2019人教版八年级数学上册总复习专项测试题(一)含答案

合集下载

人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)

人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)

人教版数学八年级上册第十四章《整式的乘法与因式分解》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.(2021广东深圳中考)下列运算中,正确的是()A.2a2·a=2a3B.(a2)3=a5C.a2+a3=a5D.a6÷a2=a32.(2021山东泰安中考)下列运算正确的是()A.2x2+3x3=5x5B.(-2x)3=-6x3C.(x+y)2=x2+y2D.(3x+2)(2-3x)=4-9x23.(2019湖南株洲中考)下列各选项中因式分解正确的是()A.x2-1=(x-1)2B.a3-2a2+a=a2(a-2)C.-2y2+4y=-2y(y+2)D.m2n-2mn+n=n(m-1)24.若a+b=3,x+y=1,则a2+2ab+b2-x-y+2 015的值为()A.2 023B.2 021C.2 020D.2 0195.(2021江苏南通如皋期末)如图,由4个全等的小长方形与1个小正方形密铺成正方形图案,该图案的面积为64,小正方形的面积为9,若分别用x,y(x>y)表示小长方形的长和宽,则下列关系式中不正确的是()A.x+y=8B.x-y=3C.4xy+9=64D.x2+y2=256.若3x2-5x+1=0,则5x(3x-2)-(3x+1)(3x-1)=()A.-1B.0C.1D.-27.已知多项式ax+b与2x2+2x+3的乘积展开式中不含x的一次项,且常数项为9,则a b的值为()A.18B.-18C.-8D.-68.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线剪开拼成一个长方形(不重叠,无缝隙),则长方形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+9)cm2D.(6a+15)cm29.(2019四川资阳中考)4张长为a、宽为b(a>b)的长方形纸片按如图所示的方式拼成一个边长为a+b的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若S1=2S2,则a、b满足()A.2a=5bB.2a=3bC.a=3bD.a=2b10.如图,长方形ABCD的周长是10 cm,分别以AB,AD为边向外作正方形ABEF和正方形ADGH,若正方形ABEF和正方形ADGH的面积之和为17 cm2,则长方形ABCD的面积是()A.3 cm2B.4 cm2C.5 cm2D.6 cm2二、填空题(每小题3分,共24分)11.(2021山东临沂中考)分解因式:2a3-8a=.12.(2022四川宜宾期末)化简:(8x3y3-4x2y2)÷2xy2=.13.(2019四川乐山中考)若3m=9n=2,则3m+2n=.14.(2022独家原创)如图,小明制作了一块长方形滑板模具,其长为2a,宽为a,中间开出两个边长为b的正方形孔.当a=15.7,b=4.3时,阴影部分的面积为.15.已知a2-6a+9与|b-1|互为相反数,则a3b3+2a2b2+ab的值是.16.(2022云南昆明三中期末)若(a+b)2=17,(a-b)2=11,则a2+b2=.17.李老师做了个长方形教具,其中一边长为2a+b,其邻边长为a-b,则该长方形的面积为.18.若(x2-2x-3)(x3+5x2-6x+7)=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a0+a1+a2+a3+a4+a5=.三、解答题(共46分)19.(2021江苏苏州中学期末)(6分)计算:(1)-2x3y2·(x2y3)2;(2)3x·x5+(-2x3)2-x12÷x6.20.(6分)计算:(1)(3x-2)(2x+3)-(x-1)2;(2)(x+2y)(x-2y)-2y(x-2y)+2xy. 21.(8分)先化简,再求值: (1)(2+x)(2-x)+(x-1)(x+5),其中x=32; (2)(2a-b)2-(4a+b)(a-b)-2b 2,其中a=12,b=-13.22.(2021北京一零一中学期末)(8分)先阅读下面的内容,再解决问题: 例题:若m 2+2mn+2n 2-6n+9=0,求m 和n 的值. 解:∵m 2+2mn+2n 2-6n+9=0, ∴(m 2+2mn+n 2)+(n 2-6n+9)=0, ∴(m+n)2+(n-3)2=0,∴m+n=0,n-3=0,∴m=-3,n=3. 问题:(1)若x 2+2y 2-2xy+6y+9=0,求x 2的值;(2)已知△ABC 的三边长a,b,c 都是正整数,且满足a 2+b 2-6a-4b+13+|3-c|=0,请问△ABC 是什么形状的三角形?23.(2022河南郑州实验学校期末)(8分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是;(请选择正确的一个)A.a2-2ab+b2=(a-b)2B.b2+ab=b(a+b)C.a2-b2=(a+b)(a-b)D.a2+ab=a(a+b)(2)应用你从(1)中选出的等式,完成下列各题:①已知x2-4y2=12,x+2y=4,求x的值;②计算:(1−122)(1−132)(1−142)·…·(1−12 0202)(1−12 0212).24.(10分) 许多恒等式可以借助图形的面积关系直观表达,如图①,根据图中面积关系可以得到(2m+n)(m+n)=2m2+3mn+n2.(1)如图②,根据图中面积关系写出一个关于m、n的等式:;,则(a+b)2=;(2)利用(1)中的等式求解:若a-b=2,ab=54(3)小明用8个全等的长方形(宽为a,长为b)拼图,拼出了如图甲、乙所示的两种图案,图案甲是一个大的正方形,中间的阴影部分是边长为3的小正方形;图案乙是一个大的长方形,求a,b的值.答案全解全析1.A2a2·a=2a3,原计算正确,(a2)3=a6,原计算错误,a2与a3不是同类项,不能合并,a6÷a2=a4,原计算错误,故选A.2.D A选项,2x2与3x3不是同类项,不能合并,故该选项计算错误;B选项,(-2x)3=-8x3,故该选项计算错误;C选项,(x+y)2=x2+2xy+y2,故该选项计算错误;D选项,(3x+2)(2-3x)=22-(3x)2=4-9x2,故该选项计算正确,故选D.3.D A.x2-1=(x+1)(x-1),故此选项错误;B.a3-2a2+a=a(a2-2a+1)=a(a-1)2,故此选项错误;C.-2y2+4y=-2y(y-2),故此选项错误;D.m2n-2mn+n=n(m2-2m+1)=n(m-1)2,故此选项正确.故选D.4.A a2+2ab+b2-x-y+2 015=(a+b)2-(x+y)+2 015,当a+b=3,x+y=1时,原式=32-1+2 015=8+2 015=2 023.故选A.5.D如图,∵图案的面积为64,小正方形的面积为9,∴大正方形的边长为8,小正方形的边长为3,∴x+y=AQ+DQ=AD=8,因此选项A不符合题意;x-y=HP-EP=HE=3,因此选项B不符合题意;∵一个小长方形的面积为xy,∴4xy+9=64,因此选项C不符合题意;∵x+y=8,x-y=3,∴(x+y)2=64,(x-y)2=9,即x2+2xy+y2=64,x2-2xy+y2=9,∴x2+y2=73,2因此选项D符合题意.故选D.6.A∵3x2-5x+1=0,∴3x2-5x=-1,∴5x(3x-2)-(3x+1)(3x-1)=15x 2-10x-9x 2+1=6x 2-10x+1=2(3x 2-5x)+1=2×(-1)+1=-1.故选A. 7.C (ax+b)(2x 2+2x+3) =2ax 3+2ax 2+3ax+2bx 2+2bx+3b =2ax 3+(2a+2b)x 2+(3a+2b)x+3b,∵乘积展开式中不含x 的一次项,且常数项为9, ∴3a+2b=0且3b=9,∴a=-2,b=3, ∴a b =(-2)3=-8,故选C.8.D 长方形的面积为(a+4)2-(a+1)2=(a+4+a+1)(a+4-a-1)=3(2a+5)=(6a+15)cm 2.故选D. 9.D 由题图可知S 1=12b(a+b)×2+12ab×2+(a-b)2=a 2+2b 2,S 2=(a+b)2-S 1=(a+b)2-(a 2+2b 2) =2ab-b 2,∵S 1=2S 2,∴a 2+2b 2=2(2ab-b 2),整理得(a-2b)2=0,∴a-2b=0,∴a=2b.故选D. 10.B 设AB=x cm,AD=y cm,∵正方形ABEF 和正方形ADGH 的面积之和为17 cm 2,∴x 2+y 2=17, ∵长方形ABCD 的周长是10 cm, ∴2(x+y)=10,∴x+y=5,∵(x+y)2=x 2+2xy+y 2,∴25=17+2xy,∴xy=4, ∴长方形ABCD 的面积为4 cm 2,故选B. 11.2a(a+2)(a-2)解析 原式=2a(a 2-4)=2a(a+2)(a-2). 12.4x 2y-2x解析 原式=8x 3y 3÷2xy 2-4x 2y 2÷2xy 2=4x 2y-2x. 13.4解析 ∵3m =9n =2,∴3m+2n =3m ·32n =3m ·(32)n =3m ·9n =2×2=4. 14.456解析 阴影部分的面积=2a·a-2b 2=2(a 2-b 2)=2(a+b)(a-b), 当a=15.7,b=4.3时,阴影部分的面积=2(a+b)(a-b)=2×(15.7+4.3)×(15.7-4.3)=2×20×11.4=456.15.48解析 依题意得a 2-6a+9+|b-1|=0,即(a-3)2+|b-1|=0,则a-3=0,b-1=0,解得a=3,b=1,所以a 3b 3+2a 2b 2+ab=ab(a 2b 2+2ab+1)=ab(ab+1)2=3×(3+1)2=3×16=48. 16.14解析 (a+b)2=a 2+b 2+2ab=17①, (a-b)2=a 2+b 2-2ab=11②,①+②得2(a 2+b 2)=28,∴a 2+b 2=14. 17.2a 2-ab-b 2解析 该长方形的面积为(2a+b)(a-b)=2a 2-2ab+ab-b 2=2a 2-ab-b 2. 18.-28解析 ∵(x 2-2x-3)(x 3+5x 2-6x+7)=x 5+5x 4-6x 3+7x 2-2x 4-10x 3+12x 2-14x-3x 3-15x 2+18x-21=x 5+3x 4-19x 3+4x 2+4x-21=a 5x 5+a 4x 4+a 3x 3+a 2x 2+a 1x+a 0, ∴a 0=-21,a 1=4,a 2=4,a 3=-19,a 4=3,a 5=1, ∴a 0+a 1+a 2+a 3+a 4+a 5=-21+4+4-19+3+1=-28. 19.解析 (1)-2x 3y 2·(x 2y 3)2=-2x 3y 2·x 4y 6=-2x 7y 8. (2)3x·x 5+(-2x 3)2-x 12÷x 6=3x 6+4x 6-x 6=6x 6.20.解析 (1)原式=6x 2+9x-4x-6-x 2+2x-1=5x 2+7x-7. (2)原式=x 2-4y 2-2xy+4y 2+2xy=x 2. 21.解析 (1)(2+x)(2-x)+(x-1)(x+5) =4-x 2+x 2+5x-x-5=4x-1, 当x=32时,原式=4×32-1=5. (2)(2a-b)2-(4a+b)(a-b)-2b 2 =4a 2-4ab+b 2-(4a 2-3ab-b 2)-2b 2=-ab, 当a=12,b=-13时,原式=-12×(-13)=16. 22.解析 (1)∵x 2+2y 2-2xy+6y+9=0, ∴x 2-2xy+y 2+y 2+6y+9=0, ∴(x-y)2+(y+3)2=0,∴x-y=0,y+3=0,解得x=-3,y=-3,∴x 2=9. (2)∵a 2+b 2-6a-4b+13+|3-c|=0, ∴a 2-6a+9+b 2-4b+4+|3-c|=0, ∴(a-3)2+(b-2)2+|3-c|=0, ∴a-3=0,b-2=0,3-c=0, 解得a=3,b=2,c=3,∴a=c≠b, ∴△ABC 是等腰三角形.23.解析 (1)题图1中阴影部分的面积是a 2-b 2, 题图2的面积是(a+b)(a-b), 则a 2-b 2=(a+b)(a-b).故选C.(2)①∵x 2-4y 2=(x+2y)(x-2y)=12,x+2y=4, ∴12=4(x-2y),∴x-2y=3,联立{x +2y =4,x-2y =3,两方程相加得2x=7,解得x=72.②(1−122)(1−132)(1−142) (1)12 0202)(1−12 0212)=(1−12)(1+12)(1−13)(1+13)(1−14)(1+14)·…·(1−12 020)(1+12 020)(1−12 021)(1+12 021) =12×32×23×43×34×54×…×1 9992 020×2 0212 020×2 0202 021×2 0222 021=12×2 0222 021=1 0112 021. 24.解析 (1)由题图②中大正方形的面积等于各个小长方形和小正方形的面积之和,可得等式(m+n)2=4mn+(m-n)2.(2)由(1)中等式可得(a+b)2=(a-b)2+4ab. ∵a-b=2,ab=54,∴(a+b)2=22+4×54=9.(3)由题意得{b-2a =3,2b =3a +b,整理得{b-2a =3①,b-3a =0②,①-②,得a=3,把a=3代入②,得b-3×3=0,∴b=9,故a=3,b=9.第 11 页共 11。

人教版数学八年级上册代数经典集锦---一题多解(含答案)

人教版数学八年级上册代数经典集锦---一题多解(含答案)

2019--2020人教版数学八年级代数经典集锦---一题多解在初中几何的证明和求解中,需要培养学生严密推理论证能力、灵动转化变换思维等方面素养,而在初中代数的计算过程中,需要培养学生多角度、多维度思考问题,掌握整体与局部、特例分析等全方位能力,从而寻求结果,下面以一道经典例题的不同解法,展开思维训练。

1、已知:x y = - 2,则x 2-2xy-3y 2x 2-6xy-7y 2 = .解法一:令x=2,y=-1,则x 2-2xy-3y 2=22-2*2*(-1)-3*(-1)2=4+4-3=5,X 2-6xy-7y 2=22-6*2*(-1)-7*(-1)2=4+12-7=9,所以,原式=59 .李老师点评:本解法是最简单却学生最不容易想到的解法。

原式看起来很复杂,x,y 只给出了比例关系,没有给出具体数值,那么取特例也是满足题设要求的,所以,当没有寻找到更好的解决办法时,可以取特殊值进行计算。

解法二:由已知比例x y = - 2变形有:x=-2y ┅┅①将①带入原式有:x 2-2xy-3y 2=(-2y)2-2*(-2y)*y-3y 2=5y 2,X 2-6xy-7y 2=(-2y)2-6*(-2y)*y-7y 2=9y 2,x 2-2xy-3y 2x 2-6xy-7y 2 =59 .李老师点评:本解法使用了带入消元法进行解题,带入消元法是解决含有未知数类求值问题最基本的解题方法之一。

解法三:∵x y = - 2,∴x ≠0,y ≠0则将原式分子和分母同时除以y 2得到:x 2-2xy-3y 2x 2-6xy-7y 2 = = 59=李老师点评:本解法是一种技巧型解法,首先通过观察x,y 的取值情况以及原式中分子分母所含式子,我们会发现:x,y 都不等于0,同时分子分母其实每一项都是二次项(将x,y 都看作未知数),所以分子分母同时除以y2,便可以轻松的将原式化成已知条件中的样子,从而得解。

最新2019-2020年度人教版八年级数学上册《分式方程应用题》综合测试卷及解析-精品试题

最新2019-2020年度人教版八年级数学上册《分式方程应用题》综合测试卷及解析-精品试题

15.3 分式方程一、解答题1.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产多少个零件?2.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?3.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?4.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?5.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?6.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.7.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?8.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?9.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?10.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?11.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?13.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?14.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?15.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.16.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.17.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.18.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?19.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?20.某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?21.某市区一条主要街道的改造工程有甲、乙两个工程队投标.经测算:若由两个工程队合做,12天恰好完成;若两个队合做9天后,剩下的由甲队单独完成,还需5天时间,现需从这两个工程队中选出一个队单独完成,从缩短工期角度考虑,你认为应该选择哪个队?为什么?22.杨梅是漳州的特色时令水果,杨梅一上市,水果店的老板用1200元购进一批杨梅,很快售完;老板又用2500元购进第二批杨梅,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批杨梅每件进价多少元?(2)老板以每件150元的价格销售第二批杨梅,售出80%后,为了尽快售完,决定打折促销,要使第二批杨梅的销售利润不少于320元,剩余的杨梅每件售价至少打几折?(利润=售价﹣进价)23.某校选派一部分学生参加“六盘水市马拉松比赛”,要为每位参赛学生购买一顶帽子.商场规定:凡一次性购买200顶或200顶以上,可按批发价付款;购买200顶以下只能按零售价付款.如果为每位参赛学生购买1顶,那么只能按零售价付款,需用900元;如果多购买45顶,那么可以按批发价付款,同样需用900元.问:(1)参赛学生人数x在什么范围内?(2)若按批发价购买15顶与按零售价购买12顶的款相同,那么参赛学生人数x是多少?24.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?25.甲、乙两人准备整理一批新到的图书,甲单独整理需要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书需要多少分钟完工?26.2014年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行程约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.27.为弘扬中华民族传统文化,某校举办了“古诗文大赛”,并为获奖同学购买签字笔和笔记本作为奖品.1支签字笔和2个笔记本共8.5元,2支签字笔和3个笔记本共13.5元.(1)求签字笔和笔记本的单价分别是多少元?(2)为了激发学生的学习热情,学校决定给每名获奖同学再购买一本文学类图书,如果给每名获奖同学都买一本图书,需要花费720元;书店出台如下促销方案:购买图书总数超过50本可以享受8折优惠.学校如果多买12本,则可以享受优惠且所花钱数与原来相同.问学校获奖的同学有多少人?28.国家实施高效节能电器的财政补贴政策,某款空调在政策实施后.每购买一台,客户每购买一台可获得补贴500元.若同样用11万元所购买此款空调,补贴后可购买的台数比补贴前前多20%,则该款空调补贴前的售价为每台多少元?29.为了保护环境,某开发区综合治理指挥部决定购买A,B两种型号的污水处理设备共10台.已知用90万元购买A型号的污水处理设备的台数与用75万元购买B型号的污水处理设备的台数相同,每台设备价格及月处理污水量如下表所示:污水处理设备A型B型价格(万元/台)m m﹣3月处理污水量(吨/台)220 180(1)求m的值;(2)由于受资金限制,指挥部用于购买污水处理设备的资金不超过165万元,问有多少种购买方案?并求出每月最多处理污水量的吨数.30.列方程或方程组解应用题:小马自驾私家车从A地到B地,驾驶原来的燃油汽车所需油费108元,驾驶新购买的纯电动车所需电费27元,已知每行驶1千米,原来的燃油汽车所需的油费比新购买的纯电动汽车所需的电费多0.54元,求新购买的纯电动汽车每行驶1千米所需的电费.15.3 分式方程参考答案一、解答题1.某工厂一台机器的工作效率相当于一个工人工作效率的12倍,用这台机器生产60个零件比8个工人生产这些零件少用2小时,则这台机器每小时生产多少个零件?【解答】解:设一个工人每小时生产零件x个,则机器一个小时生产零件12x个,由题意得,﹣=2,解得:x=1.25,经检验:x=1.25是原分式方程的解,且符合题意,则12x=12×1.25=15.即这台机器每小时生产15个零件.故答案为:15.2.列分式方程解应用题:为绿化环境,某校在3月12日组织七、八年级学生植树.在植树过程中,八年级学生比七年级学生每小时多植10棵树,八年级学生植120棵树与七年级学生植100棵树所用时间相等,七年级学生和八年级学生每小时分别植多少棵树?【解答】解:设七年级学生每小时植x棵,则八年级每小时植(x+10)棵,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+10=50+10=60,答:七年级学生每小时植50棵,则八年级每小时植60棵.3.某水果店老板用400元购进一批葡萄,由于葡萄新鲜,很快售完,老板又用500元购进第二批葡萄,所购数量与第一批相同,但每千克比第一批多了2元.(1)求:第一批葡萄进价每千克多少元?(请列方程求解)(2)若水果店老板以每千克11元的价格将两批葡萄全部售出,可以盈利多少元?【解答】解:(1)设第一批葡萄进价每千克x元,则第二批葡萄的进价为(x+2)元,依题意得,,解得:x=8,经检验,x=8是原方程的解,且符合题意.答:第一批葡萄进价每千克8元.(2)由题意,得第一批的数量为:,50×2×11﹣(400+500)=200答:可盈利200元.4.为了进一步落实“节能减排”措施,冬季供暖来临前,某单位决定对7200平方米的“外墙保温”工程进行招标,现有甲、乙两个工程队参与投标,比较这两个工程队的标书发现:乙队每天完成的工程量是甲队的1.5倍,这样乙队单独干比甲队单独干能提前15天完成任务.问甲队每天完成多少平方米?【解答】解:设甲队每天完成x米2,乙队每天完成1.5 x米2,根据题意得.﹣=15,解得x=160,经检验,x=160,是所列方程的解.答:甲队每天完成160米2.5.某超市用3000元购进某种干果销售,由于销售状况良好,超市又调拨9000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多300千克,如果超市按每千克9元的价格出售,当大部分干果售出后,余下的600千克按售价的8折售完.(1)该种干果的第一次进价是每千克多少元?(2)超市销售这种干果共盈利多少元?【解答】解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x元,由题意,得=2×+300,解得x=5,经检验x=5是方程的解.答:该种干果的第一次进价是每千克5元;(2)[+﹣600]×9+600×9×80%﹣(3000+9000)=(600+1500﹣600)×9+4320﹣12000=1500×9+4320﹣12000=13500+4320﹣12000=5820(元).答:超市销售这种干果共盈利5820元.6.某文具厂计划加工3000套画图工具,为了尽快完成任务,实际每天加工画图工具的数量是原计划的1.2倍,结果提前4天完成任务,求该文具厂原计划每天加工这种画图工具的数量.【解答】解:设文具厂原计划每天加工x套这种画图工具.根据题意,得﹣=4.解得x=125.经检验,x=125是原方程的解,且符合题意.答:文具厂原计划每天加工125套这种画图工具.7.济宁市“五城同创”活动中,一项绿化工程由甲、乙两工程队承担.已知甲工程队单独完成这项工作需120天,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y 天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【解答】解:(1)设乙工程队单独完成这项工作需要a天,由题意得+36()=1,解之得a=80,经检验a=80是原方程的解.答:乙工程队单独做需要80天完成;(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.8.某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?(2)若学校每天需付给甲队的绿化费用为0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?【解答】解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=50,经检验x=50是原方程的解,则甲工程队每天能完成绿化的面积是50×2=100(m2),答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2;(2)设应安排甲队工作y天,根据题意得:0.4y+×0.25≤8,解得:y≥10,答:至少应安排甲队工作10天.9.荣庆公司计划从商店购买同一品牌的台灯和手电筒,已知购买一个台灯比购买一个手电筒多用20元,若用400元购买台灯和用160元购买手电筒,则购买台灯的个数是购买手电筒个数的一半.(1)求购买该品牌一个台灯、一个手电筒各需要多少元?(2)经商谈,商店给予荣庆公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果荣庆公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过670元,那么荣庆公司最多可购买多少个该品牌台灯?【解答】解:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.根据题意得=×解得x=5经检验,x=5是原方程的解.所以x+20=25.答:购买一个台灯需要25元,购买一个手电筒需要5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)由题意得25a+5(2a+8﹣a)≤670解得a≤21∴荣庆公司最多可购买21个该品牌的台灯.10.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.11.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?【解答】解:(1)设乙种图书的单价为x元,则甲种图书的单价为1.5x元,由题意得﹣=10解得:x=20则1.5x=30,经检验得出:x=20是原方程的根,答:甲种图书的单价为30元,乙种图书的单价为20元;(2)设购进甲种图书a本,则购进乙种图书(40﹣a)本,根据题意得解得:20≤a≤25,所以a=20、21、22、23、24、25,则40﹣a=20、19、18、17、16、15∴共有6种方案.12.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A 款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?此时,哪种方案对公司更有利?【解答】解:(1)设今年5月份A款汽车每辆售价m万元.则:,解得:m=9.经检验,m=9是原方程的根且符合题意.答:今年5月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆.则:99≤7.5x+6(15﹣x)≤105.解得:6≤x≤10.∵x的正整数解为6,7,8,9,10,∴共有5种进货方案;(3)设总获利为W万元,购进A款汽车x辆,则:W=(9﹣7.5)x+(8﹣6﹣a)(15﹣x)=(a﹣0.5)x+30﹣15a.当a=0.5时,(2)中所有方案获利相同.此时,购买A款汽车6辆,B款汽车9辆时对公司更有利.13.某商场销售的一款空调机每台的标价是1635元,在一次促销活动中,按标价的八折销售,仍可盈利9%.(1)求这款空调每台的进价(利润率==).(2)在这次促销活动中,商场销售了这款空调机100台,问盈利多少元?【解答】解:(1)设这款空调每台的进价为x元,根据题意得:=9%,解得:x=1200,经检验:x=1200是原方程的解.答:这款空调每台的进价为1200元;(2)商场销售这款空调机100台的盈利为:100×1200×9%=10800元.14.甲、乙两座城市的中心火车站A,B两站相距360km.一列动车与一列特快列车分别从A,B 两站同时出发相向而行,动车的平均速度比特快列车快54km/h,当动车到达B站时,特快列车恰好到达距离A站135km处的C站.求动车和特快列车的平均速度各是多少?【解答】解:设特快列车的平均速度为xkm/h,则动车的速度为(x+54)km/h,由题意,得:=,解得:x=90,经检验得:x=90是这个分式方程的解.x+54=144.答:特快列车的平均速度为90km/h,动车的速度为144km/h.15.几个小伙伴打算去音乐厅观看演出,他们准备用360元钱购买门票.下面是两个小伙伴的对话:根据对话的内容,请你求出小伙伴们的人数.【解答】解:设票价为x元,由题意得,=+2,解得:x=60,经检验,x=60是原分式方程的解.则小伙伴的人数为:=8.答:小伙伴们的人数为8人.16.从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【解答】解:(1)根据题意得:400×1.3=520(千米),答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3,解得:x=120,经检验x=120是原方程的解,则高铁的平均速度是120×2.5=300(千米/时),答:高铁的平均速度是300千米/时.17.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.【解答】解:设马小虎的速度为x米/分,则爸爸的速度是2x米/分,依题意得=+10,解得x=80.经检验,x=80是原方程的根.答:马小虎的速度是80米/分.18.某服装商预测一种应季衬衫能畅销市场,就用8000元购进一批衬衫,面市后果然供不应求,服装商又用17600元购进了第二批这种衬衫,所购数量是第一批购进数量的2倍,但单价贵了8元.商家销售这种衬衫时每件定价都是100元,最后剩下10件按8折销售,很快售完.在这两笔生意中,商家共盈利多少元?【解答】解:设第一批进货的单价为x元,则第二批进货的单价为(x+8)元,由题意得,×2=,解得:x=80,经检验;x=80是原分式方程的解,且符合题意,则第一次进货100件,第二次进货的单价为88元,第二次进货200件,总盈利为:(100﹣80)×100+(100﹣88)×(200﹣10)+10×(100×0.8﹣88)=4200(元).答:在这两笔生意中,商家共盈利4200元.19.端午节期间,某食堂根据职工食用习惯,用700元购进甲、乙两种粽子260个,其中甲粽子比乙种粽子少用100元,已知甲种粽子单价比乙种粽子单价高20%,乙种粽子的单价是多少元?甲、乙两种粽子各购买了多少个?【解答】解:设乙种粽子的单价是x元,则甲种粽子的单价为(1+20%)x元,由题意得,+=260,解得:x=2.5,经检验:x=2.5是原分式方程的解,(1+20%)x=3,则买甲粽子为:=100个,乙粽子为:=160个.答:乙种粽子的单价是2.5元,甲、乙两种粽子各购买100个、160个.20.(2014•永州)某校枇杷基地的枇杷成熟了,准备请专业摘果队帮忙摘果,现有甲、乙两支专业摘果队,若由甲队单独摘果,预计6天才能完成,为了减少枇杷因气候变化等原因带来的损失,现决定由甲、乙两队同时摘果,则2天可以完成,请问:(1)若单独由乙队摘果,需要几天才能完成?(2)若有三种摘果方案,方案1:单独请甲队;方案2:同时请甲、乙两队;方案3:单独请乙队.甲队每摘果一天,需支付给甲队1000元工资,乙队每摘果一天,须支付给乙队1600元工资,你认为用哪种方案完成所有摘果任务需支付给摘果队的总工资最低?最低总工资是多少元?【解答】解:(1)设单独由乙队摘果,需要x天才能完成,根据题意得:2(+)=1,解得:x=3,经检验x=3是分式方程的解,且符合题意,则单独由乙队完成需要3天才能完成;。

人教版八年级上册数学《全等三角形》单元测试题(附答案)

人教版八年级上册数学《全等三角形》单元测试题(附答案)

人教版数学八年级上学期《全等三角形》单元测试(考试时间:90分钟试卷满分:120分)一.全等三角形的性质1.(2019•上海)在△ABC和△A1B1C1中,已知∠C=∠C1=90°,AC=A1C1=3,BC=4,B1C1=2,点D、D1分别在边AB、A1B1上,且△ACD≌△C1A1D1,那么AD的长是.二.全等三角形的判定2.(2019•兴安盟)如图,已知AB=AC,点D、E分别在线段AB、AC上,BE与CD相交于点O,添加以下哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD3.(2019•安顺)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC第2题第3题第4题4.(2019•阿坝州)如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC5.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是.(只填一个即可)6.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.第5题第6题三.直角三角形全等的判定7.(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件,使Rt△ABC和Rt△EDF全等.四.全等三角形的判定与性质第7题8.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.19.(2019•临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是()A.0.5B.1C.1.5D.2第8题第9题10.(2020•菏泽)如图,在△ABC 中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.第10题11.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.第11题12.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.第12题13.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.第13题14.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.第14题15.(2018秋•溧水区期末)如图,点C 、E 、F 、B 在同一直线上,点A 、D 在BC 异侧,AB ∥CD ,AE =DF ,∠A =∠D .(1)求证:AB =CD ;(2)若AB =CF ,∠B =40°,求∠D 的度数.第15题五.全等三角形的应用16.(2019•南通)如图,有一池塘,要测池塘两端A ,B 的距离,可先在平地上取一个点C ,从点C 不经过池塘可以直接到达点A 和B .连接AC 并延长到点D ,使CD =CA .连接BC 并延长到点E ,使CE =CB .连接DE ,那么量出DE 的长就是A ,B 的距离.为什么?第16题六.角平分线的性质17.(2019•陕西)如图,在△ABC 中,∠B =30°,∠C =45°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB ,垂足为E .若DE =1,则BC 的长为( ) A .22+ B .32+ C .32+ D .318.(2019•张家界)如图,在△ABC 中,∠C =90°,AC =8,DC =31AD ,BD 平分∠ABC ,则点D 到AB 的距离等于( )A .4B .3C .2D .1第17题第18题第19题19.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.42参考答案一.全等三角形的性质(共1小题)1.(2019•上海)在△ABC 和△A 1B 1C 1中,已知∠C =∠C 1=90°,AC =A 1C 1=3,BC =4,B 1C 1=2,点D 、D 1分别在边AB 、A 1B 1上,且△ACD ≌△C 1A 1D 1,那么AD 的长是 .【分析】根据勾股定理求得AB =5,由△ACD ≌△C 1A 1D 1,所以可以将A 1点放在左图的C 点上,C 1点放在左图的A 点上,D 1点对应左图的D 点,从而得出BC ∥B 1C 1,根据其性质得出=2,解得求出AD 的长.【解答】解:∵△ACD ≌△C 1A 1D 1,可以将△C 1A 1D 1与△ACD 重合,如图,∵∠C =∠C 1=90°,∴BC ∥B 1C 1,∴, ∵AC =3,BC =4,∴AB =5, ,解得AD ,∴AD , .二.全等三角形的判定(共5小题)2.(2019•兴安盟)如图,已知AB =AC ,点D 、E 分别在线段AB 、AC 上,BE 与CD 相交于点O ,添加以下哪个条件仍不能判定△ABE ≌△ACD ( )AD AD -5BCC B BD AD 11A.∠B=∠C B.AE=AD C.BD=CE D.BE=CD【分析】根据全等三角形的判定定理判断.【解答】解:A、当∠B=∠C时,利用ASA定理可以判定△ABE≌△ACD;B、当AE=AD时,利用SAS定理可以判定△ABE≌△ACD;C、当BD=CE时,得到AD=AE,利用SAS定理可以判定△ABE≌△ACD;D、当BE=CD时,不能判定△ABE≌△ACD;故选:D.3.(2019•安顺)如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项符合题意;选项B、添加AC=DF可用AAS进行判定,故本选项不符合题意;选项C、添加AB=DE可用AAS进行判定,故本选项不符合题意;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项不符合题意.故选:A.4.(2019•阿坝州)如图,已知E,B,F,C四点在一条直线上,EB=CF,∠A=∠D,添加以下条件之一,仍不能证明△ABC≌△DEF的是()A.∠E=∠ABC B.AB=DE C.AB∥DE D.DF∥AC【分析】由EB=CF,可得出EF=BC,又有∠A=∠D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC≌△DEF,那么添加的条件与原来的条件可形成SSA,就不能证明△ABC ≌△DEF了.【解答】解:A.添加∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故A选项不符合题意.B.添加DE=AB与原条件满足SSA,不能证明△ABC≌△DEF,故B选项符合题意;C.添加AB∥DE,可得∠E=∠ABC,根据AAS能证明△ABC≌△DEF,故C选项不符合题意;D.添加DF∥AC,可得∠DFE=∠ACB,根据AAS能证明△ABC≌△DEF,故D选项不符合题意;故选:B.5.(2020•齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是AD=AC(∠D=∠C或∠ABD=∠ABC等).(只填一个即可)【分析】利用全等三角形的判定方法添加条件.【解答】解:∵∠DAB=∠CAB,AB=AB,∴当添加AD=AC时,可根据“SAS”判断△ABD≌△ABC;当添加∠D=∠C时,可根据“AAS”判断△ABD≌△ABC;当添加∠ABD=∠ABC时,可根据“ASA”判断△ABD≌△ABC.故答案为AD=AC(∠D=∠C或∠ABD=∠ABC等).6.(2020•铜仁市)如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.【分析】首先利用平行线的性质得出∠ACB=∠DFE,进而利用全等三角形的判定定理ASA,进而得出答案.【解答】证明:∵AC∥DF,∴∠ACB=∠DFE,∵BF=CE,∴BC=EF,在△ABC和△DEF中,∠B=∠EBC=EF∠ACB=∠DFE,∴△ABC≌△DEF(ASA).三.直角三角形全等的判定(共1小题)7.(2020•黑龙江)如图,Rt△ABC和Rt△EDF中,∠B=∠D,在不添加任何辅助线的情况下,请你添加一个条件AB=ED(BC=DF或AC=EF或AE=CF等),使Rt△ABC和Rt△EDF全等.【分析】本题是一道开放型的题目,答案不唯一,可以是AB=ED或BC=DF或AC=EF或AE=CF等,只要符合全等三角形的判定定理即可.【解答】解:添加的条件是:AB=ED,理由是:∵在△ABC和△EDF中∠B=∠DAB=ED∠A=∠DEF,∴△ABC≌△EDF(ASA),故答案为:AB=ED.四.全等三角形的判定与性质(共9小题)8.(2020•鄂州)如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A.4B.3C.2D.1【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,②正确;由全等三角形的性质得出∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,①正确;作OG⊥AM于G,OH⊥DM于H,如图所示:则∠OGA=∠OHB=90°,由AAS证明△OGA≌△OHB(AAS),得出OG=OH,由角平分线的判定方法得出OM平分∠AMD,④正确;假设OM平分∠AOD,则∠DOM=∠AOM,由全等三角形的判定定理可得△AMO≌△OMD,得AO=OD,而OC=OD,所以OA=OC,而OA<OC,故③错误;即可得出结论.【解答】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中,OA=OB∠AOC=∠B0DOC=OD∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示,则∠OGA=∠OHB=90°,在△OGA和△OHB中,∵∠0GA=∠OHB=90°∠OAG=∠OBHOA=OB,∴△OGA≌△OHB(AAS),∴OG=OH,∴OM平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,∠AOM=∠DOMOM=OM∠AMD=∠DMO,∴△AMO≌△OMD(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.9.(2019•临沂)如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD 的长是()A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中∠A=∠FCE∠ADE=∠FDE=FE,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.10.(2020•菏泽)如图,在△ABC中,∠ACB=90°,点E在AC的延长线上,ED⊥AB于点D,若BC=ED,求证:CE=DB.【分析】由“AAS”可证△ABC≌△AED,可得AE=AB,AC=AD,由线段的和差关系可得结论.【解答】证明:∵ED⊥AB,∴∠ADE=∠ACB=90°,∠A=∠A,BC=DE,∴△ABC≌△AED(AAS),∴AE=AB,AC=AD,∴CE=BD.11.(2020•泸州)如图,AC平分∠BAD,AB=AD.求证:BC=DC.【分析】由“SAS”可证△ABC≌△ADC,可得BC=DC.【解答】证明:∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB=AD,AC=AC,∴△ABC≌△ADC(SAS),∴BC=CD.12.(2020•南充)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.【分析】证明△ABC≌△CDE(ASA),可得出结论.【解答】证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,∠ACB=∠CEDBC=DE∠ABC=∠CDE,∴△ABC≌△CDE(ASA),∴AB=CD.13.(2020•无锡)如图,已知AB∥CD,AB=CD,BE=CF.求证:(1)△ABF≌△DCE;(2)AF∥DE.【分析】(1)先由平行线的性质得∠B=∠C,从而利用SAS判定△ABF≌△DCE;(2)根据全等三角形的性质得∠AFB=∠DEC,由等角的补角相等可得∠AFE=∠DEF,再由平行线的判定可得结论.【解答】证明:(1)∵AB∥CD,∴∠B=∠C,∵BE=CF,∴BE﹣EF=CF﹣EF,即BF=CE,在△ABF和△DCE中,∵AB=CD∠B=∠CBF=CE,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴∠AFE=∠DEF,∴AF∥DE.14.(2020•硚口区模拟)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.【分析】要证BD=CE只要证明AD=AE即可,而证明△ABE≌△ACD,则可得AD =AE.【解答】证明:在△ABE与△ACD中∠A=∠AAB=AC∠B=∠C,∴△ABE≌△ACD.∴AD=AE.∴BD=CE.15.(2018秋•溧水区期末)如图,点C、E、F、B在同一直线上,点A、D在BC异侧,AB∥CD,AE=DF,∠A=∠D.(1)求证:AB=CD;(2)若AB=CF,∠B=40°,求∠D的度数.【分析】(1)根据平行线的性质求出∠B=∠C,根据AAS推出△ABE≌△DCF,根据全等三角形的性质得出即可;(2)根据全等得出AB=CD,BE=CF,∠B=∠C,求出CF=CD,推出∠D=∠CFD,即可求出答案.【解答】(1)证明:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,∠A=∠D∠B=∠CAE=DF,∴△ABE≌△DCF(AAS),∴AB=CD;(2)解:∵△ABE≌△DCF,∴AB=CD,BE=CF,∠B=∠C,∵∠B=40°,∴∠C=40°∵AB=CF,∴CF=CD,∴∠D=∠CFD(180°﹣40°)=70°.五.全等三角形的应用(共1小题)16.(2019•南通)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B.连接AC并延长到点D,使CD=CA.连接BC并延长到点E,使CE=CB.连接DE,那么量出DE的长就是A,B的距离.为什么?【分析】利用“边角边”证明△ABC和△DEC全等,再根据全等三角形对应边相等解答.【解答】解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,BD=CE∠ACB=∠DCECA=CD,∴△ABC≌△DEC(SAS),∴AB=DE.六.角平分线的性质(共3小题)17.(2019•陕西)如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A.B.C D.3【分析】过点D作DF⊥AC于F如图所示,根据角平分线的性质得到DE=DF=1,解直角三角形即可得到结论.【解答】解:过点D作DF⊥AC于F如图所示,∵AD为∠BAC的平分线,且DE⊥AB于E,DF⊥AC于F,∴DE=DF=1,在Rt△BED中,∠B=30°,∴BD=2DE=2,在Rt△CDF中,∠C=45°,∴△CDF为等腰直角三角形,∴CD=DF,∴BC=BD+CD=,故选:A.18.(2019•张家界)如图,在△ABC中,∠C=90°,AC=8,DC AD,BD平分∠ABC,则点D到AB 的距离等于()A.4B.3C.2D.1【分析】过点D作DE⊥AB于E,求出CD,再根据角平分线上的点到角的两边的距离相等解答.【解答】解:如图,过点D作DE⊥AB于E,∵AC=8,DC AD,∴CD=8=2,∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2.故选:C.19.(2019•湖州)如图,已知在四边形ABCD中,∠BCD=90°,BD平分∠ABC,AB=6,BC=9,CD=4,则四边形ABCD的面积是()A.24B.30C.36D.42【分析】过D作DH⊥AB交BA的延长线于H,根据角平分线的性质得到DH=CD=4,根据三角形的面积公式即可得到结论.【解答】解:过D作DH⊥AB交BA的延长线于H,∵BD平分∠ABC,∠BCD=90°,∴DH=CD=4,∴四边形ABCD的面积=S△ABD+S△BCD=AB•DH+BC•CD=×6××9×4=30,故选:B.。

人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选(含答案)

人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选(含答案)

人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选一.填空题(共30小题)1.(2020春•渝中区校级期末)如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为.2.(2020春•沙坪坝区期末)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=6,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为.3.(2019秋•九龙坡区校级期末)已知△ABC为等腰三角形,AB=AC=10,BC=8,BD为∠ABC的平分线,点P 为线段BD上的一动点,过点P作线段AB的垂线,垂足为点M,连接AP,则PM+P A的最小值为.4.(2020春•沙坪坝区校级期末)如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB 上,∠AED=73°,若点P是等腰△ABC的腰上的一点,则当△EDP为以DE为腰的等腰三角形时,∠EDP的度数是.5.(2019秋•渝中区校级期末)如图所示,在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于.6.(2019秋•渝中区校级期末)在平面直角坐标系中,若点A(a,b)与点B(1,﹣2)关于y轴对称,则a+b=.7.(2019秋•巴南区期末)如图,△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,点E,F分别在线段BD、CD上,点G在EF的延长线上,△EFD与△EFH关于直线EF对称,若∠A=60°,∠BEH=84°,∠HFG=n°,则n=.8.(2019秋•开州区期末)如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=4cm,△ADC的周长为10cm,则△ABC的周长是cm.9.(2019秋•两江新区期末)如图,在△ABC中,DB和DC分别平分∠ABC和∠ACB,过D作EF∥BC,分别交AB、AC于点E、F,若EF=5,BE=3,则线段CF的长为.10.(2019秋•江津区期末)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE= 12∠ACB,则∠A的度数是.11.(2019秋•九龙坡区期末)在平面直角坐标系中,点P(1,﹣5)关于x轴对称点的点的坐标是.12.(2019秋•梁平区期末)如图,△ABC是等边三角形,D,E分别是BC,AB的中点,且AD=4cm.F是AD上一动点,则BF+EF的最小值为cm.13.(2019秋•江北区期末)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=7,则CE的长为.14.(2019秋•万州区期末)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=.15.(2019秋•长寿区期末)在线段、直角、等腰三角形、直角三角形中,成轴对称图形的是.16.(2019秋•长寿区期末)等腰三角形一边长为4,另一边长为9,则它的周长是.17.(2019春•南岸区期末)如图,在△ABC中,过A作DE∥BC交∠ABC的平分线BD于点D、交∠ACB的平分线CE于点E.若BC=7,DE=9,则△ABC的周长为.18.(2018秋•南岸区期末)如图,在平面直角坐标系中,将△ABC三个顶点的横坐标分别乘以﹣1,而纵坐标保持不变,得到△A′B′C′,则△A′B′C′和△ABC关于对称(横线上填“x轴”、“y轴”或“原点”).19.(2019春•渝中区校级期末)如图,△ABC中,AC=BC,CE为△ABC的中线,BD为AC边上的高,BF平分∠CBD交CE于点G,连接AG交BD于点M,若∠AFG=63°,则∠AMB的度数为°.20.(2018秋•渝中区期末)如图,已知∠BAC=65°,D为∠BAC内部一点,过D作DB⊥AB于B,DC⊥AC于C,设点E、点F分别为AB、AC上的动点,当△DEF的周长最小时,∠EDF的度数为.21.(2018秋•合川区期末)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,若BD=3cm,则AD=cm.22.(2018秋•渝北区期末)如图,∠ABC=20°,点D,E分别在射线BC,BA上,且BD=3,BE=3,点M,N 分别是射线BA,BC上的动点,求DM+MN+NE的最小值为.23.(2018秋•巴南区期末)如图,BE、CD分别是等边△ABC的高和角平分线,点O是它们的交点,若∠BOC=m°,则m=.24.(2018秋•江北区期末)在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为.25.(2019春•沙坪坝区校级期末)如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=度.26.(2019春•南岸区校级期末)如图,在等腰△ABC中,AB=BC,∠B=120°,线段AB的垂直平分线分别交AB、AC于点D、E,若AC=12,则DE=.27.(2019春•沙坪坝区校级期末)如图,在直角三角形ABC中,∠A=90°,AB=8,AC=15,BC=17.D,P分别是线段AC,BC上的动点,则BD+DP的最小值是.28.(2019春•渝中区校级期末)在△ABC中,AB=AC,AC的垂直平分线与AB所在直线相交所得的锐角为40°,∠C=.29.(2019春•渝中区校级期末)如图,△ABC中,AC=BC=5,AB=6,CD=4,CD为△ABC的中线,点E、点F分别为线段CD、CA上的动点,连接AE、EF,则AE+EF的最小值为.30.(2018秋•九龙坡区校级期末)在平面直角坐标系中,点P(﹣2,﹣3)关于x轴对称点的坐标为.参考答案一.填空题(共30小题)1.【解答】解:∵∠ABC =80°,∴∠BMN +∠BNM =100°,∵M 、N 分别在P A 、PC 的中垂线上,∴MA =MP ,NP =NC ,∴∠MP A =∠MAP =12∠BMN ,∠NPC =∠NCP =12∠BNM ,∴∠MP A +∠NPC =12×100°=50°,∴∠APC =180°﹣50°=130°, 故答案为:130°.2.【解答】解:如图所示,作点M 关于BD 的对称点M ',连接PM ',则PM '=PM ,BM =BM '=1, ∴PN +PM =PN +PM ',当N ,P ,M '在同一直线上,且M 'N ⊥AC 时,PN +PM '的最小值等于垂线段M 'N 的长,此时,∵Rt △AM 'N 中,∠A =30°,∴M 'N =12AM '=12(6﹣1)=52,∴PM +PN 的最小值为52, 故答案为:52.3.【解答】解:如图,过点P 作PK ⊥BC 于K ,过点A 作AH ⊥BC 于H .∵AB =AC =10,AH ⊥BC ,∴BH =CH =4,∴∠AHB =90°,∴AH =√AA 2−AA 2=√102−42=2√21,∵BD 平分∠ABC ,PM ⊥AB ,PK ⊥BC ,∴PM =PK ,∴P A +PM =P A +PK ≥AH ,∴P A +PM ≥2√21,∴P A +PM 的最小值为2√21.4.【解答】解:∵AB =AC ,∠B =50°,∠AED =73°,∴∠EDB =23°,∵当△DEP 是以DE 为腰的等腰三角形,①当点P 在AB 上,∵DE =DP 1,∴∠DP 1E =∠AED =73°,∴∠EDP 1=180°﹣73°﹣73°=34°,②当点P 在AC 上,∵AB =AC ,D 为BC 的中点,∴∠BAD =∠CAD ,过D 作DG ⊥AB 于G ,DH ⊥AC 于H ,∴DG =DH ,在Rt △DEG 与Rt △DP 2H 中,{AA =AA 2AA =AA, ∴Rt △DEG ≌Rt △DP 2H (HL ),∴∠AP 2D =∠AED =73°,∵∠BAC =180°﹣50°﹣50°=80°,∴∠EDP 2=134°,③当点P 在AC 上,同理证得Rt △DEG ≌Rt △DPH (HL ),∴∠EDG =∠P 3DH ,∴∠EDP 3=∠GDH =180°﹣80°=100°,④当点P 在AB 上,EP =ED 时,∠EDP =12(180°﹣73°)=53.5°.故答案为:34°或53.5°或100°或134°.5.【解答】解:∵在△ABC 中,∠ACB =90°,∠B =15°,∴∠BAC=90°﹣15°=75°,∵DE垂直平分AB,BE=6cm,∴BE=AE=6cm,∴∠EAB=∠B=15°,∴∠EAC=75°﹣15°=60°,∵∠C=90°,∴∠AEC=30°,∴AC=12AE=12×6cm=3cm,故答案为:3cm.6.【解答】解:∵点A(a,b)与点B(1,﹣2)关于y轴对称,∴a=﹣1,b=﹣2,∴a+b=﹣3,故答案为:﹣3.7.【解答】解:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠ABD=∠DBC,∠ACD=∠DCM,设∠ABD=∠DBC=x,∠ACD=∠DCM=y,∵∠A+∠ABC=∠ACM,∴12∠A+12∠ABC=12∠ACM,即30°+x=y,∵∠D+∠DBC=∠DCM,∴∠D+x=y,∴∠D=30°,∵EFD与△EFH关于直线EF对称,∠BEH=84°,∴∠DEG=∠HEG=180°−84°2=48°,∴∠HFG=n°=∠DFG=48°+30°=78°则n=78.故答案为:78.8.【解答】解:∵DE是△ABC中边AB的垂直平分线,∴AD=BD,AB=2AE=2×4=8(cm),∵△ADC的周长为10cm,即AD+AC+CD=BD+CD+AC=BC+AC=10cm,∴△ABC的周长为:AB+AC+BC=8+10=18(cm).故答案为:18.9.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴BE=ED,同理DF=CF,∴EF=3+CF=5,∴CF=2,故答案为:2.10.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B=20°∴∠A=4x=80°故答案为:80°11.【解答】解:点P(1,﹣5)关于x轴对称点的点的坐标是:(1,5).故答案为:(1,5).12.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CE,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB =∠CEB =90°,在△ADB 和△CEB 中,{∠AAA =∠AAAAAAA =AAAA AA =AA,∴△ADB ≌△CEB (AAS), ∴CE =AD =4cm ,即BF +EF =4cm .故答案为:4.13.【解答】解:∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,{∠AAA =∠AAA AA =AAAA =AA ,∴△BAD ≌△CAE (ASA ),∴BD =CE =7,故答案为:7.14.【解答】解:连接CD ,BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE ,∠F =∠DEB =90°,∠ADF =∠ADE , ∴AE =AF ,∵DG 是BC 的垂直平分线,∴CD =BD ,在Rt △CDF 和Rt △BDE 中,{AA =AA AA =AA, ∴Rt △CDF ≌Rt △BDE (HL ),∴BE =CF ,∴AB =AE +BE =AF +BE =AC +CF +BE =AC +2BE , ∵AB =6,AC =3,∴BE =1.5.故答案为:1.5.15.【解答】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意;直角的角平分线所在的直线就是对称轴,是轴对称图形,符合题意;等腰三角形底边中线所在的直线是对称轴,是轴对称图形,符合题意;直角三角形不一定是轴对称图形,不符合题意.故成轴对称图形的是:线段、直角、等腰三角形.故答案为:线段、直角、等腰三角形.16.【解答】解:当等腰三角形的三边为:4、4、9时,不符合三角形三边关系,因此这种情况不成立;当等腰三角形的三边为:4、9、9时,符合三角形三边关系,则三角形的周长为:4+9+9=22.因此等腰三角形的周长为22.故填22.17.【解答】解:∵DE∥BC,∴∠E=∠ECB,∠D=∠DBC,∵CE平分∠ACB,BD平分∠ABC,∴∠ECB=∠ACE,∠DBC=∠ABD,∴∠E=∠ACE,∠D=∠ABD,∴AE=AC,AB=AD,∵AB+AC=AD+AE=DE=9,BC=7,∴△ABC的周长为AB+AC+BC=DE+BC=9+7=16.故答案为16.18.【解答】解:∵横坐标乘以﹣1,∴横坐标相反,又纵坐标不变,∴关于y轴对称.故答案为:y轴.19.【解答】解:∵BD为AC边上的高,∴BD⊥AC,∴∠BDF=90°,∵∠AFG=63°,∴∠DBF=90°﹣63°=27°,∵BF平分∠CBD交CE于点G,∴∠CBD=2∠DBF=54°,∴∠ACB=90°﹣∠CBD=36°,∵AC=BC,∴∠CAB=∠CBA=12(180°﹣36°)=72°,∴∠ABD=72°﹣54°=18°,∴∠ABG=27°+18°=45°,∵CE为△ABC的中线,∴CE⊥AB,∴CE垂直平分AB,∴AG=BG,∴∠GAB=∠GBA=45°,∴∠AMB=180°﹣45°﹣18°=117°,故答案为:117.20.【解答】解:如图所示:延长DB和DC至M和N,使MB=DB,NC=DC,连接MN交AB、AC于点E、F,连接DE、DF,此时△DEF的周长最小.∵DB⊥AB,DC⊥AC,∴∠ABD=∠ACD=90°,∠BAC=65°,∴∠BDC=360°﹣90°﹣90°﹣65°=115°,∴∠M+∠N=180°﹣115°=65°根据对称性质可知:DE=ME,DF=NF,∴∠EDM=∠M,∠FDN=∠N,∴∠EDM+∠FDN=65°,∴∠EDF=∠BDC﹣(∠EDM+∠FDN)=115°﹣65°=50°.故答案为50°.21.【解答】解:∵在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,BD=3cm,∴BC=2CD,可得:BC2﹣CD2=4CD2﹣CD2=9,解得:CD=√3cm,∴BC=2√3cm,∴AC=AA√3=2cm,∴AB=4cm,∴AD=4﹣3=1cm.故答案为:122.【解答】解:如图所示:作点D关于AB的对称点G,作点E关于BC的对称点H,连接GH交AB于点M、交BC于点N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:DB=BG=3,∠GBE=∠DBE=20°,BH=BE=3,∠HBD=∠EBD=20°,∴∠GBH=60°,∴△BGH是等边三角形,∴GH=GB=HB=3,∴DM+MN+NE的最小值为3.故答案为3.23.【解答】解:∵BE、CD分别是等边△ABC的高和角平分线,∴∠ODB=90°,∠ABE=30°,∴∠BOC=∠ODB+∠DBE=90°+30°=120°,故答案为:12024.【解答】解:①∵AB=AC,∠ABD=26°,BD⊥AC,∴∠A=64°,∴∠ABC=∠C=(180°﹣64°)÷2=58°.②∵AB=AC,∠ABD=26°,BD⊥AC,∴∠BAC=26°+90°=116°∴∠ABC=∠C=(180°﹣116°)÷2=32°.故答案为:58°或32°.25.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CE=CD,∴∠CDE=30°,∠FDG=150°,∵DF=DG,∴∠F=15°.故答案为:15.26.【解答】解:连接BE,∵AB=BC,∠B=120°,∴∠A=∠C=30°,∵DE是线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∴∠CBE=90°,又∠C=30°,∴BE=12EC,∴AE=12EC,∴AE=13AC=4,在Rt△ADE中,∠A=30°,∴DE=12AE=2,故答案为:2.27.【解答】解:作B关于AC的对称点E,过E作EP⊥BC于P,交AD于D,则AE=AB=8,此时,BD+DP的值最小,BD+DP的最小值=EP,∵∠BAC=∠BPE=90°,∠C=∠E,∴△ABC∽△PBE,∴AAAA=AAAA,∴1617=AA 15,∴PE =24017, 故答案为:24017.28.【解答】解:当△ABC 为锐角三角形时,如图1,设AC 的垂直平分线交线段AB 于点D ,交AC 于点E ,∵∠ADE =40°,DE ⊥AC ,∴∠A =90°﹣40°=50°,∵AB =AC ,∴∠C =12(180°﹣∠A )=65°;当△ABC 为钝角三角形时,如图2,设AC 的垂直平分线交AC 于点E ,交AB 于点D ,∵∠ADE =40°,DE ⊥AC ,∴∠DAC =50°,∵AB =AC ,∴∠B =∠C ,∵∠B +∠C =∠DAB ,∴∠C =25°;综上可知∠C 的度数为65°或25°,故答案为:65°或25°.29.【解答】解:过B 作BF ⊥AC 于F ,交CD 于E , 则BF 的长即为AE +EF 的最小值,∵AC =BC =5,CD 为△ABC 的中线,∴AD =12AB =3,∵S △ABC =12AB •CD =12AC •BF ,∴BF =6×45=245, ∴AE +EF 的最小值为245, 故答案为:245.30.【解答】解:点P (﹣2,﹣3)关于x 轴对称点的坐标为:(﹣2,3). 故答案为:(﹣2,3).。

【中考快递】2019届中考数学复习检测:专题一-开放探索问题(Word版,含答案)

【中考快递】2019届中考数学复习检测:专题一-开放探索问题(Word版,含答案)

一、选择题(每小题5分,共15分)1.(2018·莆田中考)等腰三角形的两条边长分别为3,6,那么它的周长为( )(A)15 (B)12(C)12或15 (D)不能确定2.如图,直线y=x+2与双曲线m 3y x -=在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )3.(2017·宁波中考)如图,用邻边长分别为a ,b(a ﹤b)的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形的较长边、两个半圆均相切的两个小圆.把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽(拼接处材料忽略不计),则a 与b 满足的关系式是( )(A)b =(B)b =(C)b =(D)b =二、填空题(每小题5分,共10分)4.已知x 2+x-1=0,则代数式2x 3+4x 2+3的值为________________________.5.(2018·潜江中考)已知ABCD 的周长为28,自顶点A 作AE ⊥CD 于点E ,AF ⊥CB 于点F.若AE=3,AF=4,则CE-CF=_______________.三、解答题(共25分)6.(12分)(2017·黄冈中考)新星小学门口有一直线马路,为方便学生过马路,交警在门口设有一定宽度的斑马线,斑马线的宽度为4 米,为安全起见,规定车头距斑马线后端的水平距离不得低于2 米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为∠FAE =15° 和∠FAD=30° .司机距车头的水平距离为0.8 米,试问该旅游车停车是否符合上述安全标准(E,D,C,B 四点在平行于斑马线的同一直线上)?(tan152sin15cos151.7321.414)︒=︒=︒=≈≈参考数据:【探究创新】 7.(13分)(2017·河北中考)如图1和图2,在△ABC 中,AB=13,BC=14,cos ∠ABC=513. 探究如图1,AH ⊥BC 于点H,则AH=________,AC=________,△ABC 的面积S △ABC =__________.拓展 如图2,点D 在AC 上(可与点A,C 重合),分别过点A,C 作直线BD 的垂线,垂足为E,F,设BD=x,AE=m,CF=n.(当点D 与点A 重合时,我们认为S △ABD=0)(1)用含x,m 或n 的代数式表示S △ABD 及S △CBD ;(2)求(m+n)与x 的函数关系式,并求(m+n)的最大值和最小值;(3)对给定的一个x 值,有时只能确定唯一的点D,指出这样的x 的取值范围.发现请你确定一条直线,使得A,B,C 三点到这条直线的距离之和最小(不必写出过程),并写出这个最小值.参考答案1.【解析】选A.由题意可知:当6是腰时,三角形的周长是15;当3是腰时,3+3=6,不能组成三角形.2.【解析】选B.由题意可得m-3<0,故m<3;由直线y=x+2与双曲线m 3y x -=在第二象限有两个交点,可得m3x2x-+=,即x2+2x-(m-3)=0,即Δ=4+4(m-3)>0,所以m>2.综上,可得2<m<3,故选B.3.【解析】选D.如图,设小圆半径为r,由题意得112r2(a)22π=⋅π,解得1 r a.4 =在Rt△O1O2H中,O1O2=13r a a24+=,O1H=12b,211O H a r a.24=-=又O1O22=O1H2+O2H2,所以222311(a)(b)(a)424=+,解得b=故选D.4.【解析】把x2+x看成一个整体,得x2+x=1,所以2x3+4x2+3=2x3+2x2+2x2+3= 2x(x2+x)+2x2+3=2x+2x2+3=2(x2+x)+3=2+3=5.参考答案5.【解析】(1)当E,F分别在线段CD和CB上时,如图所示:设BC=x,DC=y,则根据题意可得:x y14 4x3y+=⎧⎨=⎩,,解得x6y8=⎧⎨=⎩,,即BC=6,DC=8,根据勾股定理可知DE BF==所以CE-CF=(862---=(2)当E,F分别在CD,CB的延长线上时,如图所示:同理可得答案226.【解析】由题意得:∠FAE=15°,∠FAD=30°,∴∠EAD=15°.∵FA∥BE, ∴∠AED=15°,即AD=DE=4米. 在Rt△ADB中,∠ADB=∠FAD=30°,∴BD=AD·cos30°4==3.464米,DC=BD-BC=3.464-0.8=2.664米>2米, ∴该车停车符合上述安全标准.7.【解析】探究 12 15 84拓展 (1)由三角形面积公式,得ABD CBD11S mx,S nx.22==(2)由(1)得CBDABD2S2Sm,n,x x==∴m+n=CBDABD2S2S168.x x x+=由于AC 边上的高为ABC2S28456, 15155⨯==∴x的取值范围是565≤x≤14.∵(m+n)随x的增大而减小,∴当x=565时,(m+n)的最大值为15;当x=14时,(m+n)的最小值为12.(3)x的取值范围是x=565或13<x≤14.发现 AC所在的直线,最小值为56 5.【高手支招】解压轴题时遇到困难的原因及应对策略原因:在解压轴题时遇到的困难可能来自多方面,如基础知识和基本技能欠缺、解题经验缺失或训练程度不够、自信心不足等,具体表现可能是“不知从何处下手,不知向何方前进”. 应对策略:在求解中考数学压轴题时,要重视一些数学思想方法的灵活应用.数学思想方法是解好压轴题的重要工具,也是保证压轴题能求解的“对而全、全而美”的重要前提.针对近年全国各地中考数学压轴题的特点,在学习中要狠抓基础知识的落实,因为基础知识是“不变量”,而所谓的考试“热点”只是与题目的形式有关.有效地解答中考压轴题的关键是要以不变应万变.加大综合题的训练力度,加强解题方法的训练,加强数学思想方法的渗透,注重“基本模式”的积累与变化。

2019-2020学年人教版上册八年级期末(代数部分)常考解答题专题复习(含答案解析)

2019-2020学年人教版上册八年级期末(代数部分)常考解答题专题复习(含答案解析)

2019-2020学年人教版上册八年级期末(代数部分)常考解答题专题复习因式分解、整式化简求值、乘法公式几何背景、分式方程、分式化简求值一、解答题1.把下列多项式分解因式:(1)a 2x 2-a 2y 2 (2)4x 2-8xy+4y 22.分解因式:(1)mx²-6mx +9m (2)a²(x -y)+b²(y -x) (3)(x -1)(x -3)+13.把下面各式分解因式:(1)ax 3-9ax ; (2)x 2+2x(x -3y)+(x -3y)2.4.因式分解:(1)am −an +ap (2)2a(b +c)−3(b +c)(3)4x 4−4x 3+x 2 (4)x 4−165.分解因式:(1)2a(x −y)+6(y −x) ; (2)a 3−4ab 2 .6.因式分解:(1)(a 2+1)2 - 4a 2 (2)2x 2(x-y)+50y 2(y-x)7.先化简,再求值:(m +2﹣ 5m−2 )÷ m−33m 2−6m ,其中m 满足m 2+3m ﹣1=0.8.先化简: (3x+1−x +1)+x 2−4x+4x+1 ,然后从 −1≤x ≤2 中选一个合适的整数作为x 的值代入求值。

9.先化简( 3a+1 -a +1)÷a 2−4a+4a+1 ,并从0,-1,2中选一个合适的数作为a 的值代入求值. 10.先化简再求值:化简m −2m 2−1÷(m 2−m m 2−2m+1−2m−1) ,并0,-1,1,2四个数中,取一个合适的数作为m 的值代入求值. 11.先化简,再求值: (1−1a+1)÷a 2−a a+1 ,其中 a =12 . 12.解分式方程: 1−x x−2=12−x −213.解方程: 1x−2=1−x 2−x −3 .14.解方程: 1x−2+3=1−x 2−x .15.解方程:(1)1x−3=1+x x−3(2)3x+2+4x−2=16x 2−4 .16.解方程:(1)5x−2+1=0 (2)2x 2−1+1=x x−117.解方程(1)3x =4x−2(2)23+x3x−1=19x−318.解方程:31−x =xx−1−5.19.已知(x2+px+8)(x2-3x+q)的展开式中不含x2,x3项,求p、q的值.20.已知m−n=−3,mn=4.(1)求(3−m)(3+n)的值;(2)求m4+n4的值.21.已知:多项式A=b3﹣2ab(1)请将A进行因式分解:(2)若A=0且a≠0,b≠0,求(a−1)2+b2−12b2的值.22.已知x﹣y=3,求[(x﹣y)2+(x+y)(x﹣y)]÷2x的值.23.先化简,再求值.2(x﹣3)(x+2)﹣(3+a)(﹣a+3),其中,a=﹣2,x=1.24.已知M是含字母x的单项式,要使多项式4x2+M+1是某一个多项式的平方,求M的表达式.25.先化简再求值:4(m+1)2﹣(2m+5)(2m﹣5),其中m=﹣3.26.先化简再求值:4a(a+1)﹣(a+1)(2a﹣1),其中a=2.27.先化简,再求值:(2a+b)(﹣b+2a)﹣(2a﹣3b)2﹣5b(3a﹣2b),其中a=﹣12,b= 13.28.先化简,再求值:x(x﹣1)+2x(x+1)﹣(3x﹣1)(2x﹣5),其中x=2.29.有一张边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:30.请认真观察图形,解答下列问题:(1)根据图中条件,用两种方法表示两个阴影图形的面积的和(只需表示,不必化简);(2)由(1),你能得到怎样的等量关系?请用等式表示;(3)如果图中的a,b(a>b)满足a2+b2=53,ab=14,求:①a+b的值;②a4-b4的值.参考答案及解析一、解答题1.【答案】(1)解:原式=a2(x2-y2)=a2(x+y)(x-y)(2)解:原式=4(x2-2xy+y2)=4(x-y)2【解析】【分析】(1)对式子先利用提公因式法,再利用公式法进行因式分解得到答案即可;(2)将式子提出公因式4,再将括号内的式子利用完全平方公式进行因式分解即可。

人教版数学八年级上册《三角形》单元综合测试含答案

人教版数学八年级上册《三角形》单元综合测试含答案

人教版数学八年级上学期《三角形》单元测试考试时间:100分钟;总分:120分一、单选题(每小题3分,共30分)1.(2019·山东初二期中)下列每组数分别是三根木棒的长度,能用它们摆成三角形的是( ) A .3cm ,4cm ,5cmB .8cm ,7cm ,15cmC .5cm ,5cm ,11cmD .13cm ,7cm ,20cm2.(2019·广西初二期中)如图,D 是AB 边上的中点,将△ABC 沿过D 的直线折叠,使点A 落在BC 上F 处,若∠B=50°,则∠EDF 的度数为 ( )A .50°B .40°C .80°D .60°3.(2019·广西初二期中)若长度分别为,3,5a 的三条线段能组成一个三角形,则a 的值可以是( ) A .1 B .2 C .3 D .84.(2019·福建省武平县第一中学初二期中)如图,直线a ∥b,∠1=75°,∠2=40°,则∠3的度数为( )A .75°B .50°C .35°D .30°5.(2019·福建省武平县第一中学初二期中)在ABC ∆中,画出边AC 上的高,下面4幅图中画法正确的是( )A .B .C .D .6.(2019·湖北初二期中)已知2x =是关于x 的方程()2440x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC 的两条边长,则ABC 的周长为( )A.6 B.8 C.10 D.8或107.(2019·河北初二期中)若一个正n边形的每个内角为144°,则n等于()A.10 B.8 C.7 D.58.(2019·恩施市新塘民族中学初二期中)如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为................... ................... ................... ....... .......... ..... .......... ..... ()A.5 B.10 C.15 D.209.(2019·广东初二月考)下列说法正确的是()A.三角形的角平分线是射线B.三角形的中线是线段C.三角形的高是直线D.直角三角形仅有一条高线10.(2019·江苏河塘中学初一月考)如图△ABC中,已知D、E、F分别是BC、AD、CE的中点,且S△ABC=4,那么阴影部分的面积等于…()A.1 B.2 C.12D.14二、填空题(每小题4分,共24分)11.(2019·厦门市湖滨中学初二期中)空调外机安装在墙壁上时,一般都会像如图所示的方法固定在墙壁上,这种方法是利用了三角形的________________.12.(2019·青浦区实验中学初二期中)如图,Rt ABC ∆中,90BAC ∠=,35B ∠=,AD ⊥BC,那么DAC ∠=______.13.(2019·黑龙江初一期中)如图,△ABC 中,点D 在BC 上,且BD 2DC =,点E 是AC 中点,若△CDE 面积为1,则△ABC 的面积为____.14.(2019·汕头聿怀实验学校初二期中)一个三角形的两边长分别是2和7,最长边a 为偶数,则这个三角形的周长为______.15.(2019·山东初一期中)已知△ABC 中的三边a=2,b=4,c=3,h a ,h b ,h c 分别为a,b,c 上的高,则h a :h b :h c =____. 16.(2019·浙江初二期中)如图,在△ABC 中E 是BC 上的一点,EC =2EB,点D 是AC 的中点,AE 、BD 交于点F,AF =3FE,若△ABC 的面积为18,给出下列命题:①△ABE 的面积为6;②△ABF 的面积和四边形DFEC 的面积相等;③点F 是BD 的中点;④四边形DFEC 的面积为.其中,正确的结论有___.(把你认为正确的结论的序号都填上)三、解答题一(每小题6分,共18分)17.(2019·云南初二期中)五边形ABCDE的五个外角的度数比为1∶2∶3∶4∶5,求它的五个内角的度数. 18.(2019·山东初二期中)已知等腰三角形一腰上的中线将三角形的周长分为9cm和15cm两部分,求这个等腰三角形的底边长和腰长.19.(2019·陕西初三)有一块三角形的地,现要平均分给四农户种植(即四等分三角形面积).请你在图上作出分法.(不写作法,保留作图痕迹)四、解答题二(每小题7分,共21分20.(2019·福建省武平县第一中学初二期中)已知一个多边形的边数n,它的每一个内角都等于150 ,求:(1)边数n;(2)这个n边形的内角和;21.(2019·河南初二期中)如图所示,△ABC中,∠B=36°,∠ACB=110°,AE是∠BAC的平分线.(1)求∠AEC的度数;(2)过△ABC的顶点A作BC边上的高AD,求∠DAE的度数.22.(2019·重庆初二期中)如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=80°,∠C=54°,求∠DAC、∠BOA的度数.)五、解答题三(每小题9分,共27分)23.(2019·山东初二月考)如图,已知ABC ∠的平分线BD 和ACE ∠的平分线CD 相交于D,DBC D ∠=∠(1)AB 与CD 平行吗?请说明理由;(2)如果54A ∠=︒,求D ∠的度数.24.(2019·河南初二开学考试)如图,在△ABC 中,∠BAC 是钝角,画出:(1)∠BAC 的平分线;(2)AC 边上的中线;(3)AC 边上的高;(4)AB 边上的高.25.(2019·重庆市璧山区青杠初级中学校初二期中)如图,在△ABC 中,已知AD BC ⊥于点D,AE 平分()BAC C B ∠∠>∠(1)试探究EAD ∠与C B ∠∠、的关系;(2)若F 是AE 上一动点,当F 移动到AE 之间的位置时,FD BD ⊥,如图2所示,此时EFD C B ∠∠∠与、的关系如何?(3)若F 是AE 上一动点,当F 继续移动到AE 的延长线上时,如图3,FD BC ⊥,①中的结论是否还成立?如果成立请说明理由,如果不成立,写出新的结论.参考答案一、单选题(每小题3分,共30分)1.(2019·山东初二期中)下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,5cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,7cm,20cm【答案】A【解析】根据三角形三边关系定理判断得出答案.【详解】A:5<4+3,A能摆成三角形,故A选项正确;B:8+7=15,B不能摆成三角形,故B选项错误;C:5+5<11,C不能摆成三角形,故C选项错误;D:13+7=20,D不能摆成三角形,故D选项错误;故答案选择A.【点睛】本题考查的是三角形三边关系:两边之和大于第三边,两边之差小于第三边.2.(2019·广西初二期中)如图,D是AB边上的中点,将△ABC沿过D的直线折叠,使点A落在BC上F处,若∠B=50°,则∠EDF的度数为()A.50°B.40°C.80°D.60°【答案】A【解析】试题分析:由D是AB边上的中点结合折叠的性质可得AD=BD=DF,即可求得∠BFD的度数,再根据三角形的内角和定理可求得∠BDF的度数,最好根据折叠的性质求解即可.根据折叠的性质可得AD=DF,∠ADE=∠EDF∵D是AB边上的中点∴AD=DF∴BD=DF∵∠B=50°∴∠BFD=∠B=50°∴∠BDF=80°∴∠ADE=∠EDF=50°故选A.考点:折叠的性质,中点的性质,等边对等角,三角形的内角和定理点评:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.a的三条线段能组成一个三角形,则a的值可以是()3.(2019·广西初二期中)若长度分别为,3,5A.1 B.2 C.3 D.8【答案】C【解析】根据三角形三边关系可得5﹣3<a<5+3,解不等式即可求解.【详解】由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,由此可得,符合条件的只有选项C,故选C.【点睛】本题考查了三角形三边关系,能根据三角形的三边关系定理得出5﹣3<a<5+3是解此题的关键,注意:三角形的两边之和大于第三边,三角形的两边之差小于第三边.4.(2019·福建省武平县第一中学初二期中)如图,直线a∥b,∠1=75°,∠2=40°,则∠3的度数为()A.75°B.50°C.35°D.30°【答案】C【解析】【分析】根据两直线平行,内错角相等可以得出∠4=∠1=75°,再根据三角形外角的性质即可得出答案.【详解】∵a∥b,∴∠4=∠1=75°,∴∠2+∠3=∠4=75°,∵∠2=40°,∴∠3=75°﹣40°=35°, 故选C .【点睛】本题考查了平行线的性质以及三角形外角的性质,结合图形熟练应用相关性质解题是关键. 5.(2019·福建省武平县第一中学初二期中)在ABC ∆中,画出边AC 上的高,下面4幅图中画法正确的是( )A .B .C .D .【答案】D【解析】作哪一条边上的高,即从所对的顶点向这条边或这条边的延长线作垂线段即可.【详解】解:在△ABC 中,画出边AC 上的高,即是过点B 作AC 边的垂线段,正确的是D .故选:D .【点睛】此题主要考查了三角形的高,关键是要注意高的作法.6.(2019·湖北初二期中)已知2x =是关于x 的方程()2440x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC 的两条边长,则ABC 的周长为( )A .6B .8C .10D .8或10【答案】C【解析】把x=2代入已知方程求得m 的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【详解】把x=2代入方程得4-2(m+4)+4m=0,解得m=2,则原方程为x 2-6x+8=0,解得x 1=2,x 2=4,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC的腰为4,底边为2时,则△ABC的周长为4+4+2=10;②当△ABC的腰为2,底边为4时,不能构成三角形.综上所述,该△ABC的周长为10.故选:C【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.7.(2019·河北初二期中)若一个正n边形的每个内角为144°,则n等于()A.10 B.8 C.7 D.5【答案】A【解析】根据多边形的内角和公式列出关于n的方程,解方程即可求得答案.【详解】∵一个正n边形的每个内角为144°,∴144n=180×(n-2),解得:n=10,故选A.【点睛】本题考查了多边形的内角和公式,熟练掌握多边形的内角和公式是解题的关键.8.(2019·恩施市新塘民族中学初二期中)如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.20【答案】A【解析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【详解】根据题意,阴影部分的面积为三角形面积的一半,∵S△ABC=12×BC AD=12×4×5=10,∴阴影部分面积=12×10=5. 故答案选A. 【点睛】本题考查了轴对称的性质,解题的关键是熟练的掌握轴对称的性质. 9.(2019·广东初二月考)下列说法正确的是( )A .三角形的角平分线是射线B .三角形的中线是线段C .三角形的高是直线D .直角三角形仅有一条高线【答案】B【解析】三角形的角平分线,中线,高都是线段,故A,C 错误,B 正确;任何三角形都有三条高线,故D 错误.故选B.10.(2019·江苏河塘中学初一月考)如图△ABC 中,已知D 、E 、F 分别是BC 、AD 、CE 的中点,且S △ABC =4,那么阴影部分的面积等于…( )A .1B .2C .12D .14【答案】A【解析】 试题解析:如图,点F 是CE 的中点,∴△BEF 的底是EF ,△BEC 的底是EC ,即12EF EC =,高相等; ∴12BEF BEC S S =,D. E. 分别是BC 、AD 的中点,同理得,12EBC ABC S S =,∴1,4BEF ABC S S = 且S △ABC =4,∴1BEF S =,即阴影部分的面积为1.故选A.二、填空题(每小题4分,共24分)11.(2019·厦门市湖滨中学初二期中)空调外机安装在墙壁上时,一般都会像如图所示的方法固定在墙壁上,这种方法是利用了三角形的________________.【答案】稳定性【解析】钉在墙上的方法是构造三角形,因而应用了三角形的稳定性.【详解】解:这种方法应用的数学知识是:三角形的稳定性,故答案为:稳定性.【点睛】本题主要考查了三角形的稳定性,正确掌握三角形的这一性质是解题的关键.12.(2019·青浦区实验中学初二期中)如图,Rt ABC ∆中,90BAC ∠=,35B ∠=,AD ⊥BC,那么DAC ∠=______.【答案】35°【解析】通过∠ BAC 和∠ B 和度数,可以求出∠ C 的度数,又知AD ⊥BC,求解∠ DAC 。

期末模拟冲刺卷(三)-2019学年八年级数学(上)期末复习一本通人教版(解析版)

期末模拟冲刺卷(三)-2019学年八年级数学(上)期末复习一本通人教版(解析版)

原创精品资源学科网独家享有版权,侵权必究!
1
(时间:90分钟 分值:120分)
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.下面图案中是轴对称图形的有
A .1个
B .2个
C .3个
D .4个 【答案】B 【解析】第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,
故轴对称图形一共有2个.故选B .
2.下列计算或运算中,正确的是
A .623a a a ÷=
B .238(2)8a a -=-
C .2(3)(3)9a a a -+=-
D .222()a b a b -=- 【答案】
C
3.下列长度的三条线段能组成三角形的是
A .6,8 ,10
B .4,5,9
C .1,2,4
D .5,15,8 【答案】A
【解析】符合三角形三边关系,所以A 正确;因为4+5=9,所以B 错误;因为1+2<4,所以C 错误;因。

人教版八年级数学上册第11章《三角形》填空题、解答题专项练习(含答案)

人教版八年级数学上册第11章《三角形》填空题、解答题专项练习(含答案)

第11章《三角形》填空题、解答题专项练习一.填空题(共11小题)1.(2019秋•阳新县期末)将一副学生用三角板(即分别含30°角、45°角的直角三角板)按如图所示方式放置,则∠1=°.2.(2019秋•曾都区期末)我们定义三边长均为整数的三角形叫做整三角形.已知∠ABC是整三角形,其周长为偶数,若AC﹣BC=3.则边长AB的最小值是.3.(2019秋•武昌区期末)若n边形的内角和等于外角和的2倍,则边数n为.4.(2019秋•麻城市期末)一个三角形3条边长分别为xcm、(x+1)cm、(x+2)cm,它的周长不超过39cm,则x的取值范围是.5.(2019秋•宜城市期末)一个多边形的内角和比它的外角和多540°,并且这个多边形的各个内角都相等,则这个多边形每个内角是.6.(2019秋•松滋市期末)如图,在∠ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=.7.(2019秋•潜江期末)在我们的生活中处处有数学的身影,请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理.8.(2019秋•樊城区期末)在∠ABC中,∠A=12∠B=13∠C,则∠B=度.9.(2018秋•安陆市期末)一个凸n边形的内角和为1260°,则n=.10.(2018秋•宜城市期末)已知三角形三边的长分别为1,5,n,且n为整数,则n的值为.11.(2017秋•蔡甸区期末)如图,∠ABC的内角平分线BE、CF相交于点G,则2∠BGC﹣∠A=.二.解答题(共19小题)12.(2020春•江汉区期末)已知,如图,在∠ABC中,AH平分∠BAC交BC于点H,D、E分别在CA、BA的延长线上,DB∠AH,∠D=∠E.(1)求证:DB∠EC;(2)若∠ABD=2∠ABC,∠DAB比∠AHC大5°.求∠D的度数.13.(2020春•大冶市期末)如图1,在三角形ABC中,D是BC上一点,且∠CDA=∠CAB.(注:三角形内角和等于180°)(1)求证:∠CDA=∠DAB+∠DBA;(2)如图2,MN是经过点D的一条直线,若直线MN交AC边于点E,且∠CDE=∠CAD.求证:∠AED+∠EAB=180°;(3)将图2中的直线MN绕点D旋转,使它与射线AB交于点P(点P不与点A,B重合).在图3中画出直线MN,并用等式表示∠CAD,∠BDP,∠BPD这三个角之间的数量关系,不需证明.14.(2019秋•樊城区期末)如图,D是∠ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠BAC=66°,求∠DAC的度数.15.(2018秋•樊城区期末)如图,D是∠ABC的BC边上的一点,且∠1=∠2,∠3=∠4,∠CAD=28°,求∠BAC的度数.16.(2019春•丹江口市期末)如图1,∠XOY=90°,点A,B分别在射线Ox,Oy上移动,BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.(1)试问∠ACB的大小是否发生变化,如果保持不变,请求出∠C的度数,如果随点A,B的移动发生变化,请求出变化的范围.(2)点D在x轴负半轴上,过点A作AF∠x轴交CE于点E,交DC的延长线于点F,若∠AFD=45°,试问∠2与∠5有何关系?请证明你的结论.17.(2019春•硚口区期末)如图1,已知点E和点F分别在直线AB和CD上,EL和FG分别平分∠BEF和∠EFC,EL∠FG.(1)求证:AB∠CD;(2)如图2,点M为FD上一点,∠BEM,∠EFD的角平分线EH,FH相交于点H,若∠H=∠FEM+15°,延长HE交FG于点G,求∠G的度数;(3)如图3,点N在直线AB和直线CD之间,且EN∠FN,点P为直线AB上的点,若∠EPF,∠PFN的角平分线交于点Q,设∠BEN=α,直接写出∠PQF的大小为(用含α的式子表示).18.(2019春•江夏区期末)已知∠ABC中,点D是AC延长线上的一点,过点D作DE∠BC,DG平分∠ADE,BG 平分∠ABC,DG与BG交于点G.(1)如图1,若∠ACB=90°,∠A=50°,直接求出∠G的度数;(2)如图2,若∠ACB≠90°,试判断∠G与∠A的数量关系,并证明你的结论;(3)如图3,若FE∠AD,求证:∠DFE=12∠ABC+∠G.19.(2018秋•新洲区期末)如图,直线MN与直线PQ相交于点O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,若∠AOB=80°,AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的理由;若不发生变化,试求出∠AEB的度数;(2)如图2,若∠AOB=90°,点D、C分别是∠P AB和∠ABM的角平分线上的两点,AD、BC交于点F.∠ADC 和∠BCD的角平分线相交于点E,∠点AB在运动的过程中,∠F的大小是否会发生变化?若发生变化,请说明变化的理由;若不发生变化,请求其度数.∠点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明变化的理由;若不发生变化,请求其度数.20.(2019春•丹江口市期末)如图,点F是∠ABC的边BC延长线上一点.DF∠AB,∠A=30°,∠F=40°,求∠ACF 的度数.21.(2019春•丹江口市期末)如图,∠ABC中,AD∠BC于点D,BE平分∠ABC,若∠ABC=64°,∠AEB=70°.(1)求∠CAD的度数;(2)若点F为线段BC上的任意一点,当∠EFC为直角三角形时,求∠BEF的度数.22.(2018秋•梁子湖区期末)如图,在∠ABC中,AD∠BC,AE平分∠BAC.(1)若∠B=72°,∠C=30°,求∠∠BAE的度数;∠∠DAE的度数;(2)探究:如果只知道∠B=∠C+42°,也能求出∠DAE的度数吗?若能,请你写出求解过程;若不能,请说明理由.23.(2018秋•蔡甸区期末)如图,AB∠BC,DC∠BC,若∠DBC=45°,∠A=70°,求∠D,∠AED,∠BFE的度数.24.(2018秋•仙桃期末)如图,在∠ABC中,AD∠BC于D,AE平分∠DAC,∠BAC=80°,∠B=60°,求∠AEC的度数.25.(2018秋•蔡甸区期末)已知如图∠B=∠C,∠1=∠2,∠BAD=40°,求∠EDC度数.26.(2018春•硚口区期末)如图1,点E在线段CA的延长线上,DE,AB交于点F,且∠BDF=∠AEF,∠B=∠C.(1)给出AB与CD的位置关系,并证明;(2)如图2,M为CA反向延长线上一点,∠EAB,∠DCM的平分线交于点N,求∠ANC的度数;(3)如图3,∠EAF,∠BDF的平分线交于点G,且∠EDC=α,直接写出∠AGD的度数(用含α的式子表示)27.(2018春•黄陂区期末)如图,四边形ABCD中,AB∠CD,∠B=∠D,点E为BC延长线上一点,连接AE.(1)如图1,求证:AD∠BC(2)若∠DAE和∠DCE的角平分线相交于点F,连接AC.∠如图2,若∠BAE=70°,求∠F的度数∠如图3,若∠BAC=∠DAE,∠AGC=2∠CAE,则∠CAE的度数为(直接写出结果)28.(2017秋•江汉区期末)已知∠AOB.(1)如图,OC是∠AOB的平分线,D是∠BOC内一点,若∠AOC=5∠BOD,∠AOB=150°,求∠AOD的度数;(2)OE是∠AOB的三等分线,T是∠AOB内部的一点,且∠BOT+∠EOA=∠AOT,求∠AOB:∠TOB的值.29.(2018春•襄城区期末)如图,在∠ABC中,∠ACB=90°,过点C作CD∠AB,BD平分∠ABC,若∠ABD=20°,求∠ACD的度数.30.(2017秋•梁子湖区期末)请你参与下面探究过程,完成所提出的问题.(1)如图1,P是∠ABC的内角∠ABC与∠ACB的平分线BP和CP的交点,若∠A=50°,则∠BPC=°;(2)如图2,P是∠ABC的外角∠DBC与外角∠ECB的平分线BP和CP的交点,直接写出∠BPC与∠A的数量关系.(3)如图3,P是四边形ABCD的外角∠EBC与外角∠FCB的平分线BP和CP的交点,设∠A+∠D=α.∠写出∠BPC与α的数量关系;∠根据α的取值范围,直接判断∠BPC的形状(按角分类)第11章《三角形》填空题、解答题参考答案与试题解析一.填空题(共11小题)1.【答案】见试题解答内容【解答】解:由三角形的内角和得∠2=180°﹣90°﹣30°=60°,则∠3=∠2=60°,则∠1=45°+∠3=105°.故答案为:105.2.【答案】见试题解答内容【解答】解:设三角形三边长度为AC ,BC ,AB ,∠AC ﹣BC =3,∠AC 与BC 为一奇一偶,∠AC +BC +AB 为偶数,∠AB 一定是奇数,∠AB >AC ﹣BC =3,∠第三边AB 的最小值是5,故答案为:5.3.【答案】见试题解答内容【解答】解:设这个多边形的边数为n ,则依题意可得:(n ﹣2)×180°=360°×2,解得n =6.故答案为:64.【答案】见试题解答内容【解答】解:∠一个三角形的3边长分别是xcm ,(x +1)cm ,(x +2)cm ,它的周长不超过39cm , ∠{x +(x +1)>x +2x +(x +1)+(x +2)≤39, 解得1<x ≤12.故答案为:1<x ≤12.5.【答案】见试题解答内容【解答】解:设这个多边形的边数为n ,则有(n ﹣2)•180°=360°+540°,解得n =7.∠这个多边形的每个内角都相等,∠它每一个内角的度数为900°÷7=(9007)°. 故答案为:(9007)°.6.【答案】见试题解答内容【解答】解;∠∠A =50°,∠∠ABC +∠ACB =180°﹣50°=130°,∠∠B 和∠C 的平分线交于点O ,∠∠OBC =12∠ABC ,∠OCB =12∠ACB ,∠∠OBC +∠OCB =12×(∠ABC +∠ACB )=12×130°=65°,∠∠BOC =180°﹣(∠OBC +∠OCB )=115°,故答案为:115°.7.【答案】见试题解答内容【解答】解:根据折叠的性质,∠A =∠1,∠B =∠2,∠C =∠3,∠∠1+∠2+∠=180°,∠∠A +∠B +∠C =180°,∠定理为:三角形的内角和是180°.故答案为:三角形的内角和是180°.8.【答案】见试题解答内容【解答】解:设∠A 为x .x +2x +3x =180°∠x =30°.∠∠A =30°,∠B =60°,∠C =90°.故填60.9.【答案】见试题解答内容【解答】解:由题意得,(n ﹣2)×180°=1260°,解得,n =9,故答案为:9.10.【答案】见试题解答内容【解答】解:∠5﹣1=4,5+1=6,∠4<n <6,∠n 为整数,∠n 的值为5.故答案为:5.11.【答案】见试题解答内容【解答】解:∠BE ,CF 分别平分∠ABC ,∠ACB ,∠∠GBC =12∠ABC ,∠GCB =12∠ACB ,∠∠BGC =180°﹣∠GBC ﹣∠GCB ,∠∠BGC =180°−12(∠ABC +∠ACB )=180°−12(180°﹣∠A ) =90°+12∠A , ∠2∠BGC ﹣∠A =180°.故答案为180°.二.解答题(共19小题)12.【答案】(1)证明过程见解答;(2)50°.【解答】(1)证明:∠DB ∠AH ,∠∠D =∠CAH ,∠AH 平分∠BAC ,∠∠BAH =∠CAH ,∠∠D =∠E ,∠∠BAH =∠E ,∠DB ∠EC ;(2)解:设∠ABC =x ,则∠ABD =2x ,则∠BAH =2x ,则∠DAB =180°﹣4x ,则∠AHC =175°﹣4x ,依题意有 175°﹣4x =3x ,解得x =25°,则∠D =180°﹣2x ﹣(180°﹣4x )=2x =50°.13.【答案】见试题解答内容【解答】解:(1)∠∠C +∠CAD +∠ADC =∠C +∠CAB +∠B =180°,∠∠CAD +∠ADC =∠CAB +∠B ,∠∠CDA =∠CAB ,∠∠CAD =∠B ,∠∠CAB =∠CAD +∠DAB =∠ABC +∠DAB ,∠∠CDA =∠DAB +∠DBA ;(2)∠∠CDE =∠CAD ,∠C =∠C ,∠∠CAD ∠∠CDE ,∠∠CDE =∠CAD ,又∠B =∠CAD ,∠∠B=∠CDE,∠MN∠BA,∠∠AED+∠EAB=180°;(3)∠CAD=∠BDP+∠DPB证明:由三角形的外角的性质可知,∠ABC=∠BDP+∠DPB,∠∠CDA=∠CAB,∠C=∠C,∠∠CAD∠∠CBA,∠∠ABC=∠CAD,∠∠ABC=∠BDP+∠DPB.14.【答案】见试题解答内容【解答】解:∠4=∠1+∠2,∠1=∠2,∠∠4=2∠1,∠∠3=∠4,∠∠3=2∠1,∠180°﹣4∠1+∠1=66°,解得,∠1=38°,∠∠DAC=66°﹣∠1=28°.15.【答案】见试题解答内容【解答】解:∠∠CAD=28°,∠∠3+∠4=180°﹣28°=152°,∠∠3=∠4,∠∠3=∠4=76°,∠∠4=∠1+∠2,∠1=∠2,∠∠4=2∠1,∠∠1=38°,∠∠BAC=∠1+∠CAD=38°+28°=66°.16.【答案】见试题解答内容【解答】解:(1)不变,∠ACB=45°.理由:如图1中,∠∠1=∠2,∠3=∠4,∠4=∠C+∠1,∠3+∠4=2∠4=∠1+∠2+90°,即2∠4=2∠1+90°,而2∠4=2∠C+2∠1,∠2∠C=90°,∠C=45°,(2)结论:∠5=∠2.理由:如图2中,∠AF ∠AD ,∠∠DAF =90°,又∠AFD =45°,∠∠ADC =45°,∠∠ACF =∠ADC +∠2=45°+∠2,∠ACF =∠ACE +∠5=45°+∠5,∠∠5=∠2.17.【答案】见试题解答内容【解答】证明:(1)如图1,∠EL 和FG 分别平分∠BEF 和∠EFC , ∠∠FEL =12∠BEF ,∠EFG =12∠EFC , ∠GF ∠EL ,∠∠FEL =∠EFG ,∠∠BEF =∠EFC ,∠AB ∠CD ;(2)如图2,设∠BEH =α,∠DFH =β,∠FH 平分∠EFD ,FG 平分∠EFC ,∠∠EFH +∠EFG =12∠EFD +12∠EFC =90°,∠∠BEM ,∠EFD 的角平分线EH ,FH 相交于点H ,∠∠BEH =∠MEH =α,∠EFH =∠DFH =β,∠AB ∠CD ,∠∠ENG =∠DFG ,∠∠EGN 中,∠BEG =∠G +∠ENG ,∠∠BEG =∠G +∠DFG ,∠∠G =∠BEG ﹣∠DFG =180°﹣α﹣(90°+β)=90°﹣(α+β), ∠AB ∠CD ,∠∠BEF +∠EFD =180°,即2α+∠FEM +2β=180°,∠∠FEM =180°﹣2(α+β),∠∠H =∠FEM +15°,且∠G +∠H =90°,∠90°﹣(α+β)+180°﹣2(α+β)+15°=90°,∠α+β=65°,∠∠G =90°﹣65°=25°;(3)分两种情况:延长FN 交AB 于H ,∠当P 在点E 的右边时,如图3,设∠EPK =x ,∠PFQ =y ,∠PK 平分∠APF ,FQ 平分∠PFN ,∠∠EPK =∠KPF =x ,∠PFQ =∠QFH =y ,∠∠PQF 中,∠KQF =∠KPF +∠PFQ =x +y ,∠PQF =180°﹣(x +y ),∠EN ∠FN ,∠∠ENF =∠ENH =90°∠∠BEN =α,∠∠EHN =90°﹣α,∠∠PFH 中,∠EHN =∠HPF +∠HFP ,∠90°﹣α=2x +2y ,∠∠PQF =180°﹣(x +y )=180°−90°−α2=135°+α2; ∠当点P 在E 的左边时,如图4,设∠EPQ =x ,∠PFQ =y ,∠∠PFH 中,∠HPF +∠PFH +∠FHP =180°,∠2x +2y +90°﹣α=180°,∠x +y =90°+α2, ∠∠PFQ 中,∠PQF =180°﹣(x +y )=180°−90°+α2=135°−α2, 综上,∠PQF 的度数为135°+α2或135°−α2.故答案为:135°+α2或135°−α2. 18.【答案】见试题解答内容【解答】解:(1)如图1,∠∠ACB =90°,∠A =50°, ∠∠ABC =40°,∠BG 平分∠ABC ,∠∠CBG =20°,∠DE ∠BC ,∠∠CDE =∠BCD =90°,∠DG 平分∠ADE ,∠∠CDF =45°,∠∠CFD =45°,∠∠BFD =180°﹣45°=135°,∠∠G =180°﹣20°﹣135°=25°;(2)如图2,∠A =2∠G ,理由是:由(1)知:∠ABC =2∠FBG ,∠CDF =∠CFD ,设∠ABG =x ,∠CDF =y ,∠∠ACB =∠DCF ,∠∠A +∠ABC =∠CDF +∠CFD ,即∠A +2x =2y ,∠y =12∠A +x , 同理得∠A +∠ABG =∠G +∠CDF ,∠∠A +x =∠G +y ,即∠A +x =∠G +12∠A +x ,∠∠A =2∠G ;(3)如图3,∠EF ∠AD ,∠∠DFE =∠CDF ,由(2)得:∠CFD =∠CDF ,∠FBG 中,∠G +∠FBG +∠BFG =180°,∠BFG +∠DFC =180°, ∠∠DFC =∠G +∠FBG ,∠∠DFE =∠CFD =∠FBG +∠G =12∠ABC +∠G .19.【答案】见试题解答内容【解答】解:(1)∠AE 、BE 分别是∠BAO 和∠ABO 的角平分线, ∠∠EAB =12∠OAB ,∠EBA =12∠OBA ,∠∠AOB =80°,∠∠OAB +∠OBA =180°﹣80°=100°, ∠∠EAB +∠EBA =12(∠OBA +∠OAB )=12÷100°=50°, ∠∠AEB =180°﹣(∠EAB +∠EBA )=130°,即∠AEB 的大小不会发生变化,为130°;(2)∠∠点D 、C 分别是∠P AB 和∠ABM 的角平分线上的两点, ∠∠F AB =12∠P AB =12(180°﹣∠OAB ),∠FBA =12∠MBA =12(180°﹣∠OBA ), ∠∠F AB +∠FBA =12(180°﹣∠OAB )+12(180°﹣∠OBA )=12(180°+∠AOB )=90°+12∠AOB , ∠∠AOB =90°,∠∠F =180°﹣(∠F AB +∠FBA )=90°−12∠AOB =45°, 即∠F 的大小不变,为45°;∠∠∠ADC 和∠BCD 的角平分线相交于点E ,同理可得,∠E =90°−12∠F =67.5°,即∠CED 的大小不会发生变化,为67.5°.20.【答案】见试题解答内容【解答】解:在∠DFB 中,∠DF ∠AB ,∠∠FDB =90°,∠∠F =40°,∠FDB +∠F +∠B =180°,∠∠B =50°.在∠ABC 中,∠∠A =30°,∠B =50°,∠∠ACF =∠A +∠B =30°+50°=80°.21.【答案】见试题解答内容【解答】(1)证明:∠BE 平分∠ABC ,∠∠ABC =2∠EBC =64°,∠∠EBC =32°,∠AD ∠BC ,∠∠ADB =∠ADC =90°,∠∠BAD =90°﹣64°=26°,∠∠C =∠AEB ﹣∠EBC =70°﹣32°=38°,∠∠CAD =90°﹣38°=52°;(2)解:分两种情况:∠当∠EFC =90°时,如图1所示:则∠BFE =90°,∠∠BEF =90°﹣∠EBC =90°﹣32°=58°;∠当∠FEC =90°时,如图2所示:则∠EFC =90°﹣38°=52°,∠∠BEF =∠EFC ﹣∠EBC =52°﹣32°=20°;综上所述:∠BEF 的度数为58°或20°.22.【答案】见试题解答内容【解答】解:(1)∠∠∠B +∠C +∠BAC =180°,∠∠BAC =180°﹣72°﹣30°=78°,∠AE 平分∠BAC ,∠∠BAE =12∠BAC =39°;∠∠AD ∠BC ,∠∠ADB =90°,∠∠BAD =90°﹣∠B =18°,∠∠DAE =∠BAE ﹣∠BAD =39°﹣18°=21°;(2)能.∠∠B +∠C +∠BAC =180°,∠B =∠C +42°,∠∠C =∠B ﹣42°,∠2∠B +∠BAC =222°,∠∠BAC =222°﹣2∠B ,∠AE 平分∠BAC ,∠∠BAE =111°﹣∠B ,在∠ABD 中,∠BAD =90°﹣∠B ,∠∠DAE =∠BAE ﹣∠BAD =(111°﹣∠B )﹣(90°﹣∠B )=21°.23.【答案】见试题解答内容【解答】解:∠DC ∠BC ,∠DBC =45°,∠∠D =90°﹣∠DBC =90°﹣45°=45°;∠AB ∠BC ,DC ∠BC ,∠AB ∠CD ,∠∠AED =∠A =70°;在∠DEF 中,∠BFE =∠D +∠AED ,=45°+70°,=115°.24.【答案】见试题解答内容【解答】解:∠∠BAC =80°,∠B =60°,∠∠C =180°﹣∠BAC ﹣∠B =180°﹣80°﹣60°=40°, ∠AD ∠BC ,∠∠DAC =90°﹣∠C =90°﹣40°=50°,∠AE 平分∠DAC ,∠∠DAE =12∠DAC =12×50°=25°,∠∠AEC =∠DAE +∠ADE =25°+90°=115°.25.【答案】见试题解答内容【解答】解:∠ABD 中,由三角形的外角性质知: ∠ADC =∠B +∠BAD ,即∠EDC +∠1=∠B +40°;∠ 同理,得:∠2=∠EDC +∠C ,已知∠1=∠2,∠B =∠C ,∠∠1=∠EDC +∠B ,∠∠代入∠得:2∠EDC +∠B =∠B +40°,即∠EDC =20°.26.【答案】(1)结论:AB ∠CD .证明见解析部分.(2)90°.(3)90°−12α. 【解答】解:(1)结论:AB ∠CD .理由:∠∠BDF =∠AEF ,∠EC ∠BD ,∠∠EAF =∠B ,∠∠B =∠C ,∠∠EAF =∠C ,∠AB ∠CD .(2)∠AB ∠CD ,∠BAC +∠ACD =180°,∠∠CAB +∠EAB =180°,∠ACD +∠DCM =180°, ∠∠EAB +∠DCM =180°,∠∠EAB ,∠DCM 的平分线交于点N ,∠∠NAC +∠NCA =12(∠EAB +∠DCM )=90°, ∠∠ANC =90°.(3)如图3中,∠AB ∠CD ,∠∠AFE =∠EDC =α,∠∠EAF +∠AEF =180°﹣α,∠CE ∠BD ,∠∠B =∠EAF ,设∠EAG =∠GAF =x ,∠EDG =∠GDB =y , 则有{∠G +y =2y +x∠G +x =2x +y2x +2y =180°−α,∠∠G =90°−12α. 27.【答案】见试题解答内容【解答】解:(1)∠AB∠CD,∠∠B=∠DCE,而∠B=∠D,∠∠D=∠DCE,∠AD∠BC;(2)∠如下图,设∠DAF=∠EAF=α,∠DCF=∠ECF=β,∠AD∠BC,∠∠D=∠DCE=2β,∠AB∠CD,∠∠BAE+∠EAD+∠D=180°,∠∠BAE=70°∠70+2α+2β=180整理得:α+β=55°,∠∠DHF=∠DAH+∠D=∠DCF+∠F即:α+2β=∠F+β,∠∠F=α+β=55°;∠如图3,设∠CAG=x,∠DCG=z,∠BAC=y,则∠EAD=y,∠D=∠DCE=2z,∠AGC=2∠CAE=2x,∠AB∠CD,∠∠AHD=∠BAH=x+y,∠ACD=∠BAC=y,∠AHD中,x+2y+2z=180∠,∠ACG中,x+2x+y+z=180,3x+y+z=180,6x+2y+2z=360∠,∠﹣∠得:5x=180,x=36°,∠∠CAE=36°.28.【答案】见试题解答内容【解答】解:(1)∠∠AOC=5∠BOD,设∠BOD=x°,则∠AOC=5x°,∠OC是∠AOB的平分线,∠∠BOC=∠AOC=5x°,∠∠COD=4x°,∠∠AOB=10x°=150°,解得x=15,则∠AOD=∠AOC+∠COD=9x=135°;(2)如图1,设∠BOT=x,∠EOT=y,则∠BOT+∠EOT=x+y,∠OE是∠AOB的三等分线,∠∠AOB=3∠BOE=3x+3y,∠∠AOE=2x+2y,∠∠BOT+∠EOA=∠AOT,∠x+2x+2y=2x+3y,解得x=y,∠∠AOB =6x ,∠∠AOB :∠TOB =6:1;如图2,∠OE 是∠AOB 的三等分线,∠∠AOE =13∠AOB ,∠∠BOT +∠EOA =∠AOT ,∠AOT =∠AOE +∠TOE , ∠∠TOE =∠BOT ,∠∠BOT =13∠AOB ,∠∠AOB :∠TOB =3:1.29.【答案】见试题解答内容【解答】解:∠BD 平分∠ABC ,∠ABD =20°, ∠∠ABD =2∠ABD =40°,∠∠ACB =90°,∠∠A =180°﹣∠ABC ﹣∠ACB =50°,∠CD ∠AB ,∠∠ACD =∠A =50°.30.【答案】见试题解答内容【解答】解:(1)∠∠A =50°,∠∠ABC +∠ACB =130°,∠BP 、CP 是角平分线,∠∠ABC =2∠PBC ,∠ACB =2∠BCP ,∠∠PBC +∠BCP =65°,∠∠PBC +∠BCP +∠BPC =180°,∠∠BPC =115°.(2)∠BP ,CP 分别是外角∠DBC ,∠ECB 的平分线, ∠∠PBC +∠PCB =12(∠DBC +∠ECB )=12(180°+∠A ), 在∠PBC 中,∠P =180°−12(180°+∠A )=90°−12∠A .(3)如图3,∠延长BA 、CD 于Q ,则∠P =90°−12∠Q ,∠∠Q =180°﹣2∠P ,∠∠BAD +∠CDA=180°+∠Q=180°+180°﹣2∠P=360°﹣2∠P ,∠∠P =180°−12α;∠当0<α<180时,∠BPC 是钝角三角形, 当α=180时,∠BPC 是直角三角形,当α>180时,∠BPC 是鋭角三角形.故答案为:115;∠BPC =90°−12∠A .。

人教版八年级上册第一学期数学期末复习每日一练(1-5)

人教版八年级上册第一学期数学期末复习每日一练(1-5)

2019—2020学年第一学期八年级数学期末复习每日一练一一、选择题(每题3分,共24分)1. 下面图案中是轴对称图形的有()A 1个 B. 2个 C. 3个 D. 4个 2. 在ABC ∆中,70,55AB ∠=︒∠=︒,则ABC ∆是( )A.钝角三角形;B.等腰三角形;C.等边三角形;D.等腰直角三角形 3. 在ABC ∆和A B C '''∆中,,AB A B AC A C ''''==,高AD A D ''=,则C ∠和C '∠的关系是( )A.相等;B.互补;C.相等或互补;D.以上都不对4. 如图,在ABC ∆中,,AB AC D =是BC 中点,下列结论中不正确的是( )A. B C ∠=∠;B. AD BC ⊥;C. AD 平分BAC ∠;D. 2AB BD =5. 由下列条件不能判定ABC ∆为直角三角形的是( )A. A B C ∠+∠=∠B. ::1:3:2A B C ∠∠∠=C. 2()()b c b c a +-= D. 111,,345a b c === 6. 在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是( )A .30 B. 40 C. 50 D. 60 7. 下列说法中正确的是( )A.两个直角三角形全等B.两个等腰三角形全等C.两个等边三角形全等D.两条直角边对应相等的直角三角形全等8. 已知正方形①、②在直线上,正方形③如图放置,若正方形①、②的面积分别为81 cm 2和144 cm 2,则正方形③的边长为( )A. 225 cm ;B. 63 cm ;C. 50 cm ;D. 15 cm二、填空题(每题3分,共30分)线密班级 姓名 学号 试场号封9. 如果等腰三角形的底角是50°,那么这个三角形的顶角的度数是 . 10. 直角三角形的两条直角边分别是9和12,则斜边是 .11. 如图,在Rt ABC ∆中,90,ACB D ∠=︒为斜边AB 的中点,AC =6 cm,BC =8 cm ,则CD 的长为 cm.12. 如图,在ABC ∆中,,AB AC D =为BC 中点,35BAD ∠=︒,则C ∠的度数 为 . 13. 已知等腰三角形的周长为15cm ,其中一边长为7 cm ,则底边长为 . 14. 甲、乙两人同时从同一地点出发,甲往北偏东60°的方向走了12 m ,乙往南偏东30° 的向走了5 m ,这时甲、乙两人相距 m15. 如图,ABC ∆中,90,C A B ∠=︒的垂直平分线交BC 于点D ,如果20B ∠=︒,则C A D∠= . 16. 如图,Rt ABC ∆中,90,8,3C AC BC ∠=︒==, ,,AE AC P Q ⊥分别是,AC AE 上 动点,且PQ AB =,当AP = 时,才能使ABC ∆和PQA ∆全等.17. 如图,有一块直角三角形纸片,两直角边AC =6 cm, BC =8 cm ,现将直角边AC 沿着直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为 cm.16题18. 如图,90MON ∠=︒,已知ABC ∆中,5,6AC BC AB ===,ABC ∆的顶点,A B 分别在边,OM ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为 .2019—2020学年第一学期八年级数学期末复习每日一练二一、选择题(本大题共10小题,每小题3分,共30分)1. 下列四个数中,最大的一个数是( )A.2D. 2- 2. 下列图形中,是轴对称图形的是( )A.①②B.②③C.①④D.③④ 3. 下列说法正确的是( )A.81-的平方根是9±B. 7C.127的立方根是13± D. 21-()的立方根是1-4. 一次函数32y x =-的图像与y 轴的交点坐标是( )A. 2(,0)3-B.2(,0)3C.(0,2)-D.(0,2) 5. 若点(21,3)M m m -+在第二象限,则m 取值范围是( ) A.12m >B.3m <-C.132m -<<D.12m < 6. 一次函数y kx b =+的图象如图所示,则当0y ≥时,x 的取值范围是( )A.2x ≥-B.2x ≤-C.1x ≥-D.1x ≤-7. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则ABC ∠的度数为( ) A. 90︒ B. 60︒ C.45︒ D. 30︒8. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定.....ABC ADC ≅V V 的是( )A.CB CD = ; B.BAC DAC ∠=∠;C.BAC DCA ∠=∠; D.90B D ∠=∠=︒线密班级 姓名 学号 试场号封9. 如图,在ABC V 中,90C ∠=︒,4AC =,3BC =,将ABC V 绕点A 逆时针旋转,使点C 落在线段AB 上的点E 处,点B 落在点D 处,则B 、D 两点间的距离为( )B. C. D.10. 如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A B C →→的方向运动到点C 停止, 设点P 的运动路程为()x cm , 在下列图象中,能表示ADP V的面积2()y cm 关于()x cm 的函数关系的图象是( )二、填空题(本大题共8小题,每小题3分,共24分,请将答案填在答题卡相应的位置上)11.= .12. 已知地球上海洋面积约为3610000002km ,则361000000用科学记数法可以表示为 .13. 在平面直角坐标系中点(2,3)P -关于x 轴的对称点是 .14. 在一次函数(1)5y k x =-+中,y 随x 的增大而增大,则k 的取值范围是 .15. 如图,在ABC V 中,点D 、E 分别是边AC 、BC 上的点,若ADB EDB EDC ≅≅V V V ,10AB cm =,则BC = cm .16. 如图,在ABC V 中,A B A C =,50A ∠=︒,CD AB ⊥于D ,则DCB ∠等于 . 17. 如图,OP 平分AOB ∠,15AOP ∠=︒,//PC OA ,4PC =,点D 是射线OA 上的一个动点,则PD 的最小值为 .18. 如图,在平面直角坐标系中,已知直线334y x =-+与x 轴、y 轴分别交于A 、B 两点,点(0,)C n 是y 轴上一点,将ABC V 沿直线AC 折叠,使得点B 恰好落在轴x 上,则点C 的坐标为( , ).2019—2020学年第一学期八年级数学期末复习每日一练三一.选择题. (本大题共10小题,每小题3分,共30分)1. 下列图形中,轴对称图形的个数为A .1个B .2 个C .3个D .4个 2.x 的取值范围是A .4x >B .4x ≠C .4x ≤D .4x ≥ 3.下列给出的三条线段的长,能组成直角三角形的是A .1 、 2 、3B .2 、 3、 4C .5、 7 、 9D .5、 12、 13 4.的叙述,正确的是A是有理数 B .5线 学 试场封C .D 的点 5.下列等式中正确的是A.3=- B. 22=- C.2=- D.3=-6. 如图,数轴上点A 对应的数是1,点B 对应的数是2,BC ⊥AB ,垂足为B ,且BC=1,以A 为圆心,AC 为半径画弧,交数轴于点D ,则点D 表示的数为A .1.4BC 1D .2.47.如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(﹣3,2),(b ,m ),(c ,m ),则点E 的坐标是A .(2,﹣3)B .(2,3)C .(3,2)D .(3,﹣2)8.如图,点E 、F 在AC 上,AD=BC ,AD//BC ,则添加下列哪一个条件后,仍无法判定△ADF ≌△CBE 的是A.DF=BEB.∠D=∠BC.AE=CFD.DF//BE9. 在同一直角坐标系内,一次函数y kx b =+与2y kx b =-的图象分别为直线为12,l l ,则下列图像中可能正确的是( )A B C D 10.已知点A (1,3)、B (3,1)-,点M 在x 轴上,当AM BM -最大时,点M 的坐标为 A .(2,0) B .(2.5,0) C .(4,0) D .(4.5,0)二.填空题. ( 本大题共8小题,每小题3分,共24分)11.圆周率 3.1415926π≈,用四舍五入法把π精确到千分位,得到的近似值是_______.12.已知点(,)P a b 在一次函数21y x =-的图像上,则21__________a b -+= 13.如图,已知△ABC ≌△DCB ,∠ABC=65°,∠ACB=30°,则∠ACD=______° 14.已知一个球体的体积为3288cm ,则该球体的半径为________cm.(注:球体体积公式V球体=343r π,为球体的半径.)第13题图 第16题图 第17题图 15.已知等边三角形的边长为2,则其面积等于__________.16.如图,已知一次函数y ax b =+的图像为直线l ,则关于x 的不等式0ax b +<的解集为__ 。

人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

人教版2019-2020学年度第一学期期末测试八年级数学试卷及答案

13.如图,在△ABC 中,∠B=63º,∠C=45º,DE⊥AC 于 E,DF⊥AB 于 F,那么
∠EDF=___________.
A
B
B
F
E
C
P

M P
B
D
CO
第13题图
D 第14题图
AO
N
A
第16题图
14.如图,OP 平分∠AOB,∠AOP=15º,PC∥OA,PD⊥OA 于 D,PC=10,则 PD=_________.
24. (9 分) 已知:△ABC 是边长为 3 的等边三角形,以 BC 为底边作一个顶角为 120º 等腰△BDC.点 M、点 N 分别是 AB 边与 AC 边上的点,并且满足∠MDN=60º. (1)如图 1,当点 D 在△ABC 外部时,求证:BM+CN=MN; (2)在(1)的条件下求△AMN 的周长; (3)当点 D 在△ABC 内部时,其它条件不变,请在图 2 中补全图形,
同理 ∠ABD=90º
∴∠DCE=180º-∠ACD=180º-90º=90º
∴∠DBM=∠DCE
……………………………………1 分
∴在△DBM 和△DCE 中
DB DC DBM DCE BM CE
∴△DBM≌△DCE
……………………………………2 分
∴DM=DE,∠BDM=∠CDE
∵∠BDC=∠BDM+∠MDN+∠DNC=120º
∴OH=AH= 1 OA 1 8 4 ,∠HCO= 1 ACO 1 90 45
111
(2)将△A B C 沿 x 轴方向向左平移 3 个单位后得到△A B C ,画出图形,并写出 A ,B ,C 的坐标.
111

2019-2020人教版八年级数学上册第12章全等三角形单元测试卷(1)解析版

2019-2020人教版八年级数学上册第12章全等三角形单元测试卷(1)解析版

人教新版初中数学八年级上学期《第12章全等三角形》2019年单元测试卷(1)一.选择题(共10小题,满分40分,每小题4分)1.(4分)下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.(4分)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个3.(4分)用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A.SSS B.SAS C.ASA D.AAS4.(4分)如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是()A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC5.(4分)如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE、PF分别交AB、AC于点E、F,连接EF交AP于G.给出四个结论:①AE=CF;②EF=AP;③△EPF是等腰直角三角形;④∠AEP=∠AGF.其中正确的结论有()A.1个B.2个C.3个D.4个6.(4分)如图,一种测量工具,点O是两根钢条AC、BD中点,并能绕点O转动.由三角形全等可得内槽宽AB 与CD相等,其中△OAB≌△OCD的依据是()A.SSS B.ASA C.SAS D.AAS7.(4分)如图,在Rt△ABC中,∠BAC=90°,AB=6,BC=10,AD⊥BC于D,BF平分∠ABC交AC于F,AD 于E,则线段AE的长为()A.3B.C.1.8D.48.(4分)如图,C为线段AE上一动点(不与点A、E重合),在AE同侧分别作正三角形ABC和正三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,以下七个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°;⑥△PCQ是等边三角形;⑦点C在∠AOE的平分线上,其中正确的有()A.3个B.4个C.5个D.6个9.(4分)如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,连CD,下列结论:①AB﹣AC=CE;②∠CDB=135°;③S△ACE=2S△CDB;④AB=3CD,其中正确的有()A.4个B.3个C.2个D.1个10.(4分)如图,在Rt△ABC中,∠C=90°,点D是AB的中点,DE⊥AB交AC于点E,DE=CE=,则AB 的长为()A.3B.3C.6D.6二.填空题(共6小题,满分24分,每小题4分)11.(4分)如图所示,点A、B、C、D在同一条直线上,△ACF≌△DBE,AD=10cm,BC=6cm,则AB的长为cm.12.(4分)如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于.13.(4分)如图,在△ABC中,射线AD交BC于点D,BE⊥AD于E,CF⊥AD于F,请补充一个条件,使△BED ≌△CFD,你补充的条件是(填出一个即可).14.(4分)如图,在△ABC中,∠ACB=90°,AD是△ABC的角平分线,BC=10cm,BD:DC=3:2,则点D 到AB的距离为.15.(4分)如图所示,要测量河两岸相对的两点A、B的距离,在AB的垂线段BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,若测得DE的长为20米,则河宽AB长为米.16.(4分)如图,任意画一个∠BAC=60°的△ABC,再分别作△ABC的两条角平分线BE和CD,BE和CD相交于点P,连接AP,有以下结论:①∠BPC=120°;②AP平分∠BAC;③AD=AE;④PD=PE;⑤BD+CE=BC;其中正确的结论为.(填写序号)三.解答题(共8小题,满分76分)17.(8分)已知,如图,△ABC≌△DEF,求证:AC∥DF.18.(8分)如图,等腰直角△ABC中,∠BAC=90°,AB=AC,∠ADB=45°(1)求证:BD⊥CD;(2)若BD=6,CD=2,求四边形ABCD的面积.19.(8分)如图,一条输电线路需跨越一个池塘,池塘两侧A,B处各立有一根电线杆,但利用现有皮尺无法直接测量出A,B的距离,请你根据所学三角形全等的知识,设计一个方案,测出A,B的距离(要求画出图形,写出测量方案和理由)20.(8分)如图,∠A=∠B=90°,E是AB上的一点,且AD=BE,∠1=∠2,求证:Rt△ADE≌Rt△BEC.21.(8分)如图,请沿图中的虚线,用三种方法将下列图形划分为两个全等图形.22.(10分)如图,∠A=∠D=90°,BE平分∠ABC,且点E是AD的中点,求证:BC=AB+CD.23.(12分)如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.(1)说明BE=CF的理由;(2)如果AB=5,AC=3,求AE、BE的长.24.(14分)如图,已知AE平分∠BAC,ED垂直平分BC,EF⊥AC,EG⊥AB,垂足分别是点F、G.求证:(1)BG=CF;(2)AB=AF+CF.人教新版初中数学八年级上学期《第12章全等三角形》2019年单元测试卷(1)参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.【解答】解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.2.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠F AC=∠EAB≠∠F AB,故②错误;EF=BC,故③正确;∠EAB=∠F AC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.3.【解答】解:由作法易得OD=O′D',OC=0′C',CD=C′D',那么△OCD≌△O′C′D′,可得∠A′O′B′=∠AOB,所以利用的条件为SSS.故选:A.4.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选:D.5.【解答】解:∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴AP⊥BC,AP=BC=PC,∠BAP=∠CAP=45°=∠C.∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EP A.∴△APE≌△CPF(ASA).∴①AE=CF;③EP=PF,即△EPF是等腰直角三角形;∵△ABC是等腰直角三角形,P是BC的中点,∴AP=BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;④∵∠AGF=∠EGP=180°﹣∠APE﹣∠PEF=180°﹣∠APE﹣45°,∠AEP=180°﹣∠APE﹣∠EAP=180°﹣∠APE﹣45°,∴∠AEP=∠AGF.故正确的有①、③、④,共三个.故选:C.6.【解答】解:∵O是AC、BD的中点,∴AO=CO,BO=DO,在△OAB和△OCD中,∴△OAB≌△OCD(SAS),故选:C.7.【解答】解:如图作EH⊥AB于H.在Rt△ABC中,∵AB=6,BC=10,∴AC==8,∵AD⊥BC,∴AD==,∴BD==,∵∠EBH=∠EBD,∠EHB=∠EDB,BE=BE,∴△EBH≌△EBD(AAS),∴BH=BD=,DE=HE,设AE=x,则DE=EH=﹣x,在Rt△AEH中,∵AE2=AH2+EH2,∴x2=()2+(﹣x)2,∴x=3,∴AE=3,故选:A.8.【解答】解:如图1如示:∵△ABC和△CDE是正三角形,∴AC=BC,DC=EC,∠ACB=∠ECD=60°,又∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE,∴结论①正确;∵△ACD≌△BCE,∴∠CAP=∠CBD,又∵∠ACB+∠BCD+∠DCE=180°,∴∠BCD=60°,在△ACP和△BCQ中,∴,∴△ACP≌△BCQ(ASA),∴AP=BQ,PC=QC,∴△PCQ是等边三角形,∴∠CPQ=∠CQP=60°,∴∠CPQ=∠ACB=60°,∴PQ∥AE,∴结论②、③、⑥正确;∵△ACD≌△BCE,∴∠ADC=∠BCE,又∵∠ADC+∠DQO+∠DOQ=180°,∠QCE+∠CQE+∠QEC=180°,∠DQO=∠CQE,∴∠DOQ=∠QCE=60°,又∵∠DOQ=∠AOB,∴∠AOB=60°,∴结论⑤正确;若DE=DP,∵DC=DE,∴DP=DC,∴∠PCD=∠DPC,又∵∠PCD=60°,∴∠DPC=60°与△PCQ是等边三形相矛盾,假设不成立,∴结论④错误;过点C分别作CM⊥AD,CN⊥BE于点M、N两点,如图2所示:∵CM⊥AD,CN⊥BE,∴∠AMC=∠BNC=90°,在△ACM和△BCN中,,∴△ACM≌△BCN(AAS),∴CM=CN,又∵OC在∠AOE的内部,∴点C在∠AOE的平分线上,∴结论⑦正确;综合所述共有6个结论正确.故选:D.9.【解答】解:①过点E作EH⊥AB于H,如图1,∵∠ABC=45°,∴△BHE是等腰直角三角形,∴EH=BH,∵AE平分∠CAB,∴EH=CE,∴CE=BH,在△ACE和△AHE中,∵,∴△ACE≌△AHE(AAS),∴AH=AC,∴AB﹣AC=AB﹣AH=BH=CE,故①正确;②解法一:作∠ACN=∠BCD,交AD于N,∴∠ACN+∠NCE=∠BCD+∠NCE=90°,∵∠ACE=∠EDB=90°,∠AEC=∠BED,∴∠CAN=∠DBC,在△ACN和△BCD中,∵,∴△ACN≌△BCD(ASA),∴CN=CD,∴∠ADC=45°,∴∠BDC=45°+90°=135°;解法二:∵∠ACB=90°,BD⊥AE于D,∴∠ACB=∠ADB=90°,∴点A,B,D,C在以AB为直径的圆上,∴∠ADC=∠ABC=45°,∴∠BDC=∠ADB+∠ADC=90°+45°=135°解法三:如图2,延长BD、AC交于点G,∵AD平分∠BAG,AD⊥BG,∴BD=DG,∴CD是Rt△BCG的斜边的中线,∴CD=BD,∴∠DCB=∠DBC,∵∠GAD+∠G=∠DBC+∠G=90°,∴∠GAD=∠DBC=∠DCB=∠EAB,△CED和△AEB中,∵∠CED=∠AEB,∴∠ADC=∠ABC=45°,∴∠CDB=45°+90°=135°;故②正确;③如图2,延长BD、AC交于点G,∵AD平分∠BAG,AD⊥BG,∴BD=DG,∴CD是Rt△BCG的斜边的中线,∴CD=BD,S△BCD=S△CDG,∴∠DBC=∠DCB=22.5°,∴∠CBG=∠CAE=22.5°,∵AC=BC,∠ACE=∠BCG,∴△ACE≌△BCG,∴S△ACE=S△BCG=2S△BDC,故③正确;④∵AB=AG=AC+CG,∵BG=2CD>AC,CD>CG,∴AB≠3CD,故④错误,故选:B.10.【解答】解:连接BE,∵D是AB的中点,∴BD=AD=AB∵∠C=∠BDE=90°,在Rt△BCE和Rt△BDE中,∵,∴△BCD≌△BDE,∴BC=BD=AB.∴∠A=30°.∴tan A=即=,∴AD=3,∴AB=2AD=6.故选:C.二.填空题(共6小题,满分24分,每小题4分)11.【解答】解:∵△ACF≌△DBE,∴AC=BD,∴AB=CD,∵AD=10cm,BC=6cm,∴AB+BC+CD=10cm,∴2AB=4cm,∴AB=2cm,故答案为:212.【解答】解:由题意得:AB=DB,AC=ED,∠A=∠D=90°,∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠1=∠ACB,∵∠ACB+∠2=180°,∴∠1+∠2=180°,故答案为:180°.13.【解答】解:可以添加条件:BD=DC.理由:∵BD=CD;又∵BE⊥AD,CF⊥AD,∴∠E=∠CFD=90°;∴在△BED和△CFD中,,∴△BED≌△CFD(AAS).故答案是:答案不唯一,如BD=DC.14.【解答】解:∵BC=10cm,BD:DC=3:2,∴DC=4cm,∵AD是△ABC的角平分线,∠ACB=90°,∴点D到AB的距离等于DC,即点D到AB的距离等于4cm.故答案为4cm.15.【解答】解:在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=DE=20米.故答案为:20.16.【解答】解:∵BE、CD分别是∠ABC与∠ACB的角平分线,∠BAC=60°,∴∠PBC+∠PCB=(180°﹣∠BAC)=(180°﹣60°)=60°,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣60°=120°,①正确;∵∠BPC=120°,∴∠DPE=120°,过点P作PF⊥AB,PG⊥AC,PH⊥BC,∵BE、CD分别是∠ABC与∠ACB的角平分线,∴AP是∠BAC的平分线,②正确;∴PF=PG=PH,∵∠BAC=60°∠AFP=∠AGP=90°,∴∠FPG=120°,∴∠DPF=∠EPG,在△PFD与△PGE中,,∴△PFD≌△PGE(ASA),∴PD=PE,④正确;在Rt△BHP与Rt△BFP中,,∴Rt△BHP≌Rt△BFP(HL),同理,Rt△CHP≌Rt△CGP,∴BH=BD+DF,CH=CE﹣GE,两式相加得,BH+CH=BD+DF+CE﹣GE,∵DF=EG,∴BC=BD+CE,⑤正确;没有条件得出AD=AE,③不正确;故答案为:①②④⑤.三.解答题(共8小题,满分76分)17.【解答】证明:∵△ABC≌△DEF,∴∠ACB=∠DFE,∴AC∥DF.18.【解答】解:(1)过A作AE⊥AD,交DB的延长线于E,∴∠EAD=90°,∵∠ADB=45°,∴∠AED=45°∴△ADE是等腰直角三角形,∴AE=AD,∵∠EAD=∠BAC=90°,∴∠EAD﹣∠BAD=∠BAC﹣∠BAD,即∠EAB=∠DAC,在△AEB与△ADC中,∴△AEB≌△ADC(SAS),∴∠E=∠ADC=45°,∴∠BDC=∠BDA+∠ADC=45°+45°=90°,∴BD⊥CD.(2)由(1)可知,四边形ABCD的面积等于△AED的面积,S△AED=DE2=16.19.【解答】解:分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.理由:由上面可知:PC=BC,QC=AC,在△PCQ和△BCA中,∴△PCQ≌△BCA(SAS),∴AB=PQ.20.【解答】证明:∵∠1=∠2,∴DE=CE.∵AD∥BC,∠A=∠B=90°,∴△ADE和△EBC是直角三角形,而AD=BE.∴Rt△ADE≌Rt△BEC(HL)21.【解答】解:如图所示:.22.【解答】证明:过点E作EF⊥BC于点F,则∠EFB=∠A=90°,又∵BE平分∠ABC,∴∠ABE=∠FBE,∵BE=BE,∴△ABE≌△FBE(AAS),∴AE=EF,AB=BF,又点E是AD的中点,∴AE=ED=EF,∴Rt△CDE≌Rt△CFE(HL),∴CD=CF,∴BC=CF+BF=AB+CD.23.【解答】(1)证明:连接BD,CD,∵AD平分∠BAC,DE⊥AB,DF⊥AC,∴DE=DF,∠BED=∠CFD=90°,∵DG⊥BC且平分BC,∴BD=CD,在Rt△BED与Rt△CFD中,,∴Rt△BED≌Rt△CFD(HL),∴BE=CF;(2)解:在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF,设BE=x,则CF=x,∵AB=5,AC=3,AE=AB﹣BE,AF=AC+CF,∴5﹣x=3+x,解得:x=1,∴BE=1,AE=AB﹣BE=5﹣1=4.24.【解答】证明:(1)连接CE、BE,∵ED垂直平分BC,∴EC=EB,∵AE平分∠CAB,EF⊥AC,EG⊥AB,∴EF=EG,在Rt△CFE和Rt△BGE中,,∴Rt△CFE≌Rt△BGE,∴BG=CF;(2)∵AE平分∠BAC,EF⊥AC,EG⊥AB,∴EF=EG,在Rt△AGE和Rt△AFE中,,∴Rt△AGE≌Rt△AFE,∴AG=AF,∵AB=AG+BG,∴AB=AF+CF.。

人教版八年级上册第十四章 整式的乘法与因式分解 单元检测(含答案解析)

人教版八年级上册第十四章 整式的乘法与因式分解 单元检测(含答案解析)

人教版八年级上册第十四章整式的乘法与因式分解一、单选题1.(2020八下·丹东期末)下列各式中从左到右的变形中,是因式分解的是()A. m(a+b+c)=ma+mb+mcB. x2+6x+36=(x+6)2C. a2−b2+1=(a+b)(a−b)+1D. 10x2−5x=5x(2x−1)2.(2020七下·汉中月考)计算(-2a)2-3a2的结果是()A. -a2B. a2C. -5a2D. 5a23.(2020·河北)对于① x−3xy=x(1−3y),② (x+3)(x−1)=x2+2x−3,从左到右的变形,表述正确的是()A. 都是因式分解B. 都是乘法运算C. ①是因式分解,②是乘法运算D. ①是乘法运算,②是因式分解4.(2020七下·株洲开学考)下面式子从左边到右边的变形中是因式分解的是()A. (x+1)2=x2+2x+1B. x2+3x−16=x(x+3)−16C. (x+1)(x−1)=x2−1D. x2−16=(x+4)(x−4)5.(2021七下·阜南期末)计算a•a5−(2a3)2的结果为()A. a6−2a5B. −a6C. a6−4a5D. −3a66.(2020七下·汉中月考)下列计算正确的是()A. x2+3x2=4x4B. x2y⋅2x3=2x4yC. (6x2y2)÷(3x)=2x2D. (−3x)2=9x27.(2020七下·越城期中)已知2a=3,8b=6,22a﹣3b+1的值为()A. 3B. 32C. 2D. 58.(2019八下·鼓楼期末)计算3×((2018−√20182−12×20192×3)2﹣2018×(2018−√20182−12×20192×3)+1的结果等于()A. ﹣2017B. ﹣2018C. ﹣2019D. 20199.(2020七下·滨湖期中)任何一个正整数n都可以进行这样的分解:n=s×t(s、t是正整数,且s⩽t),如果p×q在n的所有这种分解中两因数之差的绝对值最小,我们就称p×q是n的最佳分解,并规定:F(n)=p q.例如18可以分解成1×18,2×9,3×6这三种,这时就有F(18)=3 6=12,给出下列关于F(n)的说法:① F(2)=12;② F(48)=13;③ F(n2+n)=nn+1;④若n是一个完全平方数,则F(n)=1,其中正确说法的个数是()A. 4B. 3C. 2D. 110.(2019七下·丹阳期中)已知实数x、y满足等式:3x2+4xy+4y2﹣4x+2=0,则x+y的值为()A. 2B. −12C. ﹣2 D. 12二、填空题11.(2020七下·泰兴期中)已知32×9m×27=321,求m=________.12.(2020七下·溧阳期末)(-2020)0=________.13.(2020·上虞模拟)因式分解:a²-9b²=________。

人教版2019-2020学年八年级数学(上)期末复习:全等三角形常考题型复习(解析版)

人教版2019-2020学年八年级数学(上)期末复习:全等三角形常考题型复习(解析版)

人教版八年级数学上册期末复习:全等三角形常考基础专题复习一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是.(填序号)16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=°.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=度.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.24.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.参考答案与试题解析部分一.选择题(共12小题)1.如图,△ABO≌△DCO,∠D=80°,∠DOC=70°,则∠B=()A.35°B.30°C.25°D.20°【分析】根据三角形内角和定理求出∠C,根据全等三角形的性质解答即可.【解答】解:∵∠D=80°,∠DOC=70°,∴∠C=180°﹣∠D﹣∠DOC=30°,∵△ABO≌△DCO,∴∠B=∠C=30°,故选:B.2.图中的小正方形边长都相等,若△MNP≌△MEQ,则点Q可能是图中的()A.点A B.点B C.点C D.点D【分析】根据全等三角形的性质和已知图形得出即可.【解答】解:∵△MNP≌△MEQ,∴点Q应是图中的D点,如图,故选:D.3.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.4.如图,已知AB=AD,那么添加下列一个条件后,仍然不能判定△ABC≌△ADC的是()A.CB=CD B.∠B=∠D=90°C.∠BAC=∠DAC D.∠BCA=∠DCA 【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;C、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;D、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;故选:D.5.如图,点B、E、C、F在同一条直线上,AB∥DE,AB=DE,要用SAS证明△ABC≌△DEF,可以添加的条件是()A.∠A=∠D B.AC∥DF C.BE=CF D.AC=DF【分析】根据AB∥DE得出∠B=∠DEF,添加条件BC=EF,则利用SAS定理证明△ABC ≌△DEF.【解答】解:∵AB∥DE,∴∠B=∠DEF,可添加条件BC=EF,理由:∵在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);故选:C.6.如图,已知AB=AD,那么添加下列一个条件后,能判定△ABC≌△ADC的是()A.AC=AC B.∠BAC=∠DAC C.∠BCA=∠DCA D.∠B=∠D【分析】要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.【解答】解:A、添加AC=AC,根据SS,不能判定△ABC≌△ADC,故本选项错误;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故本选项正确;C、添加∠BCA=∠DCA时,根据SSA不能判定△ABC≌△ADC,故本选项错误;D、添加∠B=∠D,根据SSA不能判定△ABC≌△ADC,故本选项错误;故选:B.7.如图,点B、F、C、E在一条直线上,AB∥ED,AB=DE,要使△ABC≌△DEF,需要添加下列选项中的一个条件是()A.BF=EC B.AC=DF C.∠B=∠E D.BF=FC【分析】根据“SAS”可添加BF=EC使△ABC≌△DEF.【解答】解:∵AB∥ED,AB=DE,∴∠B=∠E,∴当BF=EC时,可得BC=EF,可利用“SAS”判断△ABC≌△DEF.故选:A.8.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=6cm,则△DBE的周长是()A.6 cm B.7 cm C.8 cm D.9 cm【分析】根据角平分线上的点到角的两边的距离相等可得DE=CD,再根据等腰直角三角形的性质求出AC=BC=AE,然后求出△DBE的周长=AB,代入数据即可得解.【解答】解:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴DE=CD,又∵AC=BC,AC=AE,∴AC=BC=AE,∴△DBE的周长=DE+BD+EB=CD+BD+EB=BC+EB=AE+EB=AB,∵AB=6cm,∴△DBE的周长=6cm.故选:A.9.若△ABC内一点O到三角形三条边的距离相等,则O为△ABC()的交点.A.角平分线B.高线C.中线D.边的中垂线【分析】由角平分线性质的逆定理:到角的两边的距离相等的点在角的平分线上,则这个点是三角形三条角平分线的交点.【解答】解:∵到角的两边的距离相等的点在角的平分线上,∴这个点是三角形三条角平分线的交点.故选:A.10.如图,Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于D.若CD=3cm,则点D到AB的距离DE是()A.5 cm B.4 cm C.3 cm D.2 cm【分析】过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选:C.11.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.1处B.2处C.3处D.4处【分析】由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.【解答】解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故选:D.12.如图,OP平分∠MON,P A⊥ON于点A,点Q是射线OM上的一个动点,若P A=2,则PQ的最小值为()A.1B.2C.3D.4【分析】由垂线段最短可知当PQ⊥OM时PQ最小,当PQ⊥OM时,则由角平分线的性质可知P A=PQ,可求得PQ=2.【解答】解:∵垂线段最短,∴当PQ⊥OM时,PQ有最小值,又∵OP平分∠MON,P A⊥ON,∴PQ=P A=2,故选:B.二.填空题(共8小题)13.如图所示,已知△ABC的面积是36,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=4,则△ABC的周长是18.【分析】作OE⊥AB于E,OF⊥AC于F,根据角平分线的性质得到OE=OF=OD=4,根据三角形的面积公式计算即可.【解答】解:作OE⊥AB于E,OF⊥AC于F,∵OB、OC分别平分∠ABC和∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OF=OD=4,由题意得,×AB×OE+×CB×OD+×AC×OF=36,解得,AB+BC+AC=18,则△ABC的周长是18,故答案为:18.14.如图,∠C=90°,∠1=∠2,若BC=10,BD=6,则D到AB的距离为4.【分析】由已知条件首先求出线段CD的大小,接着利用角平分线的性质得点D到边AB 的距离等于CD的大小,问题可解.【解答】解:∵BC=10,BD=6,∴CD=4,∵∠C=90°,∠1=∠2,∴点D到边AB的距离等于CD=4,故答案为:4.15.如图,已知∠ABC=∠DCB,增加下列条件:①AB=CD;②AC=DB;③∠A=∠D;④∠ACB=∠DBC;能判定△ABC≌△DCB的是①③④.(填序号)【分析】根据全等三角形的判定方法一一判断即可.【解答】解:因为∠ABC=∠DCB,BC=CB,①AB=CD,根据SAS可以判定△ABC≌△DCB.②AC=DB,无法判断△ABC≌△DCB.③∠A=∠D,根据AAS可以判定△ABC≌△DCB.④∠ACB=∠DBC,根据ASA可以判定△ABC≌△DCB.故答案为:①③④.16.如图,B、C、E共线,AB⊥BE,DE⊥BE,AC⊥DC,AC=DC,又AB=2cm,DE=1cm,则BE=3cm.【分析】易证△ABC≌△CED,可得AB=CE,BC=DE,可以求得BE的值.【解答】解:∵AC⊥DC,∴∠ACB+∠ECD=90°∵AB⊥BE,∴∠ACB+∠A=90°,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴AB=CE=2cm,BC=DE=1cm,∴BE=BC+CE=3cm.故答案为3cm.17.已知△ABC≌△DEF,∠A=30°,∠E=50°,则∠C=100°.【分析】根据全等三角形的性质求出∠B,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△DEF,∴∠B=∠E=50°,∴∠C=180°﹣∠A﹣∠B=100°,故答案为:100°.18.如图,△ABC≌△ADE,∠EAC=35°,则∠BAD=35°.【分析】根据全等三角形性质得出∠BAC=∠DAE,求出∠BAD=∠EAC,代入求出即可.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∵∠EAC=35°,∴∠BAD=35°,故答案为:35.19.如图为6个边长相等的正方形的组合图形,则∠1+∠3=90°.【分析】首先利用SAS定理判定△ABC≌△DBE,根据全等三角形的性质可得∠3=∠ACB,再由∠ACB+∠1=90°,可得∠1+∠3=90°.【解答】解:∵在△ABC和△DBE中,∴△ABC≌△DBE(SAS),∴∠3=∠ACB,∵∠ACB+∠1=90°,∴∠1+∠3=90°,故答案为:90°.20.如图,若△ABC≌△ADE,∠EAC=30°,则∠BAD=30度.【分析】根据△ABC≌△ADE,可得∠CAB=∠EAD,由于∠EAB是公共角,可得∠EAC =∠BAD,即可得解.【解答】解:∵△ABC≌△ADE,∵∠EAB是公共角,∴∠CAB﹣∠EAB=∠EAD﹣∠EAB,即∠EAC=∠BAD,已知∠EAC=30°,∴∠BAD=30°.故答案填:30.三.解答题(共12小题)21.如图:已知OA和OB两条公路,以及C、D两个村庄,建立一个车站P,使车站到两个村庄距离相等即PC=PD,且P到OA,OB两条公路的距离相等.【分析】作∠AOB的角平分线和线段CD的垂直平分线,它们的交点为P点.【解答】解:如图,点P为所作.22.已知,如图,∠C=90°,∠B=30°,AD是△ABC的角平分线.(1)求证:BD=2CD;(2)若CD=2,求△ABD的面积.【分析】(1)过D作DE⊥AB于E,依据角平分线的性质,即可得到DE=CD,再根据含30°角的直角三角形的性质,即可得出结论;(2)依据AD=BD=2CD=4,即可得到Rt△ACD中,AC==2,再根据△ABD的面积=×BD×AC进行计算即可.【解答】解:(1)如图,过D作DE⊥AB于E,∵∠C=90°,AD是△ABC的角平分线,∴DE=CD,又∵∠B=30°,∴Rt△BDE中,DE=BD,∴BD=2DE=2CD;(2)∵∠C=90°,∠B=30°,AD是△ABC的角平分线,∴∠BAD=∠B=30°,∴AD=BD=2CD=4,∴Rt△ACD中,AC==2,∴△ABD的面积为×BD×AC=×4×2=4.23.如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3.(1)求DE的长;(2)若AC=6,BC=8,求△ADB的面积.【分析】(1)直接根据角平分线的性质可得出结论;(2)先根据勾股定理求出AB的长,再由三角形的面积公式求解即可.【解答】解:(1)∵Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,CD=3,∴DE=CD=3;(2)∵Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB==10.∵由(1)知,DE=3,∴S△ABD=AB•DE=×10×3=1524.如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,AC=BE.(1)求证:AD=BD;(2)求∠B的度数.【分析】(1)根据角平分线的性质得到CD=DE,根据全等三角形的判定和性质即可得到结论;(2)根据角平分线的定义可得∠CAD=∠BAD,根据等边对等角可得∠B=∠BAD,再根据三角形的内角和定理列出方程求解即可.【解答】证:(1)∵DE⊥AB于E,∠C=90°,AD是△ABC的角平分线,∴CD=DE,在Rt△ACD与Rt△AED中,∴Rt△ACD≌Rt△AED,∴AC=AE,∵AC=BE,∴AE=BE,∴AD=BD;(2)∵AD是△ABC的角平分线,∴∠CAD=∠BAD,∵AD=BD,∴∠B=∠BAD,∴∠CAD=∠BAD=∠B,∵∠C=90°,∴∠CAD+∠BAD+∠B=90°,∴∠B=30°.25.如图,在△ABC中,∠C=90°.(1)作∠BAC的平分线AD,交BC于D;(2)若AB=10cm,CD=4cm,求△ABD的面积.【分析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作DE⊥AB于E,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【解答】解:(1)如图所示,AD即为所求;(2)如图,过D作DE⊥AB于E,∵AD平分∠BAC,∴DE=CD=4,∴S△ABD=AB×DE=×10×4=20cm2.26.如图,P是∠BAC内的一点,PE⊥AB,PF⊥AC,垂足分别为点E,F,AE=AF.求证:(1)PE=PF;(2)点P在∠BAC的角平分线上.【分析】(1)连接AP,根据HL证明△APF≌△APE,可得到PE=PF;(2)利用(1)中的全等,可得出∠F AP=∠EAP,那么点P在∠BAC的平分线上.【解答】证明:(1)如图,连接AP并延长,∵PE⊥AB,PF⊥AC∴∠AEP=∠AFP=90°又AE=AF,AP=AP,∵在Rt△AFP和Rt△AEP中∴Rt△AEP≌Rt△AFP(HL),∴PE=PF.(2)∵Rt△AEP≌Rt△AFP,∴∠EAP=∠F AP,∴AP是∠BAC的角平分线,故点P在∠BAC的角平分线上.27.如图,点C、E、B、F在同一直线上,CE=BF,AC∥DF,AC=DF,求证:△ABC≌△DEF.【分析】先由CE=BF,可得BC=EF,继而利用SAS可证明结论.【解答】解:∵CE=BF,∴CE+BE=BF+BE,即BC=EF,又∵AC∥DF,∴∠C=∠F,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).28.如图,AB=AC,AD=AE,∠1=∠2,求证:△ABD≌△ACE.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.29.如图,已知点C,F在线段BE上,AB∥ED,∠ACB=∠DFE,EC=BF.求证:△ABC≌△DEF.【分析】利用平行线的性质可得∠ABE=∠BED,根据等式的性质可得EF=BC,然后利用ASA判定△ABC≌△DEF即可.【解答】解:∵AB∥ED∴∠ABE=∠BED,∴EC﹣FC=BF﹣FC,∴EF=BC,在△ABC和△DEF中,∴△ABC≌△DFE(SAS).30.已知:如图,∠A=∠D=90°,AC=BD.求证:OB=OC.【分析】因为∠A=∠D=90°,AC=BD,BC=BC,知Rt△BAC≌Rt△CDB(HL),所以∠ACB=∠DBC,即∠OCB=∠OBC,所以有OB=OC.【解答】证明:∵∠A=∠D=90°,AC=BD,BC=BC,∴Rt△BAC≌Rt△CDB(HL)∴∠ACB=∠DBC.∴∠OCB=∠OBC.∴OB=OC(等角对等边).31.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.【分析】欲证BD、CE两边相等,只需证明这两边所在的△ABD与△ACE全等,这两个三角形,有一对直角相等,公共角∠A,AB=AC,所以两三角形全等.【解答】证明:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°.在△ABD和△ACE中,,∴△ABD≌△ACE(AAS).32.如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.【分析】要证角相等,可先证明全等.即证Rt△ABC≌Rt△ADC,进而得出角相等.【解答】证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,∴△ABC与△ACD为直角三角形,在Rt△ABC和Rt△ADC中,∵AB=AD,AC为公共边,∴Rt△ABC≌Rt△ADC(HL),∴∠1=∠2.。

2019秋季上册人教数学八年级第一单元测试卷(答案版)

2019秋季上册人教数学八年级第一单元测试卷(答案版)

2019秋季上册人教数学八年级第一单元测试时间:100分钟满分:120分一、选择题(每题3分,共30分)1.如图,∠1的大小等于()A.40°B.50°C.60°D.70°(第1题)(第4题)2.下列长度的三条线段,能组成三角形的是()A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cm D.8 cm,4 cm,4 cm3.在△ABC中,能说明△ABC是直角三角形的是()A.∠A:∠B :∠C=1 :2 :2 B.∠A :∠B :∠C=3 :4 :5 C.∠A :∠B :∠C=1 :2 :3 D.∠A :∠B :∠C=2 :3 :4 4.如图,在△ABC中,∠A=80°,∠B=40°,D,E分别是AB,AC上的点,且DE∥BC,则∠AED的度数是()A.40°B.60°C.80°D.120°5.在下列各图形中,分别画出了△ABC中BC边上的高AD,其中正确的是()6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是()A.52°B.62°C.64°D.72°(第6题) (第7题)(第9题) (第10题) 7.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC.下列说法不正确...的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是() A.8 B.7 C.6 D.59.如图,在△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=() A.360°B.180°C.255°D.145°10.如图,∠A,∠B,∠C,∠D,∠E五个角的和等于()A.90°B.180°C.360°D.540°二、填空题(每题3分,共24分)11.人站在晃动的公交车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了___________________________________________________.12.正十边形每个外角的度数是________.13.已知三角形三边长分别为1,x,5,则整数x=________.14.将一副三角尺按如图所示放置,则∠1=________.(第14题)(第16题)(第18题)15.一个多边形从一个顶点出发可以画9条对角线,则这个多边形的内角和为________.16.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.17.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.若一个“半角三角形”的“半角”为20°,则这个“半角三角形”最大内角的度数为________.18.已知△ABC,有下列说法:(1)如图①,若P是∠ABC和∠ACB的平分线的交点,则∠P=90°+12∠A;(2)如图②,若P是∠ABC和外角∠ACE的平分线的交点,则∠P=90°-∠A;(3)如图③,若P是外角∠CBF和∠BCE的平分线的交点,则∠P=90°-12∠A.其中正确的有______个.三、解答题(23题12分,24题14分,其余每题10分,共66分)19.如图,一艘轮船在A处看见巡逻艇C在其北偏东62°的方向上,此时一艘客船在B处看见巡逻艇C在其北偏东13°的方向上.试求此时在巡逻艇上看这两艘船的视角∠ACB的度数.(第19题)20.如图,BD,CE是△ABC的两条高,它们交于O点.(1)∠1和∠2的大小关系如何?并说明理由.(2)若∠A=50°,∠ABC=70°,求∠3和∠4的度数.(第20题)21.如图,已知AD是△ABC的角平分线,CE是△ABC的高,AD,CE相交于点P,∠BAC=66°,∠BCE=40°.求∠ADC和∠APC的度数.(第21题)22.如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证AF∥CD.(第22题)23.如图,在△ABC中,∠A=30°,一块直角三角尺XYZ放置在△ABC上,恰好三角尺XYZ的两条直角边XY,XZ分别经过点B,C.(1)∠ABC+∠ACB=________,∠XBC+∠XCB=________,∠ABX+∠ACX=________.(2)若改变直角三角尺XYZ的位置,但三角尺XYZ的两条直角边XY,XZ仍然分别经过点B,C,则∠ABX+∠ACX的大小是否变化?请说明理由.(第23题)24.已知∠MON=40°,OE平分∠MON,点A,B,C分别是射线OM,OE,ON上的动点(点A,B,C均不与点O重合),连接AC交射线OE于点D,设∠OAC=x°.(1)如图①,若AB∥ON,则①∠ABO的度数是________.②当∠BAD=∠ABD时,x=________;当∠BAD=∠BDA时,x=________.(2)如图②,若AB⊥OM,是否存在这样的x的值,使得△ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.(第24题)2019秋季上册人教数学八年级第一单元测试一、1.D 2.A 3.C 4.B 5.B 6.B7.C8.B9.C10.B二、11.三角形具有稳定性12.36°13.514.105°15.1 800°16.617.120°18.2三、19.解:由题意可得AD∥BF,∴∠BEA=∠DAC=62°.∵∠BEA是△CBE的一个外角,∴∠BEA=∠ACB+∠CBE.∴∠ACB=∠BEA-∠CBE=62°-13°=49°.答:此时在巡逻艇上看这两艘船的视角∠ACB的度数为49°.20.解:(1)∠1=∠2.理由如下:∵BD,CE是△ABC的两条高,∴∠AEC=∠ADB=90°.∵∠A+∠1+∠ADB=180°,∠2+∠A+∠AEC=180°,∴∠1=∠2.(2)∵∠A=50°,∠ABC=70°,∠A+∠ABC+∠ACB=180°,∴∠ACB=60°.∵在△AEC中,∠A+∠AEC+∠2=180°,∴∠2=40°.∴∠3=∠ACB-∠2=20°.∵在四边形AE O D中,∠A+∠AE O+∠4+∠AD O=360°,∠A=50°,∠AE O=∠AD O=90°,∴∠4=130°.21.解:∵CE是△ABC的高,∴∠AEC=90°.∴∠ACE=180°-∠BAC-∠AEC=24°. ∵AD是△ABC的角平分线,∴∠DAC=12∠BAC=33°.∵∠BCE=40°,∴∠ACB=40°+24°=64°.∴∠ADC=180°-∠DAC-∠ACB=83°.∴∠A P C=∠ADC+∠BCE=83°+40°=123°.22.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°.∴∠BCF=60°.∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF∥AB,∴∠A+∠AFC=180°.∴∠AFC=180°-120°=60°.∴∠AFC=∠FCD.∴AF∥CD.23.解:(1)150°;90°;60°(2)∠ABX+∠ACX的大小不变.理由:在△ABC中,∠A+∠ABC+∠ACB=180°,∠A=30°,∴∠ABC+∠ACB=180°-30°=150°.∵∠YXZ=90°,∴∠X BC+∠X CB=90°.∴∠AB X+∠AC X=(∠ABC-∠X BC)+(∠ACB-∠X CB)=(∠ABC+∠ACB)-(∠X BC+∠X CB)=150°-90°=60°.∴∠AB X+∠AC X的大小不变.24.解:(1)①20°②120;60(2)存在.①当点D在线段O B上时,若∠BAD=∠ABD,则x=20;若∠BAD=∠BDA,则x=35;若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,易知∠ABE=110°,又三角形的内角和为180°,∴只有∠BAD=∠BDA,此时x=125.综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学人教版上册总复习专项测试题(一)
一、单项选择题(本大题共有15小题,每小题3分,共45分)
1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若
,则只需测出其长度的线段是( ).
A.
B.
C.
D.
【答案】C
【解析】解:由题意知,,
.
只需测出线段的长度即可得出池塘两端,的距离.
故答案应选:.
2、下列图形中,成轴对称图形的一幅图形是( ).
A.
B.
C.
D.
【答案】C
【解析】解:根据轴对称图形的性质可知,
两个关于对称轴对称的图形,对
应点、对应线段分别关于对称轴
对称,两个图形经对称轴折叠后
能完全重合。

观察题中所给图形
可知左起第二个图形为轴对称图
形.
故答案是:.
3、
欣赏下面的图案,指出它们中间不是轴对称图形的是().
A.
B.
C.
D.
【答案】A
【解析】解:四个图案中,为小鸟身体侧面的图案不是轴对称图形.
故答案是:.
4、如图所示,已知,,要使,所
缺条件是()
A.
B.
C.
D.
【答案】B
【解析】解:,,
故正确答案为.
5、如图,在中,平分且与相交于点,,
,则的度数是()
A.
B.
C.
D.
【答案】C
【解析】解:平分,,
,
.
故正确答案是:.
6、如图所示,添加一个条件,可使用“”判定与
全等.以下给出的条件适合的是()
A.
B.
C.
D.
【答案】D
【解析】解:
需要添加的条件为或,理由为:
若添加的条件为,
在与中,


若添加的条件为,
在与中,


7、在正三角形、正方形、正五边、正六边形中不能单独镶嵌平面的是()
A. 正六边形
B. 正五边形
C. 正方形
D. 正三角形
【答案】B
【解析】解:正三角形的每个内角是,能整除,能密铺;
正方形的每个内角是,个能密铺;
正五边形每个内角是,不能整除,不能密铺;
正六边形的每个内角是,能密铺.
8、到三角形三个顶点的距离都相等的点是这个三角形的()
A. 三条高的交点
B. 三条角平分线的交点
C. 三条中线的交点
D. 三条边的垂直平分线的交点
【答案】D
【解析】解:到三角形三个顶点的距离都相等的点是这个三角形的三条边的垂直平分线的交点.
9、分式与下列分式相等的是()
A.
B.
C.
D.
【答案】C
【解析】解:

故正确的选项为“”.
10、下列多项式乘法中,可用平方差公式计算的是()
A.
B.
C.
D.
【答案】B
【解析】解:
中,一个是,一个是,故错误;
中,只有两个数的和,没有两个数的差,故错误;
,符合平方差公式,故正确;
,不符合平方差公式,故错误.
11、下列算式正确的是()
A.
B.
C.
D.
【答案】C
【解析】解:
,故本选项错误;
,正确;
,故本选项错误;
,故本选项错误.
12、计算等于()
A.
B.
C.
D.
【答案】D
【解析】解:

13、四边形剪掉一个角后,变为()边形.
A. 或或
B.
C.
D.
【答案】A
【解析】解:
如图所示:
观察图形可知,四边形减掉一个角后,剩下的图形可能为五边形,可能为四边形,也可能为三角形.
14、分式方程的解为()
A.
B.
C.
D.
【答案】B
【解析】解:,



代入分母不为零,故成立.
15、如图,是等边中边上的点,,则
的形状是()
A. 不能确定形状
B. 不等边三角形
C. 等边三角形
D. 等腰三角形
【答案】C
【解析】解:
为等边三角形
是等边三角形.
二、填空题(本大题共有5小题,每小题5分,共25分)
16、解决难以测量或无法测量的线段(或角)的关键:构建三角形,得到线段相等或角相等.
【答案】全等
【解析】解:解决难以测量或无法测量的线段(或角)的关键:
构建全等三角形,得到线段相等或角相等.
故答案为:全等.
17、已知,,则的值为
【答案】1/2
【解析】解:,

又知,

.
正确答案是:.
18、下列方程:①;②;③(为已知数);
④.其中是分式方程的是______.
【答案】①④
【解析】解:
①是分式方程;
②是整式方程;
③(为已知数)是整式方程;
④是分式方程.
19、已知点和点两点,且直线与坐标轴围成的三角形的面积等于,则的值是______.
【答案】
【解析】解:
由题意得,

的值是或.
20、如图,在中,厘米,厘米,为中线,则
与的周长之差是厘米.
【答案】6
【解析】解:
与的周长之差(厘米).
三、解答题(本大题共有3小题,每小题10分,共30分)
21、利用提取公因式法分解因式:
.
【解析】解:
.
故答案应选:.
22、如图,求的度数.
【解析】解:如图,连接.
∵,,
∴,



又∵四边形的内角和为,
∴,
∴.
23、如图,在中,,是边上的中线,于点,求证:.
【解析】证明:
,是边上的中线,,
,,
.。

相关文档
最新文档