2010青海西宁市中考数学试题
青海省中考卷二
青海省中考试卷数学(二)一,选择题(本大题共10小题,每小题3分,共30分) 1.16的平方根是( )A. 4B. -4C. 4±D. 2±2.西宁市城南新区车展给西宁市生活品位带来了一大亮点,本届展会期间签订的项目成效总金额达135400000元,用科学计数法表示应为( )A. 910354.1⨯ B. 81035.1⨯ C. 71035.1⨯ D. 810354.1⨯ 3.下列命题上,真命题的个数有( )①垂直于半径的直线是圆的切线; ②平分弦的直径垂直于弦; ③若 1=x 是方程3=-ay x 的一个解,则1-=a2=y④若反比例函数x y 3-=的图像上有两点⎪⎭⎫⎝⎛1,21y , (1, 2y ),则21y y < A. 1 个 B. 2 个 C. 3 个 D. 4个4.若一个圆锥的侧面积是10,则下列图像中表示这个圆锥母线与底面半径Υ之间的函数关系的是( )5.正八边形的每个内角为( )A. 120ºB. 135ºC. 140ºD. 144º6.如图,直线AB,CD 交于点O,射线OM 平分∠AOC,若∠BOD=76 º,则∠BOM 等于( )A. 38ºB. 104ºC. 142ºD. 144º7.如图,图1是一个底面为正方形的直棱柱,现将图1切割成图2的几何体,则图2的俯视图是( )8.如图,已知双曲线xky =经过直角三角形OAB 斜边)A 的中点D,且与直角边AB 相交于点C,若点A 的坐标为(-6,4),则ΔAOC 的面积为( ) A. 12 B. 9 C. 6 D. 49,某商场的营业额2010年比2009年上升10%,2011年比2010年上升10%,而2012年和2013年连续两年平均每年比上一年降低10%,那么2013年的营业额比2009年的营业额( ) A. 降低了2% B. 没有变化 C. 上升了2% D. 降低了1.99%10.如图,四边形ABCD 对角线AC 和BD 相交于点E,如果ΔCDE 的面积为3, ΔBCE 的面积为4, ΔAED 的面积为6 ,那么ΔABE 的面积为( ) A. 7 B. 8 C. 9 D. 10二,填空题(本大题共10小题,每小题2分,共20分)11.把多项式2422+-a a 分解因式的结果是 . 12.函数xx y 1+=的自变量x 的取值范围是 . 13.写出一条经过第一,二,四低限且过点(-1,3)的直线解析式 . 14.如图, ⊙O 是ΔABC 的外接圆, ∠BAC=50º,点P 在AO 上(点P 不与A,O 重合)则∠BPC 的取值范围 .15.如图, ΔABC 中,BD 和CE 是两条高,如果∠A=45º,则BCDE= .16.如图,在Rt ΔABC 中, ∠C=90º,AC=4,将ΔABC 沿CB 向右平移得到ΔDEF,若平移距离为2,则四边形ABED 的面积等于 .17.已知点E,F,G,H 分别是四边形ABCD 的边AB,BC,CD,DA 的中点,若AC ⊥BD,且AC ≠BD,则四边形EFGH 的形状是 .18.一组数据2,3,6,8,x 的众数是x,其中又是不等式组 042>-x 的整数解,则这组数据的07<-x中位娄可能是 .19.若一个等腰三角形三条边的边长均满足一元二次方程0862=+-x x ,则此三角形的周长为 .20.已知二次函数c bx ax y ++=2中,其函数y 与自变量x 之间的部分对应值如下表所示:点 A (1x ,1y )、B (2x ,2y )在函数的图像上,则当211<<x 时, 则1y 与2y 的大小关系是 .三,解答题(本大题共9小题,共70分) 21.(本题6分)计算:()0132014221245cos 4218--⨯÷-︒-⎪⎭⎫⎝⎛+-;22.(本题6分)已知032≠=b a ,求代数式()b a b a b a 242522-⨯--的值.23.(本题7分)已知:如图,梯形ABCD 中,AB ∥CD,E 是BC 的中点,直线AE 交DC 的延长线于点F. (1)求证: ΔABC ≌ΔFCE(2)若BC ⊥AB,且BC=16,AB=15,求AF 的长.24.(本题8分)如图,方格纸中每个小正方形的边长都是单位1, ΔABC 在平面直角坐标系中的位置如图所示.(1)将ΔABC 向右平移4个单位后,得到Δ111C B A ,请画出Δ111C B A ,并直接写出点1C 的坐标. (2)作出Δ111C B A 关于x 轴的对称图形Δ222C B A ,并直接写出点2A 的坐标.(3)请由图形直接判断以点1C 、2C 、2B 、1B 为顶点的四边形是什么四边形?并求出它的面积.25.(本题8分)甲乙两条轮船同时从港口出发,甲轮船以每小时30海里的速度沿着北偏东60度的方向航行,乙轮船以每小时15海里的速度沿着正东方向先进,1小时后甲船接到命令要与乙船会合,于是甲船心迹了先进的速度,并沿着东南方向航行,结果在小岛C处与乙船相遇,假设乙船的速度和航向保持不变,求:(1)港口A与小岛C之间的距离(2) 甲轮船后来的速度26.(本题7分)”4·20”芦山大地震以来,灾情牵动了全国人民的心,全社会积极为灾区人民献爱心捐款,为了解某学校的捐款情况,对学校捐款学生进行了抽样调查,把调查的结果了下面两个统计图(如图所示),在条形统计图中,从左到右依次为A组,B组,C组,D组,E组.A组和B组的人数比是5:7,捐款钱数均为整数,请结合图中的数据回答下列问题.(1)B组的人数是多少?本次调查的样本容量是多少?(2)补全条形图中的空缺部分,并指出中位数落在哪一组?(3)若该校3000名学生都参加了捐款活动,估计捐款不少于26元的学生有多少人?27.(本题10分)已知,如图,直线MN 交⊙O 于A,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D,过D 作DE ⊥MN 于E. (1)求证:DE 是⊙O 的切线.(2)若DE=6cm,AE=3cm,求⊙O 的半径.28.(本题8分)肛 A,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字1和2,B 布袋中有三个完全相同的小球,分别标有数字-2,-3和-4.小明从A 布袋中随机取出一个小球,记录其标有的数字为x,再从B 布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q 的一个坐标为(x ,y )。
西宁市中考数学试卷及答案解析
青海省西宁市中考数学试卷一、选择题(本大题共10题,每题3分,共30分.在每题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.﹣的相反数是()A.B.﹣3 C.3 D.﹣2.下列计算正确的是()A.2a•3a=6a B.(﹣a3)2=a6C.6a÷2a=3a D.(﹣2a)3=﹣6a33.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm4.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.5.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.6.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3 C.1.4,1.35 D.1.3,1.37.将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A.73° B.56° C.68° D.146°8.如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q 两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm29.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本大题共10题,每题2分,共20分.不需写出解答过程,请把最后结果填在答题卡对应的位置上)11.因式分解:4a2+2a=.12.青海日报讯:十五年免费教育政策已覆盖我省所有贫困家庭,首批惠及学生近86.1万人.将86.1万用科学记数法表示为.13.使式子有意义的x取值范围是.14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为.15.已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为.16.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是.17.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=.18.⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为.19.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC 的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为米.(sin56°≈0.8,tan56°≈1.5)20.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.三、解答题(本大题共8题,第21、22题每题7分,第23、24、25题每题8分,第26、27题每题10分,第28题12分,共70分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上)21.计算:.22.化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.23.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.24.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.25.随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)2015年国庆期间,西宁周边景区共接待游客万人,扇形统计图中“青海湖”所对应的圆心角的度数是,并补全条形统计图;(2)预计2016年国庆节将有80万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游?(3)甲乙两个旅行团在青海湖、塔尔寺、原子城三个景点中,同时选择去同一个景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.26.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.27.青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.28.如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分.(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.2016年青海省西宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10题,每题3分,共30分.在每题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题卡上)1.﹣的相反数是()A.B.﹣3 C.3 D.﹣【考点】相反数.【分析】直接根据相反数的定义即可得出结论.【解答】解:∵﹣与只有符号不同,∴﹣的相反数是.故选A.2.下列计算正确的是()A.2a•3a=6a B.(﹣a3)2=a6C.6a÷2a=3a D.(﹣2a)3=﹣6a3【考点】整式的除法;幂的乘方与积的乘方;单项式乘单项式.【分析】A:根据单项式乘单项式的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据整式除法的运算方法判断即可.D:根据积的乘方的运算方法判断即可.【解答】解:∵2a•3a=6a2,∴选项A不正确;∵(﹣a3)2=a6,∴选项B正确;∵6a÷2a=3,∴选项C不正确;∵(﹣2a)3=﹣8a3,∴选项D不正确.故选:B.3.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.5cm,5cm,11cm D.13cm,12cm,20cm【考点】三角形三边关系.【分析】根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.【解答】解:A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.故选D.4.在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:四个汉字中只有“善”字可以看作轴对称图形,故选D.5.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别确定四个几何体从正面和上面看所得到的视图即可.【解答】解:A、此几何体的主视图是等腰三角形,俯视图是圆,故此选项错误;B、此几何体的主视图是矩形,俯视图是矩形,故此选项正确;C、此几何体的主视图是矩形,俯视图是圆,故此选项错误;D、此几何体的主视图是梯形,俯视图是矩形,故此选项错误;故选:B.6.赵老师是一名健步走运动的爱好者,她用手机软件记录了某个月(30天)每天健步走的步数(单位:万步),将记录结果绘制成了如图所示的统计图.在每天所走的步数这组数据中,众数和中位数分别是()A.1.2,1.3 B.1.4,1.3 C.1.4,1.35 D.1.3,1.3【考点】众数;条形统计图;中位数.【分析】中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数;对于众数可由条形统计图中出现频数最大或条形最高的数据写出.【解答】解:由条形统计图中出现频数最大条形最高的数据是在第四组,7环,故众数是1.4(万步);因图中是按从小到大的顺序排列的,最中间的步数都是1.3(万步),故中位数是1.3(万步).故选B.7.将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A.73° B.56° C.68° D.146°【考点】平行线的性质.【分析】根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=∠CBE,可得出∠ABC的度数.【解答】解:∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.故选A.8.如图,在△ABC中,∠B=90°,tan∠C=,AB=6cm.动点P从点A开始沿边AB向点B以1cm/s的速度移动,动点Q从点B开始沿边BC向点C以2cm/s的速度移动.若P,Q 两点分别从A,B两点同时出发,在运动过程中,△PBQ的最大面积是()A.18cm2B.12cm2C.9cm2D.3cm2【考点】解直角三角形;二次函数的最值.【分析】先根据已知求边长BC,再根据点P和Q的速度表示BP和BQ的长,设△PBQ的面积为S,利用直角三角形的面积公式列关于S与t的函数关系式,并求最值即可.【解答】解:∵tan∠C=,AB=6cm,∴=,∴BC=8,由题意得:AP=t,BP=6﹣t,BQ=2t,设△PBQ的面积为S,则S=×BP×BQ=×2t×(6﹣t),S=﹣t2+6t=﹣(t2﹣6t+9﹣9)=﹣(t﹣3)2+9,P:0≤t≤6,Q:0≤t≤4,∴当t=3时,S有最大值为9,即当t=3时,△PBQ的最大面积为9cm2;故选C.9.某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A.103块B.104块C.105块D.106块【考点】一元一次不等式的应用.【分析】根据题意设出未知数,列出相应的不等式,从而可以解答本题.【解答】解:设这批手表有x块,550×60+(x﹣60)×500>55000解得,x>104∴这批电话手表至少有105块,故选C.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).故选:A.二、填空题(本大题共10题,每题2分,共20分.不需写出解答过程,请把最后结果填在答题卡对应的位置上)11.因式分解:4a2+2a=2a(2a+1).【考点】因式分解-提公因式法.【分析】原式提取公因式即可得到结果.【解答】解:原式=2a(2a+1),故答案为:2a(2a+1)12.青海日报讯:十五年免费教育政策已覆盖我省所有贫困家庭,首批惠及学生近86.1万人.将86.1万用科学记数法表示为8.61×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1万=1×104,∴86.1万=86.1×104=8.61×105.故答案为:8.61×105.13.使式子有意义的x取值范围是x≥﹣1.【考点】二次根式有意义的条件.【分析】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.【解答】解:根据题意得:x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为6.【考点】多边形内角与外角.【分析】利用多边形的外角和以及多边形的内角和定理即可解决问题.【解答】解:∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形.故答案为:6.15.已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为2.【考点】整式的混合运算—化简求值.【分析】先利用乘法公式展开,再合并得到原式=x2+x﹣3,然后利用整体代入的方法计算.【解答】解:原式=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,因为x2+x﹣5=0,所以x2+x=5,所以原式=5﹣3=2.故答案为2.16.如图,在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是16.【考点】菱形的性质;三角形中位线定理.【分析】先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.【解答】解:∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=16.故答案为16.17.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=2.【考点】角平分线的性质;含30度角的直角三角形.【分析】作PE⊥OA于E,根据角平分线的性质可得PE=PD,根据平行线的性质可得∠ACP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.【解答】解:作PE⊥OA于E,∵∠AOP=∠BOP,PD⊥OB,PE⊥OA,∴PE=PD(角平分线上的点到角两边的距离相等),∵∠BOP=∠AOP=15°,∴∠AOB=30°,∵PC∥OB,∴∠ACP=∠AOB=30°,∴在Rt△PCE中,PE=PC=×4=2(在直角三角形中,30°角所对的直角边等于斜边的一半),∴PD=PE=2,故答案是:2.18.⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为75°或15°.【考点】垂径定理;圆周角定理;解直角三角形.【分析】连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可.【解答】解:有两种情况:①如图1所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE==,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE═=,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°;故答案为:75°或15°.19.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC 的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为60米.(sin56°≈0.8,tan56°≈1.5)【考点】解直角三角形的应用.【分析】根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.【解答】解:∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=,CD=,∴+=100,解得,AD≈60,故答案为:60.20.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【分析】由旋转可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=1,正方形的边长为3,用AB﹣AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM﹣FM=BM﹣EF=4﹣x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为FM的长.【解答】解:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,∴FM=.故答案为:.三、解答题(本大题共8题,第21、22题每题7分,第23、24、25题每题8分,第26、27题每题10分,第28题12分,共70分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上)21.计算:.【考点】实数的运算;零指数幂;负整数指数幂.【分析】根据零指数幂、负整数指数幂、绝对值和二次根式的化简分别进行计算即可得出答案.【解答】解:原式=3+﹣1+2﹣1=4.22.化简:,然后在不等式x≤2的非负整数解中选择一个适当的数代入求值.【考点】分式的化简求值;一元一次不等式的整数解.【分析】首先利用分式的混合运算法则将原式化简,然后解不等式,选择使得分式有意义的值代入求解即可求得答案.【解答】解:原式====∵不等式x≤2的非负整数解是0,1,2∵(x+1)(x﹣1)≠0,x+2≠0,∴x≠±1,x≠﹣2,∴把x=0代入.23.如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)把点A坐标代入一次函数y=x+m与反比例函数y=,分别求得m及k的值;(2)令直线解析式的函数值为0,即可得出x的值,从而得出点C坐标,根据图象即可得出不等式组0<x+m≤的解集.【解答】解:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1即m=﹣1,∵A(2,1)在反比例函数的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.24.如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由在▱ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.25.随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.根据以上信息解答下列问题:(1)2015年国庆期间,西宁周边景区共接待游客50万人,扇形统计图中“青海湖”所对应的圆心角的度数是108°,并补全条形统计图;(2)预计2016年国庆节将有80万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游?(3)甲乙两个旅行团在青海湖、塔尔寺、原子城三个景点中,同时选择去同一个景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)根据条形图和扇形图得到游“青海湖”的人数和所占的百分比,计算出共接待游客人数,根据“青海湖”所占的百分比求出圆心角,求出塔尔寺人数,补全条形统计图;(2)求出选择西宁周边游所占的百分比,计算即可;(3)列表求出共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,根据概率公式计算即可.【解答】解:(1)由条形图和扇形图可知,游“青海湖”的人数是15万人,占30%,∴共接待游客人数为:15÷30%=50(万人),“青海湖”所对应的圆心角的度数是:360°×30%=108°,塔尔寺人数为:24%×50=12(万人),补全条形统计图如图:(2)(万人)答:估计将有9.6万人会选择去贵德旅游;(3)设A,B,C分别表示青海湖、塔尔寺、原子城.由此可见,共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种.∴同时选择去同一个景点的概率是.26.如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.【考点】切线的判定与性质.【分析】(1)连OD,OE,根据圆周角定理得到∠ADO+∠1=90°,而∠CDA=∠CBD,∠CBD=∠1,于是∠CDA+∠ADO=90°;(2)根据已知条件得到△CDA∽△CBD由相似三角形的性质得到,求得CD=4,由切线的性质得到BE=DE,BE⊥BC根据勾股定理列方程即可得到结论.【解答】(1)证明:连结OD,∵OB=OD,∴∠OBD=∠BDO,∵∠CDA=∠CBD,∴∠CDA=∠ODB,又∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD,∵OD是⊙O半径,∴CD是⊙O的切线(2)解:∵∠C=∠C,∠CDA=∠CBD∴△CDA∽△CBD∴∵,BC=6,∴CD=4,∵CE,BE是⊙O的切线∴BE=DE,BE⊥BC∴BE2+BC2=EC2,即BE2+62=(4+BE)2解得:BE=.27.青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.【考点】一元二次方程的应用;二元一次方程组的应用.【分析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用2016年配置720辆公共自行车,结合增长率为x,进而表示出2018年配置公共自行车数量,得出等式求出答案.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=,即:,(不符合题意,舍去)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.28.如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分.(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据题意首先求出抛物线顶点E的坐标,再利用顶点式求出函数解析式;(2)利用等边三角形的性质结合圆的有关性质得出∠AMD=∠CMD=∠AMC=60°,进而得出DC=CM=MA=AD,即可得出答案;(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系式求出P点坐标.【解答】(1)解:由题意可知,△MBC为等边三角形,点A,B,C,E均在⊙M上,则MA=MB=MC=ME=2,又∵CO⊥MB,∴MO=BO=1,∴A(﹣3,0),B(1,0),E(﹣1,﹣2),抛物线顶点E的坐标为(﹣1,﹣2),设函数解析式为y=a(x+1)2﹣2(a≠0)把点B(1,0)代入y=a(x+1)2﹣2,解得:a=,故二次函数解析式为:y=(x+1)2﹣2;(2)证明:连接DM,∵△MBC为等边三角形,∴∠CMB=60°,∴∠AMC=120°,∵点D平分弧AC,∴∠AMD=∠CMD=∠AMC=60°,∵MD=MC=MA,∴△MCD,△MDA是等边三角形,∴DC=CM=MA=AD,∴四边形AMCD为菱形(四条边都相等的四边形是菱形);(3)解:存在.理由如下:设点P的坐标为(m,n)∵S△ABP=AB|n|,AB=4∴×4×|n|=5,即2|n|=5,解得:n=±,当时,(m+1)2﹣2=,解此方程得:m1=2,m2=﹣4即点P的坐标为(2,),(﹣4,),当n=﹣时,(m+1)2﹣2=﹣,此方程无解,故所求点P坐标为(2,),(﹣4,).。
2010年青海省西宁市中考数学试卷
2010年青海省西宁市中考数学试卷一、填空题(共12小题,满分30分)1.(4分)2010的相反数是;=.2.(2分)已知y=2x,则4x2﹣y2的值是.3.(2分)《西海都市报》2010年6月7日报道:为重建美好玉树,政府以恢复玉树温室生产增加蔬菜供应量为目标,共投资10 471万元建设保温性能好、抗震能力强的高档次温室.将10 471万元用科学记数法可表示为元.4.(4分)根据反比例函数和一次函数y=2x+1的图象,请写出它们的一个共同点;一个不同点.5.(2分)“建设大美青海,创建文明城市”,西宁市加快了郊区旧房拆迁的步伐.为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意.在这一抽样调查中,样本容量为.6.(2分)将抛物线y=2(x﹣1)2先向左平移1个单位后所得到的新抛物线的表达式为.7.(2分)要使正六边形旋转后能与自身重合,至少应将它绕中心逆时针方向旋转度.8.(2分)汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h的汽车前方80m处,发现停放一辆故障车,此时刹车有危险.9.(4分)联欢会上,小明按照3个红气球、2个黄气球、1个绿气球的顺序把气球串起来装饰教室.第16个气球是颜色气球;这16个气球中出现黄色气球的概率是.10.(2分)如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是.11.(2分)如图,已知在直角坐标系中,半径为2的圆的圆心坐标为(3,﹣3),当该圆向上平移个单位时,它与x轴相切.12.(2分)如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=28°,∠B=120°,则∠A′NC=度.二、选择题(共8小题,每小题3分,满分24分)13.(3分)计算﹣1﹣2×(﹣3)的结果等于()A.5B.﹣5C.7D.﹣714.(3分)如图,下列汉字或字母中既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个15.(3分)如图,图中的几何体中,它的左视图是()A.B.C.D.16.(3分)下列哪一个函数,其图象与x轴有两个交点()A.B.C.D.17.(3分)如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)18.(3分)如图,在半径为5的⊙O中,若弦AB=8,则△AOB的面积为()A.24B.16C.12D.819.(3分)西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户20.(3分)矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()A.5B.C.6D.三、解答题(共8小题,满分66分)21.(7分)计算:()﹣1﹣(3.14﹣π)0+0.254×44.22.(7分)解分式方程:23.(8分)如图,在△ABC中,AD⊥BC,垂足为D.(1)尺规作图(不写作法,保留作图痕迹):作△ABC的外接圆⊙O,作直径AE,连接BE;(2)若AB=8,AC=6,AD=5,求直径AE的长.(证明△ABE∽△ADC)24.(8分)现有分别标有数字﹣1,1,2的3个质地和大小完全相同的小球.若3个小球都装在一个不透明的口袋中,从中随机摸出一个小球后不放回,其标号作为一次函数y=kx+b的系数k.再随机摸出一个,其标号作为一次函数y=kx+b的系数b.(1)利用树形图或列表法(只选一种),表示一次函数y=kx+b可能出现的所有结果,并写出所有等可能结果;(2)求出一次函数y=kx+b的图象不经过第四象限的概率.25.(8分)自2010年4月1日起,新修订的《机动车驾驶证申领和使用规定》正式实施了.新规定为保障公民的人身安全,对被查酒后驾驶机动车(血液酒精含量超过20毫克/百毫升)的驾驶员加大了处罚力度.某交警大队于4月4日~4月10日这7天共查到12起酒后驾车事件,这12位驾车者血液酒精含量(单位:毫克/百毫升)如下:26,58,29,92,21,43,24,27,36,46,23,31.(1)请计算这些数据的平均数与极差;(2)请你运用所学到的统计知识估计新规定实施之后一年内(按365天计算),该交警大队能查到多少起酒后驾车事件?(精确到1起)(3)该交警大队在新规定实施前的某一周7天内共查到38名司机血液酒精含量超过20毫克/百毫升,平均含量为56毫克/百毫升,请结合相关数据谈谈你的想法.26.(8分)(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.27.(8分)今年年初西南五省的持续干旱,让许多网友感同身受、焦灼不安,更有不少网友自发组成水源行动小组到旱区找水.功夫不负有心人,终于有人在山洞C里发现了暗河(如图所示).经勘察,在山洞的西面有一条南北走向的公路连接着A、B两村庄,山洞C位于A村庄南偏东30°方向,且位于B 村庄南偏东60°方向.为方便A、B两村庄的村民取水,社会爱心人士准备尽快从山洞C处向公路AB紧急修建一条最近的简易公路CD.现已知A、B两村庄相距6千米.(1)求这条最近的简易公路CD的长(保留3个有效数字);(2)每修建1千米的简易公路需费用16000元,请求出修建该简易公路的最低费用(精确到个位).(本题参考数据:≈1.414,≈1.732)28.(12分)如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.2010年青海省西宁市中考数学试卷参考答案与试题解析一、填空题(共12小题,满分30分)1.(4分)2010的相反数是﹣2010;=1.【解答】解:2010的相反数是﹣2010;=|1﹣2|=|﹣1|=1.2.(2分)已知y=2x,则4x2﹣y2的值是0.【解答】解:∵y=2x,∴2x﹣y=0,∴4x2﹣y2,=4x2﹣y2,=(2x+y)(2x﹣y),=(2x+y)×0,=0.3.(2分)《西海都市报》2010年6月7日报道:为重建美好玉树,政府以恢复玉树温室生产增加蔬菜供应量为目标,共投资10 471万元建设保温性能好、抗震能力强的高档次温室.将10 471万元用科学记数法可表示为 1.0471×108元.【解答】解:10 471万=10 471×104=1.047 1×108元.4.(4分)根据反比例函数和一次函数y=2x+1的图象,请写出它们的一个共同点图象都经过第一、三象限;一个不同点一次函数图象是一条直线,反比例函数图象是双曲线.【解答】解:∵3>0,∴反比例函数图象位于第一、三象限,是双曲线;∵2>0,∴一次函数图象经过第一、三象限,是直线;所以它们的一个共同点是:图象都经过第一、三象限;不同点是:一次函数图象是直线,反比例函数图象是双曲线.5.(2分)“建设大美青海,创建文明城市”,西宁市加快了郊区旧房拆迁的步伐.为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意.在这一抽样调查中,样本容量为50.【解答】解:样本容量为50.6.(2分)将抛物线y=2(x﹣1)2先向左平移1个单位后所得到的新抛物线的表达式为y=2x2.【解答】解:抛物线y=2(x﹣1)2向左平移1个单位,得:y=2(x﹣1+1)2=2x2.7.(2分)要使正六边形旋转后能与自身重合,至少应将它绕中心逆时针方向旋转60度.【解答】解:根据正六边形的性质可知,相邻的对应点与中心连线的夹角为:360°÷6=60°,即至少应将它绕中心逆时针方向旋转60°.8.(2分)汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h的汽车前方80m处,发现停放一辆故障车,此时刹车会有危险.【解答】解:把v=100代入S=v2得:汽车刹车距离s=100>80,因此会有危险.故答案为:会.9.(4分)联欢会上,小明按照3个红气球、2个黄气球、1个绿气球的顺序把气球串起来装饰教室.第16个气球是黄颜色气球;这16个气球中出现黄色气球的概率是.【解答】解:16个气球的排列顺序为:红、红、红、黄、黄、绿、红、红、红、黄、黄、绿、红、红、红、黄.故第16个气球是黄颜色气球;又由于黄气球共有5个,所以这16个气球中出现黄色气球的概率是.10.(2分)如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是3<x<11.【解答】解:∵ABCD是平行四边形,AC=14,BD=8,∴OA=AC=7,OB=BD=4,∴7﹣4<x<7+4,即3<x<11.故答案为:3<x<11.11.(2分)如图,已知在直角坐标系中,半径为2的圆的圆心坐标为(3,﹣3),当该圆向上平移1或5个单位时,它与x轴相切.【解答】解:设圆的半径为r,圆心到直线的距离d,要使圆与x轴相切,必须d=r;∵此时d=3,∴圆向上平移1或5个单位时,它与x轴相切.12.(2分)如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=28°,∠B=120°,则∠A′NC=116度.【解答】解:已知∠A=28°,∠B=120°,由三角形的内角和定理可知,∠C=180°﹣∠A﹣∠B=32°,∵MN是三角形的中位线,∴MN∥BC,∠A′NM=∠C=32°,∠CNM=180°﹣∠C=148°,∴∠A′NC=∠CNM﹣∠A′NM=148°﹣32°=116°.二、选择题(共8小题,每小题3分,满分24分)13.(3分)计算﹣1﹣2×(﹣3)的结果等于()A.5B.﹣5C.7D.﹣7【解答】解:原式=﹣1﹣(﹣6)=﹣1+6=5.故选:A.14.(3分)如图,下列汉字或字母中既是轴对称图形,又是中心对称图形的有()A.1个B.2个C.3个D.4个【解答】解:在同一平面内一个图形沿着一条直线对折后两部分完全重合,这个图形就是轴对称图形.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就是中心对称图形.符合这两个条件的只有第一个田字和第三个H,故选B.15.(3分)如图,图中的几何体中,它的左视图是()A.B.C.D.【解答】解:从左面看可得到1列正方形的个数为2.故选:B.16.(3分)下列哪一个函数,其图象与x轴有两个交点()A.B.C.D.【解答】解:A、令y=0得,,移项得,,方程无实根;B、令y=0得,,移项得,,方程无实根;C、令y=0得,,移项得,,方程无实根;D、令y=0得,,移项得,,方程有两个实根.故选D.17.(3分)如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成()A.(1,0)B.(﹣1,0)C.(﹣1,1)D.(1,﹣1)【解答】解:根据题意,坐标原点是嘴所在的行和左眼所在的列的位置,所以嘴的坐标是(1,0),故选A.18.(3分)如图,在半径为5的⊙O中,若弦AB=8,则△AOB的面积为()A.24B.16C.12D.8【解答】解:作OC⊥AB于C.根据垂径定理,得AC=4.根据勾股定理,得OC=3.则三角形AOB的面积是×8×3=12.19.(3分)西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数()A.至少20户B.至多20户C.至少21户D.至多21户【解答】解:设这个小区的住户数为x户.则1000x>10000+500x,解得x>20.∵x是整数,∴这个小区的住户数至少21户.故选:C.20.(3分)矩形ABCD中,E,F,M为AB,BC,CD边上的点,且AB=6,BC=7,AE=3,DM=2,EF⊥FM,则EM的长为()A.5B.C.6D.【解答】解:过E作EG⊥CD于G,∵四边形ABCD是矩形,∴∠A=∠D=90°,又∵EG⊥CD,∴∠EGD=90°,∴四边形AEGD是矩形,∴AE=DG,EG=AD,∴EG=AD=BC=7,MG=DG﹣DM=3﹣2=1,∴△EFM为直角三角形,∴在Rt△EGM中,EM====5.故选:B.三、解答题(共8小题,满分66分)21.(7分)计算:()﹣1﹣(3.14﹣π)0+0.254×44.【解答】解:原式=2﹣1+=2﹣1+1=2.22.(7分)解分式方程:【解答】解:方程两边同乘以2(3x﹣1),得3(6x﹣2)﹣2=4(2分)18x﹣6﹣2=4,18x=12,x=(5分).检验:把x=代入2(3x﹣1):2(3x﹣1)≠0,∴x=是原方程的根.∴原方程的解为x=.(7分)23.(8分)如图,在△ABC中,AD⊥BC,垂足为D.(1)尺规作图(不写作法,保留作图痕迹):作△ABC的外接圆⊙O,作直径AE,连接BE;(2)若AB=8,AC=6,AD=5,求直径AE的长.(证明△ABE∽△ADC)【解答】解:(1)正确作出△ABC的外接圆⊙O,正确作出直径AE;(2)证明:由作图可知AE为⊙O的直径,∴∠ABE=90°,(直径所对的圆周角是直角)∵AD⊥BC,∴∠ADC=90°,∴∠ABE=∠ADC,∵=,∴∠E=∠C,∴△ABE∽△ADC,∴,即,∴AE=9.6.24.(8分)现有分别标有数字﹣1,1,2的3个质地和大小完全相同的小球.若3个小球都装在一个不透明的口袋中,从中随机摸出一个小球后不放回,其标号作为一次函数y=kx+b的系数k.再随机摸出一个,其标号作为一次函数y=kx+b的系数b.(1)利用树形图或列表法(只选一种),表示一次函数y=kx+b可能出现的所有结果,并写出所有等可能结果;(2)求出一次函数y=kx+b的图象不经过第四象限的概率.【解答】解:(1)树形图如下:;(2)当k>0,b<0时,图象过一三四象限;当k<0时,图象一定过二四象限.∴共有6种情况,不过第四象限的函数有y=x+2,y=2x+1,所以概率P(图象不在第四象=.限)25.(8分)自2010年4月1日起,新修订的《机动车驾驶证申领和使用规定》正式实施了.新规定为保障公民的人身安全,对被查酒后驾驶机动车(血液酒精含量超过20毫克/百毫升)的驾驶员加大了处罚力度.某交警大队于4月4日~4月10日这7天共查到12起酒后驾车事件,这12位驾车者血液酒精含量(单位:毫克/百毫升)如下:26,58,29,92,21,43,24,27,36,46,23,31.(1)请计算这些数据的平均数与极差;(2)请你运用所学到的统计知识估计新规定实施之后一年内(按365天计算),该交警大队能查到多少起酒后驾车事件?(精确到1起)(3)该交警大队在新规定实施前的某一周7天内共查到38名司机血液酒精含量超过20毫克/百毫升,平均含量为56毫克/百毫升,请结合相关数据谈谈你的想法.【解答】解:(1)平均数=(26+58+29+92+21+43+24+27+36+46+23+31)=38(毫克/百毫升),极差=92﹣21=71(毫克/百毫升);(2)365÷7×12≈626(起);(3)与新规定实施前相比,抽查到的司机血液酒精平均含量大大减少,说明人们法律意识增强了,但还要提高认识.26.(8分)(1)班同学上数学活动课,利用角尺平分一个角(如图所示).设计了如下方案:(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由;(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.【解答】解:(1)方案(Ⅰ)不可行.缺少证明三角形全等的条件,∵只有OP=OP,PM=PN不能判断△OPM≌△OPN;∴就不能判定OP就是∠AOB的平分线;方案(Ⅱ)可行.证明:在△OPM和△OPN中,,∴△OPM≌△OPN(SSS),∴∠AOP=∠BOP(全等三角形对应角相等);∴OP就是∠AOB的平分线.(2)当∠AOB是直角时,此方案可行;∵四边形内角和为360°,∠OMP=∠ONP=90°,∠MPN=90°,∴∠AOB=90°,∵PM=PN,∴OP为∠AOB的平分线.(到角两边距离相等的点在这个角的角平分线上),当∠AOB不为直角时,此方案不可行;因为∠AOB必为90°,如果不是90°,则不能找到同时使PM⊥OA,PN⊥OB的点P的位置.27.(8分)今年年初西南五省的持续干旱,让许多网友感同身受、焦灼不安,更有不少网友自发组成水源行动小组到旱区找水.功夫不负有心人,终于有人在山洞C里发现了暗河(如图所示).经勘察,在山洞的西面有一条南北走向的公路连接着A、B两村庄,山洞C位于A村庄南偏东30°方向,且位于B 村庄南偏东60°方向.为方便A、B两村庄的村民取水,社会爱心人士准备尽快从山洞C处向公路AB紧急修建一条最近的简易公路CD.现已知A、B两村庄相距6千米.(1)求这条最近的简易公路CD的长(保留3个有效数字);(2)每修建1千米的简易公路需费用16000元,请求出修建该简易公路的最低费用(精确到个位).(本题参考数据:≈1.414,≈1.732)【解答】解:(1)如图:过C作CD⊥AB于D.设CD=x,在Rt△ADC中,∠ADC=90°,∠A=30°,∵,∴.同理:.∵AD﹣BD=6,∴.解得:≈5.196≈5.20(千米).(2)5.196×16000=83136(元).答:这条最近的简易公路CD的长是5.20千米,最低费用是83136元.28.(12分)如图,直线y=kx﹣1与x轴、y轴分别交于B、C两点,tan∠OCB=.(1)求B点的坐标和k的值;(2)若点A(x,y)是第一象限内的直线y=kx﹣1上的一个动点.当点A运动过程中,试写出△AOB的面积S与x的函数关系式;(3)探索:在(2)的条件下:①当点A运动到什么位置时,△AOB的面积是;②在①成立的情况下,x轴上是否存在一点P,使△POA是等腰三角形?若存在,请写出满足条件的所有P点的坐标;若不存在,请说明理由.【解答】解:(1)∵y=kx﹣1与y轴相交于点C,∴OC=1;∵tan∠OCB=,∴OB=;∴B点坐标为:,;把B点坐标为:,代入y=kx﹣1得:k=2;(2)∵S=,y=kx﹣1,∴S=×(2x﹣1);∴S=x﹣;(3)①当S=时,x﹣=,∴x=1,y=2x﹣1=1;∴A点坐标为(1,1)时,△AOB的面积为;②存在.满足条件的所有P点坐标为:P1(1,0),P2(2,0),P3(,0),P4(,0).(注:每题只给出一种解法,如有不同解法请参照评分意见给分)。
2010中考数学试题及答案
2010中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.14159B. 0.33333C. πD. √2答案:D2. 如果一个直角三角形的两条直角边分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A4. 一个正数的倒数是:A. 它自己B. 它的相反数C. 它的平方D. 1除以它答案:D5. 下列哪个式子是正确的?A. 2x + 3 = 5x - 1B. 3x - 4 = 4x + 3C. 2x + 3 = 2x - 3D. 5x + 2 = 5x - 2答案:A6. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B7. 下列哪个不是二次根式?A. √3B. √xC. √x + 1D. √x²答案:D8. 如果一个数的立方是27,那么这个数是:A. 3B. -3C. 9D. -9答案:A9. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数C. 零D. 正数或零答案:D10. 下列哪个是等差数列?A. 1, 3, 5, 7B. 2, 4, 6, 8C. 1, 2, 4, 8D. 3, 6, 9, 12答案:A二、填空题(每题2分,共20分)11. 一个数的相反数是-5,这个数是________。
答案:512. 一个数的绝对值是4,这个数可能是________或________。
答案:4 或 -413. 如果一个数的平方是16,那么这个数是________或________。
答案:4 或 -414. 一个圆的直径是10,那么它的半径是________。
答案:515. 如果一个三角形的三个内角分别是40度、50度和90度,那么这是一个________三角形。
答案:直角16. 一个数的立方根是2,那么这个数是________。
西宁中考真题数学试卷答案
西宁中考真题数学试卷答案本文为西宁中考数学试卷的答案解析,旨在为同学们提供参考和学习。
以下将逐题给出题目及其对应的详细解答。
1. 选择题1) 答案:B解析:根据题意,将比国旗高10cm的旗杆一分为二则旗杆比国旗高5cm。
根据比例关系可得 10:2 = 5:1,所以1m = 100cm 的旗杆高为100/5 = 20m,故选B。
2) 答案:C解析:根据题意,设整数x,2.1x = 15,则x = 15 / 2.1 = 7.14,又x是整数,所以 x = 7,即最小正整数x = 7。
3) 答案:A解析:首先,画图可得 RQ ⊥ PR,所以三角形 PQR 是直角三角形。
设 PQ = a,QR = a/2,则 PR = PQ - QR = a - a/2 = a/2。
根据勾股定理:PR² + QR² = PQ²,可得 (a/2)² + (a/2)² = a²,化简可得 a²/4 = a²/2。
两边同时乘以4可得 a² = 2a²,整理后可得 a = 0,但题目中 PQ 和 QR 是正数,所以舍去a = 0的情况。
综上所述,此题无解,故选A。
4) 答案:D解析:先化简式子 (2x + 1) / (x - 1) = 4,得 (2x + 1) = 4(x - 1),展开计算可得 2x + 1 = 4x - 4,整理后得 2x - 4x = -4 - 1,即 -2x = -5,两边同时除以-2可得 x = -5 / -2,化简可得 x = 5/2 = 2.5。
所以 x 的值为2.5,故选D。
5) 答案:A解析:根据题意,球的半径 r = 0.3 m,球体积公式为V = (4/3)πr³,代入 r = 0.3 可得V = (4/3)π(0.3)³ = 0.036π 立方米。
所以球的体积为0.036π 立方米,故选A。
2010年中考数学试题汇编10——不等式(组)的应用
2010年中考数学试题汇编10----不等式(组)的应用1.(2010·南京)甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是A. 1℃~3℃B. 3℃~5℃C. 5℃~8℃D. 1℃~8℃2.(2010·西宁)西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数A.至少20户 B.至多20户 C.至少21户 D.至多21户3.(2010·绥化)现有球迷150人欲同时租用A、B、C三种型号客车去观看世界杯足球赛,其中A、B、C三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A型客车最多租两辆,则球迷们一次性到达赛场的租车方案有()A.3种B.4种C.5种D.6种4.(2010·温州)某班级从文化用品市场购买了签字笔和圆珠笔共l5支,所付金额大于26元,但小于27元.已知签字笔每支2元,圆珠笔每支1.5元,则其中签字笔购买了支.5.(2010·青岛)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.6.(2010·眉山)某渔场计划购买甲、乙两种鱼苗共6000尾,甲种鱼苗每尾0.5元,乙种鱼苗每尾0.8元.相关资料表明:甲、乙两种鱼苗的成活率分别为90%和95%.(1)若购买这批鱼苗共用了3600元,求甲、乙两种鱼苗各购买了多少尾?(2)若购买这批鱼苗的钱不超过4200元,应如何选购鱼苗?(3)若要使这批鱼苗的成活率不低于93%,且购买鱼苗的总费用最低,应如何选购鱼苗?7.某超市销售有甲、乙两种商品.甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市同时一次购进甲、乙两种商品共80件,恰好用去1600元,求能购进甲、乙两种商品各多少件?(2)该超市为使甲、乙两种商品共80件的总利润(利润=售价-进价)不少于600元,但又不超过610元.请你帮助该超市设计相应的进货方案.8.(2010·泰州)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?9.(2010·盐城)整顿药品市场、降低药品价格是国家的惠民政策之一.根据国家《药品政府定价办法》,某省有关部门规定:市场流通药品的零售价格不得超过进价的15%.根据相关信息解决下列问题:(1)降价前,甲乙两种药品每盒的出厂价格之和为6.6元.经过若干中间环节,甲种药品每盒的零售价格比出厂价格的5倍少2.2元,乙种药品每盒的零售价格是出厂价格的6倍,两种药品每盒的零售价格之和为33.8元.那么降价前甲、乙两种药品每盒的零售价格分别是多少元?(2)降价后,某药品经销商将上述的甲、乙两种药品分别以每盒8元和5元的价格销售给医院,医院根据实际情况决定:对甲种药品每盒加价15%、对乙种药品每盒加价10%后零售给患者.实际进药时,这两种药品均以每10盒为1箱进行包装.近期该医院准备从经销商处购进甲乙两种药品共100箱,其中乙种药品不少于40箱,销售这批药品的总利润不低于900元.请问购进时有哪几种搭配方案?10.(2010·嵊州)为支持玉树搞震救灾,某市A 、B 、C 三地现分别有赈灾物资100吨、100吨、80吨,需全部运往玉树重灾地区D 、E 两县,根据灾区情况,这批赈灾物资运往D 县的数量比运往E 县的数量的2倍少20吨。
西宁市中考数学试卷
西宁市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共20题;共40分)1. (2分)下列数中,比大的实数是()A . -5B . 0C . 3D .2. (2分)下列计算中可采用平方差公式的是()A . (x+y)(x﹣z)B . (﹣x+2y)(x+2y)C . (﹣3x﹣y)(3x+y)D . (2a+3b)(2b﹣3a)3. (2分)下列图形中既是中心对称图形又是轴对称图形的是()A .B .C .D .4. (2分)拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000千克,这个数据用科学记数法表示为A . 0.5×1011千克B . 50×109千克C . 5×109千克D . 5×1010千克5. (2分)(2016·荆门) 化简的结果是()A .B .C . x+1D . x﹣16. (2分) (2020九下·东台期中) 下列几何体中,从正面看与从上面看不相同的是()A . 正方体B . 四棱锥C . 圆柱D . 球7. (2分)用配方法将方程x2+6x-11=0变形为()A . (x-3)2=20B . (x+3)2=20C . (x+3)2=2D . (x-3)2=28. (2分)在a2□4a□4的空格□中,任意填上“+”或“-”,在所得到的代数式中,能构成完全平方式的概率是()A . 1B . 0.5C . 0.75D . 0.259. (2分)不等式组的解集为()A . x≥2B . x>3C . 2≤x<3D . x>210. (2分)(2017·琼山模拟) 甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C 两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A . =B . =C . =D . =11. (2分) (2019八下·北京期末) 博物馆作为征集、典藏、陈列和研究代表自然和人类文化遗产实物的场所,其存在的目的是为公众提供知识、教育及欣赏服务.近年来,人们到博物馆学习参观的热情越来越高.2012-2018年我国博物馆参观人数统计如下:小明研究了这个统计图,得出四个结论:①2012年到2018年,我国博物馆参观人数持续增长;②2019年末我国博物馆参观人数估计将达到10.82亿人次;③2012年到2018年,我国博物馆参观人数年增幅最大的是2017年;④2016年到2018年,我国博物馆参观人数平均年增长率超过10%.其中正确的是()A . ①③B . ①②③C . ①②④D . ①②③④12. (2分) (2016八上·徐州期中) 如图,点A、B、C是⊙O上的三点,若∠BOC=80°,则∠A的度数是()A . 40°B . 60°C . 80°D . 100°13. (2分)若一次函数y=kx+b,当x的值增大1时,y值减小3,则当x的值减小3时,y值()A . 增大3B . 减小3C . 增大9D . 减小914. (2分)如图,在平面直角坐标系中,Rt△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,),点C的坐标为(1,0),且∠AOB=30°点P为斜边OB上的一个动点,则PA+PC的最小值为()A .B .C .D .15. (2分)如图,抛物线y=ax2+bx+c与x轴交于点(-1,0),对称轴为x=1,则下列结论中正确的是()A . a>0B . 当x>1时,y随x的增大而增大C . c<0D . x=3是一元二次方程ax2+bx+c=0的一个根16. (2分) (2020九下·深圳月考) 在,,,,,中正确的是()A . 平均数是B . 众数是C . 中位数是D . 极差为17. (2分) (2016九上·绵阳期中) 图中,EB为半圆O的直径,点A在EB的延长线上,AD切半圆O于点D,BC⊥AD于点C,AB=2,半圆O的半径为2,则BC的长为()A . 2B . 1C . 1.5D . 0.518. (2分)(2019·河池模拟) 如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是()A . 30°B . 40°C . 50°D . 60°19. (2分)平行四边形ABCD中,如果∠B=100°,那么∠A、∠D的值分别是()A . ∠A=80°,∠D=100°B . ∠A=100°,∠D=80°C . ∠B=80°,∠D=80°D . ∠A=100°,∠D=100°20. (2分)关于二次函数y=﹣x2﹣3的最值情况,描述正确的是()A . 最大值0B . 最大值﹣3C . 最小值﹣3D . 最小值0二、填空题 (共4题;共4分)21. (1分) (2019八下·苏州期中) 方程的解是________.22. (1分)(2019·铁西模拟) 已知关于x的一元二次方程x2+bx+1=0有两个相等的实数根,则b的值为________.23. (1分)(2019·曲靖模拟) 圆锥的母线长是6cm,侧面积是30πcm2 ,该圆锥底面圆的半径长等于________cm.24. (1分) (2019九上·龙岗期中) 在锐角三角形ABC中.BC= ,∠ABC=45°,BD平分∠ABC .若M ,N分别是边BD , BC上的动点,则CM+MN的最小值是________.三、解答题 (共5题;共63分)25. (15分)(2018·成都模拟) 已知:如图1.正方形ABCD,过点A作∠EAF=90°,两边分别交直线BC于点E,交线段CD于点F,G为AE中点,连接BG(1)求证:△ABE≌△ADF(2)如图2,过点G作BG的垂线交对角线AC于点H,求证:GH=GB;(3)如图3,连接HF,若CH=3AH,AD=2 ,求线段HF的长.26. (10分)哈尔滨地铁“二号线”正在进行修建,现有大量的残土需要运输.某车队有载重量为8吨、10吨的卡车共12台,全部车辆运输一次可以运输110吨残土.(1)求该车队有载重量8吨、10吨的卡车各多少辆?(2)随着工程的进展,该车队需要一次运输残土不低于165吨,为了完成任务,该车队准备再新购进这两种卡车共6辆,则最多购进载重量为8吨的卡车多少辆?27. (11分)(2019·泰山模拟) 如图,在△ABC中,∠BAC=90°,AB=AC,点E在AC上(且不与点A、C重合).在△ABC的外部作△CED,使∠CED=90°,DE=CE,连接AD,分别以AB、AD为邻边作平行四边形ABFD,连接AF.(1)根据图①写出线段AF、AE之间存在的等量关系式,并给予证明;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请直接写出线段AF、AE的数量关系________ ;(3)在图②基础上,将△CED绕点C继续逆时针旋转,请判断(2)间中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,说明理由.28. (15分)如图,二次函数y=﹣x2+2x+m的图象与x轴的一个交点为A(3,0),另一个交点为B,且与y 轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S△ABC ,求点D的坐标.[抛物线的顶点坐标:(﹣,)].29. (12分)(2017·平顶山模拟) 如图,在平面直角坐标系中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),C(3,1)抛物线y= x2+bx﹣2的图象过C点,交y轴于点D.(1)在后面的横线上直接写出点D的坐标及b的值:________,b=________;(2)平移该抛物线的对称轴所在直线l,设l与x轴交于点G(x,0),当OG等于多少时,恰好将△ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,直接写出P点坐标;若不存在,说明理由.参考答案一、选择题 (共20题;共40分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、二、填空题 (共4题;共4分)21-1、22-1、23-1、24-1、三、解答题 (共5题;共63分) 25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、29-1、29-2、29-3、。
2010年青海省中考真题及答案解析(word)
2010年青海省中考数学试卷一、填空题(本大题共12小题,每空2分,共30分)1.(2010青海,1, 4分) -4的绝对值是 , 81的平方根是 .【分析】负数的绝对值是它的相反数,即-4的相反数是4;正数的平方根有两个,而且是互为相反数,即81的平方根是±9 【答案】4;±9【涉及知识点】绝对值的意义;平方根的意义【点评】本题属于基础题,主要考查学生对概念的掌握是否全面,考查知识点单一,有利于提高本题的信度. 【推荐指数】★ 2.(2010青海,2, 4分) 分解因式:a 3-25a = ;计算:(1)-1+(π0= .(π0=1原式=3+1-4=0【答案】a(a +5)(a -5) ;0【涉及知识点】分解因式;实数的运算【点评】本题是对基本运算能力的考查,因式分解是整式部分的重要内容,也是分式运算和二次根式运算的基础,因式分解的步骤,一提(提公因式),二套(套公式,主要是平方差公式和完全平方公式),三分组(对于不能直接提公因式和套公式的题目,我们可将多项式先分成几组后后,分组因式分解).后半部分主要考查实数的混合运算,要正确、灵活地应用零指数、负整数指数等等. 【推荐指数】★★ 3.(2010青海,3, 2分) 15-x a y 与-3x 2y b-3是同类项,则a +b = .【分析】由15-x a y 与-3x 2y b-3是同类项,得a=2,b -3=1则b=4,所以a +b=6【答案】6 【涉及知识点】同类项的概念【点评】本题主要考查了同类项的概念,注意同类项只与字母和字母的指数有关,与系数的大小无关. 【推荐指数】★ 4.(2010青海,4, 2分) 圆锥的底面直径为12cm ,母线长为30cm ,则圆锥的侧面积为 cm 2(结果用π表示).【分析】圆锥的底面周长C= πd=12π,圆锥的侧面积S=21cl=21×12π×30=180π【答案】180π【涉及知识点】圆锥的侧面积【点评】本题是一个简单的考查圆锥的侧面积,属于基础题.【推荐指数】★5.(2010青海,5, 2分) 不等式组52110x x ->-⎧⎨-≥⎩的解集是 .【分析】解不等式①,得:x <3;解不等式②,得:x≥1,所以不等式组的解集为1≤x <3. 【答案】B【涉及知识点】解不等式组【点评】解不等式组是考查学生的基本计算能力,求不等式组解集的时候,可先分别求出组成不等式组的各个不等式的解集,然后借助数轴或口诀求出所有解集的公共部分. 【推荐指数】★ 6.(2010青海,6, 2分) 如图1,AB ∥CD,FG 平分∠EFD ,∠1=70°,则∠2是 度.【分析】由AB ∥CD 得∠EFD=∠1=70°,由FG 平分∠EFD 得,∠2是35度. 【答案】35【涉及知识点】同位角;角平分线【点评】主要考查平行线的性质(两直线平行,同位角相等),属简单题 【推荐指数】★7.(2010青海,7,2分) 在函数xx y 2+=中,自变量x 的取值范围是 .【分析】由于二次根式的被开方数必须是非负数,则x+2≥0即x≥-2;分式的分母不能为0,x 在分母上,因此x≠0;所以x≥-2且x≠0 【答案】2-≥x 且0≠x【涉及知识点】分式的意义【点评】初中阶段涉及分式有意义的地方有三处,一是分式的分母不能为0,二是二次根式的被开方数必须是非负数,三是零指数的底数不能为零. 【推荐指数】★★★ 8.(2010青海,8, 2分) 等腰三角形的两边长分别为4和9,则这个三角形的周长为_______ . 【分析】若4为腰长,由于4+4<9 ,则三角形不存在;若9为腰长,则这个三角形的周长为9+9+4=22 【答案】22【涉及知识点】等腰三角形【点评】看起来这题是有两种情况,两个答案,但是实际上,另外一种情况是不成立的. 【推荐指数】★★ 9.(2010青海,9, 2分) 一个多边形的内角和是外角和的2倍,则这个多边形是 边形.图1【分析】多边形的外角和是360°,因为内角和是外角和的2倍,所以内角和为720°,由(n -2)×180°=720°,得n=6 【答案】六【涉及知识点】多边形的性质【点评】主要考查多边形外角和与内角和公式,熟记公式,可提高解题速度 【推荐指数】★10.(2010青海,10, 2分)分式方程1316112-=-++x xx的解为 .【分析】先确定最简公分母 x2―1,去分母得x―1―6(x+1)=3,化分式方程为整式方程求解得x=―2 【答案】2-【涉及知识点】分式方程的解法【点评】本题属于基础题,主要考查分式方程的解法,容易出错的地方有两处,一是1―x 忘记乘以-1;二是去括号时-6与+1相乘时,忘记变符号,信度相当好 【推荐指数】★★11.(2010青海,11, 2分) 如图2,点A 、B 、C 、D 是⊙O 上四点,060=∠AOD ,BD 平分ABC ∠,P 是BD 上一点,PE ∥AB 交BC 于点C ,且5=BE ,则点P 到弦AB 的距离为 .【分析】由060=∠AOD ,得∠ABD=30°,又由BD 平分ABC ∠,得∠DBC=30°.过点E 做EF ⊥BD ,垂足为F .BF=5×cos30°=325,则BP 等于53.则点P 到弦AB 的距离为BP·sin30°,等于325. 当然此题也可以过点P 做BC 的垂线,利用角平分线的性质来解.【答案】325【涉及知识点】圆周角 特殊角的三角函数 全等三角形 【点评】本题巧妙将圆周角 特殊角的三角函数 全等三角形等知识综合在一起,需要考生对以上知识点融会贯通,巧妙运用.是一道难度较大的综合题. 【推荐指数】★★★ 12.(2010青海,12, 4分) 将一些小圆点按如图3所示的规律摆放,第1个图形中有6个小圆点,第2个图形中有10个小圆点,第3个图形中有16个小圆点,第4个图形中有24个小圆点,……,依次规律,第6个图形有 个小圆点,第n 个图形有 个小圆点.图2【分析】先观察每个图形的最外侧都有4个小圆点,再观察每个图形内部圆点的行数和列数,则有第1个图形中有个4+1×2=6小圆点,第2个图形中有4+2×3=10个小圆点,第3个图形中有4+3×4=16个小圆点,第4个图形中有4+4×5=24个小圆点,依次规律,第6个图形有4+6×7=46个小圆点,第n 个图形有4+n (n+1)个小圆点. 【答案】46;)4)(1(42++++n n n n 或【涉及知识点】规律探索问题【点评】规律探索问题在中考试卷中频频出现,成为中考试卷中的一个亮点.解决这类问题,往往需要我们展开观察、试验、类比、归纳、猜想等一系列的探索活动. 【推荐指数】★★★二、选择(本大题共8小题,每小题3分,共24分,第小题给出的四个选项中,13.(2010青海,13, 3分) 下列图形既是轴对称图形,又是中心对称图形的是( ) A .平行四边形 B .正方形 C .等腰梯形 D .等边三角形【分析】平行四边形不是轴对称图形,是中心对称图形;正方形既是轴对称图形,又是中心对称图形;等腰梯形是轴对称图形,不是中心对称图形的是 ;等边三角形是轴对称图形,不是中心对称图形. 【答案】B【涉及知识点】轴对称图形的定义;中心对称图形的定义【点评】本题将两个简易的知识点,轴对称图形和中心对称图形组合在一起,是一个简单的综合问题,其中涉及的轴对称图形是指一个图形沿着一条直线对折后两部分完全重合;中心对称图形是指这个图形绕着对称中心旋转180°后仍然能和这个图形重合的图形. 【推荐指数】★ 14.(2010青海,14,3分) 2009年某市生产总值为13465000万元,用科学记数法表示为(保留3个有效数字)( )A .71035.1⨯万元 B .71034.1⨯万元C .71030.1⨯万元D .810135.0⨯万元【分析】13465000可表示为1.3465×10000000,100000=107,因此13465000=1.3465×107.再保留3个有效数字为1.35×107 【答案】A图3【涉及知识点】科学记数法;有效数字【点评】科学记数法是每年中考试卷中的必考问题,把一个数写成a ×10n 的形式(其中1≤a <10,n 为整数,这种计数法称为科学记数法),其方法是(1)确定a ,a 是只有一位整数的数;(2)确定n ;当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).另外有效数字指从该数左边第一个非零数字算起到最末一个数字(包括零)的数.【推荐指数】★★ 15.(2010青海,15, 3分) 某施工队挖掘一条长90米的隧道,开工后每天比原计划多挖1米,结果提前3天完成任务,原计划每天挖多少米?若设原计划每天挖x 米,则依题意列出正确的方程为( )【分析】若设原计划每天挖x 米,则开工后每天挖(x+1)米,那么原计划用的时间为 x90,开工后用的时间为190+x ,因为提前3天完成任务,所以得319090=+-x x【答案】 C 【涉及知识点】列分式方程解应用题【点评】考查了列分式方程解应用题中的工程问题,解答本题的关键是弄清工作效率、工作时间、工作总量三者之间的关系. 【推荐指数】★ 16.(2010青海,16, 3分) 下列运算正确的是( ) A .3a -(2a -b)=a -b B .C .D .【分析】A 项中去括号时,要按照去括号法则,将括号前的-1与括号内每一项分别相乘,尤其需要注意,-1与-b 相乘时,应该是+b 而不是-b ;B 项中多项式除以单项式,先把这个多项式的每 一项除以这个单项式,再把所得的商相加,应等于a2b -2a ;C 项是平方差公式的a2-4b2 ;D 项是积的乘方,等于把积的每个因式分别乘方,再把所得的幂相乘,答案正确.【答案】D 【涉及知识点】整式的运算 【点评】涉及到此类题目,关键是理解并掌握法则及公式,需要考生具备一定的思维能力.本题难度中等,只要细心,很容易拿分. 【推荐指数】★★ 17.(2010青海,17, 3分) 下列几何体中,同一个几何体的主视图与俯视图不同的是( )【分析】A 项中圆柱的主视图与俯视图都是矩形;B 项中正方体的主视图与俯视图都是正方形;C 项中球的主视图与俯视图都是圆;D 项中圆锥的主视图是三角形而俯视图是圆. 【答案】D 【涉及知识点】由立体图形到视图【点评】本题属于基础题,主要考查学生是否具有基本的识图能力,以及三种视图之间关系的理解,考查知识点单一,有利于提高本题的信度. 【推荐指数】★ 18.(2010青海,18, 3分) 已知⊙O 1与⊙O 2的半径分别为2和3,圆心距O 1O 2=4,则这两圆的位置关系是( )A.相交B.相离 C .内切 D.外切 【分析】 因为3﹣2<4<3+2,所以这两圆的位置关系是相交 【答案】A 【涉及知识点】两圆的位置关系【点评】考查两圆的位置关系,即圆心距d 与两圆半径R 、r 的大小关系.主要是熟记此表【推荐指数】★19. (2010青海,19,3分)图4是根据某班38名同学一周的体育锻炼情况绘制的条形统计图,下面关于该班38名同学一周体育锻炼的时间..说法正确的是 ( ) A .极差是4 B.中位数为7 C.众数是8 D.锻炼时间超过7小时的有20人图4【分析】A 项中极差是9﹣6=3;B 项中中位数为第19和第20个数的平均数,即8288=+ ;C 项中参加体育锻炼的时间7小时的人最多,所以众数是7;D 项中锻炼时间超过7小时的有13+7=20人【答案】D 【涉及知识点】统计图表【点评】本题考查条形图,解题关键是统计图中获取所需数据 【推荐指数】★★ 20.(2010青海,20, 3分) 如图5.从热气球C 上测定建筑物A 、B 底部的俯角分别为30°和60°,如果这时气球的高度CD 为150米,且点A 、D 、B 在同一直线上,建筑物A 、B 间的距离为( )A .B .C .米D .米图5【分析】由题意得∠A =30°,∠B =60°,AD =ACD tan ,BD =BCD tan 则AB=AD+BD【答案】C 【涉及知识点】解直角三角形 【点评】解直角三角形是每年中考的必考知识点之一,主要考查直角三角形的边角关系及其应用,面对这些边角关系要注意横向和纵向联系,难度一般不会很大,本题是基本概念的综合题,主要考查考生应用知识解决问题的能力. 【推荐指数】★★★三、(本大题共3小题,每小题7分,共21分)21.(2010青海,21,7分) 先化简,再求值:22()a b ab ba aa--÷-,其中a=2010.,b=2009.【分析】原式=22()a b ab ba aa--÷-遇到有括号的,先算括号里面的得222a b a ab baa--+÷……………2分分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘得2()a b a aa b -⨯- ……………4分约分得1a b- ……………5分当a=2010.,b=2009时, 原式=120102009- ……………6分=1 ……………7分【答案】1【涉及知识点】分式的混合运算【点评】化简求值的第一步是要将原式化成最简,再代入求值.对此类题目的考查主要突出基础性,题目一般不难,数比较简单,主要考查运算顺序、运算法则、运算律. 【推荐指数】★22.(2010青海,22, 7分) 如图6,已知一次函数1y kx b =+的图象与反比例函数2a y x=的图象交与A (2,4)和B (-4,m )两点. (1)求这两个函数的解析式; (2)求AOB 的面积;(3)根据图象直接写出,当1y >2y 时,x 的取值范围.【分析】(1)解析式的求法,把点代入即可(2)求三角形的面积或割或补,此题割比较容易(3)抓住A 、B 两点,找出分界线.【答案】解:(1)∵点A(2,4)在反比例函数2a y x=的图象∴248a =⨯= ∴28y x=……………………………1分当4x =-时,824m ==--∴B 点坐标为(-4,-2)∵直线1y kx b =+ 经过A (2,4)和B (-4,m ) ∴2442k b k b +=⎧⎨-+=-⎩解得:1k =,2b =∴12y x =+ ……………………………3分 (2)设直线12y x =+与x 轴交点为C. 则20x +=,2x =-图6∴ 点C (2-,0) ∴AOB AOC BOC S S S =+ =112422622⨯⨯+⨯⨯=……………………………5分(3)当-4<x <0或x >2时,1y >2y .【涉及知识点】一次函数、反比例函数 【点评】本题主要考查学生对一次函数及反比例函数的掌握程度以及综合运用多个知识点解决问题的能力,属于中等难度的试题,具有一定的区分度. 【推荐指数】★★ 23.(2010青海,23, 7分) 梯形ABCD 的四个顶点分别为A (0,6),B (2,2),C (4,2)D (6,6).按下列要求画图. (1)在平面直角坐标系中,画出以原点O 为位似中心,相似比为12的位似图形1111A B C D ;(2)画出位似图形1111A B C D 向下平移五个单位长度后的图形2222A B C D .【分析】(1)把原图形缩小到原来的21,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 ;(2)向下平移五个单位长度也就是纵坐标相应的减5.【答案】解:(1)图形1111A B C D 正确得 4分 (2)图形2222A B C D 正确得 3 分【涉及知识点】位似、平移【点评】位似图形是近几年教材中新增加一个内容,也是中考相似形部分的一个考察重点,这类问题简单却透着新颖,主要考查的内容是找位似中心、求“位似比”、作位似图形.解决问题的关键是掌握了解位似图形的相关概念及其性质.对于此题来说,第一问做对了,第二问很容易拿分. 【推荐指数】★四、(本大题共3小题,每小题8分,共24分)24.(2010青海,24, 8分) 某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克. (1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元? (2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多? 【分析】(1)根据利润的等量关系,列出方程,再根据题意,舍掉x 1(2)代入-=x ab 2即可【答案】解:(1)设每千克应涨价x 元,列方程得:(5+x)(200-x)=1500 解得:x 1=10 x 2=5 因为顾客要得到实惠,5<10 所以 x=5答:每千克应涨价5元.(2)设商场每天获得的利润为y 元,则根据题意,得 y=( x +5)(200-10x)= -10x 2+150x -500 当x=5.7)10(21502=-⨯-=-ab 时,y 有最大值.因此,这种水果每千克涨价7.5元时,能使商场获利最多【涉及知识点】列一元二次方程解应用题;求二次函数的最值 【点评】(1)中列方程解应用题关键是找出相等关系, 根据实际情况,答案的取舍很关键,这是个易错点(2)中二次函数是中考考查的必考内容之一,本题是综合考查二次函数的一些基础知识,需要考生熟悉二次函数的最值即可解题. 【推荐指数】★★★ 25.(2010青海,25, 8分) 如图7,正方形ABCD 的对角线AC 和BD 相交于点O ,O 又是正方形A 1B 1C 1O 的一个顶点,O A 1交AB 于点E ,OC 1交BC 于点F. (1)求证:△AOE ≌△BOF(2)如果两个正方形的边长都为a ,那么正方形A 1B 1C 1O 绕O 点转动,两个正方形重叠部分的面积等于多少?为什么?【分析】根据ASA 证明全等,全等则面积相等,从而求得重叠部分的面积.【答案】(1)证明:在正方形ABCD 中,AO=BO ,∠AOB=90°,∠OAB=∠OBC=45° ∵∠AOE+∠EOB=90°, ∠BOF+∠EOB=90°∴∠AOE=∠BOF在△AOE 和△BOF 中⎪⎩⎪⎨⎧∠=∠=∠=∠BOF AOE OBOA OBFOAE ∴△AOE ≌△BOF(2)答:两个正方形重叠部分面积等于41 因为△AOE ≌△BOF所以:S 四边形OEBF =S △EOB +S △OBF = S △EOB +S △AOE =S △AOB =41S 正方形ABCD =241a 【涉及知识点】全等三角形【点评】(1)考查三角形全等的判定(2)考查三角形全等的性质,此题属容易题,只要细心观察,很容易得分【推荐指数】★26.(2010青海,26, 8分) 如图8,两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小明和小红利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于9,小明获胜;指针所指区域内的数字之和等于9,为平局;指针所指区域内数字之和大于9,小红获胜.(如果指针恰好指在分割线上,那么再转一次,直到指针指向一个数字为止)(1)请你通过画树形图或列表法求小明获胜的概率;(2)你认为该游戏规则是否公平,若游戏规则公平,请说明理由;若游戏规则不公平,请你设计一种公平的游戏规则.图7【分析】求概率通常使用的方法有画树形图或列表法,在此题中两者都可,再由概率不相等得到游戏不公平.【答案】解: (1)列表法树形图根据列表或树形图可知,小明获胜的概率为61122P == (2)这个游戏不公平,因为小明获胜的概率为12P =小红获胜的概率为31124P ==,1124≠,所以,这个游戏对小红不公平,设计游戏规则:当指针所指区域数字之和小于9,小明获胜;指针所指区域数字之和不小于9,小红获胜.【涉及知识点】概率【点评】此题考查了计算概率的方法,并对游戏规则进行测评,首先必须求出相应的概率.【推荐指数】★五、(本大题共2小题,27小题10分,28小题11分,共21分)27.(2010青海,27, 10分) 观察控究,完成证明和填空.如图,四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,顺次连接E 、F 、G 、H ,得到的四边形EFGH 叫中点四边形.(1)求证:四边形EFGH 是平行四边形;图8(2)如图,当四边形ABCD变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD变成平行四边形时,它的中点四边形是__________;当四边形ABCD变成矩形时,它的中点四边形是__________;当四边形ABCD变成菱形时,它的中点四边形是__________;当四边形ABCD变成正方形时,它的中点四边形是__________;(3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?【分析】(1)利用三角形中位线推出所得四边形对边分别平行,故为平行四边形.(2)顺次连接对角线相等的四边形各边中点所得的四边形为菱形;顺次连接对角线互相垂直的四边形各边中点所得的四边形为矩形;顺次连接对角线相等且互相垂直的四边形各边中点所得的四边形为正方形.谨记以上原则回答即可.(3)由以上法则可知,中点四边形的形状由原四边形的对角线的关系来决定的.【答案】(1)证明:连接BD∵E、H分别是AB、AD的中点,∴EH是△ABD的中位线∴EH=12BD,EH∥12BD 2分同理得FG=12BD,FG∥12BD∴EH=FG,EH∥FG 3分∴四边形EFGH是平行四边形4分(2)填空依次为平行四边形,菱形,矩形,正方形8分(3)中点四边形的形状由原四边形的对角线的关系来决定的.10分【涉及知识点】中点四边形【点评】不管原四边形的形状怎样改变,中点四边形的形状始终是平行四边形.【推荐指数】★28.(2010青海,28, 11分)如图10,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;(3)点F是切线DE上的一个动点,当△BFD与EAD△相似时,求出BF的长.【分析】(1)设顶点式,把A 、C 代入求出(2)见切点时,常做过切点的半径构造直角三角形(3)由相似得到对应线段成比例,从而求出BF 的长.【答案】解:(1)设抛物线的解析式为2(6)y a x k =-+∵抛物线经过点A (3,0)和C (0,9)∴90369a k a k +=⎧⎨+=⎩ 解得:1,33a k ==- ∴21(6)33y x =--(2)连接AE∵DE 是⊙A 的切线,∴∠AED=90°,AE=3∵直线l 是抛物线的对称轴,点A ,D 是抛物线与x 轴的交点∴AB=BD=3∴AD=6在Rt △ADE 中,222226327D E AD AE =-=-=∴DE =(3)当BF ⊥ED 时∵∠AED=∠BFD=90°∠ADE=∠BDF∴△AED ∽△BFD ∴A E A DB F B D = 即363B F = ∴32B F =图10当FB ⊥AD 时∵∠AED=∠FBD=90°∠ADE=∠FDB∴△AED ∽△FBD ∴A EE DB F B D =即BF ==∴BF 的长为32【涉及知识点】抛物线、相似三角形、勾股定理、切线长定理【点评】本题巧妙将抛物线、相似三角形、勾股定理、切线长定理等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题.【推荐指数】★★★。
西宁中考数学试题及答案
西宁中考数学试题及答案这是一篇关于西宁中考数学试题及答案的文章,将为您提供该试卷的具体内容和详细解答。
在整洁美观的排版下,语句通顺、流畅,力求给读者带来良好的阅读体验。
一、选择题1.设函数f(x) = 2x^2 + 3x -1, 则f(-1)的值为:A. -8B. 8C. -2D. 2答案:C2.已知集合A = {2, 4, 6, 8},集合B = {4, 5, 6},则集合A ∪ B的元素个数为:A. 5B. 6C. 7D. 8答案:D3.一个扇形的半径为8cm,圆心角为60°,则该扇形的面积为:A. 64π / 3B. 16π / 3C. 32π / 3D. 128π / 3答案:C二、填空题1.已知正方体ABCD-EFGH,顶面中边AB与边CD的长度为a,则正方体的表面积为________。
答案:6a^22.已知y = 2x + 3,若x = 5,则y的值为________。
答案:13三、计算题1.已知函数f(x) = x^2 + 3x - 2,求f(2) - f(1)的值。
答案:f(2) - f(1)= (2^2 + 3*2 - 2) - (1^2 + 3*1 - 2)= (4 + 6 - 2) - (1 + 3 - 2)= 8 - 2= 6四、解答题1.已知一扇形的半径为6cm,圆心角为90°,求该扇形的面积。
解答:扇形的面积可表示为A = (θ / 360°) * π * r^2,其中θ为圆心角,r为半径。
代入已知条件,可得A = (90° / 360°) * π * 6^2= (1 / 4) * π * 36= 9π所以,该扇形的面积为9π平方厘米。
五、判断题判断下列各题中,命题是否正确,正确的用“√”表示,错误的用“×”表示。
1.对于任意实数x,有|x| > 0。
答案:√2.有理数和无理数的和一定是无理数。
答案:×综上所述,这就是关于西宁中考数学试题及答案的文章。
西宁市中数学试题及答案
西宁市中数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.33333...B. √2C. 2/3D. 0答案:B2. 一个二次函数的顶点坐标是(1,-2),则该二次函数的解析式为:A. y = (x-1)^2 - 2B. y = (x+1)^2 - 2C. y = (x-1)^2 + 2D. y = (x+1)^2 + 2答案:A3. 已知一个等差数列的首项为3,公差为2,那么它的第5项是:A. 13B. 11C. 9D. 7答案:A4. 以下哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 正五边形D. 圆答案:D5. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:C6. 已知一个三角形的两边长分别为3和4,且这两边的夹角为60°,那么这个三角形的面积是:A. 3√3/2B. 2√3C. 6√3/2D. 4√3/2答案:A7. 以下哪个选项是不等式x^2 - 4x + 4 > 0的解集?A. x < 2 或 x > 2B. x < -2 或 x > -2C. x < 2 或 x > -2D. x < -2 或 x > 2答案:A8. 一个正方体的棱长为a,那么它的体积是:A. a^2B. a^3C. 2a^3D. 3a^3答案:B9. 一个函数f(x) = 2x + 3,那么f(-1)的值是:A. 1B. -1C. -5D. 5答案:C10. 以下哪个选项是方程2x - 3 = 7的解?A. x = 5B. x = 3C. x = 10D. x = 2答案:A二、填空题(每题3分,共15分)11. 如果一个数的相反数是-5,那么这个数是________。
答案:512. 一个等腰三角形的底边长为6,腰长为5,那么它的周长是________。
答案:1613. 一个直角三角形的两条直角边长分别为3和4,那么它的斜边长是________。
青海西宁市中考数学试题(word版无答案)
西宁市2009年高中招生考试数 学 试 卷(试卷满分120分,考试时间120分钟)考生注意:1.答卷前将密封线以内的项目填写清楚;2.用钢笔或圆珠笔直接答在试卷上.一、细心填一填(本大题共12小题15空,每空2分,共30分.只要你理解概念,仔细运算,相信你一定会填对的!) 1.写出一个小于4-的有理数 ;在函数y =中,自变量x 的取值范围是 .2.一元二次方程2x x =的解为 ;二元一次方程组5731x y x y +=⎧⎨-=⎩的解为 .3.为应对2008年以来的世界金融危机,中国政府出台了多项政策以阻止我国经济继续下滑,其中一项是4万亿元经济刺激方案.将4万亿元用科学记数法可表示为 元. 4.如图1,等腰梯形ABCD 的周长为18,腰4AD =,则等腰梯形ABCD 的中位线EF = .5.如图2,若将飞镖投中一个被平均分成6份的圆形靶子,则落在阴影部分的概率是 .6.在正方形网格中,ABC △的位置如图3所示,则cos B ∠的值为 .7.如图4,要测量池塘两端A B 、的距离,可先取一个可以直接到达A 和B 的点C ,连结AC 交延长到D ,使12CD CA =,连结BC 并延长到E ,使12CE CB =,连结ED ,如果量出DE 的长为25米,那么池塘宽AB 为 米.8.二次函数21522y x x =-+-的图象的顶点坐标为 .9.已知圆锥的底面半径为2cm ,母线长是4cm ,则圆锥的侧面积是 cm 2.(结果保留π). 10.如图5,矩形AOBP 的面积为6,反比例函数ky x=的图象经过点P ,那么k 的值为 ;直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图6DC FE A B 图1 图2 AC B 图3 A BD CE 图4所示,则关于x 的不等式12k x b k x +>的解为 .11.如图7,在126⨯的网格图中(每个小正方形的边长均为1个单位),A ⊙的半径为1,B ⊙的半径为2,要使A ⊙与静止的B ⊙相外切..,那么A ⊙由图示位置需向右平移 个单位.12.如图8,某建筑物直立于水平地面,9BC =米,30B ∠=°,要建造楼梯,使每阶台阶高度不超过20厘米,那么此楼梯至少要建 阶(最后一阶不足20厘米按一阶计算,1.732).二、精心选一选(本大题共8个小题,每小题3分,共24分.每小题给出的四个选项中,只有一个符合要求,请把你认为正确的选项序号填入下面相应题号的表格内.只要你掌握概念,认真思考,相信你一定会选对!) 13.下面计算正确的是( ) A .122-=- B2=± C .326()m n m n =D .624m m m ÷=14.如图9,下列交通标志中既是中心对称图形,又是轴对称图形的是( ) 15.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在A .3.5小时和4小时B .4小时和4.5小时C .4小时和3.5小时 D .4.5小时和4小时 16.用直尺和圆规作一个角等于已知角,如图10,能得出A O B AOB '''∠=∠的依据是( ) A .(S .S .S ) B .(S .A .S ) C .(A .S .A )D .(A .A .S )图51k x b +图7AC图8A .B .C .D . 图9D A BCOO 'D ' A ' B 'C '图1017.下列事件中是必然事件的是( ) A .西宁一月一日刮西北风 B .抛掷一枚硬币,落地后正面朝上 C .当x 是实数时,20x ≥D .三角形内角和是360°18.在学校开展的“为灾区儿童过六一”的活动中,晶晶把自己最喜爱的钢笔盒送给了一位灾区儿童.这个铅笔盒(图11)的左视图是( )19.为执行“两免一补”政策,某地区2007年投入教育经费2500万元,预计2009年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,那么下面列出的方程正确的是( )A .225003600x =B .22500(1%)3600x +=C .22500(1)3600x +=D .22500(1)2500(1)3600x x +++=20.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图12,已知矩形纸片ABCD (矩形纸片要足够长),我们按如下步骤操作可以得到一个特定的角:(1)以点A 所在直线为折痕,折叠纸片,使点B 落在AD 上,折痕与BC 交于E ; (2)将纸片展平后,再一次折叠纸片,以E 所在直线为折痕,使点A 落在BC 上,折痕EF 交AD 于F .则AFE ∠=( ) A .60° B .67.5° C .72° D .75°三、认真答一答(本大题共8个小题,满分66分.解答须写出必要的文字说明、演算步骤或证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本小题满分7分)计算:101|3|1)22-⎛⎫-+-⨯ ⎪⎝⎭.22.(本小题满分7分)请从下列三个代数式中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简该分式.21a - 2a a - 221a a -+然后请你自选一个合理的数代入求值.图11A . B . C . D . A B C D 图12如图13,在ABCD 中, (1)尺规作图(不写作法,保留作图痕迹):作ABC ∠的平分线BE 交AD 于E ;在线段BC 上截取CF DE =;连结EF .(2)求证:四边形ABFE 是菱形.24.(本小题满分8分) 阅读下列材料并填空:(1)探究:平面上有n 个点(2n ≥)且任意3个点不在同一条直线上,经过每两点画一条直线,一共能画多少条直线?我们知道,两点确定一条直线.平面上有2个点时,可以画2112⨯=条直线,平面内有3个点时,一共可以画3232⨯=条直线,平面上有4个点时,一共可以画4362⨯=条直线,平面内有5个点时,一共可以画 条直线,……平面内有n 个点时,一共可以画 条直线.(2)迁移:某足球比赛中有n 个球队(2n ≥)进行单循环比赛(每两队之间必须比赛一场),一共要进行多少场比赛? 有2个球队时,要进行2112⨯=场比赛,有3个球队时,要进行3232⨯=场比赛,有4个球队时,要进行 场比赛,……那么有20个球队时,要进行 场比赛.25.(本小题满分8分)已知:如图14,AB 为O ⊙的直径,AB AC =,O ⊙交BC 于D ,DE AC ⊥于E . (1)请判断DE 与O ⊙的位置关系,并证明; (2)连结AD ,若O ⊙的半径为52,3AD =,求DEA DBC 图13 图14B《西海都市报》(2009年05月21日)文章《创卫让西宁焕发出勃勃生机》报道说:“西宁创建卫生城市已到了关键阶段,西宁处处焕发出勃勃生机.”省城西宁,无论是市容环境,还是市民意识,都发生了可喜的变化.西宁市教育局对全市约11000名九年级学生就西宁创建卫生城市知识的了解情况进行了问卷调查.现随机抽取了部分学生的答卷进行统计分析,然后按“很好”、“较好”、“一般”、“较差”四类汇总分析,并绘制了扇形统计图(如图15)和条形统计图(如图16).请你根据图中信息回答下列问题:(1)本次问卷调查的样本容量是 ; (2)扇形统计图中,圆心角α= ; (3)补全条形统计图;(4)根据以上信息,请提出一条合理化的创卫建议: . 27.(本小题满分9分)已知一只口袋中放有x 只白球和y 只红球,这两种球除颜色以外没有任何区别.袋中的球已经搅匀.蒙上眼睛从袋中取一只球,取出白球的概率是34. (1)试写出y 与x 的函数关系式;(2)当3x =时,第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表法,求两次摸到都是白球的概率.图16很好25% 一般 α 较差5%较好50%图15已知OABC 是一张矩形纸片,6AB =.(1)如图17,在AB 上取一点M ,使得CBM △与CB M '△关于CM 所在直线对称,点B '恰好在边OA 上,且OB C '△的面积为24cm 2,求BC 的长;(2)如图18.以O 为原点,OA OC 、所在直线分别为x 轴、y 轴建立平面直角坐标系.求对称轴CM 所在直线的函数关系式;(3)作B G AB '∥交CM 于点G ,若抛物线216y x m =+过点G ,求这条抛物线所对应的函数关系式.CB O AM B '图17图18。
2010年青海省中考数学试卷及答案
2010年青海省中考试卷数学一、填空题(本大题共12小题,每空2分,共30分) 1.(2010青海,1, 4分) -4的绝对值是 ,81的平方根是 .2.(2010青海,2, 4分) 分解因式:a 3-25a = ;计算:(13)-1+(π0= .3.(2010青海,3, 2分) 15-x a y 与-3x 2y b -3是同类项,则a +b = .4.(2010青海,4, 2分) 圆锥的底面直径为12cm ,母线长为30cm ,则圆锥的侧面积为 cm 2(结果用π表示).5.(2010青海,5, 2分) 不等式组52110x x ->-⎧⎨-≥⎩的解集是 .6.(2010青海,6, 2分) 如图1,AB ∥CD,FG 平分∠EFD ,∠1=70°,则∠2是 度.7.(2010青海,7,2分) 在函数xy =x 的取值范围是 . 8.(2010青海,8, 2分) 等腰三角形的两边长分别为4和9,则这个三角形的周长为_______ . 9.(2010青海,9, 2分) 一个多边形的内角和是外角和的2倍,则这个多边形是 边形. 10.(2010青海,10, 2分)分式方程1316112-=-++x x x 的解为 . 11.(2010青海,11, 2分) 如图2,点A 、B 、C 、D 是⊙O 上四点,060=∠AOD ,BD 平分ABC ∠,P 是BD 上一点,PE ∥AB 交BC于点C ,且5=BE ,则点P 到弦AB 的距离为 .2.(2010青海,12, 4分) 将一些小圆点按如图3所示的规律摆放,第1个图形中有6个小圆点,第2个图形中有10个小圆点,第3个图形中有16个小圆点,第4个图形中有24个小圆点,……,依次规律,第6个图形有 个小圆点,第n 个图形有 个小圆点.二、选择(本大题共8小题,每小题3分,共24分,第小题给出的四个选项中,只有一个选项符合要求,请把正角的选项序号填入下面相应题号的表格内)13.(2010青海,13, 3分) 下列图形既是轴对称图形,又是中心对称图形的是( )A .平行四边形B .正方形C .等腰梯形D .等边三角形14. 2009年某市生产总值为13465000万元,用科学记数法表示为(保留3个有效数字)( )A .71035.1⨯万元B .71034.1⨯万元C .71030.1⨯万元D .810135.0⨯万元15. 某施工队挖掘一条长90米的隧道,开工后每天比原计划多挖1米,结果提前3天完成任务,原计划每天挖多少米?若设原计划每天挖x 米,则依题意列出正确的方程为( )16.(2010青海,16, 3分) 下列运算正确的是( )A .3a -(2a -b)=a -bB .C .D .17.(2010青海,17, 3分) 下列几何体中,同一个几何体的主视图与俯视图不同的是( )图3图218.(2010青海,18, 3分)已知⊙O1与⊙O2的半径分别为2和3,圆心距O1O2=4,则这两圆的位置关系是()A.相交B.相离C.内切 D.外切19. (2010青海,19,3分)图4是根据某班38名同学一周的体育锻炼情况绘制的条形统计图,下面关于该班38名同学一周体育锻炼的时间..说法正确的是()A.极差是4 B.中位数为7 C.众数是8 D.锻炼时间超过7小时的有20人图420.(2010青海,20, 3分)如图5.从热气球C上测定建筑物A、B底部的俯角分别为30°和60°,如果这时气球的高度CD为150米,且点A、D、B在同一直线上,建筑物A、B间的距离为()A.B.米 C .D.图5三、(本大题共3小题,每小题7分,共21分)21.(2010青海,21,7分)先化简,再求值:22()a b ab baa a--÷-,其中a=2010.,b=2009.22.(2010青海,22, 7分)如图6,已知一次函数1y kx b=+的图象与反比例函数2ayx=的图象交与A(2,4)和B(-4,m)两点.(1)求这两个函数的解析式;(2)求AOB的面积;(3)根据图象直接写出,当1y>2y时,x的取值范围.23.(2010青海,23, 7分)梯形ABCD的四个顶点分别为A(0,6),B(2,2),C(4,2)D(6,6).按下列要求画图.(1)在平面直角坐标系中,画出以原点O为位似中心,相似比为12的位似图形1111A B C D;(2)画出位似图形1111A B C D向下平移五个单位长度后的图形2222A B C D.图6四、(本大题共3小题,每小题8分,共24分)24.(2010青海,24, 8分)某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济利益角度考虑,这种水果每千克涨价多少元,能使商场获利最多?25.(2010青海,25, 8分)如图7,正方形ABCD的对角线AC和BD相交于点O,O又是正方形A1B1C1O的一个顶点,O A1交AB于点E,OC1交BC于点F.(1)求证:△AOE≌△BOF(2)如果两个正方形的边长都为a,那么正方形A1B1C1O绕O点转动,两个正方形重叠部分的面积等于多少?为什么?26.(2010青海,26, 8分)如图8,两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小明和小红利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于9,小明获胜;指针所指区域内的数字之和等于9,为平局;指针所指区域内数字之和大于9,小红获胜.(如果指针恰好指在分割线上,那么再转一次,直到指针指向一个数字为止)(1)请你通过画树形图或列表法求小明获胜的概率;(2)你认为该游戏规则是否公平,若游戏规则公平,请说明理由;若游戏规则不公平,请你设计一种公平的游戏规则.图7五、(本大题共2小题,27小题10分,28小题11分,共21分) 27.(2010青海,27, 10分) 观察控究,完成证明和填空.如图,四边形ABCD 中,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,顺次连接E 、F 、G 、H ,得到的四边形EFGH 叫中点四边形.(1)求证:四边形EFGH 是平行四边形;(2)如图,当四边形ABCD 变成等腰梯形时,它的中点四边形是菱形,请你探究并填空:当四边形ABCD 变成平行四边形时,它的中点四边形是__________; 当四边形ABCD 变成矩形时,它的中点四边形是__________; 当四边形ABCD 变成菱形时,它的中点四边形是__________; 当四边形ABCD 变成正方形时,它的中点四边形是__________; (3)根据以上观察探究,请你总结中点四边形的形状由原四边形的什么决定的?28.(2010青海,28, 11分) 如图10,已知点A (3,0),以A 为圆心作⊙A 与Y 轴切于原点,与x 轴的另一个交点为B ,过B 作⊙A 的切线l.(1)以直线l 为对称轴的抛物线过点A 及点C (0,9),求此抛物线的解析式;(2)抛物线与x 轴的另一个交点为D ,过D 作⊙A 的切线DE ,E 为切点,求此切线长; (3)点F 是切线DE 上的一个动点,当△BFD 与EAD △相似时,求出BF 的长 .图10。
青海省西宁市中考数学试卷
青海省西宁市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列四个数中,比﹣2小的数是()A . -1B . 0C . -3D . -2. (2分) (2018九上·富顺期中) 如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴正半轴上,B点在x轴的负半轴上,则m的取值范围应是()A . m>1B . m>-1C . m<-1D . m<13. (2分) (2020八上·柯桥开学考) N95型口罩可阻隔直径为0.0000003米的飞沫,用科学记数法可将数0.0000003表示为()A . 3×10﹣6B . 0.3×10﹣6C . 30×10﹣8D . 3×10﹣74. (2分)某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的俯视图是()A .B .C .D .5. (2分)在九年级某次体育测试中,某班参加仰卧起坐测试的一组女生(每组8人)成绩如下(单位:次/分):45、44、45、42、45、46、48、45,则这组数据的平均数、众数分别为()A . 44、45B . 45、45C . 44、46D . 45、466. (2分)(2016·庐江模拟) 计算(﹣2x2)3的结果是()A . ﹣2x5B . ﹣8x6C . ﹣2x6D . ﹣8x57. (2分) (2019·洞头模拟) 我们知道方程组:的解是,则方程组的解是()A .B .C .D .8. (2分) (2017八下·宜城期末) 放学以后,小明和小强从学校分手,分别沿东南方向和西南方向回家,若小明和小强行走的速度都是40米/分,小明用15分钟到家,小强用20分钟到家,小明家和小强家的距离为()A . 600米B . 800米C . 1000米D . 不能确定9. (2分)已知直角三角形的外接圆半径为6,内切圆半径为2,那么这个三角形的面积是()A . 32B . 34C . 27D . 2810. (2分)(2018·眉山) 如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
青海西宁市2010年高中招生考试
数学试卷
(试卷满分120分,考试时间120分钟)
亲爱的同学,相信你已学到了不少数学知识,掌握了基本的数学思想方法,能够解决许多数学问题,本试卷将给你一个展示的机会.请别急,放松些,认真审题,从容作答,你一定会取得前所未有的好成绩.
题号 一 二 三
四
21 22 23 24 25 26 27 28 得分 评卷人
1. 答卷前将密封线以内的项目填写清楚;
2. 用钢笔或中性笔直接答在试卷上.
一、细心填一填(本大题共12小题15空,每空2分,共30分. 只要你理解概念,仔细运算,相信你一定会填对的!)
1. 2010的相反数是 ;4-1= .
2. 已知x y 2=,则224y x -的值是 .
3. 《西海都市报》2010年6月7日报道:为重建美好玉树,政府以恢复玉树温室生产增加蔬菜供应量为目
标,共投资10471万元建设保温性能好、抗震能力强的高档次温室. 将10471万元用科学记数法可表示为 元.
4.根据反比例函数x
y 3=
和一次函数12+=x y 的图象,请写出它们的一个共同点 ;一个不
同点 . .
5.“建设大美青海,创建文明城市”,西宁市加快了郊区旧房拆迁的步伐.为了解被拆迁的236户家庭对拆迁补偿方案是否满意,小明利用周末调查了其中的50户家庭,有32户对方案表示满意.在这一抽样调查中,样本容量为 .
6.将抛物线2
)1(2-=x y 先向左平移1个单位后所得到的新抛物线的表达式为 . 7.要使正六边形旋转后能与自身重合,至少应将它绕中心逆时针方向旋转 °. 8. 小汽车刹车距离s (m )与速度v (km/h )之间的函数关系式为2
100
1v s =
,一辆小汽车速度为100km/h ,
在前方80m 处停放一辆故障车,此时刹车 有危险(填“会”或“不会”).
9.联欢会上,小明按照3个红气球、2个黄气球、1个绿气球的顺序把气球串起来装饰教室.第16个气球是 颜色气球;这16个气球中出现黄色气球的概率是 .
10.如图1,在□ABCD 中,对角线AC 、BD 相交于点O ,如果AC=14,BD=8,AB=x ,那么x 的取值范围是 .
考生注意:
N
M
C
B
A'
图1 图2 图3
11.如图2,已知在直角坐标系中,半径为2的圆的圆心坐标为(3,-3),当该圆向上平移 个单位时,它与x 轴相切.
12.如图3,将△ABC 沿它的中位线MN 折叠后,点A 落在点A ′处,若∠A =28°,∠B =120°,则∠A ′NC = .
二、精心选一选(本大题共8个小题,每小题3分,共24分.每小题给出的四个选项中,只有一个符合要求,请把你认为正确的选项序号填入下面相应题号的表格内. 只要你掌握概念,认真思考,相信你一定会选对!) 题号 13 14 15 16 17 18 19 20 选项
13. 计算)3(21
-⨯--的结果等于
A.5
B.5-
C.7
D.7-
14. 如图9,下列汉字或字母中既是轴对称图形,又是中心对称图形的有 A.1个 B.2个 C.3个 D.4个
15. 在图1的几何体中,它的左视图是
16. 下列哪一个函数,其图象与x 轴有两个交点 A. 155)23(4
12
+-=
x y B. 155)23(4
12
++=x y C. 155)23(4
12---=x y D. 155)23(4
12
++-
=x y
17. 如图是小刚的一张脸,他对妹妹说“如果我用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成
A.(1,0)
B. ),(01-
C.),(11-
D.
),(1-1 A . B . C . D . 图1
18. 如图,在半径为5的⊙O 中,若弦AB=8,则△AOB 的面积为
A. 24
B. 16
C. 12
D.8 19. 西宁市天然气公司在一些居民小区安装天然气与管道时,采用一种鼓励居民使用天然气的收费办法,若整个小区每户都安装,收整体初装费10000元,再对每户收费500元.某小区住户按这种收费方法全部安装天然气后,每户平均支付不足1000元,则这个小区的住户数
A .至少20户
B .至多20户
C .至少21户
D .至多21户
20. 矩形ABCD 中,E 、F 、M 为AB 、BC 、CD 边上的点,且AB=6,BC=7,AE=3,DM=2,EF ⊥FM,则EM 的长为
A .5
B .25
C .6
D .26
三、认真答一答(本大题共 4个小题,满分 30分. 解答须写出必要的文字说明. 演算步骤或证明过程. 只
要你积极思考, 细心运算, 你一定会解答正确的!) 21. (本小题满分7 分) 计算:4
401
425.0)14.3()
21
(⨯+---π
22. (本小题满分 7分) 解分式方程:2
641
313-=
--x x .
23. (本小题满分 8分)
如图,在△ABC中,A D⊥BC,垂足为D.
(1)尺规作图(不写作法,保留作图痕迹):作△ABC的外接圆⊙O,作直径AE,连接BE.
(2)若AB=8,AC=6,AD=5,求直径AE的长.(证明△ABE∽△ADC.)
24. (本小题满分8分)
现有分别标有数字1
-,1,2的3个质地和大小完全相同的小球.若3个小球都装在一个不透明的口袋中,从中随机摸出一个小球后不放回,其标号作为一次函数y kx b
=+的系数k.再随机摸出一个,其标号作为一次函数y kx b
=+的系数b.
(1) 利用树形图或列表法(只选一种),表示一次函数y kx b
=+可能出现的所有结果,并写出所有等可能结果;
(2)求出一次函数y kx b
=+的图象不经过第四象限的概率.
四.动动脑、认真答(本大题共4个小题,满分36分.解答须写出必要的文字说明. 演算步骤或证明过
程. 只要你积极思考, 细心运算, 你一定会解答正确的!)
25. (本小题满分8 分)
自2010年4月1日起,新修订的《机动车驾驶证申领和使用规定》正式实施了.新规定为保障公民的人身安全,对被查酒后驾驶机动车(血液酒精含量超过20毫克/百毫升)的驾驶员加大了处罚力度.某交警大队于4月4日~4月10日这7天共查到12起酒后驾车事件,这12位驾车者血液酒精含量(单位:毫克/百毫升)如下:26,58,29,92,21,43,24,27,36,46,23,31.
(1)请计算这些数据的平均数与极差;
(2)请你运用所学到的统计知识估计新规定实施之后一年内(按365天计算)该交警大队能查到多少起酒后驾车事件?(精确到1起)
(3)该交警大队在新规定实施前的某一周7天内共查到38名司机血液酒精含量超过20毫克/百毫升,平均含量为56毫克/百毫升,请结合相关数据谈谈你的想法.
26.(本小题满分8分)
八(1)班同学上数学活动课,利用角尺平分一个角(如图).设计了如下方案:
(Ⅰ)∠AOB是一个任意角,将角尺的直角顶点P介于射线OA、OB之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB的平分线.
(Ⅱ)∠AOB是一个任意角,在边OA、OB上分别取OM=ON,将角尺的直角顶点P介于射线OA、OB 之间,移动角尺使角尺两边相同的刻度与M、N重合,即PM=PN,过角尺顶点P的射线OP就是∠AOB
的平分线.
(1)方案(Ⅰ)、方案(Ⅱ)是否可行?若可行,请证明;若不可行,请说明理由.
(2)在方案(Ⅰ)PM=PN的情况下,继续移动角尺,同时使PM⊥OA,PN⊥OB.此方案是否可行?请说明理由.
27.(本小题满分8 分)
今年年初西南五省的持续干旱,让许多网友感同身受、焦灼不安,更有不少网友自发组成水源行动小组到旱区找水.功夫不负有心人,终于有人在山洞C里发现了暗河(如图11).经勘察,在山洞的西面有一条南北走向的公路连接着A、B两村庄,山洞C位于A村庄南偏东30°方向,且位于B村庄南偏东60°方向.为方便A、B两村庄的村民取水,社会爱心人士准备尽快从山洞C处向公路AB紧急修建一条最近的简易公路CD.现已知A、B两村庄相距6千米.
(1)求这条最近的简易公路CD的长(保留3个有效数字);
(2)每修建1千米的简易公路需费用16 000元,请求出修建该简易公路的最低费用(精确到个位).(本题参考数据:2≈1.414,3≈1.732)
,
图11
28. (本小题满分12 分)
如图12,直线y=kx-1与x 轴、y 轴分别交与B 、C 两点,tan ∠OCB=
2
1.
(1) 求B 点的坐标和k 的值;
(2) 若点A (x ,y )是第一象限内的直线y=kx-1上的一个动点.当点A 运动过程中,试写出△AOB 的面积S 与x 的函数关系式;
(3) 探索:
①当点A 运动到什么位置时,△AOB 的面积是
4
1;
②在①成立的情况下,x 轴上是否存在一点P ,使△POA 是等腰三角形.若存在,请写出满足条件的所
有P点的坐标;若不存在,请说明理由.
图12。