人教版数学初一下学期综合检测卷三
人教版数学七年级下学期《期中检测试卷》有答案解析
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -= B. 1x y -=C. 1x y +=D. 21x y += 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --= B. 224x x --= C. 24x x -+= D. 224x x -+= 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 25. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1 B. 1 C. ﹣5 D. 56. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 47. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.10. 若三角形的两边长分别为 2cm 和 4cm ,且第三条边为偶数,那么这个三角形的周长为______cm . 11. 关于 x 的不等式-2 < x -1≤ 3 的所有整数解的和为_____.12. 某商品进价1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.三、解答题(共 78 分)15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x-++≥.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.17. 解不等式组:(1)513(1)182x xx x->+⎧⎨-≤-⎩;(2)2+53(2)123x xx x≤+⎧⎪+⎨<⎪⎩.18. “雷神山”病床安装突击队有22 名队员,按要求在规定时间内要完成340 张病床安装,其中高级工每人能安装20 张,初级工每人能安装15 张. 问该突击队高级工与初级工各多少人?19. 甲乙两辆汽车同时从A、B 两地相向开出,甲车每小时行56 千米,乙车每小时行48 千米,两车在距A、B 两地的中点32 千米处相遇.求甲乙两地相距多少千米?20. 如图,在△ABC 中,∠B=26°,∠BAC=30°,过点A 作BC 边上的高,交BC 的延长线于点D,CE 平分∠ACD,交AD 于点E.求∠AEC 的度数.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为200 元,每个口罩的标价为4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送10 个口罩;乙药店:额温枪和口罩全部按标价的9 折优惠.现某公司要购买20 支额温枪和若干个口罩,若购买的口罩为x 个(x>200).(1)分别用含x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为元;到乙药店购买需要金额为元.(2)购买的口罩至少为多少个时到乙药店购买更合算?22. 某中学为打造书香校园,计划购进甲、乙两种规格书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.23. (1)如图(1),在△ABC 中,∠BAC=70°,点D 在BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线BP,CP 相交于点P,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC=m°,那么∠P= °(用含有m 代数式表示)[探究]:如图(2)在四边形MNCB 中,设∠M=α,∠N=β,α+β>180°,四边形的内角∠MBC与外角∠NCD 的角平分线BP,CP 相交于点P.为了探究∠P 的度数与α 和β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边BM 与CN,设它们的交点为点A,如图( 3 ),则∠A= (用含有α 和β 的代数式表示),因此∠P= .(用含有α 和β 的代数式表示)[拓展]:将(2)中的α+β>180°改为α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)答案与解析一、选择题(每小题 3 分,共 24 分)1. 如果长春市 2020 年 4 月 30 日最高气温是 23℃,最低气温是 12℃,则当天长春市气温 t (℃)的变化范围是( )A. t >23B. t ≤23C. 12<t <23D. 12≤t ≤23 [答案]D[解析][分析]最高气温是23℃,即气温小于或等于23℃,最低气温是12℃,即气温大于或等于12℃,据此写出即可.[详解]解:如果长春市2020年4月30日最高气温是23℃,最低气温是12℃,则当天长春市气温 t (℃)的变化范围是:12≤t ≤23.故选:D .[点睛]本题考查了由实际问题抽象出不等式组,解题的关键是抓住关键词,正确理解最高和最低的含义. 2. 若一个二元一次方程的一个解为21x y =⎧⎨=-⎩,则这个方程可以是( ) A. 1y x -=B. 1x y -=C. 1x y +=D. 21x y += [答案]C[解析][分析]直接利用二元一次方程解的定义求解即可解答.[详解]解:∵一个二元一次方程的一个解为21x y =⎧⎨=-⎩∴.x+y=1,x-y=3,y-x=-3,x+2y=0.故C 正确.故答案为C.[点睛]本题考查了二元一次方程的解.理解二元一次方程的解就是指示方程等号两边的值相等的两个未知数的值是解答本题的关键. 3. 用代入法解方程组124y x x y =-⎧⎨-=⎩时消去y ,下面代入正确的是( ) A. 24x x --=B. 224x x --=C. 24x x -+=D. 224x x -+=[答案]D[解析][分析]方程组利用代入消元法变形得到结果,即可作出判断.[详解]用代入法解方程组124y x x y =-⎧⎨-=⎩时, 把y=1-x 代入x-2y=4,得:x-2(1-x )=4,去括号得:224x x -+=,故选:D .[点睛]本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 4. 如图,△ABC 中,点D 是AB 边上的中点,点E 是BC 边上的中点,若S ∆ABC =12,则图中阴影部分的面积是( )A. 6B. 4C. 3D. 2[答案]C[解析][分析] 作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,利用中点的性质即可求出BCD △的面积,同理可求出阴影部分面积.[详解]解:作CF AB ⊥交AB 于点F ,作DG BC ⊥交BC 于点G ,点D 是AB 边上的中点12BD AB ∴= 1111112622222BCD ABC S BD CF AB CF S ∴=⋅=⨯⋅==⨯= 点E 是BC 边上的中点 12CE BC ∴= 111116322222CED BCD S CE DG BC DG S ∴=⋅=⨯⋅==⨯= 所以阴影部分的面积为3.故选:C.[点睛]本题考查了和中点有关的三角形的面积,灵活的利用中点的性质表示三角形的面积间的关系是解题的关键.5. 已知21x y =⎧⎨=⎩是方程组14ax by bx ay +=⎧⎨+=-⎩的解,则a +b 的值是( ) A. ﹣1B. 1C. ﹣5D. 5[答案]A[解析][分析]把x 与y 的值代入方程组求a +b 的值即可. [详解]解:把21x y =⎧⎨=⎩代入方程组14ax by bx ay +=⎧⎨+=-⎩, 得:2124a b b a +=⎧⎨+=-⎩①②, ①+②得:3(a +b )=3-,则a +b =.故选:A .[点睛]此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值. 6. 如图所示的图形中,能够用一个图形镶嵌整个平面的有( )个A. 1B. 2C. 3D. 4[答案]C[解析][分析]几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,据此逐一判断即可.[详解]解:等腰三角形的内角和是180°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面; 四边形的内角和是360°,能被360°整除,放在同一顶点处能够用一种图形镶嵌整个平面;正六边形的每个内角是120°,能被360°整除,能够用一种图形镶嵌整个平面;正五边形的每个内角是108°,不能被360°整除,放在同一顶点处不能够用一种图形镶嵌整个平面; 圆不能够用一种图形镶嵌整个平面;综上所述,能够用一种图形镶嵌整个平面的有3个.故选:C .[点睛]本题考查了平面镶嵌(密铺),掌握几何图形镶嵌成整个平面的关键是解题的钥匙.7. 下列不等式变形错误的是( )A. 若 a >b ,则 1﹣a <1﹣bB. 若 a <b ,则 ax 2≤bx 2C. 若 ac >bc ,则 a >bD. 若 m >n ,则21m x +>21n x + [答案]C[解析][分析]根据不等式基本性质,逐项判断即可.[详解]A 、∵a >b ,∴﹣a <-b ,1﹣a <1﹣b∴选项A 不符合题意;B 、∵a <b ,x 2≥0∴ax 2≤bx 2,∴选项B 不符合题意;C 、∵ac >bc ,c 是什么数不明确,∴a >b 不正确,∴选项C 符合题意;D 、∵m >n ,∴21m x +>21n x +, ∴选项D 不符合题意.故选:C .[点睛]此题主要考查了不等式的基本性质.解题的关键是掌握不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变. 8. 如图,在△ABC 中,∠A=α,点D ,E ,F 分别在BC ,AB ,AC 上,且∠1+∠2=120°,则∠EDF 的度数为( )A. 120°+αB. 120°-αC. 240°-αD. α-60°[答案]B[解析][分析]连接AD ,则∠1与∠2分别是△ADE 和△ADF 的外角,由三角形的外角性质即可解决问题.[详解]连接AD ,如图所示,则∠1与∠2分别是△ADE 和△ADF 的外角,∴∠1=∠EAD+∠EDA ,∠2=∠FAD+∠FDA∴∠1+∠2=∠EAD+∠EDA+∠FAD+∠FDA=∠EDF+∠EAF=∠EDF+α=120°∴∠EDF=120°-α故选:B.[点睛]本题考查三角形外角的性质,解题的关键是学会作辅助线构造三角形即可解决问题.二、填空题(每小题 3 分,共 18 分)9. 不等式2x -1 > 3x -1 的解集为_____.[答案]x<0[解析][分析]根据一元一次不等式的解法解答即可.[详解]解:移项,得2x-3x>1-1,即﹣x>0,解得:x<0.故答案为:x<0.[点睛]本题考查了一元一次不等式的解法,属于基础题型,熟练掌握解一元一次不等式的方法是解题关键.10. 若三角形的两边长分别为2cm 和4cm,且第三条边为偶数,那么这个三角形的周长为______cm.[答案]10[解析][分析]先根据三角形的三边关系确定第三边的范围,再由第三条边为偶数即可确定其具体的数值,进而可得答案.[详解]解:记这个三角形的第三边为c cm,则4-2<c<4+2,即2<c<6,∵c为偶数,∴c=4,∴这个三角形的周长=2+4+4=10cm.故答案为:10.[点睛]本题考查了三角形的三边关系和三角形的周长计算,属于基础题型,熟练掌握三角形的三边关系是解题的关键.11. 关于x 的不等式-2 <x -1≤ 3 的所有整数解的和为_____.[答案]10[解析][分析]此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值即可得解.[详解]不等式-2 <x-1≤ 3可以化简为-1<x≤4,适合不等式-1<x≤4的所有整数解0、1,2,3,4.所以,所有整数解的和为:0+1+2+3+4=10.故答案为:10.[点睛]此题考查是一元一次不等式组的解法,根据x的取值范围,得出x的整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12. 某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.[答案]450元[解析][分析][详解]试题分析:设商店降x%出售商品,根据“进价是1000元,售价是1500元,利润率不低于5%”即可列不等式求解.设商店降x%出售商品,由题意得15001100x ⎛⎫⨯- ⎪⎝⎭≥1000×(1+5%) 解得x≥30则商店最多降30%出售商品.考点:一元一次不等式的应用点评:解题的关键是读懂题意,找到不等关系,正确列不等式求解.13. 有一个两位数,其个位数字比十位数字大 2,且这个两位数大于 20 且小于 30,那么这个两位数是_____.[答案]24[解析][分析]设这个两位数的十位数字为x ,则个位数字为x +2,然后用含x 的代数式表示出这个两位数,根据这个两位数大于20且小于30即可列出关于x 的不等式组,解不等式组求出x 的范围后结合x 为正整数即可确定x 的值,进一步即可求得答案.[详解]解:设这个两位数的十位数字为x ,则个位数字为x +2,那么这个两位数为10x +x +2,根据题意得:20<10x +x +2<30,解得:18281111x <<. ∵x 为正整数,∴x =2,∴10x +x +2=24,则这个两位数是24.故答案为:24.[点睛]本题考查了一元一次不等式组的应用,属于常考题型,正确理解题意、列出不等式组是解题关键. 14. 如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若l ∠,2∠,3∠,4∠的外角和等于210,则BOD ∠的度数为______.[答案]30[解析][分析]由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .[详解]1∠、2∠、3∠、4∠的外角的角度和为210,12342104180∠∠∠∠∴++++=⨯,1234510∠∠∠∠∴+++=,五边形OAGFE 内角和()52180540=-⨯=,1234BOD 540∠∠∠∠∠∴++++=,BOD 54051030∠∴=-=.故答案为30[点睛]本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.三、解答题(共 78 分) 15. 解不等式:(1) 3(x -1) < 4x + 4 ;(2)342523x x -++≥. [答案](1)7x >-;(2)2x ≥-[解析][分析](1)先去小括号,然后依次移项、合并同类项、系数化为1即可得;(2)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.[详解](1) 3(x -1) < 4x + 4 ;3344-<+x x3434-<+x x7-<x∴7x>-;(2)342523 x x-++≥3(34)302(2)x x-+≥+9123024x x-+≥+9212430x x-≥+-714x≥-∴2x≥-[点睛]本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16. 解下列方程组:(1)2 2314 m nm n-=⎧⎨+=⎩;(2)3(1)4(2) 231y xx y+=+⎧⎨-=+⎩.[答案](1)42mn⎧=⎨=⎩;(2)17213xy⎧=⎪⎨⎪=⎩.[解析][分析](1)根据代入消元法求解即可;(2)先化简原方程组,再利用加减消元法解答.[详解]解:(1)22314m nm n-=⎧⎨+=⎩①②,由①得:m =2+n ③,把③代入②,得()22314n n ++=,解得:n =2,把n =2代入③,得:m =4,所以原方程组的解是:42m n ⎧=⎨=⎩;(2)原方程组即:25443x y x y ⎧⎨-=-=⎩-①②, ②×2,得4x -2y =8③,③-①,得y =13,把y =13代入②,得2x -13=4, 解得:172x =, 所以原方程组的解是:17213x y ⎧=⎪⎨⎪=⎩. [点睛]本题考查了二元一次方程组的解法,属于基础题型,熟练掌握代入消元法和加减消元法解二元一次方程组的方法是解题关键.17. 解不等式组:(1)513(1)182x x x x ->+⎧⎨-≤-⎩; (2)2+53(2)123x x x x ≤+⎧⎪+⎨<⎪⎩. [答案](1)2<x ≤3;(2)无解.[解析][分析](1)分别求出每个不等式的解集,再取它们的公共部分即可得解;(2)分别求出每个不等式的解集,再取它们的公共部分即可得解.[详解](1)513(1)182x x x x ->+⎧⎨-≤-⎩①②; 解不等式①得,x >2解不等式②得,x ≤3,所以,不等式组的解集为:2<x ≤3;(2)2+53(2)1 23x x x x ≤+⎧⎪⎨+<⎪⎩①② 解不等式①得,x ≥-1;解不等式②得,x <-3;所以,不等式组无解.[点睛]本题考查的是解一元一次不等式组,正确求出每个不等式的解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18. “雷神山”病床安装突击队有 22 名队员,按要求在规定时间内要完成 340 张病床安装,其中高级工每人能安装 20 张,初级工每人能安装 15 张. 问该突击队高级工与初级工各多少人?[答案]该突击队有高级工2人,初级工20人.[解析][分析]设该突击队高级工有x 人,则初级工有y 人,根据高级工+初级工=22人,x 名高级工安装的病床数+y 名初级工安装的病床数=340即可列出方程组,解方程组即得结果.[详解]解:设该突击队高级工有x 人,则初级工有y 人,根据题意,得:222015340x y x y +=⎧⎨+=⎩,解得:220x y =⎧⎨=⎩, 答:该突击队有高级工2人,初级工20人.[点睛]本题考查了二元一次方程组的应用,属于基本题型,正确理解题意、找准相等关系是解题关键. 19. 甲乙两辆汽车同时从 A 、B 两地相向开出,甲车每小时行 56 千米,乙车每小时行 48 千米,两车在距 A 、B 两地的中点 32 千米处相遇.求甲乙两地相距多少千米?[答案]甲乙两地相距832千米[解析][分析]设甲乙两地相距x 千米,根据两车相遇,所用时间相等即可列出一元一次方程,求解方程即可.[详解]甲乙两地相距x 千米,根据题意得,3232225648x x +-= 解得,x=832所以,甲乙两地相距832千米[点睛]此题考查了列一元一次方程解决问题,关键是找出等量关系.20. 如图,在△ABC 中,∠B =26°,∠BAC =30°,过点 A 作 BC 边上的高,交 BC 的延长线于点 D , CE 平分∠ACD ,交 AD 于点 E .求∠AEC 的度数.[答案]118°[解析][分析]由三角形外角的性质求出∠ACD=56°,由角平分线定义求出∠ECD=28°,最后由外角性质得出∠AEC=118°.[详解]∵∠B =26°,∠BAC =30°,∴∠ACD=∠B +∠BAC =56°,∵CE 平分∠ACD ,∴∠DCE=12∠ACD=28° 又∠ADC=90°∴∠AEC=∠DCE+∠CDE=28°+90°=118°.[点睛]此题主要考查了三角形外角性质,灵活运用三角形外角的性质是解答本题的关键.21. 甲、乙两家药店销售的额温枪和口罩的质量和价格一致,已知每支额温枪标价为 200 元,每个口罩的标价为 4 元.甲、乙两家药店推出各自的销售方案,甲药店:买一支额温枪赠送 10 个口罩;乙药店:额温枪和口罩全部按标价的 9 折优惠.现某公司要购买 20 支额温枪和若干个口罩,若购买的口罩为 x 个(x >200).(1)分别用含 x 的式子表示到甲、乙两家药店购买额温枪和口罩所需的金额.到甲药店购买需要金额为 元;到乙药店购买需要金额为 元.(2)购买的口罩至少为多少个时到乙药店购买更合算?[答案](1)4x+3200;3.6x+3600;(2)购买口罩至少为1001个时到乙药店购买更合算[解析][分析](1)根据甲、乙两家药店推出各自的销售方案,列出代数式即可;(2)根据购买的口罩到乙药店购买更合算列出不等式进行计算即可.[详解](1)到甲药店购买所需金额:20×200+4(x-200)=4x+3200,到乙药店购买所需金额:(20×200+4x)×0.9=3.6x+3600,故答案为:4x+3200;3.6x+3600;(2)∵到乙药店购买更合算∴3.6x+3600<4x+3200解得x>1000∴购买的口罩至少为1001个时到乙药店购买更合算[点睛]此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式.22. 某中学为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买一个乙种书柜比购买一个甲种书柜贵60元,若购买甲种书柜1个、乙种书柜2个,共需资金660元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若该校计划购进这两种规格的书柜共20个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金4320元,请问学校有哪几种购买方案.[答案](1)甲种书柜每个的价格为180元,乙种书柜每个的价格为240元;(2)学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[解析][分析](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,根据“若购买一个乙种书柜比购买一个甲种书柜贵60元;若购买甲种书柜1个,乙种书柜2个,共需资金660元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买甲种书柜m个,则购买乙种书柜(20-m)个,根据乙种书柜的数量不少于甲种书柜的数量且学校至多能够提供资金4320元,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数即可得出各购买方案.[详解](1)设甲种书柜每个的价格为x元,乙种书柜每个的价格为y元,依题意,得:602660y x x y ⎨⎩-+⎧==, 解得:180240x y ⎧⎨⎩==. 答:甲种书柜每个的价格为180元,乙种书柜每个的价格为240元.(2)设购买甲种书柜m 个,则购买乙种书柜(20-m )个,依题意,得:()20180240204320m m m m -≥+-≤⎧⎨⎩, 解得:8≤m≤10.∵m 为整数,∴m 可以取的值为:8,9,10.∴学校的购买方案有以下三种:方案一:甲种书柜8个,乙种书柜12个;方案二:甲种书柜9个,乙种书柜11个;方案三:甲种书柜10个,乙种书柜10个.[点睛]本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.23. (1)如图(1),在△ABC 中,∠BAC =70°,点 D 在 BC 延长线上,三角形的内角∠ABC 与外角∠ACD 的角平分线 BP ,CP 相交于点 P ,求∠P 的度数.(写出完整的解答过程)[感知]:图(1)中,若∠BAC =m °,那么∠P = °(用含有 m 的代数式表示)[探究]:如图(2)在四边形 MNCB 中,设∠M =α,∠N =β,α+β>180°,四边形的内角∠MBC 与外角∠NCD 的角平分线 BP ,CP 相交于点 P .为了探究∠P 的度数与 α 和 β 的关系,小明同学想到将这个问题转化图(1)的模型,因此,他延长了边 BM 与 CN ,设它们的交点为点 A , 如图( 3 ), 则∠ A = (用含有 α 和 β 的代数式表示), 因此∠P = .(用含有 α 和 β 的代数式表示)[拓展]:将(2)中的 α+β>180°改为 α+β<180°,四边形的内角∠MBC 与外角∠NCD 的角平分线所在的直线相交于点P,其它条件不变,请直接写出∠P=.(用α,β的代数式表示)[答案](1)35°;感知:12m°,探究:α+β-180°,12(α+β)-90°;拓展:90°-12α-12β[解析] [分析](1)根据角平分线的定义可得∠CBP=12∠ABC,根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠DCP,然后整理即可得到∠P=12∠A,代入数据计算即可得解.[感知]求∠P度数的方法同(1)[探究] 添加辅助线,利用(1)中结论解决问题即可;根据四边形的内角和定理表示出∠BCN,再表示出∠DCN,然后根据角平分线的定义可得∠PBC=12∠ABC,∠PCD=∠DCN,三角形的一个外角等于与它不相邻的两个内角的和可得∠P+∠PBC=∠PCD,然后整理即可得解;拓展:同探究的思路求解即可[详解](1)∵BP平分∠ABC,∴∠CBP=12∠ABC,∵CP平分△ABC的外角,∴∠DCP=12∠ACD=12(∠A+∠ABC)=12∠A+12∠ABC,在△BCP中,由三角形的外角性质,∠DCP=∠CBP+∠P=12∠ABC+∠P,∴12∠A+12∠ABC=12∠ABC+∠P,∴∠P=12∠A=12×70°=35°.感知:由(1)知∠P=12∠A∵∠BAC=m°,∴∠P=12 m°,故答案为:12 m°,探究:延长BM交CN的延长线于A.∵∠A=180°-∠AMN-∠ANM=180°-(180°-α)-(180°-β)=α+β-180°,由(1)可知:∠P=12∠A,∴∠P=12(α+β)-90°;故答案为:α+β-180°,12(α+β)-90°;[拓展] 如图③,延长MB交NC的延长线于A.∵∠A=180°-α-β,∠P=12∠A,∴∠P=12(180°-α-β)=90°-12α-12β故答案为:90°-12α-12β[点睛]本题考查三角形综合题,三角形内角和定理、四边形内角和定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用已知结论解决问题.。
人教版数学七年级下学期《期中检测卷》有答案解析
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列四个命题中,①若a>0,b>0,则a+b>0;②同位角相等;③有两边和一个角分别对应相等的两个三角形全等;④三角形的最大角不小于60°;真命题有( )个A. 1B. 2C. 3D. 42.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A. 10°B. 15°C. 20°D. 25°3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应两个一次函数的图象(如图所示),则所解的二元一次方程组是[]A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,4.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D度数为( )A. 60°B. 70°C. 80°D. 90°5.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款( )A. 11元B. 12元C. 13元D. 不能确定6.如图,若直线a∥b,那么∠x=( )A 64° B. 68° C. 69° D. 66°7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. 32B. 3C. 1D.438.如图,在等边△ABC中,AD是BC边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的个数是( )A. 1B. 2C. 3D. 49.设x y z234==,则x2y3zx y z-+++的值为()A. 27B.69C.89D.5710.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于( )A. 40°B. 45°C. 50°D. 55°二.填空题(共4小题)11.已知关于x,y的方程组3225435x y kx y k+=⎧⎨+=-⎩与方程3x y+=的解相同,则k的值为________.12.如图,在△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为_______.13.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是_____cm2.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).三.解答题(共6小题)15.解二元一次方程组(1)2316413x yx y+=⎧⎨+=⎩;(2)0.310.20.519x yx y-=⎧⎨-=⎩;(3)3(1)521123x yx y-=+⎧⎪+-⎨=+⎪⎩.16.网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:商品红枣小米规格1kg/袋2kg/袋成本(元/袋) 40 38售价(元/袋) 60 54根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明网店销售上表中规格的红枣和小米共2000kg,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg,其中,红枣的销售量不低于1200kg.假设这后八个月,销售红枣x(kg),销售红枣和小米获得的总利润为y(元),求出y与x之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?17.如图,A、B两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.18.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm时,身高为105.5dm.(1)写出y与x之间的关系式;(2)当该动物腿长10dm时,其身高为多少?19.如图,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥AB于E,(1)若∠BAC=50°,求∠EDA的度数;(2)求证:直线AD是线段CE的垂直平分线.20.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.答案与解析一.选择题(共10小题)1.下列四个命题中,①若a>0,b>0,则a+b>0;②同位角相等;③有两边和一个角分别对应相等的两个三角形全等;④三角形的最大角不小于60°;真命题有( )个A. 1B. 2C. 3D. 4[答案]B[解析][分析]根据实数的性质、两直线的关系、全等三角形的判定及角度关系即可判断正确,进行求解.[详解]①若a>0,b>0,则a+b>0,正确;②两直线平行,同位角相等,故错误;③有两边及其夹角分别对应相等的两个三角形全等,故错误;④三角形的最大角不小于60°,正确;故选B[点睛]此题主要考查命题的正误,解题的关键是熟知各知识点的判断.2.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含45°角的直角三角板的斜边与纸条一边重合,含30°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A. 10°B. 15°C. 20°D. 25°[答案]B[解析][分析]先根据平行线的性质得出∠BCD的度数,进而可得出结论.[详解]解:如下图所示:∵AB∥CD,∴∠BCD=∠ABC=45°,∴∠1=∠BCD﹣∠BCE=45°﹣30°=15°.故选:B.[点睛]本题考查的是平行线的性质,熟知平行线的性质与三角板的特点是解答此题的关键.3.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是[]A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,[答案]D[解析]解:根据给出的图象上的点的坐标,(0,-1)、(1,1)、(0,2);分别求出图中两条直线的解析式为y=2x-1,y=-x+2,因此所解的二元一次方程组是20{210x yx y+-=--=,故选D.4.如图,四边形ABCD中,∠A=90°,∠C=110°,点E,F分别在AB,BC上,将△BEF沿EF翻折,得△GEF,若GF∥CD,GE∥AD,则∠D的度数为( )A. 60°B. 70°C. 80°D. 90°[答案]C[解析]分析]依据平行线的性质,即可得到∠BEG=∠A=90°,∠BFG=∠C=110°,再根据四边形内角和为360°,即可得到∠D的度数.[详解]解:∵GF∥CD,GE∥AD,∴∠BEG=∠A=90°,∠BFG=∠C=110°,由折叠可得:∠B=∠G,∴四边形BEGF中,∠B=360920110︒︒︒--=80°,∴四边形ABCD中,∠D=360°-∠A-∠B-∠C=80°,故选:C.[点睛]本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.某商场推出A、B、C三种特价玩具,若购买A种2件、B种1件、C种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元.那么小明购买A种1件、B种1件、C种1件,共需付款( )A. 11元B. 12元C. 13元D. 不能确定[答案]B[解析][分析]设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z元,由“若购买A种2件、B种1件、C 种3件,共需24元;若购买A种3件、B种4件、C种2件,共需36元”,即可得出关于x,y,z的三元一次方程组,由(①+②)÷5可求出(x+y+z)的值,此题得解.[详解]解:设A种玩具的单价为x元,B种玩具的单价为y元,C种玩具的单价为z元,依题意,得:2324 34236x y zx y z++=⎧⎨++=⎩①②,(①+②)÷5,得:x+y+z=12.故选:B.[点睛]本题考查了三元一次方程组的应用,找准等量关系,正确列出三元一次方程组是解题的关键.6.如图,若直线a∥b,那么∠x=( )A. 64°B. 68°C. 69°D. 66°[答案]A[解析]试题解析:令与130°互补的角为∠1,如图所示.∵∠1+130°=180°,∴∠1=50°.∵a∥b,∴x+48°+20°=∠1+30°+52°,∴x=64°.故选A.[点睛]本题考查了平行线的性质、平行线间的折线问题以及角的计算,解题的关键是:利用“两平行线间的折线所成的角之间的关系-左边角之和等于右边角之和”规律做题.7.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为A. 32B. 3C. 1D.43[答案]A[解析][分析]首先利用勾股定理计算出AC的长,再根据折叠可得△DEC≌△D′EC,设ED=x,则D′E=x,AD′=AC﹣CD′=2,AE=4﹣x,再根据勾股定理可得方程22+x2=(4﹣x)2,再解方程即可[详解]∵AB=3,AD=4,∴DC=3∴根据勾股定理得AC=5根据折叠可得:△DEC≌△D′EC,∴D′C=DC=3,DE=D′E设ED=x ,则D′E=x ,AD′=AC ﹣CD′=2,AE=4﹣x ,在Rt △AED′中:(AD ′)2+(ED′)2=AE 2,即22+x 2=(4﹣x )2,解得:x=32故选A.8.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°,在下列结论中:①△ABD ≌△ACD ;②2DE=2DF=AD ;③△ADE ≌△ADF ;④4BE=4CF=AB .正确的个数是( )A. 1B. 2C. 3D. 4[答案]D[解析][分析] 由等边三角形的性质可得BD=DC,AB=AC,∠B=∠C=60°,利用SAS 可证明△ABD ≌△ACD,从而可判断①正确;利用ASA 可证明△ADE ≌△ADF,从而可判断③正确;在Rt △ADE 与Rt △ADF 中,∠EAD=∠FAD=30°,根据30度角所对的直角边等于斜边的一半可得2DE=2DF=AD,从而可判断②正确;同理可得2BE=2CF=BD,继而可得4BE=4CF=AB,从而可判断④正确,由此即可得答案.[详解]∵等边△ABC 中,AD 是BC 边上的高,∴BD=DC,AB=AC,∠B=∠C=60°, 在△ABD 与△ACD 中90AD AD ADB ADC DB DC =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABD ≌△ACD ,故①正确;在△ADE 与△ADF 中60EAD FAD AD ADEDA FDA ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△ADE ≌△ADF ,故③正确;∵在Rt△ADE与Rt△ADF中,∠EAD=∠FAD=30°,∴2DE=2DF=AD,故②正确;同理2BE=2CF=BD,∵AB=2BD,∴4BE=4CF=AB,故④正确,故选D.[点睛]本题考查了等边三角形的性质、含30度的直角三角形的性质、全等三角形的判定等,熟练掌握相关性质与定理是解题的关键.9.设x y z234==,则x2y3zx y z-+++的值为()A. 27B.69C.89D.57[答案]C[解析][分析]设已知等式等于k,表示出x,y,z,代入原式计算即可得到结果.[详解]解:设x y z234k===,得到x=2k,y=3k,z=4k则原式=26128 2349k k kk k k-+=++.故选:C.[点睛]本题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.10.如图,∠ACD是△ABC的外角,CE平分∠ACD,若∠A=60°,∠B=40°,则∠ECD等于( )A. 40°B. 45°C. 50°D. 55°[答案]C[解析]分析]根据三角形外角性质求出∠ACD,根据角平分线定义求出即可.[详解]∵∠A=60°,∠B=40°,∴∠ACD=∠A+∠B=100°, ∵CE 平分∠ACD,∴∠ECD=12∠ACD=50°, 故选C .[点睛]本题考查了角平分线定义和三角形外角性质,熟记三角形外角性质的内容是解此题的关键. 二.填空题(共4小题)11.已知关于x ,y 的方程组3225435x y k x y k +=⎧⎨+=-⎩与方程3x y +=的解相同,则k 的值为________. [答案]11[解析][分析]首先解方程组,利用k 表示出x 、y 值,然后代入3x y +=,即可得到一个关于k 的方程,求得k 的值. [详解]解:3225435x y k x y k +=⎧⎨+=-⎩①②, 2⨯-①②,得5x k =+,把5x k =+代入①,得31522k y k ++=,解得152k y +=-, 代入3x y +=,得15532k k ++-=,去分母, 得210156k k +--=,解得11k =.故答案为11.[点睛]本题考查了二元一次方程组的解法,二元一次方程的解,解题关键是掌握二元一次方程组的解法. 12.如图,在△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D,交边AC 于点E,则△BCE 的周长为_______.[答案]13[解析]试题分析:已知DE 是AB 的垂直平分线,根据线段的垂直平分线的性质得到EA=EB,所以△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.13.长方形ABCD中放置了6个形状、大小都相同的小长方形,所标尺寸如图所示,则图中阴影部分的面积是_____cm2.[答案]67.[解析][分析]设小长方形的长为xcm,宽为ycm,根据图中给定的数据可得出关于x,y的二元一次方程组,解之即可得出x,y 的值,再利用阴影部分的面积=大长方形的面积﹣6×小长方形的面积,即可求出结论.[详解]解:设小长方形的长为xcm,宽为ycm,依题意,得:31927 x yx y y+=⎧⎨+-=⎩,解得:103xy=⎧⎨=⎩,∴图中阴影部分的面积=19×(7+2×3)﹣6×10×3=67(cm2).故答案为:67.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.14.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).[答案]①②④[解析][分析]易证△ABD ≌△EBC ,可得∠BCE=∠BDA,AD=EC 可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE ,即AD=AE=EC ,根据AD=AE=EC 可求得④正确[详解]解:①∵BD 为△ABC 的角平分线,∴∠ABD=∠CBD,在△ABD 和△EBC 中,BD BC ABD CBD BE BA =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△EBC(SAS),∴①正确;②∵BD 为△ABC 的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD ≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE 为等腰三角形,∴AE=EC,∵△ABD ≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD 为△ABC 的角平分线,EF ⊥AB ,而EC 不垂直与BC,∴EF≠EC ,∴③错误;④过E 作EG ⊥BC 于G 点,∵E 是BD 上点,∴EF=EG,在Rt △BEG 和Rt △BEF 中,BE BE BE EG=⎧⎨=⎩ , ∴Rt △BEG ≌Rt △BEF(HL),∴BG=BF,在Rt △CEG 和Rt △AFE 中,EF FG AE CE=⎧⎨=⎩, ∴Rt △CEG ≌Rt △AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF,∴④正确.故答案为①②④.[点睛]本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.三.解答题(共6小题)15.解二元一次方程组(1)2316413x y x y +=⎧⎨+=⎩; (2)0.310.20.519x y x y -=⎧⎨-=⎩; (3)3(1)521123x y x y -=+⎧⎪+-⎨=+⎪⎩. [答案](1)52x y =⎧⎨=⎩;(2)370110x y =⎧⎨=⎩;(3)610x y =⎧⎨=⎩. [解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可;(3)方程组整理后,利用加减消元法求出解即可.[详解]解:(1)2316413x yx y+=⎧⎨+=⎩①②,②×2﹣①得:5y=10,解得:y=2,把y=2代入②得:x=5,则方程组的解为52 xy=⎧⎨=⎩;(2)方程组整理得:31010 25190x yx y-=⎧⎨-=⎩①②,②×2﹣①得:x=370,把x=370代入②得:y=110,则方程组的解为370110 xy=⎧⎨=⎩;(3)方程组整理得:380322x yx y-=⎧⎨-=-⎩①②,①﹣②得:y=10,把y=10代入①得:x=6,则方程组的解为610 xy=⎧⎨=⎩.[点睛]本题考查了二元一次方程组的解法,解题的关键是消元,消元的方法有两种:①加减法消元,②代入法消元.16.网络商店(简称网店)是近年来迅速兴起的一种电子商务形式,小明的网店销售红枣、小米两种商品的相关信息如下表:根据上表提供的信息,解答下列问题(1)已知今年前四个月,小明的网店销售上表中规格的红枣和小米共2000kg ,获得利润2.8万元,求这前四个月小明的网店销售这种规格的红枣和小米各多少袋?(2)根据之前的销售情况,估计今年5月到12月这后八个月,小明的网店还能销售同规格的红枣和小米共4000kg ,其中,红枣的销售量不低于1200kg .假设这后八个月,销售红枣x (kg ),销售红枣和小米获得的总利润为y (元),求出y 与x 之间的函数关系式,并求出这后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润多少元?[答案](1)销售这种规格的红枣1000袋,小米500袋;(2)y 与x 之间的函数关系式为y =12x +32000,后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润46400元.[解析][分析](1)设销售这种规格的红枣x 袋,小米y 袋,列二元一次方程组解答即可,(2)根据利润与销售量的关系,得出y 与x 之间的函数关系式,再根据函数的增减性,得出何时利润最少.[详解]解:(1)设销售这种规格的红枣x 袋,小米y 袋,由题意得,22000(6040)(5438)28000x y x y +=⎧⎨-+-=⎩解得,x =1000,y =500,答:销售这种规格的红枣1000袋,小米500袋.(2)由题意得,y =(60﹣40)x +(54﹣38)40002x -=12x +32000, ∵12>0,∴y 随x 的增大而增大,∵x ≥1200,当x =1200时,y 最小=12×1200+32000=46400元, 答:y 与x 之间的函数关系式为y =12x +32000,后八个月,小明的网店销售这种规格的红枣和小米至少获得总利润46400元.[点睛]考查二元一次方程组解法及其应用,一次函数的性质等知识,正确的得到函数关系式是解决问题的关键.17.如图,A 、B 两村在一条小河的同一侧,要在河边建一水厂向两村供水(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请用尺规作图,将上述两种情况下的自来水厂厂址分别在图(1)(2)中标出,并保留作图痕迹.[答案](1)见解析;(2)见解析.[解析][分析](1)作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小.[详解](1)根据垂直平分线的性质:垂直平分线上的点到线段两个端点的距离相等知,作出AB的垂直平分线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+BP是最小的.[点睛]本题考查了垂直平分线的性质,轴对称的性质和距离之和最短问题,熟悉性质及距离之和最短问题的作法是关键.18.某种动物的身高y(dm)是其腿长x(dm)的一次函数.当动物的腿长为6dm时,身高为45.5dm;当动物的腿长为14dm 时,身高为105.5dm .(1)写出y 与x 之间的关系式;(2)当该动物腿长10dm 时,其身高为多少?[答案](1)y =7.5x +0.5;(2)当该动物腿长10dm 时,其身高为75.5dm .[解析][分析](1)根据题意,可以先设出y 与x 的函数关系式为y =kx +b ,然后再根据当动物的腿长为6dm 时,身高为45.5dm ;当动物的腿长为14dm 时,身高为105.5dm ,即可求得该函数的解析式;(2)将x =10代入(1)中的函数解析式,即可得到相应的身高.[详解]解:(1)根据题意,设y 与x 之间的关系式为y =kx +b ,∵当动物的腿长为6dm 时,身高为45.5dm ;当动物的腿长为14dm 时,身高为105.5dm ,645.514105.5k b k b +=⎧⎨+=⎩ , 解得7.50.5k b =⎧⎨=⎩, 即y 与x 之间的关系式是y =7.5x +0.5;(2)当x =10时,代入y 与x 之间的关系式y =7.5x +0.5,得到y =7.5×10+0.5=75.5,答:当该动物腿长10dm 时,其身高为75.5dm .[点睛]本题主要考查一次函数的应用,解答本题的关键是学会用待定系数法求解一次函数的解析式,并明确题意,利用一次函数的性质解答.19.如图,△ABC 中,∠ACB=90°,AD 平分∠BAC,DE ⊥AB 于E,(1)若∠BAC=50°,求∠EDA 的度数;(2)求证:直线AD 是线段CE 的垂直平分线.[答案](1)65°(2)证明见解析[解析] [分析](1)由题意可得∠EAD=12∠BAC=25°,再根据∠AED=90°,利用直角三角形两锐角互余即可求得答案;(2)由于DE⊥AB,易得∠AED=90°=∠ACB,而AD平分∠BAC,易知∠DAE=∠DAC,又因为AD=AD,利用AAS可证△AED≌△ACD,那么AE=AC,DE=DC,根据线段垂直平分线的判定定理即可得证.[详解](1)∵AD平分∠BAC,∠BAC=50°,∴∠EAD=12∠BAC=25°,∵DE⊥AB,∴∠AED=90°,∴∠ADE=90°-∠EAD=90°-25°=65°;(2)∵DE⊥AB,∴∠AED=90°=∠ACB,又AD平分∠BAC,∴∠DAE=∠DAC,又∵AD=AD,∴△AED≌△ACD,∴AE=AC,DE=DC∴点A在线段CE的垂直平分线上,点D在线段CE的垂直平分线上,∴直线AD是线段CE的垂直平分线.[点睛]本题考查了直角三角形两锐角互余、三角形全等的判定与性质、线段垂直平分线的判定等,熟练掌握相关的性质定理与判定定理是解题的关键.20.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.[答案](1)见解析(2) ∠AEB=15°(3) 见解析[解析]试题分析:(1)由等边三角形的性质可得AB=AD,AE=AC,∠DAB=∠EAC=60°,即可得∠DAC=∠BAE,利用SAS即可判定△ABE≌△ADC;(2)根据全等三角形的性质即可求解;(3)由(1)的方法可证得△ABE≌△ADC,根据全等三角形的性质和等边三角形的性质可得∠AEB=∠ACD =60°,即可得∠AEB=∠EAC,从而得AC∥BE.试题解析:(1)证明:∵△ABD,△ACE都是等边三角形∴AB=AD,AE=AC,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,在△ABE和△ADC中,∴,∴△ABE≌△ADC;(2)由(1)知△ABE≌△ADC,∴∠AEB=∠ACD,∵∠ACD=15°,∴∠AEB=15°;(3)同上可证:△ABE≌△ADC,∴∠AEB=∠ACD,又∵∠ACD=60°,∴∠AEB=60°,∵∠EAC=60°,∴∠AEB=∠EAC,∴AC∥BE.点睛:本题主要考查了等边三角形性质、全等三角形的判定及性质,证得△ABE≌△ADC是解决本题的关键.。
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。
20172018学年人教版七年级下数学前三章综合检测卷含答案
前三章综合检测卷一、选择题(共10小题,每题3分,共30分)1.如图所示,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为()°° C .100°°【答案】D.2.已知:如图,l1∥l2,∠1=50°, 则∠2的度数是()A.120°B.50°C.40°D.130°【答案】D.【解析】试题分析:∵l1∥l2,∴∠1=∠3,∵∠1=50°,∴∠3=50°,∵∠2+∠3=180°,∴∠2=130°,故选D.3.如图,把一块等腰直角三角板的直角顶点放在直尺的一边上,如果∠1=40°,那么∠2=()A.40°B.45°C.50°D.60°【答案】C.4.下列运动属于平移的是()A.荡秋千B.地球绕着太阳转C.风筝在空中随风飘动D.急刹车时,汽车在地面上的滑动【答案】D5.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N 【答案】C 【解析】试题分析:∵15 3.87≈,3<15<4,∴15对应的点是M. 6.下列实数,2,π,227,…,327中,有理数有( )个. 【答案】C 【解析】试题分析:有理数共有,227,327三个. 故选C. 7.五个数中:-227,-1,0,12,2,是无理数的有( ) A .0个 B .1个 C .2个 D .3个 【答案】B .8.在平面直角坐标系中,将点(2,1)P -向右平移4个单位长度,再向上平移3个单位长度得到 点'P 的坐标是( ).A .(2,4)B .(1,5) C.(1,3)- D .(5,5)-[来源:] 【答案】A 【解析】试题分析:左右平移改变点的横坐标,上下平移改变点的纵坐标.将点P (-2,1)向右平移4个单位长度后,此时点坐标为(2,1),再向上平移3个单位长度,故点P ‘的坐标是(2,4). 9.如图,小手盖住的点的坐标可能为( ).A .(46)--,B .(63)-,C . (52),D .(34)-, 【答案】A 【解析】O y x试题分析:图中小手在第三象限,横纵坐标均为负数,只有选项A符合.故选A.10.如图,在平面直角坐标系中,A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2).把一条长为2014个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A﹣B﹣C﹣D﹣A…的规律绕在四边形ABCD的边上,则细线另一端所在位置的点的坐标是()A.(﹣1,0)B.(1,﹣2)C.(1,1)D.(﹣1,﹣1)【答案】D.二、填空题(共10小题,每题3分,共30分)11.如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE等于度.【答案】70°.12.如图,两直线a.b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a.b的位置关系是____________ .【答案】a∥b.13.如图,直线a、b被直线c所截,若满足,则a、b平行.【答案】∠1=∠2或∠3=∠2或∠3+∠4=1800【解析】试题分析:∵∠1=∠2(以此为例),∴a∥b(同位角相等两直线平行),14.如图所示,已知AB ∥CD ∥EF , 则∠x 、∠y 、∠z 三者之间的关系是 .【答案】∠x+∠y-∠z=180°. 【解析】试题分析:如图,∵CD ∥EF ,∴∠y+∠1=180°,∴∠1=180°-∠y,.∵AB ∥EF ,∴∠x=∠AEF=∠z+∠1=∠z+180°-∠y,∴∠x+∠y-∠z=180°.15.如图,在直角坐标系中,已知点A(31)--,,点B(21)-,,平移线段AB ,使点A 落在1A (01)-,,点B 落在点B 1.,则点B 1.的坐标为 .【答案】(1,1).16.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b=b a b a -+,如3※2=52323=-+,那么6※3= . 【答案】1. 【解析】 试题分析:6※6333+==1. 17.比较大小:9.5- 6.【答案】>. 【解析】试题分析:因为5.9<6,所以 5.9<6,所以9.5->6-.18.16的算术平方根是 ,-8的立方根是 . 【答案】2,-2.19.在平面直角坐标系中,已知点A ()4,3-、()0,2B ,现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是 . 【答案】(4,-1) 【解析】试题分析:点A 向右平移4个单位,向下平移3个单位与原点重合,故点A 也如此平移,平移后为(4,-1). 20.如图,长方形ABOC 在直角坐标系中,点A 的坐标为(–2,1),则长方形的面积等于 ﹒【答案】2. 【解析】试题分析:点A 的坐标为(﹣2,1),则点A 到y 轴,x 轴的距离分别为2,1,∴长方形的面积=2×1=2. 三、解答题(共60分) 21.(10分)计算:(1)22327(6)(5)-+-+ (2)2(3)1612----【答案】(1)8;(2)2-.22.(8分)在如图所示的平面直角坐标系中描出下面各点:A (0,3);B (1,-3);C (3,-5); D (-3,-5);E (3,5);F (5,7);G (5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点 重合. (2)连接CE ,则直线CE 与y 轴是什么关系?(3)顺次连接D 、E 、G 、C 、D 得到四边形DEGC ,求四边形DEGC 的面积. 【答案】(1)D .(2)直线CE 与y 轴平行.(3)40A BC O【解析】试题分析:(1)易知C向x负半轴移动6个单位,即往左边移动6个单位,与D重叠.[来源:学科网] (2)连接CE,因为两点坐标x值相等,故CE垂直于x轴交于H点,平行于y轴(3)四边形DEGC面积=S三角形EDC+S三角形GEC=1111DC610102 2222EC EC GH⋅+⋅=⨯⨯+⨯⨯=4023.(6分)如图,直线AB、CD、EF相交于点O,OG平分∠COF,∠1=30°,∠2=45°.求∠3的度数.【答案】∠3 =°.24.(7分)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF 127分)已知∠1=∠2,∠D=∠C 求证:∠A=∠F【解析】试题分析:根据平行线判定推出BD∥CE,求出∠D+∠CBD=180°,推出AC∥DF,根据平行线性质推出即可.试题解析:∵∠1=∠2,∴BD∥CE,∴∠C+∠CBD=180°,∵∠C=∠D,∴∠D+∠CBD=180°,∴AC∥DF,∴∠A=∠F.27.(8分)在平面直角坐标系中,已知点A(-4,3)、B(-2,-3)(1)描出A、B两点的位置,并连结AB、AO、BO.(2)三角形AOB的面积是__________.把三角形AOB向右平移4个单位,再向上平移2个单位,画出平移后的三角形A′B′C′,并写出各点的坐标.试题解析:(1)A、B两点的位置如图所示:(2)三角形AOB的面积=4×6-12×2×6-12×2×3-12×3×4=24-6-3-6=24-15=9;(3)三角形A′B′C′如图所示,A′(0,5),B′(2,-1),C′(4,2).考点:作图-平移变换.28.(7分)如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标.【解析】试题分析:(1)以火车站向左2个单位,向下1个单位为坐标原点建立平面直角坐标系即可;(2)根据平面直角坐标系写出体育场、市场、超市的坐标即可.试题解析:(1)建立平面直角坐标系如图所示;(2)体育场(﹣2,4),市场(6,4),超市(4,﹣2).。
人教版数学七年级下册《期中检测卷》(含答案)
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A (﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A 30° B. 40° C. 50° D. 60°4.如图,AB ∥CD ,∠AGE=126°,HM 平分∠EHD ,则∠MHD 的度数是( )A. 44°B. 25°C. 26°D. 27° 5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°6.点()1,3-向右平移个单位后的坐标为( )A ()4,3- B. ()1,6- C. ()2,3 D. ()1,0- 7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( )A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩ 8.下列说法正确的是( )A. 的平方根是B. 的平方根C. 的平方根D. 的平方根9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是.13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.319127-=_____.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1)231981416⎛⎫-+-+ ⎪⎝⎭(2)3232--20.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A、B直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 3[答案]C[解析]试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.[详解]解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.[详解]解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°[答案]D[解析][分析]由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.[详解]解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°[答案]D[解析][分析]根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.[详解]解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .[点睛]本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.点()1,3-向右平移个单位后坐标为( )A ()4,3-B. ()1,6-C. ()2,3D. ()1,0-[答案]C[解析][分析]直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.[详解]解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .[点睛]本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩[答案]A[解析][分析] 根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.[详解]根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.[点睛]本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 的平方根是B. 的平方根C. 的平方根D. 的平方根[答案]A[解析]分析]根据平方根性质,逐一判定即可.[详解]A选项,的平方根是,正确;B选项,的平方根是,错误;C选项,的平方根是,错误;D选项,没有平方根,错误;故选:A.[点睛]此题主要考查对平方根的理解,熟练掌握,即可解题.9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行[答案]C[解析][分析]根据平行于x轴的直线上两点的坐标特点解答.[详解]∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.[点睛]解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4[答案]C[解析][分析]由于二元一次方程2x+y=8中y的系数是1,可先用含x的代数式表示y,然后根据此方程的解是正整数,那么把最小的正整数x=1代入,算出对应的y的值,再把x=2代入,再算出对应的y的值,依此可以求出结果.[详解]解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .[点睛]由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1.二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个[答案]3[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.的平方根是 .[答案]±2.[解析][详解]±2. 故答案为±2.13.=5.036,=15.906,__________.[答案]503.6[解析][分析]根据平方根的计算方法和规律计算即可[详解]解:253600=25.3610000⨯=5.036×100=503.6.故答案为503.6.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________[答案]15°[解析][分析]如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.[详解]由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____.[答案]2 3[解析][分析]根据是实数的性质即可化简.[详解]解:原式=331982127273-==. 故答案为23. [点睛]此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).[答案]①③[解析][分析]根据平行线的判定和性质解答即可.[详解]解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.[点睛]此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__[答案](22020,3)[解析][分析]根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.[详解]∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)[点睛]依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1(2)[答案](1)12-;(2).[解析][分析](1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;[详解](11512442 =-+=-(2)==[点睛]考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩[答案](1)11xy=⎧⎨=-⎩;(2)521xyz=⎧⎪=-⎨⎪=⎩.[解析][分析](1)首先由①×2+②,消去y,然后解关于x的方程即可求解.(2)由①+②+③得到x+y+z=4④,再由①-④得到y的值,②-④得到z的值,③-④得到x的值.[详解](1)23 321 x yx y①②-=⎧⎨+=⎩由①×2+②,得7x=7,解得x=1,把x=1 代入①式,得2﹣y=3,解得y=﹣1所以原方程组的解为11 xy=⎧⎨=-⎩.(2)2 2....2 5....29.... x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩[点评]考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.[答案](1)图见解析(2)点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3)(3)192[解析][分析](1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.[详解](1)如图,△ABC 和△’’’A B C 为所求; (2)∵把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.∴点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3);(3)三角形ABC 的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.[点睛]本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?[答案](1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.[解析][分析](1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.[详解](1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.[点睛]本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键. 23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.[详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.[答案]见解析.[解析][分析]根据两直线平行,同旁内角互补得到∠A+∠ABC=180°,再根据∠A=∠C得到∠C+∠ABC=180°,根据同旁内角互补,两直线平行得到DC∥AB,再利用两直线平行,内错角相等得到∠1=∠2.[详解]∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=∠C,∴∠C+∠ABC=180°,∴DC∥AB,∴∠1=∠2.[点睛]考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.[答案](1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.[解析]分析](1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.[详解]解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行)(2)①当Q 在C 点左侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换)②当Q 在C 点右侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.[点睛]本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?[答案]小长方形的长为10mm ,宽为6mm .[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设每个长方形的长为xmm ,宽为 ymm ,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.。
初一下学期期中考试数学试卷含答案(共3套,人教版)
七年级第二学期期中考试试卷数 学一、选择题(本大题共8小题,共24分)1. 下列各图中,∠1与∠2是对顶角的是( ) A. B. C. D.2. 4的平方根是( ) A. 2 B. C.2 D.±23. 在下列所给出坐标的点中,在第二象限的是( )A. (2,3)B. (-2,3)C. (-2,-3)D. (2,3)4. 在实数5,227,38-,0,,2π,36,0.1010010001中,无理数有( )A. 2个B. 3个C. 4个D. 5个5.如图,直线AB ,CD 被直线EF 所截,则∠3的同旁内角是( )A.∠1B.∠2C.∠4D.∠56. 若a ,b 为实数,且229943a a b a -+-=++,则a b +的值为( )A .-1B .1C .1或7D .77. 已知∠AOB,P是任一点,过点P画一条直线与OA平行,则这样的直线()A. 有且仅有一条B. 有两条C. 不存在D. 有一条或不存在8. 下列语句中是命题的有()①如果两个角都等于70°,那么这两个角是对顶角; ②三角形内角和等于180°;③画线段AB=3 cm.A、0个B、1个C、2个D、3个二、填空题(本大题共8小题,共24分)9.若3m-12与12-3m都有平方根,则m的平方根为10.如图,直线AB,CD,EF交于点O,OG平分,且,,则∠DOG= 。
11.把9的平方根和立方根按从小到大的顺序排列为______.12.从新华书店向北走100 m,到达购物广场,从购物广场向西走250 m到达体育馆,若体育馆所在位置的坐标是(-250,0),则选取的坐标原点是_ __13.在如图所示的长方体中,与AB垂直且相交的棱有__ _条.14.如果,其中为有理数,则a+b=______.15.若两个连续整数x,y满足,则x+y的值是_____16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点,,,,那么点为自然数的坐标为______用n表示.三、解答题(本大题共9小题,共72分)17.计算:(每小题4分,共8分)求下列各式中x的值:(每小题4分,共8分)(1)2x2=4;;(2)64x3+27=019.如图,直线a∥b,点B在直线b上,AB⊥BC,∠1=55°,求∠2的度数.(6分)20.完成下面的证明(8分)如图,点E 在直线DF 上,点B 在直线AC 上,若∠AGB=∠EHF, ∠C=∠D .求证:∠A=∠F .证明:∵∠AGB=∠EHF∠AGB =______对顶角相等∴∠EHF=∠DGF∴DB∥EC ( )∴∠ =∠DBA ( )又∵∠C=∠D ∴∠DBA=∠DDF ∥ ( )∴∠A=∠F( )21.已知a+2的立方根是3,3a+b-1算术平方根是4,c 是 整数部分.(9分) (1)求a,b,c 的值;(2)求3a - b+c 的平方根。
2022-2023学年人教版七年级数学下册第十章综合检测卷附答案解析
2022-2023学年七年级数学下册第十章综合检测卷数据的收集、整理与描述一、选择题(每小题3分,共24分)1.下列调查中,最适合采用全面调查的是()A.了解全国中学生的睡眠时间B.了解某河流的水质情况C.调查全班同学的视力情况D.了解一批灯泡的使用寿命2.如图,整个圆代表七年级全体同学参加数学拓展课的总人数,其中参加“生活数学”拓展课的人数占总人数的35%,则图中表示“生活数学”拓展课人数的扇形是()A.MB.NC.PD.Q3.王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型百分率40%35%10%15%A.16B.14C.4D.64.为了解某市2020年参加中考的34000名学生的视力情况,抽查了其中1800名学生的视力情况进行统计分析,下面叙述错误的是()A.34000名学生的视力情况是总体B.本次调查是抽样调查C.1800名学生的视力情况是总体的一个样本D.样本容量是340005.某学校在开展“节约每一滴水”的活动中,从八年级的200名同学中任选出10名同学汇报各自家庭一个月的节水情况,将有关数据整理成下表:节水量(单位:吨)0.511.52同学数(人)2341估计这200名同学的家庭一个月节约用水的总量是()A.180吨B.200吨C.240吨D.360吨6.垃圾分类利国利民.某校宣传小组就“空矿泉水瓶应投放到哪种颜色的垃圾收集桶内”进行统计活动,他们随机采访50名学生并作好记录.以下是排乱的统计步骤:①从扇形统计图中分析出本校学生对空矿泉水瓶投放的正确率;②整理采访记录并绘制空矿泉水瓶投放频数分布表;③绘制扇形统计图来表示空矿泉水瓶投放各收集桶所占的百分比.正确统计步骤的顺序应该是()A.②→③→①B.②→①→③C.③→①→②D.③→②→①7.2020年11月1日零时,我国开展第七次全国人口普查.2021年5月11日,国务院新闻办公室公布普查结果,如图是根据我国历次人口普查数据,绘制的我国每10万人中拥有大学文化(指大专及以上)程度人数的折线图.设2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x,则下列关于x 的方程正确的是()A.(1+0.9)x=1.55B.0.9(1+x)×10=1.55C.0.9(1+x)=1.55D.0.9(1+x)10=1.558.十一假期期间相关部门对到某景点的游客的出行方式进行了随机抽样调查,整理绘制了两幅统计图(如图,尚不完整),根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形统计图中的m为10%C.样本中选择公共交通出行的有2500人D.若十一假期期间到该景点的游客有50万人,则选择自驾方式出行的约有25万人二、填空题(每小题3分,共24分)9.据中国载人航天工程办公室消息,神舟十四号航天员乘组于2022年7月25日10时03分成功开启问天实验舱舱门,顺利进入问天实验舱.这是中国航天员首次在轨进入科学实验舱.在神舟十四号飞船起飞前,科学工作者要对其零件进行检查,检查的方式是.(填“全面调查”或“抽样调查”)10.(2021上海金山二模)为了了解某校初三学生在体育测试中报名球类的情况,随机调查了40名学生的报名情况,得到如下数据.项目排球篮球足球人数101515根据此信息,估计该校480名初三学生报名足球的学生人数为.11.超速行驶是交通事故频发的主要原因之一.交警部门统计某日7:00~9:00经过高速公路某测速点的汽车的速度,得到如图所示的折线图,若该路段汽车限速为110km/h,则超速行驶的汽车有辆.12.(2022广东东莞一模)双减政策背景下,为落实“五育并举”,某学校准备打造学生第二课堂,有四类课程可供选择,分别是A.书画类、B.文艺类、C.社会实践类、D.体育类.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了如下两幅不完整的统计图,若该校七年级共有800名学生,根据上述调查结果估计该校七年级学生选择“社会实践类”的共有名.13.某中学开展以“我最喜欢的职业”为主题的调查活动,根据数据绘制的不完整统计图如图所示,图中工人部分的圆心角为°.14.在某校对若干名青少年进行最喜爱的运动项目的抽样调查中,得到如下统计图.如果最喜爱足球的人数比最喜爱骑自行车的人数多30,那么参加这次调查的总人数是.15.2022年《狙击手》《长津湖之水门桥》《奇迹·笨小孩》等电影火爆上映.某中学抽取部分学生对“你最喜欢的电影”进行问卷调查,收集整理数据后列频数分布表(部分)如下:电影《狙击手》《长津湖之水门桥》《奇迹·笨小孩》其他频数8050百分比40%25%m则表格中m的值为.16.(2020湖北十堰房县期末)某中学七年级甲、乙、丙三个班中,每班的学生人数都为40,某次数学考试的成绩统计如下:(统计表和统计图中,每组分数含最小值,不含最大值)甲班数学成绩频数分布直方图乙班数学成绩各分数段人数扇形统计图丙班数学成绩频数分布表分数50~6060~7070~8080~9090~100频数1415119(人数)根据图、表提供的信息,80~90分这一组人数最多的班是.三、解答题(共52分)17.(8分)(2022广东东莞光明中学一模改编)为了抵制手机诱惑,减少手机影响,七年级各班召开了“放下手机,让我们读书吧!”主题班会,号召全体同学每周读一本好书(从自然科学、文学艺术、社会百科和小说四类书籍中选一本),一周后,七年级(2)班学习委员对全班同学所读书籍进行统计并绘制成如下不完整的统计图表.书籍类型频数百分率自然科学a20%文学艺术2550%社会百科12b小说36%请你根据图表中提供的信息,解答以下问题:(1)该班总人数为;(2)表中a=,b=,将条形图补充完整;(3)七年级共有学生860人,按七年级(2)班统计结果估算,全年级有人阅读的书籍是自然科学类. 18.(8分)(2022广东东莞一模)为了解某市人口年龄结构情况,一机构对该市的人口数据进行随机抽样分析,绘制了如下尚不完整的统计表和统计图.类别A B C D年龄0≤t<1515≤t<6060≤t<65t≥65t(岁)人数4.711.6m2.7(万)根据以上信息解答下列问题:(1)m=,扇形统计图中“C”对应的圆心角度数是;(2)该市现有人口约800万,请根据此次抽查结果,估计该市现有60岁及以上的人数.19.(8分)(2022广东广州花都期末)第24届冬季奥林匹克运动会于2022年2月4日至20日在北京市和河北省张家口市联合举行,这是中国第一次举办冬季奥运会.北京冬季奥运会的成功举办,激发了国人对冰雪运动项目的喜爱.某中学为了解学生对速度滑冰、冰球、单板滑雪、高山滑雪、冰壶的喜爱情况,在全校范围内随机抽取了若干名学生进行问卷调查,数据如下:(1)单板滑雪所在扇形的圆心角度数为,补全条形统计图;(2)该校共有1200名学生,估计该校全体学生中喜爱单板滑雪的学生有多少名.20.(8分)2022年两会召开之前,某校数学实践小组就人们近期关注的五个热点话题:“A.从严治党;B.依法治国;C.国家安全;D.社会保障;E.教育改革”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图所示的两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有人;(2)将条形统计图补充完整;(3)扇形统计图中的a=,话题D所在扇形的圆心角是度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“依法治国”的人数.21.(10分)(2022广东广州大学附中期末)某校为了了解初三年级600名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生所占的百分比为,在扇形统计图中,D组的圆心角是度;(3)请你估计该校初三年级体重超过60.5kg的学生有多少名.22.(10分)2022年2月6日,中国女足以3∶2逆转绝杀韩国队,夺得亚洲杯冠军.某校受中国女足队精神的鼓舞拟成立校足球队,为了解学校学生的身高情况,随机抽取该校男生、女生进行调查.已知抽取的学生中男生和女生的人数相同,利用所得数据绘制如下统计图表:身高情况分组表(单位:cm)组别身高A x<155B155≤x<160C160≤x<165D165≤x<170E x≥170根据图表提供的信息,回答下列问题:(1)求抽取的男生人数;(2)求抽取的女生的身高在E组的人数;(3)已知该校共有男生380人,女生320人,请估计全校身高在160≤x<170范围内的学生总人数.答案1.C根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,一般来说,对于具有破坏性的、无法进行全面调查的、全面调查意义或价值不大的调查,应选择抽样调查,对于调查范围比较小、精确度要求高的、事关重大的调查,往往选用全面调查.2.A∵扇形Q的圆心角为120°,∴参加此类课的人数占总人数的120°÷360°×100%≈33%,∵35%>33%,∴表示“生活数学”拓展课人数的扇形的圆心角一定比120°大,∴题图中表示“生活数学”拓展课人数的扇形是M,故选A.3.A本班A型血的人数为40×40%=16.故选A.4.D A.34000名学生的视力情况是总体,故A不符合题意;B.本次调查是抽样调查,故B不符合题意;C.1 800名学生的视力情况是总体的一个样本,故C不符合题意;D.样本容量是1800,故D符合题意.故选D.5.C选出的10名同学的家庭平均月节约用水量为(0.5×2+1×3+1.5×4+2×1)÷10=1.2(吨),故这200名同学的家庭一个月节约用水的总量约为1.2×200=240(吨).6.A统计调查的一般过程:①收集数据;②整理数据;③描述数据;④分析数据.根据统计调查的一般过程判断即可得本题正确统计步骤的顺序是②→③→①,故选A.7.C2020年每10万人中拥有大学文化程度的人数与2010年相比的增长率为x,根据题意得0.9(1+x)=1.55,故选C.(注意:不要误以为x是每年的增长率而错选D)8.D A.本次抽样调查的样本容量是2000÷40%=5000,此选项结论正确;B.扇形统计图中的m为1-(50%+40%)=10%,此选项结论正确;C.样本中选择公共交通出行的有5000×50%=2500(人),此选项结论正确;D.若十一假期期间到该景点的游客有50万人,则选择自驾方式出行的约有50×40%=20(万人),此选项结论错误.故选D.9.答案全面调查解析对神舟十四号飞船的零件进行检查,事关重大,检查方式是全面调查.10.答案180解析估计该校480名初三学生报名足球的学生人数为480×1540=180.11.答案80解析由题图可知,速度超过110km/h的有60+20=80(辆).12.答案128解析本次被抽查的学生共有20÷40%=50(名),800×850=128(名),即估计该校七年级学生选择“社会实践类”的共有128名.13.答案36解析∵被调查的总人数为40÷20%=200,∴题图中工人部分的圆心角为360°×20200=36°,故答案为36.14.答案360解析根据题意,可得(人),即参加这次调查的总人数是360.15.答案10%解析由题表可知被调查的学生总人数为80÷40%=200,∴最喜欢《长津湖之水门桥》的人数所占百分比为50200×100%=25%,则m=1-(40%+25%+25%)=10%.16.答案甲班解析由甲班数学成绩频数分布直方图可知,80~90分这一组人数=40-12-8-5-2=13,由乙班数学成绩各分数段人数扇形统计图可知,80~90分这一组人数=40×(1-10%-5%-35%-20%)=12,由丙班数学成绩频数分布表可知,80~90分这一组人数是11,所以80~90分这一组人数最多的班是甲班.17.解析(1)该班总人数为25÷50%=50.(2)a=50×20%=10,b=12÷50×100%=24%,补全的条形图如图.(3)860×20%=172(人),即全年级大约有172人阅读的书籍是自然科学类.18.解析(1)本次抽样调查,共调查的人数是11.6÷58%=20(万),“C”的人数为20-4.7-11.6-2.7=1(万),∴m=1,扇形统计图中“C”对应的圆心角度数为120×360°=18°.故答案为1;18°.(2)1+2.720×800=148(万).答:该市现有60岁及以上的人数约为148万.19.解析(1)调查的学生有50÷25%=200(人),单板滑雪所在扇形的圆心角度数为360°×80200=144°,高山滑雪的人数为200-50-24-80-16=30,补全条形统计图如下:(2)1200×80200=480(名).答:估计该校全体学生中喜爱单板滑雪的学生有480名.20.解析(1)调查的居民共有60÷30%=200(人),故答案为200.(2)选择C的居民有200×15%=30(人),选择A的居民有200-60-30-20-40=50(人),补全的条形统计图如图所示.(3)a%=50÷200×100%=25%,话题D所在扇形的圆心角是360°×20200=36°,故答案为25;36.(4)10000×30%=3000(人).答:该小区居民中最关注的话题是“依法治国”的人数大约为3000.21.解析(1)4÷8%=50(人),50-4-16-10-8=12(人),故样本容量为50,补全的直方图如下:(2)C组学生所占的百分比为16÷50×100%=32%,D组所对应的圆心角的度数为360°×1050=72°.(3)600×10+850=216(名).答:该校600名初三年级的学生中,体重超过60.5kg的大约有216名.22.解析(1)抽取的男生人数为4+12+10+8+6=40.(2)40×(1-17.5%-37.5%-25%-15%)=2(人),∴抽取的女生的身高在E组的人数为2.(3)10+840×380+320×(25%+15%)=299(人),∴估计全校身高在160≤x<170范围内的学生总人数为299.。
人教版数学七年级下学期《期中检测试题》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列计算正确的是( )A. ()011-=-B. ()111-=C. ()()221a a -÷-=D. 3322a a -= 2.已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为( )A. 43.510⨯米B. 53.510-⨯米C. 43.510-⨯米D. 53.510⨯米 3.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB=5cm ,PC=3cm ,则点P 到直线距离为( )A. 4cmB. 5cmC. 小于3cmD. 不大于3cm 4.如图,若AB ∥CD ,则∠A 、∠E 、∠D 之间是( )A. ∠A +∠E +∠D =180°B. ∠A +∠E -∠D =180°C. ∠A -∠E +∠D =180°D. ∠A +∠E +∠D =270°5.在方程组2131x y y z -=⎧⎨=+⎩,231x y x =⎧⎨-=⎩,035x y x y +=⎧⎨-=⎩,123xy x y =⎧⎨+=⎩,111y x y ⎧=⎪⎨⎪+=⎩中,是二元一次方程组的有( )个.A 2 B. 3 C. 4 D. 56.如图,下列说法一定正确的是( )A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C 是同位角 7.时钟显示为8:30时,时针与分针所夹锐角是( )A. 65︒B. 70︒C. 75︒D. 85︒8.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A. 60°B. 50°C. 40°D. 30° 9.若35m =,34n =,则23m n -等于( ) A. 52 B. 254 C. 6 D. 2010.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( ) A. 2.20.4a b =⎧⎨=-⎩ B. 2014.22012.6a b =⎧⎨=⎩ C. 2009.82012.6a b =-⎧⎨=⎩ D. 2014.22013.4a b =⎧⎨=⎩ 11.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A. 13∠=∠B. 如果230∠=︒,则有//AC DEC. 如果230∠=︒,则有//BC ADD. 如果230∠=︒,必有4C ∠=∠12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A. 11910813x y y x x y =⎧⎨+-+=⎩()() B. 10891311y x x y x y +=+⎧⎨+=⎩C. 91181013x y x y y x ()()=⎧⎨+-+=⎩D. 91110813x y y x x y =⎧⎨+-+=⎩()() 二、填空题13.已知∠1=30°,则∠1的余角的补角度数是_________.14.计算:()()32p p -⋅-=________15.已知80AOB ∠=︒,20AOC ∠=︒,则BOC ∠的度数为______.16.如果方程组45x by ax =⎧⎨+=⎩解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. 17.如图,已知,GF AB ⊥12,B AGH ∠=∠∠=∠.则下列结论:①//GH BC ;②D F =∠∠;③HE 平分AHG ∠;④HE AB ⊥.其中正确的是________(把你认为正确答案的序号都填上)18.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ 三、解答题19.计算:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (2)()52632x x x x -÷+⋅(3)232213112346x y x y x y ⎛⎫-⋅-+⎪⎝⎭ (4)()()221x x x +-+20.解方程组(1)128x y x y =+⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ 21.已知:如图,AD BC ⊥于点,EF BC ⊥于点,3E ∠=∠,求证:AD 平分BAC ∠.22.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.23.如图,直线AB 、CD 、MN 相交与点O ,FO ⊥BO ,OM 平分∠DOF(1)请直接写出图中所有与∠AON 互余的角: .(2)若∠AOC=52∠FOM ,求∠MOD 与∠AON 的度数.24.如图,EF ∥AD ,AD ∥BC ,CE 平分∠BCF ,∠DAC =120°,∠ACF =20°,求∠FEC 的度数.25.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?选做题:26.九个小朋友围坐在一张圆桌旁,每人想好一个数,并告诉坐在两旁的人,然后将他两旁人告诉他的数的平均数报出来,每人报的结果如右图所示,那么报11的人想的数是多少?答案与解析一、选择题1.下列计算正确的是( )A. ()011-=-B. ()111-=C. ()()221a a -÷-=D. 3322a a -= [答案]D[解析][分析]根据幂的运算性质,对四个选项进行判断即可.[详解]解: A.(-1)0=1,∴A 错误; B.11(1)11--==--,∴B 错误; C .()()()22221a aa a -÷-=÷-=-,∴C 错误. D .3331222a a a -=⋅=,∴D 正确. 故选D . [点睛]此题主要考查了零指数幂和负整数指数幂,关键是掌握负整数指数为正整数指数倒数;任何非0数的0次幂等于1.2.已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为( )A. 43.510⨯米B. 53.510-⨯米C. 43.510-⨯米D. 53.510⨯米[答案]B[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]0.000035米=3.5×10-5米;故选B .[点睛]本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.点P 为直线外一点,点A 、B 、C 为直线上三点,PA =4cm ,PB=5cm ,PC=3cm ,则点P 到直线的距离为( )A. 4cmB. 5cmC. 小于3cmD. 不大于3cm [答案]D[详解]解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∴点P到直线的距离≤PC,即点P到直线的距离不大于3cm.故选:D.4.如图,若AB∥CD,则∠A、∠E、∠D之间的是( )A ∠A+∠E+∠D=180° B. ∠A+∠E-∠D=180°C. ∠A-∠E+∠D=180° D. ∠A+∠E+∠D=270°[答案]B[解析][分析]作EF∥AB,则EF∥CD∥AB,根据平行线的性质即可求解.[详解]作EF∥AB,则EF∥CD∥AB,∴∠A+∠AEF=180°,∠D=∠DEF,又∠AED=∠AEF+∠DEF,故∠A+∠E-∠D=180°选B.[点睛]此题主要考查平行线的性质,解题的关键是熟知平行线的性质.5.在方程组2131x yy z-=⎧⎨=+⎩,231xy x=⎧⎨-=⎩,35x yx y+=⎧⎨-=⎩,123xyx y=⎧⎨+=⎩,111yx y⎧=⎪⎨⎪+=⎩中,是二元一次方程组的有()个.A. 2B. 3C. 4D. 5 [答案]A[解析]根据二元一次方程组的定义逐一分析即可.[详解]2131x y y z -=⎧⎨=+⎩含有三个未知数,故不是二元一次方程组; 231x y x =⎧⎨-=⎩是二元一次方程组; 035x y x y +=⎧⎨-=⎩是二元一次方程组; 123xy x y =⎧⎨+=⎩中1xy =是二元二次方程,故该方程组不是二元一次方程组; 111y x y ⎧=⎪⎨⎪+=⎩中11y =不是整式方程,故该方程组不是二元一次方程组; 综上,是二元一次方程组的只有231x y x =⎧⎨-=⎩和035x y x y +=⎧⎨-=⎩. 故选:A .[点睛]本题考查二元一次方程组的定义,要求熟悉二元一次方程组的形式及其特点:含有2个未知数,最高次项的次数是1的整式方程.6.如图,下列说法一定正确的是( )A. ∠1和∠4是内错角B. ∠1和∠3是同位角C. ∠3和∠4是同旁内角D. ∠1和∠C 是同位角[答案]D[解析][分析] 根据内错角、同位角以及同旁内角的定义进行判断即可.[详解]解:A 、∠2和∠4是内错角,故本选项错误;B 、∠1和∠C 是同位角,故本选项错误;C 、∠3和∠4是邻补角,故本选项错误;D 、∠1和∠C 是同位角,故本选项正确;故选D .[点睛]本题考查了同位角、内错角、同旁内角.解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.7.时钟显示为8:30时,时针与分针所夹的锐角是( )A. 65︒B. 70︒C. 75︒D. 85︒[答案]C[解析][分析]根据钟面平均分成2份,可得每份的度数,根据时针与分针相距的份数乘以每份的度数,可得答案.[详解]解:钟面每份是30°,8点30分时针与分针相距2.5份,8点30分时,时钟的时针与分针所夹的锐角是30°×2.5=75°,故选:C .[点睛]本题考查了钟面角,利用了时针与分针相距的份数乘以每份的度数等于钟面角.8.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是( )A. 60°B. 50°C. 40°D. 30°[答案]C[解析] [详解]解:∵FE ⊥DB ,∵∠DEF=90°,∵∠1=50°,∴∠D=90°﹣50°=40°,∵AB ∥CD ,∴∠2=∠D=40°. 故选C .[点睛]本题考查平行线的性质.9.若35m =,34n =,则23m n -等于( ) A. 52 B. 254 C. 6 D. 20[答案]B[解析][分析]运用同底数幂的除法进行分解22n 3=33-÷m n m ,把值代入求职即可;[详解]由题可得()222n 3=33=33-÷÷m n m m n , 把35m =,34n =代入上式得:原式=22554=254=4÷÷. 故答案选B .[点睛]本题主要考查了整式乘法中幂的运算性质逆运算公式,准确应用公式是解题的关键. 10.若方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩的解是( ) A. 2.20.4a b =⎧⎨=-⎩ B. 2014.22012.6a b =⎧⎨=⎩ C. 2009.82012.6a b =-⎧⎨=⎩ D. 2014.22013.4a b =⎧⎨=⎩[答案]C[解析][分析]将2012+a 和2013-b 分别看作整体,则可分别对应x ,y 的值,分别解方程即可求得结果.[详解]解:令 2012+=a m ,2013-=b n ,则方程组(2012)2(2013)33(2012)4(2013)5a b a b +--=⎧⎨++-=⎩可化为23345m n m n -=⎧⎨+=⎩, ∵方程组23345x y x y -=⎧⎨+=⎩的解是 2.20.4x y =⎧⎨=-⎩, ∴方程组23345m n m n -=⎧⎨+=⎩的解是 2.20.4m n =⎧⎨=-⎩, 即2012 2.220130.4a b +=⎧⎨-=-⎩, 解得:2009.82012.6a b =-⎧⎨=⎩, 故选:C .[点睛]本题考查了二元一次方程组的解,掌握整体思想的运用是解题的关键.11.若将一副三角板按如图所示的方式放置,则下列结论不正确的是( )A. 13∠=∠B. 如果230∠=︒,则有//AC DEC. 如果230∠=︒,则有//BC ADD. 如果230∠=︒,必有4C ∠=∠[答案]C[解析][分析]根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.[详解]解:A 、∵∠CAB =∠EAD =90°,∴∠1=∠CAB−∠2,∠3=∠EAD−∠2,∴∠1=∠3;故该选项正确,B 、∵∠2=30°,∴∠1=90°−30°=60°,∵∠E =60°,∴∠1=∠E ,∴AC ∥DE ;故该选项正确,C 、∵∠2=30°,∴∠3=90°−30°=60°,∵∠B =45°,∴BC 不平行于AD ;故该选项错误;D 、由AC ∥DE 可得∠4=∠C ;故该选项正确,故选:C.[点睛]此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.12.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D91110813 x yy x x y=⎧⎨+-+=⎩()()[答案]D[解析][分析]根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.[详解]设每枚黄金重x两,每枚白银重y两,由题意得:91110813x yy x x y=⎧⎨+-+=⎩()(),故选D.[点睛]此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.二、填空题13.已知∠1=30°,则∠1的余角的补角度数是_________.[答案]120°[解析][分析]根据余角和补角概念计算即可.[详解]∵∠1=30°,∴∠1的余角=90°﹣∠1=90°﹣30°=60°,则∠1的余角的补角=180°﹣∠1的余角=180°﹣60°=120°.故答案为:120°.[点睛]本题考查了余角和补角,解答本题的关键是熟练掌握互余两角之和等于90°,互补两角之和等于180°.14.计算:()()32p p-⋅-=________[答案]p 5[解析][分析]根据同底数幂的乘法法则解答即可.[详解]解:原式=-p 3·(-p 2)=p 5.故答案为:p 5.[点睛]本题主要考查了同底数幂的乘法,同底数幂相乘,底数不变,指数相加.15.已知80AOB ∠=︒,20AOC ∠=︒,则BOC ∠的度数为______.[答案]100︒或60︒[解析][分析]先画图形,注意先画较大的角,分情况:当OC 在AOB ∠的内部时,当OC 在AOB ∠的外部时,从而利用角的和差可得答案.[详解]解:当OC 在AOB ∠的内部时,如图,此时:60,BOC AOB AOC ∠=∠-∠=︒当OC 在AOB ∠的外部时,如图,此时:100.BOC AOB AOC ∠=∠+∠=︒故答案为:100︒或60︒[点睛]本题考查是角的和差运算,画好符合题意的图形是解题的关键.16.如果方程组45x by ax =⎧⎨+=⎩的解与方程组32y bx ay =⎧⎨+=⎩的解相同,则a+b 的值为______. [答案]1[解析][分析]根据题意,把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得到一个关于a ,b 的方程组,将方程组的两个方程左右两边分别相加,整理即可得出a+b 的值.[详解]解:根据题意把43x y =⎧⎨=⎩代入方程组52by ax bx ay +=⎧⎨+=⎩,得 345432b a b a +⎧⎨+⎩=①=②, ①+②,得:7(a+b )=7,则a+b=1,故答案为:1.[点睛]此题主要考查了二元一次方程组的解的定义以及加减消元法解方程组.一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.注意两个方程组有相同的解时,往往需要将两个方程组进行重组解题.17.如图,已知,GF AB ⊥12,B AGH ∠=∠∠=∠.则下列结论:①//GH BC ;②D F =∠∠;③HE 平分AHG ∠;④HE AB ⊥.其中正确的是________(把你认为正确答案的序号都填上)[答案]①④[解析][分析]根据平行线的性质定理与判定定理,即可解答.[详解]∵∠B=∠AGH ,∴GH ∥BC ,即①正确;∴∠1=∠MGH ,又∵∠1=∠2,∴∠2=∠MGH ,∴DE ∥GF ,∵GF ⊥AB ,∴DE ⊥AB ,即④正确;∠D=∠F ,HE 平分∠AHG ,都不一定成立;故答案为:①④.[点睛]此题考查平行线的性质定理与判定定理,解题的关键是熟记平行线的性质定理与判定定理.18.新定义一种运算,其法则为32a c a d bc b d =÷,则223x x x x--=__________ [答案][解析][分析]按照题干定义的运算法则,列出算式,再按照同底幂除法运算法则计算可得.[详解]222322333()()x x x x x x x xx--=-⋅÷-⋅= 故答案为: [点睛]本题考查定义新运算,解题关键是根据题干定义的运算规则,转化为我们熟知的形式进行求解.三、解答题19.计算:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ (2)()52632x x x x -÷+⋅(3)232213112346x y x y x y ⎛⎫-⋅-+⎪⎝⎭ (4)()()221x x x +-+[答案](1)0;(2)9x ;(3)53422492x y x y x y -+-;(4)34+x[解析][分析](1)原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可求出值;(2)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以单项式法则计算,合并即可得到结果;(3)原式利用幂的乘方与积的乘方运算法则,以及单项式乘以多项式法则计算即可得到结果;(4)原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果. [详解]解:(1)()02311233-⎛⎫⎛⎫--+ ⎪ ⎪⎝⎭⎝⎭ 819=--+0=;(2)()52632x x x x -÷+⋅1092x x x =-÷+992x x =-+9x =;(3)232213112346x y x y x y ⎛⎫-⋅-+ ⎪⎝⎭ 232222131121212346x y x y x y x y x y =-⋅+⋅-⋅ 53422492x y x y x y =-+-;(4)()()221x x x +-+ ()()()222x x x x =++-+2244x x x x =++--34x =+;[点睛]此题考查了整式的混合运算,零指数幂、负整数指数幂,熟练掌握运算法则及公式是解本题的关键. 20.解方程组(1)128x y x y =+⎧⎨+=⎩(2)11233210x y x y +⎧-=⎪⎨⎪+=⎩ [答案](1)32x y =⎧⎨=⎩;(2)312x y =⎧⎪⎨=⎪⎩[解析][分析](1)利用代入消元法求解即可;(2)方程组整理后,利用加减消元法求解即可.[详解]解:(1)128x y x y =+⎧⎨+=⎩①②, 把①式代入②中,得:()218y y ++=,解这个方程得:y=2,把y=2代入①中,得x=3,所以方程组的解为32x y =⎧⎨=⎩; (2)11233210x y x y +⎧-=⎪⎨⎪+=⎩, 原方程组可变为:3283210x y x y -=⎧⎨+=⎩①②, ①+②得:6x=18,解这个方程得:x=3,把x=3代入①中,得: y=12, 所以方程组的解为312x y =⎧⎪⎨=⎪⎩. [点睛]此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.21.已知:如图,AD BC ⊥于点,EF BC ⊥于点,3E ∠=∠,求证:AD 平分BAC ∠.[答案]见解析[解析][分析]因为∠ADB=∠EFB ,由同位角相等证明AD ∥EF ,则有∠1=∠E ,∠2=∠3,又因为∠3=∠1,所以有∠1=∠2,故AD 平分∠BAC .[详解]证明:∵AD BC ⊥于点,EF BC ⊥于点(已知),∴90EFC ADC ∠=∠=︒(垂直定义),∴ EF AD ∥(同位角相等,两直线平行),∴1E ∠=∠(两直线平行,同位角相等),32∠=∠(两直线平行,内错角相等).又∵3E ∠=∠(已知),∴12∠=∠(等量代换),∴AD 平分BAC ∠(角平分线定义).[点睛]此题是一道把平行线性质和判定、角平分线的定义结合求解的综合题.有利于培养学生综合运用数学知识的能力.22.如图,//EF AB ,70DCB ∠=︒,20CBF ∠=︒,130EFB ∠=︒.(1)直线CD 与AB 平行吗?为什么?(2)若68CEF ∠=︒,求ACB ∠的度数.[答案](1)平行,理由见解析;(2)∠ACB=42°.[解析][分析](1)根据两直线平行、同旁内角互补求出∠ABF ,得到∠ABC ,根据内错角相等、两直线平行证明;(2)根据两直线平行、同旁内角互补求出∠DCE ,计算即可.[详解]解:(1)平行,理由如下:∵//EF AB ,130EFB ∠=︒,∴18013050ABF ∠=︒-︒=︒,∵20CBF ∠=︒,∴70CBA ABF CBF ∠=∠+∠=︒,∵70DCB ∠=︒,∴∠CBA =∠DCB ,∴//CD AB ;(2)∵//EF AB ,68CEF ∠=︒,∴68A ∠=︒,由(1)知://CD AB ,∴180ACD A ∠+∠=︒,∴180********ACD A ∠=︒-∠=︒-︒=︒,又∵70DCB ∠=︒,∴1127042ACB ACD DCB ∠=∠-∠=︒-︒=︒.[点睛]本题考查的是平行线的判定和性质,掌握平行线的判定定理和性质定理是解题的关键.23.如图,直线AB 、CD 、MN 相交与点O ,FO ⊥BO ,OM 平分∠DOF(1)请直接写出图中所有与∠AON互余的角:.(2)若∠AOC=52∠FOM,求∠MOD与∠AON的度数.[答案](1)∠FOM,∠MOD,∠CON;(2)20°,70°[解析][分析](1)根据垂直的定义可得∠BOF=∠AOF=90°,由角平分线的定义和对顶角相等可得与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,用含x的式子表示出∠FOD和∠AOC的度数,然后由∠AOC=∠BOD,得出∠FOD+∠AOC=90°,据此列方程求解,再由(1)中∠MOD与∠AON互余可得出∠AON的度数.[详解]解:(1)∵FO⊥BO,∴∠BOF=∠AOF=90°,∴∠BOM+∠FOM=90°,又∠BOM=∠AON,∴∠AON+∠FOM=90°.∵OM平分∠DOF,∴∠DOM=∠FOM,又∵∠DOM=∠CON,∴与∠AON互余的角有:∠FOM,∠MOD,∠CON;(2)设∠MOD的度数为x°,∵OM平分∠FOD,∴∠MOD=∠FOM=x°,∴∠FOD=2x°,∠AOC=52∠FOM=5x2°,又∵FO⊥BO,∠AOC=∠BOD, ∴∠FOD+∠AOC=90°,即2x+5x2=90,解得:x=20.即∠MOD=20°,由(1)可知∠MOD与∠AON互余,∴∠AON=90°-∠MOD=90°-20°=70°.故∠MOD的度数为20°,∠AON的度数为70°.[点睛]本题考查了垂直的定义,角的平分线的定义,余角的定义与性质以及对顶角相等,正确理解相关概念是关键.24.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.[答案]20°[解析][分析]推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.[详解]∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB−∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.[点睛]本题考查了平行线的性质和判定,平行公理及推论,注意:平行线的性质有①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.25.一批货物要运往某地,货主准备租用汽车运输公司的甲、乙两种货车,已知过去两次租用这种货车的情况如下表:现租用该公司3辆甲种货车及5辆乙种货车一次刚好运完这批货,如果按每吨付运费30元计算,货主应付运费多少元?[答案]货主应该付运输费735元.[解析]试题分析:本题需知道1辆甲种货车,1辆乙种货车一次运货吨数.等量关系为:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.试题解析:设甲、乙两种货车每辆每次分别运货x吨、y吨,根据题意,得2315.5, {5635.x yx y+=+=解这个方程组,得4 {2.5 xy==则所运货物有3×4+5×2.5=24.5(吨),所以货主应该付运输费为24.5×30=735(元).答:货主应该付运输费735元.[点睛]应根据条件和问题知道应设的未知量是直接未知数还是间接未知数.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:2辆甲种货车运货吨数+3辆乙种货车运货吨数=15.5;5辆甲种货车运货吨数+6辆乙种货车运货吨数=35.列出方程组,再求解.选做题:26.九个小朋友围坐在一张圆桌旁,每人想好一个数,并告诉坐在两旁的人,然后将他两旁人告诉他的数的平均数报出来,每人报的结果如右图所示,那么报11的人想的数是多少?[答案]7[解析][分析]设报11的人心想的数是a ,用b ,c ,d 到i 分别表示顺指针其余8个小朋友所想的数,通过图可以分别表示出各字母之间的代数式,最后通过整合代数式列出方程,解方程即可.[详解]解:设、、、、、f 、、、分别表示9个小朋友所想的数,则有:248a c c =⨯-=-,21632b d d =⨯-=-,224c e e =⨯-=-,21326d f f =⨯-=-,2612e g g =⨯-=-,2128f h h =⨯-=-,2714g i i =⨯-=-,21021h a a =⨯-=-,21122i b b =⨯-=-,整合884441214a c e e g a =-=-+=+=+-==- 可得7a =,∴报11的人心想的数是7,故答案为:7.[点睛]正确理解题意,用方程的思想解决问题.要注意代数式的表示方法.。
2017-2018学年人教版初一(下学期)期末数学测试卷及答案
2017-2018学年人教版初一(下学期)期末数学测试卷及答案2017-2018学年七年级(下学期)期末数学试卷一、选择题(每题2分)1.为了了解一批电视机的寿命,从中抽取100台电视机进行试验,这个问题的样本是()A.这批电视机B.这批电视机的使用寿命C.所抽取的100台电视机的寿命D.1002.(-6)^2的平方根是()A.-6B.36C.±6D.±3.已知a<b,则下列不等式中不正确的是()A.4a<4bB.a+4<b+4C.-4a<-4bD.a-4<b-44.若点A(m,n),点B(n,m)表示同一点,则这一点一定在()A.第二、四象限的角平分线上B.第一、三象限的角平分线上C.平行于x轴的直线上D.平行于y轴的直线上5.过点A(-3,2)和点B(-3,5)作直线,则直线AB()A.平行于y轴B.平行于x轴C.与y轴相交D.与y轴垂直6.不等式组A.xB.-1<x<1C.x≥-1D.x≤1的解集是()7.已知A.1B.2C.3D.4是二元一次方程组的解,则m-n的值是()8.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A.30°B.60°C.80°D.120°9.如图,所提供的信息正确的是()A.七年级学生最多B.九年级的男生是女生的两倍C.九年级学生女生比男生多D.八年级比九年级的学生多10.若a^2=4,b^2=9,且ab<0,则a-b的值为()A.-2B.±5C.5D.-511.若|3x-2|=2-3x,则()A.x=1B.x=2/3C.x≤1/3D.x≥2/312.20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵.设男生有x人,女生有y人,根据题意,列方程组正确的是()A.3x+2y=52,x+y=20B.2x+3y=52,x+y=20C.3x+2y=20,x+y=52D.2x+3y=20,x+y=52二、填空题(每题3分)13.14.计算:2/3)^2÷(4/9) = ______.1/4)^-2×(1/2)^-3 = ______.15.(-5)的立方根是______.16.某校初中三年级共有学生400人,为了了解这些学生的视力情况,抽查20名学生的视力,对所得数据进行整理.在得到的条形统计图中,各小组的百分比之和等于100%,若某一小组的人数为4人,则该小组的百分比为20%.17.若方程mx+ny=6的两个解是(2,0)和(0,3),则m=______,n=______.18.已知关于x的不等式组的整数解有5个,则a的取值范围是什么?19.线段CD是由线段AB平移得到的,点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标是什么?20.如图,点D、E分别在AB、BC上,DE∥AC,AF∥BC,∠1=70°,则∠2=多少度?21.求下列式子中的x:28x²-63=0.22.求下列式子中的x:(x-1)³=125.23.解方程组:24.解方程组:25.已知方程组,当m为何值时,x>y?26.解不等式。
人教版数学七年级下学期《期中检测试题》有答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:1. 4的平方根是( )A. 2B. 2-C.D. 42. 在平面直角坐标系中,点(﹣2,3)所在象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 实数319,,16,,0.1010010001?··23π(相邻两个之间多一个 ),其中是无理 数的个数是( )个 A. B. C. D.4. 如图,把河AB 中的水引到C,拟修水渠中最短的是( )A. CMB. CNC. CPD. CQ5. 估计与27最接近的整数是( )A. B. C. D.6. 如图将一块三角板如图放置,9065ACB ABC ︒︒∠∠=,=,点,B C 分别在PQ MN ,上,若//,38PQ MN ACM ︒∠=,则ABP ∠的度数为( )A. 7︒B. 9︒C. 11︒D. 13︒7. 若0a b +=,则点(),P a b 一定不在( )A. 坐标轴上B. 轴上C. 轴上D. 第一象限8. 关于,x y 的二元一次方程2312x y +=的非负整数解有( )组.A. B. C. D.9. 下列说法中:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③垂直于同一直线的两条直线互相平行;④平行于同一直线的两条直线互相平行;⑤两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线互相平行;⑥连结、两点的线段就是、两点之间的距离,其中正确的有( )A. 个B. 个C. 个D. 个10. 在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第次向右平移得到点1(1,1)A , 第次向下平移得到点()21,1A -,第次向右平移得到点()341A -,第次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A ()64,55- B. ()65,53- C. ()66,56- D. ()67,58-二、填空题:11. =___.12. 已知点21,53()P x x --在轴上,则点的坐标是__________.13. 写出一个比大且比小的无理数__________.14. 已知关于,x y 的方程3221x y k -=+和 24y x -=的公共解满足 3x y -=,则 k =__________. 15. 假设存在一个数,且它具有的性质是21i =-,若()22180x -+=,则x =__________. 16. 在平面直角坐标系中,有点1,22,(12)(),2A m m B m m --++,且在轴上有另一点,使 三角形PAB 的面积为,则点坐标为__________.三、解答题17. 计算:2-18. 12232x y x y =-⎧⎨+=-⎩19. 完成下列证明:已知:18012B CDE ︒∠+∠=∠=∠,,求证//AB CD证明:1∠= ( ) 又12∠=∠2BFD ∴∠=∠( )//BC ∴ ( )C ∴∠+ 180︒=( )又180B CDE ︒∠+∠=B C ∴∠=∠//AB CD ∴( )20. 为了抗击新冠病毒,保护学生和教师的生命安全,新希望中学33000元购进甲、乙两种医用口罩共计1000盒,甲,乙两种口罩的售价分别是元/盒,元/盒;甲,乙两 种口罩的数量分别是20个/盒,25个/盒.(1)求新希望中学甲、乙两种口罩各购进了多少盒?(2)按照教育局要求,学校必须储备两周的用量,新希望中学师生共计800人,每人每天个口罩,问购买的口罩数量是否能满足教育局的要求?21. 如图,在ABC ∆中,()()()()2,1,2,1,2,3,1,4A B C D -----,将ABC ∆沿CD 平移,且使点平移到点,,A B 平移后对应点分别为,E F .(1)写出,E F 两点的坐标;(2)画出平移后所得的DEF ∆;(3)五边形ABFDC 面积22. 如图,在三角形ABC 中, 20A ︒∠=,点AB 上一点,点是三角形外上一点, 且20,ACE ︒∠=点为线段CD 上一点,连接EF ,且//EF BC .(1)若70B ︒∠=,求BCE ∠的度数;(2)若2,23E DCE BCD DCE ∠=∠∠=∠,求B 的度数23. 如图 1,直线GH 分别交,AB CD 于点 ,E F (点在点的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点在直线CD 的下方,点是直线AB 上一点(在的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量24. 在平面直角坐标系中,点()()(),0 ,3 0,A a B a C c 、、()22520a c c --=(1)求出点,A C 的坐标(2)如图1,连接,AB BC ,点在四边形ABCO 外面且在第一象限,再连,,,PO PC PB PA ,则,PCO PBA PAO PBC S S S S ∆∆∆∆==,求点坐标.(3)如图2所示,为线段BC 上一动点,(在右侧)为上一动点,使轴始终平分DEF ∠,连DF 且,BDE CDF BCO α∠=∠∠=,那么F ∠是否为定值?若为定值,请直接写出定值,若不是,请简单说明理由.答案与解析一、选择题:1. 4的平方根是()A. 2B. 2-C.D. 4[答案]C[解析][分析]直接利用平方根的定义分析得出答案.[详解]4的平方根是:2=±.故选:C.[点睛]本题主要考查了平方根的定义,正确掌握相关定义是解题关键.2. 在平面直角坐标系中,点(﹣2,3)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据各象限内点的坐标特征解答.[详解]解:点(﹣2,3)在第二象限.故选B.[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.1,0.1010010001?··23π(相邻两个之间多一个),其中是无理数的个数是()个A. B. C. D. [答案]C[解析][分析]根据无理数的定义即可得出答案.[详解],所以不是无理数;2 是无理数; 316是无理数;13不是无理数; 0.1010010001……(相邻两个1之间多一个0)是无理数.所以有3个无理数.故选C.[点睛]本题考查了无理数的定义.注意带根号的要开不尽的才是无理数,无限不循环小数为无理数.如,316,0.1010010001……(相邻两个1之间多一个0)等形式.4. 如图,把河AB 中的水引到C,拟修水渠中最短的是( )A. CMB. CNC. CPD. CQ[答案]C[解析][分析] 根据点到直线的垂线段距离最短解答.[详解]解:直线外一点到直线的所有连线中,垂线段最短,∴CP 最短,故答案为C. [点睛]本题考查了垂线的性质在实际生活中的运用,属于基础题.5. 27( )A.B. C. D.[答案]B[解析][分析]根据2536比较25,27,36即可解答.[详解]解:∵2536∴与27最接近的整数是5故选B.[点睛]本题考查了估算无理数的大小. 现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.6. 如图将一块三角板如图放置,9065ACB ABC ︒︒∠∠=,=,点,B C 分别在PQ MN ,上,若//,38PQ MN ACM ︒∠=,则ABP ∠的度数为( )A. 7︒B. 9︒C. 11︒D. 13︒[答案]D[解析][分析] 根据三角形内角和是180°可得出∠A 的度数,直接利用平行线的性质得出∠QPC=∠ACM=38°,根据三角形外角性质即可得出ABP ∠的度数[详解]解:∵9065ACB ABC ︒︒∠∠=,=∴∠A=180°-∠ACB-∠ABC=180°-90°-65°=25° ∵//,38PQ MN ACM ︒∠= ∴∠QPC=∠ACM=38°∴ABP ∠=∠QPC-∠A=38°-25°=13° 故选D.[点睛]本题考查了平行线性质,三角形内角和及三角形外角性质. 正确应用平行线性质是解题的关键. 7. 若0a b +=,则点(),P a b 一定不在( )A. 坐标轴上B. 轴上C. 轴上D. 第一象限 [答案]D[解析][分析]先确定出点P 横、纵坐标的符号及大小关系;由于a+b=0,则a 与b 的符号相反,且a=-b ,分情况讨论即可.[详解]解:∵0a b +=∴a=-b∴当a=0时,-b=0,即b=0此时,P 的坐标为(0,0),在坐标轴上,也在x 轴上,也在y 轴上当a≠0时,b≠0,a=-b ,即a 和b 互为相反数∴(),P a b 一定不在第一象限故选D.[点睛]本题考查了点的坐标.正确理解点的坐标特点是解题的关键.8. 关于,x y 的二元一次方程2312x y +=的非负整数解有( )组.A.B. C. D. [答案]D[解析][分析]要求二元一次方程2312x y +=的非负整数解,就要将方程做适当变形,根据解为非负整数确定其中一个未知数的取值范围,再分析解的情况.详解]解:由已知得:1223x y -= 要使x ,y 都是非负数,必须满足x≥0,y≥0,当y≥0,即1223x -≥0时,x≤6 ∴0≤x≤6要使x ,y 都是非负整数,满足的值如下:当x=0时,y=6;当x=2时,y=3;当x=4时,y=0所以有3组符合条件.故选D .[点睛]本题是求不定方程的整数解. 先将方程进行适当变形,确定其中一个未知数的取值范围,然后列举出适合条件的所有整数值,再求出另一个未知数的值.9. 下列说法中:①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③垂直于同一直线的两条直线互相平行;④平行于同一直线的两条直线互相平行;⑤两条直线被第三条直线所截,如果同旁内角相等,那么这两条直线互相平行;⑥连结、两点的线段就是、两点之间的距离,其中正确的有( )A. 个B. 个C. 个D. 个[答案]A[解析][分析]根据平行线的性质和定义,垂线的性质进行判断.[详解]①应为过直线外一点有且只有一条直线与已知直线平行,故本小题错误;②在同一平面内,过一点有且只有一条直线与已知直线垂直,故本小题错误;③应在同一平面内,垂直于同一直线的两条直线互相平行;故本小题错误;④平行于同一直线的两条直线平行,是平行公理,故本小题正确.⑤两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线互相平行;故本小题错误; ⑥连结、两点的线段的长度就是、两点之间的距离,故本小题错误;综上所述,正确的说法是④共1个.故选A .[点睛]考核知识点:命题的真假.理解平行线和垂线的定义和性质是关键.10. 在平面直角坐标系中,将点(0,1)A 做如下的连续平移,第次向右平移得到点1(1,1)A , 第次向下平移得到点()21,1A -,第次向右平移得到点()341A -,第次向下平移得到点()44,5?·····A -按此规律平移下去,则15A 的点坐标是( )A. ()64,55-B. ()65,53-C. ()66,56-D. ()67,58-[答案]A[解析][分析]根据题中条件可得到奇数次时,平移的方向和单位长度;偶数次时,平移的方向和单位长度的规律,按照该规律即可得解.[详解]解:由题意得第1次向右平移1个单位长度,第2次向下平移2个单位长度,第3次向右平移3个单位长度,第4次向下平移4个单位长度,……根据规律得第n 次移动的规律是:当n 为奇数时,向右平移n 个单位长度,当n 为偶数时,向下平移n 个单位长度,∴15A 的横坐标为0+1+3+5+7+9+11+13+15=64纵坐标为1-(2+4+6+8+10+12+14)=-55∴15A ()64,55-故选A .[点睛]本题考查了坐标与图形变化——平移. 解题的关键是分析出题目的规律,找出题目中点的坐标的规律.二、填空题:11. =___.[答案]3[解析]试题分析:根据立方根的定义,求数a 的立方根,也就是求一个数x,使得x 3=a,则x 就是a 的一个立方根:∵33=27,3=.12. 已知点21,53()P x x --在轴上,则点的坐标是__________.[答案](73,0). [解析][分析]根据x 轴上点的坐标的性质得出纵坐标为0,求出x 的值,进而求出点P 的坐标.[详解]解:∵点21,53()P x x --在轴上∴5-3x=0解得x=53∴2x-1=2×53-1=73 ∴点P 坐标为(73,0) 故答案为(73,0).[点睛]本题注意考查了点的坐标性质.根据x 轴上点的坐标的性质得出纵坐标为0是解题的关键.13. 写出一个比大且比小的无理数__________.[答案].[解析][分析]由于两个负数比较大小,绝对值大的反而小,所以根据实数大小比较法则求解即可.[详解]解:∵两个负数比较大小,绝对值大的反而小∴所求的数的绝对值小于2且大于1∴这样无理数有无数个,如或.故答案为.[点睛]本题主要考查了实数的大小比较.其中实数的大小比较法则:(1)正数大于0,0大于负数,正数大于负数(2)两个负数比较大小,绝对值大的反而小.14. 已知关于,x y 的方程3221x y k -=+和 24y x -=的公共解满足 3x y -=,则 k =__________. [答案]-1.[解析][分析]先将两个二元一次方程组成一个二元一次方程组,用含k 的代数式表示x ,y 的值,然后将x ,y 的值代入x-y=3得到一个关于k 的一元一次方程,解这个方程即可得出k 的值.[详解]解:由题意,得322124x y k y x -=+⎧⎨-=⎩解得29414x k y k =--⎧⎨=--⎩∵3x y -= ∴(-2k-9)-(-4k-14)=3解得k=-1故答案为-1.[点睛]本题考查了二元一次方程组的解法及一元一次方程的解法.解题的关键是解二元一次方程组时将k 看作一个常数.15. 假设存在一个数,且它具有的性质是21i =-,若()22180x -+=,则x =__________.[答案]21i ±+.[解析][分析]先将一元二次方程进行化简得到2(1)4x -=-,由21i =-得到22(1)4x i -=,两边再进行开方即可得出结果.[详解]解:()22180x -+= 22(1)8x -=-2(1)4x -=-∵21i =-∴原方程可化为22(1)4x i -=即12x i -=±∴1221,21x i x i =+=-+故答案为21i ±+.[点睛]本题主要考查了一元二次方程——直接开平方法.熟练掌握各种解法是解题的关键. 16. 在平面直角坐标系中,有点1,22,(12)(),2A m m B m m --++,且在轴上有另一点,使 三角形PAB 的面积为,则点坐标为__________.[答案](2,0)或(-2,0).[解析][分析]设A ,B 所在的直线的解析式为y=kx+b ,根据A ,B 的坐标求出该解析式,然后设点P 到y 轴的距离为x ,根据A ,B 的位置分情况计算PAB S 即可得出P 点坐标.[详解]解:设A ,B 所在的直线的解析式为y=kx+b把1,22,(12)(),2A m m B m m --++代入,得 22(1)22(1)m k m b m k m b-=-+⎧⎨+=++⎩解得20k b =⎧⎨=⎩∴A ,B 所在的直线的解析式为y=2x∴A ,B ,O 在同一直线上设点P 到y 轴的距离为x ① 如上图所示: PAB POB POA SS S =- =11(22)(22)22x m x m ⨯+-⨯- =1[22(22)]2x m m ⨯+-- =142x ⨯ =2x∵4=PAB S∴2x =4∴2x =±∴点P 坐标(2,0)或(-2,0)②如上图:PAB POA POB SS S =- =11(22)(22)22x m x m ⨯--⨯-- =1[22(22)]2x m m ⨯---- =142x ⨯ =2x∵4=PAB S∴2x =4∴2x =±∴点P 坐标为(2,0)或(-2,0) ③如上图所示:PAB POA POB SS S =+ =11(22)(22)22x m x m ⨯-+⨯+ =1[22(22)]2x m m ⨯-++ =142x ⨯ =2x∵4=PAB S∴2x =4∴2x =±∴点P 坐标为(2,0)或(-2,0)综上所述,点P 坐标为(2,0)或(-2,0).故答案为(2,0)或(-2,0).[点睛]本题主要考查了待定系数法求一次函数及三角形面积的求法.解题的关键是找到A ,B 点的坐标位置.三、解答题17. 计算: 316825525-[答案](1)2;(2)3.[解析][分析](1)先计算开平方和开立方,再进行减法运算即可;(2)先进行开平方,以及根据绝对值的意义去绝对值,再进行加减运算即可.[详解]解:(1)原式=4-2=2(2)原式5555=3故答案为(1)2;(2)3.[点睛]本题考查了实数的运算,平方根,立方根及去绝对值.掌握运算法则是解题的关键.18. 12232x y x y =-⎧⎨+=-⎩[答案]74x y =-⎧⎨=⎩[解析][分析]用代入消元法求解即可.[详解]12232x y x y =-⎧⎨+=-⎩①②, 由①代入②,得2432y y -+=-,∴4y =,把4y =代入①,得7x =-,所以方程组的解为74x y =-⎧⎨=⎩. [点睛]本题主要考查了解二元一次方程组,学会运用代入消元法求解是解题的关键.19. 完成下列证明:已知:18012B CDE ︒∠+∠=∠=∠,,求证//AB CD证明:1∠= ( ) 又12∠=∠2BFD ∴∠=∠( )//BC ∴ ( )C ∴∠+ 180︒=( )又180B CDE ︒∠+∠=B C ∴∠=∠//AB CD ∴( )[答案]∠BFD ;对顶角相等;等量代换;DE ;同位角相等,两直线平行;∠CDE ;两直线平行,同旁内角互补;内错角相等,两直线平行.[解析][分析]由对顶角相等得到∠1=∠BFD ,根据已知通过等量代换得到2BFD ∠=∠,证明BC ∥DE ,从而得到∠C+∠CDE 180︒=,由已知得到B C ∠=∠,根据平行线的判定得到//AB CD .[详解]证明:∵∠1=∠BFD (对顶角相等)又12∠=∠2BFD ∴∠=∠(等量代换)∴BC ∥DE (同位角相等,两直线平行)∴∠C+∠CDE 180︒=(两直线平行,同旁内角互补)又180B CDE ︒∠+∠=B C ∴∠=∠//AB CD ∴(内错角相等,两直线平行)[点睛]本题考查了平行线的判定与性质.解题时注意:平行线的判定是由角的数量关系判定两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.20. 为了抗击新冠病毒,保护学生和教师的生命安全,新希望中学33000元购进甲、乙两种医用口罩共计1000盒,甲,乙两种口罩的售价分别是元/盒,元/盒;甲,乙两 种口罩的数量分别是20个/盒,25个/盒.(1)求新希望中学甲、乙两种口罩各购进了多少盒?(2)按照教育局要求,学校必须储备两周的用量,新希望中学师生共计800人,每人每天个口罩,问购买的口罩数量是否能满足教育局的要求?[答案](1)甲口罩购进了400盒,乙口罩购进了600盒.(2)购买的口罩数量能满足教育局的要求.[解析][分析](1)设新希望中学甲口罩购进了x 盒,乙口罩购进了y 盒.根据“新希望中学33000元购进甲、乙两种医用口罩共计1000盒,甲,乙两种口罩的售价分别是元/盒,元/盒”列出二元一次方程组解答即可;(2)根据“甲,乙两 种口罩的数量分别是20个/盒,25个/盒.”求出新希望中学共买口罩的个数,根据“新希望中学师生共计800人,每人每天个口罩”求出两周师生需要的口罩总数进行比较即可.[详解]解:(1)设新希望中学甲口罩购进了x 盒,乙口罩购进了y 盒.由题意,得1000303533000x y x y +=⎧⎨+=⎩ 解得400600x y =⎧⎨=⎩答:新希望中学甲口罩购进了400盒,乙口罩购进了600盒.(2)甲,乙口罩共400×20+600×25=23000(个) 全校师生两周共需800×2×14=22400(个)23000>22400答:购买口罩数量能满足教育局的要求.故答案为(1)甲口罩购进了400盒,乙口罩购进了600盒.(2)购买的口罩数量能满足教育局的要求.[点睛]本题主要考查了二元一次方程组的实际应用. 解题的关键是找准等量关系,正确列出二元一次方程组. 21. 如图,在ABC ∆中,()()()()2,1,2,1,2,3,1,4A B C D -----,将ABC ∆沿CD 平移,且使点平移到点,,A B 平移后的对应点分别为,E F .(1)写出,E F 两点的坐标;(2)画出平移后所得的DEF ∆;(3)五边形ABFDC 的面积[答案](1)E(-1,1),F(3,1);(2)△DEF 见解析;(3)17.[解析][分析](1)利用点C 和点D 的坐标特征确定平移的方向和距离,然后利用 平移规律写出点E 和点F 的坐标;(2)连结DE ,DF ,EF 即可得到△DEF ;(3)利用分割法将五边形ABFDC 分割为直角梯形ACDG ,直角梯形BGEF 和直角三角形DEF ,分别计算出直角梯形ACDG ,直角梯形BGEF 和直角三角形DEF 的面积相加即可.[详解]解:(1)由图知D 点是由C 点先向右平移一格,再向上平移两格得到的,所以E 点和F 点是A 点和B 点先向右平移一格,再向上平移两格得到,即E(-1,1),F(3,1)故答案为E(-1,1),F(3,1).(2)△DEF 如图所示:(3)如图,将五边形ABFDC 分割为直角梯形ACDG ,直角梯形BGEF 和直角三角形DEF∴DEF ABFDC ACDG BGEF S S S S=++五边形梯形梯形 =12×(3+5)×1+12×(3+4)×2+12×4×3 =4+7+6=17故答案为17.[点睛]本题考查了作图——平移变换.确定平移后的图形的基本要素有两个:平移方向,平移距离,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连结对应点即可得到平移后的图形.22. 如图,在三角形ABC 中, 20A ︒∠=,点AB 上一点,点是三角形外上一点, 且20,ACE ︒∠=点为线段CD 上一点,连接EF ,且//EF BC .(1)若70B ︒∠=,求BCE ∠的度数;(2)若2,23E DCE BCD DCE ∠=∠∠=∠,求B 的度数[答案](1)110°;(2)80°. [解析][分析](1)根据∠A=∠ACE 得到AB ∥CE ,根据平行线的性质得到∠B+∠BCE=180°,从而得到BCE ∠的度数;(2)根据//EF BC 得到∠E+∠BCE=180°,因为2,23E DCE BCD DCE ∠=∠∠=∠,所以得到∠DCE=40°,所以可以求出∠BCE=52∠DCE=52×40°=100°,由(1)知∠B+∠BCE=180°,所以∠B=180°-100°=80°. [详解]解:(1)∵20A ︒∠=,20ACE ︒∠=∴∠A=∠ACE∴AB ∥CE∴∠B+∠BCE=180°∵70B ︒∠=∴BCE ∠=180°-70°=110° (2)∵//EF BC∴∠E+∠BCE=180°∵∠E=2∠DCE∴2∠DCE+∠BCE=180°∵2∠BCD=3∠DCE ,∠BCE=∠BCD+∠DCE∴∠BCE=32∠DCE+∠DCE=52∠DCE∴2∠DCE+52∠DCE=180° ∴∠DCE=40°∴∠BCE=52∠DCE=52×40°=100° 由(1)知∠B+∠BCE=180°∴∠B=180°-100°=80° 故答案为(1)110°;(2)80°. [点睛]本题考查了平行线的判定与性质.解(2)题的关键是将题干中角的数量关系与两直线平行同旁内角互补结合起来.23. 如图 1,直线GH 分别交,AB CD 于点 ,E F (点在点的右侧),若12180︒∠+∠= (1)求证://AB CD ;(2)如图2所示,点M N 、在,AB CD 之间,且位于,E F 的异侧,连MN , 若23M N ∠=∠,则,,AEM NFD N ∠∠∠三个角之间存在何种数量关系,并说明理由.(3)如图 3 所示,点M 在线段EF 上,点在直线CD 的下方,点是直线AB 上一点(在的左侧),连接,,MP PN NF ,若2,2MPN MPB NFH HFD ∠=∠∠=∠,则请直接写出PMH ∠与N ∠之间的数量[答案](1)证明过程见解析;(2)12N AEM NFD∠=∠-∠,理由见解析;(3)13∠N+∠PMH=180°.[解析][分析](1)根据同旁内角互补,两直线平行即可判定AB∥CD;(2)设∠N=2α,∠M=3α,∠AEM=,∠NFD=,过M作MP∥AB,过N作NQ∥AB可得∠PMN=3α-,∠QNM=2α-,根据平行线性质得到3α-=2α-,化简即可得到12N AEM NFD ∠=∠-∠;(3)过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R,根据平行线的性质可得∠BPM=∠PMI,由已知得到∠MON=∠MPN+∠PMI=3∠PMI及∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD,根据对顶角相等得到∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM,化简得到∠FNP+2∠PMI-2∠RFM=180°-∠PMH,根据平行线的性质得到3∠PMI+∠FNP+∠FNH=180°及3∠RFM+∠FNH=180°,两个等式相减即可得到∠RFM-∠PMI=13∠FNP,将该等式代入∠FNP+2∠PMI-2∠RFM=180°-∠PMH,即得到1 3∠FNP=180°-∠PMH,即13∠N+∠PMH=180°.[详解](1)证明:∵∠1=∠BEF,12180︒∠+∠=∴∠BEF+∠2=180°∴AB∥CD.(2)解:12N AEM NFD ∠=∠-∠设∠N=2α,∠M=3α,∠AEM=,∠NFD= 过M作MP∥AB,过N作NQ∥AB∵//AB CD,MP∥AB,NQ∥AB ∴MP∥NQ∥AB∥CD∴∠EMP=,∠FNQ=∴∠PMN=3α-,∠QNM=2α- ∴3α-=2α-即=-∴12N AEM NFD ∠=∠-∠故答案为12N AEM NFD ∠=∠-∠(3)解:13∠N+∠PMH=180°过点M作MI∥AB交PN于O,过点N作NQ∥CD交PN于R. ∵//AB CD,MI∥AB,NQ∥CD∴AB∥MI∥NQ∥CD∴∠BPM=∠PMI∵∠MPN=2∠MPB∴∠MPN=2∠PMI∴∠MON=∠MPN+∠PMI=3∠PMI∵∠NFH=2∠HFD∴∠RFN=180°-∠NFH-∠HFD=180°-3∠HFD ∵∠RFN=∠HFD∴∠PRF=∠FNP+∠RFN=∠FNP+180°-3∠RFM ∴∠MON+∠PRF+∠RFM=360°-∠OMF 即3∠PMI+∠FNP+180°-3∠RFM+∠RFM=360°-∠OMF ∴∠FNP+2∠PMI-2∠RFM=180°-∠PMH ∵3∠PMI+∠PNH=180°∴3∠PMI+∠FNP+∠FNH=180°∵3∠RFM+∠FNH=180°∴3∠PMI-3∠RFM+∠FNP=0°即∠RFM-∠PMI=13∠FNP ∴∠FNP+2∠PMI-2∠RFM=∠FNP-2(∠RFM-∠PMI)=180°-∠PMH ∠FNP-2×13∠FNP=180°-∠PMH 13∠FNP=180°-∠PMH 即13∠N+∠PMH=180° 故答案为13∠N+∠PMH=180° [点睛]本题主要考查了平行线的判定与性质.解题的关键是正确作出辅助线,通过运用平行线性质得到角之间的关系.24. 在平面直角坐标系中,点()()(),0 ,3 0,A a B a C c 、、()220c -=(1)求出点,A C 的坐标(2)如图1,连接,AB BC ,点在四边形ABCO 外面且在第一象限,再连,,,PO PC PB PA ,则,PCO PBA PAO PBC S S S S ∆∆∆∆==,求点坐标.(3)如图2所示,为线段BC 上一动点,(在右侧)为上一动点,使轴始终平分DEF ∠,连DF 且,BDE CDF BCO α∠=∠∠=,那么F ∠是否为定值?若为定值,请直接写出定值,若不是,请简单说明理由.[答案](1)A(5,0),C(0,2);(2)P(3,3910);(3)F ∠是定值,∠F=2-180°. [解析][分析] (1)根据绝对值和平方具有非负性得到2a-5c=0,c-2=0,解之即可得到a ,c 的值,从而得到A ,C 坐标;(2)过P 作PM ⊥y 轴,PN ⊥AB 的延长线,PH ⊥x 轴,因为PCO PBA S S ∆∆=,所以可得2PM=3PN ,由图知PM+PN=5,可得PM=3,PN=2,由PBC PCO POA PBA ABCD S S S S S +=++梯形得394POA S =,即139524PH =,可求出PH 的值,从而得到P 点坐标;(3)设∠CDF=,OE 与DF 的交点为M ,由四边形内角和为360°,可得∠OMD 的度数,根据三角形内角和为180°可得∠DEO 的度数,根据已知可得∠DEF ,而∠F=180°-∠DEF-∠FDE ,将值代入即可求出∠F 的度数.[详解]解:(1)∵()22520a c c -+-= ∴25020a c c -=⎧⎨-=⎩ 解得52a c =⎧⎨=⎩∴A(5,0),C(0,2)(2)过P 作PM ⊥y 轴,PN ⊥AB 的延长线,PH ⊥x 轴 由(1)知A(5,0),C(0,2),B(5,3)∵PCO PBA S S ∆∆=∴12COPM=12ABPN ∴12×2PM=12×3PN ∴2PM=3PN∵PM+PN=5∴PM=3,PN=2∵PBC PCO POA PBA ABCD S S S S S +=++梯形∴12532323222POA POA S S ⨯⨯+=++ ∴21332POA S =∴394POAS=即139524 PH=∴PH=39 10∴P(3, 39 10)(3)F∠是定值,∠F=2-180°.设∠CDF=∴∠FDE=180°-2设OE与DF的交点为M∴∠OMD=360°---90°=270°--∴∠DEO=∠OMD-∠FDE=90°+- ∴∠DEF=2∠DEO=180°+2-2∴∠F=180°-∠DEF-∠FDE=2-180°故答案为(1)A(5,0),C(0,2);(2)P(3, 3910);(3)F∠是定值,∠F=2-180°.[点睛]本题主要考查了绝对值和平方的非负性及根据多边形内角和计算角的度数.解题的关键是正确理解绝对值和平方的非负性.。
人教版数学七年级下册《期中检测卷》及答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(共10题;共30分)1.如图,AD ∥BC ,点E 在BD 延长线上,若∠ADE=155°,则∠DBC 的度数为( )A. 155°B. 35°C. 45°D. 25° 2.12a 可以写成( ).A. 66a a +B. 26a a ⋅C. 66()a a -⋅D. 12a a ÷ 3.如图所示,已知直线AB 、CD 相较于O ,OE 平分∠COB ,若∠EOB=55°,则∠BOD 的度数是( )A. 20B. 25°C. 30°D. 70°4.在下列运算中,正确的是( )A a 2•a 3=a 5 B. (a 2)3=a 5 C. a 6÷a 2=a 3 D. a 5+a 5=a 10 5.纳米是非常小的长度单位,1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A. 2.51×10-5米B. 25.1×10-6米C. 0.251×10-4米D. 2.51×10-4米 6.计算324()ab a b -⋅的结果正确的是( )A. 56a bB. 56a b -C. 57a bD. 57a b - 7.下列线段中能围成三角形的是( )A. 1,2,3B. 4,5,6C. 5,6,11D. 7,10,18 8.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于( )A. 35°B. 45°C. 55°D. 25°9.如图,∠1的同旁内角共有( )A. 1个B. 2个C. 3个D. 4个10. 如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A. ()2222a b a ab b -=-+B. ()2222a b a ab b +=++ C. 22()()a b a b a b -=+- D. 无法确定 二、填空题(共5题;共20分)11.计算:-(22a -)2=________.12.已知1924162m m ⨯⨯=,则的值是_________ .13.已知实数a 、b 满足a -b =3,ab =2,则a ²+b ²的值为________.14.已知,,是ABC 的三边长,,满足2|7|(1)0a b -+-=,为奇数,则c =________.15.如图,在ABC 中,点是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.三、解答题(共5题;共50分)16.计算:(1)()()102311234--⎛⎫--+-- ⎪⎝⎭ (2)()()()2333364332a a a a a a -⋅+-⋅--÷; (3)()()()()2212x y x y x y x y ++--+-; (4)2202020212019-⨯ 17.已知-x m -2n y m +n 与-3x 5y 6的和是单项式,求22(2)5()2(2)()m n m n m n m n --+--++的值. 18.如图,已知AB∥CD ,60B ∠=︒,CM 平分BCE ∠,90MCN ∠=︒,求DCN ∠的度数.19.如图:已知12,3,B FG AB G ∠=∠∠=∠⊥于,猜想CD 与AB 的位置关系,并写出合适的理由.20.如图,在△ABC 中,AC=BC,∠C=90∘,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E.求证:AB=AC+CD.四、填空题(共5题;共20分)21.若4x 2+2(k-3)x+9完全平方式,则k=______.22.若x ﹣y =a ,xy =a +3,且x 2+y 2=5,则a 值为_____.23.观察下面的解题过程,然后化简:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1化简:(3+1)(32+1)(34+1)(38+1)=_____.24.如图,直线AB ∥CD ∥EF ,则∠α+∠β-∠γ=_______.25.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).五、解答题(共3题;共30分)26.利用我们学过的知识,可以得出下面这个优美的等式:()()()⎡⎤++---=-+-+-⎣⎦2222221a b c ab bc ac a b b c c a 2;该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.⑴.请你证明这个等式;⑵.如果===a 2018,b 2019,c 2020,请你求出 222a b c ab bc ac ++---值.27.如图,已知AM∥BN ,∠A=60°,点P 是射线M 上一动点(与点A 不重合),BC,BD 分别平分∠ABP 和∠PBN ,分别交射线AM 于点C,D,(1)∠CBD=(2)当点P 运动到某处时,∠ACB=∠ABD ,则此时∠ABC=(3)在点P 运动的过程中,∠APB 与∠ADB 的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.28.(1)如图1,等腰ABC ∆和等腰ADE ∆中,90BAC DAE ∠=∠=︒,,,三点在同一直线上,求证:90BDC ∠=︒;(2)如图2,等腰ABC ∆中,AB AC =,90BAC ∠=︒,是三角形外一点,且90BDC ∠=︒,求证:45ADB ∠=︒;(3)如图3,等边ABC ∆中,是形外一点,且60BDC ∠=︒,①ADB ∠的度数为 ;②DA ,DB ,DC 之间关系是 .答案与解析一、单选题(共10题;共30分)1.如图,AD ∥BC ,点E 在BD 延长线上,若∠ADE=155°,则∠DBC 的度数为( )A. 155°B. 35°C. 45°D. 25° [答案]D[解析][详解]解:由题意知.180ADE ADB ∠+∠=∴25ADB ∠=因为AD‖BC ,所以,ADB DBC ∠∠是内错角,所以25ADB DBC ∠=∠=,故选D .[点睛]本题综合考查了补角,内错角等基本知识的运用.2.12a 可以写成( ).A. 66a a +B. 26a a ⋅C. 66()a a -⋅D. 12a a ÷[答案]C[解析][分析]12a 可以使用同底数幂的乘法,幂的乘方公式进行书写.[详解]A. 6662a a a +=,故A 错误;B. 26268a a a a +⋅==,故B 错误;C. 666661662(1())a a a a a a +=-⋅⋅==-⋅,故C 正确;D. 1212111a a a a -÷==,故D 错误.故选:C.[点睛]本题考查了同底数幂乘法,幂的乘方公式的逆向运算,熟知这两个公式的逆用,是解题的关键.3.如图所示,已知直线AB、CD相较于O,OE平分∠COB,若∠EOB=55°,则∠BOD的度数是()A. 20B. 25°C. 30°D. 70°[答案]D[解析][分析]由角平分线定义可求出∠COB的度数,根据邻补角的定义求出∠BOD的度数即可.[详解]∵OE平分∠COB,若∠EOB=55°,∴∠COB=2∠EOB=110°,∵∠BOD与∠COB是邻补角,∴∠BOD=180°-∠COB=70°,故选D.[点睛]本题考查了角平分线的定义及邻补角的概念,掌握角平分线的定义和邻补角之和为180°是解题的关键.4.在下列运算中,正确的是( )A. a2•a3=a5B. (a2)3=a5C. a6÷a2=a3D. a5+a5=a10[答案]A[解析][分析]根据同底数幂的乘法、幂的乘方、同底数幂的除法、合并同类项的运算法则进行分析.[详解]A、a2•a3=a5,故原题计算正确;B、(a2)3=a6,故原题计算错误;C、a6÷a2=a4,故原题计算错误;D、a5+a5=2a5,故原题计算错误;故选:A.[点睛]此题主要考查了同底数幂的乘法、幂的乘方、同底数幂的除法、合并同类项,关键是熟练掌握各运算法则.5.纳米是非常小的长度单位,1纳米=10-9米,目前发现一种新型病毒直径为25100纳米,用科学记数法表示该病毒直径是( )A. 2.51×10-5米 B. 25.1×10-6米 C. 0.251×10-4米 D. 2.51×10-4米 [答案]A[解析]分析:对于一个绝对值小于1的非0小数,用科学记数法写成10n a -⨯ 的形式,其中110a ≤<,n 是正整数,n 等于原数中第一个非0数字前面所有0的个数(包括小数点前面的0).详解:25100×10-9=2.51×104×10-9=2.51×10-5. 故选A.点睛:本题考查了负整数指数科学记数法,解题的关键是根据负整数指数科学记数法的定义确定出a 和n 的值.6.计算324()ab a b -⋅的结果正确的是( )A. 56a bB. 56a b -C. 57a bD. 57a b - [答案]D[解析][分析]根据幂的运算法则进行计算.[详解]解:324332457()=-=-ab a b a b a b a b -⋅故选:D[点睛]本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方是解题的关键.7.下列线段中能围成三角形的是( )A. 1,2,3B. 4,5,6C. 5,6,11D. 7,10,18 [答案]B[解析][分析]根据三角形的三边关系“三角形的两边之和大于第三边”进行分析即可判断.[详解]解:A 、1+2=3,所以不能围成三角形;B 、4+5>6,所以能围成三角形;C、6+5=11,所以不能围成三角形;D、7+10<18,所以不能围成三角形;故选B.[点睛]本题考查三角形的三边关系,解题的关键是熟练掌握三角形的两边之和大于第三边.8.如图,BC⊥AE于点C,CD∥AB,∠B=55°,则∠1等于( )A. 35°B. 45°C. 55°D. 25°[答案]A[解析][分析]根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.[详解]解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选A.[点睛]本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.9.如图,∠1的同旁内角共有( )A. 1个B. 2个C. 3个D. 4个[答案]C[解析][分析]根据同旁内角定义即可得解.[详解]根据同旁内角的定义可得,∠1的同旁内角有:∠ACE,∠D,∠DCE.故选C10.如图,在边长为a 的正方形中,剪去一个边长为b 的小正方形(a >b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a 、b 的恒等式为( )A. ()2222a b a ab b -=-+B. ()2222a b a ab b +=++ C. 22()()a b a b a b -=+- D. 无法确定[答案]C[解析]试题分析:正方形中,S 阴影=a 2-b 2;梯形中,S 阴影=12(2a+2b)(a-b)=(a+b)(a-b);故所得恒等式为:a 2-b 2=(a+b)(a-b).故选C .考点:平方差公式的几何背景.二、填空题(共5题;共20分)11.计算:-(22a -)2=________.[答案]-4a 4[解析][分析]直接根据积的乘方与幂的乘方运算法则进行计算即可.[详解]-(-2a ²)2=-[22(a 2)2]= -4a 4.故答案为:-4a 4.[点睛]此题主要考查了积的乘方与幂的乘方,注意处理好负号.12.已知1924162m m ⨯⨯=,则的值是_________ .[答案]3[解析][分析]首先将2416m m ⨯⨯变形为24222m m ⨯⨯,然后再根据同底数幂的乘法运算法则进一步加以分析求解即可.[详解]∵2416m m ⨯⨯=24222m m ⨯⨯=4122m m ++=192,∴41219m m ++=,∴3m =,故答案为:3.[点睛]本题主要考查了幂的乘方与同底数幂乘法的性质,熟练掌握相关概念是解题关键.13.已知实数a 、b 满足a -b =3,ab =2,则a ²+b ²的值为________.[答案]13[解析][分析]根据完全平方公式的变形即可解答.详解]解:∵a -b =3∴(a -b )2=32,即a ²+b ²-2ab=9 ∴a ²+b ²=9+2ab=9+2×2=13 故答案为:13.[点睛]本题考查了完全平方公式的应用,灵活对完全平方公式进行变形是解答本题的关键.14.已知,,是ABC 的三边长,,满足2|7|(1)0a b -+-=,为奇数,则c =________.[答案]7[解析][分析]根据非负数的性质求出a 、b 的值,再根据三角形三边关系即可确定C 的值.[详解]∵2|7|(1)0a b -+-=,∴a-7=0,b-1=0,∴a=7,b=1由三角形三边关系可知,7-1<c <7+1,即6<c <8,∵为奇数,∴c =7,故答案为:7.[点睛]此题主要考查了非负数的性质以及三角形三边关系,求出6<c <8是解题的关键.15.如图,在ABC 中,点是BC 上的点,40BAD ABC ︒∠=∠=,将ABD ∆沿着AD 翻折得到AED ,则CDE ∠=______°.[答案]20[解析][分析]根据三角形内角和和翻折的性质解答即可.[详解]解:40BAD ABC ∠=∠=︒,将ABD ∆沿着AD 翻折得到AED ∆,404080ADC ∴∠=︒+︒=︒,1804040100ADE ADB ∠=∠=︒-︒-︒=︒,1008020CDE ∴∠=︒-︒=︒,故答案为20[点睛]此题考查翻折的性质,关键是根据三角形内角和和翻折的性质解答.三、解答题(共5题;共50分)16.计算:(1)()()102311234--⎛⎫--+-- ⎪⎝⎭ (2)()()()2333364332a a a a a a -⋅+-⋅--÷; (3)()()()()2212x y x y x y x y ++--+-; (4)2202020212019-⨯ [答案](1)478;(2)92a ;(3)223225x y +;(4)1 [解析][分析](1)根据零指数幂性质、负整数指数幂性质以及有理数乘方运算法则逐个计算出相应的值,然后进一步加以计算即可;(2)根据积的乘方运算和同底数幂的乘法与除法运算法则加以计算即可;(3)利用完全平方公式与平方差公式加以计算化简即可;(4)首先将原式变形为()()220202020120201-+⨯-,然后利用平方差公式进一步计算即可. [详解](1)()()102311234--⎛⎫--+-- ⎪⎝⎭ =19148-+- =478; (2)()()()2333364332a a a a a a -⋅+-⋅--÷=361233698a a a a a a ⋅-⋅+÷=99998a a a -+=92a ;(3)()()()()2212x y x y x y x y ++--+- =222222112222x xy y x xy y x y +++-+-+ =223225x y +; (4)2202020212019-⨯=()()220202020120201-+⨯- =22202020201-+=1.[点睛]本题主要考查了有理数与整式的混合运算及乘法公式的运用,熟练掌握相关方法及公式是解题关键.17.已知-x m -2n y m +n 与-3x 5y 6的和是单项式,求22(2)5()2(2)()m n m n m n m n --+--++的值.[答案]-49[解析][分析]先根据-x m -2n y m +n 与-3x 5y 6是同类项求出m -2n 和m +n 的值,再将22(2)5()2(2)()m n m n m n m n --+--++变形,最后代入即可.[详解]解:∵-x m -2n y m +n 与-3x 5y 6的和是单项式,∴-x m -2n y m +n 与-3x 5y 6同类项,∴m -2n =5,m +n =6,原式=(1-2)(m -2n )2+(1-5)(m +n )=-(m -2n )2-4(m +n )=-52-4×6=-25-24=-49.[点睛]本题考查了同类项的概念,以及代数式求值,解题的关键是掌握同类项的概念.18.如图,已知AB∥CD ,60B ∠=︒,CM 平分BCE ∠,90MCN ∠=︒,求DCN ∠的度数.[答案]30°[解析][分析]根据平行线的性质求出∠BCD 和∠BCE ,根据角平分线定义求出∠ECM ,即可求出答案.[详解]解://AB CD ,180B BCE ∠=∠=︒,BCD B ∠=∠,60B ∠=︒,120BCE ∠=︒,60BCD ∠=︒,CM 平分BCE ∠,1602ECM BCE ∠=∠=︒, 90MCN ∠=︒,180609030DCN ∠=︒-︒-︒=︒.[点睛]本题考查了平行线的性质,角平分线定义的应用,解此题的关键是求出∠ECA 的度数.19.如图:已知12,3,B FG AB G ∠=∠∠=∠⊥于,猜想CD 与AB 的位置关系,并写出合适的理由.[答案]CD AB ⊥[解析][分析]已知∠3=∠B ,根据同位角相等,两直线平行,则DE ∥BC ,通过平行线的性质和等量代换可得∠2=∠DCB ,从而证得CD ∥GF ,又因为FG ⊥AB ,所以CD 与AB 的位置关系是垂直.[详解]CD AB ⊥∵3B ∠=∠.∴DE BC ,∴14∠=∠,又∵12∠=∠,∴24∠=∠,∴GF CD ,∴CDB BGF ∠=∠,又∵FG AB ⊥,∴90BGF ∠=︒,90CDB ∴∠=︒,即CD AB ⊥.[点睛]本题考查了平行线的判定和性质,证明GF CD 是解答本题的关键.平行线的判定方法:①两同位角相等,两直线平行; ②内错角相等,两直线平行;③同旁内角互补,两直线平行;④平行于同一直线的两条直线互相平行;同一平面内,垂直于同一直线的两条直线互相平行.20.如图,在△ABC 中,AC=BC,∠C=90∘,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E.求证:AB=AC+CD.[答案]见解析[解析][分析]根据已知AC=BC,∠C=90,可得出DE=EB,再利用AD是△ABC的角平分线,DE⊥AB,可证明△ACD≌△AED,然后利用全等三角形的对应边相等和等量代换即可证明AB=AC+CD.[详解]证明:∵在△ABC中,AC=BC,∠C=90°,∴∠ABC=45°,又∵DE⊥AB,垂足为E,∴∠B=∠EDB=45°,∴DE=EB,又∵AD是△ABC的角平分线,DE⊥AB,∠C=90°,∴DE=CD.在Rt△ACD与Rt△AED中,∵AD AD DE CD ⎧⎨⎩==,∴△ACD≌△AED,∴AC=AE,CD=DE,∴AB=AE+EB=AC+CD.[点睛]此题考查学生对等腰直角三角形的判定与性质,全等三角形的判定与性质,角平分线的性质等知识点的理解和掌握,证明此题的关键是证明△ACD≌△AED,此题难度不大,属于基础题.四、填空题(共5题;共20分)21.若4x2+2(k-3)x+9是完全平方式,则k=______.[答案]9或﹣3[解析]原式可化为(2x)2+2(k-3)x+32,又∵4x2+2(k-3)x+9是完全平方式,∴4x 2+2(k-3)x+9=(2x±3)2,∴4x 2+2(k-3)x+9=4x 2±12x+9,∴2(k-3)=±12,解得:k=9或-3,故答案为9或-3.[点睛]本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,熟记完全平方公式对解题非常重要.22.若x ﹣y =a ,xy =a +3,且x 2+y 2=5,则a 的值为_____.[答案]-1.[解析][分析]先根据完全平方公式得到(x ﹣y )2=x 2+y 2﹣2xy ,然后利用整体代入得到关于a 的方程,解方程即可求解.[详解]解:(x ﹣y )2=x 2+y 2﹣2xy ,∵x ﹣y =a ,xy =a+3,x 2+y 2=5,∴a 2=5﹣2(a+3),即a 2+2a+1=0,解得a =﹣1.故a 的值是﹣1.[点睛]本题考查完全平方公式.也考查代数式的变形能力.解题关键是熟练掌握完全平方公式:(a±b )2=a 2±2ab+b 2. 23.观察下面解题过程,然后化简:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=28﹣1化简:(3+1)(32+1)(34+1)(38+1)=_____.[答案]()161312- [解析][分析]原式变形后,利用平方差公式计算即可求出值.[详解]解:原式=12(3-1)(3+1)(32+1)(34+1)(38+1) =12(32-1)(32+1)(34+1)(38+1) =12(34-1)(34+1)(38+1) =12(38-1)(38+1) =12(316-1).故答案为()161312-. [点睛]本题考查平方差公式,熟练掌握平方差公式是解题的关键.24.如图,直线AB ∥CD ∥EF ,则∠α+∠β-∠γ=_______.[答案]180°[解析][分析]根据平行线性质得出∠α=∠ADC,∠CDF=180°-∠γ,根据∠β+∠ADC+∠CDF=360°推出∠β+∠α+180°-∠γ=360°即可得出答案.[详解]解:∵AB ∥CD ∥EF,∴∠α=∠ADC,∠CDF=180°-∠γ, ∵∠β+∠ADC+∠CDF=360°, ∴∠β+∠α+180°-∠γ=360°∴∠α+∠β-∠γ=180°,故答案为180.[点睛]本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.25.如图,已知ABC DCB ∠=∠,添加下列条件中的一个:①A D ∠=∠,②AC DB =,③AB DC =,其中不能确定ABC ∆≌△DCB ∆的是_____(只填序号).[答案]②.[解析][分析]一般三角形全等的判定方法有SSS ,SAS ,AAS ,ASA ,据此可逐个对比求解.[详解]∵已知ABC DCB ∠=∠,且BC CB =∴若添加①A D ∠=∠,则可由AAS 判定ABC ∆≌DCB ∆;若添加②AC DB =,则属于边边角的顺序,不能判定ABC ∆≌DCB ∆;若添加③AB DC =,则属于边角边的顺序,可以判定ABC ∆≌DCB ∆.故答案为②.[点睛]本题考查全等三角形的几种基本判定方法,只要判定方法掌握得牢固,此题不难判断.五、解答题(共3题;共30分)26.利用我们学过的知识,可以得出下面这个优美的等式:()()()⎡⎤++---=-+-+-⎣⎦2222221a b c ab bc ac a b b c c a 2;该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐、简洁美.⑴.请你证明这个等式;⑵.如果===a 2018,b 2019,c 2020,请你求出 222a b c ab bc ac ++---的值.[答案](1)证明见解析;(2)3.[解析][分析](1)已知等式右边利用完全平方公式化简,整理即可作出验证;(2)把a ,b ,c 的值代入已知等式右边,求出值即为所求式子的值.[详解](1)证明:右边=12[(a-b )2+(b-c )2+(c-a )2]= 12(a 2-2ab+b 2+b 2-2bc+c 2+c 2-2ac+a 2) =12(2a 2+2b 2+2c 2-2ab-2bc-2ac ) =a 2+b 2+c 2-ab-bc-ac=左边;(2)解:当a=2018,b=2019,c=2020时,原式=12[(a-b )2+(b-c )2+(c-a )2]=12×(1+1+4)=3.[点睛]此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.27.如图,已知AM∥BN,∠A=60°,点P是射线M上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D,(1)∠CBD=(2)当点P运动到某处时,∠ACB=∠ABD,则此时∠ABC=(3)在点P运动的过程中,∠APB与∠ADB的比值是否随之变化?若不变,请求出这个比值:若变化,请找出变化规律.[答案](1)60°;(2)30°;(3)不变.[解析][分析](1)由AM∥BN可得∠ABN=180°-∠A,再由BC、BD均为角平分线可求解;(2)由AM∥BN可得∠ACB=∠CBN,再由∠ACB=∠ABD可得∠ABC =∠DBN;(3)由AM∥BN可得∠APB=∠PBN,再由BD为角平分线即可解答.[详解]解:(1)∵AM∥BN,∴∠ABN=180°﹣∠A=120°,又∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=12(∠ABP+∠PBN)=12∠ABN=60°,故答案为60°.(2)∵AM∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠ABD﹣∠CBD=∠CBN﹣∠CBD=∠DBN, ∴∠ABC=∠CBP=∠DBP=∠DBN,∴∠ABC=12∠ABN=30°,故答案为30°. (3)不变.理由如下:∵AM ∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD 平分∠PBN,∴∠ADB=∠DBN=12∠PBN=12∠APB ,即∠APB :∠ADB=2:1. [点睛]本题考查了平行线的性质.28.(1)如图1,等腰ABC ∆和等腰ADE ∆中,90BAC DAE ∠=∠=︒,,,三点同一直线上,求证:90BDC ∠=︒;(2)如图2,等腰ABC ∆中,AB AC =,90BAC ∠=︒,是三角形外一点,且90BDC ∠=︒,求证:45ADB ∠=︒;(3)如图3,等边ABC ∆中,是形外一点,且60BDC ∠=︒,①ADB ∠的度数为 ;②DA ,DB ,DC 之间的关系是 .[答案](1)见解析;(2)见解析;(3)①60ADE ∠=︒,②BD AD CD =+.[解析][分析](1)如图1,先利用SAS 证明ABE ACD ∆≅∆,得到34∠=∠,进一步可得证90BDC ∠=︒;(2)如图2,过作AE AD ⊥交BD 于,利用ASA 证明ABE ACD ∆≅∆,得到AE AD =,从而得证45ADB ∠=︒;(3)①如图3-1,在三角形内作60DAE ∠=︒,AE 交BD 于点,证得ADE ∆是等边三角形,即可得证; ②先利用SAS 证明ABE ACD ∆≅∆,得到BE CD =,再利用等量代换可证得结论.[详解](1)如图1,90BAC DAE ∠=∠=︒,12∠∠∴=,在ABE ∆和ACD ∆中,12AB AC AE AD =⎧⎪∠=∠⎨⎪=⎩ABE ACD ∴∆≅∆(SAS),34∴∠=∠,3590∠+∠︒=,56∠=∠,4690∴∠+∠=︒,90BDC ∴∠=︒;(2)如图2,过作AE AD ⊥交BD 于,90BAC DAE ∠=∠=︒,12∠∠∴=,90BAC BDC ∠︒∠==,56∠=∠,34∴∠=∠,在ABE ∆和ACD ∆中,1234AB AC ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ACD ∴∆≅∆()ASA ,AE AD ∴=,45ADE AED ∴∠=∠=︒;(3)①如图3-1,在三角形内作60DAE ∠=︒,AE 交BD 于点,与(2)同理可证AE AD =,ADE ∴∆是等边三角形,60ADE ∴∠=︒;②BD AD CD =+.理由是:如图3-1,易知BAE CAD ∠=∠,又AB=AC,由①知AE=AD ,ABE ACD ∴∆≅∆(SAS),BE CD ∴=,ADE ∆是等边三角形,DE AD ∴=BD BE ED AD CD ∴=+=+[点睛]本题考查了全等三角形的性质和判定,也考查了等边三角形的性质,添加恰当的辅助线是解第2、3问的关键.。
2021-2022学年七年级数学上学期综合训练卷三(人教版)(含答案)
2021-2022学年七年级数学上学期期末满分冲刺模拟卷(三)(考试时间:90分钟试卷满分:100分)一、选择题:(本大题共10小题,每小题3分,满分30分)1.﹣2的倒数是()A. 2B.C. ﹣D. ﹣2【答案】C【解析】解:﹣2的倒数是.故答案为:C.2.小戴同学的微信钱包账单如图所示,+5.20表示收入5.20元,下列说法正确的是()A. -1.00表示收入元B. -1.00表示支出元C. -1.00表示支出元D. 收支总和为元【答案】B【解析】解:∵小戴同学的微信钱包账单如图所示,表示收入元,∴-1.00表示支出1.00元.故答案为:B.3.据报道2018年前4月,50城市土地出让金合计达到11882亿,比2017年同期的7984亿上涨幅度达到48.8%.其中数值11882亿可用科学记数法表示为()A. B. C. D.【答案】A【解析】解:11882亿=1188200000000=1.1882×1012.故答案为:A.4.在实数中,有理数有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:是分数,为有理数;是整数,为有理数;是无理数;是无理数;是有限小数,为有理数,故答案为:C.5.数学考试成绩85分以上为优秀,以85分为标准,老师将一小组五名同学的成绩简记为“ ”.这五名同学的实际成绩最高的应是()A. 93分B. 85分C. 96分 D. 78分【答案】C【解析】解:由题意可得这五位同学的实际成绩分别为(分),(分),(分),(分),(分),故实际成绩最高的应该是96分故答案为:C.6.a、b两数在数轴上位置如图所示,将a、b、-a、-b用“<” 连接,其中正确的是()A. a<-a<b<-bB. -b<a<-a<bC. -a<b<-b<aD. -b<a<b<-a【答案】B【解析】解:如图,根据数轴上右边的数总比左边大,则可得:-b<a<-a<b.故答案为:B.7.生态示范园计划种植一批梨树,原计划总产30万公斤,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍总产量比原计划增加了6万公斤,种植亩数减少了10亩,若设原来平均每亩产量为x万公斤根据题意,列方程为()A. B. C. D.【答案】D【解析】解:设原来平均每亩产量为x万公斤,则改良后平均每亩产量为1.5x万公斤,依题意得:,即.故答案为:D.8.如图,把一副三角板叠合在一起,则的度数是()A. B. C. D.【答案】A【解析】解:由图形可知,∠AOB=60°-45°=15°.故答案为:A.9.某商场举办“迎新春送大礼”的促销活动,全场商品一律打八折销售.小明买了一件商品,比标价少付了40元,那么他购买这件商品花了()A. 80元B. 120元C. 160元 D. 200元【答案】C【解析】解:40÷(1-80%)=40÷20%=200(元)200-40=160(元).故答案为:C.10.已知,,,比较的大小关系结果是()A. B. C. D.【答案】A【解析】解:∵= ,= ,= ,∴b-a= -( )=1+ - = + >0c-b= -( )= - = + >0 ∴a<b<c.故答案为:A.二、填空题:(本大题共6小题,每小题3分,满分18分)11.方程的解是 .【答案】【解析】解:,去括号得,,移项得,,系数化为1得,,故答案为:.12.已知∠A=38°24',则∠A的补角的大小是 .【答案】140°36′【解析】∠A的补角=180°- 38°24'= 140°36′ .13.已知|x|=8,|y|=3,|x+y|=x+y,则x+y=【答案】5或11【解析】解:∵|x|=8,|y|=3,∴x=±8、y=±3,又|x+y|=x+y,即x+y>0,∴x=8、y=3或x=8、y=﹣3,当x=8、y=3时,x+y=11;当x=8、y=﹣3时,x+y=5;故答案为:5或11.14.若a2+b2=5,则代数式(3a2-2ab-b2)-(a2-2ab-3b2)= .【答案】10【解析】解:(3a2-2ab-b2)-(a2-2ab-3b2),= 3a2-2ab-b2-a2+2ab+3b2,=2a2+2b2,=2(a2+b2),=2×5,=10.故答案为:10.15.点A是数轴上一点,一只蚂蚁从点A出发爬了4个单位长度到了表示的数l的点,则点A所表示的数是.【答案】-3或5【解析】解:分两种情况:从数轴上A点出发向左爬了4个单位长度,则A点表示的数是1+4=5;从数轴上A点出发向右爬了4个单位长度,则A点表示的数是1−4=−3.故答案为:-3或5.16.弧度是表示角度大小的一种单位,圆心角所对的弧长和半径相等时,这个角就是1弧度角,记作.已知,则与的大小关系是 .【答案】<【解析】解:根据弧度的定义,圆心角所对的弧长和半径相等时,这个角就是1弧度角,记作,当时,易知三角形为等边三角形,弦长等于半径,圆心角所对的弧长比半径大,,故答案是:<.三、解答题(本大题共6题,满分52分)17.(12分)计算(1);(2);(3);(4)【答案】(1)解:原式= ;(2)解:原式= ;(3)解:原式= ;(4)解:原式= .【解析】(1)利用积的乘方以及幂的乘方法则可得原式=4a2b4·(3a2b-2ab-1),然后根据单项式与多项式的乘法法则计算即可;(2)利用完全平方公式以及平方差公式可得原式=4a2-8ab+4b2-4a2+b2,然后合并同类项即可;(3)原式可变形为[x-(y-2)]·[x+(y-2)],然后利用平方差公式计算即可;(4)根据负整数指数幂的运算性质、非零数的零次幂为1以及有理数的乘方法则可得原式=9+1-125+25,据此计算即可.18.(8分)解下列一元一次方程(1)2x﹣(x+10)=5x+2(x﹣1);(2).【答案】(1)解:去括号得:2x-x-10=5x+2x-2,移项得:2x-x-5x-2x=-2+10,合并得:-6x=8,解得:(2)解:去分母得:10(3x+2)-20=5(2x-1)-4(2x+1)。
人教版数学七年级下学期《期中检测试卷》附答案
人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:每小题只有一个选项是符合题意的1.计算23()m m -⋅结果是( )A. 5m -B. 5mC. 6m -D. 6m2.下列计算正确的是( )A. 236()()()a a a a ---=B. ()3235626m n m n -=-C. 1025x x x ÷=D. 03226-⨯=- 3.下列各式中能用平方差公式计算的是( )A. (32)(32)a b b a +-B. (21)(21)x x -+--C. ()()x y x y --+D. 1122x x ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭4.如图,AB 与CD 交于点,OE AB ⊥.下列说法错误的是( )A. AOC ∠与BOD ∠相等B. BOD ∠与DOE ∠互余C. AOC ∠与AOD ∠互补D. AOE ∠与BOC ∠对顶角 5.计算结果为256x x --的是( )A. ()()23x x -+B. ()()61x x +-C. ()()23x x +-D. ()()61x x -+ 6.如图,AB AC ⊥,AD BC ⊥,垂足分别为,,则图中能表示点到直线的距离的线段共有( )A. 2条B. 3条C. 4条D. 5条7.小颖妈妈在防疫期间从家里出发,用了10分钟快速走到一个离家800米的药店,在药店排队10分钟买到了预约的口罩,然后步行回到家.下列图象能正确表示小颖妈妈所走的路程与时间关系的是( ) A. B. C. D. 8.多项式A B ÷的计算结果是21x -+,已知21B x =+,由此可知多项式是( )A. 241x +B. 214x -C. 4x -D. 241x -二、填空题9.2020年2月21日,国家卫生健康委决定将“新型冠状病毒肺炎”英文名称修订为“COVID-19”,新型冠状病毒的直径约60220nm -,60nm 用科学记数法表示为________.10.一个长方体长是5210cm ⨯,宽是31.510cm ⨯,高是41.310cm ⨯,则它的体积是________3m .11.如图所示,随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)________(填“增大”“减小”或“不变”),理由是________________.12.下表反映的是某水果店销售的草莓数量(kg )与销售总价(元)之间的关系,它可以表示为________. 销售数量(kg )1 2 3 4 … 销售总价(元)6.5 125 18.5 245 …13.计算101(2)2π-⎛⎫--- ⎪⎝⎭的结果是________.14.如图,在两条方向相同的南北公路之间要修一条笔直的公路AB ,从地测得公路的走向是南偏西50°,则从地测公路的走向是________.15.已知有理数,满足2213a b --=,则33()()a b a b +-的值是________.16.根据如图所示阴影部分的面积可以写出的一个等式是________.三、解答题17.计算:(1)()32328x x y xy ⋅÷; (2)3(2)(3)9a a a a -⋅--÷;(3)()2(1)(1)1x x x -++.18.求下列各式的值:(1)2(31)(32)(23)x x x x +-+-,其中2x =-;(2)222()()22m n m n mn mn ⎡⎤+--+÷⎣⎦,其中1m =,12n =-. 19.数学活动课上,小亮把两个含30°角的三角板按照如图所示方式摆放,点,,,在同一条直线上,他让小明判断直线AB 与CD 的位置关系,小明很快说出了答案并讲出了判断的依据.请你猜猜小明的答案和理由.20.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)21.防疫期间的某天上午9:00,社区工作人员小孙从社区办公室出发,上门为本社区两户隔离人员家庭送生活用品,同时了解隔离人员的健康状况,她先去了距离社区较近的张家,稍作停留简单询问了情况后,又去了稍远一点的李家,这家人口较多,了解情况时间稍长一些,由于社区还有其它事情等待处理,结束工作后她快速返回社区办公室.已知小孙距离社区办公室的距离(米)与离开办公室的时间(分)之间的关系如图所示.请根据图象回答下列问题:(1)图中点表示的意义是什么?(2)小孙从李家出来后步行的速度是多少?(3)小孙在李家停留了几分钟?小孙几点回到社区办公室?22.如图,已知//AB CE ,点,,在同一条直线上.(1)已知40B ∠=︒,求DCE ∠的度数;(2)已知60A ∠=︒,40B ∠=︒,求ACD ∠的度数;(3)当A ∠,B 的度数变化时,A ∠,B ,ACD ∠之间的数量关系会变化吗?如果不变,请写出它们之间的数量关系.答案与解析一、选择题:每小题只有一个选项是符合题意的1.计算23()m m -⋅的结果是( )A. 5m -B. 5mC. 6m -D. 6m[答案]B[解析][分析] 根据积的乘方和同底数幂的乘法计算即可.[详解]解:23()m m -⋅=23m m ⋅=5m故选B .[点睛]此题考查的是幂的运算性质,掌握积的乘方和同底数幂的乘法是解决此题的关键.2.下列计算正确的是( )A. 236()()()a a a a ---=B. ()3235626m n m n -=- C 1025x x x ÷=D. 03226-⨯=- [答案]A[解析][分析]根据同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法、零指数幂的性质和负指数幂的性质逐一判断即可.[详解]A.2312366()()()()()a a a a a a ++---=-==-,故本选项正确;B.()3236928m n m n -=-,故本选项错误;C.1018202x x x x -÷==,故本选项错误;D.031122188-⨯=⨯=,故本选项错误. 故选A . [点睛]此题考查的是幂的运算性质,掌握同底数幂的乘法、积的乘方、幂的乘方、同底数幂的除法、零指数幂的性质和负指数幂的性质是解决此题的关键.3.下列各式中能用平方差公式计算的是( )A. (32)(32)a b b a +-B. (21)(21)x x -+--C. ()()x y x y --+D. 1122x x ⎛⎫⎛⎫--+ ⎪⎪⎝⎭⎝⎭[答案]B[解析][分析]根据平方差公式对各选项进行逐一计算即可. [详解]解:A 、不符合两个数的和与这两个数的差相乘,不能用平方差公式,故本选项错误;B 、符合平方差公式,故本选项正确;C 、原式=()2x y -+,故本选项错误; D 、原式=212x ⎛⎫-- ⎪⎝⎭,故本选项错误. 故选:B .[点睛]本题考查平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解题的关键. 4.如图,AB 与CD 交于点,OE AB ⊥.下列说法错误的是( )A. AOC ∠与BOD ∠相等B. BOD ∠与DOE ∠互余C. AOC ∠与AOD ∠互补D. AOE ∠与BOC ∠是对顶角[解析][分析]根据对顶角的性质、补角和余角的定义即可解题.[详解]解:A.∠AOC 与∠BOD 是对顶角,所以∠AOC=∠BOD ,故正确;B.∠BOD 和∠DOE 互为余角,故正确;C.AOC ∠与AOD ∠互补,故正确;D.AOE ∠与BOC ∠不是对顶角,故错误.故选D .[点睛]本题考查了对顶角的性质、补角和余角的定义,属于简单题,熟悉概念和性质是解题关键. 5.计算结果为256x x --的是( )A. ()()23x x -+B. ()()61x x +-C. ()()23x x +-D. ()()61x x -+[答案]D[解析][分析]运用十字相乘的方法来分解即可.[详解]解:256x x --=(x-6)(x+1)故选D[点睛]本题考查了运用十字相乘的方法来分解因式,熟练掌握该方法是解决本题的关键.6.如图,AB AC ⊥,AD BC ⊥,垂足分别为,,则图中能表示点到直线的距离的线段共有( )A. 2条B. 3条C. 4条D. 5条[答案]D[分析]根据点到直线的距离的定义:从直线外一点到这直线的垂线段的长度叫做点到直线的距离,即可得出结论.[详解]解:AD的长度表示点A到直线BC的距离;BD的长度表示点B到直线AD的距离;CD的长度表示点C到直线AD的距离;CA的长度表示点C到直线AB的距离;BA的长度表示点B到直线AC的距离;综上:图中能表示点到直线的距离的线段共有5条故选D.[点睛]此题主要考查了点到直线的距离,解题关键是明确点到直线的距离是这个点到直线的垂线段的长,因此要找到垂直的特点即可.7.小颖妈妈在防疫期间从家里出发,用了10分钟快速走到一个离家800米的药店,在药店排队10分钟买到了预约的口罩,然后步行回到家.下列图象能正确表示小颖妈妈所走的路程与时间关系的是()A. B. C. D.[答案]A[解析][分析]根据小颖妈妈所走的路程与时间关系分析图象即可.[详解]解:小颖妈妈用了10分钟快速走到一个离家800米的药店,此时各个选项均符合题意;在药店排队10分钟买到了预约口罩,即这10分钟走的路程为0,故可排除B和D;然后步行回到家,即此时小颖妈妈又行驶了800米,故可排除C,选A.故选A.[点睛]此题考查的是根据题意,选择正确的图象,掌握图象横纵坐标表示的实际意义是解决此题的关键.8.多项式A B ÷的计算结果是21x -+,已知21B x =+,由此可知多项式是( )A. 241x +B. 214x -C. 4x -D. 241x -[答案]B[解析][分析]根据A B ÷的计算结果是21x -+,可得A=B (-2x+1),将21B x =+代入计算即可.[详解]解:∵A B ÷的计算结果是21x -+,∴A=B (2x+1)=(2x+1)(-2x+1)=-(2x+1)(2x-1)=214x -.故选:B .[点睛]本题考查了整式的乘除,关键是掌握整式的乘除运算法则,平方差公式,在计算时要注意结果的符号. 二、填空题9.2020年2月21日,国家卫生健康委决定将“新型冠状病毒肺炎”英文名称修订为“COVID-19”,新型冠状病毒的直径约60220nm -,60nm 用科学记数法表示为________.[答案]8610-⨯[解析][分析]绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.[详解]解:∵1nm=1×10-9m ∴60nm=6×10-8m . 故答案为:6×10-8. [点睛]本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a <,为由原数左边起第一个不为零的数字前面的0的个数所决定.本题也考查了纳米与米之间的单位换算:1nm=1×10-9m . 10.一个长方体的长是5210cm ⨯,宽是31.510cm ⨯,高是41.310cm ⨯,则它的体积是________3m .[答案]63.910⨯[解析][分析]先进行单位换算,再计算长方体的体积[详解]53210cm=210m ⨯⨯,311.510cm=1.510m ⨯⨯,421.310cm=1.310m ⨯⨯故它的体积是:33126210 1.510 1.310 3.1m 90⨯⨯⨯⨯⨯=⨯.故答案为:63.910⨯[点睛]此题主要考查了单项式乘以单项式以及科学记数法的表示方法,单位换算和正确计算是解题关键. 11.如图所示,随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)________(填“增大”“减小”或“不变”),理由是________________.[答案] (1). 增大 (2). 对顶角相等[解析][分析]根据对顶角的性质即可得出结论.[详解]解:∵∠AOB 和∠DOC 为对顶角∴∠AOB=∠DOC∴随着剪刀两个把手之间夹角(DOC ∠)的增大,剪刀刀刃之间的夹角(AOB ∠)增大理由为对顶角相等.故答案为:增大;对顶角相等.[点睛]此题考查的是对顶角性质的应用,掌握对顶角相等是解决此题的关键.12.下表反映的是某水果店销售的草莓数量(kg )与销售总价(元)之间的关系,它可以表示为________. 销售数量(kg ) 1 2 3 4 …[答案]60.5y x =+[解析][分析] 由图表可知,当销售数量为1kg 时,销售总价为6.5元,销售数量每增加1kg ,销售总价就增加6元,从而求出y 与x 的函数关系式.[详解]解:由图表可知,当销售数量为1kg 时,销售总价为6.5元,销售数量每增加1kg ,销售总价就增加6元, ∴y=6.5+6(x -1)=60.5x +故答案为:60.5y x =+.[点睛]此题考查的是求函数解析式,掌握实际问题中的等量关系是解决此题的关键.13.计算101(2)2π-⎛⎫--- ⎪⎝⎭的结果是________.[答案]-3[解析][分析]按照负指数幂和零指数幂运算法则分别计算后,进行有理数加减法运算即可. [详解]解:101(2213)2π-⎛⎫---=-- ⎪⎭=-⎝ 故答案为:-3[点睛]本题考查了负指数幂、零指数幂和有理数加减运算的运算法则,解答关键是按照法则进行计算.14.如图,在两条方向相同的南北公路之间要修一条笔直的公路AB ,从地测得公路的走向是南偏西50°,则从地测公路的走向是________.[答案]北偏东50°[解析][分析]首先计算2∠的度数,再根据方向角来描述乙地所修公路的走向.[详解]解:如图所示:150∠=︒,//AC BD ,2150∴∠=∠=︒,乙地所修公路的走向是北偏东50︒,故答案为:北偏东50︒.[点睛]此题主要考查了方向角,关键是掌握以正北,正南方向为基准,来描述物体所处的方向.15.已知有理数,满足2213a b --=,则33()()a b a b +-的值是________.[答案]127[解析][分析]根据平方差公式和负指数幂的性质可得()()13a b a b +-=,然后根据积的乘方的逆用即可求出结论.[详解]解:∵2213a b --=∴()()13a b a b +-=∴33()()a b a b +-=[]3()()a b a b +- =313⎡⎤⎢⎥⎣⎦=127故答案为:127. [点睛]此题考查的是平方差公式、负指数幂的性质和积的乘方的逆用,掌握平方差公式、负指数幂的性质和积的乘方的逆用是解决此题的关键.16.根据如图所示阴影部分的面积可以写出的一个等式是________.[答案]22()()4a b a b ab +=-+[解析]分析]由图可知:图中大正方形的边长为a +b ,其面积为2()a b +;空白正方形的边长为a -b ,其面积为2()a b -;阴影部分由4个矩形组成,每个矩形的长为a ,宽为b ,每个矩形的面积为ab ;然后根据大正方形的面积=空白正方形的面积+4个矩形的面积即可得出结论.[详解]解:由图可知:图中大正方形边长为a +b ,其面积为2()a b +; 空白正方形的边长为a -b ,其面积为2()a b -;阴影部分由4个矩形组成,每个矩形的长为a ,宽为b ,每个矩形的面积为ab ;∴22()()4a b a b ab +=-+故答案为:22()()4a b a b ab +=-+.[点睛]此题考查的是完全平方公式变形的几何意义,利用大正方形的面积=空白正方形的面积+4个矩形的面积得出等式是解决此题的关键.三、解答题17.计算:(1)()32328x x y xy ⋅÷; (2)3(2)(3)9a a a a -⋅--÷;(3)()2(1)(1)1x x x -++.[答案](1)623xy (2)2a (3)41x - [解析][分析](1)先计算单项式的乘方,再进行单项式乘法,最后进行单项式除法即可;(2)先计算单项式的乘方,再进行单项式乘除法,最后加减;(3)直接利用平方差公式计算得出答案.[详解]解:(1)()32328x x y xy ⋅÷=63388x x y xy ⋅÷=623x y ;(2)3(2)(3)9a a a a -⋅--÷=232(27)9a a a ---÷=222+3a a -=2a ;(3)()2(1)(1)1x x x -++=()22(1)1x x -+=41x -.[点睛]本题考查整式的混合运算,正确掌握相关运算法则是解题关键.18.求下列各式的值:(1)2(31)(32)(23)x x x x +-+-,其中2x =-;(2)222()()22m n m n mn mn ⎡⎤+--+÷⎣⎦,其中1m =,12n =-. [答案](1)76x +;-8 ; (2)2n +;32[解析][分析] (1)利用多项式乘以多项式和单项式乘以多项式计算法则进行计算,再合并同类项,化简后,再代入的值可得答案.(2)首先利用完全平方公式计算括号里面的乘法,再合并同类项,然后再利用多项式除以单项式计算除法,化简后,再代入、的值计算即可.[详解]解:(1)原式2(31)(32)(23)x x x x +-+-2262(6946)x x x x x =+--+-22626946x x x x x =+-+-+76x =+,当2x =-时,原式2768=-⨯+=-;(2)原式222()()22m n m n mn mn ⎡⎤=+--+÷⎣⎦222222(2)22m mn n m mn n mn mn ⎡⎤=++--++÷⎣⎦22222(222)2m mn n m mn n mn mn =++-+-+÷2(42)2mn mn mn =+÷24222mn mn mn mn =÷+÷2n =+,当1m =,12n =-时,原式13222=-+=. [点睛]此题主要考查了整式的混合运算--化简求值,关键是掌握有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.19.数学活动课上,小亮把两个含30°角的三角板按照如图所示方式摆放,点,,,在同一条直线上,他让小明判断直线AB 与CD 的位置关系,小明很快说出了答案并讲出了判断的依据.请你猜猜小明的答案和理由.[答案]//AB CD ,理由:内错角相等,两直线平行[解析][分析]根据三角尺的摆放方式,比较容易找到一组相等的内错角,从而证明两条直线平行.[详解]//AB CD ,理由:内错角相等,两直线平行[点睛]本题考查了平行线的判定方法,熟练掌握平行线的判定定理是解题的关键.20.如图,已知α∠,β∠.求作:AOB ∠,使AOB αβ∠=∠-∠.(尺规作图,保留作图痕迹,不写作法)[答案]图见解析[解析][分析]作∠AOC=α∠,然后在∠AOC 内部作∠BOC=β∠,即可得到AOB αβ∠=∠-∠.[详解]解:作∠AOC=α∠,然后在∠AOC 内部作∠BOC=β∠,即可得到AOB αβ∠=∠-∠,如下图所示,∠AOB 即为所求.[点睛]此题考查的是基本作图,掌握利用尺规作图作一个角等于已知角是解决此题的关键.21.防疫期间的某天上午9:00,社区工作人员小孙从社区办公室出发,上门为本社区两户隔离人员家庭送生活用品,同时了解隔离人员的健康状况,她先去了距离社区较近的张家,稍作停留简单询问了情况后,又去了稍远一点的李家,这家人口较多,了解情况时间稍长一些,由于社区还有其它事情等待处理,结束工作后她快速返回社区办公室.已知小孙距离社区办公室的距离(米)与离开办公室的时间(分)之间的关系如图所示.请根据图象回答下列问题:(1)图中点表示的意义是什么?(2)小孙从李家出来后步行的速度是多少?(3)小孙在李家停留了几分钟?小孙几点回到社区办公室?[答案](1)点表示小孙从社区办公室出发5分钟后到达距社区办公室200米的张家;(2)80(米/分);(3)10分钟,9:40.[解析][分析](1)根据题意和图象中A点对应的(米)与(分)解答即可;(2)根据“速度时间路程”解答即可;(3)根据图象中(米)与(分)解答即可.[详解]解:(1)由图象可知,点表示小孙从社区办公室出发5分钟后到达距社区办公室200米张家;(2)800(4030)80÷-=(米分).故小孙从李家出来后步行的速度是80米分;(3)由图象可知,小孙在李家停留了()302010-=分钟,小孙9:00出发,到经过40分钟回到社区办公室, 9:40回到社区办公室.故:小孙在李家停留了10分钟,小孙9:40回到社区办公室.[点睛]此题主要考查了看函数图象,解决本题的关键是读懂图意,然后根据图象信息找到所需要的数量关系,利用数量关系即可解决问题.22.如图,已知//AB CE ,点,,在同一条直线上.(1)已知40B ∠=︒,求DCE ∠的度数;(2)已知60A ∠=︒,40B ∠=︒,求ACD ∠的度数;(3)当A ∠,B 的度数变化时,A ∠,B ,ACD ∠之间的数量关系会变化吗?如果不变,请写出它们之间的数量关系.[答案](1)40DCE ∠=︒(2)100ACD ∠=︒(3)不变 ACD A B ∠=∠+∠[解析][分析](1)直接利用两直线平行,同位角相等即可得出答案;(2)利用三角形外角的性质可知ACD A B ∠=∠+∠,然后代入相应的角度即可求出答案;(3)利用三角形外角的性质可知ACD A B ∠=∠+∠,从而得出答案.[详解](1)//AB CE ,40DCE B ∴∠=∠=︒;(2)60A ∠=︒,40B ∠=︒,∴6040100ACD A B ∠=∠+∠=︒+︒=︒;(3)不变,根据三角形外角的性质可知,ACD A B ∠=∠+∠.[点睛]本题主要考查平行线的性质和三角形外角的性质,掌握平行线的性质和三角形外角的性质是解题的关键.。
2020-2021学年度人教版数学七年级下学期综合检测卷三【含答案】
2020-2021学年度人教版数学七年级下学期综合检测卷三【含答案】一、单选题(18分)1.(3分)下列等式正确的是()A.B.C.D.2.(3分)如图,在一个三角形三个顶点和中心处的每个“○”中各填有一个式子,如果图中任意三个“○”中的式子之和均相等,那么的值为()A.1B.2C.3D.03.(3分)下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)在同一平面内,不相交的两条线段必平行;(3)相等的角是对顶角;(4)两条直线被第三条直线所截,所得到同位角相等;(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A.1个B.2个C.3个D.4个4.(3分)在平面直角坐标系中,已知点A(-4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B的坐标是()A.(0,-2)B.(4,6)C.(4,4)D.(2,4)5.(3分)已知点P(,y)在第四象限,且||=3,|y|=5,则点P的坐标是()A.(-3,-5)B.(5,-3)C.(3,-5)D.(-3,5) 6.(3分)有下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无限不循环小数是无理数;④π是无理数.其中正确的说法有()A.4个B.3个C.2个D.1个二、填空题(18分)7.(3分)已知,则.8.(3分)若是方程x-2y=0的解,则3a-6b-3= .9.(3分)已知点P(2-a,3a+10)且点P到两坐标轴距离相等,则a= .10.(3分)按照下图所示的操作步骤,若输出y的值为22,则输入的值x为.11.(3分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.12.(3分)如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1= ;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A n-1BC与∠A n-1CD 的平分线相交于点A n,要使∠A n的度数为整数,则n的值最大为.三、解答题(84分)13.(6分)解不等式组:并在数轴上表示它的解集.14.(6分)某公司有A、B两种型号的客车共11辆,它们的载客量(不含司机)、日租金、车辆数如下表所示,已知这11辆客车满载时可搭载乘客350人.A型客车B型客车载客量(人/辆) 40 25日租金(元/辆) 320 200车辆数(辆) a b(1)求a、b的值.(2)某校七年级师生周日集体参加社会实践,计划租用A、B两种型号的客车共6辆,且租车总费用不超过1700元.①最多能租用A型客车多少辆?②若七年级师生共195人,写出所有的租车方案,并确定最省钱的租车方案.15.(6分)求不等式组的非负整数解.16.(6分)化简:(1)=0,= ,= ,= .(2)=0,= ,= ,= .(3)根据以上信息,观察a,b所在位置,完成化简:.17.(6分)解不等式组,把解集在数轴上表示出来,并写出它的非负整数解.18.(8分)A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的2倍,则称点C是(A,B)的奇异点,例如图1中,点A表示的数为-1,点B 表示的数为2,表示1的点C到点A的距离为2,到点B的距离为1,则点C是(A,B)的奇异点,但不是(B,A)的奇异点.(1)在图1中,直接说出点D是(A,B)还是(B,C)的奇异点.(2)如图2,若数轴上M、N两点表示的数分别为-2和4,(M,N)的奇异点K在M、N两点之间,请求出K点表示的数.(3)如图3,A、B在数轴上表示的数分别为-20和40,现有一点P从点B出发,向左运动.①若点P到达点A停止,则当点P表示的数为多少时,P、A、B中恰有一个点为其余两点的奇异点?②若点P到达点A后继续向左运动,是否存在使得P、A、B中恰有一个点为其余两点的奇异点的情况?若存在,请直接写出此时PB的距离;若不存在,请说明理由.19.(8分)解答题:(1)如图1,请证明∠A+∠B+∠C=180°.(2)如图2的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D.(3)如图3,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明.(4)如图4,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD 于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4-∠1-∠2不变,选择正确的并给予证明.20.(8分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1.(3)若(m,n)是“相伴数对”,求代数式m--[4m-2(3n-1)]的值.21.(9分)【阅读理解】在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组;(2)已知,求x+y+z的值.解:(1)把②代入①得:x+2×1=3.解得:x=1.把x=1代入②得:y=0.所以方程组的解为.(2)①×2得:8x+6y+4z=20③,②-③得:x+y+z=5.(1)【类比迁移】(1)若,则x+2y+3z=____.(2)解方程组(2)【实际应用】打折前,买39件A商品,21件B商品用了1080元.打折后,买52件A商品,28件B商品用了1152元,比不打折少花了多少钱?22.(9分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”, (填“是”或“否”).(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由.(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.23.(12分)计算:(1)-32+|-3|+.(2)-+-.答案一、单选题1.【答案】D【解析】选项A、原式,错误;选项B、原式=,错误;选项C、原式没有意义,错误;选项D、原式,正确.故答案为:D.2.【答案】A【解析】根据题意得,解得.故答案为:A。
人教版数学七年级下学期《期中检测试题》带答案
人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列实数中,是无理数的是( )A. 6B. 3.14C. 2D. 1 32.如图,小明用手盖住的点的坐标可能为( )A. (2,3)B. (﹣2,3)C. (2,﹣3)D. (﹣2,﹣3)3.点P为直线l外一点,点A,B,C为直线l上三点,PA=3cm,PB=4cm,PC=5cm,则点P到直线l距离( )A. 等于4cmB. 等于3cmC. 小于3cmD. 不大于3cm4.如图,点E在BC的延长线上,下列条件能判定AB∥CD的是( )A. ∠1=∠2B. ∠3=∠4C. ∠DAB+∠B=180°D. ∠D=∠55.将一直角三角板与两边平行的纸条如图放置,若∠1=55°,则∠2的大小是()A. 25°B. 30°C. 35°D. 45°6.下列命题中,(1)如果直线a∥b,b∥c,那么a∥c;(2)相等角是对顶角;(3)两条直线被第三条直线所截,内错角相等.其中真命题的个数是()A. 1个B. 2个C. 3个D. 无7.小明家位于公园正西100米处,从小明家出发向北走200米就到小华家.若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建立平面直角坐标系,规定一个单位长度代表1米长,则公园的坐标是( ) A. (﹣200,100) B. (200,﹣100)C. (﹣100,200)D. (100,﹣200)8.二元一次方程3x+2y=15的正整数解的对数是( )A. 1对B. 2对C. 3对D. 4对9.如图,一环湖公路的AB段为东西方向,经过四次拐弯后,又变成了东西方向的FE段,则∠B+∠C+∠D+∠E 的度数是()A. 360°B. 540°C. 720°D. 900°10.如图,在一块长为a米,宽为b米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移2米就是它的右边线,这块草地的绿地面积是(单位:平方米)( )A. abB. (a﹣2)bC. a(b﹣2)D. (a﹣2)(b﹣2)二、填空题(每小题3分,共18分)11.100的算术平方根是_____.12.与65最接近的整数是_____.13.点P(m﹣1,m+3)在平面直角坐标系的x轴上,则P点坐标是_____.14.如图,直线AB,CD交于点O,OA平分∠EOC,∠EOC∶∠EOD=4∶5,则∠BOD=______度.15.如图,已知DE∥BC,∠EDB比∠B的两倍小15°,则∠B=_____.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2020个点的坐标是_____.三、解答题(共72分)17.计算与解方程:(1)22327+|125;(2)解方程:25x2=36.18.解二元一次方程组:(1)25 342 x yx y-=⎧⎨+=⎩;(2)433 3215x yx y+=⎧⎨-=⎩.19.填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG=∠HFD,求证:∠G=∠H.解:∵∠BEF+∠EFD=180°,(已知).∴AB//( ).∴=∠EFD( ).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=.∴//FH( ).∴∠G=∠H.( ).20.如图,直线DE经过A点,DE∥BC.(1)若∠B=40°,∠C=60°,求∠DAB,∠EAC的度数;(2)你能借助图形说明为什么三角形的内角和是180°吗?请说明理由.21.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC中任意一点P(x0,y0)经平移后对应点为P1(x0+1,y0+2),将△ABC作同样的平移得到△A1B1C1.(1)请画出△A1B1C1并写出点A1,B1,C1坐标;(2)求△A1B1C1的面积;(3)若点P在y轴上,且△A1B1P的面积是1,请直接写出点P的坐标.22.如图,AB∥CD.(1)如图①,若∠CMN=90°,点B在射线MN上,∠ABM=120°,求∠C的度数;(2)如图②,若∠CMN=150°,请直接写出∠ABM与∠C的数量关系.23.操作与探究:点P为数轴上任意一点,对点P进行如下操作:先把点P表示的数乘以三分之一,再把所得数对应的点向右平移0.5个单位,得到点P的对应点P′.(1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.若点A表示的数是﹣3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.(2)如图,在平面直角坐标系中,对正方形ABDC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′D′C′及其内部的点,其中点A,B的对应点分别为A′,B′,已知正方形ABDC内部的一个点F经过上述操作后得到的对应点F′与点F重合,请求出点F的坐标.24.如图,以直角三角形AOB直角顶点O为原点,以OB,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),B(b,0)2+|b﹣4|=0.a b(1)直接写出A点的坐标为;B点的坐标为.(2)如图①,已知坐标轴上有两动点M,N同时出发,M点从B点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,N点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点N到达A点整个运动随之结束.AB的中点C的坐标是(2,4),设运动时间为t(t>0)秒,是否存在这样的t,使OCM,OCN的面积相等?若存在,请求出t的值;若不存在,请说明理由.(3)如图②,点D是线段AB上一点,满足∠DOB=∠DBO,点F是线段OA上一动点,连BF交OD于点G,当点F在线段OA上运动的过程中,OGB ABFOFB∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.答案与解析一、选择题1.下列实数中,是无理数的是( )A. 6B. 3.14C. 2D. 1 3[答案]A[解析][分析]根据无理数的三种形式求解即可.[详解]A.6是无理数;B.3.14是有限小数,属于有理数;C.2是整数,属于有理数;D.13是分数,属于有理数;故选:A.[点睛]本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.如图,小明用手盖住的点的坐标可能为( )A. (2,3)B. (﹣2,3)C. (2,﹣3)D. (﹣2,﹣3)[答案]B[解析][分析]小明用手盖住的点在第二象限内,那么点的横坐标小于0,纵坐标大于0,比较选项即可.[详解]小明用手盖住的点在第二象限内,则其横坐标小于0,纵坐标大于0,那么结合选项笑脸盖住的点的坐标可能为(−2,3).故选:B.[点睛]本题考查坐标的象限符号,解决本题的关键是记住平面直角坐标系中各个象限内点的符号特点:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).3.点P为直线l外一点,点A,B,C为直线l上三点,PA=3cm,PB=4cm,PC=5cm,则点P到直线l的距离( )A. 等于4cmB. 等于3cmC. 小于3cmD. 不大于3cm[答案]D[解析][分析]由点到直线的距离,垂线段最短,从而可得答案.[详解]解:根据垂线段最短得出P到直线l的距离是不大于3cm,故选:D.[点睛]本题考查的是点到直线的距离的概念与应用,掌握点到直线的距离,垂线段最短是解题的关键.4.如图,点E在BC的延长线上,下列条件能判定AB∥CD的是( )A. ∠1=∠2B. ∠3=∠4C. ∠DAB+∠B=180°D. ∠D=∠5[答案]B[解析][分析]直接利用平行线的判定方法分别判断得出答案.[详解]解:A、当∠1=∠2时,可得:AD∥BC,不合题意;B、当∠3=∠4时,可得:AB∥CD,符合题意;C、当∠DAB+∠B=180°时,可得:AD∥BC,不合题意;D、当∠D=∠5时,可得:AD∥BC,不合题意;故选:B.[点睛]此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.5.将一直角三角板与两边平行的纸条如图放置,若∠1=55°,则∠2的大小是()A. 25°B. 30°C. 35°D. 45°[答案]C[解析][分析]先根据∠1=55°,∠FEG=90°,求得∠3=35°,再根据平行线的性质,求得∠2的度数.[详解]解:如图,∵∠1=55°,∠FEG=90°,∴∠3=35°,∵AB∥CD,∴∠2=∠3=35°.故选:C.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.6.下列命题中,(1)如果直线a∥b,b∥c,那么a∥c;(2)相等的角是对顶角;(3)两条直线被第三条直线所截,内错角相等.其中真命题的个数是()A. 1个B. 2个C. 3个D. 无[答案]A[解析][分析]分别利用平行线的性质,以及对顶角的定义分析得出答案.[详解]解:(1)如果直线a∥b,b∥c,那么a∥c,是真命题;(2)相等的角是对顶角,是假命题;(3)两条直线被第三条直线所截,内错角相等,是假命题.真命题有1个,故选:A.[点睛]此题主要考查了命题与定理,正确把握平行线的性质是解题关键.7.小明家位于公园正西100米处,从小明家出发向北走200米就到小华家.若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建立平面直角坐标系,规定一个单位长度代表1米长,则公园的坐标是( ) A. (﹣200,100) B. (200,﹣100)C. (﹣100,200)D. (100,﹣200)[答案]D[解析][分析]根据题意画出坐标系,进而确定公园的坐标.[详解]解:如图所示:公园的坐标是:(100,﹣200).故选:D.[点睛]此题主要考查了坐标确定位置,正确理解题意是解题关键.8.二元一次方程3x+2y=15的正整数解的对数是( )A. 1对B. 2对C. 3对D. 4对[答案]B[解析][分析]将x=1,2,…,分别代入3x+2y=15,求出方程正整数解的对数是多少即可.[详解]解:当x=1时,方程变形为3+2y=15,解得y=6;当x=3时,方程变形为9+2y=15,解得y=3;∴二元一次方程3x+2y=15的正整数解的对数是2对:16xy=⎧⎨=⎩和33xy=⎧⎨=⎩.故选:B.[点睛]此题主要考查了二元一次方程组的解,要熟练掌握,注意解中x与y必须为正整数.9.如图,一环湖公路的AB段为东西方向,经过四次拐弯后,又变成了东西方向的FE段,则∠B+∠C+∠D+∠E 的度数是()A. 360°B. 540°C. 720°D. 900°[答案]B[解析][分析]分别过点C,D作AB的平行线CG,DH,进而利用同旁内角互补可得∠B+∠BCD+∠CDE+∠E的大小.[详解]解:如图,根据题意可知:AB∥EF,分别过点C,D作AB的平行线CG,DH,所以AB∥CG∥DH∥EF,则∠B+∠BCG=180°,∠GCD+∠HDC=180°,∠HDE+∠DEF=180°,∴∠B+∠BCG+∠GCD+∠HDC+∠HDE+∠DEF=180°×3=540°,∴∠B+∠BCD+∠CDE+∠E=540°.故选:B.[点睛]考查了平行线的性质,解题的关键是作辅助线,利用平行线的性质计算角的大小.10.如图,在一块长为a米,宽为b米的长方形草地上,有一条弯曲的小路,小路的左边线向右平移2米就是它的右边线,这块草地的绿地面积是(单位:平方米)( )A. abB. (a﹣2)bC. a(b﹣2)D. (a﹣2)(b﹣2)[答案]B[解析][分析]根据平移,可得路宽度,根据矩形的面积,可得答案.[详解]解:∵小路的左边线向右平移2m就是它的右边线,∴路的宽度是2m,∴这块草地的绿地面积是(a﹣2)b平方米,故选:B.[点睛]本题考查了生活中的平移现象,先由平移得出路的宽度,再求出绿地的面积.二、填空题(每小题3分,共18分)11.100的算术平方根是_____.[答案]10[解析][分析]根据算术平方根的定义进行计算,即可得到答案.[详解]解:∵102=100,10.故答案为:10.[点睛]本题考查了算术平方根的定义,解题的关键是熟练掌握定义.12._____.[答案]8[解析][分析][详解]∴89,8,故答案为:8.[点睛]本题考查了估算无理数的大小,解决本题的关键是利用“夹逼法”估算出65的大小.13.点P (m ﹣1,m+3)在平面直角坐标系的x 轴上,则P 点坐标是_____.[答案]()4,0-[解析][分析]利用在x 轴上的点坐标特征解答即可.[详解]解:由题意,得:m+3=0,解得m =﹣3,∴m ﹣1=﹣4,∴点P 的坐标为(﹣4,0).故答案为(﹣4,0).[点睛]本题考查了x 轴上点的坐标特征,掌握在x 轴上的点纵坐标为0的特征是解答本题的关键. 14.如图,直线AB ,CD 交于点O ,OA 平分∠EOC ,∠EOC ∶∠EOD =4∶5,则∠BOD =______度.[答案]40[解析][分析]直接利用平角的定义得出:∠COE=80°,∠EOD=100°,进而结合角平分线的定义得出∠AOC=∠BOD ,进而得出答案.[详解]解:∵∠EOC :∠EOD=4:5,∴设∠EOC=4x ,∠EOD=5x ,故4x+5x=180°,解得:x=20°,可得:∠COE=80°,∠EOD=100°,∵OA 平分∠EOC ,∴∠COA=∠AOE=40°,∴∠BOD=40°.故答案是:40.[点睛]主要考查了角平分线的定义以及邻补角,正确把握相关定义是解题关键.15.如图,已知DE∥BC,∠EDB比∠B的两倍小15°,则∠B=_____.[答案]65︒[解析][分析]根据平行线的性质和题意,列出关系式求解即可.[详解]解:∵DE∥BC,∴∠B+∠EDB=180°,∵2∠B﹣∠EDB=15°,∴3∠B=195°,∴∠B=65°,故答案为:65︒.[点睛]本题考查的是平行线的性质和列关系式,能根据题意,准确列出关系式是解题的关键.16.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0)……,根据这个规律探索可得第2020个点的坐标是_____.64,3[答案]()[解析][分析]横坐标为1的点有1个,横坐标为2的点有2个,横坐标为3的点有3个,纵坐标分别是0,1,2…横坐标为奇数,纵坐标从大数开始数;横坐标为偶数,则从0开始数.[详解]解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有(1)2n n+个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2020个数一定在第64列,由下到上是第4个数.因而第2020个点的坐标是(64,3).故答案为:(64,3).[点睛]本题考查了学生的观察图形的能力和理解能力,解此题的关键是根据图形得出规律,题目比较典型,但是一道比较容易出错的题目.三、解答题(共72分)17.计算与解方程:(1)+|1;(2)解方程:25x2=36.[答案](1)3;(2)65x=±.[解析][分析](1)原式利用平方根、立方根的定义和绝对值的代数意义计算即可;(2)方程整理后,利用平方根的定义开方即可求解.[详解]解:(1)原式=2﹣3+5﹣1=3;(2)方程整理得:x2=36 25,开方得:x=±65.[点睛]本题考查了实数的运算,熟练掌握运算法则及方程的解法是解本题的关键.18.解二元一次方程组:(1)25 342 x yx y-=⎧⎨+=⎩;(2)433 3215x yx y+=⎧⎨-=⎩.[答案](1)21xy=⎧⎨=-⎩;(2)33xy=⎧⎨=-⎩.[解析][分析](1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.[详解]解:(1)25? 342?x yx y-=⎧⎨+=⎩①②,①×4+②得:11x=22,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为21 xy=⎧⎨=-⎩;(2)433 3215x yx y+=⎧⎨-=⎩①②,①×2+②×3得:17x=51, 解得:x=3,把x=3代入①得:y=﹣3,则方程组的解为33 xy=⎧⎨=-⎩.[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG=∠HFD,求证:∠G=∠H.解:∵∠BEF+∠EFD=180°,(已知).∴AB//( ).∴=∠EFD( ).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=.∴//FH( ).∴∠G=∠H.( ).[答案]CD;同旁内角互补,两直线平行;∠AEF;两直线平行,内错角相等;∠EFH;GE;内错角相等,两直线平行;两直线平行,内错角相等.[解析][分析]根据平行线性质与判定定理即可作出解决.[详解]解:∵∠BEF+∠EFD=180°,(已知).∴AB//CD(同旁内角互补,两直线平行).∴∠AEF=∠EFD(两直线平行,内错角相等).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠EFH.∴GE//FH(内错角相等,两直线平行).∴∠G=∠H.(两直线平行,内错角相等).故答案为:CD;同旁内角互补,两直线平行;∠AEF;两直线平行,内错角相等;∠EFH;GE;内错角相等,两直线平行;两直线平行,内错角相等.[点睛]本题考查了平行线的性质定理以及判定定理,关键性质定理与判定定理二者之间的区别以及正确掌握同位角、内错角、同旁内角的定义.20.如图,直线DE经过A点,DE∥BC.(1)若∠B=40°,∠C=60°,求∠DAB,∠EAC的度数;(2)你能借助图形说明为什么三角形的内角和是180°吗?请说明理由.[答案](1)40︒,60︒;(2)能,理由见解析.[解析][分析](1)利用平行线的性质求解即可.(2)根据平角∠DAE=180°,推出∠DAB+∠BAC+∠EAC=180°,再利用平行线的性质解决问题即可.[详解]解:(1)∵DE ∥BC ,∴∠DAB=∠B=40°,∠EAC=∠C=60°.(2)能.理由如下:∵DE ∥BC ,∴∠DAB=∠B ,∠EAC=∠C ,∵∠DAB+∠BAC+∠CAE=180°∴∠BAC+∠B+∠C=180°,∴△ABC 的内角和等于180°.[点睛]本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握相关知识.21.如图,在平面直角坐标系中,A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).△ABC 中任意一点P(x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),将△ABC 作同样的平移得到△A 1B 1C 1.(1)请画出△A 1B 1C 1并写出点A 1,B 1,C 1的坐标;(2)求△A 1B 1C 1的面积;(3)若点P 在y 轴上,且△A 1B 1P 的面积是1,请直接写出点P 的坐标.[答案](1)答案见解析,1111,23,10,0A B C ,,;(2)3.5;(3)点P 的坐标为()0,2或()0,2-.[解析][分析] (1)依据点P(x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),可得平移的方向和距离,将△ABC 作同样的平移即可得到△A 1B 1C 1;(2)利用割补法进行计算,即可得到△A 1B 1C 1的面积;(3)设P(0,y),依据△A 1B 1P 的面积是1,即可得到y 的值,进而得出点P 的坐标.[详解]解:(1)依据点P(x 0,y 0)经平移后对应点为P 1(x 0+1,y 0+2),可得图形是先往右移1个单位长度,再往上移2个单位长度,如图所示,△A 1B 1C 1即为所求; A 1(0,0),B 1(﹣1,﹣2),C 1(﹣3,1);(2)△A 1B 1C 1的面积为:11122213313126 1.51 3.5;(3)设P(0,y),则A 1P =|y|,∵△A 1B 1P 的面积是1,∴12×|y|×1=1, 解得y =±2, ∴点P 的坐标为(0,2)或(0,﹣2).[点睛]本题主要考查了利用平移变换作图,熟悉相关作法是解题的关键.22.如图,AB ∥CD .(1)如图①,若∠CMN =90°,点B 在射线MN 上,∠ABM =120°,求∠C 的度数;(2)如图②,若∠CMN =150°,请直接写出∠ABM 与∠C 的数量关系.[答案](1)30;(2)30ABM C ∠-∠=︒.[解析][分析](1)过M 作MK ∥AB ,则∠ABM+∠1=180°,根据AB ∥CD ,MK ∥AB ,即可得到MK ∥CD ,再根据平行线的性质,即可得到∠C 的度数;(2)过M 作MK ∥AB ,则∠ABM+∠1=180°,根据AB ∥CD ,MK ∥AB ,即可得到MK ∥CD ,再根据平行线的性质,即可得到180°-∠ABM+∠C=120°,据此可得∠ABM 与∠C 的数量关系.[详解]解:(1)如图①,过M 作MK ∥AB ,则∠ABM+∠1=180°,∴∠1=180°﹣∠ABM=60°,∵∠CMN=90°,∴∠2=90°﹣∠1=30°,∵AB∥CD,MK∥AB,∴MK∥CD,∴∠C=∠2=30°;(2)∠ABM﹣∠C=30°,理由:如图②,过M作MK∥AB,则∠ABM+∠1=180°,∴∠1=180°﹣∠ABM,∵AB∥CD,MK∥AB,∴MK∥CD,∴∠C=∠2,∵∠CMN=∠1+∠2=150°,即180°﹣∠ABM+∠C=150°,∴∠ABM﹣∠C=180°﹣150°=30°.[点睛]本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补;两直线平行,内错角相等.解决问题的关键是作辅助线构造同旁内角以及内错角.23.操作与探究:点P为数轴上任意一点,对点P进行如下操作:先把点P表示的数乘以三分之一,再把所得数对应的点向右平移0.5个单位,得到点P的对应点P′.(1)点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.若点A表示的数是﹣3,则点A′表示的数是;若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是.(2)如图,在平面直角坐标系中,对正方形ABDC 及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a ,将得到的点先向右平移m 个单位,再向上平移n 个单位(m >0,n >0),得到正方形A ′B ′D ′C ′及其内部的点,其中点A ,B 的对应点分别为A ′,B ′,已知正方形ABDC 内部的一个点F 经过上述操作后得到的对应点F ′与点F 重合,请求出点F 的坐标.[答案](1)12-,92,34;(2)31,2F ⎛⎫ ⎪⎝⎭. [解析][分析](1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B 表示的数为p ,根据题意列出方程求解即可得到点B 表示的数,设点E 表示的数为q ,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F 的坐标为(x ,y ),根据平移规律列出方程组求解即可.[详解]解:(1)点A′:﹣3×13+0.5=﹣12,设点B表示的数为p,则13p+0.5=2,解得p=92,设点E表示的数为q,则13q+0.5=q,解得q=34;故答案为:12-,92,34;(2)根据题意得,5101a ma n-+=-⎧⎨+=⎩,7301a ma n+=⎧⎨+=⎩,解得:a=13,设点F的坐标为(x,y),m=23,n=1.设点F的坐标为(x,y), ∵对应点F′与点F重合,∴1233113x xy y⎧+=⎪⎪⎨⎪+=⎪⎩,解得:132xy=⎧⎪⎨=⎪⎩,即点F的坐标为(1,32 ).[点睛]本题考查了二元一次方程组的应用,一元一次方程的应用,坐标与图形的变化,读懂题目信息运用平移规律列出方程或方程组是解题的关键.24.如图,以直角三角形AOB的直角顶点O为原点,以OB,OA所在直线为x轴和y轴建立平面直角坐标系,点A(0,a),B(b,0)+|b﹣4|=0.(1)直接写出A点的坐标为;B点的坐标为.(2)如图①,已知坐标轴上有两动点M,N同时出发,M点从B点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,N点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点N到达A点整个运动随之结束.AB的中点C的坐标是(2,4),设运动时间为t(t>0)秒,是否存在这样的t,使OCM,OCN的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3)如图②,点D 是线段AB 上一点,满足∠DOB =∠DBO ,点F 是线段OA 上一动点,连BF 交OD 于点G ,当点F 在线段OA 上运动的过程中,OGB ABF OFB∠+∠∠的值是否会发生变化?若不变,请求出它的值;若变化,请说明理由.[答案](1)()0,8,()4,0;(2)存在,2;(3)不变,2.[解析][分析](1)利用两个非负数之和为零的性质求解,a b ,可得答案;(2)当0<t≤4时,点N 在线段AO 上,分别用含的代数式表示BM ,OM ,ON ,再利用面积公式列方程求解即可.(3)作∠AOH =∠AOD ,过G 点作AB 的平行线,交x 轴于P ,再证明//,OH AB 利用平行线的性质,从而可得答案.[详解]解:(1)∵2a b -+|b ﹣4|=0.∴a ﹣2b =0,b ﹣4=0,解得a =8,b =4,∴A (0,8),B (4,0);故答案为(0,8),(4,0).(2)如图1中,由条件可知:M 点从B 点运动到O 点时间为秒,N 点从O 点运动到A 点时间为4秒,∴0<t ≤4时,点N 在线段AO 上,即 BM =t ,OM =4﹣t ,ON =2t ,∴COM S =12OM •y C =12(4﹣t )×4=8﹣2t , CON S =12ON •x C =12×2t ×2=2t , ∵COM CON S S =,∴8﹣2t =2t ,∴t =2.(3)结论:GB ABF OFBO ∠+∠∠值不变,其值为2. 理由:如图2中,作∠AOH =∠AOD ,过G 点作AB 的平行线,交x 轴于P ,则∠4=∠PGB ,∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠DBO ,∴∠HOB+∠DBO =180°,∴OH ∥AB ,∴∠1=∠BAO ,∴∠OFB =∠BAO+∠4=∠1+∠4,∴∠PGO =∠HOD =∠1+∠2,∴∠OGB =∠OGP+∠PGB =∠HOD+∠4=∠1+∠2+∠4,∴GB ABF OFB O ∠+∠∠=()2141244 2.1414∠+∠∠+∠+∠+∠==∠+∠∠+∠ [点睛]本题考查的是图形与坐标,平行线的判定与平行线的性质,三角形的外角的性质,角的和差运算,绝对值,算术平方根的非负性,掌握以上知识是解题的关键.。
(试卷合集3份)2023届黑龙江省鸡西市初一下学期期末数学综合测试试题
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,直线m ∥n ,△ABC 的顶点B ,C 分别在直线n ,m 上,且∠ACB=90°,若∠1=40°,则∠2的度数为( )A .140°B .130°C .120°D .110° 2.在中,,于,平分交于,则下列结论一定成立的是( )A .B .C .D .3.如图,下列说法错误的是( )A .∠A 与∠B 是同旁内角 B .∠1与∠3是同位角C .∠2与∠A 是同位角D .∠2与∠3是内错角4.下列命题是假命题的是( ) A .同位角相等,两直线平行 B .两直线平行,同旁内角相等 C .若a b =,则||||a b =D .若0ab =,则0a =或0b =5.一辆汽车从A 地出发,向东行驶,途中要经过十字路口B ,在规定的某一段时间内,若车速为每小时60千米,就能驶过B 处2千米;若每小时行驶50千米,就差3千米才能到达B 处,设A 、B 间的距离为x 千米,规定的时间为y 小时,则可列出方程组是( ) A .602350y x x y-=⎧⎨=-⎩B .602503y x y x -=⎧⎨-=⎩C .602503y x y x =+⎧⎨=-⎩D .602503y x y x =-⎧⎨=+⎩6.实数 1.732-,2π,34,0.121121112⋯,0.01-中,无理数的个数有( ) A .2个B .3个C .4个D .5个7.下列运算中正确的是( ) A .224a a 2a +=B .()628x(x)x -⋅-=C .2353(2a b)4a 2ab -÷=-D .222(a b)a b -=-8.如图,a ∥b ,含有45°角的直角三角尺ABC 的直角顶点C 在直线b 上,若直角边BC 与直线b 的夹角为∠α,斜边AB 与直线a 的夹角为∠β,则∠α和∠β的关系是( )A .∠α+∠β=30°B .∠α+∠β=45°C .∠α+∠β=60°D .∠α+∠β=75°9.如图,在△ABC 中,E 是BC 上的一点,EC=2BE ,点D 是AC 的中点,设△ABC 、△ADF 、△BEF 的面积分别S 、S 1、S 2,且S=36,则S 1-S 2=( )A .8B .6C .4D .210.下列计算正确的是( ) A 38-±2 B .(﹣3)0=0 C .(﹣2a 2b )2=4a 4b 2 D .2a 3÷(﹣2a )=﹣a 3二、填空题题11. “今有木,不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还剩余1尺,则此木长是_____尺. 12.某剧院的观众席的座位为扇形,且按下列方式设置:写出座位数y 与排数x 之间的关系式___________________________ 排数(x ) 1 2 3 4 … 座位数(y )50535659…13.如果整式210x x m ++恰好是一个整式的平方,则m 的值是__________. 14.因式分解:2416m -=________.15.要使4x -有意义,则x 的取值范围是_____ 16.分解因式:2a 3—2a=____________.17.如图,四边形ABCD 是长方形,AC AE ⊥,垂足为A ,且AC AE =, CE 交AD 于点F ,连接DE .若316,2BC CD DF +==,则CDE ∆的面积为_________.三、解答题18.观察下列等式:22251101151(1)11;(2)22;(3)33667788-=⨯-=⨯-=⨯…… (1)请写出第4个等式:________________;(2)观察上述等式的规律,猜想第n 个等式(用含n 的式子表示),并验证其正确性. 19.(6分)已知点()34,2P a a --+,解答下列各题: (1)若点P 在x 轴上,试求出点P 的坐标; (2)若()5,8Q ,且PQy 轴,试求出点P 的坐标.20.(6分)回答下列问题:(1)如图1,在ABC △中,70ABC ∠=︒,50∠=°ACB ,,BO CO 分别为ABC ∠和ACB ∠的角平分线,则BOC ∠=__________(2)如图2,在ABC △中,60A ∠=︒,13∠=∠OBC ABC ,13∠=∠OCB ACB ,求出BOC ∠的度数21.(6分)张强和李毅二人分别从相距20千米的A 、B 两地出发,相向而行,如果张强比李毅早出发30分钟,那么在李毅出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米.求张强、李毅每小时各走多少千米.22.(8分)如图,在ABC 中,E 是AD 上的一点,EB EC =,ABE ACE =∠∠,请说明AD BC⊥.解:因为EB EC =(已知), 所以EBC ECB ∠=∠(①). 又因为ABE ACE =∠∠(已知),所以ABE EBC ACE ECB ∠+∠=∠+∠(②). 即A ABC CB =∠∠. 所以AB AC =(③). 在ABE △和ACE △中,()()()AB AC EB EC AE AE ⎧=⎪=⎨⎪=⎩已证已知④, 所以ABE ACE △≌△(⑤). 得BAD CAD ∠=∠(⑥). 所以AD BC ⊥(⑦).23.(8分)如图,已知直线AB ∥CD ,∠A=∠C=100°,E 、F 在CD 上,且满足∠DBF=∠ABD ,BE 平分∠CBF . (1)直线AD 与BC 有何位置关系?请说明理由. (2)求∠DBE 的度数.(3)若把AD 左右平行移动,在平行移动AD 的过程中,是否存在某种情况,使∠BEC=∠ADB ?若存在,求出此时∠ADB 的度数;若不存在,请说明理由.24.(10分)(1)计算:9×(﹣13)2+4﹣|﹣8|;(2)解方程组:371 x yx y-=⎧⎨-=-⎩.25.(10分)学生刘明,对某校六1班上学期期末的数学成绩(成绩取整数,满分为100分)作了统计,发现这个班每个人的成绩各不相同,并据此绘制成如下频数分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题:分组49.5~59.5 59.5~69.5 69.5~79.5 79.5~89.5 89.5~100.5 合计频数 2 8 20 a 4 c频率0.04 b 0.40 0.32 0.08 1(1)频数、频率分布表中a=____,b=_____,c=_____;(2)补全频数分布直方图;(3)如果要画该班上学期期末数学成绩的扇形统计图,那么分数在69.5﹣79.5之间的扇形圆心角的度数是_______.(4)张亮同学成绩为79分,他说:“我们班上比我成绩高的人还有25,我要继续努力.”他的说法正确吗?请说明理由.参考答案一、选择题(每题只有一个答案正确)1.B【详解】解:∵m∥n,∠1=40°,∴∠3=∠1=40°∵∠ACB=90°,∴∠4=∠ACB−∠3=90°−40°=50°,∴∠2=180∘−∠4=180°−50°=130°故选B2.C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.详解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选C.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.3.B【解析】【分析】根据同旁内角、同位角、内错角的意义,可得答案.【详解】由图可知:∠1与∠3是同旁内角,故B说法错误,本题考查了同旁内角、同位角、内错角,根据同位角、内错角、同旁内角的意义是解题关键. 4.B 【解析】 【分析】利用平行线的判定及性质、绝对值的定义、有理数的乘法法则等知识分别判断后即可确定正确的选项. 【详解】选项A ,同位角相等,两直线平行,正确,是真命题; 选项B ,两直线平行,同旁内角互补,故错误,是假命题; 选项C ,若a =b ,则|a|=|b|,正确,为真命题; 选项D ,若ab =0,则a =0或b =0,正确,为真命题, 故选B . 【点睛】本题考查了命题与定理的知识,解题的关键是了解平行线的判定及性质、绝对值的定义等知识,难度不大. 5.C 【解析】 【分析】设A 、B 间的距离为x 千米,规定的时间为y 小时,根据题意可得,车速为每小时60千米时,行驶的路程为x+2千米,车速为每小时50千米时,行驶的路程为x ﹣3千米,据此列方程组. 【详解】解:设A 、B 间的距离为x 千米,规定的时间为y 小时, 由题意得,602503y x y x =+⎧⎨=-⎩.故选:C . 【点睛】本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组. 6.B 【解析】试题解析:实数-1.732,2π0.121121112…,中,显然-1.732是小数,所以是有理数;=-0.1,-0.1是小数,是有理数;故2π、0.121121112…是无理数. 故选B .点睛:无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.C【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A、原式=2a2,不符合题意;B、原式=-x6•x2=-x8,不符合题意;C、原式=-8a6b3÷4a5=-2ab3,符合题意;D、原式=a2-2ab+b2,不符合题意,故选C.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.B【解析】【分析】过点B作BD∥a,根据平行线的性质即可求解.【详解】解:过点B作BD∥a,∵直线a∥b,∴BD∥a∥b∴∠1=∠α,∵∠ABC=45°,∴∠2=∠ABC﹣∠1,∴∠β=∠2=45°﹣∠1=45°﹣∠α.∴∠α+∠β=45°故选:B.【点睛】此题主要考查平行线的性质,解题的关键是熟知两直线平行,内错角相等.9.BADFBEF ABDABE SS SS ∆∆-=- ,所以求出三角形ABD 的面积和三角形ABE 的面积即可,因为EC=2BE ,点D 是AC 的中点,且S △ABC =36,就可以求出三角形ABD 的面积和三角形ABE 的面积,即S 1-S 2的值. 【详解】解:∵点D 是AC 的中点, ∴12AD AC =36ABC S ∆=11361822ABD ABC S S ∆∆∴==⨯= 2,36ABC EC BE S ∆==11361233ABE ABC S S ∆∆∴==⨯=()().ABDABEADFABF ABFBEF ADFBEF SSSS SS SS ∆∆∆-=+-+==-即:..18126ADF BEF ABD ABE S S S S ∆∆∆∆-=-=-= 即:S 1-S 2=6 故答案为:B. 【点睛】本题考查三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差. 10.C 【解析】 【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案. 【详解】A.原式=﹣2,故A 错误;B.原式=1,故B 错误;C 、(﹣2a 2b )2=4a 4b 2,计算正确;D 、原式=﹣a 2,故D 错误; 故选C . 【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型. 二、填空题题【分析】本题的等量关系是:绳长-木长=4.1;木长-12×绳长=1,据此列方程组即可求解. 【详解】解:设绳子长x 尺,木条长y 尺,依题意有4.5112x y y x -=⎧⎪⎨-=⎪⎩解得:116.5x y =⎧⎨=⎩故答案是:6.1.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组. 12.y=3x+1 【解析】分析:首先设函数解析式为y=kx+b ,然后找两组值代入解析式求出k 和b 的值,从而得出答案. 详解:设函数解析式为y=kx+b ,将x=1,y=50;x=2,y=53代入可得:50253k b k b +=⎧⎨+=⎩,解得:347k b =⎧⎨=⎩, ∴函数解析式为y=3x+1. 点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.设出函数解析式是解决这个问题的关键. 13.25 【解析】 【分析】根据完全平方公式的特点即可求解. 【详解】∵210x x m ++=225x x m +⋅⋅+为整式的平方 ∴m=52=25. 故填25. 【点睛】此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点. 14. (2m+4)(2m -4) 【解析】。
初一新生数学综合能力考查分班卷(三)学霸冲刺卷 人教版(含答案)
2021届人教版初一新生数学综合能力考查分班卷(三)【小升初·双基测评】学霸冲刺卷试卷总分 100分考试时间 120分钟学校:班级:考号:得分:题号一二三四五六总分得分一、填空题(每空1分,共21分)1.第六次全国人口普查总人口为十三亿三千九百七十二万四千八百七十二人,横线上的数写作________,最高位是________位.全国人口最多的是广东省常住人口达104303132人,横线上的数读作________,把它四舍五入到亿位约________人.赣州市人口总数为6855911人,从左起,第一个“5”表示5个________,赣州市人口总数精确到万位约________人.2.强强测量两个相同材质的物体体积时得到以下数据,第一个物体为5立方厘米,第二个物体为12立方厘米。
其中第一个物体的质量为44.5克,那么第二个物体的质量为________克。
3.植树成活的棵数占植树总棵数的,成活棵数和未成活棵数的最简整数比是________.4.在等腰三角形中,一个底角是70°,顶角是________°。
5.一台精密仪器上的一个小长方形的零件,实际长为4毫米,宽2毫米.把它画在8∶1的设计图纸上,这个零件的长是________毫米?宽是________毫米?6.甲、乙、丙、丁四人参加电脑技能比赛,甲、乙两人的平均成绩为a分,他们两人的平均成绩比丙的成绩低9分,比丁的成绩高3分,那么他们四人的平均成绩为________分。
7.一个正方体六面上分别标有A、B、C,掷一次正方体,使出现A的可能性最小,C的可能性最大,则标有________个A,________个B,________个C。
8.如图,这是一幅平面图上的比例尺,在这幅图上,量得A、B两地的图上距离是5厘米,A、B两地的实际距离是________千米。
9.淘气用长2米、宽1米的长方形纸围成一个容积最大的圆柱,笑笑用长3米,宽2米的长方形纸也围成一个容积最大的圆柱,淘气围成圆柱的容积是笑笑围成圆柱容积的 ________.10.世界上最大的鸵鸟约75________,世界上最大的龙虾身长可达40________,马拉松长跑比赛全长42________.二、单选题(共10题,共20分)11.甲数是a,乙数比甲数的3倍少b,表示乙数的式子是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、单选题(18分)1.(3分)下列等式正确的是()A.B.C.D.2.(3分)如图,在一个三角形三个顶点和中心处的每个“○”中各填有一个式子,如果图中任意三个“○”中的式子之和均相等,那么的值为()A.1B.2C.3D.03.(3分)下列说法中正确的个数有()(1)在同一平面内,不相交的两条直线必平行;(2)在同一平面内,不相交的两条线段必平行;(3)相等的角是对顶角;(4)两条直线被第三条直线所截,所得到同位角相等;(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行.A.1个B.2个C.3个D.4个4.(3分)在平面直角坐标系中,已知点A(-4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B的坐标是()A.(0,-2)B.(4,6)C.(4,4)D.(2,4)5.(3分)已知点P(,y)在第四象限,且||=3,|y|=5,则点P的坐标是()A.(-3,-5)B.(5,-3)C.(3,-5)D.(-3,5) 6.(3分)有下列说法:①带根号的数是无理数;②不含根号的数一定是有理数;③无限不循环小数是无理数;④π是无理数.其中正确的说法有()A.4个B.3个C.2个D.1个二、填空题(18分)7.(3分)已知,则.8.(3分)若是方程x-2y=0的解,则3a-6b-3= .9.(3分)已知点P(2-a,3a+10)且点P到两坐标轴距离相等,则a= .10.(3分)按照下图所示的操作步骤,若输出y的值为22,则输入的值x为.11.(3分)如图,已知▱OABC的顶点A、C分别在直线x=1和x=4上,O是坐标原点,则对角线OB长的最小值为.12.(3分)如图,在△ABC中,∠A=64°,∠ABC与∠ACD的平分线交于点A1,则∠A1= ;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A n-1BC与∠A n-1CD 的平分线相交于点A n,要使∠A n的度数为整数,则n的值最大为.三、解答题(84分)13.(6分)解不等式组:并在数轴上表示它的解集.14.(6分)某公司有A、B两种型号的客车共11辆,它们的载客量(不含司机)、日租金、车辆数如下表所示,已知这11辆客车满载时可搭载乘客350人.A型客车B型客车载客量(人/辆) 40 25日租金(元/辆) 320 200车辆数(辆) a b(1)求a、b的值.(2)某校七年级师生周日集体参加社会实践,计划租用A、B两种型号的客车共6辆,且租车总费用不超过1700元.①最多能租用A型客车多少辆?②若七年级师生共195人,写出所有的租车方案,并确定最省钱的租车方案.15.(6分)求不等式组的非负整数解.16.(6分)化简:(1)=0,= ,= ,= .(2)=0,= ,= ,= .(3)根据以上信息,观察a,b所在位置,完成化简:.17.(6分)解不等式组,把解集在数轴上表示出来,并写出它的非负整数解.18.(8分)A、B、C为数轴上三点,若点C到点A的距离是点C到点B的距离的2倍,则称点C是(A,B)的奇异点,例如图1中,点A表示的数为-1,点B 表示的数为2,表示1的点C到点A的距离为2,到点B的距离为1,则点C是(A,B)的奇异点,但不是(B,A)的奇异点.(1)在图1中,直接说出点D是(A,B)还是(B,C)的奇异点.(2)如图2,若数轴上M、N两点表示的数分别为-2和4,(M,N)的奇异点K在M、N两点之间,请求出K点表示的数.(3)如图3,A、B在数轴上表示的数分别为-20和40,现有一点P从点B出发,向左运动.①若点P到达点A停止,则当点P表示的数为多少时,P、A、B中恰有一个点为其余两点的奇异点?②若点P到达点A后继续向左运动,是否存在使得P、A、B中恰有一个点为其余两点的奇异点的情况?若存在,请直接写出此时PB的距离;若不存在,请说明理由.19.(8分)解答题:(1)如图1,请证明∠A+∠B+∠C=180°.(2)如图2的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D.(3)如图3,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明.(4)如图4,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD 于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4-∠1-∠2不变,选择正确的并给予证明.20.(8分)一般情况下不成立,但有些数可以使得它成立,例如:a=b=0.我们称使得成立的一对数a,b为“相伴数对”,记为(a,b).(1)若(1,b)是“相伴数对”,求b的值.(2)写出一个“相伴数对”(a,b),其中a≠0,且a≠1.(3)若(m,n)是“相伴数对”,求代数式m--[4m-2(3n-1)]的值.21.(9分)【阅读理解】在解方程组或求代数式的值时,可以用整体代入或整体求值的方法,化难为易.(1)解方程组;(2)已知,求x+y+z的值.解:(1)把②代入①得:x+2×1=3.解得:x=1.把x=1代入②得:y=0.所以方程组的解为.(2)①×2得:8x+6y+4z=20③,②-③得:x+y+z=5.(1)【类比迁移】(1)若,则x+2y+3z=____.(2)解方程组(2)【实际应用】打折前,买39件A商品,21件B商品用了1080元.打折后,买52件A商品,28件B商品用了1152元,比不打折少花了多少钱?22.(9分)对于平面直角坐标系xOy中的不同两点A(x1,y1),B(x2,y2),给出如下定义:若x1x2=1,y1y2=1,则称点A,B互为“倒数点”.例如,点A(,1),B(2,1)互为“倒数点”.(1)已知点A(1,3),则点A的倒数点B的坐标为;将线段AB水平向左平移2个单位得到线段A′B′,请判断线段A′B′上是否存在“倒数点”, (填“是”或“否”).(2)如图所示,正方形CDEF中,点C坐标为(),点D坐标为(),请判断该正方形的边上是否存在“倒数点”,并说明理由.(3)已知一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,若该正方形各边上不存在“倒数点”,请直接写出正方形面积的最大值:.23.(12分)计算:(1)-32+|-3|+.(2)-+-.答案一、单选题1.【答案】D【解析】选项A、原式,错误;选项B、原式=,错误;选项C、原式没有意义,错误;选项D、原式,正确.故答案为:D.2.【答案】A【解析】根据题意得,解得.故答案为:A。
3.【答案】B【解析】(1)在同一平面内,不相交的两条直线必平行,正确;(2)在同一平面内,不相交的两条线段必平行,错误;(3)相等的角是对顶角,错误;(4)两条直线被第三条直线所截,所得到同位角相等,错误;(5)两条平行线被第三条直线所截,一对内错角的角平分线互相平行,正确.所以正确的是(1)(5).故答案为:B。
4.【答案】C【解析】∵点A(-4,0),点B(0,2),平移后点A、B重合,∴平移规律为向右平移4个单位,向上平移2个单位,∴点B的对应点的坐标为(4,4).故答案为:C。
5.【答案】C【解析】∵点P(,y)在第四象限,∴>0,y<0.又∵ ||=3,|y|=5,∴点P的坐标是(3,-5).故答案为:C。
6.【答案】C【解析】①带根号的不一定是无理数,如,故说法①错误;②不带根号的还可能是无理数,如π,故说法②错误;③无理数一定是无限不循环小数,故说法③正确;④π是无限不循环小数,所以是无理数,故说法④正确.故答案为:C。
二、填空题7.【答案】1.01【解析】∵,∴ 1.01.故答案为:1.01.8.【答案】-3【解析】把代入方程x-2y=0,可得:a-2b=0,所以3a-6b-3=3(a-2b)-3=-3.故答案为:-3.9.【答案】-2或-6【解析】根据题意,得:2-a=3a+10或2-a+3a+10=0,解得:a=-2或a=-6.故答案为:-2或-6.10.【答案】±3【解析】由题意得x2=(22+5)÷3,解得x=±3.故答案为:±3.11.【答案】5【解析】过点B作BD⊥直线x=4,交直线x=4于点D,过点B作BE⊥x轴,交x轴于点E,直线x=1与OC交于点M,与x轴交于点F,直线x=4与AB交于点N,如图:∵四边形OABC是平行四边形,∴∠OAB=∠BCO,OC∥AB,OA=BC,∵直线x=1与直线x=4均垂直于x轴,∴AM∥CN,∴四边形ANCM是平行四边形,∴∠MAN=∠NCM,∴∠OAF=∠BCD,∵∠OFA=∠BDC=90°,∴∠FOA=∠DBC,在△OAF和△BCD中,,∴△OAF≌△BCD.∴BD=OF=1,∴OE=4+1=5,∴.由于OE的长不变,所以当BE最小时(即B点在x轴上),OB取得最小值,最小值为OB=OE=5.故答案为:5.12.【答案】32° 6【解析】由三角形的外角性质得,∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC.∵∠ABC的平分线与∠ACD的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CD=∠ACD,∴∠A1+∠A1BC=(∠A+∠ABC)=∠A+∠A1BC,∴∠A1=∠A=×64°=32°;∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1,∴∠A1=∠A.同理可得∠A1=2∠A2,∴∠A2=∠A,∴∠A=2n∠A n,∴∠A n=∠A=.∵∠A n的度数为整数,∴n=6.故答案为:32°;6.三、解答题13.【答案】解:,解①得:x>-2,解②得:x≤-1,故不等式组的解为:-2<x≤-1,在数轴上表示出不等式组的解集为:.【解析】分别解不等式,进而得出不等式组的解集,然后在数轴上表示出来即可.14.【答案】(1)解:由题意,得:,解得:.(2)解:①设计划租用A型客车x辆,则计划租用B型客车(6-x)辆,由题意得:320x+200(6-x)≤1700,解得:x,∵x取非负整数,∴x的最大值为4,答:最多能租用4辆A型客车;②根据题意,得:40x+25(6-x)≥195,解得:x≥3,∴3≤x,∵x为正整数,∴x=3或4,所以所有的租车方案为;方案一:A车3辆,B车3辆,费用为:3×320+3×200=1560元;方案二:A车4辆,B车2辆,费用为:4×320+2×200=1680元;所以最省钱的租车方案为:租用A型客车3辆,B型客车3辆.【解析】(1)根据题意结合这11辆客车满载时可搭载乘客350人,得出方程组求出答案;(2)根据(1)中所求,进而利用租用A、B两种型号的客车共6辆,且租车总费用不超过1700元,七年级师生共195人,进而得出不等式求出答案.15.【答案】解:,解不等式①,得,解不等式②,得,所以不等式组的解集为,所以原不等式组的非负整数解为0,1,2,3,4,5.【解析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.16.【答案】(1)2 2 |a|(2)3 -3 a(3)解:由图可得,a<0<b,|a|<|b|,∴=-a+b-a-a-b=-3a.【解析】(1)根据算术平方根的计算方法可以解答本题;(2)根据立方根的计算方法可以解答本题;(3)根据数轴可以判断a、b的大小与正负,从而可以化简题目中的式子.17.【答案】解:解不等式,得;解不等式,得.所以原不等式组的解集是.将所得不等式组的解集在数轴上表示,如图所示:它的非负整数解为0,1,2,3,4,5.【解析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可,再找出解集范围内的非负整数即可.18.【答案】(1)解:在图1中,点D到点B的距离为2,到点C的距离是1,到点A的距离为1,∴点D是(B,C)的奇异点,不是(A,B)的奇异点.(2)解:设奇异点表示的数为x,则由题意,得x-(-2)=2(4-x),解得x=2,∴(M,N)的奇异点表示的数是2.(3)解:①设点P表示的数为y.当点P是(A,B)的奇异点时,则有y+20=2(40-y),解得y=20.当点P是(B,A)的奇异点时,则有40-y=2(y+20),解得y=0.当点A是(B,P)的奇异点时,则有40+20=2(y+20),解得y=10.当点B是(A,P)的奇异点时,则有40+20=2(40-y),解得y=10.∴当点P表示的数是0或10或20时.P、A、B中恰有一个点为其余两点的奇异点.②当点P为(B,A)的奇异点时,PB=120;当点A为(P,B)的奇异点时,PB=180;当点A为(B,P)的奇异点时,PB=90;当点B为(P,A)的奇异点时,PB=120.∴PB的距离是120或180或90.【解析】(1)根据“奇异点”的概念解答;(2)设奇异点表示的数为x,根据“奇异点”的定义列出方程并解答;(3)①需要分类讨论:当点P是(A,B)的奇异点时;当点P是(B,A)的奇异点时;当点A是(B,P)的奇异点时;当点B是(A,P)的奇异点时.②同上,需要分类讨论:当点P为(B,A)的奇异点时;当点A为(P,B)的奇异点时;当点A为(B,P)的奇异点时;当点B为(P,A)的奇异点时.19.【答案】(1)证明:如图1,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1,∠A=∠2,又∵∠BCD=∠BCA+∠2+∠1=180°,∴∠A+∠B+∠ACB=180°.(2)证明:如图2,在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D.(3)证明:如图3,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°-2∠3)+∠D,∠2+∠P=(180°-∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°(∠B+∠D).(4)证明:②∠3+∠4-∠1-∠2不变正确.理由如下:作PQ∥AB,如图4,∵AB∥CD,∴PQ∥CD,由AB∥PQ得∠APQ+∠3+∠4=180°,即∠APQ=180°-∠3-∠4,由PQ∥CD得∠5=∠2,∵∠APQ+∠5+∠1=90°,∴180°-∠3-∠4+∠2+∠1=90°,∴∠3+∠4-∠1-∠2=90°.【解析】(1)延长BC到D,过点C作CE∥BA,根据两直线平行,同位角相等可得∠B=∠1,两直线平行,内错角相等可得∠A=∠2,再根据平角的定义列式整理即可得证;(2)根据三角形内角和定理即可证明;(3)根据(2)的结论∠B+∠BAD=∠D+∠BCD,∠PAD+∠P=∠D+∠PCD,然后整理即可得解;(4)作PQ∥AB,根据平行线性质得到PQ∥CD,则∠APQ=180°-∠3-∠4,∠5=∠2,由于∠APQ+∠5+∠1=90°,则180°-∠3-∠4+∠2+∠1=90°,整理得到∠3+∠4-∠1-∠2=90°.20.【答案】(1)解:∵(1,b)是“相伴数对”,∴+=,解得:b=-.(2)解:(2,-)(答案不唯一).(3)解:由(m,n)是“相伴数对”可得:+=,即=,即9m+4n=0,则原式=m-n-4m+6n-2=-n-3m-2=--2=-2.【解析】(1)根据“相伴数对”的定义可得+=,再计算求出b的值;(2)根据定义写出一个“相伴数对”即可;(3)根据“相伴数对”定义得到9m+4n=0,原式去括号整理后代入计算即可求出值.21.【答案】(1)解:(1),(①+②)÷2,得:x+2y+3z=18.故答案为:18.(2),由①得:2x-y=2③,将③代入②中得:1+2y=9,解得:y=4,将y=4代入①中得:x=3.∴方程组的解为.(2)解:设打折前A商品每件x元,B商品每件y元,根据题意得:39x+21y=1080,即13x+7y=360,将两边都乘4得:52x+28y=1440,1440-1152=288(元).答:比不打折少花了288元.【解析】【类比迁移】(1)利用(①+②)÷2可得出x+2y+3z=18,此问得解;(2)利用代入法解方程组,即可求出结论;【实际应用】设打折前A商品每件x元,B商品每件y元,由买39件A商品21件B商品用了1080元,可得出关于x、y的二元一次方程,变形后可得出52x+28y=1440,用原价-现价即可求出少花钱数.22.【答案】(1)(1,) 是(2)解:正方形的边上存在“倒数点”M、N,理由如下:①若点M(x1,y1)在线段CF上,则x1,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1,点N(x2,y2)应当满足y2,∴点N只可能在线段DE上,N(,),此时点M(,)在线段EF上,满足题意;∴该正方形各边上存在“倒数点”M(,),N(,).(3)1【解析】(1)设A(x1,y1),B(x2,y2),∵x1x2=1,y1y2=1,A(1,3),∴x2=1,y2,点B的坐标为(1,),将线段AB水平向左平移2个单位得到线段A′B′,则A′(-1,3),B′(-1,),∵-1×(-1)=1,31,∴线段A′B′上存在“倒数点”.故答案为:(1,);是.(2)①若点M(x1,y1)在线段CF上,则x1,点N(x2,y2)应当满足x2=2,可知点N不在正方形边上,不符题意;②若点M(x1,y1)在线段CD上,则y1,点N(x2,y2)应当满足y2=2,可知点N不在正方形边上,不符题意;③若点M(x1,y1)在线段EF上,则y1,点N(x2,y2)应当满足y2,得出N(,),此时点M(,)在线段EF上,满足题意;(3)如图所示:一个正方形的边垂直于x轴或y轴,其中一个顶点为原点,则该正方形有两条边在坐标轴上,∵坐标轴上的点的横坐标或纵坐标为0,∴在坐标轴上的边上不存在倒数点,又∵该正方形各边上不存在“倒数点”,∴各边上点的横坐标和纵坐标的绝对值都≤1,即正方形面积的最大值为1.故答案为:1.23.【答案】(1)解:原式=-9+3-+6=-.(2)解:原式=8-9-1+=-.【解析】(1)根据乘方,绝对值,算术平方根的意义进行化简,再计算得出结果;(2)原式利用算术平方根和立方根定义计算即可得到结果.。