得
c²=a²+b²-2abcosC
同理可证
b²=a²+c²-2accosB
a²=c²+b²-2bccosA
方法七:复数法
如下图,在复平面内作△ABC,则=a(cosB+i sinB),
= =b[cos(-A)+i sin(-A)],这里C'是平行四边形ACBC'的顶点,根据复数加法的几何意义可知,=+=+。

所以c=a(cosB+i sinB)+b[cos(-A)+i sin(-A)]
=(acosB+bcosA)+(asinB-bsinA)i。

(*)
根据复数相等的定义,
有asinB-bsinA=0,
即。

对(*)式两边取模,得
c²=(acosB+bcosA)²+(asinB-bsinA)²
=a²+b²+2abcos(B+A)
=a²+b²-2abcosC
其他各式同理可证。

方法八:物理法
设三角形ABC是边长分别为a、b、c的通电导线框,其电流长度为I。

现将它置于磁感应强度为B的匀强磁场中且线框平面与磁场方向垂直,
那么三角形ABC的三边所受的安培力如图1所示,其大小分别为
Fa=BIa
Fb=BIb(1)
Fc=BIc
很显然,这三个力是相互平衡的共点力,它们的作用线相交与三角形ABC的外心O,现以O点为原点,分别建立如图2甲、丙所示的直角坐标系,对Fa、Fb、Fc进行正交分解,根据甲图,有
FasinB-FbsinA=0
FacosB-FbcosA=Fc (2)
同理,根据乙图、丙图分别有
FbsinC-FcsinB=0
FbcosC+FccosB=Fa (3)

FasinC-FcsinA=0
FacosC+FccosA=Fb (4)
将(1)式分别代入(2)、(3)、(4)、式并整理,得
BIa·cosB+BIb·cosA=BIc
BIb·cosC+BIc·cosB=BIa
BIc·cosC+BIc·cosA=BIb (5)
分别化简(5式,得余弦定理
c²=a²+b²-2abcosC
b²=a²+c²-2accosB
a²=c²+b²-2bccosA
[1]百度文库《用物理方法证明正弦定理和余弦定理》
[2]普通高中课程标准实验教科书数学必修5(北师大版)第二章(1.2余弦定理)。

相关文档
最新文档