稠油热采完井技术

合集下载

海上油田稠油热采技术探索及应用

海上油田稠油热采技术探索及应用

海上油田稠油热采技术探索及应用
目前我国海上油田主要开采方式为水平井控制压裂,其中稠油油层热采技术是提高开采难度的主要因素之一。

稠油油层存在热采渗流效率低、水平井生产长度短、注汽井成本高等问题,为了克服这些困难,需要不断探索和应用新的技术手段。

一、水平井技术
水平井技术是开发海上稠油的重要手段之一,采用水平井可以增加有效生产长度,提高油气采收率,减少开发深度。

在稠油热采过程中,水平井还可以减少井筒壁面积,降低油层对地面和注汽井的渗流压力,提高注汽井有效注汽压力。

水驱技术是提高稠油油田采收率的重要手段之一。

水驱技术的主要作用是使稠油油层内的油和水混合起来,形成流体,增加稳定生产的面积,减少油层残余油。

在水驱技术的应用过程中,需要根据油层的特征来确定注水井位置和注水量。

三、蒸汽注入技术
对于稠油油层的热采过程,蒸汽注入技术是应用最广泛的一种。

蒸汽注入技术主要是通过注入蒸汽来加热油层,使稠油发生热胀冷缩作用,提高原油流动性,提高采收率。

在蒸汽注入过程中,需要根据油层渗流特点、岩石渗透条件等因素来确定注汽井的位置和注汽量。

四、其他技术
除了以上三种技术外,还有一些其他技术也适用于稠油油田的热采过程,如CO2注入技术、自然气注入技术和油层微生物改造技术等。

这些技术的主要作用是通过调整注入物质的物化性质和结构,改变原油的物化性质和结构,提高采收率。

总之,稠油油田的热采过程是一个复杂的过程,需要综合考虑油层特征、生产条件、经济效益等因素来确定合适的技术手段。

在这个过程中,需要不断探索和应用新技术,提高采收率,减少对环境的影响。

稠油热采开发技术(ppt)

稠油热采开发技术(ppt)

稠油资源分布
稠油资源主要分布在北美 的加拿大、中国、委内瑞 拉、俄罗斯等地。
稠油资源储量
全球稠油资源储量巨大, 但分布不均,主要集中在 加拿大的阿尔伯塔省和中 国的克拉玛依油田。
热采开发技术的定义与特点
热采开发技术定义
热采开发技术是一种利用热能将 稠油资源转化为可流动状态,然 后进行开采的技术。
热采开发技术特点
率的稠油开采方法。
原理
火烧油层法通过向油层注入空气 或氧气,并点燃油层中的轻质组 分,使燃烧反应持续进行。燃烧 过程中产生的高温高压气体推动
原油流向生产井。
适用范围
火烧油层法适用于粘度高、油层 厚度大、渗透率较高的稠油油藏。 该方法可以提高采收率,但开采 过程中需要严格控制火势和燃烧
条件。
热水驱法
投资回报低
由于技术难度和开采效率问题,稠油热采项目的 投资回报率较低。
市场风险
受国际油价波动的影响,稠油热采项目的经济效 益面临较大的市场风险。
环境挑战
排放控制
稠油热采过程中会产生大量的废气和废水,需要严格的排放控制 措施。
生态保护
稠油热采活动可能对周边生态环境造成一定的影响,需要采取生态 保护措施。
案例二:某油田的蒸汽驱项目
蒸汽驱是一种更为先进的稠油热 采技术,通过向油藏注入高温蒸 汽,将稠油驱赶到生产井,进一
步提高采收率。
某油田的蒸汽驱项目实施过程中, 通过优化注汽参数、改善井网布 置等方式,提高了蒸汽驱的开发
效果和经济性。
该项目的成功实施表明,蒸汽驱 技术适用于大规模稠油油藏的开 发,为类似油田的开发提供了有
其降粘并提高流动性。
采收和运输
通过采油树和采油管线将稠油 采出地面,并进行必要的处理

对稠油开采几种主要技术分析

对稠油开采几种主要技术分析
参考文献 [1] 王 乃 举 . 中 国 油 藏 开 发 模 式·总 论 [M]. 北 京 :石 工 业 出 版 社 , 1999:275~281
284 企业导报 2012 年第 12 期
技术市场
对稠油开采几种主要技术分析
孔卫杰
(河南油田采油一厂,河南 南阳 473000)
一、热采技术 注蒸汽热采的开采机理主要是通过加热降粘改善流变性, 高温改善油相渗透率以及热膨胀作用、蒸汽(热水)动力驱油作 用、溶解气驱作用。当油、水总蒸汽压等于或高于系统压力时, 混合物将沸腾,使原油中轻组分分离,即为蒸馏作用。蒸馏作用 引起混合液沸腾产生的扰动效应能使死孔隙中的原油向连通 孔隙中转移,从而提高驱油效率。高温水蒸气对稠油的重组分 有热裂解作用,即产生分子量较小的烃类。在蒸汽驱过程中,从 稠油中馏出的烃馏分和热裂解产生的轻烃进入热水前沿温度 较低的地带时,又重新冷凝并与油层中原始油混合将其稀释, 降低了原始油的密度和粘度,形成了对原始油的混相驱。注蒸 汽热采的乳化驱作用同样很有意义,蒸汽驱过程中,蒸汽前沿 的蒸馏馏分凝析后与水发生乳化作用,形成水包油或油包水乳 化液,这种乳化液比水的粘度高得多。在非均质储层中,这种高 粘度的乳状液会降低蒸汽和热水的指进,提高驱油的波及体 积。热采井完井时的主要问题是,360℃高温蒸汽会导致套管发 生断裂和损坏。为此,采用特超稠油 HDCS 技术,将胶质、沥青质 团状结构分解分散,形成以胶质沥青质为分散相、原油轻质组 分为连续相的分散体系。 二、出砂冷采 1986 年,为了降低采油成本,提高稠油开采经济效益,加拿 大的一些小石油公司率先开展了稠油出砂冷采的探索性矿场 试验。到 90 年代中期,稠油出砂冷采已成为热点,不注热量、不 防砂,采用螺杆泵将原油和砂一起采出。文献指出,螺杆泵连续 抽吸避免了稠油网状结构的恢复,稠油形成稳定的流动地带, 在油带前缘,油滴被启动而增溶到油带中,因此,油带具有很好 的流动能力,表现到生产上就是含水下降。而抽油泵的脉动抽 吸,使得地层孔隙中的油流难以形成连续流,水相侵入到油流 通道,微观上表现为降低了油滴前后的压差,油滴更难启动。稠 油出砂冷采技术对地层原油含有溶解气的各类疏松砂岩稠油 油藏具有较广泛的适用性,它通过使油层大量出砂形成蚯蚓洞 和形成稳定泡沫油而获得较高的原油产量。形成地层中“蚯蚓 洞”,可提高油层渗透率;形成泡沫油,则给油层提供了内部驱 动能量。 三、加降粘剂 据研究,乳化液在孔隙介质中的流动过程是一个复杂的随 机游走过程,降低界面张力、提高毛管数可改善稠油油藏开发 效果。向生产井井底注入表面活性物质,降粘剂在井下与原油 相混合后产生乳化或分散作用,原油以小油珠的形式分散在水 溶液中,形成比较稳定的水包油型乳状液体系。比较常用的有 GL、HRV-2、PS、碱法造纸黑液、BM-5、DJH-1、HG 系列降粘剂。鲁克

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析
稠油热采工艺技术是一种通过加热稠油使其降低黏度,以方便开采的方法。

稠油热采
工艺技术主要包括蒸汽吞吐、电加热、电阻加热、焦耳加热、微生物采油等。

本文将对稠
油热采工艺技术的应用及效果进行分析。

蒸汽吞吐工艺是稠油热采中使用最广泛的一种工艺。

蒸汽吞吐工艺通过注入高温高压
蒸汽到井筒中,使稠油受热而降低黏度,从而使其能够被抽采。

蒸汽吞吐工艺具有成本低、采油效果好的特点,适用于具有一定温度的稠油油层。

经过实践证明,蒸汽吞吐工艺可以
使稠油的采收率提高20%以上。

电加热工艺是一种通过电流加热稠油的方法。

在电加热工艺中,通过在地下注入电极
并通电,产生高温从而加热稠油。

电加热工艺适用于具有低温稠油油层,其优点是可以局
部加热,提高采收率。

电加热工艺的成本较高,需要大量的电力供应,因此在实际应用中
受到一定的限制。

微生物采油是一种通过微生物的作用来改变稠油性质以方便开采的方法。

微生物采油
工艺主要通过注入特定的微生物群体,改变原油中的组分和性质,从而降低黏度,提高可
采性。

微生物采油工艺具有环境友好、低成本的特点,但目前仍处于实验室研究阶段。

稠油热采工艺技术应用广泛且效果显著,可以提高稠油开采的可行性和效率。

不同的
工艺技术适用于不同类型的油层,因此在实际应用中需要根据具体情况选择最合适的工艺
技术。

未来,随着技术的不断发展,稠油热采工艺技术将会进一步完善,为稠油资源的开
采提供更多的选择和可能。

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用一、热力开采稠油技术的原理和特点热力开采稠油技术是通过注入热能到稠油沉积层,降低油粘度,提高原油流动性,从而实现对稠油资源的有效开采。

常见的热力开采技术包括燃烧法、蒸汽吞吐法、电热法等。

1. 燃烧法燃烧法是通过在地下将天然气或其他燃料燃烧,产生高温高压的燃烧气体,使稠油沉积层受热而降低粘度,从而提高原油采收率。

这种方法需要考虑燃烧带、温度分布等因素,采取合理的燃烧控制措施,以避免地下岩石破裂和环境污染。

2. 蒸汽吞吐法蒸汽吞吐法是通过注入高温高压蒸汽到稠油沉积层,使得原油粘度降低,提高采收率。

这种方法主要应用于地表和近井筒地段,对油层温度、压力等参数要求严格,需要考虑地下岩石热传导、蒸汽分布等问题。

3. 电热法电热法是通过在油层中布设加热电缆或电极,利用电能转化为热能,提高原油流动性。

这种方法适用于稠油储量大、开采难度大的情况,并且对地下温度、电热能量传递等因素要求严格。

热力开采稠油技术的特点包括:能够有效提高稠油资源的采收率;可以改善油田开采技术条件,降低原油开采成本;具有较好的环境效益和社会效益。

1. 应用现状目前,热力开采稠油技术已经在全球范围内得到了广泛应用。

在加拿大、委内瑞拉等地,已经有大规模的稠油资源开采项目采用了热力开采技术,取得了较好的效果。

我国油田开采中也有一些热力开采稠油技术的应用案例,如在塔里木盆地、达里湖盆地等地,一些稠油沉积层已经开始采用燃烧法、蒸汽吞吐法等技术进行开采。

2. 发展趋势未来,热力开采稠油技术的发展将朝着以下方向发展:(1)技术综合应用热力开采稠油技术需要和水平井、压裂、水驱等其他现代油田开采技术相互配合,形成技术综合应用,提高热力开采的效率和可操作性。

(2)节能环保技术随着社会对能源节约和环保的要求越来越高,热力开采稠油技术需要向着节能、低碳、无排放的方向发展,减少对资源和环境的损害。

(3)新技术研发在燃烧法、蒸汽吞吐法、电热法等传统热力开采技术的基础上,需要不断开展新技术研发,如微波加热、纳米材料应用等,以提高稠油开采的技术水平。

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用

分析热力开采稠油技术及其应用热力开采稠油技术是一种针对稠油资源的开采方法,其主要原理是通过热能将粘稠的稠油变得更加流动,从而方便提取。

随着全球对于能源资源的需求不断增加,稠油资源的开采技术也在不断提升。

本文将就热力开采稠油技术及其应用进行分析。

一、热力开采稠油技术原理热力开采稠油技术主要包括蒸汽吞吐法、蒸汽驱替法、地热法、电阻加热法等几种方法。

1. 蒸汽吞吐法蒸汽吞吐法是通过将高温的蒸汽注入稠油层,使稠油受热膨胀并形成气相驱动油的运移。

该方法的优点是操作简便,成本低廉,能够更有效地提高稠油产量。

蒸汽驱替法是将蒸汽注入稠油层,通过高温高压破坏稠油的粘度结构,从而使得稠油与油藏底部的水形成乳状液,提高了油品的可采性。

3. 地热法地热法是利用地下热能来提高稠油层的温度,使稠油在地热的作用下变得更加流动,并且可以减少热能的消耗。

4. 电阻加热法电阻加热法则是通过在井筒中加入电阻加热器,通过电流产生的热能来加热稠油,降低其粘度,从而方便提取。

热力开采稠油技术主要应用于稠油资源丰富的地区,如加拿大、委内瑞拉、俄罗斯等国家和地区。

在这些地区,使用传统采油技术提取稠油的效果并不理想,而热力开采稠油技术可以更好地发挥作用。

1. 加拿大加拿大是世界上最大的稠油生产国之一,其阿尔伯塔地区的稠油储量巨大,但由于粘度高,采油困难。

加拿大在热力开采稠油技术上进行了大量的探索和应用,取得了一定的成果。

2. 委内瑞拉委内瑞拉的奥里诺科地区拥有丰富的稠油资源,但大部分是非常高粘度的稠油,传统采油技术效果不佳。

委内瑞拉政府和石油公司在热力开采稠油技术的研发和应用上投入了大量资金和人力,取得了显著成效。

3. 俄罗斯俄罗斯是全球最大的石油生产国之一,在西伯利亚地区也有大量的稠油资源。

俄罗斯的石油公司在热力开采稠油技术方面经验丰富,在稠油资源的开采和利用上有着丰富的实践经验。

热力开采稠油技术相较于传统的采油方法有着明显的优势,包括以下几点:1. 提高采收率热力开采稠油技术可以有效地提高稠油资源的采收率,从而增加了石油产量,提高了资源利用效率。

248-257辽河油田稠油热采井钻完井技术

248-257辽河油田稠油热采井钻完井技术

辽河油田稠油热采井钻完井技术辽河石油勘探局工程技术研究院摘要:稠油热采井钻完井是稠油开采技术中的一个重要问题,钻井所面临的主要问题是低压钻井问题。

而热采井中最大的问题是完井中的套管先期损坏问题,通过对套管损坏井的调查与分析,提出了稠油热采井套管损坏的主要原因,并对此进行了系统研究。

提出了热采井套管设计技术、套管选择技术和降低套管热应力技术、提高固井质量技术、油井开采防砂技术等稠油热采井延长寿命的系列完井技术,通过这些技术的应用保证了稠油藏的顺利开发。

关键词:稠油井热采、套管损坏、热采井完井、热采井套管选择、套管设计、防砂、降低热应力。

1.辽河油田稠油开发概述辽河油田是一个以稠油为主的油田,稠油的总产量占油田原油总产量的70%,稠油开采以热力采油为主,因此辽河油田的发展史可以说是一部稠油发展史。

到目前为止辽河油田共探明稠油油藏面积200.5km2,共探明地质储量10.2237×108t,动用探明油藏面积128.4 km2,动用地质储量7.6208×108t,共生产稠油1.0371×108t。

辽河油田探明稠油分布图如下图所示4272343515 15999深层900-1300m, 占41.79% 特深层1300-1700m, 占42.56%中深层600~900m15.65%248辽河油田稠油油藏具有以下特点:探明地质储量102237×104t中的油藏深度情况如下:动用地质储量7.6208×108t中的油藏深度情况如下:辽河油田探明地质储量中的油品性质如下所示:辽河油田于1978年发现了高升稠油藏,这是辽河油田发现稠油油油田的开始,以后随着勘探工作的不断进展又发现了大量的稠油油藏。

辽河油田于1982年首次在高升油田进行了稠油热采实验并取得了巨大的成功。

辽河油田从此走上了稠油热采的快车道,稠油开发得到了高速发展。

由于稠油油田进行热力开采的特殊性也为辽河油田的稠生产带来了全新的技术观念和技术进步。

稠油热采技术探析或者浅谈稠油热采技术

稠油热采技术探析或者浅谈稠油热采技术

稠油热采技术探析或者浅谈稠油热采技术摘要:依据稠油油田的特点,采取加热的方式,降低稠油的粘度,提高油流的温度,满足稠油油藏开发的条件。

热力采油技术措施是针对稠油油藏的最佳开采技术措施,经过油田生产的实践研究,采取注蒸汽开采,蒸汽吞吐采油等方式,提高稠油油藏的采收率。

关键词:稠油热采;工艺技术;探讨前言稠油热采工艺技术的应用,解决稠油油藏开发的技术难题,达到稠油开采的技术要求。

稠油热采可以将热的流体注入到地层中,提高稠油的温度,降低了稠油的粘度,达到开采的条件。

也可以在油层内燃烧,形成一个燃烧带,而提高油层的温度,实现对稠油的开发。

为了满足油田生产节能降耗的技术要求,因此,稠油开采过程中,优先采取注入热流体的方式,达到预期的开采效率。

1稠油热采概述稠油具有高粘度和高凝固点,给油田开发带来一定的难度。

采取化学降粘开采技术措施,应用化学药剂的作用,降低了油流的粘度,同时也会导致油流的化学变化,影响到原油的品质,因此,在优选稠油开采技术措施时,选择最佳热采技术措施,进行蒸汽驱、蒸汽吞吐等采油方式,并不断研究热力采油配套技术措施,节约稠油开发的成本,才能达到预期的开采效率。

2稠油的基本特点2.1稠油中胶质与沥青含量比较高,轻质馏分含量少稠油含有比例极高的胶质组分及沥青,轻质馏分比较少,稠油的黏度和密度在其中胶质组分及沥青质的成分增长的同时也会随之增加。

由此可见,黏度高并且密度高是稠油比较突出的特征,稠油的密度越大,其黏度越高。

2.2稠油对温度非常敏感稠油的黏度随着温度的增长反而降低。

在ASTM黏度-温度坐标图上做出的黏度-温度曲线,大部分稠油油田的降黏曲线均显现出斜直线状,这也验证了稠油对温度敏感性的一致性。

2.3稠油中含蜡量低。

2.4同一油藏原油性质差异较大。

3稠油热采技术的现状针对稠油对温度极其敏感这一特征,热力采油成为当前稠油开采的主要开采体系。

热力采油能够提升油层的温度,稠油的黏度和流动阻力得到了降低,增加稠油的流动性,实现降黏效果,从而使稠油的采收率变高。

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析稠油热采工艺技术是一种有效的稠油开采方法,通过注入高温热媒使稠油流动性增加,从而提高生产效率。

本文将对稠油热采工艺技术的应用及效果进行分析。

稠油热采工艺技术的应用主要包括蒸汽驱动、蒸汽辅助重力排水、蒸汽辅助提高采程、电加热和微波加热等。

蒸汽驱动是最常用的稠油热采工艺技术,通过注入高温高压蒸汽,提高稠油温度和压力,使其流动性增加,从而实现稠油的开采。

蒸汽辅助重力排水是在低温下稠油开采后,再注入高温蒸汽,通过降低稠油粘度和温度,增加重力排水效果。

蒸汽辅助提高采程则是在已经开采过程中注入蒸汽,提高稠油温度和压力,进一步推进采程。

电加热和微波加热则是通过电能和微波辐射使稠油加热,从而提高其流动性。

稠油热采工艺技术的应用可以显著提高稠油开采的效果。

稠油热采可以提高稠油的流动性,使其更易于开采。

通过注入高温高压蒸汽,可以降低稠油的粘度,使其更易于流动,提高开采效率。

稠油热采可以有效提高采收率。

通过注入蒸汽,可以推进稠油的采程,提高采收率。

稠油热采还可以减少地面的环境污染。

相比传统的大量使用溶剂、烃类等化学品的开采方式,热采过程中只需注入蒸汽,减少了化学品的使用,减少了环境污染。

然后,稠油热采工艺技术还存在一些问题。

热采需要大量的能源供应,特别是蒸汽驱动,耗能较大。

热采可能引发地质灾害,如地表沉陷、地裂缝等。

由于稠油开采后地下蒸汽作用,地下岩土可能会发生膨胀、溶蚀等变化,导致地表沉陷、地裂缝等地质灾害。

稠油热采还可能导致水资源的浪费与污染。

热采过程中,需大量蒸汽注入,蒸汽来自水的蒸发,可能导致水资源的浪费。

蒸汽中的有机物和重金属等有害物质也可能对水资源造成污染。

稠油热采工艺技术是一种有效的稠油开采方法,通过注入高温蒸汽提高稠油的流动性,提高采收率。

热采过程中存在能源消耗大、地质灾害及水资源浪费与污染等问题。

在使用稠油热采工艺技术时应注意节能减排,加强地质灾害防治,合理利用水资源,防止环境污染。

稠油热采井完井设计

稠油热采井完井设计

稠油热采井完井设计稠油热采井是指通过注入热质体(例如蒸汽)将稠油加热,减低其粘度,从而实现较好的采油效果的一种采油方法。

稠油热采井完井设计的目标是保证井筒的完整性以及实现稠油有效的采集。

以下将详细介绍稠油热采井完井设计的几个关键方面。

1.井别和井型选择:稠油热采应选择合适的井别和井型。

井别常用的有垂直井、水平井、斜井等。

水平井是稠油热采的首选,因为水平井能够增加井底面积,提高稠油的采集效率。

而斜井则可以增加地层接触面积,有利于热量的传导。

2.钻完后的固井设计:稠油地层常常具有较高的渗透率,因此对井筒的固井非常重要。

固井设计应考虑稠油地层渗透率和井周地层的力学特性。

常用的固井材料有水泥和陶粒;固井工艺包括井筒预处理、套管运送、水泥浆充填和水泥浆固化等步骤。

固井需要保证井筒的完整性和固定套管,以防止地层的水和气进入井筒。

3.井筒表面的保温设计:稠油热采需要用到蒸汽等热质体,为了保证热能有效地传递到地层,井筒表面需要进行保温设计。

常用的保温材料有矿绵、钢皮耐火胶板等,可以降低热量的散失,提高整个采油系统的效率。

4.井底设备的选择和布置:稠油热采井底设备的选择和布置也是完井设计的关键。

井底设备主要包括蒸汽喷射器、热井口等设备。

蒸汽喷射器的选择需要考虑到井深、地层温度、油藏压力等因素。

而热井口则是将热能引入到地层的关键装置,其布置需要考虑到热量的均匀传递以及对井筒的保护。

5.安全措施:稠油热采井完井设计还需要考虑到安全措施。

稠油热采过程中,温度高、压力大等因素可能导致安全事故的发生。

因此需要合理设计井筒的通风、排水系统,保证井口和井筒的距离,设置防喷溅装置等,以提高工作人员的安全性。

6.井口设施:最后,完井设计还需要考虑到井口设施的设置,包括井口阀室、产油管道、测量仪表等。

井口设施的合理设计有助于井口操作的方便和井口生产的高效。

总之,稠油热采井完井设计要综合考虑地层特征、采油工艺、设备选择等多个因素。

通过合理的设计,可以保证井筒的完整性、提高采油效率,实现稠油的有效采集。

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势

稠油热采技术现状及发展趋势稠油是一种质地黏稠的石油,是一种具有高含硫量和高粘度的重质原油。

由于其黏稠度高,稠油的开采和提炼相对要困难和昂贵。

稠油在全球范围内占据着相当大的比例,其资源储量丰富,因此对于石油行业来说,稠油的开采和利用具有重要的意义。

为了更有效地开采稠油资源,研发了许多热采技术。

本文将对稠油热采技术的现状及发展趋势进行探讨。

一、稠油热采技术现状1. 蒸汽吞吐法:蒸汽吞吐法是一种将高温高压蒸汽注入稠油藏层,使稠油产生稠油-水混合物,降低了稠油的黏度,从而促进油藏产液。

这种方法具有对水源要求低、操作灵活等优点,被广泛应用于加拿大、委内瑞拉等稠油资源丰富的地区。

2. 蒸汽辅助重力排放法:蒸汽辅助重力排放法是将高温高压蒸汽注入稠油层,通过蒸汽的热能作用使稠油产生流动,从而提高了油藏产液速率。

这种方法适用于深层、高黏稠度稠油层,可以挖掘更多的稠油资源。

3. 燃烧加热法:燃烧加热法利用地下燃烧或地面燃烧的方式,通过高温热能将稠油层加热,降低了稠油的粘度,从而促进了油藏的排放。

这种方法具有热效率高、可控性强等优点,是一种较为成熟的稠油热采技术。

1. 技术创新:随着石油工业的发展,热采技术也在不断创新。

未来,稠油热采技术将更加注重提高采收率、降低成本、减少环境影响等方面的技术创新,以提高稠油资源的开采效率和利用价值。

2. 能源替代:在稠油热采过程中,通常需要大量的燃料来产生热能,这不仅增加了生产成本,还会对环境产生负面影响。

未来稠油热采技术可能会向更加环保、节能的能源替代方向发展,例如采用太阳能、地热能等清洁能源进行热采。

3. 智能化应用:随着智能技术的不断发展,稠油热采技术也将向智能化方向发展。

未来,稠油热采可能会利用物联网、大数据、人工智能等技术,实现对油藏的实时监测、智能调控,从而提高生产效率和资源利用效率。

4. 油田整体化管理:随着油田规模的不断扩大,油田整体化管理成为未来热采技术发展的重要方向。

49、新疆钻研院]稠油热采井固井完井技术

49、新疆钻研院]稠油热采井固井完井技术

稠油热采井固井完井技术王兆会关志刚陈嘉陵杨树林(新疆石油管理局钻井工艺研究院)【摘要】稠油开发中热采是最有效的手段之一,但在稠油热采时,有大量油层套管因热效应而导致井口抬升和套管屈曲损坏、断裂等,影响了油田生产及安全运行。

本文简要介绍了稠油热采井套损机理及控制技术的研究进展情况,重点介绍了新疆油田目前使用的稠油热采井预应力固井地锚及配套完井技术。

同时,本文提出今后需要进一步深入研究的内容,主要包括温度对套管强度的影响、交变应力对套管损坏的影响及合理的预应力计算方法等。

【关键词】稠油油藏套管损坏损坏机理预应力引言中国重油资源分布广泛,约占总石油资源的25%~30%[1],而个别油田的资源量所占比例更高,稠油生产在其产量中成为最重要的组成部分。

国内外各油田在稠油开采中,普遍采用热蒸汽吞吐、蒸汽驱技术,即先向井内注入高温高压蒸汽,保温保压一定时间使稠油变稀后再进行开采[2、3、4、5]。

与常规的稀油开采方式相比,油田发现的最主要问题之一是套管的变形、错断和泄漏等。

即使是在已进行较深入研究并采取了一系列措施的今天,仍有部分区块有10%左右的套管发生严重损坏[6]。

而井口上移、井口冒汽更是不计其数。

新疆克拉玛依油田百重7井区,自2000年开发至2002年8月止,共投产757口,已发现油层套管损坏井158口,占总投产井数的20.8%。

损坏形式有丝扣泄漏、缩径、错断或破裂四种。

理论分析均认为[3-7],热应力是热采井套管损坏的主要原因。

但也有部分人认为,热应力可能不是套管损坏的唯一原因,可能有其他因素在影响套管的损坏。

因此,很有必要对热采井套管损坏机理及控制技术研究情况进行回顾,以便对其进行更深入的研究,为热采生产套管柱设计提供一定的指导。

1 国内外热采井套管损坏机理研究现状国外对热采井套管损坏机理已有较多研究[8-11],普遍认为套管损坏是因轴向热胀应力过高引起的。

同时,国外还利用全尺寸模拟试验装置,对套管的热密封性等情况进行了详细的模拟试验研究[9],研究结果证明:(1)API套管短园扣的密封极限为200℃,而API套管长圆扣的密封极限为300℃;(2)在高达300℃的热采井中,金属对金属密封的连接才能提供优质的密封;(3)厚壁、K55钢级加金属对金属密封连接的套管,对高温注蒸汽井是较好的选择。

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析稠油是一种高黏稠度的油藏资源,传统的采油工艺往往无法有效开采这种油藏资源。

稠油热采工艺技术应用是解决稠油开采难题的重要手段之一。

本文将对稠油热采工艺技术应用及效果进行深入分析,以期为相关领域的研究提供参考和借鉴。

一、稠油热采工艺技术概述稠油热采工艺技术是指通过外加热源将稠油地层中的油温度升高,使其黏度降低,从而增加原油流动性,方便开采的一种采油方法。

主要有蒸汽吞吐、蒸汽驱动、电加热、微波加热等技术。

在热采过程中,石油工程师采用不同的热传导原理,使地层中的原油达到一定温度,从而达到减小黏度的目的。

稠油热采工艺技术应用与传统采油工艺相比,具有以下优势:一是可以显著提高稠油地层中的原油黏度,增加原油的流动性,使得稠油可以被有效开采出来;二是可以减小原油粘度,降低油藏开采成本,提高产油效益;三是可以减少地层堵塞,延长油田生产寿命,提高油田采收率。

稠油热采工艺技术的应用,可以使原本难以开采的稠油资源变得容易开采,为我国稠油资源的开发利用提供了有力的技术支持。

二、稠油热采工艺技术应用效果分析1.增加原油产量稠油热采技术通过提高地层温度,减小原油黏度,增加原油流动性,可以有效提高原油产量。

根据实际生产数据统计,应用稠油热采工艺技术后,原油产量普遍有所增加,有的地区甚至可以实现原油产量翻番的效果。

2.降低油田开采成本稠油热采技术可以减小原油黏度,增加原油流动性,减少原油采出能耗成本。

与传统采油方式相比,稠油热采技术可以降低地面设备投资,并减少采油过程中的能源消耗,从而降低了油田的开采成本。

3.延长油田生产寿命稠油热采技术可以使地层中的原油流动性增加,降低了地层渗透阻力,减少了地层堵塞现象的发生,从而延长了油田的生产寿命。

实践证明,应用稠油热采技术后,油田的稳产周期明显延长。

三、稠油热采工艺技术应用存在的问题及对策1.能源消耗大稠油热采技术需要外加热源,而热源一般是通过燃煤、燃气等方式提供的,这样会带来较大的能源消耗。

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析

稠油热采工艺技术应用及效果分析稠油热采工艺技术是一种通过注入高温热能来降低油粘度并提高采收率的方法。

稠油主要指的是粘度大于100mPa·s的原油,由于其粘度高,常规的采油方法难以有效开发,因此热采工艺技术成为稠油开发的重要手段之一。

稠油热采工艺技术主要包括蒸汽吞吐法、蒸汽辅助重力排油法、燃烧辅助重力排油法、蒸汽驱油法等。

这些技术在实际应用中根据地质条件、油藏特征和经济效益等因素来选择合适的方法。

稠油热采工艺技术的应用可以使原油粘度下降,从而提高油藏储量和产能。

在油井注入高温蒸汽后,稠油的粘度会减小,使得原油能够更容易地被抽采出来。

热采还可以降低固体沉积物的含量,减少储油层的堵塞现象,提高采收率。

稠油热采工艺技术的应用还可以改善油井注采关系,提高采油效率。

通过在注水井中注入高温蒸汽,可以有效地提高注采比,使油井的采油效率提高。

热采还可以改善油藏物性,提高油井的注采关系。

稠油热采工艺技术的应用还可以减少环境污染。

传统的稠油开采方法往往会造成环境的破坏和资源的浪费,而热采技术则可以减少废弃液的排放量和环境污染。

稠油热采工艺技术也存在一些问题和挑战。

热采过程中需要大量的热能供应,这对能源的需求量较大。

热采过程中还可能出现油层泥浆泥化、油藏疏导等问题,需要通过科学管理和技术手段来解决。

热采过程中还可能释放出大量的温室气体和污染物,对环境造成一定的影响。

稠油热采工艺技术在稠油开发中具有重要的应用价值。

通过注入高温蒸汽,可以降低稠油粘度,提高采收率;稠油热采还可以改善油井注采关系和减少环境污染。

热采技术也面临着一些问题和挑战,需要进一步研究和改进。

稠油热采的工艺方法

稠油热采的工艺方法

稠油热采的工艺方法
稠油热采是一种用于开采高粘度原油的工艺方法,通常应用于
油田中的稠油层。

稠油具有高粘度和低流动性,因此传统的采油方
法往往无法有效开采。

稠油热采工艺方法通过加热原油以降低粘度,从而提高原油的流动性,使其能够被有效地开采和生产。

稠油热采的工艺方法主要包括蒸汽吞吐、蒸汽驱动和热采等技术。

其中,蒸汽吞吐是通过注入高温高压蒸汽到油藏中,使原油温
度升高,粘度降低,从而提高原油的流动性,使其能够被开采。


汽驱动是通过注入蒸汽到油藏中,使原油温度升高,产生压力,从
而推动原油向井口流动,实现采油。

热采则是通过在油藏中直接加
热原油,使其粘度降低,从而提高原油的流动性,实现采油。

稠油热采的工艺方法在实际应用中具有一定的优势,可以有效
提高稠油开采率和采油效率,减少原油粘度,降低采油难度,提高
采油速度,延长油田寿命,增加原油产量,从而为油田开发和生产
带来了显著的经济效益。

然而,稠油热采的工艺方法也存在一些挑战和问题,如能源消
耗大、环境污染、设备投资高等。

因此,在实际应用中需要综合考
虑各种因素,选择合适的工艺方法,优化生产工艺,提高采油效率,降低成本,实现可持续发展。

总的来说,稠油热采的工艺方法是一种重要的原油开采技术,
对于开发和生产稠油资源具有重要意义。

随着技术的不断进步和完善,相信稠油热采工艺方法将会在未来得到更广泛的应用和推广。

稠油热采配套技术应用及效果分析

稠油热采配套技术应用及效果分析

稠油热采配套技术应用及效果分析稠油是指粘度较大的原油,其粘度通常大于1000毫帕-秒(mPa·s)。

由于稠油的特殊性质,使得其开采难度较大,传统的采油方法效果较差。

为了更有效地开采稠油资源,研究人员开发了一系列稠油热采配套技术,以提高稠油开采效率。

本文将从稠油热采技术的原理、应用及效果进行分析。

一、稠油热采技术的原理稠油热采技术是利用热力作用改善稠油流动性的一种方法,其中包括蒸汽吞吐、蒸汽驱动、电加热、火热联合等多种方法。

这些热采技术的原理在于,通过向地下岩石注入热能,提高原油的温度,使其粘度降低,从而增加原油的流动性,便于开采。

1. 蒸汽吞吐蒸汽吞吐是指在稠油藏中注入高温高压蒸汽,利用蒸汽的热量来降低原油的粘度,从而提高原油的流动性。

该方法适用于较浅的稠油层,能够有效提高原油产量。

2. 蒸汽驱动3. 电加热4. 火热联合火热联合是指将蒸汽吞吐和火热联合应用于稠油开采中,通过蒸汽和火热的联合作用来提高稠油的开采效率。

以上这些稠油热采技术的原理,都是通过向稠油层注入热能,改善原油流动性,使得稠油更容易被开采。

稠油热采技术已在国内外得到广泛应用,尤其在加拿大、委内瑞拉等稠油资源丰富的地区,热采技术已成为主流的稠油开采方法。

1. 加拿大油砂地区加拿大拥有世界上最丰富的油砂资源,而油砂的粘度极高,传统的采油方法很难取得理想效果。

加拿大油砂地区广泛应用蒸汽吞吐和电加热等热采技术,有效提高了油砂资源的开采率。

2. 委内瑞拉稠油区委内瑞拉是世界上稠油资源最为丰富的国家之一,其稠油资源储量居世界前列。

委内瑞拉稠油区采用蒸汽驱动技术,通过注入蒸汽来提高原油产量和采收率,取得了显著的效果。

3. 国内稠油田国内稠油田主要分布在东北、西部地区,采用了多种稠油热采技术,如蒸汽吞吐、电加热等,有效改善了稠油资源的开采效率。

稠油热采技术在世界范围内应用广泛,有效提高了稠油资源的开采效率,为稠油资源的开发利用提供了有效的技术手段。

稠油热采井固井技术

稠油热采井固井技术

ST2-3-149井\ST1-2-511井ST2-3-149井\ST2-3-149井\曲9-21井\NHT62-29井\ST2-3-149井\T125-1井\靖安油田柳138-3井\柳128-27井\柳138-3井\官30-62井稠油热采井固井技术一、技术推广应用现状稠油油藏大多采用热力降粘的方式开采,主要是采用蒸汽热采的方法。

注蒸汽热采一般为蒸汽吞吐,后期转为蒸汽驱,因此热采稠油井的固井必须适合和满足蒸汽吞吐和蒸汽驱开采方式。

蒸汽吞吐开采中的所采用的蒸汽温度一般高达300~350℃,甚至达到蒸汽临界温度375℃。

在此开发条件下,目前常用的水泥浆体系会出现强度衰退现象,即水泥石在蒸汽吞吐一到两个周期后就强度消失,造成了稠油热采井在开发过程中出现以下严重问题:(1)稠油热采井口的跑、冒、滴、漏及注汽过程中漏气问题,严重者出现自表套循环孔喷出浆状物的现象;(2)套管损坏导致严重出砂问题。

二、推广的目的意义胜利油田存在大量的稠油油藏,例如,滨南采油厂单家寺油田属于典型的稠油区块,年产油55×104t。

目前,热力采油是稠油开采的主要方式,其中以蒸汽驱及蒸汽吞吐手段为主,蒸汽温度高达300~350℃。

但是,目前稠油热采井采用的固井水泥体系无法适应如此高的热采温度,在高于110℃时,水泥体系水化产物“C-S-H”凝胶将产生晶形转变,从而导致水泥抗压强度下降和渗透率增大,出现“强度衰退”现象,在进行高温蒸汽吞吐增产措施后,环空水泥石基本上失去了原有强度,甚至发生破裂或脱落现象;加之,稠油油藏一般埋藏深度较浅,以粗碎屑岩为主,具有砂砾岩颗粒粗、分选差、泥质含量低、胶结疏松、高孔隙度、高渗透的特点,使稠油热采井部分井段易于漏失,这些都将严重影响整个油井的正常开采。

因此,向胜利油田稠油区块大力推广稠油热采井固井技术,提高稠油热采井固井质量,延长油井寿命,这对稳定胜利油田的油气产量具有极其重要的意义。

三、2011年推广计划及规模2011年稠油热采井固井技术计划在胜利现河、河口、滨南等稠油油藏井中进行推广,推广目标为10~20口井。

稠油热采工艺技术及发展方向

稠油热采工艺技术及发展方向

稠油热采工艺技术及发展方向稠油就是粘度高、相对密度大的原油,国内叫“稠油”,国外叫“重油”。

由于其流动性能差、甚至在油层条件下不能流动,因而采用常规开采方法很难经济有效地开发。

从20世纪初开始,热力采油已逐渐成为开采这类原油的有效方法。

稠油分布范围广,由于蕴藏有巨大的稠油资源量而被世界各产油国所重视,随着热力开采技术的发展,开采规模在逐步扩大,产量在不断增长,稠油热采在石油工业中已占有较重要的位置。

稠油中有胶质与沥青含量较高,轻质馏分很少。

因而,随着胶质与沥青含量增高,稠油的密度与粘度也增加。

但稠油的粘度对温度极其敏感,随温度增加,粘度急剧下降。

稠油油藏一般采用热力开采方法,对油层加热的方式可分为两类。

一是把热流体注入油层,如注热水、蒸汽吞吐、蒸汽驱等;另一类是在油层内燃烧产生热量,称就地(层内)燃烧或火烧油层(火驱法)。

一、各项热采工艺简介1. 热水驱注热水是注热流体中最简便的方法,操作容易,与常现注水开采基本相同。

注热水主要作用是增加油层驱动能量,降低原油粘度,减小流动阻力,改善流度比,提高波及系数,提高驱油效率。

此外,原油热膨胀则有助于提高采收率,从而优于常规注水开发,与注蒸汽相比,其单位质量携载热焓低,井筒和油层的热损失大,开采效果较差。

2. 蒸汽吞吐蒸汽吞吐是指向一口生产井短期内连续注入一定数量的蒸汽,然后关共(焖井)数天,使热量得以扩散,之后再开井生产。

当油井日产油量降低到一定水平后,进行下一轮的注汽吞吐。

一般情况下蒸汽吞吐后转为蒸汽驱开采。

3. 蒸汽驱蒸汽驱是注热流体中广泛使用的一种方法。

蒸汽驱是指按优选的开发系统——开发层系、井网(井口)、射孔层段等,由注入井连续向油层注入高温湿蒸汽,加热并驱替原油由生产井采出的开采方式。

4. 火烧油层火烧油层是将空气或氧气由注入井注入油层,先将注入井油层点燃,使重烃不断燃烧产生热量,并驱替原油至采油井中被采出。

按其开采机理有三种不同的方法:干式向前燃烧法、湿式向前燃烧法、返向燃烧法。

稠油油藏热采开发技术

稠油油藏热采开发技术

311.1mm二开钻头
215.9mm分支井眼
215.9mm三开钻头
241.3mm二开钻头
悬挂器
177.8mm调长套管 +177.8mm割缝筛管 (钢级TP100H、壁厚9.19mm)
(二)高温注汽工艺技术
辽河油田稠油油藏热采开发方式主要有蒸汽吞吐、蒸汽驱和SAGD, 配有 50t 、 23t 、 11t 、 9.2t 固定式和活动式四种蒸汽发生器共 322 台, 年注汽能力近3000万吨。
丛式井井眼轨迹示意图
(一)稠油钻完井工艺技术
3.水平井(分支井)热采钻完井工艺技术
热采水平井二开井身结构示意图
水平井(分支井)热采钻完井采用二、三开钻井,水平段筛管完 井;分支井主井眼筛管、分支井眼裸眼完井,其它工艺与直井和定向 井相同。
热采水平井三开井身结构示意图
273.05mm表层套管 346.00mm一开钻头
普通稠油热采直井井身结构示意图 特、超稠油热采直井井身结构示意图
273.05mm表层套管 346.00mm一开钻头 G级加砂水泥返至地面
273.05mm表层套管 346.00mm一开钻头
G级加砂水泥返至地面
阻流环
热应力 补偿器
177.8mm 油 层 套 管 : 钢 级 TP100H、壁厚9.19mm。 177.8mm×193.7mm变扣接头 193.7mm外加厚套管:钢级TP120TH、 壁厚 17.14mm 。下入位置:油顶以上 20m至油底以下10m。 193.7mm×177.8mm变扣接头 阻流环 177.8mm油层套管 247.6mm二开钻头
井液体系。
1. 直井热采钻完井工艺技术 2. 定向井(丛式井)热采钻完井工艺技术
3. 水平井(分支井)热采钻完井工艺技术
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

114.3 mm x 88.9 mm ID - Insulated tubing @ 200 m.MD
114.3 mm x 17.26 kg/m
88.9 mm GDA-SD @ 605 m.MD Production Liner 219.1 mm x 47.62 kg/m @ 989 m.MD
177.8 mm x 38.68 kg/m @ 380 m.MD
19
蒸汽流动分布:常规方法
© 2009 Weatherford. All rights reserved.
20
蒸汽流动分布:改进的方法
© 2009 Weatherford. All rights reserved.
21
蒸汽流动分布:改进的方法
Injection string 88.9 mm x 13.84 kg/m
© 2009 Weatherford. All rights reserved.
防砂筛管: 解决方案
• 蒸汽和H2S的存在 侵蚀/腐蚀
– 更低的流速和外层绕钢丝结构最小化蒸汽和流体的腐 蚀
– Ultra-Grip 筛管可以根据最优化的定制来选择不同的钢 材
© 2009 Weatherford. All rights reserved.
Steam distribution devices @ 840, 1,010 & 1,130 m MD
© 2009 Weatherford. All rights reserved.
27
蒸汽流动分布:改进的方法
Production string 88.9 mm x 13.84 kg/m
Injection string 60.3 mm x 6.99 kg/m @ 2,300 m MD Reciprocating pump Production Liner 139.7 mm x 25.3 kg/m @ 2,386 m MD
© 2009 Weatherford. All rights reserved.
22
蒸汽流动分布:改进的方法
© 2009 Weatherford. All rights reserved.
23
蒸汽流动分布:改进的方法
© 2009 Weatherford. All rights reserved.
© 2009 Weatherford. All rights reserved.
Ultra-Grip 筛管

Ultra-Grip 筛管使用高致密金属丝缠绕在基管,具有高精度 的割缝公差与合理结构和特殊的金属丝剖面特点,可以提 供最优的阻挡地层固体颗粒进入井筒能力的同时最大化的 提高油气产量。 Ultra-Grip 筛管是一种很容易被回收的筛
© 2009 Weatherford. All rights reserved.
防砂筛管: 解决方案
• 地层砂分布不均质 堵塞
– 金属丝剖面形状对防止地层固体颗粒堵塞缝隙非常理想
– 平滑的金属丝表面防止了细粉颗粒和粘土的堵塞 – 较大的流动面积改善了流动形态 • 地层砂分布不均质 细粉砂 / 砂粒产出
Injection string 88.9 mm x 13.84 kg/m @ 1,500 m MD Production Liner 177.8 mm x 34.23 kg/m @ 1,550 m MD
Steam distribution device @ 1,250 m MD Production Casing 219 mm x 47.62 kg/m @ 1,140 m MD BH pressure sensing device string
– 加拿大和全球其它地区(Weatherford Laboratories – HyCal) 最优秀的技术团队提供筛管缝隙选择的支持。
© 2009 Weatherford. All rights reserved.
防砂筛管: 解决方案
• 井眼轨迹安全顺利下入 – 对StatoilHydro 进行的资格认证测试证实了威德福优质 筛管的强度(拉伸强度, push-off,焊接强度,破裂强 度,挤压,抗扭强度和弯曲效应等) – 提高了钻井效率,筛管安装不需要很高的钻井液要求 。 – 在GOM油田,当筛管被从大位移水平井中回收时,没 有破坏其整体性。
With FloReg ICD
© 2009 Weatherford. All rights reserved.
17
蒸汽流动分布和ICD安装
© 2009 Weatherford. All rights reserved.
18
蒸汽流动分布:常规方法
© 2009 Weatherford. All rights reserved.
24
蒸汽流动分布:改进的方法
© 2009 Weatherford. All rights reserved.
25
蒸汽流动分布:改进的方法
© 2009 Weatherford. All rights reserved.
26
蒸汽流动分布:改进的方法
Surface Casing 406.4 mm x 96.73 kg/m @ 85 m
5
筛管& 流入控制装置/阻挡器
© 2009 Weatherford. All rights reserved.
6
筛管:面临的挑战
• 提高温度到 350°C 并进行周期性循环测试 热稳定性 • 地层砂分布不均质 堵塞 • 地层砂分布不均质 细粉砂 / 砂粒产出 • 井眼轨迹 安全顺利下入 • 增加产量 流动面积和汇流 • 提高采收率 压力下降 • 蒸汽和H2S的存在 侵蚀/腐蚀
300
6000
280
5000
270
4000
260
3000
250
2000 0 500 1000 Measured depth, m Injection tubing pressure Injection tubing temperature 1500 2000
240 2500
© 2009 Weatherford. All rights reserved.
Steam distribution devices @ 1,160 & 1,760 m MD
Production Casing 219 mm x 47.62 kg/m @ 1,140 m MD BH pressure sensing device string
10000
320
9000
310
8000
Risk of early water/gas production.
Res. To Well Influx, STB/D/FT
FloReg™ ICD:
Even Influx No Coning
FloReg™ ICD
Improve well drainage from toe to heel.
Without FloReg ICD
管,甚至包括一些非常困难的打捞作业中。
© 2009 Weatherford. All rights reserved.
Ultra-Grip 筛管

特点与优势
• Ultra-Grip 筛管通过冷缩配合生产处理过程使筛管的拉伸, 扭矩与弯曲强度大幅度的提高超过传统的slip-on screens.
• 外层钢丝通过热处理焊接到环绕到割缝管外的一系列型棒上. • 坚固的外层钢丝提供更好的抗腐蚀性,使得在大部分恶劣的 环境下提高工具的物理强度和生命力. – 新颖的梯形绕钢丝机构具有无堵塞,自我清洗与自由流 通特点 • 梯型棒和梯形绕钢丝提供了更高级的焊接对焊接强度.
© 2009 Weatherford. All rights reserved.
防砂筛管: 解决方案
• 增加油气产量 流动面积 – 通常流入面积能到达6 ~ 15% 每英尺筛管流动面积 – 割缝筛管的流入面积是1.5 ~3% – 减小合流/ 机械表皮
• 提高采收率 压力下降
– 较大的流动面积可以降低尾管两侧的压力降,即使存 在一定的缝隙堵塞。 – 尾管压降的减小提高了SAGD的作业性能,降低了蒸汽 刺穿的风险,提高了过冷控制和水平段的生产流入剖 面均衡性。
Temperature, degC
7000
290
Pressure, kPa
28
蒸汽流动分布:改进的方法
Production string 88.9 mm x 13.84 kg/m
Injection string 60.3 mm x 6.99 kg/m @ 2,300 m MD Reciprocating pump Production Liner 139.7 mm x 25.3 kg/m @ 2,386 m MD
1
尾管挂封隔器/阻挡器
© 2009 Weatherford. All rights reserved.
2
MFP尾管顶部封隔器
• 在井温改变时,尾管可移动 • 有效控制砂堵成本 • 高温设计及测试(7”MPF在9-5/8” 套管里拖 拉测试无刮痕) • 在介于150°C 和 280°C之间的热循环做 预测试 ,含尾管运动,记录受力。 • 目前已作业超过30口井(CPC, SHC)
© 2009 Weatherford. All rights reserved.
Ultra-Grip 筛管

特点:
© 2009 Weatherford. All rights reserved.
防砂筛管: 解决方案
• 提高温度到 350°C 并进行温度周期性循环测试 热稳定 性 – 直接缠绕的生产过程将热应力分布在整根筛管上,提 高了温度周期性变化时的稳定性。 – Weatherford 在类似的Dura-Grip™ 筛管上进行了温度 周期性变化测试达到700°F (~371°C),没有监测到 缝隙和基管的变形。
相关文档
最新文档