新高考数学大一轮复习第十二章概率随机变量及其分布12-4离散型随机变量及其概率分布教师用书理苏教

合集下载

【高考精品复习】第十二篇 概率、随机变量及其分布 第6讲 离散型随机变量的均值与方差

【高考精品复习】第十二篇 概率、随机变量及其分布  第6讲 离散型随机变量的均值与方差

第6讲 离散型随机变量的均值与方差【高考会这样考】1.考查有限个值的离散型随机变量均值、方差的概念. 2.利用离散型随机变量的均值、方差解决一些实际问题. 【复习指导】均值与方差是离散型随机变量的两个重要数字特征,是高考在考查概率时考查的重点,复习时,要掌握期望与方差的计算公式,并能运用其性质解题.基础梳理离散型随机变量的均值与方差 若离散型随机变量X 的分布列为X x 1 x 2 (x)i … x n Pp 1p 2…p i…p n两个防范在记忆D (aX +b )=a 2D (X )时要注意:D (aX +b )≠aD (X )+b ,D (aX +b )≠aD (X ). 三种分布(1)若X 服从两点分布,则E (X )=p ,D (X )=p (1-p ); (2)X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p );(1)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或 ,它反映了离散型随机变量取值的 .(2)方差称D (X )=∑i =1n[x i -E (X )]2p i 为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均,其算术平方根D (X )为随机变量X 的标准差.数学期望 平均水平 偏离程度(3)若X 服从超几何分布, 则E (X )=n MN . 六条性质(1)E (C )=C (C 为常数)(2)E (aX +b )=aE (X )+b (a 、b 为常数) (3)E (X 1+X 2)=EX 1+EX 2(4)如果X 1,X 2相互独立,则E (X 1·X 2)=E (X 1)E (X 2) (5)D (X )=E (X 2)-(E (X ))2 (6)D (aX +b )=a 2·D (X )双基自测1.(2010·山东)样本中共有五个个体,其值分别为a,0,1,2,3.若该样本的平均值为1,则样本方差为( ). A.65 B.65 C. 2 D .2解析 由题意知a +0+1+2+3=5×1,解得,a =-1. s 2=(-1-1)2+(0-1)2+(1-1)2+(2-1)2+(3-1)25=2. 答案 D2.已知X 的分布列为X -1 0 1 P121316设Y =2X +3,则E (Y )的值为( ).A.73 B .4 C .-1 D .1 解析 E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73. 答案 A3.(2010·湖北)某射手射击所得环数ξ的分布列如下:ξ 7 8 9 10 Px0.10.3y已知ξ的期望E (ξ)=8.9,则y 的值为________. A .0.4 B .0.6 C .0.7 D .0.9 解析 x +0.1+0.3+y =1,即x +y =0.6.①又7x +0.8+2.7+10y =8.9,化简得7x +10y =5.4.② 由①②联立解得x =0.2,y =0.4. 答案 A4.设随机变量X ~B (n ,p ),且E (X )=1.6,D (X )=1.28,则( ). A .n =8,p =0.2 B .n =4,p =0.4 C .n =5,p =0.32 D .n =7,p =0.45 解析 ∵X ~B (n ,p ),∴E (X )=np =1.6, D (X )=np (1-p )=1.28,∴⎩⎨⎧n =8,p =0.2.答案 A5.(2010·上海)随机变量ξ的概率分布列由下表给出:ξ 7 8 9 10 P0.30.350.20.15该随机变量ξ的均值是________.解析 由分布列可知E (ξ)=7×0.3+8×0.35+9×0.2+10×0.15=8.2. 答案 8.2考向一 离散型随机变量的均值和方差【例1】►A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是A 1、A 2、A 3,B 队队员是B 1、B 2、B 3,按以往多次比赛的统计,对阵队员之间的胜负概率如下:对阵队员A 队队员胜的概A 队队员负的概率率A1和B12313A2和B22535A3和B32535现按表中对阵方式出场胜队得1分,负队得0分,设A队,B队最后所得总分分别为X,Y(1)求X,Y的分布列;(2)求E(X),E(Y).[审题视点] 首先理解X,Y的取值对应的事件的意义,再求X,Y取每个值的概率,列成分布列的形式,最后根据期望的定义求期望.解(1)X,Y的可能取值分别为3,2,1,0.P(X=3)=23×25×25=875,P(X=2)=23×25×35+13×25×25+23×35×25=2875,P(X=1)=23×35×35+13×25×35+13×35×25=25,P(X=0)=13×35×35=325;根据题意X+Y=3,所以P(Y=0)=P(X=3)=875,P(Y=1)=P(X=2)=2875,P(Y=2)=P(X=1)=25,P(Y=3)=P(X=0)=325.X的分布列为X 012 3P 325252875875Y的分布列为Y 3210P325 25 2878 875(2)E (X )=3×875+2×2875+1×25+0×325=2215; 因为X +Y =3,所以E (Y )=3-E (X )=2315.(1)求离散型随机变量的期望关键是写出离散型随机变量的分布列,然后利用公式计算.(2)由X 的期望、方差求aX +b 的期望、方差是常考题之一,常根据期望和方差的性质求解.【训练1】 (2011·四川)本着健康、低碳的生活理念,租自行车骑游的人越来越多,某自行车租车点的收费标准是每车每次租车时间不超过两小时免费,超过两小时的部分每小时收费2元(不足1小时的部分按1小时计算).有甲、乙两人相互独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率分别为14,12;两小时以上且不超过三小时还车的概率分别为12,14;两人租车时间都不会超过四小时.(1)求甲、乙两人所付的租车费用相同的概率;(2)设甲、乙两人所付的租车费用之和为随机变量ξ,求ξ的分布列及数学期望E (ξ).解 (1)由题意得,甲、乙在三小时以上且不超过四小时还车的概率分别为14,14. 记甲、乙两人所付的租车费用相同为事件A ,则 P (A )=14×12+12×14+14×14=516.所以甲、乙两人所付的租车费用相同的概率为516. (2)ξ可能取的值有0,2,4,6,8. P (ξ=0)=14×12=18; P (ξ=2)=14×14+12×12=516; P (ξ=4)=12×14+14×12+14×14=516;P(ξ=6)=12×14+14×14=316;P(ξ=8)=14×14=116.甲、乙两人所付的租车费用之和ξ的分布列为ξ02468P 18516516316116所以E(ξ)=0×18+2×516+4×516+6×316+8×116=72.考向二均值与方差性质的应用【例2】►设随机变量X具有分布P(X=k)=15,k=1,2,3,4,5,求E(X+2)2,D(2X-1),D(X-1).[审题视点] 利用期望与方差的性质求解.解∵E(X)=1×15+2×15+3×15+4×15+5×15=155=3.E(X2)=1×15+22×15+32×15+42×15+52×15=11.D(X)=(1-3)2×15+(2-3)2×15+(3-3)2×15+(4-3)2×15+(5-3)2×15=15(4+1+0+1+4)=2.∴E(X+2)2=E(X2+4X+4)=E(X2)+4E(X)+4=11+12+4=27.D(2X-1)=4D(X)=8,D(X-1)=D(X)= 2.若X是随机变量,则η=f(X)一般仍是随机变量,在求η的期望和方差时,熟练应用期望和方差的性质,可以避免再求η的分布列带来的繁琐运算.【训练2】袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n个(n=1,2,3,4).现从袋中任取一球,X表示所取球的标号.(1)求X的分布列、期望和方差;(2)若η=aX+b,E(η)=1,D(η)=11,试求a,b的值.解(1)X的分布列为X 0123 4P12 120 110 320 15∴E (X )=0×12+1×120+2×110+3×320+4×15=1.5.D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (η)=a 2D (X ),得a 2×2.75=11,即a =±2. 又E (η)=aE (X )+b ,所以当a =2时,由1=2×1.5+b ,得b =-2. 当a =-2时,由1=-2×1.5+b ,得b =4. ∴⎩⎨⎧ a =2,b =-2,或⎩⎨⎧a =-2,b =4,即为所求. 考向三 均值与方差的实际应用【例3】►(2011·福建)某产品按行业生产标准分成8个等级,等级系数X 依次为1,2,…,8,其中X ≥5为标准A ,X ≥3为标准B .已知甲厂执行标准A 生产该产品,产品的零售价为6元/件;乙厂执行标准B 生产该产品,产品的零售价为4元/件,假定甲、乙两厂的产品都符合相应的执行标准. (1)已知甲厂产品的等级系数X 1的概率分布列如下所示:X 1 5 6 7 8 P0.4ab0.1且X 1的数学期望E (X 1)=6,求a ,b 的值;(2)为分析乙厂产品的等级系数X 2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下:3 5 3 3 8 5 5 6 34 6 3 4 75 3 4 8 5 3 8 3 4 3 4 4 7 56 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X 2的数学期望.(3)在(1)、(2)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由.注:(1)产品的“性价比”=产品的等级系数的数学期望产品的零售价;(2)“性价比”大的产品更具可购买性.[审题视点] (1)利用分布列的性质P 1+P 2+P 3+P 4=1及E (X 1)=6求a ,b 值. (2)先求X 2的分布列,再求E (X 2),(3)利用提示信息判断.解 (1)因为E (X 1)=6,所以5×0.4+6a +7b +8×0.1=6,即6a +7b =3.2. 又由X 1的概率分布列得0.4+a +b +0.1=1,即a +b =0.5. 由⎩⎨⎧ 6a +7b =3.2,a +b =0.5,解得⎩⎨⎧a =0.3,b =0.2. (2)由已知得,样本的频率分布表如下:X 2 3 4 5 6 7 8 f0.30.20.20.10.10.1用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X 2的概率分布列如下:X 2 3 4 5 6 7 8 P0.30.20.20.10.10.1所以E (X 2)=3×0.3+4×0.2+5×0.2+6×0.1+7×0.1+8×0.1=4.8. 即乙厂产品的等级系数的数学期望等于4.8. (3)乙厂的产品更具可购买性.理由如下:因为甲厂产品的等级系数的数学期望等于6,价格为6元/件,所以其性价比为66=1.因为乙厂产品的等级系数的数学期望等于4.8,价格为4元/件,所以其性价比为4.84=1.2.据此,乙厂的产品更具可购买性.解决此类题目的关键是将实际问题转化为数学问题,正确理解随机变量取每一个值所表示的具体事件,求得该事件发生的概率,本题第(1)问中充分利用了分布列的性质p 1+p 2+...+p n + (1)【训练3】 某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为12,14,14;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用X表示投资收益(收益=回收资金-投资资金),求X的概率分布及E(X);(2)若把10万元资金投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.解(1)依题意,X的可能取值为1,0,-1,X的分布列为X 10-1P 121414E(X)=12-14=14.(2)设Y表示10万元投资乙项目的收益,则Y的分布列为:Y 2-2P αβE(Y)=2α-2β=4α-2,依题意要求4α-2≥1 4,∴916≤α≤1.规范解答23——离散型随机变量的均值与方差的计算【问题研究】期望和方差是离散型随机变量的两个重要数学特征,是高考概率考查的重要知识点,常与排列组合、导数等知识相结合,对考查生的数学应用能力、数学表达能力、创新能力都进行了考查.【解决方案】(1)掌握好期望与方差的性质.(2)记住或理解一些特殊分布的均值与方差,如两点分布、二项分布等.(3)注意运算技巧,随机变量的均值与方差计算比较复杂,在运算时要注意一些运算技巧,如把问题归结为二项分布的期望与方差,运用期望与方差的性质简化运算,运算时注意一些项的合并.【示例】►(本小题满分12分)甲、乙两架轰炸机对同一地面目标进行轰炸,甲机投弹一次命中目标的概率为23,乙机投弹一次命中目标的概率为12,两机投弹互不影响,每机各投弹两次,两次投弹之间互不影响.(1)若至少两次投弹命中才能摧毁这个地面目标,求目标被摧毁的概率; (2)记目标被命中的次数为随机变量ξ,求ξ的分布列和数学期望.对于第(1)问,甲、乙两机的投弹都是独立重复试验概型,根据至少两次命中分类求解,或使用间接法求解,注意运用相互独立事件同时发生的概率乘法公式;对于第(2)问,根据题意,随机变量ξ=0,1,2,3,4,根据独立重复试验概型及事件之间的相互关系,计算其概率即可求出分布列,根据数学期望的计算公式求解数学期望.[解答示范] 设A k 表示甲机命中目标k 次,k =0,1,2,B l 表示乙机命中目标l 次,l =0,1,2,则A k ,B l 独立.由独立重复试验中事件发生的概率公式有P (A k )=C k 2⎝ ⎛⎭⎪⎫23k ⎝ ⎛⎭⎪⎫132-k ,P (B l )=C l 2⎝ ⎛⎭⎪⎫12l ⎝ ⎛⎭⎪⎫122-l .据此算得P (A 0)=19,P (A 1)=49,P (A 2)=49. P (B 0)=14,P (B 1)=12,P (B 2)=14.(2分) (1)所求概率为1-P (A 0B 0+A 0B 1+A 1B 0)=1-⎝ ⎛⎭⎪⎫19×14+19×12+49×14=1-736=2936.(4分) (2)ξ的所有可能值为0,1,2,3,4,且P (ξ=0)=P (A 0B 0)=P (A 0)·P (B 0)=19×14=136, P (ξ=1)=P (A 0B 1)+P (A 1B 0)=19×12+49×14=16,P (ξ=2)=P (A 0B 2)+P (A 1B 1)+P (A 2B 0)=19×14+49×12+49×14=1336,(8分) P (ξ=3)=P (A 1B 2)+P (A 2B 1)=49×14+49×12=13, P (ξ=4)=P (A 2B 2)=49×14=19.(10分)综上知,ξ的分布列如下:ξ 0 1 2 3 4 P1361613361319从而ξ的期望为E (ξ)=0×136+1×16+2×1336+3×13+4×19=73.(12分)概率问题的核心就是互斥事件、相互独立事件的概率计算、随机变量的分布以及均值等问题,并且都是以概率计算为前提的,在复习时要切实把握好概率计算方法.若本题第(2)问是单纯求随机变量ξ的数学期望,则可以直接根据二项分布的数学期望公式和数学期望的性质解答:令ξ1,ξ2分别表示甲、乙两机命中的次数,则ξ1~B ⎝ ⎛⎭⎪⎫2,23,ξ2~B ⎝ ⎛⎭⎪⎫2,12,故有E (ξ1)=2×23=43,E (ξ2)=2×12=1,而知E (ξ)=E (ξ1)+E (ξ2)=73.【试一试】 (2011·北京)(本小题共13分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数Y 的分布列和数学期望.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解 (1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为:x =8+8+9+104=354; 方差为:s 2=14×[(8-354)2+(8-354)2+(9-354)2+(10-354)2]=1116.(2)当X =9时,由茎叶图可知,甲组同学的植树棵数是:9,9,11,11;乙组同学的植树棵数是9,8,9,10.分别从甲、乙两组中随机选取一名同学,共有4×4=16种可能的结果,这两名同学植树总棵数Y 的可能取值为17,18,19,20,21.事件“Y =17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”,所以该事件有2种可能的结果,因此P (Y =17)=216=18.同理可得P (Y =18)=14;P (Y =19)=14;P (Y =20)=14;P (Y =21)=18.所以随机变量Y 的分布列为:Y 17 18 19 20 21 P1814141418EY =17×P (Y =17)+18×P (Y =18)+19×P (Y =19)+20×P (Y =20)+21×P (Y =21)=17×18+18×14+19×14+20×14+21×18=19.[尝试解答] 由函数f (x )是奇函数且f (x )在[0,2]上是增函数可以推知,f (x )在[-2,2]上递增,又f (x -4)=-f (x )⇒f (x -8)=-f (x -4)=f (x ),故函数f (x )以8为周期,f (-25)=f (-1),f (11)=f (3)=-f (3-4)=f (1),f (80)=f (0),故f (-25)<f (80)<f (11).故选D. 答案 D。

高中数学高考73第十二章 概率、随机变量及其分布 12 1 事件与概率、古典概型

高中数学高考73第十二章 概率、随机变量及其分布 12 1 事件与概率、古典概型
以频率估计概率得 P(A)=1105000=0.15,P(B)=1102000=0.12.
由于投保金额为2 800元,赔付金额大于投保金额对应的情形是赔付金额为 3 000元和4 000元, 所以其概率为P(A)+P(B)=0.15+0.12=0.27.
②在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆 中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000 元的概率. 解 设C表示事件“投保车辆中新司机获赔4 000元”, 由已知,可得样本车辆中车主为新司机的有0.1×1 000=100(辆), 而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24(辆), 所以样本车辆中新司机车主获赔金额为 4 000 元的频率为12040=0.24, 由频率估计概率得P(C)=0.24.
6.如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相 1
等,那么每一个基本事件的概率都是_n_;如果某个事件A包括的结果有m个, m
那么事件A的概率P(A)=_n_.
7.古典概型的概率公式
A包含的基本事件的个数 P(A)=_____基__本__事__件__的__总__数______.
最高气温 [10,15) [15,20) [20,25) [25,30) [30,35) [35,40]
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率. (1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
Байду номын сангаас
解 这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格 数据知,
1234567

高中总复习第一轮数学 第十二章概率与统计(理)12.1 离散型随机变量的分布列

高中总复习第一轮数学 第十二章概率与统计(理)12.1 离散型随机变量的分布列

第十二章概率与统计(理)网络体系总览考点目标定位1.离散型随机变量的分布列.离散型随机变量的期望和方差.2.抽样方法、总体分布的估计、正态分布、线性回归.复习方略指南在复习中,要注意理解变量的多样性,深化函数的思想方法在实际问题中的应用,充分注意一些概念的实际意义,理解概率中处理问题的基本思想方法,掌握所学概率知识的实际应用.1.把握基本题型应用本章知识要解决的题型主要分两大类:一类是应用随机变量的概念,特别是离散型随机变量分布列以及期望与方差的基础知识,讨论随机变量的取值范围,取相应值的概率及期望、方差的求解计算;另一类主要是如何抽取样本及如何用样本去估计总体.作为本章知识的一个综合应用,教材以实习作业作为一节给出,应给予足够的重视.2.强化双基训练主要是培养扎实的基础知识,迅捷准确的运算能力,严谨的判断推理能力.3.强化方法选择特别在教学中要掌握思维过程,引导学生发现解决问题的方法,达到举一反三的目的,还要进行题后反思,使学生在大脑记忆中构建良好的数学认知结构,形成条理化、有序化、网络化的有机体系.4.培养应用意识要挖掘知识之间的内在联系,从形式结构、数字特征、图形图表的位置特点等方面进行联想和试验,找到知识的“结点”.再有就是将实际问题转化为纯数学问题进行训练,以培养利用所学知识解决实际问题的能力.12.1 离散型随机变量的分布列巩固·夯实基础一、自主梳理1.随机变量的概念如果随机试验的结果可以用一个变量表示,那么这样的变量叫做随机变量,它常用希腊字母ξ、η等表示.(1)离散型随机变量.如果对于随机变量可能取的值,可以按一定次序一一列出,那么这样的随机变量叫做离散型随机变量.(2)若ξ是随机变量,η=aξ+b,其中a、b是常数,则η也是随机变量.2.离散型随机变量的分布列(1)概率分布(分布列).设离散型随机变量ξ可能取的值为x1,x2,…,x i,…,ξ取每一个值x i(i=1,2,…)的概率P(ξ=x i)=p i,则称表为随机变量ξ的概率分布,简称ξ的分布列.(2)二项分布.如果在一次试验中某事件发生的概率是p,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是P(ξ=k)=C k n p k q n-k .C k n p k q n-k =b(k;n,p). 二、点击双基1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是( ) A.一颗是3点,一颗是1点 B.两颗都是2点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点 解析:对A 、B 中表示的随机试验的结果,随机变量均取值4,而D 是 ξ=4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键. 答案:DA.1B.1±22 C.1+22 D.1-22解析:∵0.5+1-2q+q 2=1,∴q=1±22. 当q=1+22时,1-2q<0,与分布列的性质矛盾, ∴q=1-22. 答案:D3.已知随机变量ξ的分布列为P(ξ=k)=k21,k=1,2,…,则P(2<ξ≤4)等于( ) A.163 B.41 C.161 D.51 解析:P(2<ξ≤4)=P(ξ=3)+P(ξ=4)=321+421=163.答案:A4.某批数量较大的商品的次品率为10%,从中任意地连续取出5件,其中次品数ξ的分布列为 __________________________.解析:本题中商品数量较大,故从中任意抽取5件(不放回)可以看作是独立重复试验n=5,因而次品数ξ服从二项分布, 即ξ—B(5,0.1).5.某射手有5发子弹,射击一次命中目标的概率为0.9,如果命中就停止射击,否则一直到子弹用尽,则耗用子弹数ξ的分布列为___________________________. 解析:ξ可以取1,2,3,4,5,P(ξ=1)=0.9,P(ξ=2)=0.1×0.9=0.09,P(ξ=3)=0.12×0.9=0.009,P(ξ=4)=0.13×0.9=0.000 9,P(ξ=5)=0.14=0.000 1. 诱思·实例点拨【例1】 一袋中装有5只球,编号为1,2,3,4,5,在袋中同时取3只,以ξ表示取出的三只球中的最小号码,写出随机变量ξ的分布列.剖析:因为在编号为1,2,3,4,5的球中,同时取3只,所以小号码可能是1或2或3,即ξ可以取1,2,3.解:随机变量ξ的可能取值为1,2,3.当ξ=1时,即取出的三只球中最小号码为1,则其他两只球只能在编号为2,3,4,5的四只球中任取两只,故有P (ξ=1)=3524C C =106=53;当ξ=2时,即取出的三只球中最小号码为2,则其他两只球只能在编号为3,4,5的三只球中任取两只,故有P (ξ=2)=3523C C =103;当ξ=3时,即取出的三只球中最小号码为3,则其他两只球只能在编号为4,5的两只球中任取两只,故有P (ξ=3)=3522C C =101.讲评:求随机变量的分布列,重要的基础是概率的计算,如古典概率、互斥事件的概率、相互独立事件同时发生的概率、n 次独立重复试验有k 次发生的概率等.本题中基本事件总数,即n=C 35,取每一个球的概率都属古典概率(等可能性事件的概率).【例2】(2005北京高考,理)甲、乙两人各进行3次射击,甲每次击中目标的概率为21,乙每次击中目标的概率为32. (1)记甲击中目标的次数为ξ,求ξ的概率分布及数学期望E ξ;(2)求乙至多击中目标2次的概率;(3)求甲恰好比乙多击中目标2次的概率.剖析:(1)甲射击有击中目标与击不中目标两个结果,且3次射击是3次独立重复试验.∴ξ—B(3,21).(2)“乙至多击中目标2次”的对立事件是“乙击中目标3次”.(3)“甲恰好比乙多击中目标2次”即“甲击中2次乙没击中目标或甲击中目标3次乙击中1次”.解:(1)P(ξ=0)=C 03(21)3=81; P(ξ=1)=C 13(21)3=83;P(ξ=2)=C 23(21)3=83;P(ξ=3)=C 33(21)3=81.∵ξ—B(3,2), ∴E ξ=3×21=1.5.(2)乙至多击中目标2次的概率为1-C 33(32)3=2719. (3)设甲恰好比乙多击中目标2次为事件A,甲恰好击中目标2次且乙恰好击中目标0次为事件B 1,甲恰好击中目标3次且乙恰好击中目标1次为事件B 2,则A=B 1+B 2,B 1、B 2为互斥事件,∴P(A)=P(B 1)+P(B 2)=83×271+81×92=241. ∴甲恰好比乙多击中目标2次的概率为241.讲评:求离散型随机变量的概率分布的步骤为:(1)找出随机变量ξ的所有可能的值x i (i=1,2,…);(2)求出各值的概率P(ξ=x i )=p i ;(3)列成表格.【例3】(2005广东高考)箱中装有大小相同的黄、白两种颜色的乒乓球,黄、白乒乓球的数量比为s ∶t.现从箱中每次任意取出一个球,若取出的是黄球则结束,若取出的是白球,则将其放回箱中,并继续从箱中任意取出一个球,但取球的次数最多不超过n 次.以ξ表示取球结束时已取到白球的次数. (1)求ξ的分布列; (2)求ξ的数学期望.解:(1)ξ的可能取值为0,1,2,…,n.(2)ξ的数学期望为E ξ=0×t s s ++1×2)(t s st++2×32)(t s st ++…+(n-1)×n n t s st )(1+-+n ×n n t s t )(+. ① t s t +E ξ=3)(t s st ++42)(2t s st ++…+n n t s st n )()2(1+--+1)()1(++-n n t s st n +11)(+++n n t s nt . ②①-②,得E ξ=s t +1)()1(-+-n n t s s t n -n n t s t n )()1(+--nn t s s nt )(1++. 讲评:本题是几何分布问题,其中用到数列的错位相减法求和,注意运算的严谨性.。

高考复习 第十二章 随机变量及其分布

高考复习 第十二章 随机变量及其分布
(2)若 是随机变量, 是常数,则 也是随机变量
★热 点 考 点 题 型 探 析★
考点一:离散型随机变量及其分布列的计算
题型1. 离散型随机变量的取值
[例1]写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果
(1)一袋中装有5只同样大小的白球,编号为1,2,3,4,5 现从该袋内随机取出3只球,被取出的球的最大号码数ξ;
特别提醒:对于离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率的和 即
★重 难 点 突 破★
1.重点:了解随机变量、离散型随机变量、连续型随机变量及离散型随机变量的分布列的意义,
2.难点:会求某些简单的离散型随机变量的分布列;掌握离散型随机变量的分布列的两个基本性质及简单运用。
3.重难点:.
解:设考生甲、乙正确完成实验操作的题数分别为 、 ,
则 取值分别为1,2,3; 取值分别为0,1,2,3。…………………………………2分
, , 。
∴考生甲正确完成题数的概率分布列为
1
2
3
2.(广东省五校2008年高三上期末联考)一个盒子装有六张卡片,上面分别写着如下六个定义域为R的函数:
现从盒子中进行逐一抽取卡片,且每次取出后均不放回,若取到一张记有偶函数的卡片则停止抽取,否则继续进行,求抽取次数 的分布列和数学期望.
P(ξ=0)= P(ξ=1)=
P(ξ=2)= P(ξ=3)=
∴ξ的分布列为:
ξ
0
1
23Βιβλιοθήκη 【名师指引】求离散型随机变量分布列时,应明确随机变量可能取哪些值,然后计算其相应的概率填入相应的表中即可。
【新题导练】
1.(安徽省淮南市2008届高三第一次模拟考试)某校设计了一个实验学科的实验考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立完成全部实验操作. 规定:至少正确完成其中2题的便可提高通过. 已知6道备选题中考生甲有4题能正确完成,2题不能完成;考生乙每题正确完成的概率都是,且每题正确完成与否互不影响.分别写出甲、乙两考生正确完成题数的概率分布列;

【小初高学习】2018版高考数学大一轮复习第十二章概率随机变量及其分布12.5二项分布及其应用试题理

【小初高学习】2018版高考数学大一轮复习第十二章概率随机变量及其分布12.5二项分布及其应用试题理

第十二章概率、随机变量及其分布 12.5 二项分布及其应用试题理北师大版1.条件概率在已知B发生的条件下,事件A发生的概率叫作B发生时A发生的条件概率,用符号P(A|B)来表示,其公式为P(A|B)=P ABP B(P(B)>0).2.相互独立事件(1)一般地,对两个事件A,B,如果P(AB)=P(A)P(B),则称A,B相互独立.(2)如果A,B相互独立,则A与B,A与B,A与B也相互独立.(3)如果A1,A2,…,A n相互独立,则有P(A1A2…A n)=P(A1)P(A2)…P(A n).3.二项分布进行n次试验,如果满足以下条件:(1)每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”;(2)每次试验“成功”的概率均为p,“失败”的概率均为1-p;(3)各次试验是相互独立的.用X表示这n次试验中成功的次数,则P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n)若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).【知识拓展】超几何分布与二项分布的区别(1)超几何分布需要知道总体的容量,而二项分布不需要;(2)超几何分布是不放回抽取,而二项分布是放回抽取(独立重复).【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)条件概率一定不等于它的非条件概率.( ×)(2)相互独立事件就是互斥事件.( ×)(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.( ×)(4)二项分布是一个概率分布,其公式相当于(a +b )n二项展开式的通项公式,其中a =p ,b =1-p .( × )(5)P (B |A )表示在事件A 发生的条件下,事件B 发生的概率,P (AB )表示事件A ,B 同时发生的概率.( √ )1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为( ) A.38 B.27 C.28 D.37 答案 B解析 第一次摸出红球,还剩2红5黑共7个小球,所以再摸到红球的概率为27.2.(2016·江西于都三中月考)两个实习生每人加工一个零件,加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件恰好有一个一等品的概率为( ) A.12 B.512 C.14 D.16 答案 B解析 因为两人加工为一等品的概率分别为23和34,且相互独立,所以两个零件恰好有一个一等品的概率为P =23×14+13×34=512.3.(2015·课标全国Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312 答案 A解析 3次投篮投中2次的概率为P (k =2)=C 23×0.62×(1-0.6),投中3次的概率为P (k =3)=0.63,所以通过测试的概率为P (k =2)+P (k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A. 4.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是________.答案 0.8解析 已知连续两天为优良的概率是0.6,那么在前一天空气质量为优良的前提下,要求随后一天的空气质量为优良的概率,可根据条件概率公式,得P =0.60.75=0.8.5.(教材改编)国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________. 答案 12解析 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A B )=P (A )·P (B )=[1-P (A )][1-P (B )]=(1-13)(1-14)=12,“甲、乙二人至少有一人去北京旅游”的对立事件为“甲、乙二人都不去北京旅游”, 故所求概率为1-P (A B )=1-12=12.题型一 条件概率例1 (1)从1,2,3,4,5中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则P (B |A )等于( )A.18B.14C.25D.12(2)如图所示,EFGH 是以O 为圆心,半径为1的圆的内接正方形,将一粒豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,B 表示事件“豆子落在扇形OHE (阴影部分)内”,则P (B |A )=________.答案 (1)B (2)14解析 (1)P (A )=C 23+C 22C 25=25,P (AB )=C 22C 25=110,P (B |A )=P AB P A =14.(2)AB 表示事件“豆子落在△OEH 内”,P (B |A )=P AB P A =△OEH 的面积正方形EFGH 的面积=14.引申探究1.若将本例(1)中的事件B :“取到的2个数均为偶数”改为“取到的2个数均为奇数”,则结果如何?解 P (A )=C 23+C 22C 25=25,P (B )=C 23C 25=310,又A ⊇B ,则P (AB )=P (B )=310,所以P (B |A )=P AB P A =P B P A =34.2.在本例(2)的条件下,求P (A |B ). 解 由题意知,∠EOH =90°,故P (B )=14,又∵P (AB )=△OEH 的面积圆O 的面积=12×1×1π×12=12π, ∴P (A |B )=P AB P B =12π14=2π.思维升华 条件概率的求法(1)定义法:先求P (A )和P (AB ),再由P (B |A )=P ABP A求P (B |A ).(2)基本事件法:借助古典概型概率公式,先求事件A 包含的基本事件数n (A ),再求事件AB 所包含的基本事件数n (AB ),得P (B |A )=n ABn A.(2016·开封模拟)已知盒中装有3只螺口灯泡与7只卡口灯泡,这些灯泡的外形与功率都相同且灯口向下放着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为( ) A.310 B.29 C.78 D.79答案 D解析 方法一 设事件A 为“第1次抽到的是螺口灯泡”,事件B 为“第2次抽到的是卡口灯泡”,则P (A )=310,P (AB )=310×79=730,则所求概率为P (B |A )=P ABP A =730310=79.方法二 第1次抽到螺口灯泡后还剩余9只灯泡,其中有7只卡口灯泡,故第2次抽到卡口灯泡的概率为C 17C 19=79.题型二 相互独立事件的概率例2 设某校新、老校区之间开车单程所需时间为T ,T 只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T 的分布列;(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率. 解 (1)由统计结果可得T 的频率分布为以频率估计概率得T (2)设T 1,T 212T 的分布列相同, 设事件A 表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A 对应于“刘教授在路途中的时间不超过70分钟”.方法一 P (A )=P (T 1+T 2≤70)=P (T 1=25,T 2≤45)+P (T 1=30,T 2≤40)+P (T 1=35,T 2≤35)+P (T 1=40,T 2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.方法二 P (A )=P (T 1+T 2>70)=P (T 1=35,T 2=40)+P (T 1=40,T 2=35)+P (T 1=40,T 2=40) =0.4×0.1+0.1×0.4+0.1×0.1=0.09, 故P (A )=1-P (A )=0.91.思维升华 求相互独立事件同时发生的概率的方法(1)首先判断几个事件的发生是否相互独立. (2)求相互独立事件同时发生的概率的方法主要有: ①利用相互独立事件的概率乘法公式直接求解;②正面计算较繁或难以入手时,可从其对立事件入手计算.(2016·青岛模拟)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22千米的地铁票价如下表:现有甲、6千米的概率分别为14,13,甲、乙乘车超过6千米且不超过12千米的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列.解 (1)由题意可知,甲、乙乘车超过12千米且不超过22千米的概率分别为14,13,则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13,所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.(2)由题意可知,ξ=6,7,8,9,10, 则P (ξ=6)=14×13=112,P (ξ=7)=14×13+12×13=14, P (ξ=8)=14×13+14×13+12×13=13, P (ξ=9)=12×13+14×13=14, P (ξ=10)=14×13=112.所以ξ的分布列为题型三 独立重复试验与二项分布 命题点1 根据独立重复试验求概率例3 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23.假设各局比赛结果相互独立.(1)分别求甲队以3∶0,3∶1,3∶2胜利的概率;(2)若比赛结果为3∶0或3∶1,则胜利方得3分,对方得0分;若比赛结果为3∶2,则胜利方得2分,对方得1分.求乙队得分X 的分布列.解 (1)设“甲队以3∶0,3∶1,3∶2胜利”分别为事件A ,B ,C ,则P (A )=23×23×23=827,P (B )=C 23⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫1-23×23=827, P (C )=C 24⎝ ⎛⎭⎪⎫232×⎝⎛⎭⎪⎫1-232×12=427. (2)X 的可能取值为0,1,2,3, 则P (X =0)=P (A )+P (B )=1627,P (X =1)=P (C )=427,P (X =2)=C 24×⎝⎛⎭⎪⎫1-232×⎝ ⎛⎭⎪⎫232×⎝⎛⎭⎪⎫1-12=427, P (X =3)=⎝ ⎛⎭⎪⎫133+C 23⎝ ⎛⎭⎪⎫132×23×13=19. 故X 的分布列为命题点2 例4 一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得-200分).设每次击鼓出现音乐的概率为12,且各次击鼓出现音乐相互独立.(1)设每盘游戏获得的分数为X ,求X 的分布列; (2)玩三盘游戏,至少有一盘出现音乐的概率是多少? 解 (1)X 可能的取值为10,20,100,-200.根据题意,有P (X =10)=C 13×⎝ ⎛⎭⎪⎫121×⎝ ⎛⎭⎪⎫1-122=38, P (X =20)=C 23×⎝ ⎛⎭⎪⎫122×⎝⎛⎭⎪⎫1-121=38, P (X =100)=C 33×⎝ ⎛⎭⎪⎫123×⎝⎛⎭⎪⎫1-120=18, P (X =-200)=C 03×⎝ ⎛⎭⎪⎫120×⎝⎛⎭⎪⎫1-123=18.所以X 的分布列为(2)设“第i i 则P (A 1)=P (A 2)=P (A 3)=P (X =-200)=18.所以“三盘游戏中至少有一盘出现音乐”的概率为 1-P (A 1A 2A 3)=1-⎝ ⎛⎭⎪⎫183=1-1512=511512.因此,玩三盘游戏,至少有一盘出现音乐的概率是511512.思维升华 独立重复试验与二项分布问题的常见类型及解题策略(1)在求n 次独立重复试验中事件恰好发生k 次的概率时,首先要确定好n 和k 的值,再准确利用公式求概率.(2)在根据独立重复试验求二项分布的有关问题时,关键是理清事件与事件之间的关系,确定二项分布的试验次数n 和变量的概率,求得概率.(2016·沈阳模拟)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”、“待定”、“淘汰”三类票各一张,每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖. (1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的分布列.解 (1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.∵甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响, ∴P (A )=C 23(13)2(23)1+C 33(13)3=727.(2)所含“获奖”和“待定”票票数之和X 的值为0,1,2,3.P (X =0)=(13)3=127,P (X =1)=C 13(23)1(13)2=29,P (X =2)=C 23(23)2(13)1=49,P (X =3)=(23)3=827.因此X 的分布列为18.独立事件与互斥事件典例 (1)中国乒乓球队甲、乙两名运动员参加奥运乒乓球女子单打比赛,甲夺得冠军的概率是37,乙夺得冠军的概率是14,那么中国队夺得女子乒乓球单打冠军的概率为________. (2)某射手每次射击击中目标的概率都是23,这名射手射击5次,有3次连续击中目标,另外两次未击中目标的概率是________. 错解展示解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14,由A 、B 是相互独立事件,得所求概率为P (A B )+P (A B )+P (AB )=37×34+47×14+37×14=1628=47. (2)所求概率P =C 35×(23)3×(13)2=80243.答案 (1)47 (2)80243现场纠错解析 (1)设“甲夺得冠军”为事件A ,“乙夺得冠军”为事件B ,则P (A )=37,P (B )=14.∵A 、B 是互斥事件,∴P (A +B )=P (A )+P (B )=37+14=1928.(2)设“第i 次射击击中目标”为事件A i (i =1,2,3,4,5),“射手在5次射击中,有3次连续击中目标,另外2次未击中目标”为事件A ,则P (A )=P (A 1A 2A 3A 4 A 5)+P (A 1A 2A 3A 4A 5)+P (A 1 A 2A 3A 4A 5)=⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫132+13×⎝ ⎛⎭⎪⎫233×13+⎝ ⎛⎭⎪⎫132×⎝ ⎛⎭⎪⎫233=881. 答案 (1)1928 (2)881纠错心得 (1)搞清事件之间的关系,不要混淆“互斥”与“独立”. (2)区分独立事件与n 次独立重复试验.1.把一枚硬币连续抛两次,记“第一次出现正面”为事件A ,“第二次出现正面”为事件B ,则P (B |A )等于( ) A.12 B.14 C.16 D.18答案 A解析 由古典概型知P (A )=12,P (AB )=14,则由条件概率知P (B |A )=P ABP A =1412=12.2.(2016·长春模拟)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X 次球,则P (X =12)等于( )A .C 1012(38)10(58)2B .C 912(38)9(58)2C .C 911(58)9(38)2D .C 911(38)10(58)2答案 D解析 “X =12”表示第12次取到红球,前11次有9次取到红球,2次取到白球, 因此P (X =12)=38C 911(38)9(58)2=C 911(38)10(58)2.3.已知A ,B 是两个相互独立事件,P (A ),P (B )分别表示它们发生的概率,则1-P (A )P (B )是下列哪个事件的概率( ) A .事件A ,B 同时发生 B .事件A ,B 至少有一个发生 C .事件A ,B 至多有一个发生 D .事件A ,B 都不发生 答案 C解析 P (A )P (B )是指A ,B 同时发生的概率,1-P (A )·P (B )是A ,B 不同时发生的概率,即事件A ,B 至多有一个发生的概率.4.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为( ) A.34 B.23 C.45 D.710答案 A解析 设“甲命中目标”为事件A ,“乙命中目标”为事件B ,“丙命中目标”为事件C ,则击中目标表示事件A ,B ,C 中至少有一个发生.又P (A B C )=P (A )P (B )P (C )=[1-P (A )]·[1-P (B )]·[1-P (C )]=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=14.故目标被击中的概率P =1-P (A B C )=34.5.(2017·南昌质检)设随机变量X 服从二项分布X ~B (5,12),则函数f (x )=x 2+4x +X 存在零点的概率是( ) A.56B.45C.3132D.12答案 C解析 ∵函数f (x )=x 2+4x +X 存在零点, ∴Δ=16-4X ≥0,∴X ≤4.∵X 服从X ~B (5,12),∴P (X ≤4)=1-P (X =5)=1-125=3132.6.(2016·安徽黄山屯溪一中月考)甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .P (B )=25B .事件B 与事件A 1相互独立C .P (B |A 1)=511D .P (B )的值不能确定,它与A 1,A 2,A 3中哪一个发生都有关 答案 C解析 由题意A 1,A 2,A 3是两两互斥的事件,P (A 1)=510=12,P (A 2)=210=15,P (A 3)=310,P (B |A 1)=12×51112=511,由此知,C 正确;P (B |A 2)=411,P (B |A 3)=411,而P (B )=P (A 1B )+P (A 2B )+P (A 3B )=P (A 1)P (B |A 1)+P (A 2)P (B |A 2)+P (A 3)·P (B |A 3) =12×511+15×411+310×411=922. 由此知A ,D 不正确.故选C.7.设随机变量X ~B (2,p ),随机变量Y ~B (3,p ),若P (X ≥1)=59,则P (Y ≥1)=________.答案1927解析 ∵X ~B (2,p ),∴P (X ≥1)=1-P (X =0)=1-C 02(1-p )2=59,解得p =13.又Y ~B (3,p ),∴P (Y ≥1)=1-P (Y =0)=1-C 03(1-p )3=1927.8.如图所示的电路有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为________.答案 18解析 灯泡甲亮满足的条件是a ,c 两个开关都开,b 开关必须断开,否则短路.设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则甲灯亮应为事件A B C ,且A ,B ,C 之间彼此独立,且P (A )=P (B )=P (C )=12,由独立事件概率公式知P (A B C )=P (A )P (B )P (C )=12×12×12=18. 9.(2017·广州质检)设事件A 在每次试验中发生的概率相同,且在三次独立重复试验中,若事件A 至少发生一次的概率为6364,则事件A 恰好发生一次的概率为________.答案964解析 设事件A 发生的概率为p ,由题意知(1-p )3=1-6364=164,解得p =34,则事件A 恰好发生一次的概率为C 13×34×(14)2=964.10.(2016·荆州质检)把一枚硬币任意抛掷三次,事件A =“至少一次出现反面”,事件B =“恰有一次出现正面”,则P (B |A )=________. 答案 37解析 由题意知,P (AB )=323=38,P (A )=1-123=78,所以P (B |A )=P ABP A =3878=37.11.现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏. (1)求这4个人中恰有2人去参加甲游戏的概率;(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(3)用X ,Y 分别表示这4个人中去参加甲,乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.解 (1)依题意知,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.设“这4个人中恰有k 人去参加甲游戏”为事件A k (k =0,1,2,3,4).则P (A k )=C k 4⎝ ⎛⎭⎪⎫13k ⎝ ⎛⎭⎪⎫234-k.这4个人中恰有2人去参加甲游戏的概率为P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4.由于A 3与A 4互斥,故P (B )=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133×23+C 44⎝ ⎛⎭⎪⎫134=19. 所以,这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率为19.(3)ξ的所有可能取值为0,2,4. 由于A 1与A 3互斥,A 0与A 4互斥,故P (ξ=0)=P (A 2)=827, P (ξ=2)=P (A 1)+P (A 3)=4081, P (ξ=4)=P (A 0)+P (A 4)=1781.所以ξ的分布列是12.(2016·西安模拟)在一块耕地上种植一种作物,每季种植成本为1 000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2 000元的概率.解(1)设A表示事件“作物产量为300 kg”,B表示事件“作物市场价格为6 元/kg”,由题设知P(A)=0.5,P(B)=0.4,因为利润=产量×市场价格-成本.所以X所有可能的取值为500×10-1 000=4 000,500×6-1 000=2 000,300×10-1 000=2 000,300×6-1 000=800.P(X=4 000)=P(A)P(B)=(1-0.5)×(1-0.4)=0.3,P(X=2 000)=P(A)P(B)+P(A)P(B)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,故X的分布列为(2)设C i表示事件“第i C1,C2,C3相互独立,由(1)知,P(C i)=P(X=4 000)+P(X=2 000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2 000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季的利润不少于2 000元的概率为P(C1C2C3)+P(C1C2C3)+P(C1C2C3)=3×0.82×(1-0.8)=0.384,所以,这3季中至少有2季的利润不少于2 000元的概率为0.512+0.384=0.896.13.李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率;(2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率.解(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)记事件A为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”,事件B为“在随机选择的一场客场比赛中李明的投篮命中率超过0.6”,事件C为“在随机选择的一个主场和一个客场比赛中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C=A B+A B,A,B独立.根据投篮统计数据,P(A)=0.6,P(B)=0.4.P(C)=P(A B)+P(A B)=0.6×0.6+0.4×0.4=0.52.所以,在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为0.52.。

高考数学大一轮复习专题12概率与统计课件理

高考数学大一轮复习专题12概率与统计课件理

①互斥事件研究的是两个(或多个) 事件之间的关系;②所研究的事件 是在一次试验中涉及的
8
9
10
600分基础 考点&考法
考点70 古典概型与几何概型
考法3 求古典概型的概率
考法4 几何概型的概率计算
11
考点70 古典概型与几何概型
(1)任何两个基本事件是互斥的; 1.基本事件的特点 (2)任何事件(除不可能事件)都 可以表示成基本事件的和.
1.频率与概率
2.互斥事件 与对立事件 3.互斥事件 与对立事件 的概率公式
考法1 频率估计概率
事件 A发生的频率 f n A nA n
随着试验次数的增多,它在A 的概率附近摆动幅度越来越小
概率是频率的稳定值
在试验次数足够的情况下
利用频率估计概率
6
考法2 求互斥事件、对立事件的概率
1.求简单的互斥事件、对立事件的概率
分析该事件是互斥还是对立,然后代入相应的概率公式
2.求复杂的互斥事件的概率的方法
直接法 将所求事件分解为彼此互斥的事件的和 利用公式分别计算这些事件的概率 运用互斥事件的概率求和公式计算概率 间接法 判断是否适合用间接法 计算对立事件的概率 运用公式P(A)=1-P(A)求解 把一个复杂事件分解为若干 个互斥或相互独立的既不重 复又不遗漏的简单事件是解 决问题的关键. 7
考法1 求离散型随机变量的分布列
一般步骤
【说明】求概率和分布列时,要注意离散型 随机变量分布列性质的应用,具体如下:
(1)利用“分布列中所有事件的概率和为1”
求某个事件的概率、求参数的值; (2)利用分布列求某些个事件的和的概率.
29
考法2 超几何分布的求解

2023版高考数学一轮总复习第十二章概率第三讲离散型随机变量及其分布列均值与方差课件理

2023版高考数学一轮总复习第十二章概率第三讲离散型随机变量及其分布列均值与方差课件理

P(X=k)=

C C


C
,k=0,1,2,…,m,即
其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*.
如果随机变量X的分布列具有上表的形式,则称随机变量X服从超几何分布,
记作X~H(N,M,n).
考点3
离散型随机变量的均值与方差
1. 离散型随机变量的均值与方差
一般地,若离散型随机变量X的分布列为
个值xi(i=1,2,…,n)的概率P(X=xi)=pi,以表格形式表示如下,
X
P
x1
p1
x2
p2


xi
pi


xn
pn
则上表称为离散型随机变量X的概率分布列,简称为X的分布列.为了简单起
见,也可以用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
考点1
离散型随机变量的分布列
2. 离散型随机变量的分布列的性质
考点3
注意
离散型随机变量的均值与方差
(1)期望是算术平均值概念的推广,是概率意义下的平均;
(2)E(X)是一个实数,由X的分布列唯一确定,即作为随机变量,X是可变
的,可取不同值,而E(X)是不变的,它描述X取值的平均状态;(3)随机变
量的方差与标准差都反映了随机变量取值的稳定与波动、集中与离散
的程度.D(X)越大,表明平均偏离程度越大,X的取值越分散.反之,D(X)
(2)期望是算术平均数概念的推广,与概率无关. ( × )
(3)均值与方差都是从整体上刻画离散型随机变量的情况,因此它们是
一回事.
( × )
(4)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程

高三数学第一轮复习 第十二章《概率和统计》课件

高三数学第一轮复习 第十二章《概率和统计》课件

• 探究2 等可能事件的概率,首先要弄清楚试验结果是不 是“等可能”,其次要正确求出基本事件总数和事件A所 包含的基本事件的个数.
• 思考题2 某汽车站每天均有3辆开往省城济南的分为上、 中、下等级的客车,某天袁先生准备在该汽车站乘车前 往济南办事,但他不知道客车的车况,也不知道发车顺 序.为了尽可能乘上上等车,他采取如下策略:先放过 一辆,如果第二辆比第一辆好则上第二辆,否则上第三 辆.那么他乘上上等车的概率为__________.
4.一个坛子里有编号 1,2,…,12 的 12 个大小相同
的球,其中 1 到 6 号球是红球,其余的是黑球,若从中
任取两个球,则取到的都是红球,且至少有 1 个球的号
码是偶数的概率为( )
1
1
A.22
B.11
3
2
C.22
D.11
解析 分类:一类是两球号均为偶数且为红球,有 C32 种取法;另一类是两球号码是一奇一偶有 C31C31 种取 法
• 思考题1 掷两颗均匀的普通骰子,两个点数和为x(其中 x∈N*).
• ①记事件A:x=5,写出事件A包含的基本事件,并求P(A);
• ②求x≥10时的概率.
• 【分析】 每一次试验得到的是两颗骰子的点数,所以 每一个基本事件都对应着有序数对.
【解析】 ①每次试验两颗骰子出现的点数分别记为
m、n
最短路线的概率是( )
1
1
A.2
B.3
1
1
C.5
D.6
解析 基本事件,等可能事件的概率. • 答案n=3D×2=6,m=1. ∴P(A)=16.
• 3则.剩有下五两答个个案数数字字1130都、是2、奇3数、的4、概5率中是,_若__随__机__取__出__三_(个结数果字用, 数值表示解)析. 任取的三个数字中有 2 个偶数,1 个奇数,

高考数学一轮复习 第十二章 概率与统计 12.2.2 离散型随机变量的分布列、均值、方差的应用课件

高考数学一轮复习 第十二章 概率与统计 12.2.2 离散型随机变量的分布列、均值、方差的应用课件
第十二章 概率与统计
第2讲 离散型随机变量及其分布列、均值与方差
考点二 离散型随机变量的分布列、均值、方差的应用
撬点·基础点 重难点
1 离散型随机变量的方差与标准差 若离散型随机变量 X 的分布列为
X x1 x2 … xi … xn P p1 p2 … pi … pn 称 D(X)=___i=∑_n_1__(_x_i-__E__(X__))_2_p_i ___为随机变量 X 的方差,它刻画了随机变量 X 与其均值 E(X)的平均偏 离程度,其算术平方根___D__X____为随机变量 X 的标准差,记作 σ(X). 2 均值与方差的性质 若 Y=aX+b,其中 a,b 是常数,X 是随机变量,则 (1)E(aX+b)=__a_E_(_X_)_+__b_.__ 证明:E(Y)=(ax1+b)p1+(ax2+b)p2+…+(axi+b)pi+…+(axn+b)pn=a(x1p1+x2p2+…+xipi+…+ xnpn)+b(p1+p2+…+pi+…+pn)=aE(X)+b.
3 两点分布与二项分布的均值与方差 (1)若随机变量 X 服从两点分布,则_E__(X__)=__p_,__D__(X__)=__p_(_1_-__p_)_.____ (2)若随机变量 X~B(n,p),则 E(X)=__n_p__,D(X)=_n_p_(_1_-__p_)._
注意点 随机变量的均值、方差与样本的平均值、方差的关系
[解] (2)①由(1)及列表可知,X 可能的取值为 60,70,80,并且 P(X=60)=0.1,P(X=70)=0.2,P(X=
80)=0.7.
X 的分布列为
X 60 70 80
P 0.1 0.2 0.7
X 的数学期望为 E(X)=60×0.1+70×0-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44.

高三数学第十二章-概率与统计知识点归纳

高三数学第十二章-概率与统计知识点归纳

高中数学知识点第十二章-概率与统计考试内容:抽样方法.总体分布的估计. 总体期望值和方差的估计. 考试要求:(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样.(2)会用样本频率分布估计总体分布. (3)会用样本估计总体期望值和方差.§12. 概率与统计 知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件: ①试验可以在相同的情形下重复进行;②试验的所有可能结果是明确可知的,并且不止一个;③每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果. 它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.若ξ是一个随机变量,a ,b 是常数.则b a +=ξη也是一个随机变量.一般地,若ξ是随机变量,)(x f 是连续函数或单调函数,则)(ξf 也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量ξ可能取的值为:ΛΛ,,,,21i x x xξ取每一个值),2,1(1Λ=i x 的概率i i p x P ==)(ξ,则表称为随机变量ξ的概率分布,简称ξ的分布列.有性质①Λ,2,1,01=≥i p ; ②121=++++ΛΛi p p p .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:]5,0[∈ξ即ξ可以取0~5之间的一切数,包括整数、小数、无理数.3. ⑴二项分布:如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是:kn k k n qp C k)P(ξ-==[其中p q n k -==1,,,1,0Λ] 于是得到随机变量ξ的概率分布如下:我们称这样的随机变量ξ服从二项分布,记作ξ~B (n ·p ),其中n ,p 为参数,并记p)n b(k;qp C kn kkn⋅=-.⑵二项分布的判断与应用.①二项分布,实际是对n 次独立重复试验.关键是看某一事件是否是进行n 次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.②当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“k =ξ”表示在第k 次独立重复试验时,事件第一次发生,如果把k 次试验时事件A 发生记为k A ,事A 不发生记为q )P(A ,A k k =,那么)A A A AP(k)P(ξk 1k 21-==Λ.根据相互独立事件的概率乘法分式:))P(A A P()A )P(A P(k)P(ξk 1k 21-==Λ),3,2,1(1Λ==-k p q k 于是得到随机变量ξ的概率分布列.我们称ξ服从几何分布,并记p q p)g(k,1k -=,其中Λ3,2,1.1=-=k p q5. ⑴超几何分布:一批产品共有N 件,其中有M (M <N )件次品,今抽取)N n n(1≤≤件,则其中的次品数ξ是一离散型随机变量,分布列为)M N k n M,0k (0C C C k)P(ξnNk n MN k M -≤-≤≤≤⋅⋅==--.〔分子是从M 件次品中取k 件,从N-M 件正品中取n-k 件的取法数,如果规定m <r 时0C r m =,则k 的范围可以写为k=0,1,…,n.〕⑵超几何分布的另一种形式:一批产品由 a 件次品、b 件正品组成,今抽取n 件(1≤n ≤a+b ),则次品数ξ的分布列为n.,0,1,k CC C k)P(ξnba kn bk a Λ=⋅==+-.⑶超几何分布与二项分布的关系.设一批产品由a 件次品、b 件正品组成,不放回抽取n 件时,其中次品数ξ服从超几何分布.若放回式抽取,则其中次品数η的分布列可如下求得:把b a +个产品编号,则抽取n 次共有n b a )(+个可能结果,等可能:k)(η=含kn k k n ba C -个结果,故n ,0,1,2,k ,)ba a (1)b a a (C b)(a ba C k)P(ηkn k k n nkn k k n Λ=+-+=+==--,即η~)(b a a n B +⋅.[我们先为k个次品选定位置,共k n C 种选法;然后每个次品位置有a 种选法,每个正品位置有b 种选法] 可以证明:当产品总数很大而抽取个数不多时,k)P(ηk)P(ξ=≈=,因此二项分布可作为超几何分布的近似,无放回抽样可近似看作放回抽样. 二、数学期望与方差.1. 期望的含义:一般地,若离散型随机变量ξ的概率分布为则称ΛΛ++++=n n p x p x p x E 2211ξ为ξ的数学期望或平均数、均值.数学期望又简称期望.数学期望反映了离散型随机变量取值的平均水平. 2. ⑴随机变量b a +=ξη的数学期望:b aE b a E E +=+=ξξη)( ①当0=a 时,b b E =)(,即常数的数学期望就是这个常数本身. ②当1=a 时,b E b E +=+ξξ)(,即随机变量ξ与常数之和的期望等于ξ的期望与这个常数的和.③当0=b 时,ξξaE a E =)(,即常数与随机变量乘积的期望等于这个常数与随机变量期望的乘积.⑵单点分布:c c E =⨯=1ξ其分布列为:c P ==)1(ξ.⑶两点分布:p p q E =⨯+⨯=10ξ,其分布列为:(p + q = 1) ⑷二项分布:∑=⋅-⋅=-np q p k n k n k E k n k )!(!!ξ 其分布列为ξ~),(p n B .(P 为发生ξ的概率)⑸几何分布:pE 1=ξ 其分布列为ξ~),(p k q .(P 为发生ξ的概率)3.方差、标准差的定义:当已知随机变量ξ的分布列为),2,1()(Λ===k p x P k k ξ时,则称ΛΛ+-++-+-=n n p E x pE x p E x D 2222121)()()(ξξξξ为ξ的方差.显然0≥ξD ,故σξξσξ.D =为ξ的根方差或标准差.随机变量ξ的方差与标准差都反映了随机变量ξ取值的稳定与波动,集中与离散的程度.ξD 越小,稳定性越高,波动越小............... 4.方差的性质.⑴随机变量b a +=ξη的方差ξξηD a b a D D 2)()(=+=.(a 、b 均为常数) ⑵单点分布:=ξD 其分布列为p P ==)1(ξ⑶两点分布:pq D =ξ 其分布列为:(+ q = 1)⑷二项分布:npq D =ξ ⑸几何分布:2p q D =ξ5. 期望与方差的关系.⑴如果ξE 和ηE 都存在,则ηξηξE E E ±=±)(⑵设ξ和η是互相独立的两个随机变量,则ηξηξηξξηD D D E E E +=+⋅=)(,)( ⑶期望与方差的转化:22)(ξξξE E D -= ⑷)()()(ξξξξE E E E E -=-(因为ξE 为一常数)0=-=ξξE E .三、正态分布.(基本不列入考试范围)1.密度曲线与密度函数:对于连续型随机变量ξ,位于x 轴上方,ξ落在任一区间),[b a 内的概率等于它与x 轴.直线a x =与直线b x =所围成的曲边梯形的面积图像的函数)(x f 是必然事件,故密度曲线与x 轴所夹部分面积等于1.2. ⑴正态分布与正态曲线:如果随机变量ξ的概率密度为:222)(21)(σμσπ--=x ex f . (σμ,,R x ∈为常数,且0φσ),称ξ服从参数为σμ,的正态分布,用ξ~),(2σμN 表示.)(x f 的表达式可简记为),(2σμN ,它的密度曲线简称为正态曲线.⑵正态分布的期望与方差:若ξ~),(2σμN ,则ξ的期望与方差分别为:2,σξμξ==D E .⑶正态曲线的性质.①曲线在x 轴上方,与x 轴不相交. ②曲线关于直线μ=x 对称.③当μ=x 时曲线处于最高点,当x 向左、向右远离时,曲线不断地降低,呈现出“中间高、两边低”的钟形曲线.④当x <μ时,曲线上升;当x >μ时,曲线下降,并且当曲线向左、向右两边无限延伸时,以x 轴为渐近线,向x 轴无限的靠近. ⑤当μ一定时,曲线的形状由σ确定,σ越大,曲线越“矮胖”.表示总体的分布越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.3. ⑴标准正态分布:如果随机变量ξ的概率函数为)(21)(22+∞-∞=-ππx ex x πϕ,则称ξ服从标准正态分布. 即ξ~)1,0(N 有)()(x P x ≤=ξϕ,)(1)(x x --=ϕϕ求出,而P (a <ξ≤b )的计算则是)()()(a b b a P ϕϕξ-=≤π.注意:当标准正态分布的)(x Φ的X 取0时,有5.0)(=Φx 当)(x Φ的X 取大于0的数时,有5.0)(φx Φ.比如5.00793.0)5.0(π=-Φσμ则σμ-5.0S 阴=0.5S a =0.5+S如图.⑵正态分布与标准正态分布间的关系:若ξ~),(2σμN 则ξ的分布函数通常用)(x F 表示,且有)σμx (F(x)x)P(ξ-==≤ϕ.4.⑴“3σ”原则.假设检验是就正态总体而言的,进行假设检验可归结为如下三步:①提出统计假设,统计假设里的变量服从正态分布),(2σμN .②确定一次试验中的取值a是否落入范围)3,3(σμσμ+-.③做出判断:如果)3,3(σμσμ+-∈a ,接受统计假设. 如果)3,3(σμσμ+-∉a ,由于这是小概率事件,就拒绝统计假设.⑵“3σ”原则的应用:若随机变量ξ服从正态分布),(2σμN 则 ξ落在)3,3(σμσμ+-内的概率为99.7% 亦即落在)3,3(σμσμ+-之外的概率为0.3%,此为小概率事件,如果此事件发生了,就说明此种产品不合格(即ξ不服从正态分布).。

2021版高考数学一轮复习第十二章计数原理、概率、随机变量及其分布12.2排列、组合与二项式定理练习理北师大

2021版高考数学一轮复习第十二章计数原理、概率、随机变量及其分布12.2排列、组合与二项式定理练习理北师大

12.2 排列、组合与二项式定理核心考点·精准研析考点一排列、组合的基本问题1.某校根据2017版新课程标准开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A.30种B.35种C.42种D.48种2.在由数字1、2、3、4、5组成的所有没有重复数字的5位数中,大于23 145且小于43 521的数共有( )A.56个B.57个C.58个D.60个3.八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有________________种安排办法.4.(2018·浙江高考)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成________________个没有重复数字的四位【解析】1.选A.按照所选的3门课程中A类的情形分两类:第一类,2门A类选修课,1门B类选修课,有种方法;第二类,1门A类选修课,2门B类选修课,有种方法,所以由分类加法计数原理得不同的选法共有+=12+18=30(种).2.选C.按照首位的大小分类:(1)开头为231的,有一个.(2)开头为23的,第三位从4,5中选一个,有种,余下的后两位,有种,共有=4个.(3)开头为2,第2位从4,5中选一个,有种,余下的后3位,有种,共有=12个.(4)开头为3,后四位由1,2,4,5全排列,有4!=24个.(5)开头为4,第二位为1,2中的一个,有2种方法,后三位有3!=6种方法,共有2×6=12个.(6)开头为43,第三位从1,2中选一个,有2种方法,后两位有2!种方法,共有2×2=4个.(7)开头为435的,只有1个,所以由分类加法计数原理得所求的数共有1+4+12+24+12+4+1=58(个).3.方法一:可分为“乙、丙坐在前排,甲坐在前排的八人坐法”和“乙、丙在后排,甲坐在前排的八人坐法”两类情况.应当使用分类加法计数原理,在每类情况下,划分“乙、丙坐下”“甲坐下”“其他五人坐下”三个步骤,又要用到分步乘法计数原理,这样可有如下算法:··+··=8 640(种).方法二:采取“总方法数减去不符合题意的所有方法数”的算法.把“甲坐在前排的八人坐法数”看成“总方法数”,这个数目是·.在这种前提下,不合题意的方法是“甲坐在前排,且乙、丙坐两排的八人坐法,”这个数目是····.其中第一个因数表示甲坐在前排的方法数,表示从乙、丙中任选出一人的方法数,表示把选出的这个人安排在前排的方法数,下一个则表示乙、丙中未安排的那个人坐在后排的方法数,就是其他五人的坐法数,于是总的方法数为·-····=8 640(种).答案:8 6404.分类讨论:第一类:不含0的,按照分步乘法计数原理:=10×3×24=720;第二类:包含0的,按照分步乘法计数原理:=10×3×3×6=540,所以一共有1 260个没有重复数字的四位数.答案:1 2601.求解有限制条件的排列问题的主要方法直接法分类法选定一个适当的分类标准,将要完成的事件分成几个类型,分别计算每个类型中的排列数,再由分类加法计数原理得出总数分步法选定一个适当的标准,将事件分成几个步骤来完成,分别计算出各步骤的排列数,再由分步乘法计数原理得出总数捆绑法相邻问题捆绑处理,即可以把相邻几个元素看作一个整体与其他元素进行排列,同时注意捆绑元素的内部排列插空法不相邻问题插空处理,即先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空中除法对于定序问题,可先不考虑顺序限制,排列后,再除以已定元素的全排列间接法对于分类过多的问题,按正难则反,等价转化的方法2.两类含有附加条件的组合问题的方法(1)“含有”或“不含有”某些元素的组合题型:若“含”,则先将这些元素取出,再由另外元素补足;若“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“最多”含有几个元素的组合题型:解这类题目必须十分重视“至少”与“最多”这两个关键词的含义,谨防重复与漏解.用直接法或间接法都可以求解,用直接法分类复杂时,可用间接法求解.考点二排列、组合的综合问题【典例】1.从A,B,C,D,E 5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A不参加物理、化学竞赛,则不同的参赛方案种数为( )A.24B.48C.72D.1202.把20个不加区别的小球放入1号,2号,3号的三个盒子中,要求每个盒内的球数不小于它的编号数,则不同的方法种数为________________.3.对于任意正整数n,定义“n的双阶乘n!!”如下:当n为偶数时,n!!=n··……6·4·2,当n为奇数时,n!!=n··……5·3·1,现有四个结论:①(2018!!)·(2019!!)=2019!,②(2n)!!=2n,③2018!!的个位数字是8,④<,则四个结论中正确的是________________.【解题导思】序号联想解题1 由“A不参加物理、化学竞赛”联想到分类:A参加,A不参加.由题意知小球没有区别,及盒子内球数不小于编号数,联想到先在2,3号盒子里分别放上1,2个2球,变成了挡板问题.3 看到双阶乘,联想到阶乘.【解析】1.选C.因为A参加时参赛方案有=48(种);A不参加时参赛方案有=24(种),所以不同的参赛方案共72种.2.先在编号为2,3的盒内分别放入1个,2个球,还剩17个小球,三个盒内每个至少再放入1个,将17个球排成一排,有16个空隙,插入2块挡板分为三堆放入三个盒中,即可共有C=120种方法.答案:1203.因为(2018!!)·(2019!!)=(2018×2016×…×6×4×2)×(2019×2017×…×5×3×1)=2019×2018×2017×…×5×4×3×2×1=2019!所以①是正确的.因为(2n)!!=··……6·4·2=2n··……3·2·1=2n, 所以②是正确的.因为由②知道2018!!中有因数5,也有因数2,所以个位数字是0,所以③是错误的.因为对任意正整数n,都有<,所以=,<,=,<,…,=,<,把上面的2n个式子作乘法,得<,所以两边开方得<,所以④是正确的.答案:①②④解决排列、组合的综合问题的关键点(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理作最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决.分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.(4)熟记排列数、组合数公式及其变形,准确计算.1.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为 ( )A.24B.48C.60D.72【解析】选D.分两步:第一步,先排个位,有种选择;第二步,排前4位,有种选择.由分步乘法计数原理,知有·=72个.2.某班组织文艺晚会,准备从A,B等8个节目中选出4个节目演出,要求A,B两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为( )A.1 860B.1 320C.1 140D.1 020【解析】选C.当A,B节目中只选一个时,共有=960种演出顺序;当A,B节目都被选中时,由插空法得共有=180种演出顺序.所以一共有960+180=1140种演出顺序.3.已知i,m,n是正整数,且1<i≤m<n,求证:.【证明】(用分析法)原不等式等价于<,左边==···…·,于是只要证明<即可,联想到“糖水不等式:若0<a<b,m>0,则0<<<1”及不等式的可乘性,所以···…·<··…=,所以原不等式成立.考点三二项式定理命题精解读1.考什么:(1)考查二项展开式的通项及由通项求某一项的系数或常数项.(2)考查应用赋值法求某些数列的和.2.怎么考:求二项展开式的通项或某指定项的系数或常数项,或知道某项系数或二项式系数,反求参数的值,考查二项展开式中组合思想的应用.3.新趋势:结合二项展开式的特征,与数列求和或不等式等知识交汇考查二项式定理.学霸好方法1.求解二项式定理问题的关键:(1)熟记二项式定理,会用组合思想解决展开式的通项,或某些指定项.(2)熟悉二项展开式的特征,掌握赋值法解某项数列求和问题.2.交汇问题:解决与数列、不等式等知识交汇问题时,先用赋值法构造求和模型,再转化为熟悉的问题.二项展开式的通项及其应用【典例】1.(2018·全国卷Ⅲ)的展开式中x4的系数为( ) A.10 B.20 C.40 D.802.的展开式中常数项为( )A. B.160 C.- D.-160 【解析】1.选C.展开式的通项公式为T r+1=(x2)5-r=2r x10-3r,令10-3r=4可得r=2,则x4的系数为22=40.2.选A.的展开式的通项为T r+1=x6-r=x6-2r,令6-2r=0,得r=3,所以展开式中的常数项是T4==.如何解决与二项展开式的通项有关的问题?提示:(1)求展开式中的特定项或其系数.可依据条件写出第k+1项,再由特定项的特点求出k值即可. (2)已知展开式的某项或其系数求参数.可由某项得出参数项,再由通项公式写出第k+1项,由特定项得出k 值,最后求出其参数.二项式系数的性质与各项的和【典例】1.(2019·郑州模拟)若二项式的展开式的二项式系数之和为8,则该展开式所有项的系数之和为( )A.-1B.1C.27D.-272.(2019·鄂尔多斯模拟)在的展开式中,x3的系数等于-5,则该展开式的各项的系数中最大值为( )A.5B.10C.15D.203.(2019·襄阳模拟)设(x2+1)(2x+1)8=a0+a1(x+2)+a2(x+2)2+…+a10(x+2)10,则a0+a1+a2+…+a10的值为________________.【解析】1.选A.依题意得2n=8,解得n=3,取x=1,得该二项展开式每一项的系数之和为(1-2)3=-1.2.选B.的展开式的通项为T r+1=x5-r·=(-a)r x5-2r,令5-2r=3,则r=1,所以-a×5=-5,即a=1,展开式中第2,4,6项的系数为负数,第1,3,5项的系数为正数,故各项的系数中最大值为=10.3.在所给的多项式中,令x=-1可得(1+1)×(-2+1)8=a0+a1+a2+…+a10,即a0+a1+a2+…+a10=2.答案:2如何求解二项式系数或展开式系数的最值问题?提示:求解二项式系数或展开式系数的最值问题一般分两步:第一步,要弄清所求问题是“展开式系数最大”、“二项式系数最大”两者中的哪一个.第二步,若是求二项式系数的最大值,则依据(a+b)n中n的奇偶及二次项系数的性质求解.若是求展开式系数的最大值则在系数均为正值的前提下,求最大值只需解不等式组即可求得答案.二项式定理的综合应用【典例】1.(x+y)(2x-y)6的展开式中x4y3的系数为( )A.-80B.-40C.40D.802.(2019·枣阳模拟)(x2+x+y)5的展开式中x5y2的系数为 ( )A.10B.20C.30D.60【解析】1.选D.(2x-y)6的展开式的通项公式为T r+1=(2x)6-r(-y)r,当r=2时,T3=240x4y2,当r=3时,T4=-160x3y3,故x4y3的系数为240-160=80.2.选C.(x2+x+y)5的展开式的通项为=(x2+x·y r,令r=2,则T3=(x2+x)3y2,又(x2+x)3的展开式的通项为(x2·x k=,令6-k=5,则k=1,所以(x2+x+y)5的展开式中,x5y2的系数为=30.如何求解(a+b)m(c+d)n或(a+b+c)n展开式的某一项的系数?提示:(1)若n,m中一个比较小,可考虑把它展开得到多个,如(a+b)2(c+d)m=(a2+2ab+b2)(c+d)m,然后展开分别求解.(2)若三项能用完全平方公式,那当然比较简单;若三项不能用完全平方公式,只需根据题目特点,把“三项”当成“两项”看,再利用二项展开式的通项公式去求特定项的系数.(3)观察(a+b)(c+d)是否可以合并,如(1+x)5(1-x)7=[(1+x)(1-x)]5(1-x)2=(1-x2)5(1-x)2.(4)分别得到(a+b)n,(c+d)m的通项公式,综合考虑.1.将多项式a6x6+a5x5+…+a1x+a0分解因式得,m为常数,若a5=-7,则a0=( )A.-2B.-1C.1D.2【解析】选D.因为(x+m)5的通项公式为T r+1=x5-r m r,a5x5=x·x5-1m1+(-2)x5=(5m-2)x5,所以a5=5m-2,又因为a5=-7,所以5m-2=-7,所以m=-1,所以常数项a0=(-2)×(-1)5=2.2.在的展开式中,含x5项的系数为( )A.6B.-6C.24D.-24【解析】选B.由=-+-…-+,可知只有-的展开式中含有x5,所以的展开式中含x5项的系数为-=-6.3.(a+x)(1+x)4的展开式中x的奇数次幂项的系数之和为32,则a=________________.【解析】设(a+x)(1+x)4=a0+a1x+a2x2+a3x3+a4x4+a5x5.令x=1,得(a+1)×24=a0+a1+a2+a3+a4+a5.①令x=-1,得0=a0-a1+a2-a3+a4-a5.②①-②得16(a+1)=2(a1+a3+a5)=2×32,所以a=3.答案:31.(2019·湘潭模拟)若(1-3x)2 020=a0+a1x+…+a2 020x2 020,x∈R,则a1·3+a2·32+…+a2 020·32 020的值为( )A.22 020-1B.82 020-1C.22 020D.82 020【解析】选B.由已知,令x=0,得a0=1,令x=3,得a0+a1·3+a2·32+…+a2 020·32 020=(1-9)2 020=82 020,所以a1·3+a2·32+…+a2 020·32 020=82 020-a0=82 020-1.2.的展开式中常数项为( )A.-30B.30C.-25D.25【解析】选C.=x2-3x+,的展开式的通项为T r+1=(-1)r,易知当r=4或r=2时原式有常数项,令r=4,T5=(-1)4,令r=2,T3=(-1)2·,故所求常数项为-3×=5-30=-25.。

人教版高中数学高考一轮复习--离散型随机变量及其分布列

人教版高中数学高考一轮复习--离散型随机变量及其分布列
增.已知学生甲答题时,若该题会做,则必得满分,若该题不会做,则不作答得
0分,通过对学生甲以往同类模拟考试情况的统计,得到他各题得分的概率
如表所示.
题目
第1题
第2题
代数
0.6
0.5
几何
0.8
0.7
数论
0.7
0.7
组合
0.7
0.6
第3题
第4题
0.4
0.2
0.5
0.3
0.5
0.3
0.3
0.2
假设学生甲考试中各题的得分相互独立.
(1)理解X的意义,写出X的所有可能取值;
(2)求X取每个值的概率;
(3)写出X的分布列.
3.求离散型随机变量分布列的关键是求随机变量取每个值的概率,在求解
时,要注意应用计数原理、古典概型等知识.
对点训练2
(1)已知一批100件的待出厂产品中,有1件不合格品,现从中任意抽取2件
进行检查,设抽取的2件产品中不合格品数为X,求X的分布列.
2
1 2 2
1 1 2
2
P(X=1)=3,P(X=2)=3 × 3 = 9,P(X=3)=3 × 3 × 3 = 27.
故 X 的分布列为
X
1
2
3
P
2
3
2
9
2
27
出现这种错误解法的原因是没有明确随机变量X的意义,X=1表示第一次
试验成功;X=2表示第一次试验失败,第二次试验成功;X=3表示前两次试验
X
P
40
0.147
80
0.343
100
0.126
140
0.294
160
0.027

高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.4 离散型随机变量及其概率分布教师用书

高考数学大一轮复习 第十二章 概率、随机变量及其分布 12.4 离散型随机变量及其概率分布教师用书

(江苏专用)2018版高考数学大一轮复习第十二章概率、随机变量及其分布12.4 离散型随机变量及其概率分布教师用书理苏教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((江苏专用)2018版高考数学大一轮复习第十二章概率、随机变量及其分布12.4 离散型随机变量及其概率分布教师用书理苏教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(江苏专用)2018版高考数学大一轮复习第十二章概率、随机变量及其分布12.4 离散型随机变量及其概率分布教师用书理苏教版的全部内容。

第十二章概率、随机变量及其分布 12。

4 离散型随机变量及其概率分布教师用书理苏教版1.离散型随机变量随着试验结果变化而变化的变量叫做随机变量,常用字母X,Y,ξ,η,…表示,所有取值可以一一列出的随机变量,叫做离散型随机变量.2.离散型随机变量的概率分布及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X取每一个值x i(i =1,2,…,n)的概率P(X=x i)=p i,则表X x1x2…x i…x nP p1p2…p i…p n称为离散型随机变量X的概率分布表.(2)离散型随机变量的概率分布的性质①p i≥0,i=1,2,…,n;②p1+p2+…+p i+…+p n=1。

3.常见离散型随机变量的概率分布(1)两点分布如果随机变量X的概率分布表为X01P1-p p其中0〈p<1,则称离散型随机变量X服从两点分布.(2)超几何分布一般地,设有N件产品,其中有M(M≤N)件次品.从中任取n(n≤N)件产品,用X表示取出的n件产品中次品的件数,那么P(X=r)=错误!(r=0,1,2,…,l).即X01…lP错误!错误!…错误!其中l=min(M,n),且n*如果一个随机变量X的概率分布具有上表的形式,则称随机变量X服从超几何分布.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)抛掷均匀硬币一次,出现正面的次数是随机变量.(√)(2)离散型随机变量的概率分布描述了由这个随机变量所刻画的随机现象.( √)(3)某人射击时命中的概率为0.5,此人射击三次命中的次数X服从两点分布.( ×)(4)从4名男演员和3名女演员中选出4名演员,其中女演员的人数X服从超几何分布.(√)(5)离散型随机变量的概率分布中,随机变量取各个值的概率之和可以小于1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新高考数学大一轮复习第十二章概率随机变量及其分布12-4离散型随机变量及其概率分布教师用书理苏教1.离散型随机变量随着试验结果变化而变化的变量叫做随机变量,常用字母X,Y,ξ,η,…表示,所有取值可以一一列出的随机变量,叫做离散型随机变量.2.离散型随机变量的概率分布及性质(1)一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…,xn,X 取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则表称为离散型随机变量X(2)离散型随机变量的概率分布的性质①pi≥0,i=1,2,…,n;②p1+p2+…+pi+…+pn=1.3.常见离散型随机变量的概率分布(1)两点分布如果随机变量X的概率分布表为其中0<p<1(2)超几何分布一般地,设有N件产品,其中有M(M≤N)件次品.从中任取n (n≤N)件产品,用X 表示取出的n件产品中次品的件数,那么P(X=r)= (r=0,1,2,…,l).即其中l=min(M,n)如果一个随机变量X的概率分布具有上表的形式,则称随机变量X服从超几何分布.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)抛掷均匀硬币一次,出现正面的次数是随机变量.( √)(2)离散型随机变量的概率分布描述了由这个随机变量所刻画的随机现象.( √)(3)某人射击时命中的概率为0.5,此人射击三次命中的次数X服从两点分布.( ×)(4)从4名男演员和3名女演员中选出4名演员,其中女演员的人数X服从超几何分布.( √)(5)离散型随机变量的概率分布中,随机变量取各个值的概率之和可以小于1.( ×)(6)离散型随机变量的各个可能值表示的事件是彼此互斥的.( √) 1.(2016·苏州模拟)袋中有3个白球、5个黑球,从中任取2个,可以作为随机变量的是________.①至少取到1个白球;②至多取到1个白球;③取到白球的个数;④取到的球的个数.答案③解析①②表述的都是随机事件,④是确定的值2,并不随机;③是随机变量,可能取值为0,1,2.2.设某项试验的成功率是失败率的2倍,用随机变量X去描述1次试验的成功次数,则P(X=0)=________.答案13解析设X的概率分布为p+2p=1,得p=.3.从标有1~10的10支竹签中任取2支,设所得2支竹签上的数字之和为X,那么随机变量X可能取得的值有________个.答案17解析X可能取得的值有3,4,5,…,19,共17个.4.从装有3个红球、2个白球的袋中随机取出2个球,设其中有X个红球,则随机变量X的概率分布为答案0.1 0.6 0.3解析∵X的所有可能取值为0,1,2,∴P(X=0)==0.1,P(X=1)===0.6,P(X=2)==0.3.∴X的概率分布为5.(教材改编)一盒中有123个旧的,从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,则P(X=4)的值为______.答案27220解析由题意知取出的3个球必为2个旧球、1个新球,故P(X=4)==.题型一离散型随机变量的概率分布的性质例1 (1)设X是一个离散型随机变量,其概率分布为则q=____________.答案-336解析∵+2-3q+q2=1,∴q2-3q+=0,解得q=±.又由题意知0<q2<,∴q =-.(2)设离散型随机变量X的概率分布为求2X+1的概率分布.解由概率分布的性质知0.2+0.1+0.1+0.3+m=1,得m=0.3.首先列表为从而2X+1的概率分布为引申探究1.在本例(2)的条件下,求随机变量η=|X-1|的概率分布.解由(2)知m=0.3,列表∴P(η=1)=P(X=0)+P(η=0)=P(X=1)=0.1,P(η=2)=P(X=3)=0.3,P(η=3)=P(X=4)=0.3.故η=|X-1|的概率分布为2.若本例(2)解依题意知η的值为0,1,4,9,16.P(η=0)=P(X2=0)=P(X=0)=0.2,P(η=1)=P(X2=1)=P(X=1)=0.1,p(η=4)=P(X2=4)=P(X=2)=0.1,P(η=9)=P(X2=9)=P(X=3)=0.3,P(η=16)=P(X2=16)=P(X=4)=0.3,故η=X2的概率分布为思维升华(1)以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据概率分布,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.设随机变量X的概率分布为P(X=)=ak(k=1,2,3,4,5).(1)求a;(2)求P(X≥);(3)求P(<X≤).解(1)由概率分布的性质,得P(X=)+P(X=)+P(X=)+P(X=)+P(X=1)=a +2a+3a+4a+5a=1,所以a=.(2)P(X≥)=P(X=)+P(X=)+P(X=1)=3×+4×+5×=.(3)P(<X≤)=P(X=)+P(X=)+P(X=)=++==.题型二离散型随机变量概率分布的求法命题点1 与排列、组合有关的概率分布的求法例2 (2015·重庆改编)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的概率分布.解(1)令A表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P(A)==.(2)X的所有可能值为0,1,2,且P(X=0)==,P(X=1)==,P(X=2)==.综上知,X的概率分布为命题点2例3 (2015·安徽改编)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的概率分布.解(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,P(A)==.(2)X的可能取值为200,300,400.P(X=200)==,P(X=300)==,P(X=400)=1-P(X=200)-P(X=300)=1--=.故X的概率分布为命题点3 与独立事件(例4 (2016·南京模拟)甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的概率分布.解(1)用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”.则P(Ak)=,P(Bk)=,k=1,2,3,4,5.P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B2)·P(A3)P(A4)=2+×2+××2=.(2)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=P(A1)P(A2)+P(B1)P(B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)·P(B4)=,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=.故X的概率分布为思维升华(1)理解X的意义,写出X可能取的全部值;(2)求X取每个值的概率;(3)写出X 的概率分布.求离散型随机变量的概率分布的关键是求随机变量所取值对应的概率,在求解时,要注意应用计数原理、古典概型等知识.(2016·湖北部分重点中学第一次联考)连续抛掷同一颗均匀的骰子,令第i次得到的点数为ai,若存在正整数k,使a1+a2+…+ak=6,则称k为你的幸运数字.(1)求你的幸运数字为3的概率;(2)若k=1,则你的得分为6分;若k=2,则你的得分为4分;若k=3,则你的得分为2分;若抛掷三次还没找到你的幸运数字,则记0分,求得分ξ的概率分布.解(1)设“连续抛掷3次骰子,和为6”为事件A,则它包含事件A1,A2,A3,其中A1:三次恰好均为2;A2:三次中恰好1,2,3各一次;A3:三次中有两次均为1,一次为4.A1,A2,A3为互斥事件,则P(A)=P(A1)+P(A2)+P(A3)=C()3+C··C··C·+C()2·=.(2)由已知得ξ的可能取值为6,4,2,0,P(ξ=6)=,P(ξ=4)=()2+2×C××=,P(ξ=2)=,P(ξ=0)=1---=.故ξ的概率分布为题型三超几何分布例5 (2016·连云港模拟)PM2.5是指悬浮在空气中的空气动力学当量直径小于或等于2.5微米的可入肺颗粒物.根据现行国家标准GB3095-2012,PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.从某自然保护区2016年全年每天的PM2.5监测数据中随机地抽取10天的数据作为样本,监测值频数如下表所示:(1)达到一级的概率;(2)从这10天的数据中任取3天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的概率分布.解(1)记“从10天的PM2.5日均值监测数据中,随机抽出3天,恰有一天空气质量达到一级”为事件A,则P(A)==.(2)依据条件,ξ服从超几何分布,其中N=10,M=3,n=3,且随机变量ξ的可能取值为0,1,2,3.P(ξ=k)=(k=0,1,2,3).∴P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=3)==.故ξ的概率分布为思维升华(1)①超几何分布是不放回抽样问题;②随机变量为抽到的某类个体的个数.(2)超几何分布的应用条件①两类不同的物品(或人、事);②已知各类对象的个数;③从中抽取若干个个体.某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动.(每位同学被选到的可能性相同)(1)求选出的3名同学来自互不相同学院的概率;(2)设X为选出的3名同学中女同学的人数,求随机变量X的概率分布.解(1)设“选出的3名同学来自互不相同学院”为事件A,则P(A)==.故选出的3名同学来自互不相同学院的概率为.(2)随机变量X的所有可能取值为0,1,2,3.P(X=k)=(k=0,1,2,3).∴P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.故随机变量X的概率分布是15典例某射手有5发子弹,射击一次命中概率为0.9.如果命中就停止射击,否则一直到子弹用尽,求耗用子弹数ξ的概率分布.错解展示现场纠错解P(ξ=1)=0.9,P(ξ=2)=0.1×0.9=0.09,P(ξ=3)=0.1×0.1×0.9=0.009,P(ξ=4)=0.13×0.9=0.000 9,P(ξ=5)=0.14=0.000 1.∴ξ的概率分布为纠错心得(1)值对应的事件及其概率.(2)验证随机变量的概率和是否为1.1.(2016·扬州模拟)某射手射击所得环数X 的概率分布为答案 0.79解析 根据X 的概率分布知,所求概率为0.28+0.29+0.22=0.79. 2.设X 是一个离散型随机变量,其概率分布为则q =________. 答案 1-22解析 由题意知⎩⎪⎨⎪⎧1-2q≥0,12+-+q2=1,即解得q =1-.3.(2016·泰州模拟)已知随机变量X 的概率分布为P(X =i)=(i =1,2,3,4),则P(2<X≤4)=________. 答案710解析 由概率分布的性质知,12a+++=1, 则a =5,∴P(2<X≤4)=P(X =3)+P(X =4)=+=. 4.设随机变量ξ的概率分布为P(ξ=i)=a()i ,i =1,2,3,则实数a 的值为________. 答案2713解析 ∵随机变量ξ的概率分布为P(ξ=i)=a()i ,i =1,2,3, ∴a[+()2+()3]=1,解得a=.5.从装有3个白球,4个红球的箱子中,随机取出3个球,则恰好是2个白球,1个红球的概率是________.答案1235解析如果将白球视为合格品,红球视为不合格品,则这是一个超几何分布问题,故所求概率为P==.6.(2016·盐城模拟)一实验箱中装有标号为1,2,3,3,4的5只白鼠,若从中任取1只,记取到的白鼠的标号为Y,则随机变量Y的概率分布是________.答案解析∵5∴P(Y=1)=,P(Y=2)=,P(Y=3)=,P(Y=4)=.∴随机变量Y的概率分布为7.没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分);若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________.答案-1,0,1,2,3解析X=-1,甲抢到一题但答错了,而乙抢到了两个题都答错了,X=0,甲没抢到题,乙抢到题答错至少2个题或甲抢到2题,但答时一对一错,而乙答错一个题,X=1,甲抢到1题且答对,乙抢到2题且至少答错1题或甲抢到3题,且1错2对,X=2,甲抢到2题均答对,X=3,甲抢到3题均答对.8.随机变量X的概率分布如下:。

相关文档
最新文档