Using a Support-Vector Machine for Japanese-to-English Translation of Tense
DS26502LN+;DS26502L+;中文规格书,Datasheet资料
5. 6.
6.1 6.2 6.3 6.4 6.5 6.6 6.7
PINOUT...........................................................................................................................23 HARDWARE CONTROLLER INTERFACE....................................................................26
APPLICATIONS
BITS Timing Rate Conversion
ORDERING INFORMATION
PART DS26502L DS26502LN TEMP RANGE 0°C to +70°C -40°C to +85°C PIN-PACKAGE 64 LQFP 64 LQFP
Note: Some revisions of this device may incorporate deviations from published specifications known as errata. Multiple revisions of any device may be simultaneously available through various sales channels. For information about device errata, clicf 125
/
REV: 042208
DS26502 T1/E1/J1/64KCC BITS Element
TABLE OF CONTENTS
An Introduction to Support Vector Machines
9/13/2013
Input space 802. Prepared by Martin LawFeature space CSE
Example Transformation
Define the kernel function K (x,y) as Consider the following transformation
9/13/2013
CSE 802. Prepared by Martin Law
7
The Optimization Problem the problem to its dual
This is a quadratic programming (QP) problem
Kernel methods, large margin classifiers, reproducing kernel Hilbert space, Gaussian process
CSE 802. Prepared by Martin Law 3
9/13/2013
Two Class Problem: Linear Separable Case
Global maximum of ai can always be found
w can be recovered by
CSE 802. Prepared by Martin Law 8
9/13/2013
Characteristics of the Solution
Many of the ai are zero
Class 2
Many decision boundaries can separate these two classes Which one should we choose?
Synopsys OptoDesigner 2020.09安装指南说明书
3. Troubleshooting scanning issues........................................................25
Accidental full scan proliferation by folder paths which include build or commit ID............................ 25 Solution......................................................................................................................................25
Contents
Contents
Preface....................................................................................................5
1. Scanning best practices......................................................................... 8
基于SMOTE采样和支持向量机的不平衡数据分类
基于SMOTE采样和支持向量机的不平衡数据分类曹路;王鹏【摘要】Imbalanced data sets exist widely in real life and their effective identification tends to be the focus of classification. However, the results of classification of imbalanced data sets by traditional support vector machines are poor. This paper proposes combining data sampling and SVM, conducting SMOTE sampling of minority samples in the original data and then classifying them by SVM. Experiments using artificial datasetsand UCI datasets show that by adopting SMOTE sampling, the performance of classification by SVM is improved.%不平衡数据集广泛存在,对其的有效识别往往是分类的重点,但传统的支持向量机在不平衡数据集上的分类效果不佳。
本文提出将数据采样方法与SVM结合,先对原始数据中的少类样本进行SMOTE采样,再使用SVM进行分类。
人工数据集和UCI数据集的实验均表明,使用SMOTE采样以后,SVM的分类性能得到了提升。
【期刊名称】《五邑大学学报(自然科学版)》【年(卷),期】2015(000)004【总页数】5页(P27-31)【关键词】不平衡数据;支持向量机;SMOTE;ROC曲线【作者】曹路;王鹏【作者单位】五邑大学信息工程学院,广东江门529020;五邑大学信息工程学院,广东江门 529020【正文语种】中文【中图分类】TP273现实生活中,不平衡数据集广泛存在,如:癌症诊断、信用卡欺诈等,其中,不平衡数据集中少类样本的识别往往才是分类的重点. 在医疗诊断中,如果把一个病人误诊为正常,可能会造成严重的后果;在信用卡欺诈检测中,如果将欺诈判断为正常事件,可能带来巨大的经济损失. 传统的分类器,如支持向量机(Support Vector Machine,SVM)[1]、决策树、神经网络等均是从优化整个数据集的性能出发而设计的学习机器,对多数样本类有较高的识别率,而对少数类的识别率却很低. 因此,传统的分类方法在处理不平衡数据集时存在弊端.为了解决不平衡数据的分类问题,研究人员主要从算法层面和数据层面来改善分类性能[2]. 算法层面主要是对现有算法的改进和提升[3-4],数据层面主要是通过重采样的技术来改善数据集的不平衡率,方法包括下采样和上采样. 下采样技术通过减少多数类样本来提高少数类样本的比例,但易因丢失多数类样本的信息而导致分类器无法正确学习[5]. 随机上采样通过随机复制少数类样本来达到增加少数类样本的目的,但新增加的数据有额外的计算代价[6]. 鉴于此,本文提出了一种基于SMOTE(synthetic minority over-sampling technique)[7]采样和支持向量机的不平衡数据分类,先对原始数据中的少类样本进行SMOTE采样,再使用SVM 进行分类,以期提升分类器的分类性能.1 基于SMOTE采样的SVM分类器的设计1.1 不平衡数据对SVM算法分类性能的影响为了测试数据不平衡对SVM分类器的影响,对两类符合正态分布的人工数据样本分别以不同的抽样比例生成训练集,再用SVM对它们进行分类. 其中一类样本中心为,另一类样本中心为,方差为(0.5,0;0,0.5). 图1中,两类样本的比例分别为1000:1000,1000:200,1000:100,1000:10;蓝颜色的点代表正类样本,黑颜色的“+”代表负类样本,红线代表使用支持向量机分类后得到的分类面. 如图1所示,当采样比例不断向右上方的多类样本(蓝色样本)倾斜时,红色的分界线逐渐向左下方移动,越来越多的少类样本被错划为多类样本,导致少类样本的分类准确率下降. 这是由于训练样本数量不平衡所引起的. 在现实生活中,少数样本的错分代价远高于多数样本. 所以为了提高分类器的性能,需要解决分类的决策面偏向少类样本的问题.1.2 SMOTE采样与SVM分类的结合SMOTE方法是由Chawla等提出来的一种对数据过采样的方法,其主要思想是在相距较近的少数类样本之间进行线性插值产生新的少数类样本,降低两类样本数量上的不平衡率,提高少数类样本的分类精度. 其具体方法可概括为:对少数类的样本,搜索其个最近邻样本,在其个最近邻样本中随机选择个样本(记为),在少数类样本与之间进行随机插值,构造如式(1)所示的新的小类样本:如图2所示,原始数据样本满足二元高斯分布,形状为方块;按照的比例对原始样本进行SMOTE采样,圆圈型样本是SMOTE采样之后的样本.为了更好地对不平衡数据进行分类,本文提出将数据采样方法与SVM结合,先对原始数据中的少类样本进行SMOTE采样,再使用SVM进行分类,算法的流程图如图3所示. 具体步骤如下:1)对样本数据进行预处理. 本文的数据预处理是对数据集数据进行归一化处理,按照数据集的各自维数,把所有的数据都归一化为[0,1]之间的数,以消除各个不同维数的数据间的数量级差别,避免因输入数据数量级差别较大而产生的较大误差;2)用SMOTE对负类样本采样,以降低多数类和少数类的不平衡程度;3)用支持向量机进行学习,建立最终的分类器.2 实验及结果分析2.1 人工数据集实验中的人造样本服从二维标准正态分布,其中一类样本中心为(1,1),另一类样本中心为,方差为(0.5,0;0,0.5),因此最优的分类面应该是一条通过原点的分界线. 分别选取了10个和100个作为少类样本和多类样本. 如图4所示,红色圆点表示多类样本,蓝色“+”点代表少类样本,蓝色线条是原始最佳分界面,红色线条是经过分类器之后建立的分界面. 很显然,SMOTE采样后的分界面明显优于原始不平衡数据的分类面. 本次实验在SVM建模的参数寻优过程中选取的是线性核函数,因此分类界面是直线.2.2 UCI数据集本文选取5个不同平衡程度、不同样本数量的UCI数据集进行实验. 为了实验简便,可把多类数据集转化为两类. 对于类数较多的数据集,设定其中一类为少数类,剩余的合并为多数类. 数据集的总体描述如表1所示.传统的分类学习方法一般采用分类精度来评价分类的效果. 但对于不平衡数据,用分类精度来衡量分类器的性能是不合理的. 因为当少数类比例非常低时,即使将全部少类都分为多类,其精度仍然非常高,而这样的分类器是没有意义的. 目前,不平衡问题分类的评价标准有F-value、G-mean、ROC曲线等,它们都是建立在混淆矩阵的基础上的. 其中,ROC曲线能全面描述分类器的性能,已经成为不平衡数据分类性能评价的准则. 一般说来,ROC曲线越偏向左上角,分类器的性能越好.由于ROC曲线不能定量地对分类器的性能进行评估,一般用ROC曲线下的面积(Area Under ROC Curve,AUC)来评估分类器的性能.在实验的过程中,采用交叉验证的方法,将数据集中的样本随机分为5份:其中的4份作为训练集,剩下的1份作为测试集. 由于实验中所用到的采样方法都属于随机算法,为避免偶然性,本文将每种方法都独立执行5次,最后取5次AUC值的平均值作为该算法在整个数据集中的AUC值. 图5为不同数据集下的ROC曲线,由图可见,除了图5-e中Breast cancer数据集SMOTE采样前和SMOTE采样后ROC曲线接近外,其他数据集中采用SMOTE采样后的ROC曲线均更偏向左上角,说明采用SMOTE采样后,SVM的分类性能要优于原始数据集下的分类性能. 5组数据集在两种方法下所记录的AUC的平均值和分类精度平均值如表2所示.由表2可知,相较于SVM分类算法,SVM+SMOTE算法除了在Breast cancer数据集上的AUC略低外,在其他数据集上均有不同程度的提升. 5个数据集的分类精度平均值亦有相似的实验结果,即除了Breast cancer数据集,经过SMOTE采样后,Wine、Haberman、Pima、Glass等4个数据集的分类精度平均值均得到了不同程度的提高. 这些说明采用SVM+SMOTE的方法能提高不平衡数据集的分类性能.3 结论传统的分类器对不平衡数据集中少数类样本的识别率较低,本文在讨论了不平衡数据对SVM算法分类性能影响的基础上,提出了一种基于SMOTE采样的SVM方法. 该方法首先对原始数据进行预处理,然后对少类样本进行SMOTE采样,最后再使用SVM进行分类. 实验结果表明,本文所提出的方法在少数类识别率和整体的分类精度上均优于传统的SVM算法,证明该算法是可行的、有效的. 如何利用上采样和下采样结合的方法,或者利用其他算法来提高不平衡数据集的分类性能是今后需要进一步研究的问题.[1] VAPNIK V N. 统计学习理论[M]. 许建华,张学工,译. 北京:电子工业出版社,2004.[2] 杨明,尹军梅,吉根林. 不平衡数据分类方法综述[J]. 南京师范大学学报(工程技术版),2008, 4(8): 7-12.[3] 李秋洁,茅耀斌,王执铨. 基于Boosting的不平衡数据分类算法研究[J]. 计算机科学,2011, 38(12): 224-228.[4] 王超学,张涛,马春森. 基于聚类权重分阶段的SVM解不平衡数据集分类[J]. 计算机工程与应用,2014, 25(4): 1-6.[5] ESTABROOKS A, JO T. A multiple re-sampling method for learning from imbalanced data sets [J]. Computational Intelligence, 2004, 20(11): 18-36.[6] AKBAR I R, KWEK S, JAPKOW I. Applying support vector machines to imbalanced datasets [C]//Proc of the 15th European Conference on Machines Learning. Berlin Heidelberg: Springer, 2004: 39-50.[7] CHAWLA N, BOWYER K, HALL L, et al. SMOTE: Synthetic minority over-sampling technique [J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357.[8] 陶新民,郝思媛,张冬雪,等. 基于样本特性欠取样的不均衡支持向量机[J]. 控制与决策,2013, 28(7): 978-984.[9] 邓乃扬,田英杰. 支持向量机——理论、算法与拓展[M]. 北京:科学出版社,2009.[10] WANG Quan, CHEN Weijie. A combined SMOTE and cost-sensitive twin support vector for imbalanced classification [J]. Journal of computational information systems, 2014, 12(10): 5245-5253.[责任编辑:熊玉涛]。
斑马技术公司DS8108数字扫描仪产品参考指南说明书
Text Categorization with Support Vector Machines
Features
Thorsten Joachims
Universitat Dortmund Informatik LS8, Baroper Str. 301
3 Support Vector Machines
Support vector machines are based on the Structural Risk Minimization principle 9 from computational learning theory. The idea of structural risk minimization is to nd a hypothesis h for which we can guarantee the lowest true error. The true error of h is the probability that h will make an error on an unseen and randomly selected test example. An upper bound can be used to connect the true error of a hypothesis h with the error of h on the training set and the complexity of H measured by VC-Dimension, the hypothesis space containing h 9 . Support vector machines nd the hypothesis h which approximately minimizes this bound on the true error by e ectively and e ciently controlling the VC-Dimension of H.
A Tutorial on Support Vector Machines for Pattern Recognition
burges@
Bell Laboratories, Lucent Technologies Editor: Usama Fayyad Abstract. The tutorial starts with an overview of the concepts of VC dimension and structural risk minimization. We then describe linear Support Vector Machines (SVMs) for separable and non-separable data, working through a non-trivial example in detail. We describe a mechanical analogy, and discuss when SVM solutions are unique and when they are global. We describe how support vector training can be practically implemented, and discuss in detail the kernel mapping technique which is used to construct SVM solutions which are nonlinear in the data. We show how Support Vector machines can have very large (even infinite) VC dimension by computing the VC dimension for homogeneous polynomial and Gaussian radial basis function kernels. While very high VC dimension would normally bode ill for generalization performance, and while at present there exists no theory which shows that good generalization performance is guaranteed for SVMs, there are several arguments which support the observed high accuracy of SVMs, which we review. Results of some experiments which were inspired by these arguments are also presented. We give numerous examples and proofs of most of the key theorems. There is new material, and I hope that the reader will find that even old material is cast in a fresh light. Keywords: support vector machines, statistical learning theory, VC dimension, pattern recognition
Reducing the Dimensionality of Data with Neural Networks
/cgi/content/full/313/5786/504/DC1Supporting Online Material forReducing the Dimensionality of Data with Neural NetworksG. E. Hinton* and R. R. Salakhutdinov*To whom correspondence should be addressed. E-mail: hinton@Published 28 July 2006, Science313, 504 (2006)DOI: 10.1126/science.1127647This PDF file includes:Materials and MethodsFigs. S1 to S5Matlab CodeSupporting Online MaterialDetails of the pretraining:To speed up the pretraining of each RBM,we subdivided all datasets into mini-batches,each containing100data vectors and updated the weights after each mini-batch.For datasets that are not divisible by the size of a minibatch,the remaining data vectors were included in the last minibatch.For all datasets,each hidden layer was pretrained for50passes through the entire training set.The weights were updated after each mini-batch using the averages in Eq.1of the paper with a learning rate of.In addition,times the previous update was added to each weight and times the value of the weight was sub-tracted to penalize large weights.Weights were initialized with small random values sampled from a normal distribution with zero mean and standard deviation of.The Matlab code we used is available at /hinton/MatlabForSciencePaper.htmlDetails of thefine-tuning:For thefine-tuning,we used the method of conjugate gradients on larger minibatches containing1000data vectors.We used Carl Rasmussen’s“minimize”code(1).Three line searches were performed for each mini-batch in each epoch.To determine an adequate number of epochs and to check for overfitting,wefine-tuned each autoencoder on a fraction of the training data and tested its performance on the remainder.We then repeated thefine-tuning on the entire training set.For the synthetic curves and hand-written digits,we used200epochs offine-tuning;for the faces we used20epochs and for the documents we used 50epochs.Slight overfitting was observed for the faces,but there was no overfitting for the other datasets.Overfitting means that towards the end of training,the reconstructions were still improving on the training set but were getting worse on the validation set.We experimented with various values of the learning rate,momentum,and weight-decay parameters and we also tried training the RBM’s for more epochs.We did not observe any significant differences in thefinal results after thefine-tuning.This suggests that the precise weights found by the greedy pretraining do not matter as long as itfinds a good region from which to start thefine-tuning.How the curves were generated:To generate the synthetic curves we constrained the co-ordinate of each point to be at least greater than the coordinate of the previous point.We also constrained all coordinates to lie in the range.The three points define a cubic spline which is“inked”to produce the pixel images shown in Fig.2in the paper.The details of the inking procedure are described in(2)and the matlab code is at(3).Fitting logistic PCA:Tofit logistic PCA we used an autoencoder in which the linear code units were directly connected to both the inputs and the logistic output units,and we minimized the cross-entropy error using the method of conjugate gradients.How pretraining affectsfine-tuning in deep and shallow autoencoders:Figure S1com-pares performance of pretrained and randomly initialized autoencoders on the curves dataset. Figure S2compares the performance of deep and shallow autoencoders that have the same num-ber of parameters.For all these comparisons,the weights were initialized with small random values sampled from a normal distribution with mean zero and standard deviation. Details offinding codes for the MNIST digits:For the MNIST digits,the original pixel intensities were normalized to lie in the interval.They had a preponderance of extreme values and were therefore modeled much better by a logistic than by a Gaussian.The entire training procedure for the MNIST digits was identical to the training procedure for the curves, except that the training set had60,000images of which10,000were used for validation.Figure S3and S4are an alternative way of visualizing the two-dimensional codes produced by PCA and by an autencoder with only two code units.These alternative visualizations show many of the actual digit images.We obtained our results using an autoencoder with1000units in thefirst hidden layer.The fact that this is more than the number of pixels does not cause a problem for the RBM–it does not try to simply copy the pixels as a one-hidden-layer autoencoder would. Subsequent experiments show that if the1000is reduced to500,there is very little change in the performance of the autoencoder.Details offinding codes for the Olivetti face patches:The Olivetti face dataset from which we obtained the face patches contains ten6464images of each of forty different people.We constructed a dataset of165,6002525images by rotating(to),scaling(1.4to1.8), cropping,and subsampling the original400images.The intensities in the cropped images were shifted so that every pixel had zero mean and the entire dataset was then scaled by a single number to make the average pixel variance be.The dataset was then subdivided into124,200 training images,which contained thefirst thirty people,and41,400test images,which contained the remaining ten people.The training set was further split into103,500training and20,700 validation images,containing disjoint sets of25and5people.When pretraining thefirst layer of2000binary features,each real-valued pixel intensity was modeled by a Gaussian distribution with unit variance.Pretraining thisfirst layer of features required a much smaller learning rate to avoid oscillations.The learning rate was set to0.001and pretraining proceeded for200epochs. We used more feature detectors than pixels because a real-valued pixel intensity contains more information than a binary feature activation.Pretraining of the higher layers was carried out as for all other datasets.The ability of the autoencoder to reconstruct more of the perceptually significant,high-frequency details of faces is not fully reflected in the squared pixel error.This is an example of the well-known inadequacy of squared pixel error for assessing perceptual similarity.Details offinding codes for the Reuters documents:The804,414newswire stories in the Reuters Corpus V olume II have been manually categorized into103topics.The corpus covers four major groups:corporate/industrial,economics,government/social,and markets.The labels were not used during either the pretraining or thefine-tuning.The data was randomly split into 402,207training and402,207test stories,and the training set was further randomly split into 302,207training and100,000validation mon stopwords were removed from the documents and the remaining words were stemmed by removing common endings.During the pretraining,the confabulated activities of the visible units were computed using a“softmax”which is the generalization of a logistic to more than2alternatives:the results using the best value of.We also checked that K was large enough for the whole dataset to form one connected component(for K=5,there was a disconnected component of21 documents).During the test phase,for each query document,we identify the nearest count vectors from the training set and compute the best weights for reconstructing the count vector from its neighbors.We then use the same weights to generate the low-dimensional code for from the low-dimensional codes of its high-dimensional nearest neighbors(7).LLE code is available at(8).For2-dimensional codes,LLE()performs better than LSA but worse than our autoencoder.For higher dimensional codes,the performance of LLE()is very similar to the performance of LSA(see Fig.S5)and much worse than the autoencoder.We also tried normalizing the squared lengths of the document count vectors before applying LLE but this did not help.Using the pretraining andfine-tuning for digit classification:To show that the same pre-training procedure can improve generalization on a classification task,we used the“permuta-tion invariant”version of the MNIST digit recognition task.Before being given to the learning program,all images undergo the same random permutation of the pixels.This prevents the learning program from using prior information about geometry such as affine transformations of the images or local receptivefields with shared weights(9).On the permutation invariant task,Support Vector Machines achieve1.4%(10).The best published result for a randomly initialized neural net trained with backpropagation is1.6%for a784-800-10network(11).Pre-training reduces overfitting and makes learning faster,so it makes it possible to use a much larger784-500-500-2000-10neural network that achieves1.2%.We pretrained a784-500-500-2000net for100epochs on all60,000training cases in the just same way as the autoencoders were pretrained,but with2000logistic units in the top layer.The pretraining did not use any information about the class labels.We then connected ten“softmaxed”output units to the top layer andfine-tuned the whole network using simple gradient descent in the cross-entropy error with a very gentle learning rate to avoid unduly perturbing the weights found by the pretraining.For all but the last layer,the learning rate was for the weights and for the biases.To speed learning,times the previous weight increment was added to each weight update.For the biases and weights of the10output units, there was no danger of destroying information from the pretraining,so their learning rates were five times larger and they also had a penalty which was times their squared magnitude. After77epochs offine-tuning,the average cross-entropy error on the training data fell below a pre-specified threshold value and thefine-tuning was stopped.The test error at that point was %.The threshold value was determined by performing the pretraining andfine-tuning on only50,000training cases and using the remaining10,000training cases as a validation set to determine the training cross-entropy error that gave the fewest classification errors on the validation set.We have alsofine-tuned the whole network using using the method of conjugate gradients (1)on minibatches containing1000data vectors.Three line searches were performed for eachmini-batch in each epoch.After48epochs offine-tuning,the test error was%.The stopping criterion forfine-tuning was determined in the same way as described above.The Matlab code for training such a classifier is available at/hinton/MatlabForSciencePaper.htmlSupporting textHow the energies of images determine their probabilities:The probability that the model assigns to a visible vector,isSupportingfiguresFig.S1:The average squared reconstruction error per test image duringfine-tuning on the curves training data.Left panel:The deep784-400-200-100-50-25-6autoencoder makes rapid progress after pretraining but no progress without pretraining.Right panel:A shallow784-532-6autoencoder can learn without pretraining but pretraining makes thefine-tuning much faster,and the pretraining takes less time than10iterations offine-tuning.Fig.S2:The average squared reconstruction error per image on the test dataset is shown during the fine-tuning on the curves dataset.A784-100-50-25-6autoencoder performs slightly better than a shal-lower784-108-6autoencoder that has about the same number of parameters.Both autoencoders were pretrained.Fig.S3:An alternative visualization of the2-D codes produced by taking thefirst two principal compo-nents of all60,000training images.5,000images of digits(500per class)are sampled in random order.Each image is displayed if it does not overlap any of the images that have already been displayed.Fig.S4:An alternative visualization of the2-D codes produced by a784-1000-500-250-2autoencoder trained on all60,000training images.5,000images of digits(500per class)are sampled in random order.Each image is displayed if it does not overlap any of the images that have already been displayed.A c c u r a c y Fig.S5:Accuracy curves when a query document from the test set is used to retrieve other test set documents,averaged over all 7,531possible queries.References and Notes1.For the conjugate gradient fine-tuning,we used Carl Rasmussen’s “minimize”code avail-able at http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize/.2.G.Hinton,V .Nair,Advances in Neural Information Processing Systems (MIT Press,Cam-bridge,MA,2006).3.Matlab code for generatingthe images of curves is available at/hinton.4.G.E.Hinton,Neural Computation 14,1711(2002).5.S.T.Roweis,L.K.Saul,Science 290,2323(2000).6.The 20newsgroups dataset (called 20news-bydate.tar.gz)is available at/jrennie/20Newsgroups.7.L.K.Saul,S.T.Roweis,Journal of Machine Learning Research 4,119(2003).8.Matlab code for LLE is available at /roweis/lle/index.html.9.Y .Lecun,L.Bottou,Y .Bengio,P.Haffner,Proceedings of the IEEE 86,2278(1998).10.D.V .Decoste,B.V .Schoelkopf,Machine Learning 46,161(2002).11.P.Y .Simard,D.Steinkraus,J.C.Platt,Proceedings of Seventh International Conferenceon Document Analysis and Recognition (2003),pp.958–963.。
两种硬件同步原语 -回复
两种硬件同步原语-回复硬件同步原语是计算机系统中用于实现并发控制和线程同步的基本原语。
它们提供了一种可靠的机制,确保多线程操作数据的一致性。
在本文中,将重点介绍两种常见的硬件同步原语:原子操作和互斥锁。
1. 原子操作原子操作是一种基本的硬件同步原语,它保证了在多线程环境中进行的某些关键操作的独占性。
原子操作是不可分割的,即它们要么完全执行成功,要么不执行。
在执行过程中,不允许其他线程对其进行中断或竞争。
常见的原子操作有原子读取、原子写入和原子增减。
原子读取:原子读取操作确保在读取一个共享变量时,没有其他线程对该变量进行写入操作。
这样可以保证线程读取到的是最新的值,避免了数据不一致的问题。
原子写入:原子写入操作在写入一个共享变量时,确保没有其他线程同时对该变量进行读取或写入操作。
这样可以保证写入的值不会被其他线程的操作所覆盖。
原子增减:原子增减操作用于对共享变量进行自增或自减操作。
它们保证了对共享变量的操作是原子性的,不会被其他线程的操作所干扰。
使用原子操作可以减少线程间的竞争,提高并发性能。
在硬件层面上,原子操作通常通过指令级别的支持来实现,例如CPU提供的原子指令。
2. 互斥锁互斥锁是一种用于实现互斥访问的硬件同步原语。
互斥锁允许多个线程同时访问共享资源,但只允许其中一个线程进行写入操作。
其他线程必须等待当前持有锁的线程释放锁后才能获取锁并进行操作。
互斥锁通常有两种状态:锁定(locked)和非锁定(unlocked)。
当一个线程获得锁时,锁的状态为锁定;当线程释放锁时,锁的状态变为非锁定。
线程在对共享资源进行操作前需要先尝试获取锁,若锁的状态为锁定,则线程需要等待,直到锁的状态变为非锁定才能继续执行。
互斥锁的实现通常依赖于原子操作。
通过原子操作保证对锁状态的读取和修改是不可分割的,从而避免多个线程同时获取到锁的情况。
一种常见的互斥锁实现是使用测试与设置指令(test-and-set instruction),它可以原子地读取锁的状态并设置新的状态。
DB33∕T 1136-2017 建筑地基基础设计规范
5
地基计算 ....................................................................................................................... 14 5.1 承载力计算......................................................................................................... 14 5.2 变形计算 ............................................................................................................ 17 5.3 稳定性计算......................................................................................................... 21
主要起草人: 施祖元 刘兴旺 潘秋元 陈云敏 王立忠 李冰河 (以下按姓氏拼音排列) 蔡袁强 陈青佳 陈仁朋 陈威文 陈 舟 樊良本 胡凌华 胡敏云 蒋建良 李建宏 王华俊 刘世明 楼元仓 陆伟国 倪士坎 单玉川 申屠团兵 陶 琨 叶 军 徐和财 许国平 杨 桦 杨学林 袁 静 主要审查人: 益德清 龚晓南 顾国荣 钱力航 黄茂松 朱炳寅 朱兆晴 赵竹占 姜天鹤 赵宇宏 童建国浙江大学 参编单位: (排名不分先后) 浙江工业大学 温州大学 华东勘测设计研究院有限公司 浙江大学建筑设计研究院有限公司 杭州市建筑设计研究院有限公司 浙江省建筑科学设计研究院 汉嘉设计集团股份有限公司 杭州市勘测设计研究院 宁波市建筑设计研究院有限公司 温州市建筑设计研究院 温州市勘察测绘院 中国联合工程公司 浙江省电力设计院 浙江省省直建筑设计院 浙江省水利水电勘测设计院 浙江省工程勘察院 大象建筑设计有限公司 浙江东南建筑设计有限公司 湖州市城市规划设计研究院 浙江省工业设计研究院 浙江工业大学工程设计集团有限公司 中国美术学院风景建筑设计研究院 华汇工程设计集团股份有限公司
A Tutorial on Support Vector Regression
as at as possible. In other words, we do not care about errors as long as they
are less than ", but will not accept any deviation larger than this. This may be
Introduction 1
Abstract
In this tutorial we give an overview of the basic ideas underlying Support Vector (SV) machines for regression and function estimation. Furthermore, we include a summary of currently used algorithms for training SV machines, covering both the quadratic (or convex) programming part and advanced methods for dealing with large datasets. Finally, we mention some modi cations and extensions that have been applied to the standard SV algorithm, and discuss the aspect of regularization and capacity control from a SV point of view.
1 Introduction
The purpose of this paper is twofold. It should serve as a self-contained introduction to Support Vector regression for readers new to this rapidly developing eld of research. On the other hand, it attempts to give an overview of recent developments in the eld.
模糊多类SVM模型
模糊多类SVM 模型李昆仑1,2,黄厚宽1,田盛丰1(11北京交通大学计算机与信息技术学院,北京100044;21河北大学计算机学院,河北保定071002)摘 要: 利用SVM 处理多类分类问题,是当前的研究热点之一.本文提出了一种模糊多类支持向量机模型,即FMSVM.该方法是在Weston 等人提出的多类SVM 模型中引入模糊成员函数,针对每个输入数据对分类结果的不同影响,该模糊成员函数得到相应的值,由此得到不同的惩罚值.从而在构造分类超平面时,可以忽略那些对分类结果影响很小的数据.理论分析与数值实验都表明,该算法具有良好的鲁棒性.关键词: 多类分类;支持向量机(SVM);模糊成员函数中图分类号: TP391 文献标识码: A 文章编号: 0372-2112(2004)05-0830-03Fuzzy Su pport Vector Machine for Mu lt -i C lass C lassificationLI Kun -lun 1,2,H UANG Hou -kuan 1,TI AN Sheng -feng 1(11Sc hool o f Compute r &Information Tec hnology ,Be ijing Jiaotong U nive rsity,Bei j ing 100044,China ;21Sc hool o f Compute r Scienc e ,Hebei Unive rsit y ,Bao ding,Hebe i 071002,China)Abstract: How to process mult-i class problem with SVM is one of the present research focuses.We propose a fuzzy mult-i class SVM model referred as FMSVM.It i s constructed by introducing a fuzzy membership function to the penalty in the quadratic problem of Weston and Watkins,the membership function acq uire differen t values for each input data according to their different affects on the classi fication results.Hence,we can ignore the data,which affect the classification result a little.Therefore different input points can make different contributions to the learning of the decision surface,i.e.,the optimal separati ng hyper -plane.Both theoretical analysis and digital experiment results show that the model proposed here works very well on benchmark data sets and also has the property of robustness.Key words: mult-i class classification;support vector machine (SVM);fuzzy membership functi on1 引言支持向量机(Support vector machine,SVM)是统计机器学习理论(Statistical learning theory,SLT )的核心内容,它基于VC 维理论和结构风险最小化原理[1,2].在很大程度上克服了传统机器学习中维数灾难、局部极小点以及过学习等难以克服的困难.它具有良好的泛化能力,并拥有传统的机器学习方法无法比拟的性能.这一理论已经成功应用于数据挖掘和模式识别,例如手写体数字的识别、物体的识别、语音识别等.SVM 的研究中有两类问题亟待解决.其一,是如何将两类问题的解决办法有效地推广至多类问题.目前,已经有一些卓有成效的方法,如1-v -1、1-v -r 以及DAGSVM 等方法.上述的方法都是基于解决多个两类分类问题的.换言之,SVM 的多类分类器一般是从二类分类出发设计的.其二,SVM 对孤立点和噪音数据是非常敏感的,如何克服这一困难.与传统的多类SVM 不同,FMSVM 首先在Weston 和Watkins 所提出的多类SVM 分类器直接构造方法[5]的惩罚项中引入模糊成员函数.在处理训练数据时,根据它们在训练过程中重要程度的不同,区别对待.也就是说,将目标函数中的惩罚项模糊化,重构优化问题及其约束条件,然后重构其La -grangian 公式,使得原公式(模型)所对应的最优分类超平面的解即为其对偶形式的解.2 多类SV M 分类方法简介下面简单介绍几种常见的多类S VM 分类算法.211 /one -versus -rest 0(一对多,1-v -r)方法[2]对于k -(k >2)类分类问题,构造k 个2类SVM 分类器,每一类对应其中的一个.在构造第i 个2类分类器时,把属于第i 类的样本点标记为正,不属于这一类的样本点标记为负.也就是说,第i 个二类SVM 分类器所构造的分类超平面(sep -arating hyperplane),把第i 类与其它的(i -1)类分割开.测试时,对测试样本分别计算各个2类分类器的决策函数值,选择最大的函数值所对应的类别为测试数据的类别.212 /one -versus -one 0(一对一,1-v -1)方法[6]对于k -类分类问题,任意两个不同的类构造一个2类SVM 分类器.这时共需要构造N =k (k -1)/2个2类S VM收稿日期:2003-07-20;修回日期:2003-09-16基金项目:国家/十五0重点科技攻关项目(No.2002BA407B);河北省自然科学基金(No.603137)第5期2004年5月电 子 学 报ACTA ELECTRONICA SINICA Vol.32 No.5May 2004分类器.在构造第i 类和第j 类的2类S VM 分类器时,分别选取属于第i 类和第j 类的样本数据作为训练样本,将属于第i类的样本标记为正,将属于第j 类的样本标记为负.测试时,将数据对所有的2类分类器分别进行测试,并累计各类的得分,选择得分最高的类为测试数据的类别.213 构造k -类SVM 分类器的直接方法Weston 和Watkins 提出了解决k -类问题的一种直接方法[5],实际上它是标准SVM 中二次优化问题的一种自然的推广:min <(w ,N )=12E k m=1(w m #w m)+C E l i=1Em X yiN mi(1)其约束条件为:(w y j#x i )+b y iE (w m #x i )+b m +2-N m i ,N m i E 0,1=1,,,l ,m,y i I {1,,,k },m X y i(2)由此,得到下面的k -类SVM 分类器的决策函数:f (x )=arg max k[(w i #x )+b i ],i =1,,,k(3)本文将对上述SVM 多类分类方法进行改进,在惩罚项中引入模糊成员函数.其目的在于根据每个数据点对分类结果的不同影响,模糊成员函数为其赋予不同的值.因而,可以降低噪音对分类结果的影响.3 引入模糊成员函数的多类SVM )))F MSVM311 输入数据的模糊性在传统的SVM 理论中,训练过程对于那些远离它们所属类的训练点是十分敏感的.如何设置惩罚项中自由参数C 的值是非常重要的.较大的C 意味着为错误项指定了较大的惩罚值,可以减少错误分类点.另一方面,较小的C 的值,意味着忽略了一些/微不足道0的误分类点,因而可得到较大的分类间隔(margin).无论C 的值是大还是小,在SVM 的训练过程中这个参数的值始终是固定的.也就是说,在SVM 的训练过程中,所有的训练点都是被平等对待的.这样就导致了SVM 对某些特殊情形的过分敏感,例如孤立点与噪声.这种情形即是所谓的/过学习0(overfitting )现象.在很多实际应用问题中,不同的训练点对分类结果的影响是不同的.一般来说,训练集中存在某些点对分类结果的影响很大,同时也存在一些点对分类结果的影响很小甚至是微不足道的.因此在处理分类问题时,必须将那些/重要的点0正确分类,并且可以忽略那些/微不足道0的点,比如说带有/噪声0的点和距离类中心很远的孤立点.312 引入模糊成员函数的多类SVM 分类器假设给出了一个带有类别标号和模糊成员函数的训练集S :(x 1,y 1,s 1),,,(x l ,y l ,s l ),每一个训练样本x i I R N都给出了与其对应的类别标号y i I {1,2,,,k },以及模糊成员函数s i ,R F s i F 1,其中i =1,,,l ,R 是一个充分小的正数.令z =U (x )表示特征空间中的向量,而U 是由输入空间R N 到特征空间Z 的映射.最优分类超平面可由下面二次优化问题的解给出:min12E km=1(w m #w m )+CE li=1E m X yis mi N m i (4)s.t. (w y i#x i )+b y iE (w m #x i )+b m +2-N m i ,N m i E 0,i =1,,,l,m,y i I {1,,,k },m X k(5)其中C 是惩罚常数,N 是松弛变量,s 是所引入的模糊成员函数.对应的Lagrangian 公式为:L (w,b,N ,A ,B )=12E km=1(w m #w m )+CE l i=1E km =1s m i N mi-E li=1E km=1A mi [((w y i-w m )#x i )+b y i-b m -2+N m i ]-E li=1E km=1B m i N mi(6)其中,A ,B 均为Lagrange 因子,它们满足下面的条件:A y i i =0,B y i i =0,N y i i =2,s y i i =1,i =1,,,l 以及约束条件:A m i E 0,B m i E 0,N m i E 0,R F s mi F 1分别求关于w n ,b n 的偏导数,则在鞍点处应满足:5L 5w n=0,]w n =E li=1(A i c ni -A n i )x i(7) 5L 5b n=0,]Eli=1A i c n i =Eli=1A ni(8)5L 5N n i=0,]Cs n j =A n j +B n j 和0F A n j F Cs nj (9)其中,引入了符号c n i 和A i ,其意义如下:c n i=1, 当y i =n 时0, 当y i X n 时, A i =E km =1A mi(10)将上述结果代入式(6),可以得到下面的:W =12E k m=1E l i=1E lj=1(c mi A i -A m i )(c m j A j -A mj )(x i #x j )-E km=1E li=1A m i [E lj =1(c yi j A j -A yi j )(x i #x j )-E lj =1(c mj A j -A m j )(x i #x j )+b y i+b m -2]-E km=1E li=1A m i N m i +CE km =1Eli=1s m i N mi -E k m=1E li=1B m i N mi(11)将其进一步化简为:min W =2Ei,mA m i -12Ei,j,m[c y i j A i A j -2A m i A y i j +A m i A mj ](x i #x j )(12)约束条件为:El i=1A n i =E li=1c ni A i ,n =1,,,k ;0F A m i F Cs m i ;A yi i =0;i =1,,,l;m,y i I {1,,,k }(13)因而,可以得到下面的决策函数:f (x ,A )=arg max n[E li=1(c ni A i -A ni )(x i #x )+b n ](14)若给定了一个模糊训练集,根据上述方法构造的模糊多类SVM ,即FMSVM 仍采用分类间隔的最大化以及分类错误的最小化,使得分类器具有较好的泛化能力.与传统SVM 所不同的是,在FMSVM 中将惩罚项模糊化,以降低不太重要的数据对分类结果的影响.4 数值实验首先在UCI 机器学习数据库[7]中选择了7个数据集,831第 5 期李昆仑:模糊多类SVM 模型表1 在第一组数据上的实验结论Data Kernel Parm 1-v -r(%)1-v -1(%)J &C(%)FMSV M (%)irisPol y496100?012796129?012596124?013096134?0125596189?013096194?012596186?013596186?0127696187?018796189?017596132?016396133?0133RBF01197102?015297102?016997102?014597108?0125196181?113096189?111296156?011096165?1110w i nePol y 397146?015697156?014597134?015597178?0150497157?115597153?114097157?113697165?1136RBF397176?012797177?012797176?012797168?013801297156?016797164?016597170?015597168?0152glassPol y 382112?110782125?110281125?018583130?0182582112?017682145?017282133?017085130?0187RBF 01381156?016683135?015782146?013285150?0167182156?012883175?013082156?019884150?1102soyPol y 01596166?110397135?019297156?018797100?0156297166?016597135?015297126?017797150?0166RBF495166?015696135?016697122?015897150?0151595168?014596133?015397122?016897140?0185vowelPol y 01296166?013697135?015597146?016297150?0187296166?015397135?016697146?013797150?0125RBF596165?018697133?019297145?017697155?0195696165?015697136?016897145?014697155?1102表2 在第二组数据blood -cell 和thyroid 上的实验结果Blood cell Pol y490125?110592110?111490135?112091133?1118591103?113491190?112590120?115292110?1131691125?019891158?110591124?018792112?1168RBF1091152?016491158?013891124?015892112?0166Thyroid Pol y 492127?211596156?116796162?113793154?1152RBF 1092130?118295175?114695116?110395146?1124FTRAINRBF875103?312576136?218773123?312680125?11571076130?317476135?216775100?313381102?1123分别是iris,wine,glass,soy 和vowel,以及Blood -cell 和Thyroid.为了验证FMSVM 对噪音数据的可行性,利用NDC 数据生成器[8]生成了一个数据集FTRAIN .其中,含有1000个样本点,每个样本数据的维数为8,样本集的类别数为3,该样本集服从正态分布,在此基础上加入了50个噪音数据(均值为0,谱密度为一个正常数的白噪声).在实验中,取s i =y i /k ,其中k 为类别数,y i 为类别标号(y i =1,,,k ).为了使得实验更具有说服力,对每一个算法都选取了不同的C 值,并使用了两个核函数:多项式函数K (x ,x i )=[(x #x i )+1]d 与径向基函数K (x ,y )=exp (-R |x -y |2).每个算法在实现过程中,核函数的参数,比如多项式核函数中的次数d ,以及径向基函数中的跨度系数R 的取值使用了几个值进行比较.采用10重交叉验证法估计分类器的正确性,表1和表2中给出了平均正确率以及标准偏差.对实验结果的分析可以看出,FMSVM 算法在所选定的数据集上的性能是较好的.在/glass 0,/soy 0和/vow -el 0上的分类结果优于其他算法;但在/iris 0和/wine 0上,分类结果比1-v -1差.在/blood cell 0上,分类正确率高于其它算法;但在/thyroid 0上,分类正确率低于1-v -1算法,高于其它算法.在表1和表2中,Data 指数据集,Kernel 指核函数,Pam 指参数,J &C 表示文[5]中所提出的多类SVM 算法.把所FMSVM 算法与1-v -r,1-v -1以及Weston 等人提出多类SVM 算法进行了比较.由实验结果可以看出,FMSVM 与其它几种分类器相比,对由数据生成器所生成的带有噪声的FTRAIN 来说,分类精度大大提高了.由此可见该算法对处理噪音数据是非常有效的.并且,在对实验结论进行的统计显著性分析来看,该算法的分类正确率明显高于其他三种算法.5 结论在本文中,提出了一种FMSVM 模型,即模糊多类SVM 模型.它是在Weston 等人所提出的算法的基础上,引入一个模糊成员函数.对每一个数据,模糊成员函数都给出一个值以确定该数据属于某一类的隶属度,从而可以确定该点对分类结果的影响程度.由此可见,依据此模型得到的算法可以减少噪音数据或孤立点对分类结果的影响,增强算法的鲁棒性.理论分析与实验结果表明,我们所提出的模型是可行的和有效的.参考文献:[1] J C Burges.A tutorial on support vector machines for pattern recogn-ition[J].Data M i ning and Knowledge Discovery,1998,2:121-167.[2] V Vapnik.Statistical Learning Theory[M ].Wiley -Interscience,Publ-ication,1998.[3] C W Hsu,C J Lin.A co mparis on of methods for multiclass s upport vectormachines[J].IEEE T rans on Neural Net works.2002,13(2):415-425.[4] Li Kun -lun,Huang Hou -kuan,Tian Sheng -feng.A novel mult-i classSV M clas sifier based on D DAG[A].Proc.of IEEE ICMLC .02[C].Chi na:IEEE,2002.1203-1207.[5] J Wes ton,C Watkins.Mult-i class Support Vector Machines [R].Tech -nical Report,CSD -TR -98-04,Department of Computer Science,Royal Holloway University of London,England,May 1998.[6] Ulrich Kressel.Pairwis e classificati on and support vector machines[A].In B Sch Êlkopf,C J C Burges,A J Smola,editors,Advances in Kernel M e thods -Support Vector Learning [C].Cambridge,MA,MIT Pres s,1998.255-268.[7] /~mlearn/M LReposi tory.html[DB/O L].[8] http://www.cs.w i /musicant/data/ndc[DB/O L].1998.作者简介:李昆仑 男,1962年出生于河北保定,现为北京交大计算机与信息技术学院博士生,主要研究方向为机器学习、数据挖掘.黄厚宽 男,1940年出生于四川遂宁,现为北京交大计算机与信息技术学院教授,博导,主要研究方向为机器学习、数据挖掘、智能网络安全和多A gent 等.832 电 子 学 报2004年。
基于特征提取与INGO-SVM_的变压器故障诊断方法
第52卷第7期电力系统保护与控制Vol.52 No.7 2024年4月1日Power System Protection and Control Apr. 1, 2024 DOI: 10.19783/ki.pspc.230936基于特征提取与INGO-SVM的变压器故障诊断方法包金山1,杨定坤2,张 靖1,张 英1,3,杨镓荣1,胡克林1(1.贵州大学电气工程学院,贵州 贵阳 550025;2.重庆邮电大学先进制造工程学院,重庆 400065;3.贵州电网有限责任公司电力科学研究院,贵州 贵阳 550002)摘要:针对使用支持向量机(support vector machine, SVM)对变压器进行故障诊断时有效特征提取困难、模型参数难以选择的问题,提出一种基于特征提取与INGO-SVM的变压器故障诊断方法。
首先,使用核主成分分析(kernel principal component analysis, KPCA)方法对构建的21维待选特征进行特征融合和低维敏感特征提取。
其次,使用佳点集、随机反向学习和维度交叉学习等策略对北方苍鹰优化算法(northern goshawk optimization, NGO)进行改进。
通过2个典型测试对改进北方苍鹰优化算法(improved northern goshawk optimization, INGO)进行性能测试,验证了INGO算法的优越性。
然后,基于KPCA提取的低维敏感特征,使用INGO对SVM的参数进行组合寻优,建立基于KPCA特征提取与INGO-SVM的变压器故障诊断模型。
最后,对不同变压器故障诊断模型进行实例仿真对比实验。
结果表明:所提方法故障诊断精度高、稳定性好,更适用于变压器的故障诊断。
关键词:变压器;故障诊断;支持向量机;核主成分分析;北方苍鹰优化算法Transformer fault diagnosis method based on feature extraction and INGO-SVMBAO Jinshan1, YANG Dingkun2,ZHANG Jing1, ZHANG Ying1, 3, YANG Jiarong1, HU Kelin1(1. College of Electrical Engineering, Guizhou University, Guiyang 550025, China; 2. College of Advanced ManufacturingEngineering, Chongqing University of Posts & Telecommunications, Chongqing 400065, China;3. Electric Power Research Institute of Guizhou Power Grid Co., Ltd., Guiyang 550002, China)Abstract: It is difficult to extract effective features and select model parameters when using a support vector machine (SVM) for transformer fault diagnosis. A transformer fault diagnosis method based on feature extraction and an improved northern goshawk optimization (INGO) algorithm optimized SVM is proposed. First, kernel principal component analysis (KPCA) is used to conduct feature fusion and low dimensional sensitive feature extraction for the 21 dimensional candidate feature. Secondly, strategies such as good point set, random opposition-based learning, and dimensional cross learning are used to improve the northern goshawk optimization (NGO) algorithm. The performance of the INGO algorithm is tested using two typical test functions, verifying its superiority. Then, based on the low dimensional sensitive feature extracted by KPCA, INGO is used to optimize the parameters of the SVM, and a transformer fault diagnosis model is established based on KPCA feature extraction and INGO-SVM. Finally, simulation and comparative experiments are conducted on different transformer fault diagnosis models. The results show that the proposed method has high accuracy and good stability in fault diagnosis, and is more suitable for transformer fault diagnosis.This work is supported by the National Natural Science Foundation of China (No. 52177016).Key words: transformer; fault diagnosis; support vector machine; kernel principal component analysis; NGO0 引言变压器是电网系统中的重要组成部分,其在运基金项目:国家自然科学基金项目资助(52177016);贵州省科技计划项目资助(黔科合支撑[2021]365);贵州大学自然科学特别科学研究基金项目资助(2021-45) 行过程中发生故障会给电网系统造成巨大的经济损失。
java中vector 原理
java中vector 原理Java中的Vector原理Vector是Java中的一个动态数组类,它实现了List接口,并且在内部实现上是线程安全的。
下面我将给你介绍一下Vector的原理。
Vector内部使用数组来存储元素,通过动态扩容和缩容来适应元素的添加和删除操作。
首先,Vector会根据初始容量创建一个内部数组,当元素数量超过数组容量时,Vector会自动扩容。
扩容时,Vector会创建一个新的容量更大的数组,并将原数组中的元素复制到新数组中。
通常情况下,扩容时Vector会增加一倍的容量,这可以减少扩容的次数,提高性能。
在添加元素时,扩容操作是自动进行的,我们不需要手动干预。
另外,Vector也支持在特定位置进行插入和删除元素。
当我们在指定位置插入或删除元素时,Vector会将插入点之后的所有元素向后移动或将删除点之后的所有元素向前移动。
同样地,这也是线程安全的,因为Vector使用synchronized关键字来保证同一时间只有一个线程可以修改Vector。
当元素数量减少到一定程度时,Vector也会进行缩容操作。
缩容会发生在移除元素后,并且是自动进行的。
Vector会创建一个新的容量更小的数组,并将原数组中的元素复制到新数组中。
同样地,缩容也会减少数组的容量,提高内存的利用率。
需要注意的是,由于Vector在内部使用了synchronized关键字来保证线程安全性,所以在多线程环境下使用Vector会带来额外的性能开销。
如果不需要线程安全的操作,建议使用效率更高的ArrayList类。
以上就是Java中Vector的原理和工作方式。
希望能对你有所帮助!。
c++解救小动物问题地震
c++解救小动物问题地震【原创版】目录1.背景介绍2.C++语言的特点和优势3.解救小动物问题的具体实现4.地震问题与解救小动物问题的关联5.总结正文1.背景介绍C++是一种通用的高级编程语言,主要用于开发大型软件系统。
近年来,C++语言在人工智能、游戏开发和嵌入式系统等领域得到了广泛应用。
本文将介绍如何使用 C++语言解决一个有趣的问题:解救小动物问题。
此外,我们还将探讨该问题与地震之间的关联。
2.C++语言的特点和优势C++语言具有以下特点和优势:- 面向对象:C++支持面向对象编程,可以创建类和对象,实现数据封装、继承和多态。
- 泛型编程:C++支持泛型编程,可以编写模板,实现代码重用。
- 强大的标准库:C++提供了丰富的标准库,如 STL,包括容器、迭代器、算法等,方便开发者进行高效的编程。
- 高性能:C++编译后的代码具有较高的执行效率,适用于对性能要求较高的场景。
3.解救小动物问题的具体实现解救小动物问题是一个经典的算法问题,描述如下:有一个森林,里面有许多棵树木。
每棵树上都有一定数量的小动物。
现在,我们需要在不砍伐树木的情况下,将所有小动物解救出来。
我们可以通过摇晃树木来使小动物掉落,但每次只能摇晃一棵树。
我们需要找到一个合适的摇晃顺序,使得所有小动物都被解救出来,并且摇晃次数最少。
为了解决这个问题,我们可以使用 C++的优先队列(STL 中的priority_queue)来实现。
具体步骤如下:- 首先,将所有树木按照树木上的小动物数量从大到小排序。
- 然后,依次取出树木数量最多的那棵树,摇晃它,将树上的小动物解救出来。
- 接着,更新树木数量,并将剩余树木重新排序。
- 重复以上步骤,直到所有树木上的小动物都被解救出来。
4.地震问题与解救小动物问题的关联地震是一种地球表面的自然现象,通常会导致地面的震动和裂缝。
在地震发生时,树木可能会被破坏,从而使得小动物被困在树上。
因此,解救小动物问题在地震发生后显得尤为重要。
vector和copyonwritearraylist
vector和copyonwritearraylist
Vector和CopyOnWriteArrayList是两种Java中的集合类,它们都可以用来存储和操作集合中的元素。
但是,它们之间有一些不同之处。
Vector是一种线程安全的集合类,它可以支持并发访问和修改。
它使用了synchronized关键字来保证线程安全,但这也会对性能产生一定的影响。
Vector可以用来实现动态数组,它可以自动扩容和收缩。
CopyOnWriteArrayList也是一种线程安全的集合类,但它的实现方式不同。
它使用了一种叫做“写时复制”(Copy-On-Write)的技术来保证线程安全。
当有写操作时,CopyOnWriteArrayList会创建一个新的副本,进行修改操作,以免干扰其他线程的读操作。
这种方式虽然会增加内存开销,但却提高了读操作的性能。
总的来说,如果需要在多线程环境下进行大量的读和写操作,建议使用CopyOnWriteArrayList。
如果并发访问和修改的需求不是很高,可以考虑使用Vector。
- 1 -。
sicp练习题
数据结构2. 什么是哈希表?它有哪些优点和缺点?3. 什么是二叉搜索树?请描述它的性质。
4. 什么是平衡二叉树?请举例说明AVL树和红黑树。
5. 什么是图遍历?请描述深度优先遍历和广度优先遍历。
6. 什么是散列表?请解释哈希函数和冲突解决方法。
7. 什么是堆?请描述堆排序算法。
8. 什么是跳表?请解释跳表的工作原理。
9. 什么是B树和B+树?请描述它们在数据库中的应用。
10. 什么是图论?请列举图论中的基本概念。
算法1. 什么是算法?请描述算法的五个基本特征。
2. 什么是递归?请举例说明递归算法。
3. 什么是分治算法?请举例说明归并排序和快速排序。
4. 什么是动态规划?请举例说明斐波那契数列的动态规划解法。
5. 什么是贪心算法?请举例说明背包问题。
6. 什么是回溯算法?请举例说明八皇后问题。
7. 什么是算法分析?请描述时间复杂度和空间复杂度。
8. 什么是算法优化?请举例说明优化算法的方法。
9. 什么是算法设计模式?请列举常见的算法设计模式。
10. 什么是算法竞赛?请描述算法竞赛的基本规则。
编程语言1. 什么是编程语言?请列举常见的编程语言。
2. 什么是变量?请解释变量的作用域和生命周期。
3. 什么是数据类型?请列举常见的数据类型。
4. 什么是运算符?请列举常见的运算符及其功能。
5. 什么是控制结构?请列举常见的控制结构。
6. 什么是函数?请解释函数的定义、调用和参数传递。
7. 什么是面向对象编程?请解释类、对象、继承和封装。
8. 什么是模块化编程?请解释模块、包和库。
9. 什么是异常处理?请解释try、catch和finally语句。
10. 什么是调试?请列举常见的调试方法。
数据库1. 什么是数据库?请列举常见的数据库类型。
2. 什么是关系型数据库?请解释表、行、列和主键。
3. 什么是SQL?请列举常见的SQL语句。
4. 什么是数据库设计?请解释ER图和范式。
5. 什么是索引?请解释索引的类型和作用。
区块链与创新思维_南京大学中国大学mooc课后章节答案期末考试题库2023年
区块链与创新思维_南京大学中国大学mooc课后章节答案期末考试题库2023年1.以下哪种Solidity源文件版本的声明方式表示它可以被0.4.6的编译器版本进行编译?参考答案:pragma Solidity ^0.4.22.以下哪种不是Solidity允许一个源文件导入其他源文件的方式?参考答案:import * symbolName from “filename”3.作为第二代区块链系统,以太坊提供一个非常重要的功能是什么?参考答案:智能合约4.Paxos协议中的Proposer和Acceptor之间的交互主要有几类消息通信?参考答案:4类5.以下关于分布式系统的描述哪项是错误的?参考答案:每台计算机的用户只能使用本机的资源6.签名必须使用 ______ , 对应的 ______ 验证签名通过。
参考答案:私钥,公钥7.以下哪些是区块链中涉及的思想?参考答案:去中心化思想_共识的思想_防篡改思想_交易信息公开透明的思想8.价值区块链的两大诉求是?参考答案:保证信息的真实性_价值信息的自由流通和传输9.系统设定比特币的数量是多少个?参考答案:2100万10.下面哪一个不是区块链的类型?参考答案:企业链11.EOS系统以每年增发多少代币的通胀模式,来鼓励节点提供计算资源和记账来维护EOS.IO系统的网络?参考答案:5%12.以下哪种不是区块链服务于信息安全和隐私保护的技术?参考答案:身份迁移13.以下哪个对于人工智能的描述存在错误?参考答案:目前尚无在人工智能领域接入区块链技术的成果14.下列哪一项可能不是区块链未来发展的趋势?参考答案:政府应用成为主战场15.以下哪一项不属于分布式系统面临的挑战?参考答案:数据泄密问题16.关于“通证经济”的描述,以下哪一项不正确?参考答案:每一个通证的价格并不能在市场上获得迅速的反映和确定17.以下哪三大特性保证区块链可以低成本验证?参考答案:数据完整性、激励机制(共识机制)、智能合约18.以下哪项是DApp在交易市场的应用?参考答案:以上都是19.比特币整个运营机制中形成了各类中心化结构,而为什么会产生中心化结构呢,实质上是什么决定的?参考答案:效率_成本20.区块链各个节点的信息完全一致,可削弱供应链的什么效应?参考答案:牛鞭效应21.以下哪些不是基于区块链医疗行业的应用场景?参考答案:电子交易所22.Po.et项目是区块链为哪一行业的赋能?参考答案:图书出版23.以下哪个不是基于区块链的仪器平台主要的优势?参考答案:系统预约仪器,方便快捷24.摩根币的设计初衷是?参考答案:实现企业之间的资金流动25.XRP是Ripple网络的原生货币,下列哪一项不是它的特点?参考答案:可增发26.以下哪个不属于私有链的特点?参考答案:交易成本高27.以太坊的共识机制有四个版本,以下哪一个不属于?参考答案:宇宙28.对于一个操作系统来说架构层次从下到上依次是?参考答案:硬件层、硬件驱动、操作系统内核、操作系统接口、应用程序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a r X i v :c s /0112003v 1 [c s .C L ] 5 D e c 2001Using a Support-Vector Machine for Japanese-to-EnglishTranslation of Tense,Aspect,and ModalityMasaki Murata,Kiyotaka Uchimoto,Qing Ma,and Hitoshi IsaharaCommunications Research Laboratory2-2-2Hikaridai,Seika-cho,Soraku-gun,Kyoto 619-0289,Japan{murata,uchimoto,qma,isahara }@crl.go.jpAbstractThis paper describes experiments carried out using a variety of machine-learning methods,includ-ing the k-nearest neighborhood method that was used in a pre-vious study,for the translation of tense,aspect,and modality.It was found that the support-vector ma-chine method was the most precise of all the methods tested.1IntroductionTense,aspect,and modality are known to cause problems in machine translation.In traditional approaches tense,aspect,and modality have been translated using man-ually constructed heuristic rules.Recently,however,corpus-based approaches such as the example-based method (k-nearest neighbor-hood method)have also been used (Murata et al.,1999).For our study,we carried out experiments on the translation of tense,aspect,and modality by using a variety of machine-learning methods,in addition to the k-nearest neighborhood method,and then de-termined which method was the most precise.In our previous research,in which we stud-ied the utilization of the k-nearest neighbor-hood method,only the strings at the ends of sentences were used to translate tense,as-pect,and modality.In this study,however,we used all of the morphemes from each of the sentences as information,as well as used the strings at the ends of the sentences.In connection with our approach,we would like to emphasize the following points:g .This child always talks back to me,and this <v>is </v>why I hate him.d .I <v>did not think </v>he was so timid.c .Such a busy man as he <v>cannot have </v>any spare time.Figure 1:Part of the modality corpus •We obtained better translation of tense,aspect,and modality by using a support-vector machine method than we could by using the k-nearest neighborhood method that we used in our previous study (Murata et al.,1999).•In our previous study (Murata et al.,1999)we only used the strings at the ends of sentences to translate tense,aspect,and modality.Here,however,we used all of the morphemes in each of the sentences as information,in addition to the strings at the ends of the ing a sta-tistical test,we were able to confirm that adding the morpheme information from each of the sentences was significantly ef-fective in improving the precision of the translations.2Task DescriptionsFor this study we used the modality corpus described in one of our previous papers (Mu-rata et al.,2001).Part of this modelity corpus is shown in Figure 1.It consists of a Japanese-English bilingual corpus,and the main verb phrase in each English sentence is tagged with <v>.The symbols placed at the beginning of each Japanese sentence,such as “c”andTable1:Occurrence rates of categories Category White paper0.420.360.050.040.030.030.020.051Although there are also decision-tree learning methods such as C4.5,we did not use them for the•k-nearest neighborhood method •decision-list method•maximum-entropy method•support-vector machine methodIn this next section,we will be explaining each of these machine-learning methods.3.1k-nearest neighborhood method The domain of machine translation includes a method called an example-based method.In this method,the example most similar to the input sentence is searched for,and the cat-egory of the input sentence is chosen based on the example.However,this method only uses one example,so it is weak with respect to noise(i.e.errors in the corpus or other excep-tional phenomenon).The k-nearest neighbor-hood method prevents this problem by using the most similar examples(a total of k ex-amples)instead of using only the most sim-ilar example.The category is chosen on the basis of“voting”2on k examples.Since this method uses multiple examples,it is capable of providing a stable solution even if a corpus includes noise.In the k-nearest neighborhood method, since it is necessary to collect similar exam-ples,it is also necessary to define the sim-ilarity between each pair of examples.The definition of similarity used in this paper is discussed in the section on features(Section 4).When there is an example that has the same similarity as the selected k examples, that example is also used in the“voting.”3.2Decision-List MethodIn this method,the probability of each cat-egory is calculated using one feature f j(∈F,1≤j≤k),and the category with the highest probability is judged to be the cor-rect category.The probability that producesa category a in a contextb is given by the following equation:p(a|b)=p(a|f max),(1) where f max is defined asf max=argmax fj∈F max ai∈A˜p(a i|f j),(2)such that˜p(a i|f j)is the occurrence rate of category a i when the context includes a fea-ture f j.The decision-list method is simple.How-ever,since it estimates the category on the basis of only one feature,it is a poor machine-learning method.3.3Maximum-Entropy MethodIn this method,the distribution of probabili-ties p(a,b)when Equation(3)is satisfied and Equation(4)is maximized is calculated,and the category with the maximum probability as calculated from the distribution of prob-abilities is judged to be the correct category (Ristad,1997;Ristad,1998):a∈A,b∈B p(a,b)g j(a,b)= a∈A,b∈B˜p(a,b)g j(a,b)(3)for∀f j(1≤j≤k) H(p)=− a∈A,b∈B p(a,b)log(p(a,b)),(4)where A,B,and F are a set of categories, a set of contexts,and a set of features f j(∈F,1≤j≤k),respectively;g j(a,b)is a func-tion with a value of1when context b includes feature f j and the category is a,and0oth-erwise;and˜p(a,b)is the occurrence rate of a pair(a,b)in the training data.In general,the distribution of˜p(a,b)is very sparse.We cannot use the distribution di-rectly,so we must estimate the true distribu-tion of p(a,b)from the distribution of˜p(a,b). With the maximum-entropy method,we as-sume that the estimated value of the fre-quency of each pair of categories and features calculated from˜p(a,b)is the same as that calculated from p(a,b),which corresponds to Equation3.These estimated values are not so sparse.We can thus use the above assumptionFigure2:Maximizing the marginto calculate p(a,b).Furthermore,we maxi-mize the entropy of the distribution of p(a,b) to obtain one solution for p(a,b),because us-ing only Equation3produces several solutions for p(a,b).Maximizing the entropy makes the distribution more uniform,which is known to provide a strong solution for data sparseness problems.3.4Support-Vector Machine Method In this method,data consisting of two cat-egories is classified by dividing space with a hyperplane.When the two categories are pos-itive and negative and the margin between the positive and negative examples in the train-ing data is larger(see Figure23),the possibil-ity of incorrectly choosing categories in open data is thought to be smaller.The hyperplane that maximizes the margin is determined,and classification is carried out by uisng the hyper-plane.Although the basics of this method are as described above,for the extended versions of the method the inner region of the mar-gin in the training data can include a small number of examples,and the linearity of the hyperplane can be changed to non-linearity by using kernel functions.Classification in the extended method is equivalent to classifi-cation carried out using the following discern-ment function,and the two categories can be classified on the basis of whether the output value of the function is positive or negative (Cristianini and Shawe-Taylor,2000;Kudoh, 2000):f (x )=sgnl i =1αi y i K (x i ,x )+b(5)b=−max i,y i =−1b i +min i,y i =1b i2li,j =1αi αj y i y j K (x i ,x j )(7)0≤αi ≤C (i =1,...,l )(8)l i =1αi y i =0(9)Although the function K is called a kernel function and various types of kernel functions are used,we used the following polynomial function:K (x ,y )=(x ·y +1)d .(10)C and d are constants set by experimenta-tion,and in this paper,C is fixed as 1for all of the experiments.Two values,d =1and d =2,are used for d .A set of x i that sat-isfies αi >0is called a support vector,and the portion performing the sum in Equation (5)is calculated using only examples that are support vectors.Support-vector machine methods are capa-ble of handling data consisting of two cate-gories.In general,data consisting of more than two categories is handled using the pair-wise method (Kudoh and Matsumoto,2000).In this method,for data consisting of N cat-egories,pairs of two different categories (N(N-1)/2pairs)are constructed.The better cate-gory is determined using a 2-category classi-fier.In this paper,a support-vector machine 4was used as the 2-category classifier.Finally,the correct category is determined on the ba-sis of “voting”on the N(N-1)/2pairs analyzed by the 2-category classifier.The support-vector machine method used in this paper was performed by combining the support-vector machine method and the pair-wise method described above.4Features (information used in classification)Although we have already explained the four machine-learning methods in the previous sec-tion,we must also define the features (infor-mation used in classification).In this section,we will explain these features.As mentioned in Section 2,when a Japanese sentence is input,we then output the category of the tense,aspect,and modality.There-fore,features are extracted from the input Japanese sentence.We tested the following three kinds of fea-ture sets in our experiments.•Feature-set 1Feature-set 1consists of 1-gram to 10-gram strings at the ends of the input Japanese sen-tences and all of the morphemes from each of the sentences.e.g.“”(do not),“”(today).(The number of features is 230,134in the Ko-dansha Japanese-English dictionary and 25,958in the white papers.)•Feature-set 2Feature-set 2consists of 1-gram to 10-gram strings at the ends of the input Japanese sen-tences.e.g.“”(do not),“”(did not).(The number of features is 199,199in the Ko-dansha Japanese-English dictionary and 16,610in the white papers.)•Feature-set 3Feature-set 3consists of all of the morphemes from each of the sentences.Table2:Precisions for the Kodansha data(values in parentheses are for the closed experiments) Method Feature-set1Feature-set2Feature-set3————knn(k=3)80.35%(83.94%)————knn(k=7)80.39%(81.71%)————decision list80.23%(98.18%)80.37%(88.87%)75.35%(84.15%)support vec.(d=1)81.93%(98.50%)82.28%(98.48%)79.01%(98.74%)baseline=73.88%.e.g.“”(today),“”(I),“”(topic-marker particle)“”(run).(The number of features is30,935in the Kodan-sha Japanese-English dictionary and9,348in thewhite papers.)The Japanese morphological analyzer JU-MAN(Kurohashi and Nagao,1998)was usedto divide the input sentences into morphemes.Feature-set1is the combination of Feature-sets2and3.Feature-set2was constructedbased on our previous research(Murata et al.,1999).In Japanese sentences the tense,as-pect,and modality are often indicated by theverbs at the ends of sentences.5Therefore,inour previous study,the strings at the ends ofthe sentences were used as features.Feature-set3was constructed by taking into consid-eration the fact that adverbs such as“tomor-row”and“yesterday”can also indicate tense,aspect,and modality,and must therefore beused.Defining the feature sets is sufficient forenabling the use of decision-list,maximum-entropy,and support-vector machine meth-ods.For the k-nearest neighborhood method,however,it is also necessary to define the sim-ilarities between examples,in addition to thefeature sets.For Feature-sets1and3,whichuse all of the morphemes from the entire inputsentence,it is difficult to define the similarity.Therefore,we decided to only use Feature-set2for the k-nearest neighborhood method.Interms of defining similarity for Feature-set2,when two examples match for x-gram charac-ters,the value of the similarity between themis x.6Closed means experiments that uses the testeddata when learning.Open means experiments that donot use the tested data when learning.borhood method when Feature-set2was used.•The maximum-entropy method was more precise than both the k-nearest neighbor-hood and decision-list methods.•The support-vector machine method ob-tained higher precisions than all the other methods.•In terms of comparing feature sets, the maximum-entropy and decision-list methods obtained their highest preci-sions when Feature-set2was used.They produced lower precisions when mor-pheme information was added,as in Feature-set1.This would be because the number of unnecessary features increases as the total number of features increases.•In terms of comparing feature sets for the support-vector machine method, Feature-set1obtained the highest pre-cisions.This indicates that adding the morpheme information was effective in improving precision.Since adding the morpheme information produced lower precisions for the other methods,we as-sume that the support-vector machine method is more capable of eliminating unnecessary features and selecting effec-tive features than the other methods.We can provide the following explanations for these results based on the theoretical aspects of each of the methods.–Because the decision-list method chooses the category by using only one feature,itis likely that only one unnecessary featurewill be used,and that the precisions arelikely to decrease when there are many un-necessary features.–Because the maximum-entropy method al-ways uses almost all of the features,theprecisions decrease when there are manyunnecessary features.–However,because the support-vector ma-chine includes a function that eliminatesexamples,such that it only uses examplesthat are support vectors and does not useany other examples,it eliminates many un-necessary features along with these exam-ples.The precisions are thus unlikely to de-crease even if there are many unnecessaryfeatures.Table3:Effective morpheme features Frequency Morpheme feature(subject-case particle)121(is not)28(if)23(already or yet)19(recently)16(did)14(can)12(let’s)11(is done)8(how)•The method with the higest precisionamong all the methods was the support-vector machine method using d=1andFeature-set1.To confirm that using Feature-set1was better than using Feature-set2,(in other words,to confirm that adding the morpheme information was effective)we conducted a sign test.This was done for the case of d=1, which produced better results than d=2. Among all of the39,660examples,the number for which the category was chosen incorrectly with Feature-set1and correctly with Feature-set2was648.For the opposite case(chosen incorrectly with Feature-set2and correctly with Feature-set1),the number was427.We performed the sign test by using this statisti-cal data and obtained results showing that a significant difference existed at a significance level of1%.We can thus be almost completely sure that adding the morpheme information was effective.Next,we examined which features were ef-fective among all the features using the mor-pheme information.This was done by exam-ining the features that appeared relatively fre-quently among the648examples for which the category was chosen incorrectly with Feature-set1and correctly with Feature-set2.We used a binomial test to choose an example whose occurrence rate among the648ex-Table4:Precisions for the white papers(values in parentheses are for the closed experiments) Method Feature-set1Feature-set2Feature-set360.10%(99.81%)56.14%(96.67%)Support Vec.(d=2)56.74%(89.87%)Kodansha and White Kodansha only White papers only82.44%(98.71%)65.31%—Kodansha data(d=2)82.28%(98.48%)60.02%(99.79%)60.10%(99.81%)White papers(d=2)49.53%—7Sekine had carried out domain-dependent/domain-independent experiments on parsing(Sekine,1997).•When both the Kodansha and the whitepaper data were used as training data,the precisions were almost the same orslightly decreased.We thus found in-creasing the size of training data is not al-ways better and adding different-domaindata is not effective.6ConclusionTense,aspect,and modality are known to present difficult problems in machine transla-tion.In traditional approaches,tense,aspect, and modality have been translated using man-ually constructed heuristic rules.Recently, however,corpus-based approaches such as the example-based method(k-nearest neighbor-hood method)have also been applied(Murata et al.,1999).We carried out experiments on the translation of tense,aspect,and modality by using a variety of machine-learning meth-ods,as well as the k-nearest neighborhood method,and we determined which method was the most precise.In our previous re-search,in which we used the k-nearest neigh-borhood method,only the strings at the ends of sentences were used to translate tense,as-pect,and modality.However,in this study we used all of the morphemes in each of the sen-tences as information,as well as the strings at the ends of each of the sentences.The support-vector machine method was found to produce the highest precisions of all the methods we tested.We were also able to obtained better translations of tense,as-pect and modality than we could by using the k-nearest neighborhood method.Further-more,we used a statistical test to confirm that adding the morpheme information for the en-tire sentence,which was not used in our pre-vious study,was effective in improving preci-sion.We also carried out experiments using a different-domain corpus.In these experi-ments,we confirmed that using a different-domain corpus as the training data produced very low precisions,and that we must con-struct a system for translating the tense,as-pect,and modality for each domain.This also indicates that approaches using machine-learning methods,such as those described in this paper,are appropriate because it wouldbe too difficult to construct systems adapted for different domains by hand. References[Cristianini and Shawe-Taylor2000]Nello Cristianini and John Shawe-Taylor.2000.An Introduction to Support Vector Machines and Other Kernel-based Learning Methods.Cambridge University Press. [Kudoh and Matsumoto2000]Taku Kudoh and Yuji e of support vector learning for chunk identification.CoNLL-2000.[Kudoh2000]Taku Kudoh.2000.TinySVM:Support Vector Machines.http://cl.aist-nara.ac.jp/taku-ku//software/TinySVM/index.html. [Kurohashi and Nagao1998]Sadao Kurohashi and Makoto Nagao,1998.Japanese Morphological Analysis System JUMAN version3.5.Department of Informatics,Kyoto University.(in Japanese). [Murata et al.1999]Masaki Murata,Qing Ma,Kiy-otaka Uchimoto,and Hitoshi Isahara.1999.An example-based approach to Japanese-to-English translation of tense,aspect,and modality.In TMI ’99,pages66–76.[Murata et al.2000]Masaki Murata,Kiyotaka Uchi-moto,Qing Ma,and Hitoshi Isahara.2000.Bun-setsu identification using category-exclusive rules.In COLING2000,pages565–571.[Murata et al.2001]Masaki Murata,Masao Utiyama, Kiyotaka Uchimoto,Qing Ma,and Hitoshi Isa-hara.2001.Correction of the modality corpus for machine translation based on machine-learning method.7th Annual Meeting of the Association for Natural Language Processing.(in Japanese;an English translation of this paper is available at /abs/cs/0105001).[Ristad1997]Eric Sven Ristad.1997.Maximum En-tropy Modeling for Natural Language.ACL/EACL Tutorial Program,Madrid.[Ristad1998]Eric Sven Ristad.1998.Maximum Entropy Modeling Toolkit,Release 1.6beta./software/memt. [Sekine1997]Satoshi Sekine.1997.The domain de-pendence of parsing.In Proceedings of the Fifth Conference on Applied Natural Language Process-ing,pages96–102.[Taira and Haruno2000]Hirotoshi Taira and Masahiko Haruno.2000.Feature selection in svm text cate-gorization.Transactions of Information Processing Society of Japan,41(4):1113–1123.(in Japanese).Small Margin Large Margin。