PID技术简介及MiniRAE Lite操作

合集下载

PID的应用和使用以及如何调整

PID的应用和使用以及如何调整
参数调整策略
在调整过程中,可以采用试凑法、经验法或仿真法等方法,根据系统响应情况 逐步调整参数。同时,要注意观察系统输出波形,确保系统稳定且满足性能指 标要求。
避免过度调整导致系统失稳
逐步调整
在调整PID参数时,应遵循逐步调整的原则,避免一次性调整过大导致系统失稳 。每次调整后,都应观察系统响应情况,确保系统稳定后再进行下一步调整。
抗干扰措施
为了提高系统的抗干扰能力,可以采用滤波、陷波等方法对 输入信号进行处理,消除或减小干扰信号的影响。同时,也 可以采用鲁棒控制等方法提高系统的鲁棒性。
实时监测和记录数据以便优化
实时监测
在PID控制器运行过程中,应实时监 测系统的输入输出数据、误差信号等 关键信息,以便及时发现并解决问题 。
06
总结:提高PID控制器应用水 平,满足复杂工业需求
Chapter
回顾本次课程重点内容
PID控制器基本原理
比例、积分、微分控制作用及其 相互关系。
01
02
PID控制器应用实例
03
温度控制、压力控制、流量控制 等典型工业过程的PID控制实现 。
04
PID参数整定方法
试凑法、经验法、临界比例度法 等,以及参数整定的注意事项。
系统达到稳态后,期望值与实际 输出值之间的误差,衡量了系统 的准确性。
上升时间 超调量
调节时间 稳态误差
系统响应从稳态值的10%上升到 90%所需的时间,反映了系统的 快速性。
系统响应从扰动发生到重新达到 稳态值所需的时间,反映了系统 的调节能力。
常见问题诊断及解决方案
问题1
01
系统响应过慢
解决方案
限制参数范围
为了防止参数调整过度,可以设定参数的上限和下限,确保参数在合理范围内变 化。同时,也可以采用参数自适应等方法,使参数能够自动适应系统变化。

PID算法原理及调整规律

PID算法原理及调整规律

PID算法原理及调整规律一、PID算法简介在智能车竞赛中,要想让智能车根据赛道的不断变化灵活的行进,PID算法的采用很有意义。

首先必须明确PID算法是基于反馈的。

一般情况下,这个反馈就是速度传感器返回给单片机当前电机的转速。

简单的说,就是用这个反馈跟预设值进行比较,如果转速偏大,就减小电机两端的电压;相反,则增加电机两端的电压。

顾名思义,P指是比例(Proportion),I指是积分(Integral),D指微分(Differential)。

在电机调速系统中,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。

要想搞懂PID算法的原理,首先必须先明白P,I,D各自的含义及控制规律:比例P:比例项部分其实就是对预设值和反馈值差值的发大倍数。

举个例子,假如原来电机两端的电压为U0,比例P为0.2,输入值是800,而反馈值是1000,那么输出到电机两端的电压应变为U0+0.2*(800-1000)。

从而达到了调节速度的目的。

显然比例P越大时,电机转速回归到输入值的速度将更快,及调节灵敏度就越高。

从而,加大P值,可以减少从非稳态到稳态的时间。

但是同时也可能造成电机转速在预设值附近振荡的情形,所以又引入积分I解决此问题。

积分I:顾名思义,积分项部分其实就是对预设值和反馈值之间的差值在时间上进行累加。

当差值不是很大时,为了不引起振荡。

可以先让电机按原转速继续运行。

当时要将这个差值用积分项累加。

当这个和累加到一定值时,再一次性进行处理。

从而避免了振荡现象的发生。

可见,积分项的调节存在明显的滞后。

而且I值越大,滞后效果越明显。

微分D:微分项部分其实就是求电机转速的变化率。

也就是前后两次差值的差而已。

也就是说,微分项是根据差值变化的速率,提前给出一个相应的调节动作。

可见微分项的调节是超前的。

并且D值越大,超前作用越明显。

可以在一定程度上缓冲振荡。

比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能预测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用等于零,甚至为负值,从而避免了被控量的严重超调。

PID控制介绍

PID控制介绍

小明与水缸的故事-简述PID比例积分微分控制小明面前有一个用于蓄水的水缸,用户可以通过水缸下面的花洒进行取水,但取水时间和取水量并不固定。

而且由于年久失修,水缸还有些漏水。

老板要求小明同学通过往水缸里加水的办法,时刻将水平面高度维持在同一个设定位置上。

小提示:PID控制器(比例.积分-微分控制器)是一个在工业控制应用中常见的反馈回路部件,由比例单元P、积分单元I和微分单元D组成。

本文将绕过数学公式简述比例积分微分控制原理。

图1P1D控制反馈回路采样周期小明接到任务后就一直守在水缸旁边,时间一长就觉得无聊,改为每30分钟来检查一次水面高度。

水漏得太快,每次小明来检查时,水都快漏完了,离要求的高度相差很远。

小明又改为每3分钟来检查♦次,结果每次来水都没怎么漏,不需要加水,来得太频繁做的是无用功。

几次试验后,确定每10分钟来检查一次。

这个检查时间就称为采样周期。

小提示:在电气设计选择传感器时,需要注意控制系统所需要的采样周期,采样周期过长将难以保证系统完成控制要求,采样时间过短将浪费系统资源。

比例控制刚开始,小明用瓢加水,由于水龙头离水缸有十几米的距离,经常要跑好几趟才加够水。

于是小明又改为用桶加,一加就是一桶,跑的次数少了,加水的速度也快了,但好几次将缸给加溢出了,不小心弄湿了几次鞋。

小明又动脑筋,我不用瓢也不用桶,改用盆,几次下来,发现刚刚好,不用跑太多次,也不会让水溢出。

这个加水工具的大小就称为比例系数。

小提示:由于闭环系统中存在着各种各样的延迟作用,就像小明需要从测量、判断、运输、执行的过程一样,系统由于延迟因素的存在,按照测量差值的一定比例调节,很可能存在调节不及时或者调节过量的情况。

比例控制的比例系数如果太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。

比例系数如果过大,调节力度太强,将造成调节过头,致使水位忽高忽低,来回震荡°增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态偏差。

(完整版)pid控制详解.pdf

(完整版)pid控制详解.pdf

(完整版)pid控制详解.pdfPID 控制原理和特点工程实际中,应用最为广泛调节器控制规律为比例、积分、微分控制,简称 PID 控制,又称PID 调节。

PID 控制器问世至今已有近 70 年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要技术之一。

当被控对象结构和参数不能完全掌握,或不到精确数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调试来确定,这时应用 PID 控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能有效测量手段来获系统参数时,最适合用PID 控制技术。

PID 控制,实际中也有 PI 和PD控制。

PID 控制器就是系统误差,利用比例、积分、微分计算出控制量进行控制。

1、比例控制( P):比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温 100 度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过 100度时,我们则关闭输出,通常我们会使用这样一个函数e(t) = SP – y(t)-u(t) = e(t)*PSP——设定值e(t) ——误差值y(t) ——反馈值u(t) ——输出值P——比例系数滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。

也就是如果设定温度是 200 度,当采用比例方式控制时,如果 P 选择比较大,则会出现当温度达到 200 度输出为 0 后,温度仍然会止不住的向上爬升,比方说升至 230 度,当温度超过200 度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170 度,最后整个系统会稳定在一定的范围内进行振荡。

如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制。

PID控制简介及PID调节经验方法

PID控制简介及PID调节经验方法

PID控制简介及PID调节经验方法PID就是比例微积分调节,具体你可以参照自动控制课程里有详细介绍!正作用与反作用在温控里就是当正作用时是加热,反作用是制冷控制。

PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。

控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。

不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligentregulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

1、开环控制系统开环控制系统(open-loopcontrolsystem)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

闭环控制系统(closed-loopcontrolsystem)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

闭环控制系统有正反馈和负反馈,若反馈信号与系统给定值信号相反,则称为负反馈(NegativeFeedback),若极性相同,则称为正反馈,一般闭环控制系统均采用负反馈,又称负反馈控制系统。

详解PID控制各环节

详解PID控制各环节

详解PID控制各环节一、PID控制简介PID( Proportional Integral Derivative)控制是最早发展起来的控制策略之一,由于其算法简单、鲁棒性好和可靠性高,被广泛应用于工业过程控制,尤其适用于可建立精确数学模型的确定性控制系统。

在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称P ID调节,它实际上是一种算法。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一。

当被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。

从信号变换的角度而言,超前校正、滞后校正、滞后-超前校正可以总结为比例、积分、微分三种运算及其组合。

PID调节器的适用范围:PID调节控制是一个传统控制方法,它适用于温度、压力、流量、液位等几乎所有现场,不同的现场,仅仅是PID参数应设置不同,只要参数设置得当均可以达到很好的效果。

均可以达到0.1%,甚至更高的控制要求。

PID控制的不足1. 在实际工业生产过程往往具有非线性、时变不确定,难以建立精确的数学模型,常规的PID控制器不能达到理想的控制效果;2. 在实际生产现场中,由于受到参数整定方法烦杂的困扰,常规PID控制器参数往往整定不良、效果欠佳,对运行工况的适应能力很差。

二、PID控制器各校正环节任何闭环控制系统的首要任务是要稳(稳定)、快(快速)、准(准确)的响应命令。

PID调整的主要工作就是如何实现这一任务。

增大比例系数P将加快系统的响应,它的作用于输出值较快,但不能很好稳定在一个理想的数值,不良的结果是虽较能有效的克服扰动的影响,但有余差出现,过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏。

PID技术简介及MiniRAELite操作

PID技术简介及MiniRAELite操作
型号:PGM-7300 第三代PID检测仪
RAE Systems Protection Through Detection
第三代 PID 产品系列
ppbRAE 3000
MiniRAE 3000
2007年底
MiniRAE Lite
2008年中
RAE Systems Protection Through Detection
RAE Systems Protection Through Detection
PID检测仪的特点
•灵敏度高 •响应速度快 •便携测量 •安全性高 •非破坏性测量 •传感器不会中毒
RAE Systems Protection Through Detection
MiniRAE Lite便携式VOC检测仪
RAE Systems Protection Through Detection
MiniRAE Lite操作
• 安装调试步骤
– 安装采样探杆 – 安装水阱过滤器 – 锂电池充电 – 安装锂电池 – 开机
RAE Systems Protection Through Detection
MiniRAE Lite操作
Q&A
谢谢!
RAE Systems Protection Through Detection
RAE Systems Protection Through Detection
利用紫外灯光能 电离待测蒸气或
气体的分子
电流被测量,仪器显示 检测气体的浓度
100.0 ppm
气体进入仪器
+
+
-
ห้องสมุดไป่ตู้
-
气体被离子化
-

PID控制简介及PID调节经验总结

PID控制简介及PID调节经验总结

PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。

控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。

不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

通俗易懂的PID控制算法讲解

通俗易懂的PID控制算法讲解

最优控制旨在寻找一种最优的控制策 略,使得系统性能达到最优。与PID 控制相比,最优控制具有更高的性能 指标和更好的全局优化能力。然而, 最优控制的实现需要精确的数学模型 和大量的计算资源,且对系统参数变 化较为敏感。
05
PID控制算法的应用实例
工业自动化领域的应用
要点一
温度控制
在工业生产过程中,PID控制算法被 广泛应用于温度控制系统中,如熔炼 炉、热处理炉等设备的温度控制。通 过实时采集温度数据,与设定值进行 比较,PID控制器能够自动调节加热 元件的功率,使温度稳定在设定值附 近。
该传递函数描述了PID控制器在频域中的特性,可用于分析系统的稳定性、动态性能和 稳态精度等。
通过调整Kp、Ki和Kd三个参数,可以实现对系统性能的优化。在实际应用中,常采用 试凑法、经验法或优化算法等方法来确定PID参数。
03
PID控制算法的参数整定
参数整定的意义
提高系统性能
通过调整PID控制器的参数,可以优化系统 的动态响应和稳态精度,从而提高系统的整 体性能。
适应不同应用场景
不同的被控对象和不同的应用场景需要不同的PID 参数配置,参数整定可以使PID控制器适应各种应 用场景。
保证系统稳定性
合理的参数配置可以保证系统的稳定性,避 免系统出现振荡或失控等不稳定现象。
参数整定的方法
试凑法
根据经验或实验数据,逐步调整 PID控制器的参数,观察系统的响 应情况,直到满足性能指标要求 。
PID控制算法由比例(P)、积分(I) 和微分(D)三个部分组成,每个部 分都有不同的作用,通过调整三个部 分的参数可以实现对系统的精确控制 。
PID控制算法的应用领域
01
02
03

(完整版)PID控制详解

(完整版)PID控制详解

PID控制原理和特点工程实际中,应用最为广泛调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID 控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要技术之一.当被控对象结构和参数不能完全掌握,或不到精确数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便.即当我们不完全了解一个系统和被控对象﹐或不能有效测量手段来获系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制.PID控制器就是系统误差,利用比例、积分、微分计算出控制量进行控制。

1、比例控制(P):比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数e(t) = SP – y(t)-u(t) = e(t)*PSP——设定值e(t)——误差值y(t)——反馈值u(t)——输出值P——比例系数滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。

也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。

如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制2、比例积分控制(PI):积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。

其公式有很多种,但大多差别不大,标准公式如下:u(t) = Kp*e(t) + Ki∑e(t) +u0u(t)—-输出Kp--比例放大系数Ki——积分放大系数e(t)——误差u0——控制量基准值(基础偏差)大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki 后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的PI两个结合使用的情况下,我们的调整方式如下:1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,我们还可以在些P值的基础上再加大一点。

PID教程

PID教程

PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。
1.比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。
2. 积分(I)控制 在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以使系统在进入稳态后无稳态误差。
评价答案
您已经评价过!好:1 您已经评价过!不好:1 您已经评价过!原创:0 您已经评价过!非原创:1 阿当 2009-12-14 23:50 满意答案好评率:90% PID说明
第一章PID常用口诀
参数整定找最佳,从小到大顺序查,先是比例后积分,最后再把微分加,曲线振荡很频繁,比例度盘要放大,曲线漂浮绕大湾,比例度盘往小扳,曲线偏离回复慢,积分时间往下降,曲线波动周期长,积分时间再加长,曲线振荡频率快,先把微分降下来,动差大来波动慢,微分时间应加长,理想曲线两个波,前高后低4比1。
目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机等。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。比如压力控制系统要采用压力传感器。电加热控制系统的传感器是温度传感器。目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控60s。

(完整版)PID控制详解

(完整版)PID控制详解

PID控制原理和特点工程实际中,应用最为广泛调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。

PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为工业控制主要技术之一。

当被控对象结构和参数不能完全掌握,或不到精确数学模型时,控制理论其它技术难以采用时,系统控制器结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。

即当我们不完全了解一个系统和被控对象﹐或不能有效测量手段来获系统参数时,最适合用PID控制技术。

PID控制,实际中也有PI和PD控制。

PID控制器就是系统误差,利用比例、积分、微分计算出控制量进行控制。

1、比例控制(P):比例控制是最常用的控制手段之一,比方说我们控制一个加热器的恒温100度,当开始加热时,离目标温度相差比较远,这时我们通常会加大加热,使温度快速上升,当温度超过100度时,我们则关闭输出,通常我们会使用这样一个函数e(t) = SP – y(t)-u(t) = e(t)*PSP——设定值e(t)——误差值y(t)——反馈值u(t)——输出值P——比例系数滞后性不是很大的控制对象使用比例控制方式就可以满足控制要求,但很多被控对象中因为有滞后性。

也就是如果设定温度是200度,当采用比例方式控制时,如果P选择比较大,则会出现当温度达到200度输出为0后,温度仍然会止不住的向上爬升,比方说升至230度,当温度超过200度太多后又开始回落,尽管这时输出开始出力加热,但温度仍然会向下跌落一定的温度才会止跌回升,比方说降至170度,最后整个系统会稳定在一定的范围内进行振荡。

如果这个振荡的幅度是允许的比方说家用电器的控制,那则可以选用比例控制2、比例积分控制(PI):积分的存在是针对比例控制要不就是有差值要不就是振荡的这种特点提出的改进,它常与比例一块进行控制,也就是PI控制。

其公式有很多种,但大多差别不大,标准公式如下:u(t) = Kp*e(t) + Ki∑e(t) +u0u(t)——输出Kp——比例放大系数Ki——积分放大系数e(t)——误差u0——控制量基准值(基础偏差)大家可以看到积分项是一个历史误差的累积值,如果光用比例控制时,我们知道要不就是达不到设定值要不就是振荡,在使用了积分项后就可以解决达不到设定值的静态误差问题,比方说一个控制中使用了PI控制后,如果存在静态误差,输出始终达不到设定值,这时积分项的误差累积值会越来越大,这个累积值乘上Ki后会在输出的比重中越占越多,使输出u(t)越来越大,最终达到消除静态误差的目的PI两个结合使用的情况下,我们的调整方式如下:1、先将I值设为0,将P值放至比较大,当出现稳定振荡时,我们再减小P值直到P值不振荡或者振荡很小为止(术语叫临界振荡状态),在有些情况下,我们还可以在些P值的基础上再加大一点。

PID控制器介绍

PID控制器介绍

PID控制器介绍PID控制器具有非常简单的控制结构,在实际应用中又易于调试,因此它在工业过程控制中有着广泛的应用。

大多数PID控制器是现场调节的,可以根据控制原理和控制效果对PID控制器进行精确而细致的现场调节。

1、PID控制器结构及原理PID控制器(比例-积分-微分控制器),由比例单元P、积分单元I和微分单元D组成。

PID控制器主要适用于基本线性和动态特性不随时间变化的系统。

2、比例环节比例环节中,控制器的输出信号u与偏差e成比例。

从快速减小偏差的角度出发,应该增加Kp,但是Kp还影响系统的稳定性,过大的Kp会使系统产生激烈的振荡和不稳定,降低系统的稳定性。

因此在设计时必须合理的优化Kp,在满足精度的要求下不要过分增大Kp。

只有P环节3、微分环节微分环节中,控制器的输出信号u与偏差e的微分成比例。

微分控制器主要针对被调量的变化速率来进行调节,而不需要等到被调量已经出现较大的偏差后才开始动作,也就是说,微分调节器可以对被调量的变化趋势进行调节,及时避免出现大的偏差。

一般情况下,实现微分作用不是直接对检测信号进行微分操作,因为这样会引入很大的冲击,即使是小信号,只要有剧烈的变化也会导致对器件很大的冲击,造成某些器件工作不正常。

另外对于噪声干扰信号,由于其突变性,直接微分将引起很大的输出。

故而对于性能要求较高的系统,往往使用检测信号速率的装置来避免对信号直接微分。

PD控制4、积分环节积分环节中,控制器的输出信号u与偏差e的积分成比例。

积分环节的作用是无差调节,即系统平衡后,偏差为0。

积分的作用实际上是将偏差累积起来得到,如果偏差不为0,积分作用将使积分控制器的输出不断增加或减小,系统将无法平衡,故只有为0,积分控制器的输出才不发生变化。

PID控制PID控制是一种最为常见的控制方法,该方法在不知道被控对象模型的条件下也能通过经验公式对控制器参数进行整定,具有很强的实用性。

PID调节的详细说明

PID调节的详细说明

1. PID调试步骤没有一种控制算法比PID调节规律更有效、更方便的了。

现在一些时髦点的调节器基本源自PID。

甚至可以这样说:PID调节器是其它控制调节算法的吗。

为什么PID应用如此广泛、又长久不衰?因为PID解决了自动控制理论所要解决的最基本问题,既系统的稳定性、快速性和准确性。

调节PID的参数,可实现在系统稳定的前提下,兼顾系统的带载能力和抗扰能力,同时,在PID调节器中引入积分项,系统增加了一个零积点,使之成为一阶或一阶以上的系统,这样系统阶跃响应的稳态误差就为零。

由于自动控制系统被控对象的千差万别,PID的参数也必须随之变化,以满足系统的性能要求。

这就给使用者带来相当的麻烦,特别是对初学者。

下面简单介绍一下调试PID参数的一般步骤:1.负反馈自动控制理论也被称为负反馈控制理论。

首先检查系统接线,确定系统的反馈为负反馈。

例如电机调速系统,输入信号为正,要求电机正转时,反馈信号也为正(PID算法时,误差=输入-反馈),同时电机转速越高,反馈信号越大。

其余系统同此方法。

2.PID调试一般原则 a.在输出不振荡时,增大比例增益P。

b.在输出不振荡时,减小积分时间常数Ti。

c.在输出不振荡时,增大微分时间常数Td。

3.一般步骤 a.确定比例增益P 确定比例增益P 时,首先去掉PID的积分项和微分项,一般是令Ti=0、Td=0(具体见PID的参数设定说明),使PID为纯比例调节。

输入设定为系统允许的最大值的60%~70%,由0逐渐加大比例增益P,直至系统出现振荡;再反过来,从此时的比例增益P逐渐减小,直至系统振荡消失,记录此时的比例增益P,设定PID的比例增益P为当前值的60%~70%。

比例增益P调试完成。

b.确定积分时间常数Ti 比例增益P确定后,设定一个较大的积分时间常数Ti的初值,然后逐渐减小Ti,直至系统出现振荡,之后在反过来,逐渐加大Ti,直至系统振荡消失。

记录此时的Ti,设定PID的积分时间常数Ti为当前值的150%~180%。

PID控制介绍

PID控制介绍

PID控制简介(转载)目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。

控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。

不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC) 是利用其闭环控制模块来实现PID 控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID 控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

PID控制简介

PID控制简介

PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。

控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。

不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能P ID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与Con trolNet相连,利用网络来实现其远程控制功能。

1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

PID控制简介及PID调节经验总结

PID控制简介及PID调节经验总结

PID控制简介目前工业自动化水平已成为衡量各行各业现代化水平的一个重要标志。

同时,控制理论的发展也经历了古典控制理论、现代控制理论和智能控制理论三个阶段。

智能控制的典型实例是模糊全自动洗衣机等。

自动控制系统可分为开环控制系统和闭环控制系统。

一个控制系统包括控制器﹑传感器﹑变送器﹑执行机构﹑输入输出接口。

控制器的输出经过输出接口﹑执行机构﹐加到被控系统上﹔控制系统的被控量﹐经过传感器﹐变送器﹐通过输入接口送到控制器。

不同的控制系统﹐其传感器﹑变送器﹑执行机构是不一样的。

比如压力控制系统要采用压力传感器。

电加热控制系统的传感器是温度传感器。

目前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用,有各种各样的PID控制器产品,各大公司均开发了具有PID参数自整定功能的智能调节器(intelligent regulator),其中PID控制器参数的自动调整是通过智能化调整或自校正、自适应算法来实现。

有利用PID控制实现的压力、温度、流量、液位控制器,能实现PID控制功能的可编程控制器(PLC),还有可实现PID控制的PC系统等等。

可编程控制器(PLC) 是利用其闭环控制模块来实现PID控制,而可编程控制器(PLC)可以直接与ControlNet相连,如Rockwell的PLC-5等。

还有可以实现PID控制功能的控制器,如Rockwell 的Logix产品系列,它可以直接与ControlNet相连,利用网络来实现其远程控制功能。

1、开环控制系统开环控制系统(open-loop control system)是指被控对象的输出(被控制量)对控制器(controller)的输出没有影响。

在这种控制系统中,不依赖将被控量反送回来以形成任何闭环回路。

2、闭环控制系统闭环控制系统(closed-loop control system)的特点是系统被控对象的输出(被控制量)会反送回来影响控制器的输出,形成一个或多个闭环。

PID概述

PID概述

数字PID控制算法一、PID概述:按照偏差的比例、积分和微分进行控制的调节器简称为PID调节器,是连续系统中技术成熟、应用最为广泛的一种调节器。

PID调节器结构简单,参数易于调整,在长期应用中已积累了丰富的经验。

特别在工业过程中,由于控制对象的精确数学模型难以建立,系统的参数又经常发生变化,运用现代控制理论分析综合要耗费很大的代价进行模型辨识,但往往不能得到预期的效果,所以人们常采用PID调节器,并根据经验进行在线整定。

由于软件系统的灵活性,PID算法可以得到修而更加完善。

二、模拟PID调节器:PID调节器是一种线性调节器,这种调节器是将设定值w与实际输出值y进行比较构成控制偏差e=w-y,并将其比例、积分、微分通过线性组合构成控制量(如图1所示),所以简称P(比例)I(积分)D(微分)调节器。

在实际应用中,根据对象的特性和控制要求,也可灵活地改变其结构,取其中一部分环节构成控制规律。

例如,比例(P)调节器、比例积分(PI)调节器、比例微分(PD)调节器等。

图1 模拟PID控制1、比例调节器:比例调节器是最简单的一种调节器,其控制规律为u=Ke+u0。

式中,K为比例系数,u0为控制量的基准,也就是e=0时的控制作用。

图2显示了比例调节器对于偏差阶跃变化的时间响应。

比例调节器对于偏差e是即时反应的,偏差一旦产生,调节器立即产生控制作用使被控量朝着减小偏差的方向变化,控制作用的强弱取决于比例系数K。

比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

2、比例积分调节器:为了消除在比例调节中残存的静差,可在比例调节的基础上加上积分调节,开成比例积分调节,其控制规律为:00)1(u edi T e K u t i ++=⎰ 式中i T 为积分时间。

图3显示了比例积分调节器对于偏差的阶跃变化的时间响应。

从图3中我们可以看出PI 调节器对于偏差的阶跃响应除按比例变化的成分外,还带有累积的成分。

PID控制器简介

PID控制器简介

PID控制器维基百科,自由的百科全书PID控制器(比例-积分-微分控制器),由比例单元、积分单元和微分单元组成。

通过Kp, Ki和Kd三个参数的设定。

PID控制器主要适用于基本线性和动态特性不随时间变化的系统。

PID 控制器是一个在工业控制应用中常见的反馈回路部件。

这个控制器把收集到的数据和一个参考值进行比较,然后把这个差别用于计算新的输入值,这个新的输入值的目的是可以让系统的数据达到或者保持在参考值。

和其他简单的控制运算不同,PID控制器可以根据历史数据和差别的出现率来调整输入值,这样可以使系统更加准确,更加稳定。

可以通过数学的方法证明,在其他控制方法导致系统有稳定误差或过程反复的情况下,一个PID反馈回路却可以保持系统的稳定。

反馈回路基础PID回路是要自动实现一个有量具和控制旋钮的操作人员的工作。

这个操作人员会用量具测系统输出的结果,然后用控制旋钮来调整这个系统的输入,直到系统的输出在量具上显示稳定的需求的结果。

在旧的控制文档里,这个过程叫做“复位”行为。

量具被成为“测量”。

需要的结果被成为“定值”。

定值和测量之间的差别被成为“误差”。

一个控制回路包括三个部分:1.系统的传感器得到的测量结果2.控制器作出决定3.通过一个输出设备来作出反应控制器从传感器得到测量结果,然后用需求结果减去测量结果来得到误差。

然后用误差来计算出一个对系统的纠正值来作为输入结果,这样系统就可以从它的输出结果中消除误差。

在一个PID回路中,这个纠正值有三种算法,消除目前的误差,平均过去的误差,和透过误差的改变来预测将来的误差。

比如说,假如一个水箱在为一个植物提供水,这个水箱的水需要保持在一定的高度。

一个传感器就会用来检查水箱里水的高度,这样就得到了测量结果。

控制器会有一个固定的用户输入值来表示水箱需要的水面高度,假设这个值是保持65%的水量。

控制器的输出设备会连在一个马达控制的水阀门上。

打开阀门就会给水箱注水,关上阀门就会让水箱里的水量下降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是PID
光离子化检测器通过一个高能量的紫外灯提供离子 化的能量,当电离电位(IP)小于紫外灯能量的挥发 性有机化合物(VOC)通过离子化腔时,PID的紫外 光源(UV)就会将该化合物击碎成可被检测到的正 负离子(该过程即离子化)。检测器测量离子化后 的气体电荷并将其转化为电流信号,然后电流被放 大并转化为浓度值。在被检测后,离子重新复合成 为原来的气体和蒸气。
RAE Systems Protection Through Detection
利用紫外灯光能 电离待测蒸气或 气体的分子
电流被测量,仪器显示 检测气体的浓度 100.0 ppm
+ 气体进入仪器
+ -
+ -
-+
-
气体被离子化
带电荷的气体离子 流到传感器的电极 上产生电流 气体通过紫外灯
+
气体恢复原状 并离开仪器
2008年中
2008年底
3GPID 系列产品
• MiniRAE Lite - 0.1 - 5,000 ppm • MiniRAE 3000 - 0.1 - 15,000 ppm • ppbRAE 3000 - 1 ppb - 10,000 ppm
0.1
1
10
100
1,000
10,000
15,000
(对于汽油、柴油,大约为30g/m3) – 分辨率1ppm(大约为5mg/m3)
– 无数据存储
– 两点标定 – IP65
– 不支持无线数据传输
– 没有搜索模式(无图形显示)
RAE Systems Protection Through Detection
主要特点
• • • • • • • • • • 检测范围宽(0-5000ppm) 检测精度高 响应速度快(<3S) 自动清洁,延长寿命,提高稳定性 大屏幕液晶显示 高亮度光学报警 95dB 声音报警 12种语言,包括中文 内置TPH 传感器用于湿度校正 内置照明灯
RAE Systems
PID技术简介及 MiniRAE Lite操作
华瑞科力恒(北京)科技有限公司
RAE Systems Protection Through Detection
什么是PID 光离子化检测器 Photo Ionization Detector 简称PID
RAE Systems Protection Through Detection
型号:PGM-7300 第三代PID检测仪
RAE Systems Protection Through Detection
第三代 PID 产品系列
ppbRAE 3000
MiniRAE 3000
MiniRAE Lite
UltraRAE 3000
2007年底
RAE Systems Protection Through Detection
外形、按键、基本操作与MiniRAE 3000相同ough Detection
MiniRAE Lite操作
• 仪器电池充电
连接旅行充电器 – 将旅行充电器正面的红灯朝前对正仪器底部 – 旋转旋钮固定旅行充电器 – 连接充电器,开始充电 红灯亮
RAE Systems Protection Through Detection
RAE Systems Protection Through Detection
PID可以检测的气体 除了有机物,PID还可以测量一些不含碳的无 机气体: •氨气、砷化氢、硒化氢、溴和碘类化合物等
RAE Systems Protection Through Detection
PID不能检测的气体 •空气(N2,O2,CO2,H2O) •常见毒气(如CO,SO2) •天然气(甲烷) •酸性气体(如HCl,HF,HNO3) •氟利昂气体 •臭氧 •放射性气体等
Q&A
谢谢!
RAE Systems Protection Through Detection
RAE Systems Protection Through Detection
MiniRAE Lite操作 • 安装调试步骤
– 安装采样探杆 – 安装水阱过滤器 – 锂电池充电 – 安装锂电池 – 开机
RAE Systems Protection Through Detection
MiniRAE Lite操作
ppm ppb
1 10 100 1,000 10,000 100,000 1,000,000 10,000,000
RAE Systems Protection Through Detection
MiniRAE Lite
MiniRAE 3000 的简化版本 – 本安设计
– 量程:0-5000ppm(0.5%VOL)
RAE Systems Protection Through Detection
PID可以检测的气体
•饱和烃及不饱和烃;辛烷、乙烯、环已烷等 •芳香类:苯,甲苯,萘,硝基苯、氯苯等 •酮、醛、醚:丙酮,丙醛,苯甲醚等 •胺类:二甲基胺,丁胺等 •卤代烃类:三氯乙烯、三溴甲烷、溴甲烷等 •硫代烃类:硫化氢,二硫化碳等 •醇类:乙醇、甲硫醇等 •脂类:醋酸丁脂,乙酰水杨酸甲脂等 •肼类:肼,甲基肼,二甲基肼等
RAE Systems Protection Through Detection
PID检测仪的特点
•灵敏度高 •响应速度快 •便携测量 •安全性高 •非破坏性测量 •传感器不会中毒
RAE Systems Protection Through Detection
MiniRAE Lite便携式VOC检测仪
相关文档
最新文档