第十章 双样本假设检验及区间估计社会统计学
社会统计学(卢淑华),第十章
调查过程不应给被调查者带来身体或心理 上的伤害,避免涉及敏感或隐私问题。
数据处理与分析中的伦理问题
数据真实性
在处理和分析数据时,应确保数 据的真实性和完整性,避免篡改
、伪造或选择性使用数据。
数据安全性
采取必要的技术和管理措施, 确保数据的安全存储和传输, 防止数据泄露、损坏或丢失。
数据分析的客观性
报告统计结果时,应提供足够的信息 和数据支持结论,避免选择性报告或 隐瞒不利结果。
避免过度解读
在解释统计结果时,应避免过度解读 或夸大其意义,以免误导读者或产生 不必要的恐慌。
尊重被调查者的权益
在报告统计结果时,应注意保护被调 查者的隐私和权益,避免泄露个人信 息或造成不必要的伤害。
THANK YOU
社会问题调查
通过问卷调查、访谈、观察等方 法收集数据,了解社会问题的现
状、原因和影响。
社会问题分析
运用统计分析方法对调查数据进 行处理和分析,揭示社会问题的
本质和规律。
社会问题解决方案
基于分析结果,提出针对性的解 决方案和建议,为政府和社会各
界提供参考。
社会政策的制定与评估
社会政策制定
01
运用统计数据和分析结果,为政府制定社会政策提供科学依据
04
因子分析
一种通过降维技术,将多个相关变量简化为少数几个 综合变量的统计分析方法。
05
聚类分析
一种根据样本或变量之间的相似性或距离,将其分为 不同类别的统计分析方法。
02
描述性统计方法
频数分布与图形表示
频数分布表
将数据进行分类,并统计各类别出现的次数,形成 频数分布表,以直观展示数据的分布情况。
SAS是一款高级统计分析软件 ,具有强大的数据处理、分析 和可视化功能,适用于大规模 数据处理和复杂统计分析。
区间估计和假设检验
在回归分析中,区间估计可以用来估计未知参数的取值范围,从 而更好地理解参数对结果的影响。
假设检验的应用场景
检验假设是否成立
在科学研究或实际应用中,我们经常需要通过假设检验来检验某个 假设是否成立,以做出决策或得出结论。
诊断准确性评估
在医学诊断中,假设检验常用于评估诊断方法的准确性,例如比较 新方法与金标准之间的差异。
非参数检验的优点是不受总体分布限制,适用于更广泛的情况。常见的非参数检验包括秩和检验、符 号检验等。
假设检验的步骤
选择合适的统计方法
根据假设和数据类型选择合适 的统计方法进行检验。
确定临界值
根据统计量的分布情况,确定 临界值。
提出假设
根据研究问题和数据情况,提 出一个或多个假设。
计算统计量
根据选择的统计方法计算相应 的统计量。
区间估计和假设检验
目录
• 区间估计 • 假设检验 • 区间估计与假设检验的联系 • 应用场景 • 案例分析
01
区间估计
定义
区间估计
基于样本数据,对未知参数或总体分布特征 给出可能的取值范围。
参数估计
基于样本数据,对总体参数进行估计,如均 值、方差等。
非参数估计
基于样本数据,对总体分布特征进行估计, 如分位数、中位数等。
结果具有互补性
03
区间估计和假设检验的结果可以相互补充,帮助我们更全面地
了解总体的情况。
区别
1 2 3
目的不同
区间估计的目的是估计一个参数的取值范围,而 假设检验的目的是检验一个关于总体参数的假设 是否成立。
侧重点不同
区间估计更侧重于估计总体参数的可能取值范围 ,而假设检验更侧重于对总体参数的假设进行接 受或拒绝的决策。
双样本均值比较分析假设检验
双样本均值比较分析假设检验在进行双样本均值比较分析假设检验之前,需要建立以下的假设:-零假设(H0):两个样本的均值相等,即差异为零。
-备择假设(H1):两个样本的均值不相等,即差异不为零。
接下来的步骤是计算样本的均值、标准差和样本容量,并且通过标准误差来计算检验统计量。
常用的检验统计量有t统计量和z统计量,选择哪种统计量取决于样本容量是否足够大。
如果样本容量足够大,通常使用z统计量进行假设检验。
计算z统计量的公式如下:z = (x1 - x2) / sqrt(s1^2 / n1 + s2^2 / n2)其中,x1和x2分别是两个样本的均值,s1和s2分别是两个样本的标准差,n1和n2分别是两个样本的容量。
如果样本容量较小,那么应该使用t统计量进行假设检验。
计算t统计量的公式如下:t = (x1 - x2) / sqrt(s1^2 / n1 + s2^2 / n2)在计算了检验统计量之后,需要根据显著性水平(通常为0.05)来确定拒绝域的边界。
拒绝域是指当检验统计量的取值落在这个区域之内时,拒绝零假设,即认为两个样本的均值存在显著差异。
最后,根据计算的检验统计量与拒绝域的比较结果,得出是否拒绝零假设的结论。
如果检验统计量的取值落在拒绝域之内,那么可以拒绝零假设,认为两个样本的均值存在显著差异。
需要注意的是,这种假设检验只能提供统计显著性的结论,而不是实际意义的差异。
所以在进行假设检验之前,需要对样本差异的实际意义进行考量。
总之,双样本均值比较分析假设检验是一种常用的统计方法,可以用于比较两个独立样本的均值是否存在显著差异。
通过计算检验统计量和拒绝域的比较,可以得出是否拒绝零假设的结论。
两样本假设检验
两样本假设检验两样本_统计信息化——Excel与SPSS应用在实际工作中,常常要比较两个总体之间是否存在较大差异,两样本假设检验就是按照两个来自不同总体的样本数据,对两个总体的均值是否有显著差异举行判断。
两个总体均值之差的三种基本假设检验形式如下:双侧检验H0:μ1-μ2=0,H1:μ1-μ2≠0;左侧检验H0:μ1-μ2≥0,H1:μ1-μ2<0;右侧检验H0:μ1-μ2≤0,H1:μ1-μ2>0。
在Excel中,可用于两样本假设检验的工具有四种:【z-检验:双样本平均差检验】、【t-检验:双样本等假设】、【t-检验:双样本异方差假设】、【t-检验:平均值的成对二样本分析】。
【z-检验:双样本平均差检验】、【t-检验:双样本异方差假设】、【t-检验:双样本等方差假设】这三种分析工具用于两个自立样本的假设检验。
两个自立样本假设检验的前提要求:一是两组样本应是互相自立的,即从一个总体中抽取样本对从另一个总体中抽取样本没有任何影响,两组样本的样本单位数目可以不同,样本单位挨次可以任意调节;二是样本的总体应听从。
下面针对【z-检验:双样本平均差检验】、【t-检验:双样本等方差】、【t -检验:双样本异方差检验】检验分离举行解释。
5.2.4.1 【z-检验:双样本平均差检验】【z-检验:双样本平均差检验】适用于自立样本,样原来源态总体,且方差已知这种状况。
以例5.7为例,解释操作步骤及运算结果。
例5.7 某企业生产飞龙牌和喜达牌两种保温容器,按照过去的资料,知其保温时光的方差分离为1.08h和5.62h。
现各抽取5只作为样本,测得其保温时光(h)如下:飞龙牌 49.2 48.8 46.8 47.1 48.5喜达牌 46.8 44.2 49.6 45.1 43.8要求对两种保温容器的总体保温时光有无显著差异举行检验。
(1)打开或建立数据文件按图5-12所示,在A1:B6输入数据。
(2)调用【z-检验:双样本平均差检验】对话框鼠标单击【数据(T)】→【分析】中的【数据分析(D)】,在弹出的【数据分析】对话框中,挑选【z -检验:双样本平均差检验】,然后单击【确定】按钮,则显示【z-检验:双样本平均差检验】对话框,5-11所示。
统计学习题 第十章 双样本假设检验及区间估计
第十章 双样本假设检验及区间估计第一节 两总体大样本假设检验两总体大样本均值差的检验·两总体大样本成数差的检验 第二节 两总体小样本假设检验两总体小样本均值差的检验·两总体小样本方差比的检验 第三节 配对样本的假设检验单一试验组的假设检验·一试验组与一控制组的假设检验·对实验设计与相关检验的评论第四节 双样本区间估计σ12和σ22已知,对双样本均数差的区间估计·σ12和σ22未知,对对双样本均值差的区间估计·大样本成数差的区间估计·配对样本均值差的区间信计一、填空1.所谓独立样本,是指双样本是在两个总体中相互( )地抽取的。
2.如果从N (μ1,σ12)和N (μ2,σ22)两个总体中分别抽取容量为n 1和n 2的独立随机样本,那么两个样本的均值差(1X ―2X )的抽样分布就是N ( )。
3.两个成数的差可以被看作两个( )差的特例来处理。
4.配对样本,是两个样本的单位两两匹配成对,它实际上只能算作( )样本,也称关联样本。
5.配对样本均值差的区间估计实质上是( )的单样本区间估计6.当n 1和n 2逐渐变大时,(1X ―2X )的抽样分布将接近( )分布。
7.使用配对样本相当于减小了( )的样本容量。
8. 在配对过程中,最好用( )的方式决定“对”中的哪一个归入实验组,哪一个归入控制组。
9. 单一实验组实验的逻辑,是把实验对象前测后测之间的变化全部归因于( )。
10. 方差比检验,无论是单侧检验还是双侧检验,F 的临界值都只在( )侧。
二、单项选择1.抽自两个独立正态总体样本均值差(1X ―2X )的抽样分布是( )。
A N (μ1―μ2,121n σ―222n σ) B N (μ1―μ2,121n σ+222n σ)C N (μ1+μ2,121n σ―222n σ) D N (μ1+μ2,121n σ+222n σ)2.两个大样本成数之差的分布是( )。
统计推断中的区间估计及假设检验方法
统计推断中的区间估计及假设检验方法统计推断是统计学的基础,它是关于如何从样本数据中推断总体特性的学科。
在统计推断中,区间估计和假设检验是两个最常用的方法。
一、区间估计区间估计是用来确定总体参数估计值的可信程度或置信程度的方法。
在区间估计中,我们通过计算样本均值等统计量来得到总体参数的估计,并且使用置信区间来表示这个估计的正确程度。
1. 置信区间置信区间是一个范围,它包含了总体参数的真值的估计范围。
在确定置信区间时,我们需要设定置信水平,来说明总体参数估计的可信程度。
一般常用的置信水平是95%或99%。
如果我们设定置信水平为95%,那么总体参数的真值有95%的概率在置信区间内。
2. 区间估计的应用区间估计常用于总体均值、总体方差、总体比例等参数的估计中。
比如,在一个人口调查中,我们希望估计某个地区的平均身高,那么我们可以利用所得到的样本身高数据进行区间估计。
二、假设检验假设检验是用来检验总体参数与某个特定值之间关系的方法,从而判断总体参数是否具有某种特定性质。
在假设检验中,我们首先假设总体参数具有某种特定值,然后根据样本数据判断这个假设是否成立。
1. 假设检验的步骤假设检验的步骤通常包括以下几个步骤:(1)建立假设首先,我们需要建立假设。
一般来说,我们会有一个原假设和一个备择假设。
原假设通常表示我们要检验的总体参数符合某种特定值,而备择假设则表示总体参数不符合这个特定值。
(2)确定检验统计量确定检验统计量是根据样本数据计算出来的一个统计量,它可以用于检验假设。
通常情况下,我们选择t检验或者z检验作为检验统计量。
(3)设定显著水平显著水平通常用来表示我们在假设检验中所允许的错误概率。
常见的显著水平有0.05和0.01。
如果我们设定显著水平为0.05,那么我们允许出错的概率为5%。
(4)计算p值p值是在假设检验中非常重要的一个概念,它表示样本数据出现假设的可能性。
如果p值小于设定的显著水平,我们就拒绝原假设,否则我们不拒绝原假设。
区间估计和假设检验的基础知识
区间估计和假设检验的基础知识区间估计和假设检验是统计学中非常基础的一块知识,其应用范围非常广泛,涉及到生物、医学、经济、社会科学和财务等众多领域,其最大的作用就是在统计学实践中,给出一定的数据描述方法和数据分析方式,从而更好地了解数据的内在规律,并为数据的决策做出基础性的科学参考。
一、区间估计(一)定义:区间估计是通过样本数据来推断总体的一个未知参数的取值范围的一种统计方法。
比如说,在抓小麻雀活动中,如果观察员在一个固定的面积中看到了2只麻雀,那么他或者她可以通过这个样本数值,推断出小麻雀活动的总体密度范围。
而这个总体的密度范围就是区间估计。
其中,区间估计可以分为点估计和区间估计两类。
点估计只给出未知参数的一个点估计值,而区间估计则可以给出未知参数取值范围和置信水平。
(二)置信区间:置信区间是区间估计的重要组成部分,指的是通过样本原数据而得到的一个总体参数的范围,而这个总体参数就有一定的把握程度,称为“置信水平”。
比如说,如果我们从一个大家庭中随机选取了一些人群的数据,那么根据样本数据,我们可以推断出这个大家庭的总体参数的范围,比如说他们的收入水平。
置信水平一般是用1-alpha表示,其中1-alpha就是给定区间范围的置信度。
(三)步骤:区间估计的步骤可以分为以下几步:1. 确定要估计的总体参数(比如说该大家庭的收入水平);2. 收集样本数据并计算样本统计量(比如说样本平均数和标准误);3. 根据置信水平和样本数据计算出相应的置信区间(比如说该大家庭的收入水平位于哪个区间内)。
(四)应用:区间估计在实践中有着广泛的应用。
比如说在市场研究中,我们想知道某种产品的受欢迎程度,可以通过区间估计,推断出该产品的受欢迎程度的范围,还可以通过比较不同竞争对手的受欢迎程度,从而判断该产品在市场上的潜在竞争力和市场占有率。
二、假设检验(一)定义:假设检验也是一种基础的统计推断方法,主要是通过观察数据样本,在不知道总体参数方差的条件下,对总体参数进行推断和判断。
区间估计及假设检验算法实现方法详解
区间估计及假设检验算法实现方法详解随着数学、统计学等学科的发展,计算机技术在数学、统计学中扮演着越来越重要的角色。
在实际应用中,人们往往需要对各种数据进行分析处理以满足不同的需求,如何快速准确地进行数据分析,是一个非常重要的问题。
其中,区间估计和假设检验是数据分析中常用的两种方法。
本文将详细介绍这两种方法的实现方式。
一、区间估计区间估计是以样本统计量为基础,通过分析样本的信息来推断总体参数的取值范围,同时限定一定程度的误差。
通常,我们通过样本估计总体的平均数、标准差等参数,并对其进行区间估计。
常见的区间估计有置信区间、预测区间等。
1. 置信区间置信区间是指在给定的置信水平下,估计总体参数的取值范围。
在实际中,一个置信水平通常取95%或99%,即我们希望在95%或99%的数据中,总体参数的真实值可以被估计出来。
例如我们要估计一个总体的均值,使用样本均值计算出来一个估计值,并使用标准误和置信系数得到置信区间,那么这个置信区间的含义就是,我们认为有95%的置信度,总体均值在这个置信区间之内。
2. 预测区间预测区间是指在给定的置信水平下,预测一个新的数据值的取值范围。
通常,我们需要根据给定的样本数据来估计总体参数,并通过置信水平和误差限制得到一个预测区间。
例如,我们要预测未来一家公司的利润,使用以前几年公司利润值的样本数据,得到一组样本均值、标准误和置信系数等参数,根据置信系数和置信区间计算得到预测区间,那么这个预测区间的含义就是,在一定置信水平下,公司未来的利润值会在这个预测区间之内。
在实际进行区间估计的过程中,通常会使用计算机进行计算。
例如,在R语言中,我们可以使用以下代码实现置信区间的计算:```# 假设有一个样本数据data# 想要计算一个均值的置信区间result <- t.test(data, conf.level = 0.95)# 得到result$conf.int即为置信区间```我们可以看到,R语言中的t.test函数就可以方便地实现置信区间的计算,而不需要手动进行计算。
《社会统计学》全书目录
《社会统计学》全书目录第一章导论第一节什么是社会统计学社会统计的产生与发展·社会统计学的对象与特点·社会统计的方法·社会统计工作的程序第二节社会统计学的几个基本概念总体与单位·标志与变量·指标与指标体系第二章社会统计资料的搜集第一节统计调查的方法及种类原始资料与次级资料·静态资料与静态资料·全面调查与非全面调查·一般调查与专项调查·经常性调查与一次性调查第二节统计调查的组织形式普查·重点调查·典型调查·抽样调查第三节概念的操作化与测量概念的操作化·定类尺度·定序尺度·定距尺度·定比尺度第四节统计误差登记性误差·代表性误差·抽样误差第三章社会统计资料的整理第一节统计分组的原则与标准“穷举”与“互斥”·频数(或次数)分布数列·品质数列与变量数列第二节统计表统计表的格式、内容与种类·统计表的制作规则第三节变量数列的编制对于离散变量·对于连续变量·组距和组数的确定·累计频数第四节统计图直方图·折线图·曲线图·累计顿数分布曲线·洛仑兹曲线与基尼系数第四章集中趋势测量法第一节算术平均数对于未分组资料的算术平均数计算·对于分组资料的算术平均数计算·算术平均数的性质第二节中位数对于未分组资料的中位数计算·对于分组资料的中位数计算·中位数的性质·其他分割法第三节众数对于未分组资料的众数计算·对于分组资料的众数计算·众数的性质第四节几何平均数、调和平均数及其他几何平均数·调和平均数·各种平均数的关系第五章离中趋势测量法第一节全距与四分位差全距·四分位差第二节平均差对于未分组资料A·D的计算·对于分组资料A·D的计算·平均差的性质第三节标准差对于未分组资科S的计算·对于分组资料S的计算·标准差的性质·标准分第四节相对离势变异系数·异众比率·偏态系数第六章概率与概率分布第一节概率论随机现象和随机事件·事件之间的关系·先验概率·经验概率第二节概率的数学性质概率的数学性质·排列与样本点的计数·运用概率方法进行统计推断的前提第三节概率分布、期望值与变异数离数型随机变量及其概率分布·连续型随机变量的概率分布·分布函数·数学期望·变异数第七章假设检验第一节二项分布二项分布的数学形式·二项分布的讨论第二节统计检验的基本步骤建立假设·求抽样分布·选择显著性水平和否定域·计算检验统计量·判定第三节正态分布正态分布的数学形式·标准正态分布·正态曲线下的面积·二项分布的正态近似法第四节中心极限定理抽样分布·中心极限定理第五节总体均值和成数的单样本检验σ已知,对总体均值的检验·学生t分布(小样本总体均值的检验)·关于总体成数的检验第八章常用统计分布第一节超几何分布超几何分布的数学形式·超几何分布的数学期望与方差·关于超几何分布的近似第二节泊松分布泊松分布的数学形式·泊松分布的性质·关于泊松分布的近似第三节卡方分布(2 分布)卡方分布的数学形式·卡方分布的性质·样本方差的抽样分布第四节F分布F分布数学形式·F分布的性质·关于F分布的近似第九章参数估计第一节点估计无偏性·一致性·有效性第二节区间估计精确性和可靠性·抽样平均误差与概率度·区间估计的步骤第三节其他类型的置信区间σ未知,小样本总体均值的区间估计·总体成数的估计·总体方差的区间估计第四节抽样平均误差简单随机抽祥的抽样误差·分层抽样的抽样误差·整群抽样的抽样误差·等距抽祥的抽样误差第五节样本容量的确定影响样本容量的因素·确定样本容量第十章双样本假设检验及区间估计第一节两总体大样本假设检验大样本均值差检验·大样本成数差检验第二节两总体小样本假设检验小样本均值差检验·小样本方差比检验第三节配对样本的假设检验单一实验组的假设检验·一实验组与一控制组的假设检验·对实验设计与相关检验的评论第四节双样本区间估计σ12和σ22已知,对均值差的区间估计·σ12和σ22未知,对均值差的区间估计·大样本成数区间估计·配对样本均值差的区间估计第十一章非参数检验第一节符号检验配对样本的“符号检验”·符号检验与二项检验·简便检验·“符号检验”的作用第二节配对符号秩检验配对样本的符号秩检验·配对符号秩检验的步骤·符号秩检验的效力第三节秩和检验独立样本的秩和检验·秩和·秩和检验的具体步骤·U检验第四节游程检验独立样本的游程检验·游程·游程检验的具体步骤·差符号游程检验第五节累计频数检验独立样本的累计频数检验·累计频数检验的步骤·没有预测方向和已经预测方向·经验分布与理论分布之比较第十二章相关与回归分析第一节变量之间的相互关系相关程度与方向·因果关系第二节定类变量的相关分析列联表·削减误差比例·λ系数·τ系数第三节定序变量的相关分析同序对、异序对、同分对·G amma系数·肯德尔等级相关系数·萨默斯(d系数)·斯皮尔曼等级相关系数·肯德尔和谐系数第四节定距变量的相关分析相关表和相关图·积差系数的导出和计算·积差系数的性质第五节回归分析线性回归·积差系数的PRE性质·相关指数R第六节曲线相关与回归第十三章2 检验与方差分析第一节拟合优度检验问题的导出·拟合优度检验(比率拟合检验)·正态拟合检验第二节无关联性检验独立性、理论频数及自由度·关于频数比较和连续性修正·列联表的卡方分解·关系强度的量度第三节方差分析总变差及其分解·关于自由度·关于检验统计量F o的计算·相关比率·关于方差分析的几点讨论第四节回归方程与相关系数的检验回归系数的检验·积差系数的检验·回归方程的区间估计第十四章动态分析与指数分析第一节时间数列及其指标分析时间数列的构成与分类·动态比较指标·动态平均指标第二节时间数列的趋势分析随手绘法·移动平均法·半数平均法·最小平方法第三节指数分析法动态指数及其分类·质量指标综合指数·数量指标综合指数·用与个体指数的联系来求综合指数·其他权数形式的质量和数量综合指数·指数体系和因素分析·静态指数。
生物统计学两个样本平均数假设检验
生物统计学两个样本平均数假设检验假设检验是一种基于样本数据来进行参数推断的统计方法,其基本思想是根据样本数据对总体参数进行估计,并根据估计结果进行参数假设的判断。
对于两个样本平均数的假设检验,通常分为独立样本和配对样本两种情况。
对于独立样本平均数假设检验,我们需要考虑两组样本来自于同一总体的情况。
首先,我们需要建立假设,通常分为零假设和备择假设。
零假设(H0)表示两个样本的平均数无显著差异,备择假设(H1)表示两个样本的平均数存在显著差异。
接下来,我们需要选择合适的统计检验方法。
当两个样本均为正态分布且方差已知时,可以使用Z检验;当两个样本均为正态分布但方差未知时,可以使用t检验;当两个样本均不服从正态分布时,可以使用非参数检验方法,如Wilcoxon秩和检验。
然后,我们需要计算检验统计量的值。
对于Z检验,检验统计量为差值的标准差除以差值的均值,再除以标准差的平方根。
对于t检验,检验统计量为差值的均值除以差值的标准差除以样本容量的平方根。
对于Wilcoxon秩和检验,检验统计量为两个样本的秩和之差。
最后,我们需要根据显著性水平来进行判断。
显著性水平是我们事先设定的,通常为0.05或0.01、我们可以计算出检验统计量对应的P值,P值表示在零假设成立的情况下,观察到样本数据或更极端情况出现的概率。
当P值小于显著性水平时,我们拒绝零假设,认为两组样本的平均数存在显著差异;当P值大于等于显著性水平时,我们接受零假设,认为两组样本的平均数无显著差异。
配对样本平均数假设检验是用于比较同一组样本在不同条件下的平均数是否存在显著差异。
其检验方法与独立样本平均数假设检验类似,只是在计算检验统计量时需要考虑两个样本之间的配对关系。
总之,两个样本平均数假设检验是生物统计学中常用的一种方法,通过对两组样本数据进行比较来判断它们的平均数是否存在显著差异。
我们需要建立适当的假设、选择合适的统计检验方法、计算检验统计量的值,并根据显著性水平来进行判断。
统计中的区间估计与假设检验
统计中的区间估计与假设检验统计学是一门应用广泛的学科,其中的区间估计与假设检验是统计学中常用的两种方法。
这两种方法在研究和实践中被广泛应用,用于推断总体参数、比较样本之间的差异以及验证科学假设的有效性。
本文将介绍统计中的区间估计与假设检验的概念、原理以及应用。
一、区间估计区间估计是基于样本数据推断总体参数的取值范围。
在统计学中,常常无法获得整个总体的完整数据,而只能通过抽取部分样本数据,利用样本数据来推断总体的特征。
区间估计给出了参数估计的下限和上限,以一定的置信水平表示。
一般而言,置信水平常用的有95%和99%。
在区间估计中,经常使用的方法有点估计法和区间估计法。
点估计法基于样本数据对总体参数进行点估计,即使用样本数据作为总体参数的估计值。
而区间估计法则给出一个区间范围,以包含总体参数真实值的可能性,而不仅仅是一个点估计的值。
区间估计的步骤可以总结为以下几个:1. 选择合适的抽样方法,获取样本数据;2. 根据样本数据计算参数的点估计值;3. 根据样本数据计算置信水平和抽样误差等;4. 根据置信水平和抽样误差计算置信区间。
二、假设检验假设检验是一种用于验证科学假设的统计方法。
在假设检验中,我们根据样本数据对总体参数或者总体分布是否满足某种假设进行判断。
假设检验通常包括原假设(H0)和备择假设(H1)两个假设。
原假设通常是关于总体参数的一个陈述,而备择假设则是关于总体参数的一个替代陈述。
我们根据样本数据的表现来判断原假设是否应该被拒绝,从而接受备择假设。
通常使用统计量和p值来进行假设检验。
假设检验的步骤可以总结为以下几个:1. 建立原假设和备择假设;2. 选择适当的假设检验方法;3. 设置显著性水平,通常为0.05或0.01;4. 根据样本数据计算统计量的值;5. 根据统计量的值和显著性水平,判断原假设是否应该被拒绝。
三、区间估计与假设检验的应用区间估计与假设检验在实际应用中有着广泛的领域。
比如,在医学研究中,我们可以利用区间估计来估计某种治疗方法的疗效范围;在市场调研中,我们可以利用假设检验来判断广告的效果是否显著。
十章 双样本假设检验及区间估计
第十章 双样本假设检验及区间估计双样本统计,除了有大样本、小样本之分外,根据抽样之不同,还可分为独立样本与配对样本。
所谓独立样本,指双样本是在两个总体中相互独立地抽取的。
所谓配对样本,指只有一个总体,双样本是由于样本中的个体两两匹配成对而产生的。
配对样本就不是相互独立的了。
第一节 两总体大样本假设检验1. 大样本均值差检验为了把单样本检验推广到能够比较两个样本的均值的检验,必须再一次运用中心极限定理。
下面是一条由中心极限定理推广而来的重要定理:如果从N (μ1,σ12)和N (μ2,σ22)两个总体中分别抽取容量为n 1和n 2的独立随机样本,那么两个样本的均值差(1X ―2X )的抽样分布就是N (μ1―μ2,121n σ+232n σ)。
与单样本的情况相同,在大样本的情况下(两个样本的容量都超过50),这个定理可以推广应用于任何具有均值μ1和μ2 以及方差σ12和σ22的两个总体。
当n 1和n 2逐渐变大时,(1X ―2X )的抽样分布像前面那样将接近正态分布。
大样本均值差检验的步骤有:(1) 零 假 设H 0:μ1―μ2=D 0备择假设H 1:单侧 双侧H 1:μ1―μ2>D 0 H 1:μ1―μ2≠D 0 或 H 1:μ1―μ2<D 0(2)否定域:单侧Z α,双侧Z α/2。
(3)检验统计量 Z =)()(21021X X D X X ---σ=222121021n n D X X σσ+--)(如果σ12和σ22未知,可用S 12和S 22代替。
(4)判定2. 大样本成数差检验与单样本成数检验中的情况一样,两个成数的差可以被看作两个均值差的特例来处理(但它适用各种量度层次)。
于是,大样本成数检验的步骤有:(1) 零 假 设H 0:p 1―p 2=D 0备择假设H 1:单侧 双侧 H 1:p 1―p 2>D 0 H 1:p 1―p 2≠D 0 或 H 1:p 1―p 2<D 0(2)否定域:单侧Z α,双侧Z α/2。
《双样本假设检验》课件
总结词
独立双样本t检验用于比较两个独立样本的 均值是否存在显著差异。
详细描述
独立双样本t检验的前提假设是两个样本相 互独立,且总体正态分布。通过计算t统计 量和自由度,可以判断两个样本均值是否存 在显著差异。
实例二:配对样本t检验
总结词
配对样本t检验用于比较同一观察对象在不同条件下的观测值是否存在显著差异 。
它通常包括以下步骤:提出假设、选择合适的统计量、确定显著性水平、进行统计推断、得出结论。
02
双样本假设检验的步骤
确定检验假设和备择假设
检验假设(H0)
用于确定两组样本均值是否相等的假设。
备择假设(H1)
与检验假设相对立的假设,即两组样本均值存在显著差异。
确定检验统计量
• 检验统计量是用于评估样本数据 与假设之间差异的统计量,常用 的有t检验、Z检验等。
双样本假设检验的重要性
在科学实验、医学研究、社会科学调 查等领域,双样本假设检验是一种非 常重要的统计工具。
VS
它可以帮助我们判断两组数据之间的 差异是否具有实际意义,从而为我们 的决策提供依据。
双样本假设检验的基本原理
双样本假设检验基于大数定律和中心极限定理,通过比较两组数据的差异来推断总体参数。
社会科学研究
调查研究
比较不同群体在某项调查指标上的差异,如性 别、年龄、教育程度等。
政策效果评估
比较政策实施前后的效果,评估政策的有效性 。
行为研究
分析不同情境下个体行为的差异,解释行为背后的原因。
质量控制和生产过程控制
质量控制
检测产品或服务的质量是否符合标准或客户 要求。
过程能力分析
评估生产过程的能力水平,识别过程改进的 潜力。
区间估计与假设检验
区间估计与假设检验在统计学中,区间估计和假设检验是两个常用的推断方法,用于对总体参数进行估计和推断。
本文将对区间估计和假设检验进行介绍,并讨论它们的应用和差异。
一、区间估计区间估计是用样本数据来推断总体参数的取值范围。
它通过计算估计值以及与之相关的置信水平,给出一个参数的范围估计。
这个范围被称为置信区间。
置信区间常用于描述一个参数的不确定性。
例如,我们要估计某种药物的平均效果。
通过对随机抽取的样本进行实验,我们可以得到样本均值和标准差。
然后,结合样本容量和置信水平,可以计算出药物平均效果的置信区间。
例如,我们可以得出一个95%置信区间为(0.2, 0.6),表示我们有95%的置信水平相信真实的平均效果在这个区间内。
二、假设检验假设检验是用于判断总体参数是否符合某种假设的统计方法。
假设检验通常分为两类:单样本假设检验和双样本假设检验。
1. 单样本假设检验单样本假设检验用于推断一个总体参数与某个特定值之间是否存在显著差异。
它包括以下步骤:(1)建立原假设(H0)和备择假设(H1),其中原假设是要进行检验的假设,备择假设是对原假设的补充或对立的假设。
(2)选择合适的显著性水平(α),表示我们接受原假设的程度。
(3)计算样本数据的检验统计量,例如t值或z值。
(4)根据显著性水平和检验统计量,判断是否拒绝原假设。
2. 双样本假设检验双样本假设检验用于比较两个总体参数之间是否存在显著差异。
常见的双样本假设检验包括独立样本t检验和配对样本t检验。
独立样本t检验用于比较两个独立样本的均值是否有差异,而配对样本t检验用于比较同一样本的两个相关变量的均值是否有差异。
三、区间估计与假设检验的差异区间估计和假设检验都是推断总体参数的方法,但它们的应用和目的略有不同。
区间估计主要关注参数的范围估计,给出了参数估计值的不确定性范围。
它强调了估计的稳定性和精确度,但不直接涉及参数的显著性判断。
因此,区间估计对于参数的精确度提供了一个相对准确的度量。
社会统计学第十章 双样本假设检验及区间估计
P 相同的总体,它 们的点估计值为
p
X1X2 n1n2
n1
p1n2 p2 n1n2
此时上式中检验 统计量 Z 可简化为
Z (p1p2)0 p1p2
pq pq
n1
n2
pq
n1n2 n1n2
② 若零假设中两总体成数 p1 p2 ,那么它们的点估计值有
中新生有171名,四年级学生有117名。试问,在0.01水平 上,两类学生有无显著外性向差异? 内向
四年级 58% (117)
42%
一年级 73% (171)
27%
2019/7/18
8
[解] 据题意
新生组的抽样结果为:
p1
=0.73,
q2
=0.27,n1=171
四年级学生组的抽样结果为:
p2
F
S
2 2
(
S
2 2
S12
)
S
2 1
H1 :12 22
双 侧
F
S
2 1
(
S12
S
2 2
)
S
2 2
2019/7/18
18
(3)否定域(参见下图)
单侧 Fα (n1―1,n2―1),双侧Fα /2(n1―1,n2―1)
方差比检验,比起前面所介绍的检验有一个不同点,那就是无
不满意组
500
9.2
2.8
2019/7/18
4
[解] 据题意,
“不满意”组的抽样结果为:X 1 “满意”组的抽样结果为:X 2 H0:μ1―μ2=D0=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
设配对样本的样本单位前测与后测的观察数据分别 是X 0i与X 1i,其差记作di
d i= X 1i―X 0i 如果假设两总体前测与后测无显著性差别,即μ1 =μ0 或者 个总体的配对大样本有 。那么对取自这两
2018/10/21
24
对于大样本,当二总体的方差未知时,可以用样本标 准差来近似。
17
这样一来,小样本正态总体方差比检验的步骤有 (1) 零 假 设H0 : 备择假设H1 : 单侧 双侧 H1 : H1 : H1 : (2) 检验统计量
(
单 侧 (
)
双 侧 ) ( )
2018/10/21
18
(3)否定域(参见下图) 单侧 Fα (n1―1,n2―1),双侧Fα /2(n1―1,n2―1)
2018/10/21
26
[解] 零 假 设H0:μd=0 备择假设H1:μ1>μ0 根据前三式,并参照上表有
计算检验统计量
确定否定域,因为α=0.05,并为单侧检验,因而 有 t 0.05(12)=1.782<2.76 所以否定零假设,即说明该实验刺激有效。
2018/10/21 27
练习 以下是经济体制改革后,某厂8个车间竞 争性测量的比较。问改革后,竞争性有无 增加?( 取α=0.05)t=3.176
2018/10/21 6
2.大样本成数差检验
(1)零假设: (2)备择假设: 单侧 或 (3)否定域:单侧 (4)检验统计量 双侧
其中:
为总体1的 样本成数 为总体2的 样本成数。
2018/10/21 7
双侧
当p1和p2未知,须用样本成数 种情况讨论:
和
进行估算时,分以下两 ,这时两总体可看作成数
① 若零假设中两总体成数的关系为 P 相同的总体,它 们的点估计值为 此时上式中检验 统计量 Z 可简化为
② 若零假设中两总体成数
,那么它们的点估计值有
此时上式中 检验统计量Z为
2018/10/21
(5)判定
8
[例]有一个大学生的随机样本,按照性格“外向”和
“内向”,把他们分成两类。结果发现,新生中有73% 属 于“外向”类,四年级学生中有58%属于“外向”类。 样本 中新生有171名,四年级学生有117名。试问,在0.01水平 外向 内向 上,两类学生有无显著性差异?
方差比检验,比起前面所介绍的检验有一个不同点,那就是无 论是单侧检验还是双侧检验,F 的临界值都只在右侧。其原因是我 们总是把和中的较大者放在分子上,以便使用者掌握。因此有 ≥1
2018/10/21
或者
≥1
19
[例]
为了研究男性青年和女性青年两身高总
体的方差是否相等,分别作了独立随机抽样。对
男性青年样本有n1=10, =30.8(厘米2);对
四年级 58%(117)
一年级 73%(171)
42%
27%
2018/10/21
9
[解] 据题意 新生组的抽样结果为: 四年级学生组的抽样结果为: H0:p1―p2=D0=0 H1:p1―p2=D0≠0 计算检验统计量 =0.73, =0.58, =0.27,n1=171 =0.42,n2=117
不满意组
500
9.2
2.8
2018/10/21
5
[解] 据题意, “不满意”组的抽样结果为: =9.2年, S1=2.8年, n1=500;
“满意”组的抽样结果为:
H0:μ1―μ2=D0=0 H1: μ1―μ2 ≠0 计算检验统计量
=8.5 年,S2=2.3 年, n2=600。
确定否定域,
因为α=0.05,因而有 Zα/2=1.96<4.47 因此否定零假设,即可以认为在0.05显著性水平上,婚龄对妇女婚 后生活的态度是有影响的。同时我们看到,由于样本计算值Z=4.47 远大 于单侧 Z0.05 的临界值1. 65,因此本题接受μ1―μ2 >0 的备择假设,即可 以认为妇女婚龄长容易对婚后生活产生“不满意”。
后测控制组―前测控制组=前测后测差控制组 实验效应di
=前测后测差实验组―前测后测差控制组
2018/10/21
30
[例] 假定实施一种新教学法有助于提高儿童的学习 成绩,现将20名儿童两两匹配成对,分成一实验组与一 控制组,然后对实验组实施新教学法两年,下表列示了 控制组与实验组前测后测的所有10组数据,试在0.05显 著性水平上检验实验无效的零假设。
2018/10/21
和
的两个总体。当n1和n2逐渐变大
的抽样分布像前面那样将接近正态分布。
2
1.大样本均值差检验
(1)零假设:
(2)备择假设: 单侧 或 双侧
(3)否定域:单侧
(4)检验统计量
双侧
(5)比较判定
2018/10/21 3
对均值差异进行比较,如果是大样本 就是Z检验法,小样本就是t检验法。二 者都同时要求:①样本是随机样本②每 个总体都是正态分布的③数据是定距及 以上层次的变量。 如果所研究的只有两个样本,也可以 用方差分析法(analysis of variance,简 称ANOVA,也称为F检验法)来检验两 个样本均值的差异,不一定要按照Z或t 检验法。
个总体中分别独立地各抽取一个随机样本,并具有容量n1,n2和方差 。根据第八章(8.22)式,对两总体样本方差的抽样分布分别有
2018/10/21
16
根据本书第八章第四节F分布中的(8.25)式有
由于
,
所以简化后,检验方差比所 用统计量为 当零假设H0: σ1=σ2时, 上式中的统计量又简化为
2018/10/21
2018/10/21
14
(3)
和
未知,但不能假定它们相等
如果不能假定σ 1=σ 2 ,那么就不能引进共同的σ 简
化
,也不能计算σ 的无偏估计量
估计 ,用
。现在简单的做法是用
估计 ,于是有
[例] 用上式重新求解前例题。
[解] 用上式,检验统计量的计算为
可以看出,求算用(10.8)式和(10.10)式,得出的结果差别不大。
第十章 双样本假设检验及区间估计
我们在掌握了单样本检验与估计的有关方法与原理 之后,把视野投向双样本检验与估计是很自然的。双样 本统计,除了有大样本、小样本之分外,根据抽样之不
同,还可分为独立样本与配对样本。
独立样本, 指 双样本是在两个 总体中相互独立 地抽取的 。
2018/10/21
配对样本,指只有一 个总体,双样本是由于样 本中的个体两两匹配成对 而产生的。配对样本相互 之间不独立。
若为小样本则需用 t 分布,即对配对(小)样本而言,其 均值差的抽样分布将服从于自由度为(n—1)的 t 分布。所以 对单一实验组实验的假设检验,其检验统计量为
2018/10/21
25
[例] 随机地选择13个单位,放映一部描述吸烟有害 于身体健康的影片,下表中的数字是各单位认为吸烟有 害身体健康的职工的百分比,试在0.05显著性水平上检 检验实验无效的零假设。
2018/10/21 29
在一实验组与一控制组的实验设计之中,对前测后 测之间的变化,消除额外变量影响的基本做法如下: (1)前测:对实验组与控制组分别度量; (2)实验刺激:只对实验组实行实验刺激; (3)后测:对实验组与控制组分别度量; (4)求算消除了额外变量影响之后的 d i 后测实验组―前测实验组=前测后测差实验组
2018/10/21 4
[例]为了比较已婚妇女对婚后生活的态度是否因婚
龄而有所差别,将已婚妇女按对婚后生活的态度分为 “满
意”和“不满意”两组。从满意组中随机抽取600名妇女,
其平均婚龄为8.5年,标准差为2.3年;从不满意组抽出
500名妇女,其平均婚龄为9.2年,标准差2.8年。试问在 0.05显著性水平上两组是否存在显著性差异? 样本 人数 均值 标准差 600 8.5 2.3 满意组
2018/10/21
11
(2)
和 的算式。
未知,但假定它们相等时, 关键是要解决
现又因为σ未知,所以要用它的 无偏估计量 替代它。由于两个样 本的方差基于不同的样本容量,因而
可以用加权的方法求出σ的无偏估计
量,得 注意,上式的分母上减2,是因为
根据
和
计算S1和S2时,分别损源自失了一个自由度,一共损失了两个自由 度,所以全部自由度的数目就成为
确定否定域 因为α=0.01,因而有 Zα/2=Z0.005=2.58<2.66
因而否定零假设,即可以认为在0.01显著性水平上,两类学生在
2018/10/21 性格上是有差异的。 10
第二节 两总体小样本假设检验
与对单总体小样本假设检验一样,我们对两 总体小样本假设检只讨论总体满足正态分布的情 况。 1. 小样本均值差假设检验 (1) 当 和 已知时,小样本均值差 检验,与上一节所述大样本总体均值差检验完全 相同,这里不再赘述。
对,它实际上只能算作一个样本,也称关联样
本。因此对它的检验,用均值差检验显然是不行
的。因为2 n个样本单位(每个样本n个)不是全部 独立抽取的。而如果把每一配对当作一个单位, 在符合其他必要的假定条件下,统计检验与单样 本检验相差无几。
2018/10/21 22
1.单一实验组的假设检验 对于单一实验组这种“前—后”对比型配对样 本的假设检验,我们的做法是,不用均值差检验, 而是求出每一对观察数据的差,直接进行一对一的 比较。如果采用“前测”“后测”两个总体无差异 的零 假设,也就是等于假定实验刺激无效。于是,问题 就转化为每对观察数据差的均值μd =0的单样本假 设检验了。求每一对观察值的差,直接进行一对一 的比较。
1
第一节 两总体大样本假设检验
为了把单样本检验推广到能够比较两个样本的均值的检验,必须