天津市蓟县2018年八年级下期中数学试卷及答案

合集下载

2017-2018学年度第二学期期中考试 初二年级 数学 试卷及参考答案

2017-2018学年度第二学期期中考试 初二年级 数学 试卷及参考答案

2017-2018学年度第二学期期中考试初二年级数学班级姓名学号考生须知1.本试卷共八页,共三道大题,25道小题。

满分100分。

考试时间120分钟。

2.在试卷和答题纸上准确填写班级、姓名和学号。

3.试卷答案一律书写在答题纸上,在试卷上作答无效。

4.答题纸上用黑色字迹签字笔作答,作图题请用铅笔。

一.选择题(请将唯一正确答案填入后面的括号中,每题2分,共20分)1.一元二次方程的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根D.无法确定2.如果方程的两个实数根分别为,那么的值是()A.3B.C.D.3.11名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差4.三角形的两边长分别为3和6,第三边的长是方程的一个根,则此三角形的周长为()A.10B.11C.13D.11或135.如图,□ABCD中,对角线AC、BD交于点O,点E 是BC 的中点.若OE =3cm ,则AB 的长为()A .12cmB .9cmC .6cmD .3cm6.如图,菱形花坛ABCD 的面积为12平方米,其中沿对角线AC 修建的小路长为4米,则沿对角线BD 修建的小路长为()A .3米B .6米C .8米D .10米7.将抛物线平移,得到抛物线,下列平移方式中,正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位8.已知二次函数的图象上有点A,B,C,则y 1、y 2、y 3的大小关系为()A .y 3>y 2>y 1B .y 3>y 1>y 2C .y 2>y 3>y 1D .y 1>y 2>y 39.在学完二次函数的图象及其性质后,老师让学生们说出的图象的一些性质,小亮说:“此函数图象开口向上,且对称轴是”;小丽说:“此函数图象肯定与x 轴有两个交点”;小红说:“此函数与y 轴的交点坐标为(0,-3)”;小强说:“此函数有最小值,”……请问这四位同学谁说的结论是错误的()A .小亮B .小丽C .小红D .小强10.如图,正方形ABCD 中,AB =8cm ,对角线AC ,BD 相交于点O ,点E ,F 分别从B ,C 两点同时出发,以1cm /s 的速度沿BC ,CD 运动,到点C ,D时停止ADOF运动.设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A B C D二.填空题(每空2分,共24分)11.方程的一个根是2,那么另一根是,=_______.12.若关于x的方程有两个相等实根,则代数式的值为.13.关于x的方程有两个实数根,则实数m的取值范围是__________________.14.学校射击队计划从甲、乙两人中选拔一人参加运动会射击比赛,在选拔过程中,每人射击10次,计算他们的平均成绩及方差如下表:选手甲乙平均数(环)9.59.5方差0.0350.015请你根据上表中的数据选一人参加比赛,最适合的人选是____,理由是_________________________________________.15.请写出一个开口向下,且经过(0,3)的抛物线的解析式______________________________.16.二次函数的图象与x轴只有一个公共点,则m的值为.17.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.(1)四边形ABEF是_____________;(选填矩形、菱形、正方形、无法确定)(2)AE,BF相交于点O,若四边形ABEF的周长为40,BF=10,则AE的长为________,∠ABC=________.18.小明和小亮组成团队参加某科学比赛.该比赛的规则是:每轮比赛一名选手参加,若第一轮比赛得分满60则另一名选手晋级第二轮,第二轮比赛得分最高的选手所在团队取得胜利.为了在比赛中取得更好的成绩,两人在赛前分别作了九次测试,下图为二人测试成绩折线统计图,下列说法合理的是_____________.①小亮测试成绩的平均数比小明的高②小亮测试成绩比小明的稳定③小亮测试成绩的中位数比小明的高④小亮参加第一轮比赛,小明参加第二轮比赛,比较合理三.解答题(19题每小题4分,20、21、22、24题每题6分,23、25题每题8分,共56分)19.解方程:(1)(2)(3)(4)(用配方法)20.(列方程解决问题)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,某汽车零部件生产企业的利润逐年提高,据统计,2015年利润为2亿元,2017年利润为2.88亿元.求该企业从2015年到2017年利润的年平均增长率.21.关于的一元二次方程有两个不相等的实数根.(1)求实数的取值范围;(2)若,求的值.22.中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对初二年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:(1)统计表中的a=,b=,c=;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校初二年级共有600名学生,请你估计该校初二年级学生课外阅读7本及以上的人数.23.二次函数图象上部分点的横坐标,纵坐标的对应值如下表:x……y……(1)表格中的=,=;(2)求这个二次函数的表达式;(3)在右图中画出此二次函数的图象;(4)此抛物线在第一象限内的部分记为图象G,如果过抛物线顶点的直线y=mx+n(m≠0)与图象G有唯一公共点,请结合图象,写出m的取值范围_________________________________.24.在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MN⊥AE,分别交AB、CD于点M、N.求证:AE=MN;同学们发现,过点D作DP∥MN,交AB于P,构造□DNMP,经过推理能够使问题得到解决(如图2).请你完成证明过程.xy11O(2)如图3,当点F 为AE 中点时,其他条件不变,连接正方形的对角线BD ,MN 与BD 交于点G ,连接BF ,求证:BF=FG .25.在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果,那么称点Q 为点P 的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6).(1)点(2,1)的“关联点”为;(2)如果点(m +1,2)是一次函数y =x +3图象上点N 的“关联点”,求点N 的坐标.(3)如果点P 在函数的图象上,其“关联点”Q 的纵坐标y ′的取值范围是-4<y ′≤4,则a 的取值范围是_________________.图1图2图3参考答案:1.C2.D3.B4.C5.C6.B7.D8.A9.D10.B11.3,612.113.m≥0且m≠114.乙,方差较小,成绩相对稳定.15.如y=-x2+3等16.m=117.菱形,18.②④19.(1)5,-1(2),(3)(4)20.20%21.(1)(2)22.(1)10,0.28,50;(2)略;(3)6.4;(4)26423.(1)-5,0(2)(3)略(3)m≥1或m≤-224.略25.(1)(2,1)(2)N(-5,-2)(3)2≤a<。

蓟县八年级期中数学试卷

蓟县八年级期中数学试卷

一、选择题(每题5分,共25分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √362. 若a > b,则下列不等式中正确的是()A. a + 1 > b + 1B. a - 1 > b - 1C. a + 2 > b + 2D. a - 2 > b - 23. 已知三角形ABC中,AB = 6,AC = 8,BC = 10,则下列说法正确的是()A. ∠A是直角B. ∠B是直角C. ∠C是直角D. 无法确定4. 下列函数中,一次函数是()A. y = 2x + 3B. y = x^2 - 1C. y = 3x + 5xD. y = 4x^2 - 2x + 15. 下列方程中,解为整数的是()A. 2x + 3 = 7B. 3x - 5 = 4C. 5x + 2 = 10D. 4x - 1 = 5二、填空题(每题5分,共25分)6. 若x + 3 = 5,则x = ________。

7. 下列数中,偶数是 ________。

8. 下列数中,负数是 ________。

9. 下列数中,正数是 ________。

10. 下列数中,零是 ________。

三、解答题(共50分)11. (10分)计算下列各式的值:(1)(-3)² - (-2)³(2)5a - 2b + 3a - b12. (10分)已知方程2x - 5 = 3x + 1,求x的值。

13. (10分)已知三角形ABC中,∠A = 40°,∠B = 60°,求∠C的度数。

14. (10分)已知一次函数y = kx + b,当x = 1时,y = 3;当x = 2时,y = 5,求该一次函数的解析式。

15. (10分)已知数列{an}的通项公式为an = 2n - 1,求该数列的前5项。

16. (10分)已知平行四边形ABCD中,AD = 6,BC = 8,∠A = 90°,求平行四边形ABCD的面积。

2018-2019学年天津市八年级(下)期中数学试卷(含答案解析)

2018-2019学年天津市八年级(下)期中数学试卷(含答案解析)

2018-2019学年八年级(下)期中数学试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案选项填在题中括号内.1.下列二次根式中属于最简二次根式的是()A.B.C.D.2.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是()A.1B.C.D.23.下列二次根式中,与是同类二次根式的是()A.B.C.D.4.满足下列条件的△ABC,不是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A﹣∠B D.b2﹣a2=c25.平行四边形具有的特征是()A.四边相等B.对角线相等C.对角线互相平分D.四个角都是直角6.下列变形中,正确的是()A.(2)2=2×3=6B.=﹣C.=D.=7.如图,在Rt△ABC中,∠ACB=90°,以点A为圆心,AC长为半径作圆弧交边AB于点D.若AC =3,BC=4.则BD的长是()A.2B.3C.4D.58.如图,字母B所代表的正方形的面积是()A.12 cm2B.15 cm2C.144 cm2D.306 cm29.若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A.22B.26C.22或26D.2810.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5 cm B.4.8 cm C.4.6 cm D.4 cm11.实数a在数轴上的位置如图所示,则+化简后为()A.7B.﹣7C.2a﹣15D.无法确定12.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2二、填空题:本大题共6小题,每小题3分,共18分.把答案填直接填在题中横线上.13.二次根式有意义,则实数x的取值范围是.14.若一个直角三角形两边的长分别为6和8,则第三边的长为.15.在△ABC中,∠ACB=90°,∠A=30°,BC=4,则斜边AB上的中线长是.16.把二次根式化成最简二次根式,则=.17.如图,△ABC中,BD平分∠ABC,且AD⊥BD,E为AC的中点,AD=6cm,BD=8cm,BC=16cm,则DE的长为cm.18.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的边长为1,则图中阴影部分的面积为.三、解答题:本大题共5小题,共66分.解答应写出文字说明、演算步骤或证明过程.19.(8分)计算:×(2﹣)﹣÷+.20.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.21.如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.22.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD 的面积.23.如图,在▱ABCD中AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.八年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案选项填在题中括号内.1.下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=,二次根式的被开方数中含有没开的尽方的数,故A选项错误;B、==4,二次根式的被开方数中含有没开的尽方的数,故B选项错误;C、符合最简二次根式的定义,故C选项正确;D、的被开方数中含有分母,故D选项错误;故选:C.【点评】本题考查了最简二次根式的定义.在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是()A.1B.C.D.2【分析】根据勾股定理求出OA的长,根据实数与数轴的知识解答.【解答】解:=,∴OA=,则点A对应的数是,故选:B.【点评】本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.3.下列二次根式中,与是同类二次根式的是()A.B.C.D.【分析】先把各选项中的二次根式化简,然后根据同类二次根式的定义进行判断.【解答】解:=2,=2,=2,=3,所以与是同类二次根式.故选:B.【点评】本题考查了同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.4.满足下列条件的△ABC,不是直角三角形的是()A.a:b:c=3:4:5B.∠A:∠B:∠C=9:12:15C.∠C=∠A﹣∠B D.b2﹣a2=c2【分析】依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.【解答】解:A、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;B、由∠A:∠B:∠C=9:12:15,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形;C、由三角形三个角度数和是180°及∠C=∠A﹣∠B解得∠A=90°,故是直角三角形.D、由b2﹣a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;故选:B.【点评】本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键.5.平行四边形具有的特征是()A.四边相等B.对角线相等C.对角线互相平分D.四个角都是直角【分析】根据平行四边形的性质即可判断.【解答】解:平行四边形的对角线互相平分.故选:C .【点评】本题考查平行四边形的性质:平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的对角线互相平分.解题的关键是记住平行四边形的性质,属于中考常考题型. 6.下列变形中,正确的是( )A .(2)2=2×3=6 B .=﹣C .=D .=【分析】根据二次根式的性质,可得答案.【解答】解;A 、(2)2=12,故A 错误;B 、=,故B 错误;C 、=5,故C 错误;D 、=,故D 正确;故选:D .【点评】本题考查了二次根式性质与化简,利用了二次根式的性质.7.如图,在Rt △ABC 中,∠ACB =90°,以点A 为圆心,AC 长为半径作圆弧交边AB 于点D .若 AC =3,BC =4.则BD 的长是( )A .2B .3C .4D .5【分析】首先利用勾股定理可以算出AB 的长,再根据题意可得到AD =AC ,根据BD =AB ﹣AD 即可算出答案.【解答】解:∵AC =3,BC =4,∴AB ===5,∵以点A 为圆心,AC 长为半径画弧,交AB 于点D ,∴AD =AC ,∴AD =3,∴BD =AB ﹣AD =5﹣3=2.故选:A .【点评】此题主要考查了勾股定理,关键是熟练掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8.如图,字母B所代表的正方形的面积是()A.12 cm2B.15 cm2C.144 cm2D.306 cm2【分析】如图,利用勾股定理得到a2+b2=c2,再根据正方形的面积公式得到a2=81,c2=225,则可计算出b2=144,从而得到字母B所代表的正方形的面积.【解答】解:如图,∵a2+b2=c2,而a2=81,c2=225,∴b2=225﹣81=144,∴字母B所代表的正方形的面积为144cm2.故选:C.【点评】本题考查了勾股定理:会利用勾股定理进行几何计算.9.若矩形的一条角平分线分一边为3cm和5cm两部分,则矩形的周长为()A.22B.26C.22或26D.28【分析】根据AD∥BC,理解平行线的性质,以及角平分线的定义,即可证得∠ABE=∠AEB,利用等边对等角可以证得AB=AE,然后分AE=3cm,DE=5cm和AE=5cm,DE=3cm两种情况即可求得矩形的边长,从而求解.【解答】解:∵AD∥BC,∴∠AEB=∠EBC又∵BE平分∠ABC,即∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE.当AE=3cm,DE=5cm时,AD=BC=8cm,AB=CD=AE=3cm.∴矩形ABCD的周长是:2×8+2×3=22cm;当AE=3cm,DE=2cm时,AD=BC=8cm,AB=CD=AE=5cm,∴矩形ABCD的周长是:2×8+2×5=26cm.故矩形的周长是:22cm或26cm.故选:C.【点评】此题考查了矩形的性质以及等腰三角形的判定与性质.此题难度适中,注意掌握数形结合思想与分类讨论思想的应用.10.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.5 cm B.4.8 cm C.4.6 cm D.4 cm【分析】作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由AR=AS得平行四边形ABCD是菱形,再根据根据勾股定理求出AB即可.【解答】解:如图,作AR⊥BC于R,AS⊥CD于S,连接AC,BD交于点O,由题意知,AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.∵两张纸条等宽,∴AR=AS.∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形,∴AC⊥BD.在Rt△AOB中,OA=3,OB=4,∴AB==5.故选:A.【点评】本题主要考查菱形的判定和性质,证得四边形ABCD是菱形是解题的关键.11.实数a在数轴上的位置如图所示,则+化简后为()A.7B.﹣7C.2a﹣15D.无法确定【分析】根据二次根式的性质,可得答案.【解答】解:由数轴上点的位置,得4<a<8.+=a﹣3+10﹣a=7,故选:A.【点评】本题考查了二次根式的性质与化简,利用二次根式的性质化简是解题关键.12.如图,在长方形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16﹣8B.﹣12+8C.8﹣4D.4﹣2【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【解答】解:∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为=4cm,=2cm,∴AB=4cm,BC=(2+4)cm,∴空白部分的面积=(2+4)×4﹣12﹣16,=8+16﹣12﹣16,=(﹣12+8)cm2.故选:B.【点评】本题考查了二次根式的应用,算术平方根的定义,解题的关键在于根据正方形的面积求出两个正方形的边长.二、填空题:本大题共6小题,每小题3分,共18分.把答案填直接填在题中横线上.13.二次根式有意义,则实数x的取值范围是x≤﹣2或x≥2.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x2﹣4≥0,解得x≤﹣2或x≥2.故答案是:x≤﹣2或x≥2.【点评】本题考查的知识点为:二次根式的被开方数是非负数.14.若一个直角三角形两边的长分别为6和8,则第三边的长为10或2.【分析】由于直角三角形的斜边不能确定,故分b是斜边与直角边两种情况进行解答.【解答】解:分情况讨论:①当6和8为两条直角边时,由勾股定理得第三边长为:=10;②当8为斜边,6为直角边时,由勾股定理地第三边长为:=2;故答案为:10或2.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.15.在△ABC中,∠ACB=90°,∠A=30°,BC=4,则斜边AB上的中线长是4.【分析】作出图形,然后根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2BC,再根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:如图,作斜边AB上的中线CD.∵∠ACB=90°,∠A=30°,∴AB=2BC=2×4=8,∵CD是斜边上的中线,∴CD=AB=4.故答案为:4.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半和直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键,作出图形更形象直观.16.把二次根式化成最简二次根式,则=.【分析】根据二次根式的性质把根号内的因式开出来即可.【解答】解:==,故答案为:.【点评】本题考查了最简二次根式和二次根式的性质,能正确根据二次根式的性质进行变形是解此题的关键.17.如图,△ABC中,BD平分∠ABC,且AD⊥BD,E为AC的中点,AD=6cm,BD=8cm,BC=16cm,则DE的长为3cm.【分析】延长AD交BC于F,利用“角边角”证明△BDF和△BDA全等,根据全等三角形对应边相等可得DF=AD,FB=AB=10cm,再求出CF并判断出DE是△ACF的中位线,然后根据三角形的中位线平行于第三边并且等于第三边的一半可得DE=CF.【解答】解:如图,延长AD交BC于F,∵BD平分∠ABC,∴∠ABD=∠FBD,∵AD⊥BD,∴∠BDA=∠BDF=90°,AB===10(cm),在△BDF和△BDA中,,∴△BDF≌△BDA(ASA),∴DF=AD,FB=AB=10cm,∴CF=BC﹣FB=16﹣10=6cm,又∵点E为AC的中点,∴DE是△ACF的中位线,∴DE=CF=3cm.故答案为:3.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,全等三角形的判定与性质,熟记性质并作出辅助线构造成全等三角形是解题的关键.18.由四个全等的直角三角形拼成如图所示的“赵爽弦图”,若直角三角形斜边长为2,最短的边长为1,则图中阴影部分的面积为4﹣2.【分析】由题意可知阴影部分的面积=大正方形的面积﹣4个小直角三角形的面积,代入数值计算即可.【解答】解:∵直角三角形斜边长为2,最短的之边长为1,∴该直角三角形的另外一条直角边长为,=22﹣4××1×=4﹣2.∴S阴影故答案是:4﹣2.【点评】本题考查利用图形面积的关系证明勾股定理,解题关键是利用三角形和正方形边长的关系进行组合图形.三、解答题:本大题共5小题,共66分.解答应写出文字说明、演算步骤或证明过程.19.(8分)计算:×(2﹣)﹣÷+.【分析】先化简各二次根式,再根据混合运算顺序依次计算可得.【解答】解:原式=3×(2﹣)﹣+=6﹣﹣+=5﹣【点评】本题主要考查二次根式的混合运算,熟练掌握二次根式的性质和二次根式的混合运算的顺序和法则是解题的关键.20.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为10.【分析】(1)以3和2为直角边作出直角三角形,斜边即为所求;(2)以3和1为直角边作出直角三角形,斜边为正方形的边长,如图②所示.【解答】解:(1)如图①所示:(2)如图②所示.【点评】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.21.如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F,求证:BE=DF.【分析】利用AAS,易证得△ABE≌△CDF,然后由全等三角形的性质,证得结论.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF.【点评】此题考查了平行四边形的性质以及全等三角形的判定与性质.注意证得△ABE≌△CDF是关键.22.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD 的面积.【分析】连接AC,先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,=AB•BC+AC•CD,∴S四边形ABCD=×1×2+××2,=1+.故四边形ABCD的面积为1+.【点评】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD 的形状是解答此题的关键.23.如图,在▱ABCD中AB=6,BC=8,AC=10.(1)求证:四边形ABCD是矩形;(2)求BD的长.【分析】(1)由在▱ABCD中,AB=6,BC=8,AC=10,利用勾股定理的逆定理,即可证得∠ABC =90°,即可判定▱ABCD是矩形;(2)由四边形ABCD是矩形,根据矩形的对角线相等,即可求得BD的长.【解答】(1)证明:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠ABC=90°,∵四边形ABCD是平行四边形,∴▱ABCD是矩形;(2)∵四边形ABCD是矩形,∴BD=AC=10.【点评】此题考查了矩形的判定与性质以及勾股定理的逆定理.注意利用勾股定理的逆定理证得∠ABC=90°是关键.。

2018-2019学年天津市部分区八年级(下)期中数学试卷

2018-2019学年天津市部分区八年级(下)期中数学试卷

2018-2019学年天津市部分区八年级(下)期中数学试卷
一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合要求的,请将正确选项填在下表中.
1.(3分)下列式子一定是二次根式的是()
A.B.C.D.
2.(3分)下列二次根式中,最简二次根式是()
A.B.C.D.
3.(3分)计算×的结果是()
A.3B.C.6D.3
4.(3分)已知+(b+2)2=0,则(a+b)2019的值为()
A.0B.2019C.﹣1D.1
5.(3分)下列计算正确的是()
A.=+B.4﹣=3C.=2D.÷=4 6.(3分)下列各组数不能作为直角三角形的三边长的是()
A.1.5,2,3B.7,24,25C.9,12,15D.5,12,13
7.(3分)一个直角三角形三边长分别是4,5,a,那么以a为边长的正方形的面积为()A.9B.41C.4或9D.3
8.(3分)如图,在5×5的正方形网格中,每个小正方形的边长均为1,则下列各图的三角形不是直角三角形的是()
A.B.
C.D.
9.(3分)点P(﹣3,4)在平面直角坐标系中,则点P到原点的距离是()
A.3B.4C.5D.。

蓟州区八年级期中试卷数学

蓟州区八年级期中试卷数学

一、选择题(每题4分,共20分)1. 若a > b,则下列选项中正确的是()A. a² > b²B. a² < b²C. a³ > b³D. a³ < b³2. 已知方程2x - 3 = 5,则x的值为()A. 2B. 3C. 4D. 53. 下列各组数中,成等差数列的是()A. 2, 4, 8, 16B. 1, 3, 5, 7C. 3, 6, 9, 12D. 2, 5, 8, 114. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标是()A.(2,-3)B.(-2,3)C.(-2,-3)D.(2,-3)5. 若∠ABC = 90°,AB = 5cm,BC = 12cm,则AC的长度是()A. 7cmB. 13cmC. 17cmD. 15cm二、填空题(每题5分,共25分)6. 若x² - 4x + 3 = 0,则x的值为______。

7. 已知等差数列的首项为2,公差为3,则第10项为______。

8. 在△ABC中,若∠A = 60°,AB = 8cm,AC = 10cm,则BC的长度是______。

9. 分数4/5和3/4的乘积是______。

10. 若a² + b² = 25,a - b = 3,则ab的值为______。

三、解答题(每题10分,共40分)11. (1)解方程:3x² - 6x - 9 = 0;(2)若x是方程2x² - 5x + 2 = 0的解,求x² + 3x的值。

12. 已知数列{an}是等比数列,且a1 = 2,a3 = 8,求该数列的公比q。

13. 在△ABC中,AB = 6cm,AC = 8cm,∠A = 45°,求BC的长度。

14. 已知函数f(x) = 2x - 3,求函数f(x)在x = 2时的函数值。

天津市蓟县第一中学2018-2019学年度第二学期八年级期中考试数学测试题

天津市蓟县第一中学2018-2019学年度第二学期八年级期中考试数学测试题

天津市蓟县第一中学2018-2019学年度第二学期八年级期中考试数学测试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列计算正确的是()C D=A B2.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的四边形是菱形C.对角线互相垂直平分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形3.以下四组木棒中,哪一组的三条能够刚好做成直角三角形的木架()A.7厘米,12厘米,15厘米B.7厘米,12厘米,13厘米C.8厘米,15厘米,16厘米D.3厘米,4厘米,5厘米4)A B C D5.如图,在▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC 6.如图,任意四边形ABCD各边中点分别是E、F、G、H,若对角线AC、BD的长都为20cm,则四边形EFGH的周长是()A.80cm B.40cm C.20cm D.10cm7.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是()A.6B.32πC.2πD.128.a)A.5B.﹣5C.2a﹣9D.2a+59.已知a b,则a与b的关系是()A.a=b B.ab=1C.a=﹣b D.ab=﹣5 10.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于H,FD =8,则HE等于()A.20B.16C.12D.811.如图,下列条件之一能使平行四边形ABCD是菱形的为()⊥AC=BD;⊥AC⊥BD;⊥AB=BC;⊥⊥BAD=90°.A.⊥⊥B.⊥⊥C.⊥⊥D.⊥⊥⊥12.如图,矩形ABCD的面积为16cm2,对交线交于点O;以AB、AO为邻边作平行四边AOC1B,对角线交于点O1,以AB、AO1为邻边作平行四边形AO1C2B,…;依此类推,则平行四边形AO4C5B的面积为()cm2B.1cm2C.2cm2D.4cm2A.12二、填空题13.计算1)=__.14.如图,已知OA OB=,数轴上点A对应的数是______15.如图,在正方形ABCD的外侧,作等边△ADE,则△EBD=________.16.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF=_________.17.如图,将菱形纸片ABCD折迭,使点A恰好落在菱形的对称中心O处,折痕为EF.若菱形ABCD的边长为2 cm,⊥A=120°,则EF=_______cm.18.如图,在矩形ABCD中,O是对角线的交点,AE⊥BD于E,若OE:OD=1:2,AC=18cm,则AB=________cm.三、解答题19.计算:(1)2(71)+--(2⎛- ⎝(3)⎛÷ ⎝20.如图,在Rt⊥ABC 中,⊥ACB=90°,D 是AB 的中点,AE⊥CD ,CE⊥AB ,判断四边形ADCE 的形状,并证明你的结论.21.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,分别按下列要求画以格点为顶点三角形和平行四边形.(1)三角形三边长为4,;(2)平行四边形有一锐角为45°,且面积为6.22.已知:x y =x 2﹣y 2+5xy 的值.23.如图,在平行四边形ABCD 中,E 为BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)当BC 与AF 满足什么数量关系时,四边形ABFC 是矩形,并说明理由.24.如图,四边形ABCD 是正方形,点G 是BC 边上任意一点,DE⊥AG 于点E ,BF⊥DE 且交AG 于点F .(1)求证:AE=BF ;(2)如图1,连接DF 、CE ,探究线段DF 与CE 的关系并证明;(3)如图2,若G 为CB 中点,连接CF ,直接写出四边形CDEF 的面积. 25.如图,在ABC 中,点F 是BC 的中点,点E 是线段AB 的延长线上的一动点,连接EF ,过点C 作AB 的平行线CD ,与线段EF 的延长线交于点D ,连接CE ,BD . (1)求证:四边形DBEC 是平行四边形.(2)若120ABC ∠=︒,4AB BC ==,则在点E 的运动过程中:⊥当BE =___________时,四边形BECD 是矩形,试说明理由;⊥当BE =__________时,四边形BECD 是菱形.参考答案:1.D【解析】【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB2CD=故选:D.【点睛】本题考查二次根式的混合运算,正确掌握相关运算法则是解题关键.2.C【解析】【详解】试题分析:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直的平行四边形是菱形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项正确;D、一组对边相等且平行的四边形是平行四边形,所以D选项错误.故选C.考点:命题与定理.3.D【解析】【详解】解:A、72+122≠152,故不是直角三角形,故此选项错误;B、72+122≠132,故不是直角三角形,故此选项错误;C、82+152≠162,故不是直角三角形,故此选项错误;D、32+42=52,故是直角三角形,故此选项正确.4.B【解析】【详解】式的则能合并,不是同类二次根式的则不能合并.详解:A. =B.C. =D. =故选B.点睛:本题考查了同类二次根式的定义,化成最简二次根式后,如果被开方数相同,那么这两个二次根式叫做同类二次根式.5.C【解析】【详解】试题分析:平行四边形的两组对边分别平行且相等,对角线互相平分.考点:平行四边形的性质.6.B【解析】【详解】利用三角形中位线定理易得所求四边形的各边长都等于AC,或BD的一半,进而求四边形周长即可.7.A【解析】【分析】分别求出以AB、AC、BC为直径的半圆及⊥ABC的面积,再根据S阴影=S1+S2+S△ABC-S3即可得出结论.解:如图所示:⊥⊥BAC=90°,AB=4cm,AC=3cm,BC=5cm,⊥以AB为直径的半圆的面积S1=2π(cm2);以AC为直径的半圆的面积S2=98π(cm2);以BC为直径的半圆的面积S3=258π(cm2);S△ABC=6(cm2);⊥S阴影=S1+S2+S△ABC-S3=6(cm2);故选A.【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.8.A【解析】【分析】先根据数轴确定a的取值范围,再根据二次根式的性质即可化简.【详解】由数轴可得:2<a<5,⊥a−2>0,a−7<0,,故选A.【点睛】此题考查实数与数轴,解题关键在于确定a的取值范围9.A【解析】将b进行分母有理化,然后进行比较即可.【详解】解:ba所以a=b.故选A.【点睛】本题考查了分母有理化,利用平方差公式进行分母有理化是解题关键.10.D【解析】【分析】根据三角形中位线定理得出AC的长,再根据直角三角形斜边上的中线等于斜边的一半即可求出【详解】⊥D、F分别是AB、BC的中点,⊥DF是⊥ABC的中位线,⊥DF=12 AC;⊥FD=8⊥AC=16又⊥E是线段AC的中点,AH⊥BC,⊥EH=12 AC,⊥EH=8.故选D.【点睛】本题综合考查了三角形中位线定理、直角三角形斜边上的中线.熟记性质与定理并准确识图是解题的关键.11.B【解析】菱形的判定方法有三种:⊥定义:一组邻边相等的平行四边形是菱形;⊥四边相等的四边形是菱形;⊥对角线互相垂直的平行四边形是菱形.据此判断即可.【详解】解:⊥▱ABCD 中,AC=BD ,根据对角线相等的平行四边形是矩形,即可判定▱ABCD 是矩形,而不能判定▱ABCD 是菱形;故⊥错误.⊥▱ABCD 中,AC⊥BD ,根据对角线互相垂直的平行四边形是菱形,即可判定▱ABCD 是菱形;故⊥正确;⊥▱ABCD 中,AB=BC ,根据一组邻边相等的平行四边形是菱形,即可判定▱ABCD 是菱形;故⊥正确;⊥▱ABCD 中,⊥BAD=90°,根据有一个角是直角的平行四边形是矩形,即可判定▱ABCD 是矩形,而不能判定▱ABCD 是菱形;故⊥错误;故选:B .【点睛】此题考查了菱形的判定与矩形的判定定理.此题难度不大,注意掌握菱形的判定定理是解此题的关键.12.A【解析】【分析】矩形ABCD 的面积=AB×AD=16cm 2,过点O 向AB 作垂线,垂足为E ,平行四边形AOC 1B 的面积=AB×OE ,根据矩形的性质,OE=12AD ,即平行四边形AOC 1B 的面积=AB×12AD=12,过点O 1向AB 作垂线,垂足为F ,根据平行四边形的性质,O 1F=12OE=212AD ,即平行四边形AO 1C 2B 面积=AB×12AD=212,依此类推,即可得到平行四边形AO 4C 5B 的面积.【详解】过点O 向AB 作垂线,垂足为E ,过点O 1向AB 作垂线,垂足为F ,如下图所示:⊥⊥DAB=⊥OEB ,⊥OE⊥DA ,⊥O 为矩形ABCD 的对角线交点,⊥OB=OD ⊥OE=12AD , 矩形ABCD 的面积=AB×AD=16cm 2,平行四边形AOC 1B 的面积=AB×OE=AB×12AD=8 cm 2,同理,根据平行四边形的性质,O 1F=12OE=212AD , 平行四边形AO 1C 2B 面积=AB×212AD=4 cm 2, 依此类推:平行四边形AO 4C 5B 的面积=AB×512AD=12cm 2, 故选A .【点睛】 本题考查了矩形的性质,平行四边形的性质和规律型:图形的变化美,根据矩形和平行四边形的性质,找到前两个图形的规律,依此类推即可,掌握规律是解题的关键.此题的关键是能根据求出的结果得出规律,注意:等底等高的三角形的面积相等.13.11【解析】【分析】利用平方差公式计算.【详解】原式=(22-1=12−1=11.故答案为11.【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则14.【解析】【分析】先利用勾股定理求出OB的长度,再根据OA=OB即可得到OA的长度,从而得到A对应的数.【详解】由勾股定理得OB⊥OA OB=⊥OA=⊥数轴上点A对应的数是故答案为:【点睛】本题主要考查勾股定理及数轴上的点所对应的实数,掌握勾股定理是解题的关键. 15.30°【解析】【详解】分析:判断⊥ABE是顶角为150°的等腰三角形,求出⊥EBA的度数后即可求解.详解:因为四边形ABCD是正方形,所以AB=AD,⊥BAD=90°,⊥ABD=45°.因为⊥ADE是等边三角形,所以AD=AE,⊥DAE=60°,所以AB=AE,⊥BAE=150°,所以⊥EBA=12(180°-150°)=15°,所以⊥EBD=⊥ABD-⊥EBA=45°-15°=30°.故答案为30°.点睛:本题考查了正方形和等边三角形的性质,正方形的四边都相等,四个角都是直角,每一条对角线平分一组对角.16.6【解析】【详解】解:由折叠的性质知:AD=AF,DE=EF=8﹣3=5;在Rt⊥CEF中,EF=DE=5,CE=3,由勾股定理可得:CF=4,若设AD=AF=x,则BC=x,BF=x﹣4;在Rt⊥ABF中,由勾股定理可得:82+(x﹣4)2=x2,解得x=10,故BF=x﹣4=6.故答案为6.【点评】考查了勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.17【解析】【详解】如图,连接AO交EF于点P,由菱形和折叠对称的性质,知四边形AEOF是菱形,且AP=OP.⊥点A恰好落在菱形的对称中心O处,⊥AE=BE.⊥AB=2,⊥A=120°,⊥Rt⊥AEF中,AE=1,⊥AEP=30°.⊥EP⊥EF18.9【解析】【详解】试题解析:⊥OE :OD=1:2⊥OD=2OE⊥矩形ABCD⊥OD=OB ,OA=OC⊥OB=2OE⊥AE⊥BD ⊥AB=OA=12AC=9cm故答案为9.19.(1)45;(2)(3)143. 【解析】【分析】(1)利用完全平方公式进行计算即可(2)首先化简二次根式进而合并同类二次根式进而得出答案.(3)先把各二次根式化简为最简二次根式后,然后把括号内合并后进行二次根式的除法运算【详解】(1)原式=49-48-(+1)=45;(2)原式=-3⎛⎛ ⎝⎭⎝⎭;(3)原式=⎛÷ ⎝=143. 【点睛】此题考查二次根式的混合运算,解题关键在于掌握运算法则20.四边形ADCE 是菱形.【解析】【详解】试题分析:首先判定四边形ADCE 是平行四边形,然后由直角三角形斜边上的中线的性质判定该平行四边形的邻边相等,即可证得四边形ADCE 是菱形.解:四边形ADCE 是菱形.理由如下:⊥AE⊥CD ,CE⊥AB ,⊥四边形ADCE是平行四边形.又⊥在Rt⊥ABC中,⊥ACB=90°,D是AB的中点,⊥CD=AD,⊥四边形ADCE是菱形.考点:菱形的判定;直角三角形斜边上的中线.21.(1)见解析;(2)见解析.【解析】【详解】分析:(1)4在网格线上,31和3的直角三角形的斜边;(2)先构造一个直角边为2的等腰直角三角形,以此为基础再构造平行四边形.详解:(1)图(1)即为所求;(2)图(2)即为所求.点睛:本题考查了勾股定理,在格点中,可结合网格中的直角构造直角三角形,一般有理数可用网格线表示,无理数可表示为直角三角形的斜边,勾股定理确定它的两条直角边.22.5【解析】【分析】首先把代数式利用平方差公式因式分解,再进一步代入求得答案即可.【详解】⊥x y ==⊥()()22555x y xy x y x y xy -+=+-+= =5【点睛】此题考查二次根式的化简求值,解题关键在于利用平方差公式因式分解23.(1)见解析;(2)当BC=AF 时,四边形ABFC 是矩形,理由见解析【解析】【分析】(1)根据平行四边形的性质得到两角一边对应相等,利用AAS 判定△ABE⊥⊥FCE ,从而得到AB=CF ;(2)由已知可得四边形ABFC 是平行四边形,BC=AF ,根据对角线相等的平行四边形是矩形,可得到四边形ABFC 是矩形.【详解】(1)证明:⊥四边形ABCD 是平行四边形⊥AB⊥CD ,AB=CD⊥BAE CFE ∠=∠, ABE FCE ∠=∠⊥E 为BC 的中点⊥BE=EC⊥ △ABE⊥⊥FCE⊥ AB=CF.(2)解:当BC=AF 时,四边形ABFC 是矩形.理由如下:⊥AB⊥CF ,AB=CF⊥四边形ABFC 是平行四边形⊥BC=AF⊥四边形ABFC 是矩形.24.(1)证明见解析;(2)DF=CE 且DF⊥CE .理由见解析.(3)3.【解析】【详解】试题分析:(1)根据垂直的定义和平行线的性质求出⊥AED=⊥BFA=90°,根据正方形的性质可得AB=AD ,⊥BAD=⊥ADC=90°,再利用同角的余角相等求出⊥BAF=⊥ADE ,然后利用“角角边”证明⊥AFB 和⊥DEA 全等,根据全等三角形对应边相等可得AE=BF ;(2)根据同角的余角相等求出⊥FAD=⊥EDC ,根据全等三角形对应边相等可得AF=DE ,根据正方形的性质可得AD=CD ,然后利用“边角边”证明⊥FAD 和⊥EDC 全等,根据全等三角形对应边相等可得DF=CE ,全等三角形对应角相等可得⊥ADF=⊥DCE ,再求出⊥DCF+⊥CDF=90°,然后根据垂直的定义证明即可;(3)根据线段中点的定义求出BG ,再利用勾股定理列式求出AG ,然后利用⊥ABG 的面积列出方程求出BF ,再利用勾股定理列式求出AF ,从而得到AE=EF ,再根据线段垂直平分线上的点到两端点的距离相等可得DF=AD ,然后根据对角线互相垂直的四边形的面积等于对角线乘积的一半列式计算即可得解.试题解析:(1)证明:⊥DE⊥AG 于点E ,BF⊥DE 且交AG 于点F ,⊥BF⊥AG 于点F ,⊥⊥AED=⊥BFA=90°,⊥四边形ABCD 是正方形,⊥AB=AD 且⊥BAD=⊥ADC=90°,⊥⊥BAF+⊥EAD=90°,⊥⊥EAD+⊥ADE=90°,⊥⊥BAF=⊥ADE ,在⊥AFB 和⊥DEA 中,90{? AED BFA AB AD BAF ADE∠∠︒∠∠====⊥⊥AFB⊥⊥DEA (AAS ),⊥BF=AE ;(2)DF=CE 且DF⊥CE .理由如下:⊥⊥FAD+⊥ADE=90°,⊥EDC+⊥ADE=⊥ADC=90°,⊥⊥FAD=⊥EDC ,⊥⊥AFB⊥⊥DEA ,⊥AF=DE ,又⊥四边形ABCD 是正方形,⊥AD=CD ,在⊥FAD 和⊥EDC 中,{AF DEFAD EDC AD CD∠∠==,=⊥⊥FAD⊥⊥EDC (SAS ),⊥DF=CE 且⊥ADF=⊥DCE ,⊥⊥ADF+⊥CDF=⊥ADC=90°,⊥⊥DCF+⊥CDF=90°,⊥⊥FAD⊥⊥EDC (SAS ),⊥DF=CE 且⊥ADF=⊥DCE ,⊥⊥ADF+⊥CDF=⊥ADC=90°,⊥⊥DCF+⊥CDF=90°,⊥DF⊥CE ;(3),G 为CB 中点,⊥BG=12由勾股定理得, ⊥S △ABG =12AG×BF=12AB×BG⊥1212解得:由勾股定理得,= ⊥⊥AFB⊥⊥DEA ,⊥DE 垂直平分AF ,⊥DF=AD=6,由(2)知,DF=CE且DF⊥CE,⊥四边形CDEF的面积=12DF•CE=132.考点:1.正方形的性质;2.全等三角形的判定与性质.25.(1)见解析;(2)⊥2,理由见解析;⊥4【解析】【分析】(1)先证明⊥EBF⊥⊥DCF,可得DC=BE,可证四边形BECD是平行四边形;(2)⊥根据四边形BECD是矩形时,⊥CEB=90°,再由⊥ABC=120°可得⊥ECB=30°,再根据直角三角形的性质可得BE=2;⊥根据四边形BECD是菱形可得BE=EC,再由⊥ABC=120°,可得⊥CBE=60°,进而可得⊥CBE是等边三角形,再根据等边三角形的性质可得答案.【详解】(1)⊥AB⊥CD,⊥⊥CDF=⊥FEB,⊥DCF=⊥EBF,⊥点F是BC的中点,⊥BF=CF,在⊥DCF和⊥EBF中,CDF BEFDCF EBFFC BF∠=∠⎧⎪∠=∠⎨⎪=⎩,⊥⊥EBF⊥⊥DCF(AAS),⊥DC=BE,又⊥DC⊥BE,⊥四边形BECD是平行四边形;(2)⊥BE=2,⊥当四边形BECD是矩形时,⊥CEB=90°,⊥⊥ABC=120°,⊥⊥CBE=60°;⊥⊥ECB=30°,⊥BE=12BC=2,故答案为:2;⊥BE=4,⊥四边形BECD是菱形时,BE=EC,⊥⊥ABC=120°,⊥⊥CBE=60°,⊥⊥CBE是等边三角形,⊥BE=BC=4.故答案为:4.【点睛】本题主要考查了菱形和矩形的性质,以及平行四边形的判定,关键是掌握菱形四边相等,矩形四个角都是直角.。

天津市蓟县最新八年级(下)期中数学试卷(含解析)

天津市蓟县最新八年级(下)期中数学试卷(含解析)

2018-2019学年天津市蓟县八年级(下)期中数学试卷一、选择题:本题包括12小题,每小题3分,共36分.1.下列式子一定是二次根式的是()A.B.C.D.2.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5C.x≥5D.x>53.下列二次根式中属于最简二次根式的是()A.B.C.D.4.若有意义,则m能取的最小整数值是()A.﹣1 B.0 C.1 D.25.下列计算错误的是()A.;B.C.D.6.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、137.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°8.如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC9.若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是()A.正方形B.对角线相等的四边形C.菱形D.对角线相互垂直的四边形10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A.16πB.12πC.10πD.8π11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6412.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF 的长为()A.B.C.2 D.1二、填空题:本题包括6小题,每小题3分,共18分.13.代数式有意义的条件是.14.已知n是正整数,是整数,则n的最小值是.15.已知实数x、y满足+|y+3|=0,则x+y的值为.16.如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=F A.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是(只填写序号).18.有5个边长为1的正方形,排列形式如图:请把它们分割后拼接成一个大正方形.①大正方形的边长为.②画出分割线及拼接图.三、解答题:共46分.19.计算:(1)(2)20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.21.已知x=+,y=﹣,求x3y﹣xy3的值.22.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.23.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.24.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D 作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2018-2019学年天津市蓟县八年级(下)期中数学试卷参考答案与试题解析一、选择题:本题包括12小题,每小题3分,共36分.1.下列式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=±1时,x2﹣2=﹣1<0,无意义,此选项错误;B、当x=1时,﹣x﹣2=﹣3<0,无意义,此选项错误;C、当x=﹣1时,无意义,此选项错误;D、∵x2+2≥2,∴符合二次根式定义,此选项正确;故选:D.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根.2.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5C.x≥5D.x>5【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).3.下列二次根式中属于最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数含开的尽的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含开的尽的因数或因式,故D错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式的两个条件:被开方数不含分母,被开方数不含开的尽的因数或因式.4.若有意义,则m能取的最小整数值是()A.﹣1 B.0 C.1 D.2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2m+1≥0,解得m≥﹣,所以,m能取的最小整数值是0.故选B.【点评】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.下列计算错误的是()A.B.C. D.【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式==,所以A选项的计算正确;B、与不能合并,所以B选项的计算错误;C、原式==3,所以C选项的计算正确;D、原式=2,所以D选项的计算正确.故选B.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、13【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36°C.72°D.144°【考点】平行四边形的性质;平行线的性质.【专题】计算题.【分析】关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.【点评】本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.8.如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC【考点】平行四边形的性质.【分析】根据平行四边形的性质分别判断各选项即可.【解答】解:A、AC≠BD,故A选项错误;B、AC不垂直于BD,故B选项错误;C、AB=CD,利用平行四边形的对边相等,故C选项正确;D、AB≠BC,故D选项错误;故选:C.【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.9.若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是()A.正方形B.对角线相等的四边形C.菱形 D.对角线相互垂直的四边形【考点】中点四边形.【分析】这个四边形ABCD的对角线AC和BD的关系是互相垂直.理由为:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥B D.故选D.【点评】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A.16πB.12πC.10πD.8π【考点】勾股定理.【分析】首先根据勾股定理求出AB的长,再根据半圆的面积公式解答即可.【解答】解:根据题意画图如下;在Rt△ABC中,AB===8,则S半圆=π•42=8π.故答案为:故选D.【点评】此题考查了勾股定理,用到的知识点是勾股定理以及圆的面积公式,关键是根据勾股定理求出半圆的半径.11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.64【考点】勾股定理.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选D.【点评】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.12.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF 的长为()A.B.C.2 D.1【考点】翻折变换(折叠问题).【分析】设DF=FD′=x,在RT△CFD′中利用勾股定理求出x即可解决问题.【解答】解:如图,∵△EFD′是由△EFD翻折得到,∴DF=FD′,设DF=FD′=x,在RT△CFD′中,∵∠C=90°,CF=6﹣x,CD′=BC=4,∴x2=42+(6﹣x)2,∴x=,∴CF=6﹣x=.故选B.【点评】本题考查翻折变换、勾股定理,解题的关键是利用翻折不变性解决问题,学会转化的思想,利用方程的去思考问题,属于中考常考题型.二、填空题:本题包括6小题,每小题3分,共18分.13.代数式有意义的条件是x>﹣2.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2>0,解得x>﹣2.故答案为:x>﹣2.【点评】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义,分式的分母不等于0.14.已知n是正整数,是整数,则n的最小值是3.【考点】二次根式的定义.【分析】首先把进行化简,然后确定n的值.【解答】解:==3,∵是整数,∴n的最小值是3,故答案为:3.【点评】此题主要考查了二次根式的定义,关键是掌握=|a|.15.已知实数x、y满足+|y+3|=0,则x+y的值为﹣2.【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,x+y=1+(﹣3)=﹣2.故答案为:﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是DC=EB(答案不唯一).【考点】全等三角形的判定.【专题】开放型.【分析】要使△CDF≌△BEF,根据全等三角形的判定:三组对应边分别相等的两个三角形全等;有两边及其夹角对应相等的两个三角形全等;有两角及其夹边对应相等的两个三角形全等.注意本题答案不唯一.【解答】解:补充DC=EB在△CDF和△BEF中,,△CDF≌△BEF(AAS).故答案为:DC=EB(答案不唯一).【点评】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=F A.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是①②③⑤(只填写序号).【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】由已知得AB=AD,AE=AF,利用“HL”可证△ABE≌△ADF,利用全等的性质判断①②③正确,在AD上取一点G,连接FG,使AG=GF,由正方形,等边三角形的性质可知∠DAF=15°,从而得∠DGF=30°,设DF=1,则AG=GF=2,DG=,分别表示AD,CF,EF的长,判断④⑤的正确性.【解答】解:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°,∴①②③正确,在AD上取一点G,连接FG,使AG=GF,则∠DAF=∠GFA=15°,∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵S△ABE+S△ADF=2×AD×DF=2+,S△CEF=CE×CF==2+,∴⑤正确.故答案为:①②③⑤.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.18.有5个边长为1的正方形,排列形式如图:请把它们分割后拼接成一个大正方形.①大正方形的边长为.②画出分割线及拼接图.【考点】图形的剪拼;正方形的性质.【分析】①利用已知可得正方形面积为5,即可得出边长;②利用所求边长结合勾股定理得出符合题意的图形.【解答】解:①大正方形的边长为:;故答案为:;②如图所示:【点评】此题主要考查了图形的剪拼以及正方形的性质,正确得出正方形的边长是解题关键.三、解答题:共46分.19.计算:(1)(2)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,再进行计算.(2)观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:(1)原式=4+3﹣2+4=7;(2)原式=(8)=﹣.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=AC•CD=×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD 的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.21.已知x=+,y=﹣,求x3y﹣xy3的值.【考点】因式分解的应用.【分析】首先把代数式利用提取公因式法和平方差公式因式分解,进一步代入求得答案即可.【解答】解:∵x=+,y=﹣,∴x3y﹣xy3=xy(x+y)(x﹣y)=(+)(﹣)×2×2=4.【点评】此题考查因式分解的实际运用,掌握提取公因式法和平方差公式因式分解是解决问题的关键.22.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质可得AD=BC,AD∥BC,再由BE=DF可证出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.23.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形性质得AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,然后在Rt△ABE中利用勾股定理可计算出BE.【解答】解:∵四边形ABCD为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,在Rt△ABE中,∵AB2+BE2=AE2,∴32+x2=(4﹣x)2,解得x=,即BE的长为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.24.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质;矩形的判定.【分析】(1)利用平行四边形的性质得出∠BAF=∠CFA,进而得出△AEB≌△FEC(AAS),求出答案;(2)首先得出四边形ABFC是平行四边形,进而得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAF=∠CF A.∵E为BC的中点,∴BE=CE.在△AEB和△FEC中,,∴△AEB≌△FEC(AAS)∴AB=CF;(2)解:当BC=AF时,四边形ABFC是矩形,理由:∵AB=CF,AB‖CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,正确得出△AEB≌△FEC(AAS)是解题关键.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D 作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥B C.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键.。

18学年下学期八年级期中考试数学试题(附答案)

18学年下学期八年级期中考试数学试题(附答案)

2017-2018学年第二学期期中测试八年级数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列图形既是轴对称图形,又是中心对称图形的是( ▲ )2.下列调查中,适合用全面调查方法的是 ( ▲ )A .了解一批电视机的使用寿命B .了解我市居民的年人均收入C .了解我市中学生的近视率D .了解某校数学教师的年龄状况 3.要反映一天内气温的变化情况宜采用( ▲ )A. 条形统计图B. 扇形统计图C. 折线统计图D.频数分布图 4.在下列命题中,正确的是( ▲ )A. 有一组对边平行的四边形是平行四边形B. 有一组邻边相等的四边形是菱形C. 有一个角是直角的四边形是矩形D. 对角线互相垂直平分的四边形是菱形 5.一列列车自全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米/时,则根据题意所列方程正确的是( ▲ ) A .126312312=+-x x B .131226312=-+xx C .126312312=--x x D .131226312=--xx 6.如图,□ ABCD 中,对角线AC 和BD 相交于O ,如果AC=12、BD=10、AB=m,那么m 的取值范围是( ▲ )A .1<m <11 B .2<m <22 C .10<m <12 D .5<m <6 7、若b a b -=14,则ab的值为( ▲ )A.5 B.15 C.3 D.138.如图所示,在△ABC 中,M 是BC 的中点,AN 平分∠BAC ,BN ⊥AN .若AB =10,AC =15,则MN 的长为( ▲ )A. 2B. 2.5C. 3D. 3.5二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.当x ▲ 时,分式32+-x x 有意义. 10.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则b a ba 22132+-= ▲ . 11.某班在大课间活动中抽查了20名学生每分钟跳绳次数,得到如下数据(单位:次): 50,63,77,83,87,88,89,9l ,93,100,102,11l ,117,121,130,133,146,158,177,188.则跳绳次数在90~110这一组的频率..是 ▲ . 12.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,已知∠AOD=120°,AB=1,则BC 的长为 ▲ .13.如图,连接四边形ABCD 各边中点,得到四边形EFGH ,只要添加 ▲ 条件,就能保证四边形EFGH 是菱形.14.如图,□ABCD 的对角线AC 、BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是 ▲ . 15.若关于x 的方程2222x mx x++=--有增根,则m 的值是 ▲ . 16.如图,△DEF 是由△ABC 绕着某点旋转得到的,则这点的坐标是 ▲ .17.如图,由两个长为10,宽为2的矩形叠合而得到菱形ABCD ,则菱形ABCD 面积的最大值为____▲____.18.如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB=150°;④S四边形AOBO6=+S △AOC +S △AOB =6=.其中正确的结论是 ▲ . 三、解答题(本大题共有10小题,共96分.请在答题卡指定区域.......内作答,解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)解方程:(1)11222x x x-=---; (2)21124x x x -=--20.(本题满分8分)2017年上半年某市各级各类中小学(含中等职业学校)开展了“万师访万家”活动.某县家访方式有:A.上门走访;B.电话访问;C.网络访问(班级微信或QQ 群);D.其他.该县教育局负责人从“万师访万家”平台上随机抽取本县一部分老师的家访情况,绘制了如图所示两幅尚不完整的统计图.根据图中提供的信息,解答下列问题:(1)本次抽样调查的样本是,样本容量为________,扇形统计图中,“A”所对应的圆心角的度数为多少?(2)请补全条形统计图.(3)已知该县共有3500位老师参与了这次“万师访万家”活动,请估计该县共有多少位老师采用的是上门走访的方式进行家访的?21.(本题满分8分)先化简:221)21x xx x x x+2÷(--+-1,再从23x-<<的范围内选取一个你喜欢的x值代入求值.‘22.(本题满分8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC 的顶点均在格点上,在建立平面直角坐标系后,点C 的坐标为(-2,-2). (1)画出△ABC 以y 轴为对称轴的对称图形△A 1B 1C 1,并写出点C 1的坐标;(2)以原点O 为对称中心,画出△A 1B 1C 1关于原点O 对称的△A 2B 2C 2,并写出点C 2的坐标;(3)以C 2为旋转中心,把△A 2B 2C 2顺时针旋转90°,得到△C 2A 3B 323.(本题满分10分)如图,四边形ABCD 是平行四边形,E 、F 是对角线AC 上的两点,∠1=∠2.(1)求证:AE=CF ;(2)求证:四边形EBFD 是平行四边形.24.(本题满分10分)定义新运算:对于任意实数a ,b (其中a ≠0),都有a *b =aba a -+1,等式右边是通常的加法、减法及除法运算,比如:2*1=21221-+=1 (1)求5*4的值;(2)若x *2=1(其中x ≠0),求x 的值.25.(本题满分10分)某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?26.(本题满分10分)准备一张矩形纸片,按如图操作:将△ABE沿BE翻折,使点A落在对角线BD上的M点,将△CDF沿DF翻折,使点C落在对角线BD上的N点.(1)求证:四边形BFDE是平行四边形;(2)若四边形BFDE是菱形,BE =2,求菱形BFDE的面积.27.(本题满分12分)如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E.(l)当点C与点O重合时,DE=;(2)当CE∥OB时,证明此时四边形BDCE为菱形;(3)在点C的运动过程中,直接写出OD的取值范围.28.(本题满分12分)现有正方形ABCD和一个以O为直角顶点的三角板,移动三角板,使三角板的两直角边所在直线分别与直线BC,CD交于点M,N.(1)如图1,若点O与点A重合,则OM与ON的数量关系是__________________;(2)如图2,若点O在正方形的中心(即两对角线的交点),则(1)中的结论是否仍然成立?请说明理由;(3)如图3,若点O在正方形的内部(含边界),当OM=ON时,请探究点O在移动过程中可形成什么图形?(4)如图4是点O在正方形外部的一种情况.当OM=ON时,请你就“点O的位置在各种情况下(含外部)移动所形成的图形”提出一个正确的结论.(不必说理)参考答案一、选择题二、填空题 9. 3-=x 10.ba ba 12346+- 11. 0.2 12.3 13. AC=BD14. 9 15.0 16. (-2,1) 17. 55218. ①②③⑤三、解答题19.(1)2-=x ,增根 (2)23-=x 20.(1)100名教师的家访情况,100 ,08.100 (3)980人 21. 1-x 2x (0,1≠±≠x x )2=x 代数式值为422.23.(1)证明:如图:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∠3=∠4,∵∠1=∠3+∠5,∠2=∠4+∠6,∠1=∠2∴∠5=∠6∵在△ADE 与△CBF 中,∴△ADE ≌△CBF (ASA ),∴AE=CF ;(2)证明:∵∠1=∠2,∴DE ∥BF .又∵由(1)知△ADE ≌△CBF ,∴DE=BF ,∴四边形EBFD 是平行四边形.24. (1)23-=x (2)1=x25. 解:(1)设该种干果的第一次进价是每千克x 元,则第二次进价是每千克(1+20%)x 元,由题意,得=2×+300,解得x =5,经检验x =5是方程的解.答:该种干果的第一次进价是每千克5元; (2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.26. (1)证明:∵四边形ABCD 是矩形,∴∠A=∠C=90°,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,∴∠EBD=∠FDB ,∴EB ∥DF ,∵ED ∥BF ,∴四边形BFDE 为平行四边形.(2)解:∵四边形BFDE 为菱形,∴BE=ED ,∠EBD=∠FBD=∠ABE ,∵四边形ABCD 是矩形,∴AD=BC ,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE=32 =332,BF=BE=2AE=334, ∴菱形BFDE 的面积为:334×2=338 27. 解:∵直线AB 的解析式为y=﹣2x+4,∴点A 的坐标为(2,0),点B 的坐标为(0,4),即可得OB=4,OA=2, (1) 当点C 与点O 重合时如图所示,∵DE 垂直平分BC (BO ),∴DE 是△BOA 的中位线,∴DE=21OA=1; (2)当CE ∥OB 时,如图所示:∵DE 为BC 的中垂线,∴BD=CD,EB=EC,∴∠DBC=∠DCB,∠EBC=∠ECB,∴∠DCE=∠DBE,∵CE∥OB,∴∠CEA=∠DBE,∴∠CEA=∠DCE,∴BE∥DC,∴四边形BDCE为平行四边形,又∵BD=CD,∴四边形BDCE为菱形.(3)当点C与点O重合时,OD取得最大值,此时OD=OB=2;当点C与点A重合时,OD取得最小值,如图所示:综上可得:≤OD≤2.28. (1)若点O与点A重合,则OM与ON的数量关系是:OM=ON;(2)仍成立.证明:如图2,连接AC、BD.由正方形ABCD可得,∠BOC=90°,BO=CO,∠OBM=∠OCN=45°.∵∠MON=90°,∴∠BOM=∠CON,在△BOM和△CON中,∵∠OBM=∠OCN,BO=CO,∠BOM=∠CON,∴△BOM≌△CON(ASA),∴OM=ON;(3)如图3,过点O作OE⊥BC,作OF⊥CD,垂足分别为E、F,则∠OEM=∠OFN=90°.又∵∠C=90°,∴∠EOF=90°=∠MON,∴∠MOE=∠NOF.在△MOE和△NOF中,∵∠OEM=∠OFN,∠MOE=∠NOF,OM=ON,∴△MOE≌△NOF (AAS),∴OE=OF.又∵OE⊥BC,OF⊥CD,∴点O在∠C的平分线上,∴O在移动过程中可形成线段AC;(4)O在移动过程中可形成直线AC.。

天津市蓟县2018年八年级下期中数学试卷及答案

天津市蓟县2018年八年级下期中数学试卷及答案

2015-2016学年天津市蓟县八年级(下)期中数学试卷一、选择题:本题包括12小题,每小题3分,共36分.1.下列式子一定是二次根式的是()A.B.C.D.2.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>53.下列二次根式中属于最简二次根式的是()A.B.C.D.4.若有意义,则m能取的最小整数值是()A.﹣1 B.0 C.1 D.25.下列计算错误的是()A.B.C. D.6.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、137.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36° C.72° D.144°8.如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC9.若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是()A.正方形B.对角线相等的四边形C.菱形D.对角线相互垂直的四边形10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A.16πB.12π C.10π D.8π11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6412.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为()A.B.C.2 D.1二、填空题:本题包括6小题,每小题3分,共18分.13.代数式有意义的条件是.14.已知n是正整数,是整数,则n的最小值是.15.已知实数x、y满足+|y+3|=0,则x+y的值为.16.如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是(只填写序号).18.有5个边长为1的正方形,排列形式如图:请把它们分割后拼接成一个大正方形.①大正方形的边长为.②画出分割线及拼接图.三、解答题:共46分.19.计算:(1)(2)20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.21.已知x=+,y=﹣,求x3y﹣xy3的值.22.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.23.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.24.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年天津市蓟县八年级(下)期中数学试卷参考答案与试题解析一、选择题:本题包括12小题,每小题3分,共36分.1.下列式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=±1时,x2﹣2=﹣1<0,无意义,此选项错误;B、当x=1时,﹣x﹣2=﹣3<0,无意义,此选项错误;C、当x=﹣1时,无意义,此选项错误;D、∵x2+2≥2,∴符合二次根式定义,此选项正确;故选:D.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根.2.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵ =x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法: =a(a≥0),=﹣a(a≤0).3.下列二次根式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数含开的尽的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含开的尽的因数或因式,故D错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式的两个条件:被开方数不含分母,被开方数不含开的尽的因数或因式.4.若有意义,则m能取的最小整数值是()A.﹣1 B.0 C.1 D.2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2m+1≥0,解得m≥﹣,所以,m能取的最小整数值是0.故选B.【点评】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.下列计算错误的是()A.B.C. D.【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式==,所以A选项的计算正确;B、与不能合并,所以B选项的计算错误;C、原式==3,所以C选项的计算正确;D、原式=2,所以D选项的计算正确.故选B.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、13【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36° C.72° D.144°【考点】平行四边形的性质;平行线的性质.【专题】计算题.【分析】关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.【点评】本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.8.如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC【考点】平行四边形的性质.【分析】根据平行四边形的性质分别判断各选项即可.【解答】解:A、AC≠BD,故A选项错误;B、AC不垂直于BD,故B选项错误;C、AB=CD,利用平行四边形的对边相等,故C选项正确;D、AB≠BC,故D选项错误;故选:C.【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.9.若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是()A.正方形B.对角线相等的四边形C.菱形D.对角线相互垂直的四边形【考点】中点四边形.【分析】这个四边形ABCD的对角线AC和BD的关系是互相垂直.理由为:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选D.【点评】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A.16πB.12π C.10π D.8π【考点】勾股定理.【分析】首先根据勾股定理求出AB的长,再根据半圆的面积公式解答即可.【解答】解:根据题意画图如下;在Rt△ABC中,AB===8,则S半圆=π•42=8π.故答案为:故选D.【点评】此题考查了勾股定理,用到的知识点是勾股定理以及圆的面积公式,关键是根据勾股定理求出半圆的半径.11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.64【考点】勾股定理.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选D.【点评】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.12.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为()A.B.C.2 D.1【考点】翻折变换(折叠问题).【分析】设DF=FD′=x,在RT△CFD′中利用勾股定理求出x即可解决问题.【解答】解:如图,∵△EFD′是由△EFD翻折得到,∴DF=FD′,设DF=FD′=x,在RT△CFD′中,∵∠C=90°,CF=6﹣x,CD′=BC=4,∴x2=42+(6﹣x)2,∴x=,∴CF=6﹣x=.故选B.【点评】本题考查翻折变换、勾股定理,解题的关键是利用翻折不变性解决问题,学会转化的思想,利用方程的去思考问题,属于中考常考题型.二、填空题:本题包括6小题,每小题3分,共18分.13.代数式有意义的条件是x>﹣2 .【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2>0,解得x>﹣2.故答案为:x>﹣2.【点评】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义,分式的分母不等于0.14.已知n是正整数,是整数,则n的最小值是 3 .【考点】二次根式的定义.【分析】首先把进行化简,然后确定n的值.【解答】解: ==3,∵是整数,∴n的最小值是3,故答案为:3.【点评】此题主要考查了二次根式的定义,关键是掌握=|a|.15.已知实数x、y满足+|y+3|=0,则x+y的值为﹣2 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,x+y=1+(﹣3)=﹣2.故答案为:﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是DC=EB(答案不唯一).【考点】全等三角形的判定.【专题】开放型.【分析】要使△CDF≌△BEF,根据全等三角形的判定:三组对应边分别相等的两个三角形全等;有两边及其夹角对应相等的两个三角形全等;有两角及其夹边对应相等的两个三角形全等.注意本题答案不唯一.【解答】解:补充DC=EB在△CDF和△BEF中,,△CDF≌△BEF(AAS).故答案为:DC=EB(答案不唯一).【点评】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是①②③⑤(只填写序号).【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】由已知得AB=AD,AE=AF,利用“HL”可证△ABE≌△ADF,利用全等的性质判断①②③正确,在AD上取一点G,连接FG,使AG=GF,由正方形,等边三角形的性质可知∠DAF=15°,从而得∠DGF=30°,设DF=1,则AG=GF=2,DG=,分别表示AD,CF,EF的长,判断④⑤的正确性.【解答】解:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°,∴①②③正确,在AD上取一点G,连接FG,使AG=GF,则∠DAF=∠GFA=15°,∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵S△ABE+S△ADF=2×AD×DF=2+,S△CEF=CE×CF==2+,∴⑤正确.故答案为:①②③⑤.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.18.有5个边长为1的正方形,排列形式如图:请把它们分割后拼接成一个大正方形.①大正方形的边长为.②画出分割线及拼接图.【考点】图形的剪拼;正方形的性质.【分析】①利用已知可得正方形面积为5,即可得出边长;②利用所求边长结合勾股定理得出符合题意的图形.【解答】解:①大正方形的边长为:;故答案为:;②如图所示:【点评】此题主要考查了图形的剪拼以及正方形的性质,正确得出正方形的边长是解题关键.三、解答题:共46分.19.计算:(1)(2)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,再进行计算.(2)观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:(1)原式=4+3﹣2+4=7;(2)原式=(8)=﹣.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S △ABC =AB•BC=×3×4=6, 在△ACD 中,∵AD=13,AC=5,CD=12, ∴CD 2+AC 2=AD 2, ∴△ACD 是直角三角形,∴S △ACD =AC•CD=×5×12=30.∴四边形ABCD 的面积=S △ABC +S △ACD =6+30=36.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC 和△CAD 的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.21.已知x=+,y=﹣,求x 3y ﹣xy 3的值.【考点】因式分解的应用.【分析】首先把代数式利用提取公因式法和平方差公式因式分解,进一步代入求得答案即可.【解答】解:∵x=+,y=﹣,∴x 3y ﹣xy 3=xy (x+y )(x ﹣y )=(+)(﹣)×2×2=4.【点评】此题考查因式分解的实际运用,掌握提取公因式法和平方差公式因式分解是解决问题的关键.22.如图,在▱ABCD 中,已知点E 、F 分别在边BC 和AD 上,且BE=DF .求证:AE=CF .【考点】平行四边形的性质;全等三角形的判定与性质. 【专题】证明题.【分析】根据平行四边形的性质可得AD=BC ,AD ∥BC ,再由BE=DF 可证出AF=EC ,进而可得四边形AECF是平行四边形,从而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.23.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形性质得AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,然后在Rt△ABE中利用勾股定理可计算出BE.【解答】解:∵四边形ABCD为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,∴∠DAC=∠D′A C,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,在Rt△ABE中,∵AB2+BE2=AE2,∴32+x2=(4﹣x)2,解得x=,即BE的长为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.24.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质;矩形的判定.【分析】(1)利用平行四边形的性质得出∠BAF=∠CFA,进而得出△AEB≌△FEC(AAS),求出答案;(2)首先得出四边形ABFC是平行四边形,进而得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAF=∠CFA.∵E为BC的中点,∴BE=CE.在△AEB和△FEC中,,∴△AEB≌△FEC(AAS)∴AB=CF;(2)解:当BC=AF时,四边形ABFC是矩形,理由:∵AB=CF,AB‖CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,正确得出△AEB≌△FEC (AAS)是解题关键.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键.。

天津市八年级下学期数学期中考试试卷

天津市八年级下学期数学期中考试试卷

天津市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题:(本大题共10小题,每小题3分,共30分). (共10题;共30分)1. (3分)若有意义,则m能取的最小整数是()A . m=0B . m=1C . m=2D . m=32. (3分)下列各式成立是()A .B .C .D .3. (3分)下列长度的三条线段能组成三角形的是()A . 1,2,3B . 1,1,3C . 3,4,8D . 4,5,64. (3分)下列说法错误的是()A . 有一个角是直角的四边形是矩形B . 矩形的对角线相等C . 矩形的对角线互相平分D . 有一个角是直角的平行四边形是矩形5. (3分) (2017八上·揭西期末) 化简得()A .B .C .D .6. (3分)(2019·颍泉模拟) 如图,在平面直角坐标系xOy中,平行四边形OABC的顶点O(0,0),B(3,2),点A在x轴的正半轴上.按以下步骤作图:①以点O为圆心,适当长度为半径作弧分别交边OA、OC于点M、N;②分别以点M、N为圆心,大于 MN的长为半径作弧,两弧在∠AOC内交于点P;③作射线OP,恰好过点B,则点A的坐标为()A . (,0)B . (,0)C . (,0)D . (2,0)7. (3分)(2018·驻马店模拟) 如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF∶S△AOB的值为()A . 1∶3B . 1∶5C . 1∶6D . 1∶118. (3分)如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如图2所示的“数学风车”,则这个风车的外围周长是()A . 76B . 72C . 68D . 529. (3分)(2017·磴口模拟) 已知实数a、b在数轴上的位置如图所示,化简的结果为()A . 0B . ﹣2aC . 2bD . ﹣2a﹣2b10. (3分)如图,抛物线y=x2+bx﹣2与x轴交于A,B两点,与y交于C点,且A(﹣1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是()A .B .C .D .二、填空题(每小题3分,共18分). (共6题;共18分)11. (3分)(2017·丰县模拟) 计算: =________.12. (3分)如图,在矩形ABCD中,AB=6,AD=8,把矩形ABCD沿直线MN翻折,点B落在边AD上的E点处,若AE=2AM,那么EN的长等于________.13. (3分) (2017八下·南江期末) 如图,平行四边形中, ,点为的中点,则________。

2018-2019学年度第二学期八年级数学期中考试题及参考答案

2018-2019学年度第二学期八年级数学期中考试题及参考答案

学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------2018-2019学年度第二学期期中考试题(卷)八 年 级 数 学(时间:120分钟 满分:100分)一.选择题(共10小题,每小题3分,共30分) 1.下列运算中正确的是( ) A .=﹣2B .﹣24×=2 C .(﹣2)2×(﹣3)2=36 D .=±42.要使式子有意义,则x 的取值范围是( )A .x >﹣2B .x >2C .x ≤2D .x <23.下列根式中是最简二次根式的是( ) A .2B .C .D .4.下列各组数中不能作为直角三角形的三条边的是( ) A .6,8,10B .9,12,15C .1.5,2,3D .7,24,255.一架5m 的梯子,斜靠在一竖直的墙上,这时梯足距墙角3m ,若梯子的顶端下滑1m ,则梯足将滑动( ) A .0mB .1mC .2mD .3m6.如图,在直角△ABC 中,∠C =90°,AC =3,AB =4,则点C 到斜边AB 的距离是( ) A .B .C .5D7.如图,在ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( ) A .1 cmB .2 cmC .3 cmD .4 cm8.在Rt △ABC 中,斜边上的中线CD =2.5cm ,则斜边AB 的长是( ) A .2.5cmB .5cmC .7.5cmD .10cm9.如图,在ABCD 中,AB ⊥AC ,若AB =4,AC =6,则BD 的长是( ) A .8B .9C .10D .1110.如图,在菱形ABCD 中,∠BAD =120°,点A 坐标是(﹣2,0),则点B 坐标为( ) A .(0,2) B .(0,)C .(0,1)D .(0,2)二.填空题(共10小题,每小题3分,共30分)11.实数a 在数轴上对应的点的位置如图所示,则化简|a ﹣2|﹣= .12.如果最简二次根式与2是同类二次根式,那么a = .13.若ABC 的三边分别是a 、b 、c ,且a 、b 、c 满足a 2+c 2=b 2,则∠ =90°. 14.ABCD 中,∠A +∠C =220°,则∠A = .15.若点A (3,m )在直角坐标系的x 轴上,则点B (m ﹣1,m +2)到原点O 的距离为 . 16.已知菱形的面积为24cm 2,一条对角线长为6cm ,则这个菱形的边长是 厘米. 17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =12,则AB = .18.三角形各边分别是3cm 、5cm 、6cm ,则连接各边中点所围成的三角形的周长是 cm .19.如图,在△ABC 中,∠ACB 为直角,∠A =30°,CD ⊥AB 于点D ,CE 是AB 边上的中线,若BD =2,则CE = .20.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,已知△BOC 与△AOB 的周长之差为3,平行四边形ABCD 的周长为26,则BC 的长度为 .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-------------------------------------三.解答题(共6小题,共40分) 21.(4分)已知a =+2,b =2﹣,求下列各式的值:(1)a 2+2ab +b 2; (2)a 2﹣b 2.22.(5分)如图所示,在四边形ABCD 中,AB =2,AD =,BC =2,∠CAD =30°,∠D =90°,求∠ACB的度数?23.(5分)已知:如图,在ABCD 中,E 、F 是对角线AC 上的两点,且AE =CF .猜测DE 和BF 的位置关系和数量关系,并加以证明.24.(8分)如图,在ABCD 中,AD >AB ,AE 平分∠BAD ,交BC 于点E ,过点E 作EF ∥AB 交AD 于点F . (1)求证:四边形ABEF 是菱形;(2)若菱形ABEF 的周长为16,∠EBA =120°,求AE 的大小.25.(8分)如图,已知四边形ABCD 是平行四边形,△AOB 是等边三角形.(1)求证:四边形ABCD 是矩形.(2)若AB =5cm ,求四边形ABCD 的面积.26.(10分)如图1,已知四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF=90°,且EF 交正方形外角∠DCG 的平分线CF 于点F ,(1)若取AB 的中点M ,可证AE=EF ,请写出证明过程.(2)如图2,若点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,那么结论“AE=EF ”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------2018-2019学年度第二学期八年级数学期中考试题参考答案一、选择题(共10小题)C C A C BD B B C D 二、填空题(共8小题)11、 -2a+3 12、 2 13、 B 14、 110° . 1516、 5 17、6 18、7 19、 4 20、 8 三.解答题(共10小题) 21.∵a =+2,b =2﹣,∴a +b =4,a ﹣b =2,(1)a 2+2ab +b 2=(a +b )2=42=16;(2)a 2﹣b 2=(a +b )(a ﹣b )=4×2=8.22、∵在直角△ACD 中,AD =,∠CAD =30°,∠D =90°,∴由勾股定理得AC =2, ∵AB =2,BC =2,∴AC 2+BC 2=4+4=8=(2)2=AB 2,∴∠ACB =90°.23、解:DE ∥BF DE =BF理由如下:∵四边形ABCD 是平行四边形 ∴AD =BC ,AD ∥BC∴∠DAC =∠ACB ,且AE =CF ,AD =BC ∴△ADE ≌△CBF (SAS ) ∴DE =BF ,∠AED =∠BFC ∴∠DEC =∠AFB ∴DE ∥BF24、(1)证明:∵▱ABCD∴BC ∥AD ,即 BE ∥AF ∵EF ∥AB∴四边形ABEF 为平行四边形∵AE 平分∠BAF ∴∠EAB =∠EAF ∵BC ∥AD ∴∠BEA =∠EAF ∴∠BEA =∠BAE ∴AB =BE∴四边形ABEF 是菱形(2)解:连接BF 交AE 于点O ;则BF ⊥AE 于点O∵BA =BE ,∠EBA =120°∴∠BEA =∠BAE =30° ∵菱形ABEF 的周长为16 ∴AB =4在Rt △ABO 中∠BAO =30° ∴由勾股定理可得:AO =∴AE =25、解:(1)平行四边形ABCD 是矩形.理由如下:∵四边形ABCD 是平行四边形(已知),学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线----------------------------------------------- ∴AO =CO ,BO =DO (平行四边形的对角线互相平分), ∵△AOB 是等边三角形(已知), ∴OA =OB =OC =OD (等量代换), ∴AC =BD (等量代换),∴平行四边形ABCD 是矩形(对角线相等的平行四边形是矩形);(2)因为AB =5,在Rt △ABC 中,由题意可知,AC =10,则BC ==5,所以平行四边形ABCD 的面积S =5×5=25(cm 2)26、解:(1)∵四边形ABCD 是正方形 ∴AB=BC ,∠B=∠BCD=∠DCG=90°, ∵取AB 的中点M ,点E 是边BC 的中点, ∴AM=EC=BE , ∴∠BME=∠BEM=45°, ∴∠AME=135°, ∵CF 平分∠DCG , ∴∠DCF=∠FCG=45°, ∴∠ECF=180°-∠FCG=135°, ∴∠AME=∠ECF , ∵∠AEF=90°, ∴∠AEB+∠CEF=90°, 又∠AEB+∠MAE=90°, ∴∠MAE=∠CEF ,即∴△AME ≌△ECF (ASA ),∴AE=EF ,(2)AE=EF 仍然成立,理由如下:在BA 延长线上截取AP=CE ,连接PE ,则BP=BE , ∵∠B=90°,BP=BE , ∴∠P=45°, 又∠FCE=45°, ∴∠P=∠FCE ,∵∠PAE=90°+∠DAE ,∠CEF=90°+∠BEA , ∵AD ∥CB , ∴∠DAE=∠BEA , ∴∠PAE=∠CEF , ∴△APE ≌△ECF , ∴AE=EF .学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------学 年 班 考号 姓名 -----------------------------------------------密--------------------------------------------封----------------------------------------------线-----------------------------------------------。

天津市XX区2017-2018学年八年级数学下册期中试卷含答案解析

天津市XX区2017-2018学年八年级数学下册期中试卷含答案解析

2017-2018学年天津市八年级(下)期中数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.把化成最简二次根式为()A.B.C.D.2.估计的值在()A.在1和2之间 B.在2和3之间 C.在3和4之间 D.在4和5之间3.计算: +=()A.8 B.C.8a D.154.若在实数范围内有意义,则x的取值范围是()A.x>B.x≥C.x<D.x>05.一个直角三角形的两条直角边边长分别为3和4,则斜边上的高为()A.2 B.2.2 C.2.4 D.2.56.已知△ABC的三边长分别为a,b,c,且满足(a﹣5)2+|b﹣12|+=0,则△ABC()A.不是直角三角形B.是以a为斜边的直角三角形C.是以b为斜边的直角三角形 D.是以c为斜边的直角三角形7.已知x=+1,y=﹣1,则x2+2xy+y2的值为()A.4 B.6 C.8 D.128.菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是()A.20B.5cm C.cm D.5cm9.下列命题中,是真命题的是()A.两条对角线互相平分的四边形是平行四边形B.两条对角线相等的四边形是矩形C.两条对角线互相垂直的四边形是菱形D.两条对角线互相垂直且相等的四边形是正方形10.顺次连接矩形各边中点所得的四边形是()A.平行四边形B.矩形 C.菱形 D.等腰梯形11.小明尝试着将矩形纸片ABCD (如图①,AD >CD )沿过A 点的直线折叠,使得B 点落在AD 边上的点F 处,折痕为AE (如图②);再沿过D 点的直线折叠,使得C 点落在DA 边上的点N 处,E 点落在AE 边上的点M 处,折痕为DG (如图③).如果第二次折叠后,M 点正好在∠NDG 的平分线上,那么矩形ABCD 的长BC 与宽AB 的关系是( )A .BC=2AB B .BC=ABC .BC=1.5ABD .BC=AB12.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连结BD 、DP ,BD 与CF 相交于点H .给出下列结论:①△ABE ≌△DCF ;②△DPH 是等腰三角形;③PF=AB ;④ =.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,每小题3分,共18分)13.= .14.如图,在Rt △ABC 中,BD 是斜边AC 上的中线,若AC=8,则BD 的长= .15.命题“同位角相等,两直线平行”的逆命题是: .16.在矩形ABCD 中,对角线AC ,BD 相交于点O ,若∠AOB=80°,则∠OAB 的大小为 (度).17.如图①,△ABE ,△ACD 都是等边三角形,若CE=6,则BD 的长= ;(2)如图②,△ABC 中,∠ABC=30°,AB=3,BC=4,D 是△ABC 外一点,且△ACD 是等边三角形,则BD的长= .18.如图,在正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点称为格点.请在给出的5×5的正方形网格中,以格点为顶点,画出两个三角形,一个三角形的长分别是、2、,另一个三角形的三边长分别是、2、5.(画出的两个三角形除顶点和边可以重合外,其余部分不能重合)三、解答题(本大题共7小题,共46分。

天津市八年级下学期数学期中考试试卷

天津市八年级下学期数学期中考试试卷

天津市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列四个图形中,不是轴对称图形的是()A .B .C .D .2. (2分)在△ABC中,∠B=67°,∠C=33°,AD是△BAC的角平分线,则∠CAD的度数为()A . 40°B . 45°C . 59°D . 55°3. (2分)绝对值不大于2的整数的个数有()A . 3个B . 4个C . 5个D . 6个4. (2分)如图,在四边形ABCD中,点E在BC上,AB∥DE ,∠B=78º,∠C=60º,则∠EDC的度数为()A . 78ºB . 60ºC . 42ºD . 80º5. (2分) (2019八上·平潭月考) 如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A . 30°B . 40°C . 50°D . 60°6. (2分) (2020九下·沈阳月考) 如图,在矩形ABCD中,AB=4,BC=8,对角线AC的垂直平分线分别交AD,AC于点E、O,连接CE,则CE的长为()A . 3B . 3.5C . 5D . 5.57. (2分) (2019七下·廉江期末) 一个篮球队共打12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数宴多,则这个篮球队赢了的场数最少为().A . 6B . 5C . 4D . 38. (2分) (2016八上·镇江期末) 函数y= 中自变量x的取值范围是()A . x>4B . x≥4C . x≤4D . x≠49. (2分) (2019八上·固镇月考) 如图,直线与相交于点P,点P的横坐标为-1,则关于x的不等式的解集在数轴上表示正确的是()A .B .C .D .10. (2分) (2019八上·长兴期中) 如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC =3,CG=2,则CF的长为()A . 2.5B . 3C . 2D . 3.5二、填空题 (共9题;共14分)11. (1分) (2015八下·杭州期中) 在等腰△ABC中,三边分别为a、b、c,其中a=4,b、c恰好是方程x2﹣(2k+1)x+5(k﹣)=0的两个实数根,则△ABC的周长为________12. (1分)点A(m+5,m﹣4)在x轴上,则m=________;若点A在第三象限,则m的取值范围是________.13. (5分) (2019八上·惠山期中) 如图,等腰△ABC的周长为25,底边BC=7,AB的垂直平分线DE交AB 于点D,交AC于点E,则△BEC的周长为________.14. (1分) (2019七上·越城期末) 如图,直线AD与BE相交于点O,∠COD=90°,∠COE=70°,则∠AOB =________.15. (1分) (2020八上·拱墅期末) 若关于x的一元一次方程4x+m+1=x-1的解是负数,则m的取值范围是________。

天津市蓟州区、武清区等部分五区2017-2018学年度第二学期质量调查八年级数学(PDF图片版)

天津市蓟州区、武清区等部分五区2017-2018学年度第二学期质量调查八年级数学(PDF图片版)

天津市武清区八年级数学参考答案及评分标准一、选择题:1.C;2.B;3.B;4.B;5.C;6.D;7.A;8.C;9.C;10.A;11.A;12.D.二、填空题:13.4≥x ;14.10或72;15.4;16.36;17.3;18.324-.三、解答题:19.解:313661218+÷-⎪⎪⎭⎫ ⎝⎛-⨯332326+--=…………………………………………………4分33225-=…………………………………………………4分20.解:图略,每问4分,共8分21.证明:∵四边形ABCD 是平行四边形,∴CD AB //,CD AB =…………………………………………………2分∴CDF ABE ∠=∠…………………………………………………3分∵BD AE ⊥,BDCF ⊥∴︒=∠=∠90CFD AEB ……………………………………………4分在ABE ∆和CDF ∆中ABE CDF AEB CFD AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABE ∆≌CDF ∆(AAS )……………………………………………8分∴DF BE =……………………………………10分22.解:连接AC ………………………………………………1分∵︒=∠90ABC ,1=AB ,2=BC ,∴522=+=BC AB AC ………………………………………………3分在ACD ∆中,94522=+=+CD AC由92=AD ,得222AD CD AC =+……………………………………………5分∴︒=∠90ACD ……………………………………………7分∴CD AC BC AB S ABCD ∙+∙=2121四边形……………………………8分25212121⨯⨯+⨯⨯=51+=∴四边形ABCD 的面积是51+……………………………………10分23.(1)证明:∵6=AB ,8=BC ,10=AC ∴222AC BC AB =+………………………2分∴︒=∠90ABC ……………………………………4分∵四边形ABCD 是平行四边形∴四边形ABCD 是矩形……………………………………6分(2)证明:∵四边形ABCD 是矩形∴10==AC BD ……………………………………10分24.(1)证明:∵△ABC 与△CDE 都是等边三角形∴BC AC AB ==,EC DC DE ==……………………2分∵点E ,F 分别为AC ,BC 的中点∴12EF AB =,AC EC 1=,BC FC 1=……………………4分∴FC EC EF ==∴DCED FC EF ===∴四边形EFCD 是菱形……………………………………5分(2)解:连接DF 交EC 于点G∵四边形EFCD 是菱形∴EC DF ⊥,FGDF 2=……………………………………7分∵421==AB EF ,AB EF //∴︒=∠=∠60A FEG ,……………………………………8分∴在EFG Rt ∆中,30EFG ∠=︒,∴221==EF EG武清区八年级期中数学练习卷答案第页共4页3由勾股定理得32=FG ∴34=DF ……………………10分25.(1)证明:∵四边形ABCD 是正方形∴BC AB ⊥,︒=∠90B ……………………1分∵AB EF ⊥,BCEG ⊥∴︒=∠=∠90EGB EFB ……………………3分∴四边形BFEG 是矩形……………………4分(2)解∵正方形ABCD 的周长是cm40∴cm10=AB ……………………5分∵四边形ABCD 是正方形∴AEF ∆为等腰直角三角形……………………6分∴EFAF =∴矩形BFEG 的周长=)(2)(2BF AF BF EF +=+=cm202=AB ……………8分(3)若要四边形BFEG 是正方形只需BFEF =……………………9分∵EF AF =,cm10=AB ∴cm 5=AF 时,四边形BFEG 是正方形……………………10分。

天津市蓟县2018年八年级下期中数学试卷及答案

天津市蓟县2018年八年级下期中数学试卷及答案

2015-2016学年天津市蓟县八年级(下)期中数学试卷一、选择题:本题包括12小题,每小题3分,共36分.1.下列式子一定是二次根式的是()A.B.C.D.2.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>53.下列二次根式中属于最简二次根式的是()A.B.C.D.4.若有意义,则m能取的最小整数值是()A.﹣1 B.0 C.1 D.25.下列计算错误的是()A.B.C. D.6.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、137.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36° C.72° D.144°8.如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC9.若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是()A.正方形B.对角线相等的四边形C.菱形D.对角线相互垂直的四边形10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A.16πB.12π C.10π D.8π11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6412.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为()A.B.C.2 D.1二、填空题:本题包括6小题,每小题3分,共18分.13.代数式有意义的条件是.14.已知n是正整数,是整数,则n的最小值是.15.已知实数x、y满足+|y+3|=0,则x+y的值为.16.如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是(只填写序号).18.有5个边长为1的正方形,排列形式如图:请把它们分割后拼接成一个大正方形.①大正方形的边长为.②画出分割线及拼接图.三、解答题:共46分.19.计算:(1)(2)20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.21.已知x=+,y=﹣,求x3y﹣xy3的值.22.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.23.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.24.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年天津市蓟县八年级(下)期中数学试卷参考答案与试题解析一、选择题:本题包括12小题,每小题3分,共36分.1.下列式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=±1时,x2﹣2=﹣1<0,无意义,此选项错误;B、当x=1时,﹣x﹣2=﹣3<0,无意义,此选项错误;C、当x=﹣1时,无意义,此选项错误;D、∵x2+2≥2,∴符合二次根式定义,此选项正确;故选:D.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根.2.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵ =x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法: =a(a≥0),=﹣a(a≤0).3.下列二次根式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数含开的尽的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含开的尽的因数或因式,故D错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式的两个条件:被开方数不含分母,被开方数不含开的尽的因数或因式.4.若有意义,则m能取的最小整数值是()A.﹣1 B.0 C.1 D.2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2m+1≥0,解得m≥﹣,所以,m能取的最小整数值是0.故选B.【点评】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.下列计算错误的是()A.B.C. D.【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式==,所以A选项的计算正确;B、与不能合并,所以B选项的计算错误;C、原式==3,所以C选项的计算正确;D、原式=2,所以D选项的计算正确.故选B.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、13【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18°B.36° C.72° D.144°【考点】平行四边形的性质;平行线的性质.【专题】计算题.【分析】关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.【点评】本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.8.如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC【考点】平行四边形的性质.【分析】根据平行四边形的性质分别判断各选项即可.【解答】解:A、AC≠BD,故A选项错误;B、AC不垂直于BD,故B选项错误;C、AB=CD,利用平行四边形的对边相等,故C选项正确;D、AB≠BC,故D选项错误;故选:C.【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.9.若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是()A.正方形B.对角线相等的四边形C.菱形D.对角线相互垂直的四边形【考点】中点四边形.【分析】这个四边形ABCD的对角线AC和BD的关系是互相垂直.理由为:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选D.【点评】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A.16πB.12π C.10π D.8π【考点】勾股定理.【分析】首先根据勾股定理求出AB的长,再根据半圆的面积公式解答即可.【解答】解:根据题意画图如下;在Rt△ABC中,AB===8,则S半圆=π•42=8π.故答案为:故选D.【点评】此题考查了勾股定理,用到的知识点是勾股定理以及圆的面积公式,关键是根据勾股定理求出半圆的半径.11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.64【考点】勾股定理.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选D.【点评】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.12.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为()A.B.C.2 D.1【考点】翻折变换(折叠问题).【分析】设DF=FD′=x,在RT△CFD′中利用勾股定理求出x即可解决问题.【解答】解:如图,∵△EFD′是由△EFD翻折得到,∴DF=FD′,设DF=FD′=x,在RT△CFD′中,∵∠C=90°,CF=6﹣x,CD′=BC=4,∴x2=42+(6﹣x)2,∴x=,∴CF=6﹣x=.故选B.【点评】本题考查翻折变换、勾股定理,解题的关键是利用翻折不变性解决问题,学会转化的思想,利用方程的去思考问题,属于中考常考题型.二、填空题:本题包括6小题,每小题3分,共18分.13.代数式有意义的条件是x>﹣2 .【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2>0,解得x>﹣2.故答案为:x>﹣2.【点评】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义,分式的分母不等于0.14.已知n是正整数,是整数,则n的最小值是 3 .【考点】二次根式的定义.【分析】首先把进行化简,然后确定n的值.【解答】解: ==3,∵是整数,∴n的最小值是3,故答案为:3.【点评】此题主要考查了二次根式的定义,关键是掌握=|a|.15.已知实数x、y满足+|y+3|=0,则x+y的值为﹣2 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,x+y=1+(﹣3)=﹣2.故答案为:﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是DC=EB(答案不唯一).【考点】全等三角形的判定.【专题】开放型.【分析】要使△CDF≌△BEF,根据全等三角形的判定:三组对应边分别相等的两个三角形全等;有两边及其夹角对应相等的两个三角形全等;有两角及其夹边对应相等的两个三角形全等.注意本题答案不唯一.【解答】解:补充DC=EB在△CDF和△BEF中,,△CDF≌△BEF(AAS).故答案为:DC=EB(答案不唯一).【点评】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是①②③⑤(只填写序号).【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】由已知得AB=AD,AE=AF,利用“HL”可证△ABE≌△ADF,利用全等的性质判断①②③正确,在AD上取一点G,连接FG,使AG=GF,由正方形,等边三角形的性质可知∠DAF=15°,从而得∠DGF=30°,设DF=1,则AG=GF=2,DG=,分别表示AD,CF,EF的长,判断④⑤的正确性.【解答】解:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°,∴①②③正确,在AD上取一点G,连接FG,使AG=GF,则∠DAF=∠GFA=15°,∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵S△ABE+S△ADF=2×AD×DF=2+,S△CEF=CE×CF==2+,∴⑤正确.故答案为:①②③⑤.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.18.有5个边长为1的正方形,排列形式如图:请把它们分割后拼接成一个大正方形.①大正方形的边长为.②画出分割线及拼接图.【考点】图形的剪拼;正方形的性质.【分析】①利用已知可得正方形面积为5,即可得出边长;②利用所求边长结合勾股定理得出符合题意的图形.【解答】解:①大正方形的边长为:;故答案为:;②如图所示:【点评】此题主要考查了图形的剪拼以及正方形的性质,正确得出正方形的边长是解题关键.三、解答题:共46分.19.计算:(1)(2)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,再进行计算.(2)观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:(1)原式=4+3﹣2+4=7;(2)原式=(8)=﹣.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=AC•CD=×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.21.已知x=+,y=﹣,求x3y﹣xy3的值.【考点】因式分解的应用.【分析】首先把代数式利用提取公因式法和平方差公式因式分解,进一步代入求得答案即可.【解答】解:∵x=+,y=﹣,∴x3y﹣xy3=xy(x+y)(x﹣y)=(+)(﹣)×2×2=4.【点评】此题考查因式分解的实际运用,掌握提取公因式法和平方差公式因式分解是解决问题的关键.22.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质可得AD=BC,AD∥BC,再由BE=DF可证出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.23.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形性质得AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,然后在Rt△ABE中利用勾股定理可计算出BE.【解答】解:∵四边形ABCD为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,∴∠DAC=∠D′A C,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,在Rt△ABE中,∵AB2+BE2=AE2,∴32+x2=(4﹣x)2,解得x=,即BE的长为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.24.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质;矩形的判定.【分析】(1)利用平行四边形的性质得出∠BAF=∠CFA,进而得出△AEB≌△FEC(AAS),求出答案;(2)首先得出四边形ABFC是平行四边形,进而得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAF=∠CFA.∵E为BC的中点,∴BE=CE.在△AEB和△FEC中,,∴△AEB≌△FEC(AAS)∴AB=CF;(2)解:当BC=AF时,四边形ABFC是矩形,理由:∵AB=CF,AB‖CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,正确得出△AEB≌△FEC (AAS)是解题关键.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键.。

蓟州区2018~2019学年度第二学期期中考试八年级数学答案

蓟州区2018~2019学年度第二学期期中考试八年级数学答案

2018-2019学年度第二学期期中练习卷八年级数学参考答案及评分标准一、选择题:1. C;2. A;3. D;4. B;5. A;6. B;7. B;8. A;9. D;10.D;11. C;12.C.二、填空题:13.0;14.4;15.24;16.6;17.答案不唯一,如DE=EF或CD∥BF或CDE F∠=∠或C CBF∠=∠;18. 10092.三、解答题:19.解:(1)(34820)(35212)++-= 123253543++-…………………………………2分= 8355+…………………………………………………4分(2)118312242÷+⨯-= 6626+-……………………………………………………2分=0 ……………………………………………………………………4分20.解:(1)如图(1)4分,(2)答案不唯一,如图(2)4分.AB图(1)图(2)21.证明:∵四边形ABCD 是平行四边形,∴D B ∠=∠,DC AB =,//DC AB ;……………………………………3分∴F E ∠=∠. …………………………………………………………………4分∵CF = AE ,∴DC CF AE AB +=+ ,即DF =BE . ……………………………………5分在FDM ∆和EBN ∆中,D BDF BE F E ∠=∠⎧⎪=⎨⎪∠=∠⎩∴FDM ∆≌EBN ∆(ASA ). ……………………………………………8分∴DM BN =. …………………………………………………………………10分22.解:连接AC …………………………………………………………………………1分∵︒=∠90ABC ,3AB =,2=BC ,∴AC ==3分 在ACD ∆中,5AD =,CD =,∴22131225AC CD +=+=. ……………………………………………………4分 由225AD =,得222AD CD AC =+.……………………………………………5分 ∴︒=∠90ACD . …………………………………………………………………7分 ∴1122AC CD AB BC =•-•该图形的面积…………………………………………9分 113222=⨯⨯ 3(cm 2).………………………………………………10分23.(1)证明:连接OE. ………………………………………1分∵AE EC ⊥,BE ED ⊥, ∴AEC ∆与BED ∆都为直角三角形. ………………2分∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =. …………………………3分∴OE 是直角三角形AEC ∆与BED ∆斜边上的中线.∴12OE AC =,12OE BD =. …………………………………………………4分 ∴AC BD =. …………………………………………………………………5分∴□ABCD 是矩形.………………………………………………………………6分(2)解:∵OA OE =,60EAC ∠=︒,∴△AOE 是等边三角形.∴OA AE =…………………………………………………………………7分∵3AE =,∴26AC AE ==. …………………………………………………………8分∵BD AC =,∴6BD =. ………………………………………………………………10分24.(1)解:∵四边形ABCD 是菱形,∴AD AB =,//DC AB .∴ACD CAB ∠=∠. ……………………………………………………………1分又 ∵ACD ABF ∠=∠,∴CAB ABF ∠=∠. ∴ MA MB =. …………………………………………………………………2分又 ∵ME AB ⊥ , ∴12AE BE AB == . …………………………………………………………3分 ∴2AD AB AE ==. …………………………………………………………4分∵2AE =,∴4AD =. …………………………………………………………………5分(2)证明:∵四边形ABCD 是菱形,∴AD AB =,FAM EAM ∠=∠. ……………………………………………6分 ∵点F 为AD 的中点, ∴12AF DF AD ==. 又 ∵12AE BE AB ==, ∴ AF AE =. …………………………………………………………………7分又 ∵AM AM =, ∴AMF ∆≌AME ∆. ……………………………………………………………8分∴AFM AEM ∠=∠. ……………………………………………………………9分∵ME AB ⊥,∴90AEM ∠=︒.∴ 90AFM ∠=︒.∴BF AD ⊥.…………………………………………………………………10分25.(1)证明:∵正方形ABCD 的对角线AC ,BD 相交于点O ,∴AC BD ⊥,OD OA =.………………………………………………………1分∴90DOF AOE ∠=∠=︒.………………………………………………………2分∵DM AE ⊥,DFO AFM ∠=∠,∴ODF OAE ∠=∠.………………………………………………………………3分 ∴ODF ∆≌OAE ∆.………………………………………………………………4分∴OE OF =. ………………………………………………………………………5分(2)结论:“OE = OF ”仍然成立………………………………………………………6分证明:∵正方形ABCD 的对角线AC ,BD 相交于点O ,∴AC BD ⊥,OD OA =.∴90DOF AOE ∠=∠=︒.∵DM AE ⊥,MAF OAE ∠=∠,∴F E ∠=∠.∴ODF ∆≌OAE ∆.…………………………………………………………………9分∴OE OF =. ………………………………………………………………………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年天津市蓟县八年级(下)期中数学试卷一、选择题:本题包括12小题,每小题3分,共36分.1.下列式子一定是二次根式的是()A.B.C.D.2.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>53.下列二次根式中属于最简二次根式的是()A. B.C.D.4.若有意义,则m能取的最小整数值是()A.﹣1 B.0 C.1 D.25.下列计算错误的是()A.B.C. D.6.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、137.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18° B.36° C.72° D.144°8.如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC9.若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是()A.正方形B.对角线相等的四边形C.菱形 D.对角线相互垂直的四边形10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A.16π B.12π C.10π D.8π11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.6412.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为()A.B.C.2 D.1二、填空题:本题包括6小题,每小题3分,共18分.13.代数式有意义的条件是.14.已知n是正整数,是整数,则n的最小值是.15.已知实数x、y满足+|y+3|=0,则x+y的值为.16.如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是(只填写序号).18.有5个边长为1的正方形,排列形式如图:请把它们分割后拼接成一个大正方形.①大正方形的边长为.②画出分割线及拼接图.三、解答题:共46分.19.计算:(1)(2)20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.21.已知x=+,y=﹣,求x3y﹣xy3的值.22.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.23.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.24.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.2015-2016学年天津市蓟县八年级(下)期中数学试卷参考答案与试题解析一、选择题:本题包括12小题,每小题3分,共36分.1.下列式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=±1时,x2﹣2=﹣1<0,无意义,此选项错误;B、当x=1时,﹣x﹣2=﹣3<0,无意义,此选项错误;C、当x=﹣1时,无意义,此选项错误;D、∵x2+2≥2,∴符合二次根式定义,此选项正确;故选:D.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根.2.若=x﹣5,则x的取值范围是()A.x<5 B.x≤5 C.x≥5 D.x>5【考点】二次根式的性质与化简.【专题】计算题.【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵ =x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法: =a(a≥0),=﹣a(a≤0).3.下列二次根式中属于最简二次根式的是()A. B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数含开的尽的因数或因式,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母,被开方数不含开的尽的因数或因式,故C正确;D、被开方数含开的尽的因数或因式,故D错误;故选:C.【点评】本题考查了最简二次根式,最简二次根式的两个条件:被开方数不含分母,被开方数不含开的尽的因数或因式.4.若有意义,则m能取的最小整数值是()A.﹣1 B.0 C.1 D.2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,2m+1≥0,解得m≥﹣,所以,m能取的最小整数值是0.故选B.【点评】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.5.下列计算错误的是()A.B.C. D.【考点】二次根式的混合运算.【专题】计算题.【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的加减法对B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的性质对D进行判断.【解答】解:A、原式==,所以A选项的计算正确;B、与不能合并,所以B选项的计算错误;C、原式==3,所以C选项的计算正确;D、原式=2,所以D选项的计算正确.故选B.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.下列每一组数据中的三个数值分别为三角形的三边长,不能构成直角三角形的是()A.3、4、5 B.6、8、10 C.、2、D.5、12、13【考点】勾股定理的逆定理.【分析】欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、32+42=52,故是直角三角形,故A选项不符合题意;B、62+82=102,故是直角三角形,故B选项不符合题意;C、()2+22≠()2,故不是直角三角形,故C选项符合题意;D、52+122=132,故是直角三角形,故D选项不符合题意.故选C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.7.已知平行四边形ABCD中,∠B=4∠A,则∠C=()A.18° B.36° C.72° D.144°【考点】平行四边形的性质;平行线的性质.【专题】计算题.【分析】关键平行四边形性质求出∠C=∠A,BC∥AD,推出∠A+∠B=180°,求出∠A的度数,即可求出∠C.【解答】解:∵四边形ABCD是平行四边形,∴∠C=∠A,BC∥AD,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=36°,∴∠C=∠A=36°,故选B.【点评】本题考查了平行四边形性质和平行线的性质的应用,主要考查学生运用平行四边形性质进行推理的能力,题目比较好,难度也不大.8.如图,▱ABCD中,下列说法一定正确的是()A.AC=BD B.AC⊥BD C.AB=CD D.AB=BC【考点】平行四边形的性质.【分析】根据平行四边形的性质分别判断各选项即可.【解答】解:A、AC≠BD,故A选项错误;B、AC不垂直于BD,故B选项错误;C、AB=CD,利用平行四边形的对边相等,故C选项正确;D、AB≠BC,故D选项错误;故选:C.【点评】此题主要考查了平行四边形的性质,正确把握其性质是解题关键.9.若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是()A.正方形B.对角线相等的四边形C.菱形 D.对角线相互垂直的四边形【考点】中点四边形.【分析】这个四边形ABCD的对角线AC和BD的关系是互相垂直.理由为:根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.【解答】证明:∵四边形EFGH是矩形,∴∠FEH=90°,又∵点E、F、分别是AD、AB、各边的中点,∴EF是三角形ABD的中位线,∴EF∥BD,∴∠FEH=∠OMH=90°,又∵点E、H分别是AD、CD各边的中点,∴EH是三角形ACD的中位线,∴EH∥AC,∴∠OMH=∠COB=90°,即AC⊥BD.故选D.【点评】此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.这类题的一般解法是:借助图形,充分抓住已知条件,找准问题的突破口,由浅入深多角度,多侧面探寻,联想符合题设的有关知识,合理组合发现的新结论,围绕所探结论环环相加,步步逼近,所探结论便会被“逼出来”.10.在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为()A.16π B.12π C.10π D.8π【考点】勾股定理.【分析】首先根据勾股定理求出AB的长,再根据半圆的面积公式解答即可.【解答】解:根据题意画图如下;在Rt△ABC中,AB===8,则S半圆=π•42=8π.故答案为:故选D.【点评】此题考查了勾股定理,用到的知识点是勾股定理以及圆的面积公式,关键是根据勾股定理求出半圆的半径.11.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()A.4 B.8 C.16 D.64【考点】勾股定理.【分析】根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【解答】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2﹣PQ2=289﹣225=64,则正方形QMNR的面积为64.故选D.【点评】此题考查了勾股定理,以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.12.如图,将矩形纸片ABCD沿EF折叠,使D点与BC边的中点D重合,若BC=8,CD=6,则CF的长为()A.B.C.2 D.1【考点】翻折变换(折叠问题).【分析】设DF=FD′=x,在RT△CFD′中利用勾股定理求出x即可解决问题.【解答】解:如图,∵△EFD′是由△EFD翻折得到,∴DF=FD′,设DF=FD′=x,在RT△CFD′中,∵∠C=90°,CF=6﹣x,CD′=BC=4,∴x2=42+(6﹣x)2,∴x=,∴CF=6﹣x=.故选B.【点评】本题考查翻折变换、勾股定理,解题的关键是利用翻折不变性解决问题,学会转化的思想,利用方程的去思考问题,属于中考常考题型.二、填空题:本题包括6小题,每小题3分,共18分.13.代数式有意义的条件是x>﹣2 .【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2>0,解得x>﹣2.故答案为:x>﹣2.【点评】本题考查了二次根式的意义和性质,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义,分式的分母不等于0.14.已知n是正整数,是整数,则n的最小值是 3 .【考点】二次根式的定义.【分析】首先把进行化简,然后确定n的值.【解答】解: ==3,∵是整数,∴n的最小值是3,故答案为:3.【点评】此题主要考查了二次根式的定义,关键是掌握=|a|.15.已知实数x、y满足+|y+3|=0,则x+y的值为﹣2 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,x﹣1=0,y+3=0,解得x=1,y=﹣3,所以,x+y=1+(﹣3)=﹣2.故答案为:﹣2.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.如图,已知菱形ABCD,E是AB延长线上一点,连接DE交BC于点F,在不添加任何辅助线的情况下,请补充一个条件,使△CDF≌△BEF,这个条件是DC=EB(答案不唯一).【考点】全等三角形的判定.【专题】开放型.【分析】要使△CDF≌△BEF,根据全等三角形的判定:三组对应边分别相等的两个三角形全等;有两边及其夹角对应相等的两个三角形全等;有两角及其夹边对应相等的两个三角形全等.注意本题答案不唯一.【解答】解:补充DC=EB在△CDF和△BEF中,,△CDF≌△BEF(AAS).故答案为:DC=EB(答案不唯一).【点评】本题考查了全等三角形的判定;三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.17.如图,正方形ABCD中,点E、F分别在边BC、CD上,且AE=EF=FA.下列结论:①△ABE≌△ADF;②CE=CF;③∠AEB=75°;④BE+DF=EF;⑤S△ABE+S△ADF=S△CEF,其中正确的是①②③⑤(只填写序号).【考点】正方形的性质;全等三角形的判定与性质.【专题】压轴题.【分析】由已知得AB=AD,AE=AF,利用“HL”可证△ABE≌△ADF,利用全等的性质判断①②③正确,在AD上取一点G,连接FG,使AG=GF,由正方形,等边三角形的性质可知∠DAF=15°,从而得∠DGF=30°,设DF=1,则AG=GF=2,DG=,分别表示AD,CF,EF的长,判断④⑤的正确性.【解答】解:∵AB=AD,AE=AF=EF,∴△ABE≌△ADF(HL),△AEF为等边三角形,∴BE=DF,又BC=CD,∴CE=CF,∴∠BAE=(∠BAD﹣∠EAF)=(90°﹣60°)=15°,∴∠AEB=90°﹣∠BAE=75°,∴①②③正确,在AD上取一点G,连接FG,使AG=GF,则∠DAF=∠GFA=15°,∴∠DGF=2∠DAF=30°,设DF=1,则AG=GF=2,DG=,∴AD=CD=2+,CF=CE=CD﹣DF=1+,∴EF=CF=+,而BE+DF=2,∴④错误,⑤∵S△ABE+S△ADF=2×AD×DF=2+,S△CEF=CE×CF==2+,∴⑤正确.故答案为:①②③⑤.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.18.有5个边长为1的正方形,排列形式如图:请把它们分割后拼接成一个大正方形.①大正方形的边长为.②画出分割线及拼接图.【考点】图形的剪拼;正方形的性质.【分析】①利用已知可得正方形面积为5,即可得出边长;②利用所求边长结合勾股定理得出符合题意的图形.【解答】解:①大正方形的边长为:;故答案为:;②如图所示:【点评】此题主要考查了图形的剪拼以及正方形的性质,正确得出正方形的边长是解题关键.三、解答题:共46分.19.计算:(1)(2)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,再进行计算.(2)观察,可以首先把括号内的化简,合并同类项,然后相乘.【解答】解:(1)原式=4+3﹣2+4=7;(2)原式=(8)=﹣.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.20.如图,在四边形ABCD中,已知AB=3,BC=4,CD=12,AD=13,∠B=90°.求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACD是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.【解答】解:连结AC,在△ABC中,∵∠B=90°,AB=3,BC=4,∴AC==5,S△ABC=AB•BC=×3×4=6,在△ACD中,∵AD=13,AC=5,CD=12,∴CD2+AC2=AD2,∴△ACD是直角三角形,∴S△ACD=AC•CD=×5×12=30.∴四边形ABCD的面积=S△ABC+S△ACD=6+30=36.【点评】本题考查了勾股定理,勾股定理的逆定理的应用,解此题的关键是能求出△ABC和△CAD 的面积,注意:如果一个三角形的两边的平方和等于第三边的平方,那么这个三角形是直角三角形.21.已知x=+,y=﹣,求x3y﹣xy3的值.【考点】因式分解的应用.【分析】首先把代数式利用提取公因式法和平方差公式因式分解,进一步代入求得答案即可.【解答】解:∵x=+,y=﹣,∴x3y﹣xy3=xy(x+y)(x﹣y)=(+)(﹣)×2×2=4.【点评】此题考查因式分解的实际运用,掌握提取公因式法和平方差公式因式分解是解决问题的关键.22.如图,在▱ABCD中,已知点E、F分别在边BC和AD上,且BE=DF.求证:AE=CF.【考点】平行四边形的性质;全等三角形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质可得AD=BC,AD∥BC,再由BE=DF可证出AF=EC,进而可得四边形AECF是平行四边形,从而可得AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴AF∥EC,∵BE=DF,∴AF=EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形对边平行且相等,一组对边平行且相等的四边形是平行四边形.23.如图所示,四边形ABCD是矩形,把△ACD沿AC折叠到△ACD′,AD′与BC交于点E,若AD=4,DC=3,求BE的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形性质得AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,再根据折叠性质得∠DAC=∠D′AC,而∠DAC=∠ACB,则∠D′AC=∠ACB,所以AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,然后在Rt△ABE中利用勾股定理可计算出BE.【解答】解:∵四边形ABCD为矩形,∴AB=DC=3,BC=AD=4,AD∥BC,∠B=90°,∵△ACD沿AC折叠到△ACD′,AD′与BC交于点E,∴∠DAC=∠D′AC,∵AD∥BC,∴∠DAC=∠ACB,∴∠D′AC=∠ACB,∴AE=EC,设BE=x,则EC=4﹣x,AE=4﹣x,在Rt△ABE中,∵AB2+BE2=AE2,∴32+x2=(4﹣x)2,解得x=,即BE的长为.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质和勾股定理.24.如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.【考点】平行四边形的性质;全等三角形的判定与性质;矩形的判定.【分析】(1)利用平行四边形的性质得出∠BAF=∠CFA,进而得出△AEB≌△FEC(AAS),求出答案;(2)首先得出四边形ABFC是平行四边形,进而得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAF=∠CFA.∵E为BC的中点,∴BE=CE.在△AEB和△FEC中,,∴△AEB≌△FEC(AAS)∴AB=CF;(2)解:当BC=AF时,四边形ABFC是矩形,理由:∵AB=CF,AB‖CF,∴四边形ABFC是平行四边形,∵BC=AF,∴四边形ABFC是矩形.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,正确得出△AEB ≌△FEC(AAS)是解题关键.25.如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值,如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.【考点】相似形综合题.【分析】(1)利用t表示出CD以及AE的长,然后在直角△CDF中,利用直角三角形的性质求得DF的长,即可证明;(2)易证四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,据此即可列方程求得t 的值;(3)分两种情况讨论即可求解.【解答】(1)证明:∵直角△ABC中,∠C=90°﹣∠A=30°.∵CD=4t,AE=2t,又∵在直角△CDF中,∠C=30°,∴DF=CD=2t,∴DF=AE;解:(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,▱AEFD是菱形;(3)当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°.当∠DEF=90°时,DE⊥EF,∵四边形AEFD是平行四边形,∴AD∥EF,∴DE⊥AD,∴△ADE是直角三角形,∠ADE=90°,∵∠A=60°,∴∠DEA=30°,∴AD=AE,AD=AC﹣CD=60﹣4t,AE=DF=CD=2t,∴60﹣4t=t,解得t=12.综上所述,当t=时△DEF是直角三角形(∠EDF=90°);当t=12时,△DEF是直角三角形(∠DEF=90°).【点评】本题考查了直角三角形的性质,菱形的判定与性质,正确利用t表示DF、AD的长是关键.21。

相关文档
最新文档