2006年黑龙江哈尔滨市初中升学考试数学试卷
2024年9月黑龙江省哈尔滨市小升初数学精选常考应用题摸底二卷含答案解析
2024年9月黑龙江省哈尔滨市小升初数学精选常考应用题摸底二卷含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。
一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。
)1.植树节前夕,李老师把42棵杨树苗和30棵柳树苗平均分给了五(1)班的几个小组,正好分完.五(1)班最多有几个小组?每个小组分到的杨树苗和柳树苗的棵数分别是多少棵?2.育才小学合唱队有64人,是舞蹈队的8/9,舞蹈队有多少人?3.一辆洒水车,每分钟前进220米,洒水的宽度是6米.洒水车行驶2分钟,能给多大的地面洒水?4.一块长方形的菜地,长94米,宽18米,这块地的面积是多少?5.教育储蓄年利率为1.98%,免征利息税,某企业发行的债券月利率为0.215%,但要征收20%的利息税,为获取更大的回报,投资者应选择哪一种储蓄呢?某人存入28000元,一年到期后可以多收益多少元?6.一件商品,第一次降价1/10后无人问津.店主为了促销,在此基础上又降价1/10,现在的价格是原价的几分之几?7.一本书有A页,小林每天看B页,看了8天.先用式子表示还剩多少页没有看,再计算当A=176,B=13时,这本书还剩多少页没有看?8.一个圆柱形容器,底面半径是3分米,里面装有深9厘米的水,放入一个铁块后,水面升高了1.5厘米,这个铁块的体积是多少?9.做一件衣服现在每件成本是65元,比原来降低2/15,原来每件成本是多少元?10.一小区,空地面积约50万平方米,占小区总面积的60%,可绿化面积为42万平方米,已绿化的约为78.5%.小区的总面积是多少平方米?可绿化的占百分之几?还能提出什么问题?11.把一块长90厘米,宽42厘米的长方形纸板恰无剩余地剪成边长都是整数厘米、面积都相等的小正方形纸片,最少能剪出多少块,这种剪法剪成的所有正方形纸片的周长之和是多少厘米.12.某工程队修一段公路,第一期修了全长的1/2,第二期修了800米,还剩下全长的30%没有修.这段公路长多少米?13.师徒二人合做800个零件,师傅每时加工50个,徒弟每时加工40个,师傅有事耽误了2时,完成了任务后,师傅工作了多少时?14.商店门口挂有一串彩灯,彩灯颜色的顺序是1个红色,1个绿色,1个红色,1个绿色…如此反复串下去,那么第88个彩灯是什么颜色的?第99个呢?15.五年级同学订阅《我们爱科学》360份,比四年级同学订阅份数的3倍少60份,两个年级一共订阅《我们爱科学》多少份?16.两根钢管,一根长28米,另一根长36米,把它们锯成同样长的短管子没有剩余,每根管子最长是多少米?一共可以锯多少根短管子?17.王老师带领40名学生去公园游玩,公园规定,门票零售每张3元,如果购买团体门票,要购买50张以上,每张2元,王老师买哪种票便宜,便宜多少元?18.工人在一条公路的一边种树,每两棵树之间相隔16米,一共种了187棵树,这条公路长多少米?19.六年级140名学生在一次数学检测中,其中91名学生获优秀,这次检测的优秀率是多少?20.淘气有一本课外书288页,第一天看了1/4,第二天比第一天多看了1/6,两天一共看了多少页?21.玉华小学组织同学们去春游,共租车8辆,大巴车每车坐60人,中巴车每车坐40人,大巴车比中巴车上一共多坐了180人,大巴车和中巴车各有多少辆?22.新区小学五年级有学生572人,六年级比五年级少183人.新区小学六年级有学生多少人?五、六年级共有学生多少人?23.小华的体重是40千克,小芳的体重是42千克,小红的体重是38千克,小丽的体重是52千克.她们四人的平均体重是多少千克?24.制作一个长80厘米、宽40厘米、高30厘米的长方体玻璃鱼缸.①至少需要多少面积的玻璃?②要使水面高25厘米,需要多少水?③要使水面增高5厘米,用棱长10厘米的立方体勺子舀水,至少要舀几次?25.六年级要栽140棵树,已经栽了5/7,还有多少棵没栽?26.小华的爸爸骑自行车去旅行,每天骑112千米,骑了12天后自行车坏了,改用步行,每天走50千米,又走了10天才到达目的地,小华的爸爸旅行所经过的路程一共有多少千米?27.甲、乙两辆汽车同时从东西两地相对开出,甲车每小时行55.6km,乙车每小时行54.8km,两车在离中点5.2km处相遇,两车用了几小时相遇?28.六年级一、二、三班共有57名同学参加数学兴趣小组,其中一班与二班参加人数的比是2:3,二班与三班参加人数的比也是2:3,三个班中多少班参加的人数最多,有多少人.29.一辆车的载重量为10吨,要运9台机器,每台机器重925千克,一次能运完吗?30.六年级共有94名同学,派出男同学的1/5和4名女同学后,剩下的男和女正好相等,六年级有男、女同学各多少人?31.建筑工地计划运进一批水泥,第一次运来总数的1/4,第二次运来360吨,这时运来的与没运来的吨数比是5:3,工地计划运来水泥多少吨?32.从前,甲、乙、丙三人对一件古董作估价,甲说,它至少值500文,乙说,它的价值不到500文,丙说,它至少值一文.后来知道,这三个人中,只有一个人说的是对的,问,这件古董到底值多少钱?33.甲、乙两地相距280千米,一汽车从甲地到乙地用了4.5小时,返回时比去时多用1小时,求这辆汽车往返的平均速度?34.甲、乙两地相距845千米,一辆卡车上午8时从甲地出发,晚上9时到达乙地.这辆卡车平均每小时行多少千米?35.甲、乙两辆汽车同时从东西两城相向开出,甲车每小时行84千米,乙车每小时行68千米,两车在距中点32千米处相遇.东西两城相距多少千米?36.霜月小学组织五年级72人和六年级64人参加“践行三爱三节”活动,现在要分别把两个年级同学分成若干个小组,要使两个年级每个小组的人数相等,每个小组最多有多少人?37.小华和小明看同一本书,小华需30天看完,小明需25天看完,两人各看5天,他们各看这本书的几分之几?38.甲乙两港之间的水路长504千米,小明上午6:00从甲地上船,晚上8时到达乙地,这艘客船平均每小时航行多少千米?39.五年级一共有4个班,217人.前两个班的人数总和比后两个班少13,一班比二班多4人,四班比三班少5人,那么一班和四班相差多少人.40.某校六年级学生共有195人,其中男生达标人数为98人,女生达标人数为86人.(1)达标人数占总人数的百分之几?(2)男生达标人数比女生达标人数多百分之几?41.一个长方体的棱长和是36厘米,它的长、宽、高的和是多少厘米.42.工地有一堆近似圆锥形的沙子,量得底面周长是31.4m,高是2.4m,用这堆沙子铺一条宽4m路面,铺沙厚度为10cm,能铺多少米长?43.王芳家养了9只公鸡,比养的母鸡少108只,母鸡数量是公鸡的几倍?44.某家具厂生产了377套家具,一辆车能装38套家具,可以装几辆车?还剩几套家具?45.化肥厂用大、小两辆汽车运47吨化肥,大汽车运了8次,小汽车运了6次正好运完,大汽车每次运4吨,小汽车每次运多少吨?46.一块地板,若选用边长是5厘米的正方形瓷砖去铺,则需要216块,若选用边长是6厘米的正方形瓷砖来铺,则需要多少块.47.佳佳看一本208页的科幻书,前4天每天看了17页,以后每天看20页,佳佳再用几天才能看完?48.甲数的1/4比乙数的20%多4,甲数是48,乙数是多少?49.一段路,修路队前3天修了114千米,照这样计算,再做42天就能全部修完,这条路一共有多少千米?50.五年级有240人,出勤210人,请假5人,问缺勤率是多少?51.甲乙两车从A城到B城,速度相同.甲车先出发120千米,乙车才出发.甲车到达B城立即返回,在距离B城1/4处相遇到乙车,A、B 两城相距多少千米?52.五年级同学向希望小学捐书340本,比六年级多捐2/15,六年级同学捐书多少本?(用方程解答)53.五年级同学举行捐书活动,捐了586本书,50本包成一包,包了11包,还剩几本书?54.一块菜地0.85公顷,今年每公顷可收菜籽560千克.如果每千克菜籽能榨油0.32千克,这块地收的菜籽共可榨出多少油?(得数保留整数)55.有一批货物,第一次运出了20%,第二次运出了26吨,这时余下的货物吨数与运出的吨数的比是3:4,余下多少货物?56.甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?57.某车间有普通工人84人,技术人员16人,按工作的最优组合,技术人员与普通工人的比是1:4.如果你是厂长,为了达到工作的最优组合,你打算如何做?(请考虑“辞退”、“招工”等不同情况)58.一辆汽车当日21时从A站出发,于次日凌晨5时到达B站.已知A、B两站相距400千米.求这辆汽车的速度.59.打字员打一部书稿,每天完成3/20,6天完成这部书稿的几分之几?60.食堂买来15千克西红柿和20千克黄瓜,共用去33元,已知每千克黄瓜0.75元,每千克西红柿多少钱?(用方程解)61.一辆客车,第一天行了54千米,第二天行90千米,第三天行78千米,这辆客车平均每天行多少千米?62.某公司向银行申请A,B两种贷款共60万元,每年共需付利息5万元.A种贷款年利率为8%,B种贷款年利率为9%,该公司申请两种贷款各多少万元?63.甲乙两辆旅游车同时从AB两地相向出发,甲车每小时行58千米,乙车每小时行49千米,两车在离中点54千米处相遇.求AB两地的路程.64.甲、乙、丙三人的钱数各不相同,甲最多,他拿出一些给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的最多;乙拿出一些给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的最多;丙又拿出一些给甲和乙,使他们的钱数各增加两倍,结果三人的钱数一样多.如果他们三人共有81元,则三人原有的钱数分别是多少元.65.一艘轮船以每小时40千米的速度从甲港开往乙港,行了全程的20%后,又行了1小时,这时未行路程与已行路程的比是3∶1。
数学丨黑龙江省哈尔滨市师范大学附属中学2025届高三上学期11月期中考试数学试卷及答案
哈师大附中2024—2025学年度高三上学期期中考试数学试题考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|230A x x x =-+≤,(){}2ln 2B x y x==-,则A B = ()A .()13,B.3⎡-⎣C.⎡⎤⎣⎦D.(⎤⎦2.复数2025z=2025i -在复平面内对应的点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限3.函数()2cos f x x x =+在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为()A.2πB .2C.6π+ D.13π+4.已知a 是单位向量,则“||||1a b b +-= 是“a b∥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知函数()()e 1x a xf x -⎛⎫= ⎪⎝⎭在区间()1,0-上单调递增,则a 的取值范围是()A .[)0,+∞B .[)2,-+∞C .(],0-∞D .(],2-∞-6.已知等比数列{}n a 的前n 项和为n S ,若3614S S =,则1236SS S =+()A.43B.8C.9D.167.菱形ABCD 边长为2,P 为平面ABCD 内一动点,则()()PA PB PC PD +⋅+的最小值为()A.0B.2- C.2D.4-8.已知函数()f x 为偶函数,且满足(13)(13)f x f x -=+,当(0,1)x ∈,()31xf x =-,则323(log )f 的值为()A.31B.5932C.4932D.21132二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.函数()2sin(1)3f x x πωω=+≤的图象如图所示,则下列说法中正确的是()A .1ω=B .函数的图象关于点,03π⎛⎫⎪⎝⎭对称C .将()y f x =向左平移3π个单位长度,得到函数()2cos(6g x x π=+D .若方程(2)f x m =在0,2π⎡⎤⎢⎥⎣⎦上有2个不相等的实数根,则m的取值范围是2⎤⎦10.设正实数,m n 满足1m n +=,则()A .1m nm+的最小值为3B+C的最小值为12D .33m n +的最小值为1411.已知函数1()(0)xf x x x =>,则下列说法中正确的是()A.方程1()(f x f x=有一个解B.若()()g x f x m =-有两个零点,则10em e<<C.若21()(log ())2a h x x f x =-存在极小值和极大值,则(1,e)a ∈D.若()0f xb -=有两个不同零点,2(())()0f x b x cx d --+≤恒成立,则2ln b c <<第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.中国冶炼块铁的起始年代虽然迟至公元前6世纪,约比西方晚900年,但是冶炼铸铁的技术却比欧洲早2000年.现将一个轴截面为正方形且侧面积为π36的实心圆柱铁锭冶炼熔化后,浇铸成一个底面积为π81的圆锥,则该圆锥的高度为.13.已知某种科技产品的利润率为P ,预计5年内与时间(t 月)满足函数关系式(t P ab =其中a b 、为非零常数).若经过12个月,利润率为10%,经过24个月,利润率为20%,那么当利润率达到50%以上,至少需要经过________________个月(用整数作答,参考数据:lg 20.3010)≈14.已知b 为单位向量,,a c 满足42a b c b ⋅=-= ,则12a c -的最小值为四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题13分)在△ABC 中,a b c 、、分别为角A B C 、、所对的边,且22()b a a c c -=-(1)求角B .(2)若b =△ABC 周长的最大值.16.(本小题15分)已知数列{}n a 满足*3212122,N 22n n a a a n a n -++++=∈ (1)求{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使得这2n +个数依次构成公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .17.(本小题15分)行列式在数学中是一个函数,无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用.将形如11122122a a a a 的符号称二阶行列式,并规定二阶的行列式计算如下:1112112212212122a a a a a a a a =-,设函数22sin sin ()()π26cos()x xf x x x =∈+R .(1)求()f x 的对称轴方程及在[0,]π上的单调递增区间;(2)在锐角ABC ∆中,已知()32f A =-,2133AD AB AC =+,cos B =,求tan BAD ∠18.(本小题17分)已知数列}{n a 满足111,,333,n n na n n a a a n n +⎧+⎪==⎨⎪-⎩为奇数为偶数(*∈N n ).(1)记232-=n n a b (*∈N n ),证明:数列}{n b 为等比数列,并求}{n b 的通项公式;(2)求数列}{n a 的前n 2项和n S 2;(3)设12121--=+n n n b b c (*∈N n ),且数列}{n c 的前n 项和为n T ,求证:1133ln --<-n n n n T (*∈N n ).19.(本小题17分)已知函数ln ()sin ,(0,)x a f x e x x -=-∈+∞.(1)当a e =时,求()y f x =在(0,(0))f 处的切线方程;(2)若32(())(())ln(1())0f x f x f x -++≥恒成立,求a 的范围;(3)若()f x 在(0,)π内有两个不同零点12,x x ,求证:122x x ππ<+<2024—2025学年度上学期高三学年期中考试数学答案一、单选题1.D 2.D 3.A 4.A 5.D 6.B7.D8.C二、多选题9.AC 10.ABD 11.ACD 三、填空题12.213.4014.1四、解答题15.(1)22()b a a c c -=-即222b a c ac =+-∵2222cos b a c ac B =+-∴1cos 2B =,又(0,)B π∈∴3B π=(2)由sin sin a c AC =可得,2sin a A =,2sin c C=2sin 2sin l a b c A C =++=+∵2+3A C π=∴23C Ap =-∴22sin 2sin()3l a b c A A π=++=+-3sin A A =)6A π=+∵203A π<<∴l的最大值为16.(1)321212222nn na a a a -++++= 当2n ≥时,312122)2222(1n n a a a n a --++++=- 两式相减,得122nn a -=,即2n n a =.又当1n =时,12a =符合题意,所以2n n a =.(2)由(1)得2n n a =,所以11222111n n nn n n b b d n n n ++--===+++,则112nn n d +=,所以()123111123412222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()12341111112341222222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅+++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得:()()112111111111113342211112222222212n n n nn n n T n n ++++⎛⎫- ⎪+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⋅++⋅⋅⋅+-+=+-+=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,所以332n nn T +=-.17.(1)221()2sin cos()2sin 2sin (cos sin )2sin 226f x x x x x x x xπ=+-=--23323sin sin 2(1cos 2)sin(2)22232x x x x x π=---+-,由22,32x k k πππ+=+∈Z ,得,12x k k ππ=+∈Z ,所以()f x 的对称轴为ππ()122kx k =+∈Z .由222,232k x k k πππππ-+<+<+∈Z ,[]0,x π∈,所以单调递增区间为701212πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦,,,(2)由(1)知,33())322f A A π=+-=-,则πsin(2)03A +=,由02A π<<,得ππ4π2333A <+<,则π23A π+=,解得π3A =,因为ABC V中,cos B =,则B 为锐角,所以sin 3B ===,因为π3A =,πA B C ++=,所以2π3C B =-,所以2π2π2π11sin sin sin cos cos sin 333232326C B B B ⎛⎫=-=-=⨯+⨯=+⎪⎝⎭,设BADθ∠=,则π3 CADθ∠=-,在ABD△和ACD中,由正弦定理得sin sinBD ADBθ==πsinsin3CD ADCθ=⎛⎫-⎪⎝⎭因为2CD BD=(π3sin3θθ⎛⎫-=+⎪⎝⎭,(1cos sin3sin22θθθ⎫-=+⎪⎪⎭(2sinθθ=+,所以tan tanBADθ∠==18.(1)证明:2123123)1231(231212221-+=-++=-=++++nanaabnnnnnnnnbaanna31)23(312131212)6(31222=-=-=-+-=,又212313123121=-+=-=aab,所以,数列}{nb为以21为首项,31为公比的等比数列.(2)由(1)可知13121-⎪⎭⎫⎝⎛=nnb,又232-=nnab,23312112+⎪⎭⎫⎝⎛=∴-nna.设nnaaaP242++=,则nnPnnn233143432331131121+⎪⎭⎫⎝⎛-=+-⎪⎭⎫⎝⎛-⋅=,设1231-++=nnaaaQ ,1231122-+=-naann,2312)121(31nQnnQPnnn+=-+⋅+=∴,233nPQnn-=∴,故21223631334nnnPQPSnnnnn-+⎪⎭⎫⎝⎛-=-=+=-.(3)nnnnnnnc321132113331311311-<--=--=-⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=-,n n n n n n n T 311311()313131(22+-=--=+++-<∴ ,所以欲证1133ln --<-n n n n T ,只需证)311ln(313ln 133ln 31n n n n n n --=--=-<,即证n n 31311ln(-<-.设)0,1(),1ln()(-∈+-=x x x x f ,01)(<+='∴x xx f ,故)(x f 在)0,1(-上单调递减,0)0()(=>f x f ,)0,1(-∈∴x 时,)1ln(x x +>.)0,31[31-∈-n ,n n 31311ln(-<-∴得证.19.1) =s =K1−sins 0=−1,n =K1−coss n 0=−1−1∴−−1=−1−12)3−2+ln 1+≥0.令=s 3−2+ln 1+≥0(1)t >-令=3−2+ln 1+,n =32−2+1r1=33+2−2r1r1,当≥0,'≥0∴在0,+∞单调递增,当()32322(0,1),ln 1(1)0t t t t t t t t t t ∈+++<++=++<∴≥0解集为≥0∴≥0>0,sins1≥sin=ℎ. ℎ' = cosKsin =, ∴ 在 单调递增, (4,54)单调递减,当>54时,ℎ<154∴ℎ=224∴1≥224,0<≤243)ℎ=sin ∴sin=1有两个根1,2。
2003年哈尔滨中考数学试题(含答案)
哈尔滨市2003年初中升学考试数 学本试卷满分为120分,考试时间为120分钟.第1卷 选择题(30分)一、选择题(每小题分,共30分) 1. 下列式子结果为负数的是( )(A ) (B )-(C ) (D )()03-3-()23-()23--2.点P (3,-4)关于原点对称的点的坐标是( )(A )(3,-4)(B )(-3,-4)(C )(3,4)(D )(-3,4) 3.下列运算正确的是( )(A ) (B ) (C ) (D ) 532a a a =⋅532)(a a =326a a a =÷426a a a =-4.如图1,四边形ABCD 内接于⊙O ,若∠BOD =140°,则∠BCD =()(A )140° (B ) 110° (C )70° (D )20°5.正方形具有而菱形不一定具有的性质是( )(A )四条边相等 (B )对角线互相垂直平分 (C )对角线平分一组对角 (D )对角线相等6.若正比例函数y =(1-2m )x 的图像经过点A (,)和点B (,),当<1x 1y 2x 2y 1x 2x 时>,则m 的取值范围是( )1y 2y (A )m <0(B )m >0(C )m <(D )m > 21217. 如图2,△ABC 中,AB =AC ,点D 在AC 边上,且BD =BC =AD ,则∠A 的度数为.( )(A )30° (B )36° (C )45° (D )70°8.现有下列命题:①的平方根是-5;②近似数3.14有3个有效数字; ③单项式与单项()25-310⨯y x 23式是同类项;④正方形既是轴对称图形,又是中心对称图形 其中真命题的个数23xy -是 ( )(A )1(B )2(C )3(D )49.若一个圆锥的母线长是它底面圆半径的3倍,则它的侧面展开图的圆心角是()(A )180° (B )90° (C )120° (D )135°10.下列各图是在同一直角坐标系内,二次函数与一次函数y =ax +c x c a ax y +++=)(2c 的大致图像,有且只有一个是正确的,正确的是()(A )(B )(C )(D )第2卷 非选择题(90分) 二填空题(每小题3分,共30分)11.据国家统计局公布,去年我国增加就业人数7510000人,将这个数用科学记数法表示为 人.12.若分式的值为零,则x =.392+-x x 13.分解因式:= .ab a bx x +--2214.函数中自变量x 的取值范围是 .12-+=x x y 15.如果长度分别为5,3,x 的三条线段能组成一个三角形,那么x 的范围是 . 16.若在△ABC 中,AB =5cm ,BC =6cm ,BC 边上的中线AD =4cm ,则∠ADC 的度数是 度。
2008黑龙江哈尔滨中考数学试卷及评分标准(Word)
哈尔滨市2008 年初中升学考试数学试卷满分120分,考试时间为120分钟.一、选择题(每小题3分,共计30分)1.哈市4月份某天的最高气温是5℃,最低气温是-3℃,那么这天的温差(最高气温减最低气温)是( ).(A )-2℃ (B ) 8℃ (C )一8℃ (D ) 2℃ 2.下列运算中,正确的是( ).(A )x 2+x 2=x 4(B )x 2÷x =x 2 (C )x 3-x 2=x (D )x ·x 2=x 3 3.在下列图形中,既是轴对称图形又是中心对称图形的是( ).4.右图是某一几何体的三视图,则这个几何体是( )。
(A )圆柱体 (B )圆锥体 (C )正方体 (D )球体 5.9的平方根是( ).(A )3 (B )±3 (C )一3 (D )816.某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形。
若只选购其中一种地砖镶嵌地面,可供选择的地砖共有( ).(A )4种 (B )3种 (C )2种 (D )1种7.如图,圆锥形烟囱帽的底面直径为80cm ,母线长为50cm ,则这样的烟囱帽的侧面 积是( ).(A )4000πcm 2 (B )3600πcm 2 (C )2000πcm 2 (D )1000πcm 28.已知反比例函数y =x2k 的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <2 9.小亮每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到他加快了速度,以每分45米的速度行走完剩下的路程,那么小亮行走过的路程S (米)与他行走的时间t (分)之间的函数关系用图象表示正确的是( ).10.如图,将边长为8cm 的正方形纸片ABCD 折叠,使点D 落在BC 边中点E 处,点A 落在点F 处,折痕为MN ,则线段CN 的长是( ). (A )3cm (B )4cm (C )5cm (D )6cm第Ⅱ卷 非选择题(共90分) 二、填空题(每小题3分,共计24分)11.太阳的半径约是69660千米,用科学记数法表示(保留3个有效数字)约是 千米.12.函数1x xy -=的自变量x 的取值范围是 . 13.把多项式2mx 2-4mxy +2my 2分解因式的结果是 . 14.如图,AB 为⊙O 的弦,⊙O 的半径为5,OC ⊥AB 于点D ,交⊙O 于点C , 且CD =l ,则弦AB 的长是 .15.一个袋子中装有6个球,其中4个黑球2个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个球为白球的概率是 .16.2008年7月1日是星期二,那么2008年7月16日是星期 . *16.若x =1是一元二次方程x 2+x +c =0的一个解,则c 2= . 17.观察下列图形:它们是按一定规律排列的,依照此规律,第20个图形共有 个★.18.己知菱形ABCD 的边长是6,点E 在直线AD 上,DE =3,连接BE 与对角线AC 相交于点M ,则AMMC的值是 。
黑龙江省哈尔滨市中考数学试卷含参考解析
2018 年·黑龙江省哈尔滨市中考数学试卷·参照答案与试题解析一、选择题(每题 3 分,共计 30 分)1.(3.00 分)﹣的绝对值是()A.B.C.D.【解析】计算绝对值要依据绝对值的定义求解,第一步列出绝对值的表达式,第二步依据绝对值定义去掉这个绝对值的符号.【解答】解:|| =,应选: A.【谈论】此题主要观察了绝对值的定义,绝对值规律总结:一个正数的绝对值是它自己;一个负数的绝对值是它的相反数; 0 的绝对值是 0,比较简单.2.(3.00 分)以下运算必定正确的选项是()22+n2.()333.(3)25.22A.(m+n) =m B mn=m n C m=m D m?m =m【解析】直接利用圆满平方公式以及积的乘方运算法规、同底数幂的乘除运算法则分别计算得出答案.【解答】解: A、(m+n)2=m2+2mn+n2,故此选项错误;B、(mn)3=m3n3,正确;C、(m3)2=m6,故此选项错误;D、m?m2 =m3,故此选项错误;应选: B.【谈论】此题主要观察了圆满平方公式以及积的乘方运算、同底数幂的乘除运算,正确掌握运算法规是解题要点.3.(3.00 分)以以下图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】观察四个选项中的图形,找出既是轴对称图形又是中心对称图形的那个即可得出结论.【解答】解: A、此图形既不是轴对称图形也不是中心对称图形,此选项不切合题意;B、此图形不是轴对称图形,是中心对称图形,此选项不切合题意;C、此图形既是轴对称图形,又是中心对称图形,此选项切合题意;D、此图形是轴对称图形,但不是中心对称图形,此选项不切合题意;应选: C.【谈论】此题观察了中心对称图形以及轴对称图形,牢记轴对称及中心对称图形的特色是解题的要点.4.( 3.00 分)六个大小同样的正方体搭成的几何体以以以下图,其俯视图是()A.B.C.D.【解析】俯视图有 3 列,从左到右正方形个数分别是2, 1, 2.【解答】解:俯视图从左到右分别是2, 1, 2 个正方形.应选: B.【谈论】此题观察了简单组合体的三视图,培育学生的思虑能力和对几何体三种视图的空间想象能力.5.( 3.00 分)如图,点 P 为⊙ O 外一点, PA为⊙ O 的切线, A 为切点, PO 交⊙ O于点 B,∠ P=30°,OB=3,则线段 BP的长为()A.3B.3C.6D.9【解析】直接利用切线的性质得出∠ OAP=90°,从而利用直角三角形的性质得出OP的长.【解答】解:连接 OA,∵PA为⊙ O 的切线,∴∠ OAP=90°,∵∠P=30°,OB=3,∴AO=3,则 OP=6,故 BP=6﹣3=3.应选: A.【谈论】此题主要观察了切线的性质以及圆周角定理,正确作出辅助线是解题要点.6.(3.00 分)将抛物线y=﹣5x2+1 向左平移 1 个单位长度,再向下平移 2 个单位长度,所获得的抛物线为()A.y=﹣5(x+1)2﹣1B.y=﹣ 5( x﹣1)2﹣1C.y=﹣5(x+1)2+3 D .y=﹣ 5( x﹣1)2+3【解析】直接利用二次函数图象与几何变换的性质分别平移得出答案.【解答】解:将抛物线 y=﹣ 5x2+1 向左平移 1 个单位长度,获得 y=﹣ 5(x+1)2+1,再向下平移 2 个单位长度,所获得的抛物线为: y=﹣ 5( x+1)2﹣ 1.应选: A.【谈论】此题主要观察了二次函数图象与几何变换,正确记忆平移规律是解题关键.7.(3.00 分)方程=的解为()A.x=﹣1 B.x=0 C. x=D.x=1【解析】分式方程去分母转变为整式方程,求出整式方程的解获得 x 的值,经检验即可获得分式方程的解.【解答】解:去分母得: x+3=4x,解得: x=1,经检验 x=1 是分式方程的解,应选: D.【谈论】此题观察认识分式方程,利用了转变的思想,解分式方程注意要检验.8.(3.00 分)如图,在菱形ABCD中,对角线 AC、BD 订交于点 O, BD=8,tan ∠ ABD= ,则线段 AB 的长为()A.B.2C.5D.10【解析】依据菱形的性质得出 AC⊥BD,AO=CO,OB=OD,求出 OB,解直角三角形求出 AO,依据勾股定理求出 AB 即可.【解答】解:∵四边形 ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠ AOB=90°,∵ BD=8,∴OB=4,∵tan∠ ABD= = ,∴AO=3,在 Rt△AOB中,由勾股定理得: AB===5,应选: C.【谈论】此题观察了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的要点.9.( 3.00 分)已知反比率函数 y=的图象经过点(1,1),则k的值为()A.﹣ 1 B.0C.1D.2【解析】把点的坐标代入函数解析式得出方程,求出方程的解即可.【解答】解:∵反比率函数y=的图象经过点(1,1),∴代入得: 2k﹣3=1× 1,解得: k=2,应选: D.【谈论】此题观察了反比率函数图象上点的坐标特色,能依据已知得出关于 k 的方程是解此题的要点.10.( 3.00 分)如图,在△ ABC中,点 D 在 BC 边上,连接 AD,点 G 在线段 AD 上, GE∥ BD,且交 AB 于点 E,GF∥AC,且交 CD 于点 F,则以下结论必定正确的是()A.=B.=C.=D.=【解析】由 GE∥BD、GF∥AC可得出△ AEG∽△ ABD、△DFG∽△ DCA,依据相似三角形的性质即可找出= =,此题得解.【解答】解:∵ GE∥BD,GF∥ AC,∴△ AEG∽△ ABD,△ DFG∽△ DCA,∴=,=,∴= = .应选: D.【谈论】此题观察了相似三角形的判断与性质,利用相似三角形的性质找出== 是解题的要点.二、填空题(每题 3 分,共计 30 分)11.( 3.00 分)将数 920000000 科学记数法表示为×108.【解析】科学记数法的表示形式为a× 10n的形式,此中 1≤| a| < 10,n 为整数.确定 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n是负数.88【谈论】此题观察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤| a| <10,n 为整数,表示时要点要正确确立 a 的值以及 n 的值.12.( 3.00 分)函数 y=中,自变量x的取值范围是x≠4.【解析】依据分式分母不为0 列出不等式,解不等式即可.【解答】解:由题意得, x﹣ 4≠ 0,解得, x≠4,故答案为: x≠ 4.【谈论】此题观察的是函数自变量的取值范围,掌握分式分母不为 0 是解题的要点.13.( 3.00 分)把多项式 x3﹣ 25x 分解因式的结果是x( x+5)( x﹣5)【解析】第一提取公因式 x,再利用平方差公式分解因式即可.【解答】解: x3﹣25x=x( x2﹣25)=x( x+5)( x﹣ 5).故答案为: x( x+5)( x﹣5).【谈论】此题主要观察了提取公因式法以及公式法分解因式,正确应用公式是解题要点.14.( 3.00 分)不等式组的解集为3≤x< 4.【解析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得: x≥ 3,解不等式②得: x<4,∴不等式组的解集为3≤x<4,故答案为; 3≤x< 4.【谈论】此题观察认识一元一次不等式组,能依据不等式的解集得出不等式组的解集是解此题的要点.15.( 3.00 分)计算6﹣10的结果是4.【解析】第一化简,此后再合并同类二次根式即可.【解答】解:原式 =6﹣10×=6﹣2=4,故答案为: 4.【谈论】此题主要观察了二次根式的加减,要点是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数同样的二次根式进行合并,合并方法为系数相加减,根式不变..(分)抛物线y=2(x+2)2+4 的极点坐标为(﹣2,4).16【解析】依据题目中二次函数的极点式可以直接写出它的极点坐标.【解答】解:∵ y=2( x+2)2+4,∴该抛物线的极点坐标是(﹣2,4),故答案为:(﹣ 2,4).【谈论】此题观察二次函数的性质,解答此题的要点是由极点式可以直接写出二次函数的极点坐标.17.( 3.00 分)一枚质地平均的正方体骰子,骰子的六个面上分别刻有 1 到 6 的点数,张兵同学掷一次骰子,骰子向上的一面出现的点数是 3 的倍数的概率是.【解析】共有 6 种等可能的结果数,此中点数是 3 的倍数有 3 和 6,从而利用概率公式可求出向上的一面出现的点数是 3 的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是 3 的倍数的有3,6,故骰子向上的一面出现的点数是 3 的倍数的概率是:=.故答案为:.【谈论】此题观察了概率公式:随机事件 A 的概率 P(A)=事件 A 可能出现的结果数除以全部可能出现的结果数.18.(3.00 分)一个扇形的圆心角为 135°,弧长为 3π cm,则此扇形的面积是6π cm2.【解析】先求出扇形对应的圆的半径,再依据扇形的面积公式求出头积即可.【解答】解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为 3πcm,∴=3π,解得: R=4,=6π(cm2),因此此扇形的面积为故答案为: 6π.【谈论】此题观察了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的要点.19.( 3.00 分)在△ ABC中, AB=AC,∠ BAC=100°,点 D 在 BC 边上,连接AD,若△ ABD为直角三角形,则∠ ADC的度数为 130°或 90° .【解析】依据题意可以求得∠ B 和∠ C 的度数,此后依据分类谈论的数学思想即可求得∠ ADC的度数.【解答】解:∵在△ ABC中, AB=AC,∠ BAC=100°,∴∠ B=∠ C=40°,∵点 D 在 BC边上,△ ABD 为直角三角形,∴当∠ BAD=90°时,则∠ ADB=50°,∴∠ ADC=130°,当∠ ADB=90°时,则∠ADC=90°,故答案为: 130°或 90°.【谈论】此题观察等腰三角形的性质,解答此题的要点是明确题意,找出所求问题需要的条件,利用等腰三角形的性质和分类谈论的数学思想解答.20.(3.00 分)如图,在平行四边形 ABCD中,对角线 AC、BD 订交于点 O,AB=OB,点 E、点 F 分别是 OA、 OD 的中点,连接 EF,∠ CEF=45°, EM⊥ BC于点 M ,EM 交 BD于点 N,FN=,则线段BC的长为4.【解析】设 EF=x,依据三角形的中位线定理表示 AD=2x,AD∥EF,可得∠ CAD= ∠CEF=45°,证明△EMC 是等腰直角三角形,则∠CEM=45°,证明△ENF≌△MNB,则 EN=MN= x, BN=FN= ,最后利用勾股定理计算 x 的值,可得 BC的长.【解答】解:设 EF=x,∵点 E、点 F 分别是 OA、OD 的中点,∴EF是△ OAD 的中位线,∴AD=2x,AD∥EF,∴∠CAD=∠CEF=45°,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=2x,∴∠ ACB=∠CAD=45°,∵EM⊥ BC,∴∠ EMC=90°,∴△EMC是等腰直角三角形,∴∠ CEM=45°,连接 BE,∵AB=OB, AE=OE∴BE⊥AO∴∠ BEM=45°,∴BM=EM=MC=x,∴BM=FE,易得△ ENF≌△ MNB,∴EN=MN= x,BN=FN= ,Rt△ BNM 中,由勾股定理得: BN2=BM2+MN 2,∴,x=2 或﹣ 2(舍),∴BC=2x=4 .故答案为: 4 .【谈论】此题观察了平行四边形的性质、等腰直角三角形的判断和性质、全等三角形的判断与性质、勾股定理;解决问题的要点是设未知数,利用方程思想解决问题.三、解答题(此中21-22 题各7 分, 23-24 题各8 分, 25-27 题各10 分,共计60分 )21.(7.00 分)先化简,再求代数式(1﹣)÷的值,此中a=4cos30 +3tan45° °.【解析】依据分式的运算法规即可求出答案,【解答】解:当 a=4cos30°+3tan45 °时,因此 a=2+3原式=?==【谈论】此题观察分式的运算,解题的要点是娴熟运用分式的运算法规,此题属于基础题型.22.(7.00 分)如图,方格纸中每个小正方形的边长均为1,线段 AB 的两个端点均在小正方形的极点上.( 1)在图中画出以线段 AB 为一边的矩形 ABCD(不是正方形),且点 C 和点 D 均在小正方形的极点上;(2)在图中画出以线段 AB 为一腰,底边长为 2 的等腰三角形 ABE,点 E 在小正方形的极点上,连接 CE,请直接写出线段 CE的长.【解析】(1)利用数形联合的思想解决问题即可;( 2)利用数形联合的思想解决问题即可;【解答】解:(1)以以以下图,矩形ABCD即为所求;( 2)如图△ ABE即为所求;【谈论】此题观察作图﹣应用与设计、等腰三角形的性质、勾股定理、矩形的判定和性质等知识,解题的要点是学会利用思想联合的思想解决问题,属于中考常考题型.23.(8.00 分)为使中华传统文化教育更拥有实效性,军宁中学张开以“我最喜欢的传统文化种类”为主题的检查活动,环绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜欢哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷检查,将检查结果整理后绘制成以以以下图的不圆满的统计图,请你依据图中供给的信息回答以下问题:(1)本次检查共抽取了多少名学生?(2)经过计算补全条形统计图;(3)若军宁中学共有 960 名学生,请你预计该中学最喜欢国画的学生有多少名?【解析】(1)由“诗词”的人数及其所占百分比可得总人数;(2)总人数减去其余种类的人数求得“书法”的人数即可补全条形图;(3)用总人数乘以样本中“国画”人数所占比率.【解答】解:(1)本次检查的学生总人数为24÷20%=120人;(2)“书法”类人数为 120﹣( 24+40+16+8)=32人,补全图形以下:( 3)预计该中学最喜欢国画的学生有960×=320 人.【谈论】此题观察的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同样的统计图中获得必需的信息是解决问题的要点.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反响部分占整体的百分比大小.24.( 8.00 分)已知:在四边形 ABCD中,对角线 AC、 BD 订交于点 E,且AC⊥ BD,作 BF⊥CD,垂足为点 F, BF与 AC 交于点 C,∠ BGE=∠ADE.(1)如图 1,求证: AD=CD;(2)如图 2,BH 是△ ABE的中线,若 AE=2DE, DE=EG,在不增添任何辅助线的状况下,请直接写出图 2 中四个三角形,使写出的每个三角形的面积都等于△ADE面积的 2 倍.【解析】(1)由 AC⊥BD、 BF⊥CD 知∠ ADE+∠DAE=∠CGF+∠GCF,依据∠ BGE=∠ADE=∠ CGF得出∠ DAE=∠GCF即可得;(2)设 DE=a,先得出 AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知 S△ADC=2a 2=2S△ADE,证△ ADE≌△ BGE得 BE=AE=2a,再分别求出 S△ABE、S△ACE、S△BHG,从而得出答案.【解答】解:(1)∵∠ BGE=∠ ADE,∠ BGE=∠ CGF,∴∠ ADE=∠CGF,∵AC⊥BD、BF⊥ CD,∴∠ ADE+∠DAE=∠CGF+∠GCF,∴∠ DAE=∠GCF,∴AD=CD;(2)设 DE=a,则 AE=2DE=2a,EG=DE=a,∴ S△ADE= AE?DE= ?2a?a=a2,∵BH是△ABE的中线,∴ AH=HE=a,∵AD=CD、 AC⊥BD,∴ CE=AE=2a,则 S△ADC= AC?DE= ?( 2a+2a)?a=2a2=2S△ADE;在△ ADE和△ BGE中,∵,∴△ ADE≌△ BGE(ASA),∴BE=AE=2a,∴S△ABE= AE?BE= ?(2a) ?2a=2a2,S△ACE=CE?BE= ?( 2a)?2a=2a2,S△BHG=HG?BE= ?(a+a)?2a=2a2,综上,面积等于△ ADE面积的 2 倍的三角形有△ ACD、△ ABE、△ BCE、△ BHG.【谈论】此题主要观察全等三角形的判断与性质,解题的要点是掌握等腰三角形的判断与性质及全等三角形的判断与性质.25.( 10.00 分)春平中学要为学校科技活动小组供给实验器械,计划购买 A 型、B 型两种型号的放大镜.若购买8 个 A 型放大镜和 5 个 B 型放大镜需用 220 元;若购买 4 个 A 型放大镜和 6 个 B 型放大镜需用 152 元.(1)求每个 A 型放大镜和每个 B 型放大镜各多少元;(2)春平中学决定购买 A 型放大镜和 B 型放大镜共 75 个,总开销不超出 1180元,那么最多可以购买多少个 A 型放大镜?【解析】(1)设每个 A 型放大镜和每个 B 型放大镜分别为 x 元, y 元,列出方程组即可解决问题;( 2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个 A 型放大镜和每个 B 型放大镜分别为x元,y 元,可得:,解得:,答:每个 A 型放大镜和每个 B 型放大镜分别为 20 元, 12 元;(2)设购买 A 型放大镜 m 个,依据题意可得: 20a+12×( 75﹣a)≤ 1180,解得: x≤35,答:最多可以购买 35 个 A 型放大镜.【谈论】此题观察二元一次方程组的应用、一元一次不等式的应用等知识,解题的要点是理解题意,列出方程组和不等式解答.26.( 10.00 分)已知:⊙ O 是正方形 ABCD的外接圆,点 E 在上,连接BE、DE,点 F 在上连接 BF、DF,BF与 DE、DA 分别交于点 G、点 H,且 DA 均分∠EDF.(1)如图 1,求证:∠ CBE=∠ DHG;(2)如图 2,在线段 AH 上取一点 N(点 N 不与点 A、点 H 重合),连接 BN 交DE于点 L,过点 H 作 HK∥BN 交 DE 于点 K,过点 E 作 EP⊥BN,垂足为点 P,当BP=HF时,求证: BE=HK;( 3)如图 3,在( 2)的条件下,当 3HF=2DF时,延长 EP 交⊙ O 于点 R,连接BR,若△ BER的面积与△ DHK的面积的差为,求线段 BR的长.【解析】(1)由正方形的四个角都为直角,获得两个角为直角,再利用同弧所对的圆周角相等及角均分线定义,等量代换即可得证;(2)如图 2,过 H 作 HM⊥KD,垂足为点 M,依据题意确立出△ BEP≌△ HKM,利用全等三角形对应边相等即可得证;(3)依据 3HF=2DF,设出 HF=2a,DF=3a,由角均分线定义获得一对角相等,从而获得正切值相等,表示出 DM=3a,利用正方形的性质获得△ BED≌△ DFB,获得 BE=DF=3a,过 H 作 HS⊥BD,垂足为 S,依据△ BER的面积与△ DHK的面积的差为,求出 a 的值,即可确立出 BR的长.【解答】(1)证明:如图 1,∵四边形 ABCD是正方形,∴∠ A=∠ ABC=90°,∵∠ F=∠A=90°,∴∠ F=∠ABC,∵DA均分∠EDF,∴∠ADE=∠ADF,∵∠ABE=∠ADE,∴∠ ABE=∠ADF,∵∠ CBE=∠ABC+∠ABE,∠ DHG=∠F+∠ADF,∴∠ CBE=∠DHG;( 2)如图 2,过 H 作 HM⊥KD,垂足为点 M,∵∠ F=90°,∵DA均分∠EDF,∴ HM=FH,∵FH=BP,∴HN=BP,∵KH∥BN,∴∠DKH=∠DLN,∴∠ELP=∠ DLN,∴∠DKH=∠ELP,∵∠BED=∠A=90°,∴∠BEP+∠LEP=90°,∵EP⊥BN,∴∠ BPE=∠EPL=90°,∴∠ LEP+∠ ELP=90°,∴∠ BEP=∠ELP=∠ DKH,∵HM⊥KD,∴∠ KMH=∠ BPE=90°,∴△ BEP≌△ HKM,∴BE=HK;(3)解:如图 3,连接 BD,∵ 3HF=2DF, BP=FH,∴设HF=2a,DF=3a,∴BP=FH=2a,由( 2)得: HM=BP,∠HMD=90°,∵∠ F=∠A=90°,∴ tan∠ HDM=tan∠FDH,∴==,∴DM=3a,∵四边形 ABCD为正方形,∴∠ ABD=∠ADB=45°,∵∠ ABF=∠ADF=∠ADE,∠ DBF=45°﹣∠ ABF,∠ BDE=45°﹣∠ ADE,∴∠ DBF=∠BDE,∵∠ BED=∠F,BD=BD,∴△ BED≌△ DFB,∴BE=FD=3a,过 H 作 HS⊥BD,垂足为 S,∵ tan∠ ABH=tan∠ ADE= = ,∴设 AB=3 m,AH=2 m,∴BD= AB=6m, DH=AD﹣ AH= m,∵ sin∠ADB= = ,∴HS=m,∴ DS==m,∴BS=BD﹣DS=5m,∴tan∠ BDE=tan∠ DBF= = ,∵∠ BDE=∠BRE,∴ tanBRE= =,∵BP=FH=2a,∴ RP=10a,在 ER上截取 ET=DK,连接 BT,由( 2)得:∠ BEP=∠HKD,∴△ BET≌△ HKD,∴∠ BTE=∠KDH,∴ tan∠ BTE=tan∠KDH,∴ = ,即 PT=3a,∴TR=RP﹣PT=7a,∵S△ BER﹣S△ DHK= ,∴ BP?ER﹣ HM?DK= ,∴BP?(ER﹣ DK)= BP?( ER﹣ET) = ,∴×2a× 7a= ,解得: a=(负值舍去),∴BP=1, PR=5,则BR==.【谈论】此题属于圆综合题,涉及的知识有:正方形的性质,角均分线性质,全等三角形的判断与性质,三角形的面积,锐角三角函数定义,娴熟掌握各自的性质是解此题的要点.27.( 10.00 分)已知:在平面直角坐标系中,点 O 为坐标原点,点 A 在负半轴上,直线 y=﹣ x+ 与 x 轴、 y 轴分别交于 B、C 两点,四边形x 轴的ABCD为菱形.(1)如图 1,求点 A 的坐标;(2)如图 2,连接 AC,点 P 为△ ACD内一点,连接 AP、BP,BP 与 AC 交于点 G,且∠ APB=60°,点 E 在线段 AP上,点 F 在线段 BP上,且 BF=AE,连接 AF、EF,22若∠ AFE=30°,求 AF +EF 的值;( 3)如图 3,在( 2)的条件下,当 PE=AE时,求点 P 的坐标.【解析】(1)利用勾股定理求出BC的长即可解决问题;(2)如图 2 中,连接 CE、CF.想方法证明△ CEF是等边三角形, AF⊥CF即可解决问题;(3)如图 3 中,延长 CE交 FA的延长线于 H,作 PQ⊥ AB 于 Q,PK⊥OC于 K,在 BP 设截取 BT=PA,连接 AT、CT、CF、PC.想方法证明△ APF 是等边三角形,AT⊥PB 即可解决问题;【解答】解:(1)如图 1 中,∵ y=﹣x+,∴B(,0),C(0,),∴BO= ,OC=,在 Rt△OBC中, BC==7,∵四边形 ABCD是菱形,∴AB=BC=7,∴OA=AB﹣ OB=7﹣ = ,∴A(﹣,0).( 2)如图 2 中,连接 CE、 CF.∵OA=OB, CO⊥AB,∴ AC=BC=7,∴ AB=BC=AC,∴△ABC是等边三角形,∴∠ ACB=60°,∵∠ AOB=60°,∴∠ APB=∠ACB,∵∠ PAG+∠APB=∠AGB=∠CBG+∠ACB,∴∠ PAG=∠CBG,∵ AE=BF,∴△ ACR≌△ BCF,∴ CE=CF,∠ ACE=∠ BCF,∴∠ ECF=∠ ACF+∠ACE=∠ACF+∠BCF=∠ACB=60°,∴△ CEF是等边三角形,∴∠ CFE=60°, EF=FC,∵∠ AFE=30°,∴∠ AFC=∠AFE+∠CFE=90°,222,在 Rt△ACF中, AF +CF=AC=4922∴ AF +EF.=49(3)如图 3 中,延长 CE交 FA的延长线于 H,作 PQ⊥ AB 于 Q,PK⊥OC于 K,在 BP 设截取 BT=PA,连接 AT、CT、 CF、PC.∵△ CEF是等边三角形,∴∠ CEF=60°, EC=CF,∵∠ AFE=30°,∠ CEF=∠H+∠ EFH,∴∠ H=∠ CEF﹣∠ EFH=30°,∴∠ H=∠ EFH,∴EH=EF,∴EC=EH,∵PE=AE,∠ PEC=∠ AEH,∴△ CPE≌△ HAE,∴∠ PCE=∠H,∴PC∥FH,∵∠ CAP=∠CBT,AC=BC,∴△ ACP≌△ BCT,∴CP=CT,∠ ACP=∠ BCT,∴∠ PCT=∠ACB=60°,∴△CPT是等边三角形,∴CT=PT,∠ CPT=∠CTP=60°,∵ CP∥FH,∴∠ HFP=∠CPT=60°,∵∠ APB=60°,∴△ APF是等边三角形,∴∠CFP=∠AFC﹣∠∠AFP=30°,∴∠ TCF=∠ CTP﹣∠ TFC=30°,∴∠ TCF=∠ TFC,∴TF=TC=TP,∴AT⊥PF,设 BF=m,则 AE=PE=m,∴PF=AP=2m, TF=TP=m,TB=2m,BP=3m,在 Rt△APT中, AT== m,在 Rt△ABT中,∵ AT2+TB2=AB2,∴( m)2+(2m)2=72,解得 m= 或﹣(舍弃),∴ BF= , AT= ,BP=3 , sin∠ ABT= =,∵ OK=PQ=BP?sin∠PBQ=3 ×=3 ,BQ==6,∴OQ=BQ﹣BO=6﹣ = ,∴P(﹣,3 )【谈论】此题观察一次函数综合题、等边三角形的判断和性质、全等三角形的判断和性质、勾股定理、菱形的性质等知识,解题的要点是学会增添常用辅助线,构造全等三角形解决问题,学会成立方程解决问题,属于中考压轴题.。
2006年黑龙江哈尔滨市初中升学考试数学试卷
2006年黑龙江哈尔滨市初中升学考试数学试卷第I 卷 选择题(共30分)一、选择题(每小题3分,共计30分) 1.下列各式正确的是( ) A .523)(x x =B .22))((b a a b b a -=-+C .23522=-y x y xD .65x x x =⋅2.若x 的相反数是3,| y |=5,则x +y 的值为( ) A .-8B .2C .8或-2D .-8或23.若点P (a ,b )在第四象限,则点Q (-a ,b -1)在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列各命题正确的是( ) A .812,是同类二次根式 B .梯形同一底上的两个角相等C .过一点有且只有一条直线与已知直线平行D .两条直线被第三条直线所截,同位角相等5.已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x ,则x 的取值范围是( ) A .250<<x B .25≥xC .25>xD .100<<x6.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形B .矩形C .正五边形D .等腰梯形7.下列命题中,正确命题的个数是( ) ①垂直于弦的直径平分这条弦 ②平行四边形对角互补③有理数与数轴上的点是一一对应的 ④相交两圆的公共弦垂直平分两圆的连心线 A .0个B .1个C .2个D .3个8.已知圆O 1与圆O 2半径的长是方程01272=+-x x 的两根,且2121=O O ,则圆O 1与圆O 2的位置关系是( )A .相交B .内切C .内含D .外切9.如图,PB 为圆O 的切线,B 为切点,连结PO 交圆O 于点A ,PA=2,PO=5,则PB 的长为( ) A .4B .10C .62D .3410.在平面直角坐标系内,直线343+=x y 与两坐标轴交于A 、B 两点,点O 为坐标原点,若在该坐标平面内有以点P (不与点A 、B 、O 重合)为顶点的直角三角形与Rt △ABO 全等,且这个以点P 为顶点的直角三角形与Rt △ABO 有一条公共边,则所有符合条件的P 点个数为( ) A .9个B .7个C .5个D .3个第II 卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11.据新华网消息,去年我国城镇固定资产投资为75096亿元,用科学记数法表示约为______________________。
(中考精品卷)黑龙江省哈尔滨市中考数学真题(解析版)
哈尔滨市2022年初中升学考试数学试卷一、选择题(每小题3分,共计30分) 1.16的相反数是( ) A. 16 B. 6- C. 6 D. 16- 【答案】D【解析】【分析】根据相反数的定义选出正确选项. 【详解】解:16的相反数是16-. 故选:D .【点睛】本题考查相反数的定义,解题关键是掌握相反数的定义.2. 下列运算一定正确的是( )A. ()22346a b a b =B. 22434b b b +=C. ()246a a =D. 339a a a ⋅=【答案】A【解析】【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.【详解】解:A 、根据积的乘方运算、幂的乘方运算法则可知()22346a b a b =,该选项符合题意;B 、根据合并同类项运算可知2224344b b b b +=≠,该选项不符合题意;C 、根据幂的乘方运算可知()244286⨯==≠a a a a ,该选项不符合题意;D 、根据同底数幂的乘法运算可知333369a a a a a +⋅==≠,该选项不符合题意; 故选:A .【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算等知识点,熟练掌握相关运算法则是解决问题的关键. 3. 下列图形中既是轴对称图形又是中心对称图形是( )的A. B. C. D.【答案】B【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选B.【点睛】本题主要考查了中心对称图形和轴对称图形的识别,解题的关键在于能够熟练掌握二者的定义:4. 六个大小相同的正方体搭成的几何体如图所示,其左视图是()A. B. C. D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看下面一层是两个小正方形,上面一层左边一个小正方形, 故选:D .【点睛】本题主要考查左视图,掌握三视图是解题的关键.5. 抛物线22(9)3y x =+-的顶点坐标是( )A. (9,3)-B. (9,3)--C. (9,3)D. (9,3)-【答案】B【解析】【分析】根据二次函数的顶点式2()y a x h k =-+可得顶点坐标为(,)h k 即可得到结果.【详解】∵二次函数解析式为22(9)3y x =+- ,∴顶点坐标为(9,3)--;故选:B .【点睛】本题主要考查了二次函数顶点式的顶点坐标的求解,准确理解是解题的关键. 6. 方程233x x =-的解为( ) A. 3x = B. 9x =- C. 9x = D. 3x =-【答案】C【解析】【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】解:233x x=- 去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.7. 如图,,AD BC 是O 的直径,点P 在BC 的延长线上,PA 与O 相切于点A ,连接BD ,若40P ∠=︒,则ADB ∠的度数为( )A. 65︒B. 60︒C. 50︒D. 25︒ 【答案】A【解析】【分析】由切线性质得出90PAO ∠=︒,根据三角形的内角和是180︒、对顶角相等求出50BOD AOP ∠=∠=︒,即可得出答案;【详解】解: PA 与⊙O 相切于点A ,AD 是⊙O 的直径,∴OA PA ⊥,∴90PAO ∠=︒,40P ∠=︒ ,∴50AOP ∠=︒,∴50BOD AOP ∠=∠=︒,OB OD = ,∴OBD ODB ∠=∠, ∴()118050652ADB ∠=⨯︒-︒=︒, 故选:A .【点睛】本题考查圆内求角的度数,涉及知识点:切线的性质、对顶角相等、等腰三角形的性质、三角形的内角和是180︒,解题关键根据切线性质推出90PAO ∠=︒. 8. 某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x ,根据随意,所列方程正确的是( )A. ()2150196x -=B. 150(1)96x -=C. 2150(1)96x -=D. 150(12)96x -=【解析】【分析】结合题意分析:第一次降价后的价格=原价×(1-降低的百分率),第二次降价后的价格=第一次降价后的价格×(1-降低的百分率),把相关数值代入即可.【详解】解:设平均每次降价的百分率为x ,根据题意可列方程150(1-x )2=96, 故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程的知识,解题的关键是能够分别表示出两次降价后的售价.9. 如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为( )A. 32B. 4C. 92D. 6【答案】C【解析】【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD∴ABE CDE ∽ ∴AE BE EC DE= ∵1,2,3AE EC DE ===, ∴32BE =∵BD BE ED =+ ∴92BD = 故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长. 10. 一辆汽车油箱中剩余的油量(L)y 与已行驶的路程(km)x 的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L 时,那么该汽车已行驶的路程为A. 150kmB. 165kmC. 125kmD. 350km【答案】A【解析】 【分析】根据题意所述,设函数解析式为y =kx +b ,将(0,50)、(500,0)代入即可得出函数关系式.【详解】解:设函数解析式为y =kx +b ,将(0,50)、(500,0)代入得505000b k b =⎧⎨+=⎩解得:50110b k =⎧⎪⎨=-⎪⎩∴函数解析式为15010y x =-+ 当y =35时,代入解析式得:x =150故选A【点睛】本题考查了一次函数的简单应用,解答本题时要注意细心审题,利用自变量与因变量的关系进行解答.第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11. 风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量效有253000兆瓦,用科学记数法表示为___________兆瓦.【答案】52.5310⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.分别确定a 和n 的值即可.【详解】5253000 2.5310=⨯故答案为52.5310⨯【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定a 和n 的值是解题的关键.12. 在函数53x y x =+中,自变量x 的取值范围是___________. 【答案】35x ≠-【解析】【分析】根据分式中分母不能等于零,列出不等式530x +≠,计算出自变量x 的范围即可.【详解】根据题意得:530x +≠∴53x ≠- ∴35x ≠- 故答案为:35x ≠-【点睛】本题考查了函数自变量的取值范围,分式有意义的条件,分母不为零,解答本题的关键是列出不等式并正确求解.13. +的结果是___________.【答案】【解析】【分析】先化简二次根式,再合并同类二次根式即可.+=故答案为:【点睛】本题考查了二次根式的加减,把二次根式化为最简二次根式是解题的关键. 14. 把多项式29mn m -分解因式的结果是______.【答案】()()33m n n +-【解析】【分析】先提公因式m 再按照平方差公式分解因式即可得到答案.【详解】解:29mn m -()29m n =-()()=+33.m n n -故答案为:()()+33.m n n -【点睛】本题考查的是提公因式与公式法分解因式的综合应用,掌握提公因式与平方差公式分解因式是解题的关键.15. 不等式组340,421x x +≥⎧⎨-<-⎩的解集是___________. 【答案】52x >【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】340421x x +≥⎧⎨-<-⎩①②由①得34x ≥-, 解得43x ≥-; 由②得25x >, 解得52x >; ∴不等式组的解集为52x >. 故答案为:52x >. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键. 16. 已知反比例函数6y x =-图象经过点()4,a ,则a 的值为___________. 【答案】32-【解析】【分析】把点的坐标代入反比例函数解析式,求出a 的值即可. 的【详解】解:把点()4,a 代入6y x=-得: 6342a =-=-. 故答案为:32-. 【点睛】本题考查了反比例函数图像上点的坐标特征,明确函数图像经过一个点,这个点的坐标就符合函数解析式是解题关键.17. 在ABC 中,AD 为边BC 上的高,30ABC ∠=︒,20CAD ∠=︒,则BAC ∠是___________度.【答案】40或80##80或40【解析】【分析】根据题意,由于ABC 类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.【详解】解:根据题意,分三种情况讨论:①高在三角形内部,如图所示:在ABD ∆中,AD 为边BC 上的高,30ABC ∠=︒,90903060BAD ABC ∴∠=︒-∠=︒-︒=︒,20CAD ∠=︒,602080BAC BAD CAD ∴∠=∠+∠=︒+︒=︒;②高在三角形边上,如图所示:可知0CAD ∠=︒,20CAD ∠=︒,故此种情况不存在,舍弃;③高在三角形外部,如图所示:在ABD ∆中,AD 为边BC 上的高,30ABC ∠=︒,90903060BAD ABC ∴∠=︒-∠=︒-︒=︒,20CAD ∠=︒,602040BAC BAD CAD ∴∠=∠-∠=︒-︒=︒;综上所述:80BAC ∠=︒或40︒,故答案:40或80.【点睛】本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.18. 同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是_____. 【答案】12【解析】【分析】用列表法与树状图法求解即可.【详解】解:用列表法列举出总共4种情况,分别为:正正、正反、反正、反反, 其中一枚硬币正面向上,一枚硬币反面向上的情况为:正反、反正 所以概率是2142=, 故答案是12.【点睛】本题考查了求随机事件的概率, 用到的知识点为: 概率=所求情况数与总情况数之比. 得到所求的情况数是解决本题的关键.19. 一个扇形的面积为27πcm ,半径为6cm ,则此扇形的圆心角是___________度.【答案】70【解析】【分析】设扇形的圆心角是n ︒ ,根据扇形的面积公式即可得到一个关于n的方程,解方为程即可求解.【详解】解:设扇形的圆心角是n ︒,根据扇形的面积公式得:26π7π360n = 解得n =70.故答案:70.【点睛】此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用. 20. 如图,菱形ABCD 的对角线,AC BD 相交于点O ,点E 在OB 上,连接AE ,点F 为CD 的中点,连接OF ,若AE BE =,3OE =,4OA =,则线段OF 的长为___________.【答案】【解析】【分析】先根据菱形的性质找到Rt △AOE 和Rt △AOB ,然后利用勾股定理计算出菱形的边长BC 的长,再根据中位线性质,求出OF 的长.【详解】已知菱形ABCD ,对角线互相垂直平分,∴AC ⊥BD ,在Rt △AOE 中,∵OE =3,OA =4,∴根据勾股定理得5AE ==, ∵AE =BE ,∴8OB AE OE =+=,在Rt △AOB中AB ==,即菱形的边长为∵点F 为CD 的中点,点O 为DB 中点,∴12OF BC ==.故答案为【点睛】本题考查了菱形的性质、勾股定理、中位线的判定与性质;熟练掌握菱形性质,并能结合勾股定理、中位线的相关知识点灵活运用是解题的关键.是三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21. 先化简,再求代数式21321211x x x x x -⎛⎫-÷ ⎪--+-⎝⎭的值,其中2cos 451x =︒+.【答案】11x - 【解析】 【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得. 【详解】解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦ 2(1)(3)1(1)2x x x x ----=⋅- 221(1)2x x -=⋅- 11x =-∵211x =+=+∴原式===. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则以及特殊角三角函数值.22. 如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和线段EF 的端点均在小正方形的顶点上.(1)在方格纸中面出ADC ,使ADC 与ABC 关于直线AC 对称(点D 在小正方形的顶点上);(2)在方格纸中画出以线段EF 为一边的平行四边形EFGH (点G ,点H 均在小正方形的顶点上),且平行四边形EFGH 的面积为4.连接DH ,请直接写出线段DH 的长.【答案】(1)见解析(2)图见解析,5=DH 【解析】【分析】(1)根据轴对称的性质可得△ADC ;(2)利用平行四边形的性质即可画出图形,利用勾股定理可得DH 的长.【小问1详解】如图【小问2详解】如图,5DH ==【点睛】本题考查了作图,轴对称变换,平行四边形的性质,勾股定理等知识,准确画出图形是解题的关键.23. 民海中学开展以“我最喜欢健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:的(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.【答案】(1)80 (2)作图见解析(3)480【解析】【分析】(1)利用操舞类的人数以及操舞类学生所占调查人数的比例,可求出抽取的总人数.(2)根据总人数以及其他类学生的人数可计算出武术类学生人数,进而将统计图补充完整即可.(3)利用样本估计总体,先算出样本中喜欢球类学生所占的比例,再乘以总人数即可.【小问1详解】÷=(名)解:2025%80∴在这次调查中,一共抽取了80名学生.【小问2详解】---=(名)解:8016242020补全统计图如图【小问3详解】 解:24160048080⨯=(名) ∴估计该中学最喜欢球类的学生共有480名.【点睛】本题主要考查了条形统计图以及用样本估计总体,能够利用统计图获取重要信息是解决问题的关键.24. 已知矩形ABCD 的对角线,AC BD 相交于点O ,点E 是边AD 上一点,连接,,BE CE OE ,且BE CE =.(1)如图1,求证:BEO CEO △≌△;(2)如图2,设BE 与AC 相交于点F ,CE 与BD 相交于点H ,过点D 作AC 的平行线交BE 的延长线于点G ,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(AEF 除外),使写出的每个三角形的面积都与AEF 的面积相等.【答案】(1)见解析(2)DEG △、DEH △、BFO V 、CHO【解析】【分析】(1)利用SSS 证明两个三角形全等即可;(2)先证明Rt △ABE ≌Rt △DCE 得到AE =DE ,则=AOE DOE S S △△,根据三线合一定理证明∴OE ⊥AD , 推出AB OE ∥,得到=AOE BOE S S △,即可证明=BFO AEF S S △△由BEO CEO △≌△,得到∠OBF =∠OCH ,=BOE COE S S △△,证明△BOF ≌△COH ,即可证明=BFO CHO AEF S S S =△△△,则=OEF OEH S S △△,即可推出DEH AEF S S =△△,最后证明AEF DEG ≌,即可得到=AEF DEG S S △△;【小问1详解】证明:∵四边形ABCD 是矩形,∴AC 与BD 相等且互相平分,∴OB OC =,∵BE CE =,OE OE =,∴BEO CEO △≌△(SSS );【小问2详解】解:∵四边形ABCD 是矩形,∴AB =CD ,∠BAE =∠CDE =90°,OA =OD =OB =OC ,又∵BE =CE ,∴Rt △ABE ≌Rt △DCE (HL )∴AE =DE ,∴=AOE DOE S S △△,∵OA =OD ,AE =DE ,∴OE ⊥AD ,∴AB OE ∥,∴=AOE BOE S S △,∴=AOE EOF BOE EOF S S S S --△△△△,∴=BFO AEF S S △△;∵BEO CEO △≌△,∴∠OBF =∠OCH ,=BOE COE S S △△,又∵∠BOF =∠COH ,OB =OC ,∴△BOF ≌△COH (ASA ),∴=BFO CHO AEF S S S =△△△,∴BOE BOF COE COH S S S S -=-△△△△,∴=OEF OEH S S △△,∴=AOE OEF DOE OEH S S S S --△△△△,∴DEH AEF S S =△△;∵AC DG ∥,∴∠AFE =∠DGE ,∠EAF =∠EDG ,又∵AE =DE ,∴()AEF DEG AAS △≌△,∴=AEF DEG S S △△;综上所述,DEG △、DEH △、BFO V 、CHO 这4个三角形的面积与△AEF 的面积相等.【点睛】本题主要考查了全等三角形的性质与判定,三线合一定理,矩形的性质,平行线的性质与判定等等,熟知全等三角形的性质与判定条件是解题的关键.25. 绍云中学计划为绘画小组购买某种品牌的A 、B 两种型号的颜料,若购买1盒A 种型号的颜料和2盒B 种型号的颜料需用56元;若购买2盒A 种型号的颜料和1盒B 种型号的颜料需用64元.(1)求每盒A 种型号的颜料和每盒B 种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A 种型号的颜料?【答案】(1)每盒A 种型号的颜料24元,每盒B 种型号的颜料16元(2)该中学最多可以购买90盒A 种型号的颜料【解析】【分析】(1)设每盒A 种型号的颜料x 元,每盒B 种型号的颜料y 元,根据题意,可列出关于x ,y 的二元一次方程组,解之即可;(2)设该中学可以购买a 盒A 种型号的颜料,则可以购买(200)a -盒B 种型号的颜料,根据总费用不超过3920元,列出不等式求解即可.【小问1详解】解:设每盒A 种型号的颜料x 元,每盒B 种型号的颜料y 元.根据题意得256264x y x y +=⎧⎨+=⎩解得2416x y =⎧⎨=⎩∴每盒A 种型号的颜料24元,每盒B 种型号的颜料16元.【小问2详解】解:设该中学可以购买a 盒A 种型号的颜料,根据题意得2416(200)3920a a +-≤解得90a ≤∴该中学最多可以购买90盒A 种型号的颜料.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,关键是(1)根据题意找出对应关系,正确列出二元一次方程组;(2)根据数量关系正确列出一元一次不等式.26. 已知CH 是O 的直径,点A ,点B 是O 上的两个点,连接,OA OB ,点D ,点E 分别是半径,OA OB 的中点,连接,,CD CE BH ,且2AOC CHB ∠=∠.(1)如图1,求证:ODC OEC ∠=∠;(2)如图2,延长CE 交BH 于点F ,若CD OA ⊥,求证:FC FH =;(3)如图3,在(2)的条件下,点G 是 BH上一点,连接,,,AG BG HG OF ,若:5:3AG BG =,2HG =,求OF 的长.【答案】(1)见解析(2)见解析(3)OF =【解析】【分析】(1)根据SAS 证明COD COE ≅ 即可得到结论;(2)证明H ECO ∠=∠即可得出结论;(3)先证明OF CH ⊥,连接AH ,证明AH BH =,设5AG x =,3BG x =,在AG 上取点M ,使得AM BG =,连接MH ,证明MHG △为等边三角形,得2MG HG ==,根据AG AM MG =+可求出1x =,得5AG =,3BG =,过点H 作HN MG ⊥于点N ,求出HB =2HF OF =,根据3HB OF ==【小问1详解】如图1.∵点D ,点E 分别是半径,OA OB 的中点∴12OD OA =,12OE OB =∵OA OB =,∴OD OE =∵2BOC CHB ∠=∠,2AOC CHB ∠=∠ ∴AOC BOC ∠=∠∵OC OC =∴COD COE ≅ ,∴CDO CEO ∠=∠;【小问2详解】如图2.∵CD OA ⊥,∴90CDO ∠=︒由(1)得90CEO CDO ∠=∠=︒, ∴1sin 2OE OCE OC ∠== ∴30OCE ∠=︒,∴9060COE OCE ∠=︒-∠=︒ ∵11603022H BOC ︒∠=∠=⨯=︒ ∴H ECO ∠=∠,∴FC FH =【小问3详解】如图3.∵CO OH =,∴OF CH ⊥∴90FOH =︒∠连接AH .∵60AOC BOC ∠=∠=︒ ∴120AOH BOH ∠=∠=︒,∴AH BH =,60AGH ∠=︒∵:5:3AG BG =设5AG x =,∴3BG x =在AG 上取点M ,使得AM BG =,连接MH ∵HAM HBG ∠=∠,∴HAM HBG △≌△∴MH GH =,∴MHG △为等边三角形∴2MG HG ==∵AG AM MG =+,∴532x x =+∴1x =,∴5AG =∴3BG AM ==,过点H 作HN MG ⊥于点N112122MN GM ==⨯=,sin 60HN HG =⋅︒= ∴4AN MN AM =+=,∴HB HA ===∵90FOH =︒∠,30OHF ∠=︒, ∴60OFH ∠=︒∵OB OH =,∴30BHO OBH ∠=∠=︒,∴30FOB OBF ∠=∠=︒∴OF BF =,在Rt OFH 中,30OHF ∠=︒,∴2HF OF =∴3HB BF HF OF =+==,∴OF =. 【点睛】本题主要考查了圆周角定理,等边三角形的判定和性质,全等三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形等知识,正确作出辅助线构造全等三角形是解答本题的关键.27. 在平面直角坐标系中,点O 为坐标原点,抛物线2y ax b =+经过点521,28A ⎛⎫ ⎪⎝⎭,点13,28B ⎛⎫- ⎪⎝⎭,与y 轴交于点C .(1)求a ,b 的值;(2)如图1,点D 在该抛物线上,点D 的横坐标为2-,过点D 向y 轴作垂线,垂足为点E .点P 为y 轴负半轴上的一个动点,连接DP 、设点P 的纵坐标为t ,DEP 的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)如图2,在(2)的条件下,连接OA ,点F 在OA 上,过点F 向y 轴作垂线,垂足为点H ,连接DF 交y 轴于点G ,点G 为DF 的中点,过点A 作y 轴的平行线与过点P 所作的x 轴的平行线相交于点N ,连接CN ,PB ,延长PB 交AN 于点M ,点R 在PM 上,连接RN ,若35CP GE =,2PMN PDE CNR ∠+∠=∠,求直线RN 的解析式.【答案】(1)1212a b ⎧=⎪⎪⎨⎪=-⎪⎩(2)32S t =-+(3)31124y x =-+ 【解析】 【分析】(1)将521,28A ⎛⎫ ⎪⎝⎭,13,28B ⎛⎫- ⎪⎝⎭代入抛物线2y a b =+中,进行计算即可得; (2)由(1)得32,2D ⎛⎫- ⎪⎝⎭,根据DE y ⊥轴得2DE =,30,2E ⎛⎫ ⎪⎝⎭,根据点P 的纵坐标为t ,得32PE t =-,即可得; (3)过点C 作CK CN ⊥,交NR 的延长线于点K ,过点K 作KT y ⊥轴于点T ,根据二次函数的性质得10,2C ⎛⎫- ⎪⎝⎭,则12OC =,根据FH y ⊥轴,DE y ⊥轴得90FHG DEG ∠=∠=︒,根据点G 为DF 的中点得DG FG =,根据AAS 得FHG DEG △≌△,得2HF ED ==,12HG EG HE ==,再运用待定系数法求得直线OA 的解析式为2120y x =,得出21(2,)10F ,可得13210GE HE ==,再由35CP GE =得出(0,1)P ,5(,1)2N -,再运用待定系数法求得直线BP 的解析式为514y x =-,进而推出PN DE MN EP=,证得PMN DPE △∽△,进而得出90PMN PDE ∠+∠=︒,由2PMN PDE CNR ∠+∠=∠得45CNR ∠=︒,用AAS 可证明CKT NCP ≌△△,求得 1(,2)2K ,设直线RN 的解析式为:y ex f =+,再运用待定系数法即可得. 【小问1详解】解:∵抛物线2y a b =+经过521,28A ⎛⎫ ⎪⎝⎭,13,28B ⎛⎫- ⎪⎝⎭, ∴2125843184a b a b ⎧=+⎪⎪⎨⎪-=+⎪⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩, 【小问2详解】解:由(1)得21122y x =-,点D 的横坐标为2- ∴点D 纵坐标为32∴32,2D ⎛⎫- ⎪⎝⎭, ∵DE y ⊥轴∴2DE =,30,2E ⎛⎫ ⎪⎝⎭∵点P 的纵坐标为t , ∴32PE t =-, ∴113322222S DE PE t t ⎛⎫=⋅=⨯⨯-=-+ ⎪⎝⎭; 【小问3详解】解:如图所示,过点C 作CK CN ⊥,交NR 的延长线于点K ,过点K 作KT y ⊥轴于点T ,∵21122y x =-,当0x =时,12y =-, ∴10,2C ⎛⎫-⎪⎝⎭, ∴12OC =, ∵FH y ⊥轴,DE y ⊥轴,∴90FHG DEG ∠=∠=︒,∵点G 为DF 的中点,∴DG FG =,在FHG △和DEG △中,FHG DEG HGF DEG FG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴FHG DEG △≌△(AAS ),∴2HF ED ==,12HG EG HE ==, 设直线OA 的解析式为:y kx =,将点521(,)28A 代入得, 52128k =, 解得,2120k =, ∴直线OA 的解析式:2120y x =, 当x =2时,212122010y =⨯=, ∴21(2,)10F ,21(0,)20H , ∴21331025HE =-=, ∴113322510GE HE ==⨯=, ∵35CP GE =, ∴553133102CP GE ==⨯=, ∴(0,1)P ,∵AN y ∥轴,PN x ∥轴, ∴5(,1)2N -, ∴52PN =,∵3(0,2E , ∴35(1)22EP =--=, 设直线BP 的解析式为y mx n =+,则13281m n n ⎧+=-⎪⎨⎪=-⎩, 解得,541m n ⎧=⎪⎨⎪=-⎩,∴直线BP 的解析式为:514y x =-, 当52x =时,55171428y =⨯-=, ∴点M 的坐标为517(,28, ∴1725(1)88MN =--=, ∵5422558PN MN ==,24552DE EP ==, ∴PN DE MN EP=, ∵90PNM DEP ∠=∠=︒,∴PMN DPE △∽△,∴PMN DPE ∠=∠,∵90DPE PDE ∠+∠=︒,∴90PMN PDE ∠+∠=︒,∵2PMN PDE CNR ∠+∠=∠∴45CNR ∠=︒,∵CK CN ⊥,∴90NCK ∠=︒,∴CNK △是等腰直角三角形,∴CK =CN ,∵90CTK NPC ∠=∠=︒,∴90KCT CKT ∠+∠=︒,∵90NCP KCT ∠+∠=︒,∴CKT NCP ∠=∠,在CKT △和NCP 中,CTK NPC CKT NCP CK NC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴CKT NCP ≌△△(AAS ), ∴52CT PN ==,12KT CP ==, ∴2OT CT OC =-=, ∴1(,2)2K ,设直线RN 的解析式为:y ex f =+,将点1(,2)2K ,5(,1)2N -得, 122512e f e f ⎧+=⎪⎪⎨⎪+=-⎪⎩, 解得,32114e f ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线RN 的解析式为:31124y x =-+. 【点睛】本题考查了二次函数,全等三角形的判定与性质,相似三角形的判定于性质,等腰直角三角形的判定与性质,解题的关键是掌握这些知识点,能够添加辅助线构造相似三角形或全等三角形。
初一找规律经典题型(含部分问题详解)
图1 图2 图3初一数学规律题应用知识汇总“有比较才有鉴别”。
通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律。
找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。
揭示的规律,常常包含着事物的序列号。
所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
初中数学考试中,经常出现数列的找规律题,下面就此类题的解题方法进行探索:一、基本方法——看增幅(一)如增幅相等(实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n 个数可以表示为:a1+(n-1)b ,其中a 为数列的第一位数,b 为增幅,(n-1)b 为第一位数到第n 位的总增幅。
然后再简化代数式a+(n-1)b 。
例:4、10、16、22、28……,求第n 位数。
分析:第二位数起,每位数都比前一位数增加6,增幅都是6,所以,第n 位数是:4+(n-1)6=6n -2例1、已知一个面积为S 的等边三角形,现将其各边n (n 为大于2的整数)等分,并以相邻等分点为顶点向外作小等边三角形(如上图所示).(1)当n = 5时,共向外作出了 个小等边三角形(2)当n = k 时,共向外作出了 个小等边三角形(用含k 的式子表示).例2、如图,在图1中,互不重叠的三角形共有4个,在图2中,互不重叠的三角形共有7个,在图3中,互不重叠的三角形共有10个,……,则在第n 个图形中,互不重叠的三角形共有 个(用含n 的代数式表示)。
(二)如增幅不相等,但是增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差n =3 n =4 n =5 ……数列)。
如增幅分别为3、5、7、9,说明增幅以同等幅度增加。
此种数列第n位的数也有一种通用求法。
基本思路是:1、求出数列的第n-1位到第n位的增幅;2、求出第1位到第第n位的总增幅;3、数列的第1位数加上总增幅即是第n位数。
此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察的方法求出,方法就简单的多了。
2022年黑龙江省哈尔滨市中考数学真题(解析版)
A.
B.
C.
D.
【答案】D 【解析】 【分析】根据从左边看得到的图形是左视图,可得答案. 【详解】解:从左边看下面一层是两个小正方形,上面一层左边一个小正方形, 故选:D.
【点睛】本题主要ቤተ መጻሕፍቲ ባይዱ查左视图,掌握三视图是解题的关键.
5. 抛物线 y 2( x 9)2 3 的顶点坐标是( )
A. (9, 3)
B、根据合并同类项运算可知 3b2 b2 4b2 4b4 ,该选项不符合题意;
C、根据幂的乘方运算可知 a4 2 a42 a8 a6 ,该选项不符合题意;
D、根据同底数幂的乘法运算可知 a3 a3 a33 a6 a9 ,该选项不符合题意;
故选:A. 【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法 运算等知识点,熟练掌握相关运算法则是解决问题的关键. 3. 下列图形中既是轴对称图形又是中心对称图形的是( )
解得:x=9, 经检验:x=9 是原分式方程的解, 故选:C. 【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增 根.
7. 如图,AD, BC 是 O 的直径,点 P 在 BC 的延长线上,PA 与 O 相切于点 A,连接 BD ,若 P 40 , 则 ADB 的度数为( )
【详解】解:设平均每次降价的百分率为 x,根据题意可列方程 150(1-x)2=96, 故选:C. 【点睛】本题考查了由实际问题抽象出一元二次方程的知识,解题的关键是能够分别表示出两次降价后的 售价.
9. 如图, AB∥CD, AC, BD 相交于点 E, AE 1, EC 2, DE 3 ,则 BD 的长为( )
哈尔滨市 2022 年初中升学考试
哈尔滨市2013年初中升学考试数学试卷(word版含答案)
哈尔滨市2013年初中升学考试数学试卷考生须知:1. 本试卷满分为120分,考试时间为120分钟.2. 答题前,考生先将自己的“姓名”、“考号”、“考场”、“座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内.3. 请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题纸上答题无效.4. 选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚.5. 保持卡面整洁,不要折叠,不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀.第Ⅰ卷 选择题(共30分)一、选择题(每小题3分,共30分) 1.31-的倒数是( ) A.3 B .-3 C. 31-D. 31 2.下列计算正确的是( )A.523a aa=+ B. 623a aa =⋅ C. ()632a a= D. 2222a a =⎪⎪⎭⎫⎝⎛3.下列图形中,既是轴对称图形又是中心对称图形的是( )4.如图所示的几何体是由一些正方体组成的立体图形,则这个几何体的俯视图是( )等边三角形平行四边形正五边形正六边形A B CD A B C D(第4题图)5.把抛物线()21+=x y 向下平移2个单位,再向右平移1个单位,所得到的抛物线是( )A.()222++=x y B. ()222-+=x y C. 22+=x y D. 22-=x y6.反比例函数xky 21-=的力偶经过点(-2,3),则k 的值为( )A.6 B .-6 C.27D. 27-7.如图,在□ABCD 中,AD=2AB ,CE 平分∠BCD 交AD 边于点E ,且AE=3,则AB 的长为( ) A.4 B.3 C.25D. 2 8.在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( ) A.161 B. 81 C. 41 D. 219.如图,在⊿ABC 中,M 、N 分别是边AB 、AC 的中点,则⊿AMN 的面积与四边形MBCN 的面积比为( ) A.21 B. 31C. 41 D. 32 10.梅凯种子公司以一定价格销售“黄金1号”,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示,下列四种说法:①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一个次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( )A.1个B.2个C.3个D.4个EDCBA(第7题图)NMCBA(第9题图)x /千克4010(第10题图)第Ⅱ卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11.把98000用科学记数法表示为 . 12.在函数3+=x x y 中,自变量x 的取值范围是 .13.计算:2327-= . 14.不等式组⎩⎨⎧≥+-13213x x 的解集是 .15.把多项式224ay ax -分解因式的结果是 .16.一个圆锥的侧面积是36π㎝2,母线长是12㎝,则这个圆锥的底面直径是 ㎝. 17.如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为2.5,CD=4,则弦AC 的长为 .18.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为 . 19.在⊿ABC 中,AB=22,BC=1,∠ABC=45°,以AB 为一边作等腰直角三角形ABD ,使∠ABD=90°,连接CD ,则线段CD 的长为 .20.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE ⊥AC 交AB 于点E ,若BC=4,⊿AOE 的面积为5,则sin ∠BOE 的值为 .三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分) 21.(本题6分) 先化简,再求代数式1221122+-+÷--+a a a a a a 的值,其中a=6tan30°-2.B (第17题图) O ED CB A (第20题图)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为对称轴的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C (2)请直接写出四边形ABCD 的周长.23.(本题6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理生绘制成如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题:(1) 在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2) 如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?NMB A(第22题图)(第23题图)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O.已知AB=8米,设抛物线的解析式为42-=ax y .(1) 求a 的值;(2) 点C (-1,m )是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD 、CB 、BD ,求⊿BCD 的面积.25.(本题8分)如图,在⊿ABC 中,以BC 为直径作半圆O ,交AB 于点D ,交AC 于点E ,AD=AE. (1) 求证:AB=AC ;(2) 若BD=4,BO=52,求AD 的长.(第24题图) OA(第25题图)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同. (1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙的工作量的2倍,那么甲队至少再单独施工多少天?27.(本题10分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以OA 为边作等边三角形OAB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C ,动点P 从O 点出发沿OC 向C 点运动,动点Q 从B 点出发沿BA 向A 点运动,P 、Q 两点同时出发,速度均为1个单位/秒,设运动时间为t 秒. (1) 求线段BC 的长;(2) 连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F ,设线段EF 的长m ,求m与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3) 在(2)的条件下,将⊿BEF 绕点B 逆时针旋转得到⊿BE ′F ′,使点E 的对应点E ′落在线段AB上,点F 的对应点是F ′,E ′F ′交x 轴于点G ,连接PF 、QG ,当t 为何值是,2B Q -PF=33QG ?(第27题图) (第27题备用图)已知:⊿ABD 和⊿CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 于点G. (1) 如图1,求证:∠EAF=∠ABD ;(2) 如图2,当AB=AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF=21∠BAF ,AF=32AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.FEDCB A(第28题图)图1G FNMEDCBA图2。
黑龙江省哈尔滨市122中学2025届高三(最后冲刺)数学试卷含解析
黑龙江省哈尔滨市122中学2025届高三(最后冲刺)数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若函数()xf x e =的图象上两点M ,N 关于直线y x =的对称点在()2g x ax =-的图象上,则a 的取值范围是( )A .,2e ⎛⎫-∞ ⎪⎝⎭B .(,)e -∞C .0,2e ⎛⎫ ⎪⎝⎭ D .(0,)e2.设12,F F 分别是双线2221(0)x y a a-=>的左、右焦点,O 为坐标原点,以12F F 为直径的圆与该双曲线的两条渐近线分别交于,A B 两点(,A B 位于y 轴右侧),且四边形2OAF B 为菱形,则该双曲线的渐近线方程为( ) A .0x y ±=B .30x y ±=C .30x y ±=D .30x y ±=3.双曲线的离心率为,则其渐近线方程为 A . B . C . D . 4.等腰直角三角形BCD 与等边三角形ABD 中,90C ∠=︒,6BD =,现将ABD △沿BD 折起,则当直线AD 与平面BCD 所成角为45︒时,直线AC 与平面ABD 所成角的正弦值为( )A .33B .22C .32D .2335.双曲线1C :22221x y a b-=(0a >,0b >)的一个焦点为(c,0)F (0c >),且双曲线1C 的两条渐近线与圆2C :222()4c x c y -+=均相切,则双曲线1C 的渐近线方程为( )A .30x y ±=B .30x y ±=C .50x y ±=D .50x y ±= 6.集合{}2|30A x x x =-≤,(){}|lg 2B x y x ==-,则A B ⋂=( )A .{}|02x x ≤<B .{}|13x x ≤<C .{}|23x x <≤D .{}|02x x <≤ 7.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装( )(附:2 1.414,3 1.732,5 2.236≈≈≈)A .22个B .24个C .26个D .28个8.已知实数x ,y 满足2212x y +≤,则2222267x y x y x +-++-+的最小值等于( ) A .625- B .627- C .63- D .962-9.已知抛物线C :24y x =,过焦点F 的直线l 与抛物线C 交于A ,B 两点(A 在x 轴上方),且满足3AF BF =,则直线l 的斜率为( )A .1B .3C .2D .3 10.如图,圆锥底面半径为2,体积为223π,AB 、CD 是底面圆O 的两条互相垂直的直径,E 是母线PB 的中点,已知过CD 与E 的平面与圆锥侧面的交线是以E 为顶点的抛物线的一部分,则该抛物线的焦点到圆锥顶点P 的距离等于( )A .12B .1C 10D 5 11.函数()2ln x f x x x=-的图象大致为( )A .B .C .D .12.设向量a ,b 满足2=a ,1b =,,60a b =,则a tb +的取值范围是A .)2,⎡+∞⎣B .)3,⎡+∞⎣ C .2,6⎡⎤⎣⎦ D .3,6⎡⎤⎣⎦二、填空题:本题共4小题,每小题5分,共20分。
2013年黑龙江哈尔滨中考数学试题及答案(解析版)
哈尔滨市2013年初中升学考试数学试卷一、选择题(每小题3分,共计30分)1.(2013哈尔滨,1,3分)-13的倒数是( ).A .3B .-3C .-13D .13【答案】B . 2.(2013哈尔滨,2,3分)下列计算正确的是( ).A .a 3+a 2=a 3B .a 3·a 2=a 6C .(a 2)3=a 6D .(a2)2=a 22【答案】 C . 3.(2013哈尔滨,3,3分)下列图形中,既是轴对称图形又是中心对称图形的是( ).A .B .C .D . 【答案】 D . 4.(2013哈尔滨,4,3分)如图所示的几何体是由一些正方体组合而成的立体图形,则这个几何体的).【答案】 A .5.(2013哈尔滨,5,3分)把抛物线y =(x +1)2向下平移2个单位,再向右平移1个单位,所得到的抛物线是( ).A .y =(x +2)2+2B .y =(x +2)2-2C .y =x 2+2D .y =x 2-2 【答案】 D .6.(2013哈尔滨,6,3分)反比例函数y =1-2kx的图象经过点(-2,3),则k 的值为( ).A .6B .-6C .72D .-72【答案】 C . 7.(2013哈尔滨,7,3分)如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为( ).A .4B .3C .52D .2(第7题图) 【答案】 B . 8.(2013哈尔滨,8,3分)在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回.再随机地摸出一个球.则两次都摸到白球的概率为( ).A .116B .18C .14D .12【答案】 C . 9.(2013哈尔滨,9,3分)如图,在△ABC 中,M 、N 分别是边AB 、AC 的中点,则△AMN 的面积与四边形MBCN 的面积比为( ). A .12 B .13 C .14 D .23【答案】 B . 10.(2013哈尔滨,10,3分)梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含10千克)的种子,超过10千克的那部分种子的价格将打折,并依此得到付款金额y (单位:元)与一次购买种子数量x (单位:千克)之间的函数关系如图所示.下列四种说法: ①一次购买种子数量不超过10千克时,销售价格为5元/千克; ②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过10千克的那部分种子的价格打五折; ④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱. 其中正确的个数是( ).A .1个B .2个C .3个D .4个【答案】 D .二、填空题(每小题3分,共计30分) 11.(2013哈尔滨,11,3分)把98000用科学记数法表示为_______________.【答案】9.8×104.12.(2013哈尔滨,12,3分)在函数y =xx +3中,自变量x 的取值范围是_______________. 【答案】x ≠3.13.(2013哈尔滨,13,3分)计算:27-32=__________________. 【答案】523.14.(2013哈尔滨,14,3分)不等式组⎩⎨⎧3x -1<2,x +3≥1的解集是______________.【答案】-2≤x <1.15.(2013哈尔滨,15,3分)把多项式4ax 2-ay 2分解因式的结果是_________________. 【答案】a (2x +y )(2x -y );16.(2013哈尔滨,16,3分)一个圆锥的侧面积是36πcm 2,母线长是12cm ,则这个圆锥的底面直径是___________cm . 【答案】6. 17.(2013哈尔滨,17,3分)如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD =4,则弦AC 的长为__________.【答案】25. 18.(2013哈尔滨,18,3分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为___________. 【答案】20%. 19.(2013哈尔滨,19,3分)在△ABC 中,AB =22,BC =1,∠ABC =45º,以AB 为一边作等腰直角三角形ABD ,使∠ABD =90º,连接CD ,则线段CD 的长为__________. 【答案】5或13. 20.(2013哈尔滨,20,3分)如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过O 作OE ⊥AC 交AB 于E ,若BC =4,△AOE 的面积为5,则sin∠BOE 的值为________.EODC B A(第20题图)【答案】35.三、解答题(其中21~24题各6分,25~26题各8分,27~28题各10分,共计60分)21.(2013哈尔滨,21,6分)先化简,再求代数式a a +2-1a -1÷a +2a 2-2a +1的值,其中a =6tan30º-2.【答案】解:原式=a a +2-1a -1·(a -1)2a +2=a a +2-a -1a +2=1a +2,∵a =6tan30º-2=3×33-2=23-2, ∴原式=1a +2=1 23-2+2=1 23=36. 22.(2013哈尔滨,22,6分)如图,在每个小正方形的边长均为1个单位长度的方格纸中,有线段AB 和直线MN ,点A 、B 、M 、N 均在小正方形的顶点上.(1)在方格纸中画四边形ABCD (四边形的各顶点均在小正方形的顶点上),使四边形ABCD 是以直线MN 为的轴对称图形,点A 的对称点为点D ,点B 的对称点为点C ; (2)请直接写出四边形ABCD 的周长.【答案】:(1)如图:(2)25+5 2 23.(2013哈尔滨,23,6分)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机制取部分学生进行问卷调查,将调查结果整理后绘成如图所示的不完整的条形统计图,其中最喜欢新闻类电视节目的人数占被抽取人数的10%,请你根据以上信息回答下列问题:(1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图;(2)如果全校共有1200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?【答案】解:(1)(11+18+16)÷(1-10%)=50(名),50-11-18-16=5(名),∴在这次调查中,最喜欢新闻类电视节目的学生有5名,补全条形图如图所示:(2)1200×1150=264(名)∴估计全校学生中最喜欢体育类电视节目的学生有264名. 24.(2013哈尔滨,24,6分)某水渠的横截面呈抛物线形,水面的宽为AB (单位:米),现以AB 所在直线为x 轴,以抛物线的对称轴为y 轴建立如图所示的平面直角坐标系,设坐标原点为O ,已知AB =8米,设抛物线解析式为y =ax 2-4. (1)求a 的值;(2)点C (-1,m )是抛物线上一点,点C 关于原点O 的对称点为点D ,连接CD 、BC 、BD ,求△BCD 的面积.【答案】解:(1)∵AB =8,由抛物线的对称性可知OB =4,∴B (4,0),0=16a -4,∴a =14.(2)过点C 作CE ⊥AB 于E ,过点D 作DF ⊥AB 于F ,∵a =14,∴y =14x 2-4.令x =-1,∴m =14×(-1)2-4=-154,∴C (-1, -154).∵点C 关于原点对称点为D ,∴D (1,154),∴CE =DF =154,S △BCD =S △BOD +S △BOC =12OB ·DF +12OB ·CE =12×4×154+12×4×154=15.∴△BCD 的面积为15平方米.25.(2013哈尔滨,25,8分)如图,在△ABC 中,以BC 为直径作半圆O ,交AB 于点D ,交AC 于点E ,AD =AE .(1)求证:AB =AC ;(2)若BD =4,BO =25,求AD 的长.【答案】解:(1)证明:连接CD 、BE ,∵BC 为半圆O 的直径,∴∠BDC =∠ECB =90º,∴∠ADC =∠AEB =90º,又∵AD =AE ,∠A =∠A ,∴△ADC ≌△AEB ,∴AB =A C .(2)方法一、连接OD ,∵OD =OB ,∴∠OBD =∠ODB ,∵AB =AC ,∴∠OBD =∠ACB ,∴∠ODB =∠ACB ,又∵∠OBD =∠ABC ,∴△OBD ∽△ABC ,∴BD BC =BO AB ,,∵OB =25,∴BC =25,又BD =4,∴445=25AB ,AB =10,∴AD =AB -BD =6.方法二、由(1)知AB =AC ,∵AD =AE ,∴CD =BD =4,∵OB =25,∴BC =45,在Rt △BCE 中,BE =(45)2-42=8.在Rt △ABE 中,(AD +4)2-AE 2=BE 2,∴(AD +4)2-AD 2=64,解得AD =6. 26.(2013哈尔滨,26,8分)甲、乙两个工程队共同承担一项筑路任务,甲队单独施工完成此项任务比乙队单独施工完成此项任务多用10天,且甲队单独施工45天和乙队单独施工30天的工作量相同. (1)甲、乙两队单独完成此项任务各需多少天?(2)若甲、乙两队共同工作了3天后,乙队因设备检修停止施工,由甲队单独继续施工,为了不影响工程进度,甲队的工作效率提高到原来的2倍,要使甲队总的工作量不少于乙队的工作量的2倍,那么甲队至少再单独施工多少天?【答案】(1)解:设乙队单独完成此项任务需x 天,则甲队单独完成此项任务需(x +10)天,根据题意得 45x +10=30x,解得x =20, 经检验得x =20是原方程的解,∴x +10=30(天).∴队单独完成此项任务需30天,则甲队单独完成此项任务需20天.(2)设甲队再单独完成此项任务需a 天,330+2a 30≥2×320,a ≥3,∴甲队至少再单独施工3天. 27.(2013哈尔滨,27,10分)如图,在平面直角坐标系中,点O 为坐标原点,A 点的坐标为(3,0),以OA 为边作等边三角形)AB ,点B 在第一象限,过点B 作AB 的垂线交x 轴于点C .动点P 从O 点出发沿OC 向C 点运动,动点Q 从B 点出发沿BA 向A 点运动,P 、Q 两点同时出发,速度均为1个单位/秒,设运动时间为t 秒. (1)求线段BC 的长;(2)连接PQ 交线段OB 于点E ,过点E 作x 轴的平行线交线段BC 于点F ,设线段EF 的长为m ,求m 与t 之间的函数关系式,并直接写出自变量t 的取值范围;(3)在(2)的条件下,将△BEF 绕点B 逆时针旋转得到△BE ′F ′,使点E 的对应点E ′落在线段AB 上,点F 的对应点F ′,E ′F ′交x 轴于点G ,连接PF 、QG ,当t 为何值时,2BQ -PF =33QG ?【答案】(1)解:如图1,∵△AOB 为等边三角形,∴∠BAC =∠AOB =60º,∵BC ⊥AB ,∴∠ABC =90º,∴∠ACB =30º,∠OBC =30º,∴∠ACB =∠OBC ,∴OC =OB =AB =OA =3,∴AC =6,∴BC =32AC =33.(2)解:如图1,过点Q 作QN ∥OB 交x 轴于点N ,∴∠QNA =∠BOA =60º=∠QAN ,∴QN =QA ,∴△AQN 为等边三角形,∴NQ =NA =AQ =3-t ,∴ON =3-(3-t )=t ,∴PN =t +t =2t ,∵OE ∥QN ,∴△POE ∽△PNQ ,∴OE QN =OP PN ,∴OE3-t=12,OE =32-12t ,∵EF ∥x 轴,∴∠BFE =∠BCO =∠FBE =30º,∴EF =BE ,∴m =BE =OB -OE =12t +32(0<t <3).(3)如图2,∵∠BE ′F ′=∠BEF =180º-∠EBF -∠EFB =120º,∴∠AE ′G =60º=∠E ′AG ,∴GE ′=GA ,∴△AE ′G 为等边三角形.∵QE ′=BE ′-BQ =m -t =12t +32-t =32-12t ,∴GE ′=GA =AE ′=AB -BE ′=32-12t =QE ′.∴∠1=∠2,∠3=∠4.∵∠1+∠2+∠3+∠4=180º,∴∠2+∠3=90º,即∠QGA =90º,∴QG =3AG =323-123t ,∵EF ∥OC ,∴BF BC =BE OB ,∴BF 33=m 3,∴BF =3m =323+123t ,∵CF =BC -BF =323-123t ,CP =CO -OP =3-t ,∴CF CB =323-123t 33=3-t 6=CP AC .∵∠FCP =∠BCA ,∴△FCP ∽△BCA ,∴PF AB =CP AC ,∴PF =3-t 2,∵2BQ -BF =33QG ,∴2t -3-t 2=33×(323-123t ),∴t =1.∴当t =1时,2BQ -PF =33QG .28.(2013哈尔滨,28,10分) 已知:△ABD 和△CBD 关于直线BD 对称(点A 的对称点是点C ),点E 、F 分别是线段BC 和线段BD 上的点,且点F 在线段EC 的垂直平分线上,连接AF 、AE ,AE 交BD 点点G . (1)如图1,求证:∠EAF =∠ABD ;(2)如图2,当AB =AD 时,M 是线段AG 上一点,连接BM 、ED 、MF ,MF 的延长线交ED 于点N ,∠MBF =12∠BAF ,AF =23AD ,试探究线段FM 和FN 之间的数量关系,并证明你的结论.【答案】(1)证明:如图1,连接FE 、FC ,∵点F 在线段EC 的垂直平分线上,∴EF =FC ,∴∠1=∠2.∵△ABD 和△CBD 关于直线BD 对称,∴AB =CB ,∠4=∠3,BF =BF ,∴ABF ≌△CBF ,∴∠BAF =∠2,FA =FC ,∴FE =FA ,∠1=∠BAF ,∴∠5=∠6.∵∠1+∠BEF =180º,∴∠BAF +BEF =180º,∵∠BAF +∠BEF +∠AFE +∠ABE =360º,∴∠AFE +∠ABE =180º,又∵∠AFE +∠5+∠6=180º,∴∠5+∠6=∠3+∠4,∴∠5=∠4,即∠EAF =∠AB D .(2)FM =72FN .证明:如图2,由(1)可知∠EAF =∠ABD ,又∵∠AFB =∠GFA ,∴△AFG ∽△BFA ,∴∠AGF =∠BAF .又∵∠MBF =12∠BAF ,∴∠MBF =12∠AGF .又∵∠AGF =∠MBG +∠BMG ,∴∠MBG =∠BMG ,∴BG =MG .∵AB =AD ,∴∠ADB =∠ABD =∠EAF ,又∵∠FGA =∠AGD ,∴△AGF ∽△DGA ,∴GF AG =AG GD =AF AD ,∵AF =23AD ,∴GF AG =AG GD =23,设GF =2a ,AG =3a ,∴CD =92a ,∴FD =52a ,∵∠CBD =∠ABD ,∠ABD =∠ADB ,∴∠CBD =∠ADB ,∴BE ∥AD ,∴BG DG =EGAG,∴EG BG =AG DG =23,设EG =2k ,∴BG =MG =3k ,过点F 作FQ ∥ED 交AE 于Q ,∴GQ QE =FG FD =2a 52-a =45,∴GQ =45QE ,∴GQ =49EG =89k ,∴QE =109k ,MQ =3k +89k =359k ,∵FQ ∥ED ,∴MF FN =MQ QE =72,∴FM =72FN .。
2023年9月黑龙江省哈尔滨市小升初数学高频必考应用题模拟三卷含答案解析
2023年9月黑龙江省哈尔滨市小升初数学高频必考应用题模拟三卷含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。
一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。
)1.实验小学组织学生参加数学竞赛,结果有50人获奖,是参赛人数的5/8,参加数学竞赛的有多少人?2.同学们观看科普电影,六年级去了458人,比五年级的2倍少2人.五年级去了多少人?(用方程解)3.一辆载重3000千克的卡车,装了48桶豆油,每桶豆油连桶重59千克.估算一下,这辆卡车超载了吗?4.商店运来54箱苹果汁和46箱橘子汁,每箱饮料24瓶,一共有多少瓶?每箱饮料36元,付3000元够吗?5.小丁丁看一本353页的故事书。
他每天看55页,还剩下23页没有看完。
他已经看了多少天?6.某车间男职工人数是女职工人数的3/4,因支援抗震救灾调走男职工33人,这时男、女职工人数的比是4:9.这个车间有女职工多少人?7.小红看一本书,第一天看了53页,第二天比第一天少看了8页,第三天看了46页,他平均每天看多少页?8.两辆汽车同时从甲、乙两城出发相向而行,快车每小时行57千米,慢车每小时行43千米,5小时后相遇,则甲、乙两城相距多少千米?9.一辆大客车和一辆小轿车从甲地同时出发,沿同一条公路开往乙地.大客车每小时行驶x千米,小轿车每小时行驶y千米.2.5小时后,小轿车到达乙地.(1)用含有字母的式子表示这时大客车离乙地还有多少千米.(2)当x=80,y=110时,大客车离乙地还有多少千米?10.做一个没有盖的长方体玻璃缸,长60厘米,宽60厘米,高40厘米,共需要玻璃多少平方厘米?合多少平方米?11.甲、乙两辆汽车同时从东西两城相对开出,已知甲车每小时行60千米,经过3小时后,甲车已驶过中点30千米,这时甲车与乙车还相距18千米.问此时乙车相距中点多少千米?此时乙车已行多少千米?每小时行多少千米?12.甲、乙两车间,甲车间有工人135人,如果从甲车间调出2/9,那么甲车间剩余的工人相当于乙车间人数的84%,乙车间有工人多少人?13.甲数比乙数多29.7,如果把乙数的小数点向右移动两位,两数相等,乙数原来是多少?14.一块平行四边形土地,底长450米,高120米.这块地今年共收稻谷32.4吨.平均每公顷产稻谷多少吨?15.两台收割机要收割1536平方米小麦,第一台每小时收割32平方米,第二台每小时收割64平方米,如果每天工作8小时,收割完这块地需要多少天?16.全班39人去公园划船,一共租用了9只船.每只大船坐5人,每只小船坐3人.租用的大船和小船各有几只?17.一辆汽车以每小时90千米速度从甲地8:00出发,于第二天下午2时到达乙地,甲乙两地相距多少千米?18.国庆节挂气球,按照“红、黄、蓝、白、绿”的顺序挂,一共挂了50个气球,其中第32个气球是什么颜色,第50个是什么颜色.19.一块底和高分别为88米和43米的平行四边形的土地,如果平均每平方米可种植小树苗3棵,那么共可种植多少棵小树苗?20.园林工人在一条320米长的小路边植树,起点和终点各栽1棵,一共栽了9棵树。
黑龙江省哈尔滨市七年级数学上学期期中试卷(含解析)
黑龙江省哈尔滨市南岗区ff 联盟七年级数学上学期期中试卷一.选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是( )A .2x ﹣6B .x ﹣1=0C .2x +y =25D .=12.x =2是下列方程( )的解.A .2x =6B .(x ﹣3)(x +2)=0C .x 2=3D .3x ﹣6=03.下列等式变形中,结果不正确的是( )A .如果a =b ,那么a +2b =3bB .如果a =b ,那么a ﹣m =b ﹣mC .如果a =b ,那么=D .如果3x =6y ﹣1,那么x =2y ﹣14.如图,若m ∥n ,∠1=105°,则∠2=( )A .55°B .60°C .65°D .75°5.如图,图中∠1与∠2是同位角的是( )A .(2)(3)B .(2)(3)(4)C .(1)(2)(4)D .(3)(4)6.如图,由AD ∥BC 可以得到的是( )A .∠1=∠2B .∠3+∠4=90°C .∠DAB +∠ABC =180°D .∠ABC +∠BCD =180°7.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个B.5个C.4个D.2个8.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25 B.3x+20=4x﹣25C.3x﹣20=4x﹣25 D.3x+20=4x+259.下列说法中①过一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③两直线平行,同旁内角互补;④直线外一点到已知直线的垂线段就是点到直线的距离,其中正确的有()个A.4个B.3个C.2个D.1个10.下面的程序计算,若开始输入的值为正数,最后输出的结果为131,则满足条件的x的不同值最多有()A.0个B.1个C.2个D.3个二、填空题(每題3分,共30分)11.关于x的方程ax+1=4的解是x=1,则a=.12.已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3=.13.若2x3﹣2k+2k=41是关于x的一元一次方程,则k=.14.如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为.15.若关于x的方程3x+2=0与5x+k=20的解相同,则k的值为.16.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE 的度数是.17.已知小名比小丽大3岁,一天小名对小丽说“再过十五年,咱俩年龄和的2倍就是110岁了”那么现在小名年龄是岁.18.如图,已知DE∥BC,∠ABC=100°,点F在射线BA上,且∠EDF=120°,则∠DFB的度数为.19.某轮船在松花江沿岸的两城市之间航行,已知顺流航行要6小时由A市到达B市,逆流航行要10小时由B市到达A市,则江面上的一片树叶由A市漂到B市需要小时.20.如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为度(正方形的每个内角为90°)三、解答題(21題10分,22、23题各7分,24、25题各8分,26、27题各10分,共计60分21.解方程(1)2x+5=3x﹣3(2)=2﹣22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?24.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2()∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥()∴∠3=∠1()∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)25.如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.26.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?27.已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB 的度数.黑龙江省哈尔滨市南岗区ff联盟七年级(上)期中数学试卷参考答案与试题解析一.选择题(每题3分,共30分)1.下列四个式子中,是一元一次方程的是()A.2x﹣6 B.x﹣1=0 C.2x+y=25 D.=1【分析】根据一元一次方程的定义对各选项进行逐一分析即可.【解答】解:A、不是等式,故不是方程,故本选项错误;B、符合一元一次方程的定义,故本选项正确;C、含有两个未知数,是二元一次方程,故本选项错误;D、分母中含有未知数,是分式方程,故本选项错误.故选:B.【点评】本题考查的是一元一次方程的定义,即只含有一个未知数(元),且未知数的次数是1,这样的整式方程叫一元一次方程.2.x=2是下列方程()的解.A.2x=6 B.(x﹣3)(x+2)=0C.x2=3 D.3x﹣6=0【分析】方程的解就是能够使方程左右两边相等的未知数的值,把x=2代入各个方程进行进行检验,看能否使方程的左右两边相等.【解答】解:将x=2代入各个方程得:A.2x=2×2=4≠6,所以,A错误;B.(x﹣3)(x+2)=(2﹣3)(2+2)=﹣4≠0,所以,B错误;C.x2=22=4≠3,所以,C错误;D.3x﹣6=3×2﹣6=0,所以,D正确;故选:D.【点评】此题考查的是一元一次方程的解,只要把x的值代入看方程左边的值是否与右边的值相等,即可知道x是否是方程的解.3.下列等式变形中,结果不正确的是()A.如果a=b,那么a+2b=3bB.如果a=b,那么a﹣m=b﹣mC.如果a=b,那么=D.如果3x=6y﹣1,那么x=2y﹣1【分析】根据等式的性质判断即可.【解答】解:A、∵a=b,∴a+2b=b+2b,∴a+2b=3b,正确,故本选项错误;B、∵a=b,∴a﹣m=b﹣m,正确,故本选项错误;C、∵a=b,∴ac2=bc2,正确,故本选项错误;D、∵3x=6y﹣1,∴两边都除以3得:x=2y﹣,错误,故本选项正确;故选:D.【点评】本题考查了等式的性质的应用,注意:等式的基本性质1:等式两边同时加上(或减去)同一个代数式,所得结果仍是等式;等式的基本性质2:等式两边同时乘同一个数(或除以一个不为0的数),所得结果仍是等式.4.如图,若m∥n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°【分析】由m∥n,根据“两直线平行,同旁内角互补”得到∠1+∠2=180°,然后把∠1=105°代入计算即可得到∠2的度数.【解答】解:∵m∥n,∴∠1+∠2=180°(两直线平行,同旁内角互补),而∠1=105°,∴∠2=180°﹣105°=75°.故选:D.【点评】本题考查了平行线的性质:两直线平行,同旁内角互补.5.如图,图中∠1与∠2是同位角的是()A.(2)(3)B.(2)(3)(4)C.(1)(2)(4) D.(3)(4)【分析】根据同位角的定义作答.【解答】解:(1)(2)(4)中,∠1与∠2是同位角;图(3)中,∠1与∠2不是同位角,因为这两个角的边所在的直线没有一条公共边.故选:C.【点评】两条直线被第三条直线所截,在截线的同侧,在两条被截直线的同旁的两个角是同位角.如果两个角是同位角,那么它们一定有一条边在同一条直线上.6.如图,由AD∥BC可以得到的是()A.∠1=∠2 B.∠3+∠4=90°C.∠DAB+∠ABC=180°D.∠ABC+∠BCD=180°【分析】依据两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等,即可得出结论.【解答】解:∵AD∥BC,∴∠3=∠4,∠DAB+∠ABC=180°,故选:C.【点评】此题考查了平行线的性质:两直线平行,内错角相等,同旁内角互补.解题的关键是找到截线与被截线.7.如图,AB∥EF,EF∥CD,EG∥BD,则图中与∠1相等的角(除∠1外)共有()A.6个B.5个C.4个D.2个【分析】根据直线平行关系找出∠1的同位角和内错角,或与∠1相等的角的同位角和内错角,然后计算个数即可.【解答】解:如图,与∠1相等的角有:∠2、∠3、∠4、∠5、∠6共5个.故选:B.【点评】本题主要考查根据平行线的性质,∠1的同位角和内错角就是相等的角,要注意与∠1相等的角的同位角和内错角也是要找的角.8.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x人,则下列方程正确的是()A.3x﹣20=24x+25 B.3x+20=4x﹣25C.3x﹣20=4x﹣25 D.3x+20=4x+25【分析】直接利用总本书相等进而得出等式.【解答】解:设该校七年一班有学生x人,根据题意可得:3x+20=4x﹣25.故选:B.【点评】此题主要考查了由实际问题抽象出一元一次方程,正确得出等式是解题关键.9.下列说法中①过一点有且只有一条直线与已知直线平行;②在同一平面内,过一点有且只有一条直线与已知直线垂直;③两直线平行,同旁内角互补;④直线外一点到已知直线的垂线段就是点到直线的距离,其中正确的有()个A.4个B.3个C.2个D.1个【分析】根据平行公理,平行线的性质,点到直线的距离判断即可.【解答】解:①在同一平面内,过一点有且只有一条直线与已知直线平行;错误;②在同一平面内,过一点有且只有一条直线与已知直线垂直;正确;③两直线平行,同旁内角互补;正确;④直线外一点到已知直线的垂线段的长度就是点到直线的距离,错误;故选:C.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.下面的程序计算,若开始输入的值为正数,最后输出的结果为131,则满足条件的x的不同值最多有()A.0个B.1个C.2个D.3个【分析】由题中的程序框图确定出满足题意x的值即可.【解答】解:若5x+1=131,即5x=130,解得:x=26,若5x+1=26,即5x=25,解得:x=5,若5x+1=5,即x=,则满足条件的x的值是,5,26.故选:D.【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.二、填空题(每題3分,共30分)11.关于x的方程ax+1=4的解是x=1,则a= 3 .【分析】将x=1代入方程得到关于a的方程,解之可得.【解答】解:根据题意,将x=1代入ax+1=4,得:a+1=4,解得:a=3,故答案为:3.【点评】本题主要考查一元一次方程的解,解题的关键是熟练掌握方程的解的定义.12.已知∠1与∠2是对顶角,∠2与∠3是邻补角,则∠1+∠3=180°.【分析】根据对顶角、邻补角的性质,可得∠1=∠2,∠1+∠3=180°,则∠2+∠3=∠1+∠3=180°.【解答】解:∵∠1与∠2是对顶角,∴∠1=∠2,又∵∠2与∠3是邻补角,∴∠1+∠3=180°,等角代换得∠2+∠3=180°,故答案为:180°.【点评】本题主要考查对顶角的性质以及邻补角的定义,熟记对顶角和邻补角的性质是解题的关键.13.若2x3﹣2k+2k=41是关于x的一元一次方程,则k= 1 .【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵2x3﹣2k+2k=41是关于x的一元一次方程,∴3﹣2k=1,解得:k=1.故答案为:1.【点评】此题主要考查了一元一次方程的定义,正确把握次数为1是解题关键.14.如图所示,∠1=100°,∠3=110°,∠2=100°,则∠4的度数为70°.【分析】依据∠1=∠2,即可得出AB∥CD,进而得到∠3+∠4=180°,再根据∠3=110°,即可得到∠4=70°.【解答】解:∵∠1=100°,∠2=100°,∴∠1=∠2,∴AB∥CD,∴∠3+∠4=180°,又∵∠3=110°,∴∠4=70°,故答案为:70°.【点评】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.15.若关于x的方程3x+2=0与5x+k=20的解相同,则k的值为.【分析】本题可先将3x+2=0的x解出来,然后代入5x+k=20中可得k的值.【解答】解:∵3x+2=0∴x=将x=代入5x+k=20中解得:k=【点评】本题解决的关键是能够求解关于x的方程,要能根据同解的定义建立方程.16.如图,直线AB与直线CD相交于点O,E是∠AOD内一点,已知OE⊥AB,∠BOD=45°,则∠COE 的度数是135°.【分析】先根据对顶角相等求出∠AOC的度数,根据垂直的定义求出∠AOE,然后相加即可得解.【解答】解:∵OE⊥AB,∴∠AOE=90°,∵∠BOD=45°,∴∠AOC=∠BOD=45°,∴∠COE=∠AOE+∠AOC=90°+45°=135°.故答案为:135°.【点评】本题考查了对顶角相等的性质,垂直的定义,根据图形找出角的关系代入数据进行计算即可,比较简单.17.已知小名比小丽大3岁,一天小名对小丽说“再过十五年,咱俩年龄和的2倍就是110岁了”那么现在小名年龄是14 岁.【分析】根据题意,可以列出相应的方程,求出现在小名的年龄.【解答】解:设现在小名年龄是x岁,[(x+15)+(x﹣3+15)]×2=110,解得,x=14,故答案为:14.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.18.如图,已知DE∥BC,∠ABC=100°,点F在射线BA上,且∠EDF=120°,则∠DFB的度数为20°或140°.【分析】分两种情况讨论,画出图形,分别依据平行线的性质,即可得到∠DFB的度数.【解答】解:分两种情况:①如图,延长ED交AB于G,∵DE∥BC,∴∠FGD=∠B=100°,又∵∠EDF=120°,∴∠DFB=120°﹣100°=20°;②如图,过F作FG∥BC,∵DE∥BC,∴FG∥DE,∴∠D+∠DFG=180°,∠B+∠BFG=180°,又∵∠ABC=100°,∠EDF=120°,∴∠BFG=80°,∠DFG=60°,∴∠DFB=140°,故答案为:20°或140°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,同旁内角互补.19.某轮船在松花江沿岸的两城市之间航行,已知顺流航行要6小时由A市到达B市,逆流航行要10小时由B市到达A市,则江面上的一片树叶由A市漂到B市需要30 小时.【分析】根据题意可知从A市到B市是船在静水中的速度和水流的速度之和,从B市到A市是船在静水中的速度和水流的速度之差,从而可以得到相应的方程,求出江面上的一片树叶由A市漂到B市需要的时间.【解答】解:设轮A市到达B市的路程为S,江面上的一片树叶由A市漂到B市需要h小时,=,解得,h=30故答案为:30.【点评】本题考查一元一次方程的应用,解答本题的关键是明确题意,列出相应的方程,利用方程的知识解答.20.如图,有两个正方形夹在AB与CD中,且AB∥CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为70 度(正方形的每个内角为90°)【分析】如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.利用四边形内角和36°,求出∠HMF,再根据∠KME=∠MKG+∠MEH,求出∠MKG即可解决问题;【解答】解:如图,延长KH交EF的延长线于M,作MG⊥AB于G,交CD于H.∵∠GHM=∠GFM=90°,∴∠HMF=180°﹣150°=30°,∵∠HMF=∠MKG+∠MEH,∠MEH=10°,∴∠MKG=20°,∴∠1=90°﹣20°=70°,故答案为70.【点评】本题利用正方形的四个角都是直角,直角的邻补角也是直角,四边形的内角和定理和两直线平行,内错角相等的性质,延长正方形的边构造四边形是解题的关键.三、解答題(21題10分,22、23题各7分,24、25题各8分,26、27题各10分,共计60分21.解方程(1)2x+5=3x﹣3(2)=2﹣【分析】(1)依据解一元一次方程的一般步骤:移项、合并同类项、系数化为1计算可得;(2)依据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1计算可得.【解答】解:(1)2x﹣3x=﹣3﹣5,﹣x=﹣8,x=8;(2)3(3y﹣2)=24﹣4(2y﹣1),9y﹣6=24﹣8y+4,9y+8y=24+4+6,17y=34,y=2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.22.已知x=3是方程4(x﹣1)﹣mx+6=8的解,求m2+2m﹣3的值.【分析】将x的值代入方程得出关于m的方程,解之求得m的值,再代入计算可得.【解答】解:根据题意,将x=3代入方程4(x﹣1)mx+6=8,得:4×(3﹣1)﹣3m+6=8,解得:m=2,则m2+2m﹣3=22+2×2﹣3=4+4﹣3=5.【点评】本题主要考查一元一次方程的解,解题的关键是掌握方程的解的定义.23.某车间有技术工人85人,平均每天每人可加工甲种部件16个或乙种部件10个.两个甲种部件和三个乙种部件配成一套,问加工甲乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?【分析】两个等量关系为:加工的甲部件的人数+加工的乙部件的人数=85;3×16×加工的甲部件的人数=2×加工的乙部件的人数×10.【解答】解:设加工的甲部件的有x人,加工的乙部件的有y人.,由②得:12x﹣5y=0③,①×5+③得:5x+5y+12x﹣5y=425,即17x=425,解得x=25,把x=25代入①解得y=60,所以答:加工的甲部件的有25人,加工的乙部件的有60人.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.需注意:两个甲种部件和三个乙种部件配成一套的等量关系为:3×甲种部件的个数=2×乙种部件的个数.24.如图,BD是∠ABC的平分线,ED∥BC,∠4=∠5,则EF也是∠AED的平分线.完成下列推理过程:证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)【分析】依据角平分线的定义以及平行线的性质,即可得到∠1=∠5,再根据∠4=∠5,即可得出EF∥BD,进而得出∠3=∠4,即可得到EF是∠AED的平分线.【解答】证明:∵BD是∠ABC的平分线(已知)∴∠1=∠2(角平分线定义)∵ED∥BC(已知)∴∠5=∠2(两直线平行,内错角相等)∴∠1=∠5(等量代换)∵∠4=∠5(已知)∴EF∥BD(内错角相等,两直线平行)∴∠3=∠1(两直线平行,同位角相等)∴∠3=∠4(等量代换)∴EF是∠AED的平分线(角平分线定义)故答案为:两直线平行,内错角相等;BD;内错角相等,两直线平行;两直线平行,同位角相等.【点评】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.25.如图,E为DF上的点,B为AC上的点,DF∥AC,∠C=∠D,求证:∠2=∠1.【分析】依据平行线的性质,即可得到∠C=∠CEF,依据∠CEF=∠D,即可得到BD∥CE,进而得出∠3=∠4,再根据对顶角相等,即可得到∠2=∠1.【解答】证明:∵DF∥AC,∴∠C=∠CEF,又∵∠C=∠D,∴∠CEF=∠D,∴BD∥CE,∴∠3=∠4,又∵∠3=∠2,∠4=∠1,∴∠2=∠1.【点评】此题考查平行线的性质和判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.26.小明爸爸装修要粉刷断居室的墙面,在家装商场选购某品牌的乳胶漆:小明爸估算家里的粉刷面积,若买“大桶装”,则需若干桶但还差2升;若买“小桶装”,则需多买11桶但会剩余1升,(1)小明爸预计墙面的粉刷需要乳胶漆多少升?(2)喜迎新年,商场进行促销:满1000减120元现金,并且该品牌商家对“小桶装”乳胶漆有“买4送1“的促销活动,小明爸打算购买“小桶装”,比促销前节省多少钱?(3)在(2)的条件下,商家在这次乳胶漆的销售买卖中,仍可盈利25%,则小桶装乳胶漆每桶的成本是多少元?【分析】(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,根据所需乳胶漆体积不变,即可得出关于x的一元一次方程,解之即可得出x的值,再将其代入18x+2中即可求出结论;(2)由(1)可知:需购买15桶“小桶装”乳胶漆,结合商家对“小桶装”乳胶漆有“买4送1“的促销活动可得出只需购买12桶“小桶装”乳胶漆,再利用节省钱数=促销前所需费用﹣促销后所需费用,即可求出结论;(3)设“小桶装”乳胶漆每桶的成本是y元,根据利用=销售收入﹣成本,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设需购买“大桶装”乳胶漆x桶,则需购买“小桶装”乳胶漆(x+11)桶,依题意,得:18x+2=5(x+11)﹣1,解得:x=4,∴18x+2=74.答:小明爸预计墙面的粉刷需要乳胶漆74升.(2)由(1)可知,需购买15桶“小桶装”乳胶漆.∵商家对“小桶装”乳胶漆有“买4送1“的促销活动,∴只需购买15×=12(桶),∴比促销前可节省15×90﹣(12×90﹣120)=390(元).答:比促销前节省390元钱.(3)设“小桶装”乳胶漆每桶的成本是y元,依题意,得:12×90﹣120﹣15y=15y×25%,解得:y=51.2.答:“小桶装”乳胶漆每桶的成本是51.2元.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.27.已知,点A,点B分别在线段MN,PQ上∠ACB﹣∠MAC=∠CBP(1)如图1,求证:MN∥PQ;(2)分别过点A和点C作直线AG、CH使AG∥CH,以点B为顶点的直角∠DBI绕点B旋转,并且∠DBI的两边分别与直线CH,AG交于点F和点E,如图2试判断∠CFB、∠BEG是之间的数量关系,并证明;(3)在(2)的条件下,若BD和AE恰好分别平分∠CBP和∠CAN,并且∠ACB=60°,求∠CFB 的度数.【分析】(1)过C作CE∥MN,根据平行线的判定和性质即可得到结论;(2)过B作BR∥AG,根据平行线的性质得到∠BEG=∠EBR,∠RBF+∠CFB=180°,等量代换即可得到结论;(3)过E作ES∥MN,根据平行线的性质得到∠NAE=∠AES,∠QBE=∠EBC,根据角平分线的定义得到∠NAE=∠EAC,∠CBD=∠DBP,根据四边形的内角和即可得到结论.【解答】解:(1)过C作CE∥MN,∴∠1=∠MAC,∵∠2=∠ACB﹣∠1,∴∠2=∠ACB﹣∠MAC,∵∠ACB﹣∠MAC=∠CBP,∴∠2=∠CBP,∴CE∥PQ,∴MN∥PQ;(2)过B作BR∥AG,∵AG∥CH,∴BR∥HF,∴∠BEG=∠EBR,∠RBF+∠CFB=180°,∵∠EBF=90°,∴∠BEG=∠EBR=90°﹣∠RBF,∴∠BEG=90°﹣∠RBF=90°﹣(180°﹣∠CFB),∴∠CFB﹣∠BEG=90°;(3)过E作ES∥MN,∵MN∥PQ,∴ES∥PQ,∴∠NAE=∠AES,∠QBE=∠EBC,∵BD和AE分别平分∠CBP和∠CAN,∴∠NAE=∠EAC,∠CBD=∠DBP,∴∠CAE=∠AES,∵∠EBD=90°,∴∠EBQ+∠PBD=∠EBC+∠CBD=90°,∴∠QBE=∠EBC,∴∠AEB=∠AES+∠BES=∠CAE+∠CBE=,∵∠ACB=60°,∴∠AEB=150°,∴∠BEG=30°,∵∠CFB﹣∠BEG=90°,∴∠CFB=120°.【点评】本题考查了平行线的判定和性质,余角的性质,四边形的内角和,正确的作出辅助线是解题的关键.。
2024年黑龙江省哈尔滨市初中升学考试数学最后一测
2024年黑龙江省哈尔滨市初中升学考试数学最后一测一、单选题1.下面所给出四个数0、3-、1、4-,其中最小的数是( ). A .0B .3-C .1D .4-2.下列运算正确的是( )A .()23624x x x -= B .()20x x x x ÷=≠ C .()32644x x =D .()22232x x x -=3.下列所给的交通标志中,是轴对称图形的是( )A .B .C .D .4.如图所示的两个几何体是由六个大小相同的小正方体组合而成的,则它们三视图中完全一致的是( )A .主视图B .俯视图C .左视图D .三视图5.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x ,则由题意列方程应为( ) A .2200(1)1000x += B .200+200×2x =1000C .200+200×3x =1000D .22001(1)(1)1000x x ⎡⎤++++=⎣⎦6.如图,一小孩在荡秋千,秋千的纤绳长为2米,当小孩在最低位置时,秋千底部距离地面0.4米,当小孩达到最大高度时,秋千底部距离地面1.4米,那么小孩从最低位置达到最高位置秋千底部所经过的路径长为( ).A .2米B .π米C .23π米D .43π米7.如图,把矩形纸片ABCD 先对折使BC 与AD 重合的得到折痕MN ,再把纸片展开,重新折叠,使点A 刚好落在折痕MN 上点F ,折痕为BE ,则DEF ∠的度数为( ).A .54︒B .60︒C .66︒D .72︒8.如图,O e 的半径等6,AB CD 、相交于点E ,且130AED ∠=︒,连接OA OB OC OD 、、、,则图中的阴影部分面积为( ).A .6πB .10πC .13πD .15π9.机器人沿33⨯网格从点 A 向点B 移动,移动方式只能向右或向下,则机器人从点A 移动到点 B 的过程中,途中经过点 C 的概率为( ).A .110B .320C .15D .920二、解答题10.如图,矩形ABCD 中,2,4AB BC ==,点P 从点B 出发沿BC 边匀速移动到点C ,同时点Q 从点 C 出发沿CD DA AB 、、边向点 A 匀速移动,且点Q 移动的速度是点 P 移动速度的2倍,设PB 的长为x ,PCQ △的面积为y ,则下列各图中能够正确反映y 与x 的函数图象的是( ).A .B .C .D .三、填空题11.古埃及数字是古代人类最重要、最基本的数字之一.约公元前4000年,古埃及人就创造的一种以10为基数象形文数字如左图.如图①所表示的数为11205,那么把图②中所表示的数用科学记数法来表示应为.12x 的取值范围是. 13.因式分解:241x -=.14.坐标系中, 点)3,42(P m m --在第三象限, 则m 的取值范围是. 15.对于实数a 、b ,定义运算:①1;m n m n ⊕=+②22.mnm n m n ⊗=- 例如 ①2211351535;35.3583516⨯⊕==⊗==-+-依此定义方程221x x ⊗-⊕=的解为. 16.如图,一把扇子的扇面展开后的最大角度为135︒,其半径为20cm ,则扇面展开后的面积为2cm17.如图, 矩形ABCD 中,4AB =,连接BD ,分别以B 、D 为圆心, 以大于12ND 的长为半径作圆弧,两弧相交于 M 、N , 作直线MN 分别交BD BC 、于点 E 、F , 若BEF △的面积等于5,则CF 的长为.18.如图,点1P 、2P 、3P 、……、n P (n 为自然数)在反比例函数4y x=图象上,且横坐标分别为1、2、3、……、n ,分别以12PP 、23P P 、34P P 、…、1n n P P +为斜边向下作直角三角形,使两条直角边平行于坐标轴,得到n 个直角三角形,则前2024个直角三角形的面积之和为.19.如图,测量队为了测量某地区山顶P 的海拔高度,选择M 点位置作为观测点,从M 点测得山顶 P 的仰角为()36tan360.727︒︒=,在比例尺为1:50000的该地区等高线地形图上,量得这两点间的图上距离为4cm ,则山顶P 的海拔高度为m.20.如图, 矩形ABCD 中,6,12AB BC ==,把ABC V 沿AC 翻折得到AEC △(点E 与点B 对应),CE 交AD 于点F ,M 、N 分别在AC CE 、边上,连接MN ,把AMN V 沿MN 翻折,点A 刚好落在点D 处,则折痕MN 的长为.四、解答题21.化简求值: 1344,313x x x x x x +--⎛⎫-÷⎪-+-⎝⎭ 其中tan302sin30.x =︒-︒ 22.在大小为107⨯的正方形网格中,ABC V 的顶点A 、B 、C 都在正方形的顶点上.(1)请在网格内部的小正方形的顶点上画点D ,使ABD △与ABC V 的面积相等; (2)在(1)的条件下,连接CD 交AB 于点 E , 在线段CE 上画出点 P , 使32PE PC =(要求只利用无刻度直尺画图,且保留作图痕迹),连接PA 并直接写出线段PA 的长. 23.初三某班20名男同学一次投掷标枪测验成绩如下:(单位:米) 25 21 23 29 25 27 29 28 30 29 26 24 25 27 26 22 24 25 26 28(1)指出该数据中平均数、众数、中位数;(2)根据以上数据填写频率分布表,并计算投掷不低于25米的百分数; (3)绘制频率分布直方图;24.如图, 矩形ABCD 中,6,8AB BC ==,点 P 、Q 分别在BC AD 、边上, 连接PQ 交BD 于点E , 且PQ 平分矩形ABCD 的面积.(1)求证:;PE QE =(2)把PEB △沿PE 翻折得到PEF !,连接CF , 若 PCF V 为直角三角形,请直接写出线段PB 的长.25.茂林货栈打算在年前用 30000 元购进一批彩灯进行销售,由于进货厂家促销,实际可以以 8 折的价格购进这批彩灯,结果可以比计划多购进了 100 盏彩灯. ⑴该货栈实际购进每盏彩灯多少元?⑵该货栈打算在进价的基础上,每盏灯加价 30%,进行销售,该货栈要想获得利润不低于 10000 元,应至少再购进彩灯多少盏?26.如图,AB 为O e 的直径,弦BC BD =,连接CD 交AB 于点H ,(1)求证:CD AB ⊥;(2)E 为O e 上一点,且»»EC AC =,连接AE 分别交CD BC 、于点 F 、G , 求证: 2EG FH =; (3)在(2)的条件下, 连接OE 交BC 于点 M ,连接GH , 若11,2OH =四边形OMGH 的面积等于22,求O e 的半径.27.如图,抛物线2152y x bx =-++交x 轴于A 、B (A 左B 右), 交y 轴于点C , 对称轴为3.2x =(1)求抛物线解析式;(2)P 为第一象限抛物线上一点,点D 在第四象限抛物线上,且 DAB PAB ∠=∠,连接PB DB 、,设点P 的横坐标为m ,四边形PADB 的面积为S ,求S 与m 的函数关系式; (3)在(2)的条件下,Q 为PA 上方抛物线上一点,且45APQ PAB ∠-∠=︒,连接PQ ,若DQ =求点 P 的坐标.。
2024年黑龙江省哈尔滨市双城区小升初数学试卷
2024年黑龙江省哈尔滨市双城区小升初数学试卷一、用心思考,正确填空。
(每空1分,计14分)1.(2分)哈尔滨被评为“2024年冰雪旅游十佳城市”,位居榜首,哈尔滨文旅局数据显示,2024年元旦假期,哈尔滨累计接待游客3047900人次,把横线上的数改写成用“万”作单位的数是万人次,旅游总收入5914000000元,横线上的数省略“亿”位后面的尾数约是亿元。
2.(3分)=0.75=%=折3.(2分)把0.4:0.8化成最简整数比是,比值是。
4.(2分)最小的质数是,最小的合数是。
5.(2分)六(1)班一次数学测试平均成绩为89分,老师把96分记作+7分,那么92分应该记作分,﹣7分表示实际得分是分。
6.(1分)生活家装修公司的设计师为王老师家新房设计了装修图纸,客厅实际长是6米,画在图纸上只有3厘米,这张图纸的比例尺是。
7.(1分)如图是按照一定的规律用小棒摆出的图形,第5幅图需要小棒根。
8.(1分)如图,在探究圆柱的体积时我们运用转化的数学思想方法,把一个底面半径4厘米、高10厘米的圆柱切开并拼成一个近似的长方体,这个长方体的体积是立方厘米。
二、判断题。
(正确的打“√”,错误的打“×”,每题1分,计5分)9.(1分)0既不是正数也不是负数..(判断对错)10.(1分)和的意义不同,但大小相等。
(判断对错)11.(1分)等底等高的长方体、正方体和圆柱体,它们的体积相等。
(判断对错)12.(1分)成活率、发芽率、出勤率、增长率都不会超过100%.(判断对错)13.(1分)三角形的面积是平行四边形面积的一半..(判断对错)三、反复比较,慎重选择。
(把正确答案的序号填在括号内,每题2分,计14分)14.(2分)下面几种关系中,成反比例关系的是()A.课桌的单价一定,购买课桌的张数和总钱数。
B.一本书总页数一定,看的页数和剩下的页数。
C.圆柱的体积一定,底面积和高。
15.(2分)下面选项中,能与3:0.5组成比例的是()A.12:2B.5:30C.16.(2分)2024年1月份,我国几个城市的平均气温如表,这三个城市1月份的平均气温按从高到低的顺序排列是()A.﹣21℃<﹣6℃<23℃B.23℃>﹣21℃>﹣6℃C.23℃>﹣6℃>﹣21℃17.(2分)国家出台了建设新农村的政策,新兴村也开始进行街道规划了,街道规划平面图上标的比例尺是,把它改写成数值比例尺的形式是()A.1:10000000B.1:5000000C.1:50000018.(2分)王老师将一个装有一些水的瓶子的瓶盖拧紧后正放和倒放在桌面上(如图),其中甲、乙、丙、丁分别是对应部分的空气或水的体积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年黑龙江哈尔滨市初中升学考试数学试卷第I 卷 选择题(共30分)一、选择题(每小题3分,共计30分) 1.下列各式正确的是( ) A .523)(x x =B .22))((b a a b b a -=-+ C .23522=-y x y xD .65x x x =⋅2.若x 的相反数是3,| y |=5,则x +y 的值为( ) A .-8B .2C .8或-2D .-8或23.若点P (a ,b )在第四象限,则点Q (-a ,b -1)在( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列各命题正确的是( ) A .812,是同类二次根式 B .梯形同一底上的两个角相等C .过一点有且只有一条直线与已知直线平行D .两条直线被第三条直线所截,同位角相等5.已知一个等腰三角形的底边长为5,这个等腰三角形的腰长为x ,则x 的取值范围是( ) A .250<<x B .25≥xC .25>x D .100<<x6.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形B .矩形C .正五边形D .等腰梯形7.下列命题中,正确命题的个数是( ) ①垂直于弦的直径平分这条弦 ②平行四边形对角互补③有理数与数轴上的点是一一对应的 ④相交两圆的公共弦垂直平分两圆的连心线 A .0个B .1个C .2个D .3个8.已知圆O 1与圆O 2半径的长是方程01272=+-x x 的两根,且2121=O O ,则圆O 1与圆O 2的位置关系是( )A .相交B .内切C .内含D .外切9.如图,PB 为圆O 的切线,B 为切点,连结PO 交圆O 于点A ,PA=2,PO=5,则PB 的长为( ) A .4B .10C .62D .3410.在平面直角坐标系内,直线343+=x y 与两坐标轴交于A 、B 两点,点O 为坐标原点,若在该坐标平面内有以点P (不与点A 、B 、O 重合)为顶点的直角三角形与Rt △ABO 全等,且这个以点P 为顶点的直角三角形与Rt △ABO 有一条公共边,则所有符合条件的P 点个数为( ) A .9个B .7个C .5个D .3个第II 卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11.据新华网消息,去年我国城镇固定资产投资为75096亿元,用科学记数法表示约为______________________。
12.函数21--=x x y 的自变量x 的取值范围是______________________。
13.分解因式:=+--4422x y x ______________________。
14.已知正六边形的边长为2,那么它的边心距是______________________。
15.观察下列图形:它们是按一定规律排列的,依照此规律,第8个图形共有______________________枚五角星。
16.对于函数=y x2,当x <0时,它的图象在第___________象限。
17.某商场四月份的营业额为a 万元,五月份的营业额为1.2a 万元,如果按照相同的月增长率计算,该商场六月份的营业额为______________________万元。
18.已知点O 在直线AB 上,且线段OA 的长度为4cm ,线段OB 的长度为6cm ,E 、F 分别为线段OA 、OB 的中点,则线段EF 的长度为______________________cm 。
19.已知矩形ABCD 的一边AB=5cm ,另一边AD=3cm ,则以直线AB 为轴旋转一周所得到的圆柱的表面积为______________________。
20.在△ABC 中,AB=AC=5,且△ABC 的面积为12,则△ABC 外接圆的半径为___________。
三、解答题(其中21题4分,22题5分,23题4分,24—25题各5分,26—28题各6分,29题9分,30题10分,共60分) 21.(本题4分) 先化简,再求值:111311122-⋅⎪⎪⎭⎫ ⎝⎛--÷⎪⎭⎫ ⎝⎛++x x x x x ,其中︒⋅︒=60cot 45sin 3x 。
22.(本题5分) 用换元法解方程:22322=+-+x x x x23.(本题4分)已知:如图,点E 为正方形ABCD 的边AD 上一点,连结BE ,过点A 作AH ⊥BE ,垂足为H ,延长AH 交CD 于点F 。
求证:DE=CF 。
24.(本题5分)如图,在电线杆上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面成60°角,在离电线杆6米的B 处安置测角仪,在A 处测得电线杆上C 处的仰角为30°,已知测角仪高AB 为1.5米,求拉线CE 的长(结果保留根号)。
25.(本题5分)某中学为了了解全校1000名学生参加课外锻炼的情况,从中抽查了50名学生一周内平均每天参加课外锻炼的时间(单位为分钟,且取整数),将抽查得到的数据进行适当整理,分成5组(第1小组是10.5—20.5,第2小组是20.5—30.5,第3小组是30.5-40.5,第4小组是40.5—50.5,第5小组是50.5—(1)填写频率分布表中的空格(只需填表,不要求说明理由); (2)本次抽查得到的数据的中位数落在哪一小组内(不要求说明理由)?(3)由本次抽查结果估计这所学校约有多少名学生平均每天参加课外锻炼的时间多于40分钟?26.(本题6分)已知:如图,圆O 1与圆O 2外切于点P ,经过圆O 1上一点A 作圆O 1的切线交圆O 2于B 、C 两点,直线AP 交圆O 2于点D ,连结DC 、PC 。
(1)求证:DC 2=DP ·DA ;(2)若圆O 1与圆O 2的半径之比为1:2,连结BD ,64 BD ,PD=12,求AB 的长。
27.(本题6分)晓跃汽车销售公司到某汽车制造厂选购A 、B 两种型号的轿车,用300万元可购进A 型轿车10辆,B 型轿车15辆;用300万元也可以购进A 型轿车8辆,B 型轿车18辆。
(1)求A 、B 两种型号的轿车每辆分别为多少元?(2)若该汽车销售公司销售1辆A 型轿车可获利8000元,销售1辆B 型轿车可获利5000元,该汽车销售公司准备用不超过400万元购进A 、B 两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元,问有几种购车方案?在这几种购车方案中,该汽车销售公司将这些轿车全部售出后,分别获利多少万元?28.(本题6分)2006年春,我市为美化市容,开展城市绿化活动,要种植一种新品种树苗。
甲、乙两处育苗基地均以每株4元的价格出售这种树苗,并对一次性购买该种树苗不低于1000株的用户均实行优惠:甲处的优惠政策是每株树苗按原价的八折出售;乙处的优惠政策是免收所购树苗中150株的费用,其余树苗按原价的九折出售。
(1)规定购买该种树苗只能在甲、乙两处中的一处购买,设一次性购买x (x ≥1000且x 为整数)株该种树苗,若在甲处育苗基地购买,所花的费用为y 1元,写出y 1与x 之间的函数关系式;若在乙处育苗基地购买,所花的费用为y 2元,写出y 2与x 之间的函数关系式;(两个函数关系式均不要求写出自变量x 的取值范围)(2)若在甲、乙两处分别一次性购买1500株该种树苗,在哪一处购买所花的费用少?为什么? (3)若在甲育苗基地以相应的优惠方式购买一批该种树苗,又在乙育苗基地以相应的优惠方式购买另一批该种树苗,两批树苗共2500株,购买这2500株树苗所花的费用至少需要多少元?这时应在甲、乙两处分别购买该种树苗多少株?29.(本题9分)已知,如图,AD 为Rt △ABC 斜边BC 上的高,点E 为DA 延长线上一点,连结BE ,过点C 作CF ⊥BE 于点F ,交AB 、AD 于M 、N 两点。
(1)若线段AM 、AN 的长是关于x 的一元二次方程0452222=+-+-m mn n mx x 的两个实数根,求证:AM=AN ;(2)若89815==DN AN ,,求DE 的长;(3)若在(1)的条件下,64:9:ΔΔ=ABE AMN S S ,且线段BF 与EF 的长是关于y 的一元二次方程051016522=++-k ky y 的两个实数根,求BC 的长。
30.(本题10分)已知:二次函数c bx ax y ++=2的图象与x 轴交于A 、B 两点,其中点A 的坐标是(-1,0),与y 轴负半轴交于点C ,其对称轴是直线23=x ,2tan =∠BAC 。
(1)求二次函数c bx ax y ++=2的解析式;(2)作圆O ’,使它经过点A 、B 、C ,点E 是AC 延长线上一点,∠BCE 的平分线CD 交圆O ’于点D ,连结AD 、BD ,求△ACD 的面积;(3)在(2)的条件下,二次函数c bx ax y ++=2的图象上是否存在点P ,使得∠PDB=∠CAD ?如果存在,请求出所有符合条件的P 点坐标;如果不存在,请说明理由。
2006年黑龙江哈尔滨市初中升学考试数学试卷参考答案及评分标准一、单项选择题: 1.D2.D 3.C 4.A 5.C6.B7.B 8.C 9.A 10.B二、填空题: 11.4105.7⨯ 12.1≥x 且x ≠213.)2)(2(---+y x y x 14.315.2516.三17.1.44a (或a 2536) 18.1或519.48π20.625或825三、解答题:21.解:1114111211131112222-⋅--÷++=-⋅⎪⎪⎭⎫ ⎝⎛--÷⎪⎭⎫ ⎝⎛++x x x x x x x x x x 1分12111)21)(21()1)(1(112-=-⋅-+-+⋅++=x x x x x x x x1分223322360cot 45sin 3=⨯⨯=︒⋅︒=x 1分∴原式1212112221+=-=-⨯1分22.解:22322232222=+-+=+-+x xx x x x x x ,设x x y 22+=,则23=-yy ,整理,得=--322y y 01分解得1321-==y y ,当y =3时,0233222=+-=+x x xx ,,解得1221==x x ,1分当y =-1时,021222=++-=+x x xx ,,0781Δ<-=-=,此方程没有实数根 1分 经检验:1221==x x ,是原方程的根。
1分∴原方程的根是1221==x x ,。
1分23.证明:∵四边形ABCD 为正方形,∴AB=AD=CD ,∠D=∠BAE=90°, ∴∠EAH+∠BAH=90°BE AH ⊥ ,︒=∠∴90AHB ,ABE DAF BAH ABH ∠=∠∴︒=∠+∠∴,901分在△ADF 与△BAE 中,⎪⎩⎪⎨⎧∠=∠=∠=∠BAE D BA AD ABEDAF ,BAE ADF ΔΔ≅∴1分∴AE=DF1分∴AD ―AE=CD ―DF ,即DE=CF1分24.解:过点A 作AH ⊥CD ,垂足为H由题意可知四边形ABDH 为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6 1分在Rt △ACH 中,=∠CAH tan AH CHAHCHCAH AH CH =∠⋅=∴tan 3233630tan 6tan =⨯=︒=∠⋅=∴CAH AH CH 1分∵DH=1.5,5.132+=∴CD1分在Rt △CDE 中,CECDCED CED =∠︒=∠sin 60, )34(235.13260sin +=+=︒=∴CD CE (米)1分答:拉线CE 的长为(34+)米 1分25.(1)频数列空格填121分频率列空格填0.221分(2)答:本次调查得到的数据的中位数落在第3小组内。