基于DSP信号发生器的设计.

合集下载

基于DSP的正弦信号发生器的设计

基于DSP的正弦信号发生器的设计

软件设计
正弦波子程序流程图 :
软件设计
调幅和调相流程图: 调幅和调相流程图:
汇报内容
• • • • • • 背景 正弦波信号发生器的几种实现方法比较 正弦波信号发生器的数字实现 硬件设计 软件设计 结论
结论
文中分析了正弦波的产生原理,并给出了硬 件电路和软件编写流程;设计了一个更好的 实现人机对话的正弦波信号发生器,给出了 显示和键盘的接口电路。该设计改进了传统 的需要用软件界面来输入幅值和频率值的方 法,更方便的实现调节输出波形的幅值和频 率值。
正弦波信号发生的数字实现 产生正弦波的方法有两种:
查表法。 优点:处理速度快;调频调相容易。 不足:要得到较高的精度,存储空间足够大以存放 查找表。 适用:对精度要求不高的场合。 泰勒级数展开法。 优点:需要的存储单元很少;精度高;展开的级数 越多,失真度就越小;调频调相易。 不足:处理速度慢。
正弦波信号发生的数字实现
硬件设计
DSP与LCD显示和键盘连接电路: DSP与LCD显示和键盘连接电路: 显示和键盘连接电路
硬件设计
键盘电路:
汇报内容
• • • • • • 背景 正弦波信号发生器的几种实现方法比较 正弦波信号发生器的数字实现 硬件设计 软件设计 结论
软件设计
主程序流程图: 主程序流程图:
设计采用采用模块化思路来编写,包括主程序、 设计采用采用模块化思路来编写,包括主程序、正 采用模块化思路来编写 弦波产生程序、调幅和调相子程序等功能子程序。 弦波产生程序、调幅和调相子程序等功能子程序。
性差,波形精度不够高且用较多硬件等。
正弦波信号发生器的几种实现方法比较
基于DSP的正弦波信号发生器:
组成:DSP处理芯片、 D/A转换器等。 优点:可程控调幅、调频,调节精度高,实

基于DSP的DDS信号发生器硬件设计电路图

基于DSP的DDS信号发生器硬件设计电路图

---------------------------------------------------------------范文最新推荐------------------------------------------------------ 基于DSP的DDS信号发生器硬件设计+电路图摘要在21世纪的今天,基于DSP的信号发生器以其编程的高度灵活性,波形的高精度与高稳定性等特点而脱颖而出,具有极大的应用价值和广泛的应用前景。

本文利用高性能DSP芯片加上合理的外围控制电路构成基于DSP的DDS信号发生器,完成电压监测电路的硬件设计工作。

通过对DDS的相应介绍采用查表法实现正弦波的产生,采用高速微处理器实现DDS。

然后完成硬件芯片的选型(TMS320LF2407)和硬件电路的设计工作。

硬件设计主要有核心控制模块电路、片选电路、串行通信电路、AD转换电路及信号采集电路,以此实现硬件电路完成接收上位机的控制信号,采集外部电压信号处理后送给上位机,实现对电压的监控。

关键词:信号发生器,DDS,电压监控,硬件设计11870毕业设计说明书(论文)外文摘要1 / 10TitleDDS signal generator hardware design based on DSPAbstractIn the 21st century,the DSP signal generator stand out for its high degree of flexibility of the programming waveforms, high precision and high stability characteristics, shows great value and broad application prospects.This article takes use of high performance DSP chip with peripheral control circuit DSP-based DDS signal generator,complete the hardware design of the voltage monitoring circuit.Achieve the generation of sine wave with look-up table method corresponding introduction of DDS.Then complete selection of hardware chip(TMS320LF2407)and hardware design.The hardware design mainly consists of core control module circuit, chip select circuit, the serial communication circuit, AD converter circuit and the signal acquisition circuit,In order to achieve the hardware circuit to complete the PC to receive the control signal.The acquisition of an external---------------------------------------------------------------范文最新推荐------------------------------------------------------voltage signal processing to give the host computer,in order to monitoring the voltage.Key words: signal generator,DDS,voltage monitoring,hardware design4.4 PC机与DSP的点对点的串行通信接口244.5 输入输出接口254.5.1A/D的接口254.5.2电压信号采样电路265电路设计中注意的问题28致谢30参考文献313 / 10附录硬件电路原理图321 绪论1.1 信号发生器简介信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

基于DSP的可调信号发生器设计讲解

基于DSP的可调信号发生器设计讲解

DSP处理器及应用课程设计报告(2012—2013学年第一学期)题目基于DSP的可调信号发生器设计系别电子与电气工程系专业电子信息工程班级0920311学号092031101姓名指导教师完成时间2013-1-6评定成绩目录一、设计的目的 (1)二、设计的内容与要求 (1)三、设计方案 (2)四、软件、硬件设计 (2)4.1软件调试 (2)1、波形的显示 (2)2、按键切换波形 (4)3、按键改变幅值与周期 (5)4、数码管显示 (5)4.2硬件调试 (7)4.3主程序 (7)五、设计总结 (12)5.1运行与调试 (12)5.2个人心得 (13)六、参考文献 (14)一、设计的目的根据已掌握的《DSP处理器及应用》课程知识,完成课程设计要求的项目。

了解正弦波的产生,以及正弦波幅值和频率的调整方法,掌握信号产生的一般方法并学习使用CCS图形显示功能进行程序调试。

通过硬件设计和程序编写过程,加深对《DSP处理器及应用》课程知识的理解和掌握,培养应用系统设计的能力,以及分析问题和解决问题的方法,并进一步拓宽专业知识面,培养实践应用技能和创新意识。

二、设计的内容与要求1)在CCS中运行调试程序代码,输出正弦信号波形,并使用CCS的图像显示窗口,实时显示输出的正弦波。

2)使用DSPF2812的GPIO功能,读取外部手动按键的信号,相应改变正弦信号的幅值(幅值,采用有符号16位整型变量定义)。

3)使用DSPF2812的GPIO功能,读取外部手动按键的信号,相应改变正弦信号的周期(每周期的离散采样点数,采用有符号16位整型变量定义)。

4)使用DSPF2812的GPIO功能,读取外部手动按键的信号,相应输出正弦波、三角波、方波、锯齿波、梯形波。

5)用8个七段数码管,每隔一秒依次循环显示三种信息,包括:①当前的幅值(格式为:AP-00000~AP-32767);②每周期的离散采样点数(格式为:tNUb-012~tNUb-512);③自己的学号(格式为学号的低8位,例如学号为092031234的同学,应当显示:92031234)。

基于DSP信号发生器的设计

基于DSP信号发生器的设计
在教学与科研中,通常选择几种典型的信号作为标准信号,如三角、方波、正弦信号等,来测试控制系统和电子电路的性能和参数。在系统开发与研究中,多通道任意信号发生器也日益成为系统的调试和研发中不可缺少的工具,其应用也越来越广泛。在生物医学中,医学模拟人作为一种复杂的、计算机控制的模拟仪器,在医学救助与训练中起着十分重要作用。其中心脏模拟人为医护人员提供训练仪器,而如何产生适当的心电信号则是心脏模拟人的关键技术之一。在通信、控制和等仪器仪表领域的信号系统中,经常要使用到正弦波以及其他波形发生器。
虚拟仪器是以计算机软件为核心,结合相应的硬件设备的测试系统代表了未来测试仪器的发展方向,人们可以在友好的人机界面环境中轻松地进行各种复杂的操作。信号发生器可作为虚拟仪器的一种模块实现,用户可以通过图形界面编辑波形,向屏幕输出演示,或者通过卡口机向外输出波形。它的优点是有很好的人机交互界面,编辑与增删波形很方便,波形种类、个数都无限制,但携带不便,需配备PC机,价格昂贵,使用环境受较多因素制约。
最后,对本文所做的工作进行简要总结,并对此次论文中给予我帮助的老师和同学致谢。
第二章总体方案的分析和设计
2.1
本次设计一个DSP信号发生器,通过软硬件实现了正弦波,方波,三角波的设计。数字信号发生器集波形参数选择、波形产生、数据传输、波形可视化等功能于一体。它既可产生16位数字量信号直接测试数字系统的性能,也可通过D/A转换把数字信号转换成模拟信号以测试模拟系统的性能。
图3-8显示电路原理图.....................................................9
图3-9矩阵键盘实现电路..................................................9

基于DSP的正弦信号发生器

基于DSP的正弦信号发生器

基于DSP的正弦信号发生器1.正弦信号在各种科学和工程领域中广泛应用,如通信系统、音频处理、医学诊断等。

因此,制作一个能够生成正弦信号的设备是非常必要的。

传统的方法是使用模拟电路,但这种方法需要用到很多电子元器件,难以控制和调整。

同时,传统的模拟电路还容易受到电磁干扰、温度等环境因素的影响,导致输出的信号失真。

因此,数字信号处理(DSP)技术逐渐成为生成正弦波信号的常见方法,能够实现高精度、低失真的输出。

2. 设计概述本文介绍一种基于DSP的正弦信号发生器的设计。

该设计采用TMS320C5505数字信号处理芯片和信号解调电路,通过软件和硬件设计,实现了一个高精度、低失真的正弦信号发生器。

2.1 硬件设计本设计采用了TMS320C5505数字信号处理器集成电路作为主控芯片。

该芯片具有低功耗、高性能、灵活性和易于开发等优点。

除此之外,还需要电源模块、时钟模块、信号解调模块等。

2.2 软件设计本设计采用了C语言进行程序设计。

使用Code Composer Studio作为开发环境,将程序编译后烧录到芯片中。

代码的主要实现过程为:1.生成一个只包含一周期正弦波形的信号2.将该信号送入DA(Digital to Analog)转换器,使其变为模拟信号3.经过信号解调器后输出到外部接口信号的生成采用的是Taylor级数展开,可以实现高精度的波形生成。

信号解调电路主要是由低通滤波器、防干扰电路和放大电路等模块组成。

3. 实验结果经过实验测试,本设计输出的正弦波信号的频率可以在0~10kHz范围内任意设定。

信号的失真率小于0.1%。

同时,本设计还支持正弦波的相位调节和幅度调节等功能。

通过外部的控制,可以实现信号的精准控制和调节。

4.本文介绍了一种基于DSP的正弦信号发生器的设计,通过使用数字信号处理技术,实现了高精度、低失真的正弦波信号的生成。

该设计具有灵活性和可扩展性,可以为各种科学和工程领域提供高精度的正弦信号源。

基于DSP的音频信号发生器的设计及实现

基于DSP的音频信号发生器的设计及实现

基于DSP的音频信号发生器的设计及实现摘要本课题介绍了基于DSP芯片TMS320C5402实现正弦信号发生器的设计原理和实现方法。

使用TMS320C5402作为数据处理器,AT89C51作为控制器引导并控制DSP芯片。

采用直接数字合成(DDS)技术,在DSP上建立一个信号发生器,可产生指定频率(音频范围)的正弦波、方波等信号。

该信号发生器所产生的正弦波波形清晰、稳定性好,调频、调幅功能均由软件实现。

本设计主要实现正弦音频信号发生器,该系统由DDS模块、单片机控制模块、语音提示、输出运算放大模块、D/A转换模块、幅度控制模块组成。

这里介绍一种采用DSP实现的正弦信号发生器,其调幅、调频功能均由软件实现,而且有较好的可扩展性、稳定性,与计算机接口方便。

关键词:音频信号发生器,正弦波,DSP ,DDSAUDIO SIGNAL GENERATOR BASED ON TMS320C5402 DESIGN AND LMPLEMENTATIONABSTRACTThis design uses TMS320C5402 of DSP chip as a data processor,STC89C51 as a controller to guide and control the DSP chip. use TMS320C5402 as a data processor, STC89C51 as a controller to guide and control the DSP chip. Synthesis of direct sequence (DDS) technology, DSP, a signal generator, can generate the specified frequency (audio range) of the sine wave, square wave signal. Synthesis of direct sequence (DDS) technology, DSP, a signal generator, can generate the specified frequency (audio range) of the sine wave, square wave signal. The design of the main sine wave audio signal generator, the system by the DDS module, microprocessor control module, voice prompt, the output operational amplifier module, D/A converter module, rate control module.High-speed direct-sequence synthesis (DDS) technique, D/A and other technology, can generate any frequency sinusoidal signal and a variety of analog and digital modulation signal. Wide frequency range of the system, step small, magnitude and frequency with high accuracy.KEY WORDS:Signal generator,Sine tonic train signal, DSP ,DDS目录前言 (1)第1章系统描述 (3)§1.1 系统方案选择 (3)§1.2 本系统的方案 (3)§1.2.1 方案系统框图 (3)§1.2.2 DSK5402开发板硬件结构 (4)§1.2.3 DSK5402系统概述 (6)第2章音频信号发生器的硬件描述 (7)§2.1 DSP芯片 (7)§2.1.1 DSP芯片特点 (7)§2.1.2 C54x的引脚功能 (8)§2.2 串行口MCBSP (12)§2.3 主机接口 (13)第3章音频信号发生器的外设 (16)§3.1 89C51芯片的描述 (16)§3.1.1 89C51的主要性能高如下 (16)§3.1.2 89C51的引脚及说明 (17)§3.2 串口描述 (19)§3.2.1 RS232接口电路 (19)§3.2.2 RS232通信原理 (21)§3.3 声卡 (21)第4章音频信号发生器设计的算法 (24)§4.1 DDS算法简介 (24)§4.2 步长计算查表 (25)§4.3 DDS的特点 (25)第5章系统软件设计 (27)§5.1 DSP程序设计 (27)§5.2 单片机程序设计 (27)第6章系统调试及测试 (29)§6.1 DSP程序编写 (29)§6.2 把DSP程序转化成单片机程序 (35)§6.3 程序调试 (36)§6.3.1 调试流程 (36)§6.3.2 系统的调试 (37)结论 (39)参考文献 (40)致谢 (42)外文资料翻译 (43)前言随着21世纪的到来,人类跨入了信息网络时代。

基于DSP的正弦信号发生器的设计

基于DSP的正弦信号发生器的设计

/(/A)低16位→d_xc
sinx
/调/ 用sinx程序
cosx
/调/ 用cosx程序
#d_sinx,DP /D/P←d_sinx
@d_sinx,16,A /A/=sin(x)
@d_cosx
/B/= sin(x)*cos(x)
B,1,*AR6+
/A/R6→2*sin(x)*cos(x)
*AR1+0

ST
A,*AR2 /(/ A)左移16位→AR2
||LD *AR4,B /(/ AR4)左移16位→B
MASR
*AR2+,*AR3+,B,A /从/ 累加器A中减去(AR2)
*(AR3)
MPYA
A
/操/ 作数与累加器A中高位相乘
STH
A,*AR2 /(/ A)高16位→AR2
MASR
*AR2-,*AR3+,B,A /从/ 累加器A中减去(AR2)
.text
定//义文本代码段
SSBX
FRCT
/F/RCT=1以清除冗余符号位
STM
#d_coef_c,AR5 /A/R5指向d_coef_c首地址
RPT
#3
重//复下条指令4次
MVPD
#table_c,*AR5+ /把/ table_c中的数复制到中
AR5
STM
#d_coef_c,AR3 /A/R3指向d_coef_c首地址
d_temp_c .usect "cos_vars",1 //为d_temp_c中cos_vars保存1个存储
单元
d_cosx .usect "cos_vars",1 //为d_cosx中cos_vars保存1个存储单

基于DSP的正弦波信号发生器设计

基于DSP的正弦波信号发生器设计

基于DSP的正弦波信号发生器设计————————————————————————————————作者:————————————————————————————————日期:目录第1章绪论 (1)1 DSP简介 (1)第2章总体方案的分析和设计 (2)2.1 总体方案设计 (2)2.2正弦波信号发生器 (2)第3章硬件设计 (3)3.1硬件组成 (3)3.2控制器部分 (4)3.4人机接口部分 (5)第4章软件设计 (6)4.1流程图 (6)4.2 正弦信号发生器程序清单 (7)第5章总结 (12)参考文献 (12)第1章 绪论1 DSP 简介数字信号处理(Digital Signal Processing ,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。

在过去的二十多年时间里,信号处理已经在通信等领域得到极为广泛的应用。

图一是数字信号处理系统的简化框图。

此系统先将模拟信号转换为数字信号,经数字信号处理后,再转换成模拟信号输出。

其中抗混叠滤波器的作用是将输入信号x (t)中高于折叠频率的分量滤除,以防止信号频谱的混叠。

随后,信号经采样和A/D 转换后,变成数字信号x(n)。

数字信号处理器对x(n)进行处理,得到输出数字信号y (n),经D/A 转换器变成模拟信号。

此信号经低通滤波器,滤除不需要的高频分量,最后输出平滑的模拟信号y(t)。

图1.1 数字信号处理系统简化框图数字信号处理是以众多学科为理论基础的,它所涉及的范围极其广泛。

例如,在数学领域,微积分、概率统计、随机过程、数值分析等都是数字信号处理的基本工具,与网络理论、信号与系统、控制论、通信理论、故障诊断等也密切相关。

近来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理密不可分。

dsp课程设计基于DSP的信号发生器设计

dsp课程设计基于DSP的信号发生器设计

目录一、摘要 (3)二、概述 (4)2.1设计要求 (4)2.2 基本组成 (4)三、系统设计 (4)四、硬件设计 (5)4.1组成及实现功能 (5)4.2硬件电路方案及电路原理 (5)4.3核心电路芯片TMS320VC5402 (6)4.4 D/A转换器TLC7528设计 (6)4.5电源电路复位电路和晶振电路设计 (8)五、软件设计 (11)5.1方波的设计方案 (11)5.1余弦波的设计方案 (13)5.3三角波的设计方案 (17)六、实验结果 (19)七、总结 (20)八、参考文献 (21)附录 (22)摘要根据已掌握的《手把手教你学DSP》课程知识,完成课程设计要求的项目。

了解正弦波方波三角波的产生,以及幅值和频率的调整方法,掌握信号产生的一般方法并学习使用CCS图形显示功能进行程序调试。

通过硬件设计和程序编写过程,加深对课程知识的理解和掌握,培养应用系统设计的能力,以及分析问题和解决问题的方法,并进一步拓宽专业知识面,培养实践应用技能和创新意识。

信号发生器发展到今天,在电子测试、电子设计、模拟仿真、通信工程中,扮演着一个相当重要的角色,有着相当广泛的应用,极大加快了电子测试与设计工作中的效率,在电子技术和信号仿真应用中已发挥了巨大的作用。

本文主要介绍了基于TMS320VC5402 DSP的信号发生器的设计情况。

这是一个以DSP为核心来实现信号发生器的系统,该系统具有结构简单灵活,抗干扰能力强、产生频率较高、应用广泛等特点。

该系统的组成核心TMS320VC5402 DSP芯片,这个设计的硬件部分是有该DSP 芯片和D/A转换芯片TLC7528组成,DSP芯片用于产生各种波形,D/A转换芯片用于把数字信号转换为模拟信号。

在以上硬件的基础上,通过软件编程来实现三角波,方波和余弦波等波形。

关键词:DSP,D/A转换器,波形概述2.1设计要求:(1)绘制出系统框图;(2)包括电源设计、复位电路设计、时钟电路设计、JTAG 接口设计等,绘制原理图;(3)给出程序流程图;(4)能够实现方波信号(余弦信号、三角波信号)通过对系统的全面分析得出设计结论(被处理信号的频率范围、采用的信号处理算法等);2.2 基本组成:硬件电路是由TMS320VC5402 DSP芯片和D/A转换芯片TLC 7528组成,通过ICETEK-5100USB V2.0A连接PC机和DSP芯片。

基于DSP的高精度函数信号发生器设计与实现

基于DSP的高精度函数信号发生器设计与实现

1 S . DD 关键 技术 设计 4 R M/ AM 是 DDS系 统 设 计的 核 心 ,该 部 分 O R 是 通 过 一 个 存 放 了正 弦信 号 抽 样 点 幅 度 编 码 的 只
频 率 ,当 K= I时 ,DDS的最 低 频 率 ( 即分 辨 频 也 率 )为 f2 ,而 DDS的最 大 输 出频 率 由奈 圭 斯 特 o /
波 形 的相位 பைடு நூலகம் 幅值 转换是 用 相位 累加 器输 出的
基 于 DS P利 用 直接 数 字 频 率 合 成技 术 ,设 计 的一 款 高 精 度 高 性 能 信 号 发 生 器 ,可 以很 好 地 满 足 不 同领域 对 信号 发生 器高 精度 、高 稳 定性 的要 求 。
数 据 作 为 波 形 存 储 器 的 取 样 地 址 来 进 行 ,在 给 定 的时 间上 ,确 定 输 出 的 波形 的抽 样 幅 值 ,N 位 的 寻址 R OM 相 当于把 0 。到 3 0 的正 弦 信 号 离 散 6。 成 具有 2 个 样值 的序 列 ,按 照不 同的 地址 输 出相 N
0 引言
信 号 发 生 器 又 称 信 号 源 或 振 荡 器 ,在 生 产 实 践 和 科 技 领 域 中有 着 广 泛 的应 用 。 目前 ,常 用 的
信号 发 生 器绝 大 部分 由模拟 电路 或数 字 电路 构 成 , 体 积 和 功 耗 都 很 大 ,价 格 也 比较 贵 , 已经 无 法 满 足 高精 度 高 稳 定 性 能 信 号 发 生器 的 要 求 。本 文 是
原 理 图如 图 2所示 。
作者简介 :戴胜亮 (9 6 18 一) ,男 ,安徽人 ,硕士研究生 ,研究方向为机电一体化设备控制 系统 。 第3 卷 4 第4 期 2 1 — ( ) I3 02 4下 7l

基于DSP的正弦波信号发生器

基于DSP的正弦波信号发生器

《DSP应用》论文题目:基于TMS320C54X DSP任意信号发生器设计学院:信息学院专业班级:班姓名:学号:指导教师:王洪群时间:4. 总体方案设计1.基于DSP 的特点,本设计采用TMS320C54X 系列的DSP 作为正弦信号发生器的核心控制芯片。

2.用泰勒级数展开法实现正弦波信号。

3.设置波形时域观察窗口,得到其滤波前后波形变化图;4.设置频域观察窗口,得到其滤波前后频谱变化图。

硬件设计 4.1硬件组成基于DSP 的信号发生器的硬件结构图如图3.1所示,它主要由DSP 主控制器,输出D/A 通道和人机界面等几个主要部分组成。

图4.1 基于DSP 的信号发生器系统框图 4.2控制器部分本系统采用TI 公司的TMS320LF2407 DSP 处理器,该器件具有外设集成度高,程序存储器容量大,A/D 转换精度高,运算速度高,I/O 口资源丰富等特点,芯片内部集成有32KB 的FLASH 程序存储器、2KB 的数据/程序RAM ,两个事件管理器模块(EVE 和EVB )、16通道A/D 转换器、看门狗定时器模块、16位的串行外设接口(SPI )模DSP 微控制器 TMS320LF 2407 PGE段驱动器 2*SN74LS07四位LED位驱动器 74LS07 缓冲及电平转换电路输出三相 正弦波 独立式四 键功能键有源滤波 电路减法电路放大电路 AD624电源(自带复位功能)ClockCircuit块、40个可单独编程或复用的通用输入输出引脚(GPIO )以及5个外部中断和系统监视模块。

4.3微输出D/A 通道部分本系统的输出通道部分主要负责实现波形的输出,此通道的入口为TMS320LF2407的PWM8口,可输出SPWM 等幅脉冲波形,出口为系统的输出端,这样,经过一系列的中间环节,便可将PWM 脉冲波转化为交流正弦波形,从而实现正弦波的输出,其原理框图如图3.2所示。

图4.2 输出通道的原理结构图4.2中的缓冲电路的作用是对PWM 口输出的数字量进行缓冲,并将电压拉高到5V 左右,以供后级模拟电路滤波使用。

DSP课程设计--正弦信号发生器的设计

DSP课程设计--正弦信号发生器的设计

DSP课程设计–正弦信号发生器的设计简介正弦信号发生器是一种常见的电子信号发生器。

在数字信号处理中,正弦信号是非常重要的一种基础信号。

在本次课程设计中,我们将使用MATLAB软件设计一个正弦信号发生器。

设计步骤步骤一:信号采样我们的信号采样频率为fs,即每秒采样多少个点。

首先我们需要设置采样频率。

信号采样频率的选取需要满足采样定理,保证采样信号能够完全还原原信号。

我们使用MATLAB的“fs”命令设置采样频率。

假设我们的采样频率为10KHz,代码为:fs = 10000; % 设置采样频率为10KHz步骤二:生成时域正弦信号根据正弦波方程,我们可以生成时域上的正弦信号:f0 = 1000; % 正弦信号的频率为1kHzA = 1; % 正弦信号的幅度为1Vt = 0:1/fs:1; % 假设信号长度为1秒y = A * sin(2 * pi * f0 * t);代码中,我们生成了一个正弦信号,频率为1kHz,幅度为1V,信号长度为1秒,并将其存放在y变量中。

步骤三:对信号进行FFT变换为了验证我们生成的信号是否正确,我们需要对信号进行FFT变换。

FFT变换可以将一个时域信号转化为频域信号。

我们使用MATLAB的“fft”命令对信号进行FFT变换。

代码如下:Y = fft(y); % 对信号y进行FFT变换,得到频域信号YL = length(y); % 计算信号的长度P2 = abs(Y/L); % 取FFT变换结果的绝对值,然后除以长度LP1 = P2(1:L/2+1);P1(2:end-1) = 2*P1(2:end-1);f = fs*(0:(L/2))/L; % 生成频率坐标轴代码中,我们使用FFT变换对信号y进行变换,并将结果存放在Y变量中。

然后我们根据FFT变换结果,得到频率分量以及对应的幅度分量。

步骤四:绘制频域正弦信号最后,我们使用MATLAB的plot函数绘制频域信号采样结果图。

基于DSP的信号发生器的设计

基于DSP的信号发生器的设计

2011届本科生毕业论文(设计)题目:基于DSP的信号发生器的设计作者姓名:学号:系(院):机械与电子工程学院专业:电子信息工程指导教师姓名:指导教师职称:2012年3 月9 日Year 2011 Bachelor Graduation assignment(Design)Title: Design of Signal Generator based on DSP Author:Tao Li-juanStudent ID: 2007080305Department: Mechanical and electronic engineering faculty Major: Electronic and information engineering Instructor: Wen YanProfessional Title: LecturerMARCH 9, 2012摘要阐述了基于TMS320V5402 DSP(以下简称C5402) 芯片实现信号发生器的设计方法和原理。

首先介绍了实现信号发生器的几种算法及信号生成原理,接着阐述了系统的软件和硬件的设计。

该信号发生器可以产生任意波形,且信号的幅度和频率可以由DSP程序控制。

具有易于修改,灵活性强等优点。

克服了通常信号发生器模式固定,波形不可编程的不足。

该发生器满足信号发生器的小型化,低成本和方便使用发展趋势的需要,充分利用DSP信片的优点。

这个设计的硬件部分有该DSP芯片和D/A转换芯片TLC7528组成,DSP芯片用于产生各种波形,D/A转换芯片用于把数字信号转换为模拟信号。

在以上硬件的基础上,通过软件编程来实现三角波,方波和正弦波等波形。

关键词:数字信号处理器;信号发生器;D/A转换器;波形ABSTRACTThis paper expounds the design of signal generator based on TMS320VC5402DSP. First,several algorithms of signal generator reality and the principle of signal generation is introduced. Next,the hardware and the software design is discussed in paper .This signal generator can generate several waveforms,not only the voltage and the frequency of the signal are both controlled by DSP programs,but also it can be easily modified,more flexible and many other advantages. Therefore it improved the shortcoming of fixed pattern and waveform can not program. The generator signal generator to meet the miniaturization, low cost and easy to use development trend of the need to fully use the advantages of DSP signal .The hardware of this design is made by TMS320VC5402DSP C chip and D/A conversion chip TLC7528.DSP chip produce waves and D/A conversion chip is used change digital signals to analog signals. Based on the hardware, we use software to carry out triangle wave, square wave and sine wave.Key words: digital signal processing; signal generator; D/A conversion; wave目录绪论 (1)1 正弦信号生成算法的简介 (2)1.1采样回放法 (2)1.2查表法 (2)1.3查表结合插值法 (2)1.4泰勒展开法 (3)2 系统的硬件设计 (4)2.1硬件系统设计思想 (4)2.2系统相关电路的介绍 (4)2.2.1 DSP芯片的特点及使用说明 (4)2.2.2 D/A转换器TLC7528使用说明 (7)2.2.3电源电路和晶振电路使用说明 (9)2.3DSP芯片与D/A转换器的接口电路 (10)3系统的软件设计 (12)3.1基于泰勒展开实现正弦波 (12)3.2基于MATLAB语言实现正弦波 (13)3.2.1 如何用MATLAB产生数据序列 (13)3.3基于C语言实现正弦波 (14)4软件调试系统使用说明及实验结果 (17)结论 (19)参考文献 (20)附录一 (21)致谢 (22)宿州学院2011届本科生毕业设计绪论绪论信号发生器在现代工程中的应用非常广泛。

基于DSP的正弦信号发生器的设计

基于DSP的正弦信号发生器的设计

图1 程序流程图
4、 程序设计
4.1 产生正弦波程序清单sin.asm
.title "sin.asm" //为汇编文件取名为“sin.asm”
.mmregs
/定/ 义存储器映像寄存器
.def
_c_int00
.ref
sinx,d_xs,d_sinx,cosx,d_xc,d_cosx //定义标

sin_x: .usect "sin_x",360 //为"sin_x"保留360个存储空间
MPYA
*AR2+ /B/=x^2(1-x^2/30(1-x^2/56))
2(1-x^2/30(1-x^2/56))
||LD *AR4,B //B=1
MASR
*AR2-,*AR3+,B,A //A= 1-x^2/12(1-x^2/30(1-x^2/56))
SFTA
A,-1,A
NEG
A
MPYA
*AR2+ //B=1-x^2/2(1-x^2/12(1-x^2/30(1-x^2/56)))
STM
#d_xc,AR2
/A/R2 指向d_xc首地址
STM
#c_l_c,AR4 /A/R4指向c_l_c首地址
ST
#7FFFh,c_l_c /7/FFFh→c_l_c
SQUR
*AR2+,A
/求/ x的平方存放在累加器A中
ST
A,*AR2
/(/ A)左移16位→AR2
||LD *AR4,B
/(/ AR4)左移16位→B
d_temp_c .usect "cos_vars",1 //为d_temp_c中cos_vars保存1个存储

基于DSP的信号发生器的设计与实现

基于DSP的信号发生器的设计与实现

基于D SP 的信号发生器的设计与实现刘剑科,王艳芬,王胜利(中国矿业大学信息与电气工程学院 江苏徐州 221008)摘 要:阐述了基于TM S 320V C 5402D SP 实现信号发生器的设计原理和实现方法,详细介绍了所设计的信号发生器的硬件电路结构和程序设计流程图。

该信号发生器可以产生任意复杂的波形,且信号的幅度和频率全部由D SP 程序控制,易于修改,弥补了通常信号发生器模式固定、波形不可编程以及精度低的不足。

此外,还运用了D SP 的外部并行16位FLA SH 引导装载设计方法,通过在线FLA SH 编程,使得所设计的D SP 目标系统成为一个独立的脱机运行系统,灵活性大大增强,使用也更加方便。

关键词:数字信号处理器;信号发生器;多通道缓冲串口;引导装载;D A 转换中图分类号:TN 911125 文献标识码:B 文章编号:1004373X (2005)1612603D esign and Rea l iza tion of Signa l Genera tor Ba sed on D SPL I U J ianke ,W AN G Yanfen ,W AN G Shengli(Schoo l of Info r m ati on &Engineering ,Ch ina U niversity of M ining and Techno l ogy ,Xuzhou ,221008,Ch ina )Abs tra c t :T h is paper expounds the design and realizati on of signal generato r based on TM S 320V C 5402D SP 1T he hardw are circu itstructu re and the p rogram flow charts are also given in th is paper 1U n like the general signal generato rs w h ich are often mode fixed ,it has unp rogram ab le and low p recisi on ,th is signal generato r can generate comp lex w avefo rm s ,and the vo ltage and frequency of the signal generated by th is signal generato r are con tro lled by D SP p rogram s w h ich can be easily modified 1In o rder to i m p rove the independence of th is D SP system and the flex ib ility of its app licati on ,the design of parallel boo t (16b )is also app lied to the D SP system by in system p rogramm ing 1Ke yw o rds :D SP ;signal generato r ;M c BSP ;boo t load ;D A conversi on收稿日期:20050509 信号发生器在现代工程中应用非常广泛。

基于DSP的可调信号发生器设计

基于DSP的可调信号发生器设计

目录一、设计的目的 (2)二、设计的内容与要求 (2)三、设计方案 (3)四、软件、硬件设计(根据设计内容适当处理,硬件设计应包括PCB (4)4.1、软件设计 (4)4.1.1 按键矩阵模块 (4)4.1.2 波形发生模块 (4)4.1.3 数码管显示模块 (4)4.1.4 点阵显示模块 (4)图3.3点阵模块及原理图 (5)4.2.1 4*5按键矩阵 (5)4.2.2 数码管显示 (6)五、设计总结 (7)5.1调试结果 (7)5.2心得体会 (10)六、参考文献 (10)七、附录 (11)一、设计的目的根据已掌握的《DSP技术及应用》课程知识,完成课程设计要求的项目。

了解正弦波的产生,以及正弦波幅值和频率的调整方法,掌握信号产生的一般方法并学习使用CCS图形显示功能进行程序调试。

通过硬件设计和程序编写过程,加深对《DSP技术及应用》课程知识的理解和掌握,培养应用系统设计的能力,以及分析问题和解决问题的方法,并进一步拓宽专业知识面,培养实践应用技能和创新意识。

二、设计的内容与要求(一)、课程设计题目:基于DSP的可调信号发生器设计(二)、具体设计要求如下:1)基础设计:在CCS中运行调试程序代码,输出正弦信号波形,并使用CCS的图像显示窗口,实时显示输出的正弦波。

2)提高设计:使用DSPF2812的GPIO功能,读取外部手动按键的信号,相应改变正弦信号的幅值、相位、频率和偏移(幅值,采用有符号16位整型变量定义)。

3)附加设计:使用DSPF2812的GPIO功能,读取外部手动按键的信号,相应输出正弦波、三角波、方波、锯齿波。

并分别实现四种波形的幅值和频率的调节。

4)高级设计:用8个七段数码管,每隔一秒依次循环显示三种信息,包括:①日期(格式为2014-06-12);②自己的学号(格式为学号的低8位,例如学号为112033101的同学,应当显示:12033101);③当前的幅值(格式为:AP-00000~AP-32767);○4频率即每周期的离散采样点数(格式为:PEAD-012);○5当前按键坐标(格式为:X X)。

基于DSP的信号发生器设计..

基于DSP的信号发生器设计..

基于DSP的信号发生器设计设计题目:正弦信号发生器专业班级电科11级-1班学号 ************学生姓名王博指导教师王科平摘要正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。

目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵,而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。

正弦信号发生器是信号中最常见的一种,它能输出一个幅度可调、频率可调的正弦信号,在这些信号发生器中,又以低频正弦信号发生器最为常用,在科学研究及生产实践中均有着广泛应用。

目前,常用的信号发生器绝大部分是由模拟电路构成的,当这种模拟信号发生器用于低频信号输出往往需要的RC值很大,这样不但参数准确度难以保证,而且体积大和功耗都很大,而由数字电路构成的低频信号发生器,虽然其低频性能好但体积较大,价格较贵,而本文借助DSP运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。

目录一、概述 (3)二、系统设计 (4)2.1 总体方案 (4)2.2正弦波信号发生器 (4)三、硬件设计 (5)3.1硬件组成部分 (5)3.2控制器部分 (6)3.4人机接口部分 (7)四、软件设计 (8)4.1流程图 (8)4.2 正弦信号发生器程序清单 (9)五、总结 (14)参考文献 (14)一、概述数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学号 2009316020112 编号 20131601112 研究类型理论研究分类号 TP37文理学院毕业论文论文题目作者姓名指导教师所在院系专业名称完成时间基于DSP 信号发生器的设计罗志伟闻辉信息工程系电子信息工程2012年5月12日湖北师范学院文理学院学士学位论文(设计)诚信承诺书目录1前言 (5)1.1 课题背景 (5)1.2课题研究的目的和意义 (5)1.3研究内容 (6)2 系统原理分析 (6)2.1 DDS的基本原理 (6)2.2正弦波产生的方法 (7)3 系统方案设计分析 (8)3.1采用高性能DDS 单片电路的解决方案 (8)3.2 采用低频正弦波DDS 单片电路的解决方案 (8)3.3 自行设计的基于FPGA 芯片的解决方案 (9)3.4 采用高速的微处理芯片的解决方案 (9)4 总体方案设计 (10)4.1硬件组成 (10)4.2控制器部分 (10)4.3微输出D/A通道部分 (11)4.4驱动器设计 (12)4.5 键盘设计 (12)5软件设计 (12)5.1流程图 (13)5.2 正弦信号发生器程序清单 (14)6系统仿真 (20)6.1 CCS工程项目的调试 (20)6.2 仿真波形图 (20)7总结与分析 (21)参考文献 (21)致谢 (22)基于DSP 信号发生器的设计罗志伟(指导老师,闻辉讲师)(湖北师范学院文理学院信息工程系湖北黄石 435002)摘要:在当今社会,信号发生器已经广泛地应用于雷达应用,通信系统的仿真与测试等国防、科研和工业领域。

而随着社会的不断进步和科研的不断深入,对信号发生器的波形可编程性、波形的精度与稳定性等性能提出了更高的要求。

数字信号处理器(DSP )正是在基于高标准,高要求的情况下应运而生。

DSP 是在模拟信号变成数字信号以后进行高速实时处理的专用处理器。

本文借助DSP 运算速度高,系统集成度强的优势设计的这种信号发生器,比以前的数字式信号发生器具有速度更快,且实现更加简便。

关键词:信号发生器 DSP 可编程性中图分类号:TP37Design of signal generator based on DSPLuo Zhiwei (Tutor :WenHui )(Department of Information Engineer, College of Arts&Science of Hubei NormalUniversity, Huangshi, Hubei, 435002Abstract: In today ’s society,signal generator has been widely used in radarapplications,communication systemsimulation and testing,national defense,scientific research and industrial field.With the social progress and scientific research unceasingly thorough,the signal generator can be put forward higher requirements of programming,waveform accuracy and stability properties.Digital signal processor(DSP isbased on the high standard, high demand situations emerge as the times require. DSP is a special processor into a digital signal in the analog signal processing real-time after speed. In this paper, with the help of DSP high speed ofoperation, the signal generator system design of integrated strength, it has faster speed than the previous digital signal generator, and be easy to implement.Keywords : signal generator DSP Programmability基于DSP 信号发生器的设计罗志伟(指导老师,闻辉,讲师)(湖北师范学院文理学院信息工程系湖北黄石 435002)1前言1.1 课题背景在当今社会,信号发生器已经广泛地应用于雷达应用,通信系统的仿真与测试等国防、科研和工业领域。

而随着社会的发展和科技的进步,对信号发生器的波形可编程性、波形的精度与稳定性等性能提出了更高的要求。

正是在这个背景下,基于DSP 的信号发生器正是以其编程的高度灵活性,波形的高精度与高稳定性等特点而脱颖而出,具有极大的应用价值和广泛的应用前景。

1.2课题研究的目的和意义随着社会的发展,带动了科技的进步,更带动了DSP 技术的发展,现代控制设备的性能和结构更发生了翻天覆地的变化,我们已悄然进入了高速发展的信息时代,DSP 技术也将成为当今科技的主流之一,被广泛地应用于社会生产的各个领域。

对于本次毕业设计,其目的在于:了解DSP 及DSP 控制器的发展过程及其特点。

较熟练地在硬件上掌握DSP 及DSP 硬件器的结构、各部件基本工作原理。

熟悉CCS 集成开发环境,并能较熟练的对CCS 的开发系统进行使用。

熟悉用C 语言、汇编语言编程DSP源程序。

学习DSP 程序的调试及编写,及运用观察变量的方法查看程序的运行情况。

掌握工程设计的流程及方法。

而传统的信号发生器要么就是体积庞大,价格昂贵,要么就是操作复杂,容易出错。

因此对研究出一个结构简单,操作方便,性价比较高的信号发生器有更大意义。

1.3研究内容全文阐述了基于TMS32OVC54x 和DDS 技术实现信号发生器的设计原理和实现方法,详细介绍了所设计的信号发生器的硬件电路结构和程序设计流程图,以及汇编语言程序设计的正弦信号发生器。

此信号发生器对程序的编写、调试比较方便并能够加快了程序的运行速度,基本符合本次论文设计。

2 系统原理分析2.1 DDS的基本原理直接数字频率合成器(Derect Digital SynthesizerDDS 是从相位概念出发直接合成所需要波形的一种新的频率合成技术[2]。

DDS 是利用信号相位与幅度的关系, 对需要合成信号的波形进行相位分割, 对分割后的相位值赋予相应的地址, 然后按时钟频率以一定的步长抽取这些地址,这样按照一定的步长抽取地址(相位累加器值的同时, 输出相应的幅度样值, 这些幅度样值的包络反映了需要合成信号的波形。

一个直接数字频率合成器由相位累加器、加法器、波形存储ROM 、D/A转换器和低通滤波器(LPF)构成。

DDS 的原理框图如图所示。

图2.1 DDS的原理框图2.2正弦波产生的方法正弦波信号发生器已被广泛地应用于通信、仪器仪表和工业控制等领域的信号处理系统中. 通常有两种方法可以产生正弦波,分别为查表法和泰勒级数展开法。

查表法是通过查表的方式来实现正弦波,主要用于对精度要求不很高的场合。

泰勒级数展开法是根据泰勒展开式进行计算来实现正弦信号,它能精确地计算出一个角度的正弦和余弦值,且只需要较小的存储空间。

本次主要用泰勒级数展开法来实现正弦波信号。

产生正弦波的算法正弦函数和余弦函数可以展开成泰勒级数,其表达式:x 3x 5x 7x 9+-+- sin(x =x -3! 5! 7! 9!2468x x x x cos(x =1-+-+- 2! 4! 6! 8!取泰勒级数的前5项,得近似计算式:x 3x 5x 7x 9sin(x =x -+-+3! 5! 7! 9! x 2x 2x 2x 2=x (1-(1-(1-(1- 2⨯34⨯56⨯78⨯9x 2x 4x 6x 8cos(x =1-+-+ 2! 4! 6! 8!x 2x 2x 2x 2 =1-(1-(1-(1- 23⨯45⨯67⨯8递推公式:sin(nx = 2cos(xsin[(n-1x]-sin[(n-2x]cos(nx = 2cos(xsin[(n-1x]-cos[(n-2x]由递推公式可以看出,在计算正弦和余弦值时, 需要已知cos(x、sin(n-1x、sin(n-2x和cos(n-2x。

3 系统方案设计分析DDS 的设计方案已经有很多的成熟方案,可以采用单片专用集成电路芯片解决,也可以用FPGA 设计,还可以采用高速的微处理芯片来设计,基本的设计方案简介如下。

3.1采用高性能DDS 单片电路的解决方案AD9850是AD 公司采用先进的DDS 技术1996年推出的高集成度DDS 频率合成器,它内部包括可编程DDS 系统、高性能DAC 及高速比较器,能实现全数字编程控制的频率合成器和时钟发生器。

接上精密时钟源,AD9850可产生一个频谱纯净、频率和相位都可编程控制的模拟正弦波输出。

此正弦波可直接用作频率信号源或转换成方波用作时钟输出。

AD9850接口控制简单,可以用8位并行口或串行口经、相位等控制数据。

32位频率控制字,在125MHz 时钟下,输出频率分产率达0.029Hz 。

先进的CMOS 工艺使AD9850不仅性能指标一流,而且功耗少,在3.3V 供电时,功耗仅为155mW 。

扩展工业级温度范围为-40~+85摄氏度,其封装是28引脚的SSOP 表面封装。

AD9850采用32位相位累加器,截断成14位,输入正弦查询表,查询表输出截断成10位,输入到DAC 。

DAC 输出两个互补的模拟电流,接到滤波器上。

调节DAC 满量程输出电流,需外接一个电阻Rset ,其调节关系是Iset=32(1.248V/Rset),满量程电流为10~20mA 。

3.2 采用低频正弦波DDS 单片电路的解决方案Micro Linear公司的电源管理事业部推出低频正弦波DDS 单片电路ML2035以其价格低廉、使用简单得到广泛应用。

ML2035生成的频率较低(0~25kHz ),一般应用于一些需产生的频率为工频和音频的场合。

如用2片ML2035产生多频互控信号,并与AMS3104(多频接收芯片)或ML2031/2032配合,制作通信系统中的收发电路等。

可编程正弦波发生器芯片ML2035设计巧妙,具有可编程、使用方便、价格低廉等优点,应用范围广泛。

很适合需要低成本、高可靠性的低频正弦波信号的场合。

相关文档
最新文档