通信电子线路仿真实验模拟电路系统仿真实验 精品

合集下载

[VIP专享]通信电子线路仿真实验 模拟电路系统仿真实验

[VIP专享]通信电子线路仿真实验 模拟电路系统仿真实验
基于 Multisim 的高频调幅电路仿真实验
1. 前言 信号调制可以将信号的频谱搬移到任意位置,从而有利于信
号的传送,并且是频谱资源得到充分利用。调制作用的实质就 是使相同频率范围的信号分别依托于不同频率的载波上,接收 机就可以分离出所需的频率信号,不致相互干扰。而要还原出 被调制的信号就需要解调电路。调制与解调在高频通信领域有 着广泛的应用,同时也是信号处理应用的重要问题之一,系统 的仿真和分析是设计过程中的重要步骤和必要的保证。论文利 用 Multisim 提供的示波器模块,分别对信号的调幅和解调进行 了波形分析。
1) B2Ak+22+1=2+15+c51mc+=m5=21c11+m++12+2+1++=212=2+1+2+1+2+2+22+32k+1+2
DSB 信号的解
4.3
·· 10
形·································
DSB 信号的波
4.2
式····························· 10
1) B2Ak+22+1=2+15+c51mc+=m5=21c11+m++12+2+1++=212=2+1+2+1+2+2+22+32k+1+2
2
析·············9
12 对 DSB 电路仿真分
4、利用仿真软件 Multisim
形····························6

《通信系统仿真技术》实验报告

《通信系统仿真技术》实验报告

封面作者:Pan Hongliang仅供个人学习《通信系统仿真技术》实验报告实验一:SystemView操作环境的认识与操作1.实验题目:SystemView操作环境的认识与操作2.实验内容:正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)、平方分析、及其谱分析;并讨论定时窗口的设计对仿真结果的影响。

3.实验原理:在设计窗口中单击系统定时快捷功能按钮,根据仿真结果设定相关参数。

采样点数=(终止时间-起止时间)×〔采样率〕+1正玄信号S(t)=cos(wt)其平方P(t)=cos(wt)*cos(wt)=[cos(2wt)+1]/2P(t)频率是S(t)的二倍4.实验仿真:实验结论:SystemView是一个信号级的系统仿真软件,主要用于电路与通信系统的设计、仿真,是一个强有力的动态系统分析工具,能满足从数字信号处理、滤波器设计、直到复杂的通信系统等不同层次的设计、仿真要求。

实验二:学习系统参数的设定与图符的操作实验题目:学习系统参数的设定与图符的操作实验内容:将一正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)V)与高斯信号相加后观察输出波形及其频谱,由小到大改变高斯噪声的功率,重新观察输出波形及其频谱。

实验原理:高斯信号就是信号的各种幅值出现的机会满足高斯分布的信号。

当高斯信号不存在是正玄信号不失真,随着高斯信号的增加正玄信号的失真会越来越大。

实验仿真:实验结论:恒参信道的干扰信号常用高斯白噪声信号来等效。

而无线信道是一种时变的衰落信道,其衰落特性主要表现为具有多普勒功率谱特性的快衰落和具有阴影效应的慢衰落。

实验三:接收计算器的使用及滤波器的设计实验题目:接收计算器的使用及滤波器的设计实验内容:1、正弦信号(频率为学号后两位,幅度为(1+学号后两位*0.1)V)、及其平方分析窗口的接收计算器的使用;(实现3个以上运算功能)。

2、单位冲激响应仿真、增益响应分析。

通信系统仿真实验报告

通信系统仿真实验报告

通信系统仿真实验报告通信系统仿真实验报告摘要:本实验旨在通过仿真实验的方式,对通信系统进行测试和分析。

通过搭建仿真环境,我们模拟了通信系统的各个组成部分,并通过实验数据对系统性能进行评估。

本报告将详细介绍实验的背景和目的、实验过程、实验结果以及对结果的分析和讨论。

1. 引言随着信息技术的发展,通信系统在现代社会中扮演着重要的角色。

通信系统的性能对于信息传输的质量和效率起着至关重要的作用。

因此,通过仿真实验对通信系统进行测试和分析,可以帮助我们更好地了解系统的特性,优化系统设计,提高通信质量。

2. 实验背景和目的本次实验的背景是一个基于无线通信的数据传输系统。

我们的目的是通过仿真实验来评估系统的性能,并探讨不同参数对系统性能的影响。

3. 实验环境和方法我们使用MATLAB软件搭建了通信系统的仿真环境。

通过编写仿真程序,我们模拟了信号的传输、接收和解码过程。

我们对系统的关键参数进行了设定,并进行了多次实验以获得可靠的数据。

4. 实验结果通过实验,我们得到了大量的数据,包括信号传输的误码率、信噪比、传输速率等。

我们对这些数据进行了整理和分析,并绘制了相应的图表。

根据实验结果,我们可以评估系统的性能,并对系统进行改进。

5. 结果分析和讨论在对实验结果进行分析和讨论时,我们发现信号传输的误码率与信噪比呈反比关系。

当信噪比较低时,误码率较高,信号传输的可靠性较差。

此外,我们还发现传输速率与信号带宽和调制方式有关。

通过对实验数据的分析,我们可以得出一些结论,并提出一些建议以改善系统性能。

6. 结论通过本次仿真实验,我们对通信系统的性能进行了评估,并得出了一些结论和建议。

实验结果表明,在设计和优化通信系统时,我们应注重信号传输的可靠性和传输速率。

通过不断改进系统参数和算法,我们可以提高通信系统的性能,实现更高质量的数据传输。

7. 展望本次实验只是对通信系统进行了初步的仿真测试,还有许多方面有待进一步研究和探索。

通信系统仿真实验报告

通信系统仿真实验报告

《通信系统仿真技术》实验报告姓名:李傲班级:14050Z01学号: 1405024239实验一:Systemview操作环境的认识与操作1、实验目的:熟悉systemview软件的基本环境,为后续实验打下基础,熟悉基本操作,并使用其做出第一个自己的project,并截图2、实验内容:1>按照实验指导书的1.7进行练习2>正弦信号(频率为学号*10,幅度为(1+学号*0.1)V)、及其平方谱分析;并讨论定时窗口的设计对仿真结果的影响。

3、实验仿真:图1系统连结图(实验图中标注参数,并对参数设置、仿真结果进行分析)4、实验结论输出信号底部有微弱的失真,调节输入的频率的以及平方器的参数,可以改变输入信号的波形失真,对于频域而言,sin信号平方之后,其频率变为原来的二倍,这一点可有三角函数的化简公式证明实验二:滤波器使用及参数设计1、实验目的:1、学习使用SYSTEMVIEW 中的线性系统图符。

2、掌握典型FIR 滤波器参数和模拟滤波器参数的设置过程。

3、按滤波要求对典型滤波器进行参数设计。

实验原理:2、实验内容:参考实验指导书,设计出一个低通滤波器,并对仿真结果进行截图,要求在所截取的图片上用便笺的形式标注自己的姓名、学号、班级。

学号统一使用序号3、实验仿真:系统框架图输入输出信号的波形图输入输出信号的频谱图4、实验结论对于试验中低通滤波器的参数设置不太容易确定,在输入完通带宽度、截止频率和截止点的衰落系数等滤波器参数后,如果选择让SystemView 自动估计抽头,则可以选择“Elanix Auto Optimizer”项中的“Enabled”按钮,再单击“Finish”按钮退出即可。

此时,系统会自动计算出最合适的抽头数通常抽头数设置得越大,滤波器的精度就越实验三、模拟线性调制系统仿真(AM)(1学时)1、实验目的:1、学习使用SYSTEMVIEW 构建简单的仿真系统。

3、掌握模拟幅度调制的基本原理。

电路仿真实验报告

电路仿真实验报告

电路仿真实验报告一、实验目的通过电路仿真实验,了解和掌握电路设计和分析的基本原理和方法,培养学生解决实际电路问题的能力。

二、实验器材1.计算机2.电路仿真软件3.电路设计平台4.万用表三、实验内容1.选择一个电路仿真软件,并了解其基本操作方法。

2.使用电路仿真软件进行简单电路的仿真设计。

3.基于仿真结果,根据实验内容进行电路设计和分析。

四、实验步骤1.打开电路仿真软件,并了解其基本操作方法。

2.根据实验要求,选择一个简单电路进行设计,例如二阶低通滤波器。

3.使用电路设计平台进行电路的搭建,包括选择合适的电阻、电容和运放等器件。

4.在电路设计平台上进行参数设置,例如频率范围和截止频率等。

5.运行仿真,观察电路的响应曲线和频率特性。

6.根据仿真结果,分析电路的性能和特点,并进行相关讨论。

7.如果仿真结果不符合预期,可以调整电路参数或者改变电路结构,重新运行仿真并分析结果。

8.根据实验要求,记录仿真结果并撰写实验报告。

五、实验结果与分析在本次实验中,我们选择了一个二阶低通滤波器进行仿真设计。

根据实验要求,我们选择了合适的电阻、电容和运放等器件进行电路搭建。

通过仿真软件运行仿真,我们得到了电路的频率响应曲线和频率特性的结果。

根据图表分析,我们可以看到,在低频时,滤波器具有较好的通过性能,而在高频时,滤波器开始出现截止的现象。

我们还可以通过改变电路参数来观察电路的变化。

例如,增大电容值可以降低截止频率,使滤波器具有较好的低频通过特性。

而增大电阻值则可以增加滤波器的阻带特性。

通过实验结果的分析,我们可以得到滤波器的性能和特点,并根据实际应用的需求来调整电路参数和结构。

六、实验总结与心得体会通过电路仿真实验,我们学习到了电路设计和分析的基本原理和方法。

通过选择合适的电路仿真软件,并根据实验要求进行电路搭建和参数设置,运行仿真并分析结果,我们可以对电路的性能和特点有更深入的了解。

通过本次实验,我还发现了电路设计和分析的一些问题和挑战。

通信电子电路—ADS仿真 实验报告

通信电子电路—ADS仿真 实验报告

《通信电子电路—ADS仿真》实验报告专业:班级:姓名:学号:教师:时间:实验项目实验一电路模拟基础实验二直流仿真和建立电路模型实验三交流(AC)仿真实验四 S参数仿真与优化Agilent公司推出的ADS软件以其强大的功能成为现今国内各大学和研究所使用最多的软件之一。

ADS电子设计自动化(EDA软件全称为Advanced Design System)是美国安捷伦(Agilent)公司所生产拥有的电子设计自动化软件;ADS功能十分强大,包含时域电路仿真(SPICE-like Simulation)、频域电路仿真(Harmonic Balance Linear Analysis)、三位电磁仿真(EM Simulation)、通信系统仿真(Communication System Simulation)和数字信号处理仿真软件(DSP);支持射频和系统设计工程师开发所有类型的RF设计,从简单到复杂,从离散的射频/微波模块到用于通信和航天/国防的集成MMIC,是当今国内各大学和研究所使用最多的微波/射频电路和通信系统仿真软件。

在本次实验中采用的软件版本为ADS2006。

实验一:实验名称:电路模拟基础实验目的:●建立一个新的项目和原理图设计●设置并执行S参数模拟●显示模拟数据和储存●在模拟过程中调整电路参数●使用例子文件和节点名称●执行一个谐波平衡模拟●在数据显示区写一个等式实验电路图:仿真过程:(1).建立一个项目,设计一个原理图,按照实验要求书上的规则说明寻找到所需要的集中参数原件库原件,放置好电容电感等之后用线连接起来,用ESC结束放置元件和仿真控件命令。

(2). 设置S参数模拟, 开始模拟并显示数据 , 储存数据窗口, 画出S21数据, 提高增益,再模拟,绘制出另一条曲线仿真结果:调整滤波器电路,在原理图窗口,用光标选择C1和L1,在控制对话框中调节L1和C1的结果会即时显示在数据显示窗口中线上的三角标志会自动调整到最新的曲线上。

通信电子电路实验报告

通信电子电路实验报告

一、实验目的1. 了解通信电子电路的基本组成和工作原理。

2. 掌握通信电子电路的基本实验技能和操作方法。

3. 培养分析问题和解决问题的能力。

二、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 通信电子电路实验板5. 连接线三、实验原理通信电子电路是现代通信系统中的核心组成部分,其主要功能是将信号进行调制、放大、解调等处理,以实现信号的传输。

本实验主要涉及以下通信电子电路:1. 模拟调制解调电路:将模拟信号进行调制和解调,实现信号的传输。

2. 数字调制解调电路:将数字信号进行调制和解调,实现信号的传输。

3. 放大电路:对信号进行放大,提高信号的传输质量。

四、实验内容1. 模拟调制解调电路实验(1)实验目的:掌握模拟调制解调电路的原理和操作方法。

(2)实验步骤:① 按照实验电路图连接实验板。

② 将信号发生器输出的信号接入调制电路的输入端。

③ 使用示波器观察调制电路的输出波形。

④ 改变调制电路的参数,观察输出波形的变化。

⑤ 将调制电路的输出信号接入解调电路的输入端。

⑥ 使用示波器观察解调电路的输出波形。

⑦ 改变解调电路的参数,观察输出波形的变化。

2. 数字调制解调电路实验(1)实验目的:掌握数字调制解调电路的原理和操作方法。

(2)实验步骤:① 按照实验电路图连接实验板。

② 将信号发生器输出的信号接入调制电路的输入端。

③ 使用示波器观察调制电路的输出波形。

④ 改变调制电路的参数,观察输出波形的变化。

⑤ 将调制电路的输出信号接入解调电路的输入端。

⑥ 使用示波器观察解调电路的输出波形。

⑦ 改变解调电路的参数,观察输出波形的变化。

3. 放大电路实验(1)实验目的:掌握放大电路的原理和操作方法。

(2)实验步骤:① 按照实验电路图连接实验板。

② 将信号发生器输出的信号接入放大电路的输入端。

③ 使用示波器观察放大电路的输出波形。

④ 改变放大电路的参数,观察输出波形的变化。

⑤ 使用数字万用表测量放大电路的增益。

通信电子线路Multisim仿真实验报告

通信电子线路Multisim仿真实验报告

通信电子线路实验报告Multisim调制电路仿真目录一、综述 (1)二、实验内容 (2)1.常规调幅AM (2)(1)基本理论 (2)(2)Multisim电路仿真图 (3)(3)结论: (6)2.双边带调制DSB (6)(1)基本理论 (6)(2)Multisim电路仿真图 (7)3.单边带调制SSB (8)(1)工作原理 (8)(2)Multisim电路仿真图 (9)4.调频电路FM (10)(1)工作原理 (10)(2)Multisim电路仿真图 (10)5.调相电路PM (11)(1)工作原理 (11)(2)Multisim电路仿真图 (12)三、实验感想 (12)一、综述基带信号是原始的电信号,一般是指基本的信号波形,在数字通信调制技术中则指相应的电脉冲。

在无线遥测遥控系统和无线电技术中调制就是用基带信号控制高频载波的参数(振幅、频率和相位),使这些参数随基带信号变化。

用来控制高频载波参数的基带信号称为调制信号。

未调制的高频电振荡称为载波(可以是正弦波,也可以是非正弦波,如方波、脉冲序列等)。

调制方式按照调制信号的性质分为模拟调制和数字调制两类;按照载波的形式分为连续波调制和脉冲调制两类。

模拟调制有调幅(AM)、调频(FM)和调相(PM)。

数字调制有振幅键控(ASK)、移频键控(FSK)、移相键控(PSK)和差分移相键控 (DPSK)等。

脉冲调制有脉幅调制(PAM)、脉宽调制(PDM)、脉频调制(PFM)、脉位调制(PPM)、脉码调制(PCM)和增量调制(ΔM)。

⑴调幅(AM):用调制信号控制载波的振幅,使载波的振幅随着调制信号变化。

已调波称为调幅波。

调幅波的频率仍是载波频率,调幅波包络的形状反映调制信号的波形。

调幅系统实现简单,但抗干扰性差,传输时信号容易失真。

⑵调频(FM):用调制信号控制载波的振荡频率,使载波的频率随着调制信号变化。

已调波称为调频波。

调频波的振幅保持不变,调频波的瞬时频率偏离载波频率的量与调制信号的瞬时值成比例。

通信电子线路仿真实验

通信电子线路仿真实验

通信电子线路仿真实验一、基本原理振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为载波)的幅度,是已调波的幅度随调制信号的大小线性变化,而保持载波的角频率不变。

在振幅调制中,根据所输出已调波信号频谱分量的不同,分为普通调幅(AM)、抑制载波的双边带调幅(DSB)、抑制载波的单边带调幅(SSB)等。

AM 的载波振幅随调制信号大小线性变化。

DSB是在普通调幅的基础上抑制掉不携带有用信息的载波,保留携带有用信息的两个边带。

SSB是在双边带调幅的基础上,去掉一个边带,只传输一个边带的调制方式。

它们的主要区别是产生的方法和频谱的结构不同。

二、.实验要求:1.用乘法器和加法器设计普通振幅调制电路和双边带调制电路;2.观察普通波中Ma对波形的影响;3.实现双边带调制与Ma=1波形的比较;4.观察双边带波形的变化;5.振幅检波,从波形中观察失真。

三、实验仿真及分析:1.用乘法器和加法器设计普通振幅调制电路和双边带调制电路(1)AM 信号的数学表达式AM 信号是载波信号振幅在0m V 上下按输入调制信号规律变化的一种调幅信号,表达式如下:[]t w t u Ec t v c o cos )()(Ω+=(1)由表达式(1)可知,在数学上,调幅电路的组成模型可由一个相加器和一个相乘器组成,如图1所示。

t c u ( Ec设调制信号为:)(t u Ω=M c U E Ω+cos t Ω载波电压为:cM t c U u =)(cos t w c上两式相乘为普通振幅调制信号:M C t s U E u +=()(cos t Ω)t w U c cM cos=C cM E U (+t w t U c M cos )cos ΩΩ=t w t M U c a cM cos )cos 1(Ω+=t w t M U c a S cos )cos 1(Ω+(2)式中,CM a E U M Ω=称为调幅系数(或调制指数) ,其中0<a M ≤1。

实验一《通信系统仿真实训》实验指导书

实验一《通信系统仿真实训》实验指导书

《通信系统仿真实训》实验指导书武汉理工大学信息工程学院2016年1月说明通信系统仿真实训为设计型实验,本实验指导书仅提出实验任务和技术说明,具体电路图和仿真结果不予提供。

实验一信源模块的设计与仿真一、实验目的1.熟悉SystemView 软件的使用方法;2. 掌握A/D及并/串转换的实现方法;3.理解多路数字信号时分复用的概念,设计时分复用信号的帧结构并予实现。

4.掌握信号源模块工作中所需各时钟信号的关系和实现方法。

二、实验仪器及软件PC机,SystemView三、实验方案和技术路线1. 实验方案2. 技术路线1)应用抽样定理,采用并行A/D转换,将一路模拟信号转换数字信号;2)应用数选技术,实现并/串转换,生成数字基带信号,保证基带信号满足帧结构要求;3)应用数选技术,实现时分复用技术,将两路数字基带信号复用为一路数字基带信号。

4)设计总时钟,运用分频技术,产生所需各个时钟信号。

3. 复用信号帧结构的设计复用信号一帧分为 4 个时隙,TS 0 ~ TS 3,预留 TS 0 为空闲,任意分配 TS 1 ~ TS 3 给用户。

(或自行设计复用信号帧结构)4. 实现并/串转换和时分复用模块采用数据选择器实现,电路自行设计。

四、实验内容及步骤1. A/D 转换选定8位自行设计模拟信号频谱参数,确定抽样脉冲CLK1的频率值,完成模拟信号的A/D 转换。

CLK1 的周期即为帧周期。

2. 并/串转换利用数据选择器,设计并/串转换电路,熟悉芯片的时钟信号和使能信号的配合协调方法。

按照复用信号帧结构的要求,设计一组 CLK2 时钟信号,完成每路信号的一个样值占用一个分配的时隙。

观察、记录单路数字信号波形。

3. 时分复用信号设计时分复用电路和一组 CLK3 时钟信号,实现 2 路数字基带信号的复用。

CLK3 时钟信号实现方法类似 CLK2。

观察、记录复用数字信号波形。

4. 总时钟源电路总时钟源采用软件提供的信号源部件实现,CLK1、CLK2、CLK3等所有时钟信号必须采用分频技术实现,以确保信号同步。

模电仿真实验报告

模电仿真实验报告

模拟电路仿真实验报告一、实验目的本次模拟电路仿真实验旨在通过使用专业仿真软件,掌握模拟电路的基本原理和设计方法,提高分析和解决问题的能力。

二、实验原理模拟电路是用于模拟真实世界中的各种信号的电子电路。

它能够复制或放大这些信号,以便更好地进行研究和分析。

模拟电路通常由电阻、电容、电感、二极管、三极管等元件组成。

三、实验步骤1. 打开仿真软件,创建一个新的模拟电路设计。

2. 根据实验要求,添加所需的电子元件和电源。

3. 连接各元件,构成完整的模拟电路。

4. 调整电源和各元件的参数,观察并记录电路的输出结果。

5. 根据实验要求,对电路进行测试和调整,直到达到预期效果。

6. 记录实验数据和结果,分析电路的工作原理。

7. 完成实验报告,总结实验过程和结果。

四、实验结果与分析1. 实验结果:在本次模拟电路仿真实验中,我们设计了一个简单的RC振荡电路。

通过调整电阻和电容的值,我们观察到了不同频率的振荡波形。

实验结果表明,该电路能够有效地产生振荡信号,并且可以通过改变电阻和电容的值来调整振荡频率。

2. 结果分析:本次实验中,我们使用了RC振荡电路来模拟一个简单的振荡器。

当电流通过电阻和电容时,会产生一个随时间变化的电压。

该电压在电容两端累积,直到达到某个阈值,才会发生振荡。

通过调整电阻和电容的值,我们可以改变电压累积的速度和阈值,从而调整振荡频率。

此外,我们还发现,当改变电阻或电容的值时,振荡波形也会发生变化。

这表明该电路具有较好的频率特性和波形质量。

五、实验总结与建议本次模拟电路仿真实验让我们深入了解了模拟电路的基本原理和设计方法。

通过使用仿真软件,我们能够方便地进行电路设计和测试,并且可以随时调整元件参数来优化电路性能。

建议在今后的实验中,可以尝试设计更加复杂的模拟电路,以进一步提高我们的实验技能和解决问题的能力。

同时,也需要注意遵守实验规则和安全操作规程,确保实验过程的安全性。

《模拟电子线路》实验指导书(仿真)

《模拟电子线路》实验指导书(仿真)

《模拟电子线路》实验指导书——仿真实验部分编写适用专业:通信工程闽江学院计算机科学系2010年7月前言在现代通信控制,电子测量等众多领域,都广泛的应用电子技术。

EDA(电子设计自动化)技术的飞速发展,要求专业技术人员能较快地掌握该技术的应用。

为了帮助广大同学更好地学习EDA技术,我们编写了本实验指导书。

本着快速掌握,即学即用和实用易学的目的,本书采用了理论从略、应用从祥的原则。

本书包括模拟验证性实验,以完成一个实际应用为例,引导学生完成并掌握整个设计过程,实验由简单到复杂,由单一到综合,巩固和加强学生对基本理论的掌握,训练提高学生的基本设计能力;设计性实验,提出实验目的要求和实验内容及约束条件,设计方案、功能选择由学生自行拟定,以培养学生独立组织实验和创新设计的能力。

本指导书适用通信工程专业,共包含五个实验,其中实验一至实验五为必做。

目录1、实验一:multisim10的应用··························································································12、实验二:单级阻容耦合放大电路··················································································133、实验三:差分放大电路·································································································194、实验四:集成运算放大电路的应用···············································································245、实验五:RC正弦波振荡电路························································································13实验一:Multisim10的应用实验学时:2学时实验类型:验证实验要求:必修一、实验目的学习multisim仿真软件的使用方法。

电子电路仿真实验报告

电子电路仿真实验报告

电子电路仿真实验报告一、实验目的1. 学习电子电路仿真实验的基本操作和方法。

2. 熟悉电子元器件如何实现电路中的各种功能。

3. 掌握几种基本电路的设计和仿真方法。

二、实验仪器和材料1. 电脑2. 软件:Multisim仿真软件3. 元器件:电阻、电容、二极管、三极管等。

三、实验原理在电子电路中,各种元器件按照一定的连接方式组成各种电路,实现信号的放大、变换、滤波等功能。

而在实验中,我们可以通过仿真软件来进行计算分析、虚拟实验等操作,为电路的设计和实现提供帮助。

本次实验将重点介绍三种基本电路的仿真方法和设计思路,包括放大电路、滤波电路和振荡电路。

每种电路都有自己的设计方法和指标,需要结合实际情况进行仿真和测试。

四、实验内容1. 放大电路仿真实验(1)单管共射放大电路单管共射放大电路是一种常见的放大器电路,可以实现信号放大和变换的功能。

在该电路中,输入信号经过电容和限流电阻进入基极,当输入信号变化时,导致基极电位的变化,进而影响集电极电位的变化,使得输出信号的幅值发生变化。

为了使单管工作稳定,需要额外加上一个偏置电路,保证输入信号不会进入截止区或饱和区。

该偏置电路通常由一个电阻和电源构成,根据实际需要可以调整电阻的取值来改变工作点。

如图所示,是一个单管共射放大电路的仿真电路图:其中Q1为NPN型三极管,Rb1为偏置电阻,Rb2为信号电阻,Re为发射极电阻,Rc为集电极电阻,C1为输入信号电容,C2为输出信号电容。

在仿真软件中,可以通过正弦信号源模拟输入信号,通过示波器实时监测输入信号和输出信号的变化。

为了得到高质量的输出信号,需要考虑以下几个因素:1)偏置电阻的取值应该适当,可以通过调整偏置电源来达到调节偏置电压的目的。

2)输入信号的电容取值应该适当,可以通过调节电容的容值来改变输入信号频率的响应情况。

3)集电极电阻和发射极电阻的取值应该适当,以达到适当的放大倍数和输出功率。

如图所示,是仿真软件中单管共射放大电路的实验效果:通过设置输入信号的频率,可以在示波器上观察到输出信号的变化,同时可以计算出输出信号的功率和放大倍数等重要指标。

通信电路仿真实验-频谱

通信电路仿真实验-频谱

通信电路仿真实验四
一实验内容
晶体管的输入电压为u=Uq+Um1*cos2000πt+0.1cos20000πt
要求:
(1) 画出电路使得Uq=Ube可在-2~+0.7V间变化
(2) Uq取适当值使得晶体管分别工作在线性区和非线性区,观察输出电流的频谱。

(3) 改变Um1的大小,观察输出电流的频谱。

二仿真原理
Uq电压可调通过设计两个可调滑动变阻器(+5V、-5V)、V1rms=0.1V (f=10kHZ)和Um1(1KHZ)实现。

输出信号频谱通过频谱分析仪观测。

三仿真过程
电路设计:
1、Uq取适当值使得晶体管分别工作在线性区
2、Uq取适当值使得晶体管分别工作在非线性区
3、改变Um1的大小,查看输出信号频谱
(1)Um1=1V(有效值)
(2)Um1=0.5V(有效值)
(3)Um1=0.1V(有效值)
四结果分析
1、调制滑动变阻器可使得晶体管基极电压为-2V~+2V
2、当Uq=0.998V ,示波器显示输出电压无失真,晶体管工作在线性区
3、当Uq=0.543V, 示波器显示输出电压发生失真,晶体管工作在非线性区
4、当Um1电压幅值较小时,频谱图中其它频率的噪声源越小。

通信原理仿真实验报告

通信原理仿真实验报告

通信原理仿真实验报告一、实验目的本实验旨在通过仿真实验的方式,深入理解通信原理的基本原理和技术,掌握通信系统的仿真设计方法,并通过实验结果分析和总结,加深对通信原理的认识和理解。

二、实验原理1. 通信原理基础知识在通信系统中,信号的传输是通过信道进行的。

信道可以是有线或无线的,其中有线信道主要是指电缆、光纤等,而无线信道主要是指无线电波的传播。

通信系统的基本组成部分包括发送端、信道和接收端。

2. 信号的调制与解调调制是将原始信号转换为适合传输的信号形式的过程,而解调则是将接收到的信号还原为原始信号的过程。

常见的调制方式有幅移键控(ASK)、频移键控(FSK)和相移键控(PSK)等。

3. 信道编码与解码为了提高信号的可靠性和抗干扰能力,通信系统通常采用信道编码和解码技术。

常见的信道编码方式有海明码、卷积码和纠错码等,通过增加冗余信息来提高信号的可靠性。

4. 信道传输特性的仿真通信系统中的信道具有不同的传输特性,如衰落信道、多径传输等。

通过仿真实验,可以模拟不同的信道传输特性,进而探究信号传输过程中的效果和问题。

三、实验步骤1. 实验环境搭建搭建仿真实验所需的软件环境,如MATLAB、Simulink等。

2. 选择信号调制方式根据实验要求,选择合适的信号调制方式,如ASK、FSK或PSK等。

3. 设计信号调制电路根据选择的信号调制方式,设计相应的信号调制电路,包括载波生成、调制器和滤波器等。

4. 仿真信号调制过程利用仿真工具,对设计的信号调制电路进行仿真,观察信号调制的过程和结果。

5. 设计信道传输模型根据实验要求,设计合适的信道传输模型,包括信道衰落、多径传输等。

6. 仿真信道传输过程利用仿真工具,对设计的信道传输模型进行仿真,观察信号传输过程中的效果和问题。

7. 设计信号解调电路根据实验要求,设计相应的信号解调电路,包括解调器和滤波器等。

8. 仿真信号解调过程利用仿真工具,对设计的信号解调电路进行仿真,观察信号解调的过程和结果。

通信电子电路仿真实验

通信电子电路仿真实验

通信电子电路仿真实验姓名:贾炜光李潇宇贾瑞学号:201510600422015106003820151060158学院:信息学院专业:通信工程指导教师:蔡光卉一、实验目的(1)加深对混频理论方面的理解,提高用程序实现相关信号处理的能力;(2)掌握multisim实现混频器混频的方法和步骤;(3)掌握用muitisim实现混频的设计方法和过程,为以后的设计打下良好的基础。

二.实验原理混频器将天线上接收到的射频信号与本振产生的信号相乘,cosαcosβ=[cos(α+β)+cos(α-β)]/2可以这样理解,α为射频信号频率量,β为本振频率量,产生和差频。

当混频的频率等于中频时,这个信号可以通过中频放大器,被放大后,进行峰值检波。

检波后的信号被视频放大器进行放大,然后显示出来。

由于本振电路的振荡频率随着时间变化,因此频谱分析仪在不同的时间接收的频率是不同的。

混频是指将信号从一个频率变换到另外一个频率的过程 ,其实质是频谱线性搬移的过程。

在超外差接收机中 ,混频的目的是保证接收机获得较高的灵敏度 ,足够的放大量和适当的通频带 ,同时又能稳定地工作。

混频电路包括三个组成部分 : 本机振荡器、非线性器件、带通滤波器。

[1]由于非线性元件( 如二极管、三极管、场效应管等) 的作用,混频过程中会产生很多的组合频率分量 : p f L ±qf S 。

一般来讲 ,其中满足需要的仅仅是 f I =f L -f S 或者是f I =f S -f L 。

前者产生中频的方式称为高差式混频 , 后者称为低差式混频。

在这里 ,混频过程中产生的一系列组合频率分量经过带通滤波器即可以选择输出相应的中频 ,而其他的频率分量会得到抑制。

1、直流工作点分析使用仿真软件中的“直流工作点分析”,得放大器的直流工作点如下所示:但经测试,在电路中加入输入隔直流电容,混频输出的中频信号与输入信号之间出现一定的相位延迟。

实验结果见下图所示。

根据Multisim的通信电路仿真实验

根据Multisim的通信电路仿真实验

基于Multisim的通信电路仿真实验通信电路课程仿真实验指导书班级:通信一班、通信二班、通信三班、通信四班实验一高频小信号放大器1.1实验目的1.2实验内容4 .4 . 4 .1.2.1单调谐高频小信号放大器仿真1.2.2双调谐高频小信号放大器1.3实验要求6.实验二高频功率放大器2.1实验目的2.2实验内容2.3实验要求9.实验三正反馈LC振荡器103.1实验目的103.2实验内容103.2.1电感三端式振荡器103.2.2电容三端式振荡器113.2.3克拉泼振荡器113.3实验要求12实验四晶体振荡器134.1实验目的134.2实验内容134.3实验要求14实验五低电平调制155.1实验目的155.2实验内容155.2.1二极管平衡电路调制155.2.2模拟乘法器调制电路165.3实验要求168.2.2模拟乘法器同步检波 8.3实验要求实验六咼电平调制1.7 6.1实验目的17 6.2实验内容17 6.2.1集电极调幅电路 1.7 6.2.2基极调幅电路 18 6.3实验要求 18 实验七 包络检波 19 7.1实验目的 19 7.2实验内容 19 7.3实验要求 19 实验八同步检波 20 8.1实验目的 20 8.2实验内容20 8.2.1二极管平衡电路解调DSB 20 21 21掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

掌握咼频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2.1单调谐高频小信号放大器仿真aMS.OliQ实验 高频小信号放大器1.1实验目的图1.1 单调谐高频小信号放大器1、 2、 熟悉谐振回路的调谐方法及测试方法。

3、1.2实验内容PS £3凶Cl—-II- T1 3.1UFr? 丄OxluFC3 kLt iLe^JOOpT XRflDuH >0 S>n1、根据电路中选频网络参数值,计算该电路的谐振频率3p。

2、通过仿真,观察示波器中的输入输出波形,计算电压增益 A vo。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信电子线路仿真实验报告基于Multisim的高频调幅电路仿真实验1.前言信号调制可以将信号的频谱搬移到任意位置,从而有利于信号的传送,并且是频谱资源得到充分利用。

调制作用的实质就是使相同频率范围的信号分别依托于不同频率的载波上,接收机就可以分离出所需的频率信号,不致相互干扰。

而要还原出被调制的信号就需要解调电路。

调制与解调在高频通信领域有着广泛的应用,同时也是信号处理应用的重要问题之一,系统的仿真和分析是设计过程中的重要步骤和必要的保证。

利用Multisim提供的示波器模块,分别对信号的调幅和解调进行了波形分析。

AM调制优点在于系统结构简单,价格低廉,所以至今仍广泛应用于无线但广播。

与AM信号相比,因为不存在载波分量,DSB调制效率是100%。

我们注意到DSB信号两个边带中任意一个都包含了M(w)的所有频谱成分,所以利用SSB调幅可以提高信道的利用率,所以选择SSB调制与解调作为课程设计的题目具有很大的实际意义。

主要是综述现代通信系统中AM ,DSB,SSB调制解调的基本技术,并分别在时域讨论振幅调制与解调的基本原理, 以及介绍分析有关电路组成。

此课程设计的目的在于进一步巩固高频、通信原理等相关专业课上所学关于频率调制与解调等相关内容。

同时加强了团队合作意识,培养分析问题、解决问题的综合能力。

2.基本理论由于从消息转换过来的调制信号具有频率较低的频谱分量,这种信号在许多信道中不宜传输。

因此,在通信系统的发送端通常需要有调制过程,同时在接受端则需要有解调过程从而还原出调制信号。

所谓调制就是利用原始信号控制高频载波信号的某一参数,使这个参数随调制信号的变化而变化,最常用的模拟调制方式是用正弦波作为载波的调幅(AM)、调频(FM)、调相 (PM)三种。

解调是与调制相反的过程,即从接收到的已调波信号中恢复原调制信息的过程。

与调幅、调频、调相相对应,有检波、鉴频和鉴相[1]。

振幅调制方式是用传递的低频信号去控制作为传送载体的高频振荡波(称为载波)的幅度,是已调波的幅度随调制信号的大小线性变化,而保持载波的角频率不变。

在振幅调制中,根据所输出已调波信号频谱分量的不同,分为普通调幅(AM)、抑制载波的双边带调幅(DSB)、抑制载波的单边带调幅(SSB)等。

AM的载波振幅随调制信号大小线性变化。

DSB是在普通调幅的基础上抑制掉不携带有用信息的载波,保留携带有用信息的两个边带。

SSB是在双边带调幅的基础上,去掉一个边带,只传输一个边带的调制方式。

它们的主要区别是产生的方法和频谱的结构不同。

3. 利用仿真软件 Multisim 12对AM 电路仿真分析3.1 AM 信号的数学表达式AM 信号是载波信号振幅在0m V 上下按输入调制信号规律变化的一种调幅信号,表达式如下:[]t w t u k V t v c a m o cos )()(0Ω+= (1)由表达式(1)可知,在数学上,调幅电路的组成模型可由一个相加器和一个相乘器组成,如图1所示。

图中,M A 为相乘器的乘积常数,A 为相加器的加权系数,且a cm M k AV A k A ==, 设调制信号为:)(t u Ω=M c U E Ω+cos t Ω载波电压为:cM t c U u =)(cos t w c上两式相乘为普通振幅调制信号:cM C t s U E K u +=()(cos t Ω)t w U c cM cos=C cM E KU (+t w t U c M cos )cos ΩΩ=t w t M E KU c a c cM cos )cos 1(Ω+=t w t M U c a S cos )cos 1(Ω+ (2)式中,CM a E U M Ω=称为调幅系数(或调制指数) ,其中0<a M ≤1。

而当a M >1时,在π=Ωt 附近,)(t u c 变为负值,它的包络已不能反映调制信号的变化而造成失真,通常将这种失真成为过调幅失真,此种现象是要尽量避免的。

3.2 普通调幅(AM )信号的波形在Multisim 仿真电路窗口中创建如图3.1.2所示的由乘法器(K =1)组成的普通调幅(AM )电路,在该电路中,直流电压源 c E (图中V2)和低频调制信号)(t U Ω (图中V1)分别加到乘法器A 1的X 输入端口,高频载波信号电压)(t c U (图中V3)加到乘法器的Y输入端口。

将示波器的A 、B 通道分别加到乘法器的X 输入端口、模拟加法器的输出端口,其构成如下图2所示:图2乘法器组成的普通调幅(AM)电路)(t u c运行仿真电路可得到输出波形(见图3)。

此时调幅指数C M a E U M Ω==0.5,运行仿真开关,双击示波器图标,可以得到示波器仿真输出波形和输入调制信号波形(见图3),从图中输出波形可以看出,高频载波信号的振幅随着调制信号的振幅规律变化,即已调信号的振幅在c E 上下按输入调制信号规律变化。

图3普通调幅(AM )电路的输入波形(上)和调制信号波形(下)从图3.2.1可得到如下结论:调幅电路组成模型中的相乘器对)(t u Ω和)(t u c 实现相乘运算得结果,反映在波形上是将)(t u Ω不失真地转移到载波信号振幅上。

若将图 3.2.1中调制信号电压的幅值改为1V ,则调指数C M a E U M Ω==1,这时电路输出的曲线的包络恰好为调幅曲线,其仿真结果见仿真示波器屏幕,如图4所示:图4 调幅电路恰好调幅(M =1)时调制信号(上)及其输出波形(下)若将图2中调制信号电压的幅值改为6V ,则调制指数C M a E U M Ω==3, Ma >1,这时电路输出的曲为过量调幅曲线,仿真结果如图5所示:图5调制电路过调失真(Ma >1)时的输出波形从图中可以看出已调波的包络形状与调制信号不一样,产生了严重的包络失真,这种情况称为过调失真,在实际应用中应尽量避免。

因此,在振幅调制仿真过程中可以得出如下结:为了保证已调波的包络真实地反映出调制信号的化规律,避免产生过调失真,要求调制系数Ma 必满足0<Ma <1,这与式(2)理论上推导得出的结果是一致的。

4、利用仿真软件Multisim 12对DSB 电路仿真分析4.1 DSB 信号的数学表达式抑制掉调幅信号频谱结构中无用的载频分量,仅传输两个边频的调制方式成为抑制载波的双边带调制,简称双边带调制,并表示为:t w t u k t u c a cos )()(0Ω=显然,它与调幅信号的区别就在于其载波电压振幅不是在0m V 上下按调制信号规律变化。

这样,当调制信号)(t u Ω进入负半周时,)(t u o 就变为负值。

表明载波电压产生0180相移。

因而当)(t u Ω自正值或负值通过零值变化时,双边带调制信号波形均将出现0180的相移突变。

双边带调制信号的包络已不再反映)(t u Ω的变化,但它仍保持频谱搬移的特性,因而仍是振幅调制波的一种,并可用相乘器作为双边带调制电路的组成模型,如下图9所示,图中a cm M k V A =。

图9 双边带调制信号组成模型4.1.1 调制过程的数学表达式设载波电压为:t w U t u c cM c cos )(=调制信号为:t U t u M Ω=ΩΩcos )(经过模拟乘法器A1后输出电压为抑制载波双边带调制信号,其数学表达式为:)()()(t u t u K t u c Ω⨯⨯==t U t w U K M c cM Ω⨯⨯Ωcos cos=[]2)cos()cos(t w t w U KU c c M cM Ω-+Ω+Ω (4)4.1.2 解调过程的数学表达式双边带调幅波的电压)(t u 可表示为:t w KU t u c cM cos )(=t w t u U t U c M M cos )(cos ⨯⨯=ΩΩΩΩ本机载波电压为:t w U t u c cM c cos )(=解调波的表达式:)()()(t u t u K t u c p ⨯⨯==t U t w U K M c cM Ω⨯⨯Ωcos cos=[]2)cos()cos(t w t w U KU c c M cM Ω-+Ω+Ω (5)4.2 DSB信号的波形在Multisim仿真电路窗口中创建如下图10所示的电路,其中由高频载波信号)(tuc (V3)、低频调制信号)(tu(V1)及乘法器(K=0.1)A1组成抑制载波双边带调幅电路。

图10 DSB乘法器调制解调电路运行仿真开关,双击示波器图标,可以得到抑制载波双边带调幅仿真输出波形如图11所示:图11用乘法器组成抑制载波双边带(DSB)输入波形及调制波形4.3 DSB 信号的解调图12 振幅检波电路的作用如图12所示,为输入振幅调制信号电压,为反映调制信号变化的输出电压。

在频域上,这种作用就是将振幅调制信号频谱不失真地搬回到零频率附近。

因此振幅检波电路也是一种频谱搬移电路,可以用相乘器实现这种作用,如图13所示:图13 振幅解调电路的组成模型图中电路由相乘器和低通滤波器组成。

由图可见,将)(t u s 先与一个等幅余弦电压)(t u r 相乘,要求这个电压与输入载波信号同频同相,即)(t u r =t w V c rm cos ,称为同步信号,相乘结果是)(t u s 频谱被搬移到c w 的两边,一边搬到2c w 上,构成载波角频率为2c w 的双边带调制信号,它是无用的寄生分量;另一边搬到零频率上,这样,)(t u s 的一边带就必将被搬到负频率轴上,负频率是不存在)(t u s )(t u o的,实际上,这些负频率分量应叠加到相应的正频率分量上,构成实际的频谱,因此它比搬移到2c w 上的任一边带频谱在数值上加倍。

而后用低通滤波器滤除无用的寄生分量,取出所需的解调电压。

必须指出,同步信号)(t u r 必须与输入信号保持严格同步(同频、同相)是实现上述电路模型的关键,故将这种检波电路称为同步检波电路。

否则检波性能就会下降。

若恢复载波与发射载频有一定的频差,将会引起振幅失真和频率失真,若只有一定的相差,但频率相同,则会引起一个振幅衰减因子,使振幅减小。

5利用仿真软件Multisim 12对SSB 电路仿真分析5.1 SSB 信号的数学表达式单边带调制(SSB )信号是由DSB 信号经边带滤波器滤除一个边带或在调制过程中,直接将一个边带抵消而成的。

单频调制时,c DSB u ku t u Ω=)(SSB 信号的表达式为:取上边带:)t Ucos(t)(u C SSB Ω+=ω取下边带:)t Ucos(t)(u C SSB Ω-=ωC U U U ⨯=Ω从上式看,单频时的SSB 信号仍是等幅波,但它与原载波电压是不同的。

SSB 信号的振幅和调制信号的幅度成正比,它的频率随着调制信号频率的不同而不同,因此它含有消息特征。

相关文档
最新文档