-1990年全国初中数学联合竞赛试卷
历届(第1-23届)希望杯数学竞赛初一七年级真题及答案
“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题......................003-0052.希望杯第一届(1990年)初中一年级第二试试题......................010-0123.希望杯第二届(1991年)初中一年级第一试试题...... 0错误!未定义书签。
-0204.希望杯第二届(1991年)初中一年级第二试试题...... 0错误!未定义书签。
-0265.希望杯第三届(1992年)初中一年级第一试试题...... 0错误!未定义书签。
-0326.希望杯第三届(1992年)初中一年级第二试试题...... 0错误!未定义书签。
-0407.希望杯第四届(1993年)初中一年级第一试试题...... 0错误!未定义书签。
-0508.希望杯第四届(1993年)初中一年级第二试试题...... 0错误!未定义书签。
-0589.希望杯第五届(1994年)初中一年级第一试试题...... 0错误!未定义书签。
-06610.希望杯第五届(1994年)初中一年级第二试试题..... 0错误!未定义书签。
-07311.希望杯第六届(1995年)初中一年级第一试试题..... 0错误!未定义书签。
-080 12希望杯第六届(1995年)初中一年级第二试试题..... 0错误!未定义书签。
-08713.希望杯第七届(1996年)初中一年级第一试试题..... 0错误!未定义书签。
-09814.希望杯第七届(1996年)初中一年级第二试试题....... 错误!未定义书签。
-10515.希望杯第八届(1997年)初中一年级第一试试题....... 错误!未定义书签。
-11316.希望杯第八届(1997年)初中一年级第二试试题....... 错误!未定义书签。
-12017.希望杯第九届(1998年)初中一年级第一试试题....... 错误!未定义书签。
全国初中数学竞赛历年竞赛试题以及参考答案 (11).pdf
y、z 中至少有一 个大于 0.
5. 设关于 x 的方程 ax2+(a+2)x+9a=0,有两个不等的实数根 x1、x2,且 x1<1<x2,
那么 a 的取值范围是(
)。
A、 − 2 <a< 2 B、a> 2
7
5
5
C、a< − 2 D、 − 2 <a<0
7
11
答案:由题知:(x1-1)(x2-1)<0, 即 x1x2-(x1+x2)+1<0,代入韦达定理并整理得
学无 止 境
6.A1A2A3…A9 是一个正九边形,A1A2=a,A1A3=b,则 A1A5 等于【
】
A、 a 2 + b2
二、填空题
B、 a 2 + ab + b2
C、 1 (a + b)
2
D、a+b
7.设 x1、x2 是关于 x 的一元二次方程 x2+ax+a=2 的两个实数根,则(x1-2x2)(x2-2x1)
。
三、解答题
13.某项工程,如果由甲、乙两队承包,2 2 天完成,需付 180000 元;由乙、丙两队承包, 5
3 3 天完成,需付 150000 元;由甲、丙两队承包, 2 6 天完成,需付 160000 元。现在工
4
7
程由一个队单独承包,在保证一周完成的前提下,哪个队的承包费用最少?
14.如图,圆内接六边形 ABCDEF 满足 AB=CD=EF,且对角线 AD、BE、CF 交于一点 Q,设
-bc-ca 的值为(
)。
A、0
B、1
C、2
D、3
答案:原式= [(a-b)2+(b-c)2+(c-a)2]= [1+1+4]=3。
1990年全国高中数学联合竞赛试题及解答
1990年全国高中数学联合竞赛一试一、选择题: 1990*1.设⎪⎭⎫⎝⎛∈2,4ππα,则ααcos )(cos ,ααcos )(sin ,ααsin )(cos 的大小顺序是 A.<ααcos )(cos <ααcos )(sin ααsin )(cos B.<ααcos )(cos ααsin )(cos ααcos )(sin <C.<ααcos )(sin <ααcos )(cos ααsin )(cos D.ααsin )(cos <<ααcos )(cos ααcos )(sin◆答案:D ★解析:⎪⎭⎫⎝⎛∈2,4ππα得1sin cos 0<<<αα, ∴ <ααcos )(cos ααcos )(sin ;ααsin )(cos ααcos )(cos <;选D1990*2、设)(x f 是定义在实数集上的周期为2的函数,且是偶函数,已知当[]3,2∈x 时,x x f =)(,则当[]0,2-∈x 时,)(x f 的解析式是( ) A. 4)(+=x x f B. x x f -=2)( C. 13)(+-=x x f D. 12)(++=x x f◆答案:C★解析:设[]1,2--∈x ,则[]3,24∈+x ,于是4)4(+=+x x f ,所以4)4()(+=+=x x f x f ,又设[)0,1-∈x ,则(]1,0∈-x ,故2)(+-=-x x f ,由2)()(+-=-=x x f x f . 综上可得:13)(+-=x x f 故选C .1990*3、设双曲线的左右焦点是21,F F ,左右顶点是N M ,,若21F PF ∆的顶点P 在双曲线上,则21F PF ∆的内切圆与边21F F 的切点位置是( )A.在线段MN 内部B. 在线段M F 1内部或线段2NF 内部C.点M 或点ND.不能确定的◆答案:C★解析:设内切圆在三边上切点分别为F E D ,,,当P 在右支上时,a PF PF 221=-.又a DF DF PF PF 22121=-=-,即D 与N 重合; 当P 在左支上时,同理D 与M 重合.故选C .1990*4、点集⎭⎬⎫⎩⎨⎧+=⎪⎭⎫⎝⎛++y x y x y x lg lg 9131lg |),(33中的元素个数为( ) A. 0 B. 1 C.2 D.多于2◆答案:B★解析:由题意得0913133>=++xy y x .又xy y x y x =⋅⋅≥++33333913139131,等号当且仅当913133==y x 时,即333=x ,393=y 时成立.故选B .1990*5.设非零复数y x ,满足022=++y xy x ,则代数式19901990⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+y x y y x x 的值是( )A.19892-B.1-C.11D.以上答案都不对◆答案:B ★解析:记ω=yx或2ω,其中00120sin 120cos i +=ω.012=++ωω.且13=ω. 若ω=y x,则得119901990-=⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+y x y y x x .若2ω=y x ,则得119901990-=⎪⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛+y x y y x x .选B .1990*6.已知椭圆12222=+by a x (0>>b a )通过点)1,2(,所有这些椭圆上满足1>y 的点的集合用阴影表示是下面图中的()0)D.C.B.A.0)◆答案:C ★解析:由题意得11422=+b a ,由22b a >,故得222251411b b b b =+<<,即51<<b .再由11422=+b a 得11422<+aa ,52>a .故选C .二.填空题:1990*7.设n 为自然数,b a ,为正实数,且满足2=+b a ,则nn b a +++1111的最小值是 . ◆答案:1★解析:由题意得122=⎪⎭⎫ ⎝⎛+≤b a ab ,从而1≤nn b a ,故11111111≥++++++=+++nn n n n n n n b a b a b a b a .注意以上式子的等号当且仅当1==b a 时成立.即所求最小值为1.1990*8.设)0,2(A 为平面上一定点,))602cos(),602(sin(0--t t P 为动点,则当t 由015变到045时,线段AP 扫过的面积是 . ◆答案:6π ★解析:点P 在单位圆上,)2150cos()602sin(0t t -=-,)2150sin()602cos(0t t -=-.当t 由015变到045时,点P 沿单位圆从⎪⎪⎭⎫ ⎝⎛-23,21运动到⎪⎪⎭⎫⎝⎛23,21.线段AP 扫过的面积等于扇形面积等于6π. 1990*9.设n 为自然数,对于任意实数z y x ,,,恒有())(4442222z y x n z y x ++≤++成立,则n 的最小值是 . ◆答案:3★解析:由于()2222224442222222z x z y y x z y x z y x +++++=++()()()()4444444444443z y x z x z y y x z y x ++=++++++++≤.等号当且仅当z y x ==时成立.故3=n .1990*10.对任意正整数n ,连结原点O 与点)3,(+n n A n ,用)(n f 表示线段n OA 上的整点个数(不计端点),则)1990()2()1(f f f ++的值为 . ◆答案:1326★解析:线段n OA 的方程为x nn y 3+=(n x ≤≤0),故)(n f 等于该线段内的格点数. 若k n 3=(*∈N k ),则得x kk y 1+= (n x ≤≤0)(*∈N k ),其内有两个整点()1,+k k ,()22,2+k k ,此时2)(=n f ;若13±=k n (*∈N k )时,则由于3,+n n n 互质,故n OA 内没有格点,此时0)(=n f .∴ 1326319902)1990()2()1(=⎥⎦⎤⎢⎣⎡=++f f f .1990*11.设1990=n ,则()=++---1990995634223333121n n n n n C C C C .◆答案:21-★解析:取19902321⎪⎪⎭⎫ ⎝⎛+-i 展开的实部即为此式.而i i 232123211990+-=⎪⎪⎭⎫ ⎝⎛+-.故原式21-=. 1990*12.8个女孩与25个男孩围成一圈,任何两个女孩之间至少站两个男孩,则共有 种不同和排列方法.(只要把圆旋转一下就能重合的排法认为是相同的). ◆答案:716!25!7C ⋅⋅★解析:每个女孩与其后的两个男孩组成一组,共8组,与余下9个男孩进行排列,某个女孩始终站第一个位子,其余7组在16198=-+个位子中选择7个位子,得716C 种选法.7个女孩可任意换位, 25个男孩也可任意换位,故共得716!25!7C ⋅⋅种排列方法.1990*13.已知b a ,均为正整数,且b a >,222sin b a ab +=θ,(其中20πθ<<),θn b a A n n sin )(22+=.求证:对于一切自然数n ,n A 均为整数.★证明:由222sin ba ab +=θ,得2222cos b a b a +-=θ.记θn b a B nn sin )(22+=. 当b a ,均为正整数时,ab A 21=、221b a B -=均为整数.()2224b a ab A -=,()()22222222b a b a B +--=也为整数.若θk b a A k k sin )(22+=、θk b a B kk sin )(22+=均为整数,则()()k k k k k B A B A k k b a k b a A 111221221sin cos cos sin )(1sin )(+=++=++=+++θθθθθ为整数.()()k k k k k A A B B k k b a k b a B 111221221sin sin cos cos )(1cos )(-=-+=++=+++θθθθθ也为整数.由数学归纳原理知对于一切N n ∈,n A ,n B 为整数.1990*14、2n 个正数排成n 行n 列:其中,每一行的数成等差数列,每一列的数成等比数列,并且所有的公比相等。
历年初中数学竞赛真题库含答案
1991年全国初中数学联合竞赛决赛试题第一试 一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1. 设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223y xy x y xy x +--+的值是(A )3 ; (B )31; (C )2; (D )35. 答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12;(C ) 16; (D )18. 答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( )4.已知:)19911991(2111n n x --=(n 是自然数).那么n x x )1(2+-,的值是(A)11991-; (B)11991--;(C)1991)1(n -; (D)11991)1(--n . 答( )5. 若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除. 答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么d c b a +++的最大值是(A)1-;(B)5-;(C)0;(D)1. 答( )7. 如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3. 答( )8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ; (B)0< c ≤21; 答( )11=S 3S =132=S(C )c > 2; (D )c = 2. 答( ) 二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+acb 32 . 3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试x + y , x - y , x y ,yx四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC 中,AB <AC <BC ,D 点在BC 上,E 点在BA 的延长线上,且BD =BE =AC ,ΔBDE 的外接圆与ΔABC 的外接圆交于F 点(如图).求证:BF =AF +CF三、将正方形ABCD 分割为 2n 个相等的小方格(n 是自然数),把相对的顶点A ,C 染成红色,把B ,D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题 第一试 一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xk y 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3. 答( )7.如图,在等腰梯形ABCD 中, AB //CD ,AB=2CD , ︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , FA=AB .则AE :EB 等于(A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11. 答( ) 二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(baa b . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N. 1993年全国初中数学联合竞赛决赛试题 第一试 一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ;2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A)Ⅰ,Ⅱ都对 (B)Ⅰ对,Ⅱ错 (C)Ⅰ错,Ⅱ对. (D)Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值. 其中正确的是(A)Ⅰ (B)Ⅱ (C)Ⅲ (D)Ⅳ 4.实数54321,,,,x x x x x 满足方程组其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是(A)54321x x x x x >>>>; (B)53124x x x x x >>>>; (C)52413x x x x x >>>>; (D)24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解(A)等于4 (B)小于4 (C)大于5 (D)等于5 6.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是 (A)22-(B)22(C)23 (D)21-. 答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n , p ,那么m :n :p 等于(A)cb a1:1:1; (B)c b a :: (C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( ) 8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( ) 二.填空题1. 当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB ,AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题 第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A ,B 、C ,D ,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0 B.都不大于0C.至少有一个小0于D.至少有一个大于0 〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4 B.等于5C.等于6 D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
1990年全国初中数学联赛试题及答案
1990年全国初中数学联赛试题第一试一、 选择题本题共有8个小题,每小题都给出了(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请把正确结论的代表字母写在题后的圆括号内。
1.31231131144++-++的值是(A )1 (B )-1 (C )2 (D )-2答( )2.在△ABC 中,AD 是高,且AD 2 = BD ·CD ,那么∠BAC 的度数是 (A )小于90° (B )等于90° (C )大于90° (D )不确定答( ) 3.方程k k k x k x (02)13(722=--++-是实数)有两个实根α、β,且0<α<1,1<β<2,那么k 的取值范围是(A )3<k <4 (B )-2<k <-1; (C )3<k <4或-2<k <-1 (D )无解答( ) 4.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同整数是(A )17 (B )18 (C )35 (D )36答( ) 5.△ABC 中,22=AB ,2=AC ,2=BC ,设P 为BC 边上任一点,则(A )PB PA <2·PC (B )PB PA =2·PC(C )PB PA >2·PC(D )PB PA 与2·PC 的大小关系并不确定答( )6.若六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形,那么,这样的六边形(A )不存在 (B )只有一个 (C )有有限个,但不只一个 (D )有无穷多个答( )7.若b a log 的尾数是零,且2log log 1log a b b b aa>>,那么下列四个结论:中,正确的结论的个数是(1)21a b b>> (2)0log log =+a b b a(3)10<<<b a (3)01=-ab(A )1 (B )2 (C )3 (D )4答( )8.如图,点P ,Q ,R 分别在△ABC 的边上AB 、BC 、CA 上, 且1====RC QR PQ BP ,那么,△ABC 面积的最大值是(A )3 (B )2 (C )5 (D )3答( )二、 填空题 1.已知82121=+-xx,则xx 12+=2.2223,2,1,…,1234567892的和的个位数的数字是 3.方程01)8)((=---x a x ,有两个整数根,则=a 4.△ABC 中,2==AC AB ,BC 边有100个不同的点1P ,2P ,…,100P ,记i i i BP AP m +=2·C Pi ( =i 1,2,…,100) 则 ++21m m …100m +=第二试一、已知在凸五边形ABCDE 中,∠BAE = 3α,BC=CD=DE ,且∠BCD=∠CDE=180°-2α,求证:∠BAC=∠CAD=∠DAE二、[]x 表示不超过实数x 的最大整数,令{}[]x x x -=(1)找出一个实数x ,满足{}11=⎭⎬⎫⎩⎨⎧+x x(2)证明:满足上述等式的x ,都不是有理数三、设有n n 22⨯个正方形方格棋盘,在其中任意的n 3个方格中各有一枚棋子。
1991~2011全国初中数学联赛试题及答案
将这些球的位置按顺序标号为1,2,3,4,…….
由于1号球与7号球中间夹有5个球,1号球与12号球中间夹有10个球,12号球与6号球中间夹有5个球,7号球与13号球中间夹有5个球,13号球与2号球中间夹有10个球,2号球与8号球中间夹有5个球,8号球与14号球中间夹有5个球,14号球与3号球中间夹有10个球,3号球与9号球中间夹有5个球,9号球与15号球中间夹有5个球,15号球与4号球中间夹有10个球,4号球与10号球中间夹有5个球,因此,编号为1,7,12,6, 13,2,8,14,3,9,15,4,10的球颜色相同,编号为5,11的球可以为另外的一种颜色.因此,可以按照要求摆放15个球.
………………………………20分
又因为MD//AC,所以MD和MQ为同一条直线.
又点Q、D均在⊙I上,所以点Q和点D重合,故PD是⊙I的切线.……………………………25分
三.(本题满分25分)已知二次函数 的图象经过两点P ,Q .
(1)如果 都是整数,且 ,求 的值.
(2)设二次函数 的图象与 轴的交点为A、B,与 轴的交点为C.如果关于 的方程 的两个根都是整数,求△ABC的面积.
类似的,可求得 出现的总次数均为 .
因此 =28068.
二、填空题:(本题满分28分,每小题7分)
1.已知实数 满足方程组 则 .
【答】13.
由 得 ,把 代入,可得 .
因此, 是一元二次方程 的两个实数根,易求得这两个实数根分别为3和 ,所以 .
2.二次函数 的图象与 轴正方向交于A,B两点,与 轴正方向交于点C.已知 , ,则 .
如果球的个数多于15个,则一方面,16号球与10号球应同色,另一方面,5号球与16号球中间夹有10个球,所以5号球与16号球同色,从而1到16号球的颜色都相同,进一步可以知道:所有的球的颜色都相同,与要求不符.
关于圆的初中数学竞赛题选
关于圆的问题圆的有关问题是与直线型紧密结合在一起的,因而综合性强,富于变化. 圆的有关计算与证明例1 圆内接八边形的四条边长为1,另四条边长为2.求此八边形的面积.例2 在边长为1cm 的正五边形,去掉所有与五边形各顶点距离都小于1cm 的点,求余下部分的面积.例3三个全等的圆有一个公共点O ,并且都在一个已知△ABC 内.每个圆与△ABC 的两边相切.求证:△ABC 的内心、外心和O 点共线.例4如图35-4,在△ABC 中,BD 、CE 为高,F 、G 分别为ED 、BC 的中点,O 为外心,求证:AO ∥FG.例5已知在凸五边形ABCDE 中,∠BAE=3a,BC=CD=DE ,且∠BCO=∠CDE=180°-2a ,求证:∠BAC=∠CAD=∠DAE.例6如图35-6,AB 为定圆O 中的定弦,作⊙O 的弦C 1D 1,C 2D 2,…C 1988D 1988,对其中每一i (i=1,2,…,1988),C i D i 都被弦AB 平分于M i .过C i 、D i 分别作⊙O 的切线,两切线交于P i .求证:点P 1,P 2,…,P 1988与某定点等距离,并指出这定点是什么点. 例7若凸四边形两对角线的乘积等于它的两组对边乘积之和,则此四边形内接于圆. 托勒密逆定理例8如图35-8,已知AD 、BC 是⊙O 的两条相交的弦,且B 在劣弧AD 上,⊙O 的半径为5,BC=6,AD 被BC 平分;又设从A 出发的弦只有AD 能被BC 等分,这样可以知道AB 劣弧对应的圆心角的正弦是一个有理数.如果把这个有理数化为最简分数nm,求mn.例9(1962年北京中学生数学竞赛题)任意剪六个圆形纸片放在桌面上,使得没有一个纸片的中心落在另一纸片上或被另一纸片盖住,然后用一枚针去世扎这一堆纸片.证明:不论针尖落在哪一点,总是不能一次把六个纸片全部扎中.例10(第21届国际中学生数学竞赛题)如图35-10,平面上两圆相交,其中一交点为A.两动点各以匀速自A 点出发在不同的圆周上同向移动,这两点移动一周后同时返回到A 点.求证平面上有一定点P ,它不论在何时皆和两动点等距离.关于圆的问题例1 (第3届全国部分省市初中数学通讯赛试题)圆内接八边形的四条边长为1,另四条边长为2.求此八边形的面积.解 由弓形面积公式知所求的八边形的面积与八边形各边排列的顺序无关.不妨设八边形ABCDEFGH 如图35-1,且有 AB=CD=EF=GH=2, BC=DE=FG=HA=1.双向延长AH 、BC 、DE 、FG 得正方形KLMN. 故S 八边形ABCDEFGH =S 正方形KLMN -4S △ABK=.245)2(214)122(22+=⋅-+例2 (第19届全苏中学生竞赛题)在边长为1cm 的正五边形,去掉所有与五边形各顶点距离都小于1cm 的点,求余下部分的面积.解 以A 为圆心,1cm 长为半径的扇形ABE 内的点到点A 的距离都小于1cm.分别以正五边形的各顶点为圆心,1cm 长为半径作弧,以五段圆弧为边界的“曲边五边形”MNPQR 内的点到正五边形ABCDE 各顶点的距离小于1cm.五边形内余下的部分是五个等积的“曲边三角形”BMC 、CND 、DPE 、EQA 、ARB (如图35-2). 考察“曲边三角形”BMC 与以∠BAM 为圆心角(等于60°)的扇形BAM 的面积之和,恰等于等边三角形ABM 与以∠CBM 为圆心角(等于108°-60°=48°)的扇形CBM 的面积之和.所以,所要求的面积为: 5S 曲边△BMC=5(S △ABM +S 扇形CBM -S 扇形BAM ) =5)615243(ππ-+=).(64352cm π-例3 (第22届国际数学竞赛题)三个全等的圆有一个公共点O ,并且都在一个已知△ABC 内.每个圆与△ABC 的两边相切.求证:△ABC 的内心、外心和O 点共线.证明 如图35-3,设三等圆为⊙A ′、⊙B ′和⊙C ′.故A ′B ′∥AB ,B ′C ′∥BC ,C ′A ′∥CA.于是△A ′B ′C ′∽△ABC.由于三等圆分别与△ABC 的两边相切,故AA ′、BB ′、CC ′相交于△ABC 内心I.显然,I 也是△A ′B ′C ′的内心.因此,△ABC 的外心E ,△A ′B ′C ′的外心E ′与I 三点共线.又O 是三等圆的公共点,OA ′=OB ′=OC ′,因此O 即是△A ′B ′C ′的外心E ′.故E ,O 、I 三点共线.四点共圆例4 (1980年哈尔滨初中数学竞赛题)如图35-4,在△ABC 中,BD 、CE 为高,F 、G 分别为ED 、BC 的中点,O 为外心,求证:AO ∥FG . 证明 过A 作⊙O 的切线A T. ∵BD 、CE 为高,∴B 、C 、D 、E 四点共圆.∴∠TAC=∠ABC=∠ADE ∴AT ∥ED.又AO ⊥AT ,∴AO ⊥ED. 又∵G 为BC 中点,∴DG=21BC=EG . 而EF=DF ,∴FG ⊥ED.故AO ∥FG.例5(1990年全国初中数学竞赛题)已知在凸五边形ABCDE 中,∠BAE=3a,BC=CD=DE ,且∠BCO=∠CDE=180°-2a ,求证:∠BAC=∠CAD=∠DAE. 证明 连结BD 、CE. ∵BC=CD=DE , ∠BCD=∠CDE , ∴△BCD ≌△CDE. 又∠BCD=180°-2a, ∴∠CBD=∠CDB=∠DCE=∠DEC=a,∴B 、C 、D 、E 四点共圆,且BC=CD=DE=2a. ∴BCDE=6a.又∠BAE=3a , ∴A 、B 、C 、D 、E 共圆. ∴∠BAC=∠CAD=∠DAE=a.例6 (1988年广州等五市数学联赛题)如图35-6,AB 为定圆O 中的定弦,作⊙O 的弦C1D1,C2D2,…C1988D1988,对其中每一i (i=1,2,…,1988),CiDi 都被弦AB 平分于Mi.过Ci 、Di 分别作⊙O 的切线,两切线交于Pi.求证:点P1,P2,…,P1988与某定点等距离,并指出这定点是什么点.证明 连OC i 、OD i ,对每个i (i=1,2,…1988), ∵C i D i 均被AB 平分于M i ,∴C i M i ·D i M i =AM i ·BM i . ① 又P i C i ,P i D i 分别切⊙O 于C i 、D i ,故知O 、C i 、P i 、D i 共圆,且OP i 通过C i D i 的中点M i . ∴C i M i ·D i M i =P i M i ·OM i . ② 由①、②得OM i ·M i P i =M i A ·M i B. ∴P i 和O 、A 、B 共圆.但O 、A 、B 为定点,∴P i 和⊙OAB 的圆心距离相等. 即点P 1,P 2,…,P 1988与定点等距离,这定点为⊙OAB 的圆心.例7若凸四边形两对角线的乘积等于它的两组对边乘积之和,则此四边形人接于圆.证明如图35-7,在凸四边形ABCD 中,设AC ·BD=AB ·CD+AD ·BC.(※)作∠ECD=∠ACB ,∠EBC=∠CAD ,于是△BEC ∽△ADC ,∴AC BCAD BE = ACBCDC EC = ② 由①得BE ·AC=AD ·BC. ③ 由②及∠1=∠2,可得△ABC ∽△DCE. ∴∠3=∠4,.DCACDE AB = 即 DE ·AC=AB ·DC ④ ③+④即有(BE+DE)·AC=AD ·BC+AB ·DC. ⑤ 比较⑤式与(※)式 得BE+DE=BD. 这说明,E 在BD 上,∠3与∠BDC 重合. ∴∠BDC=∠BAC.故A 、B 、C 、D 四点共圆. 此例是托勒密逆定理.1. 杂题例8(第1届美国数学邀请赛题)如图35-8,已知AD 、BC 是⊙O 的两条相交的弦,且B 在劣弧AD 上,⊙O 的半径为5,BC=6,AD 被BC 平分;又设从A 出发的弦只有AD 能被BC 等分,这样可以知道AB 劣弧对应的圆心角的正弦是一个有理数.如果把这个有理数化为最简分数n m,求mn.分析设AD 、BC 交于M ,M 为AD 中点,则点M 的轨迹是在A 点与⊙O 内切的半径为25的⊙P ,依题意BC 与⊙P 切于点M.要求mn ,须求sin ∠AOB=nm,亦是求cos ∠AOB 之值. 作ON ⊥BC 于N ,连OB ,则BN=BC 21=3,ON=.422=-BN OB 作PQ ⊥ON 于Q,连PM,则PQNM 为矩形,故有QN=PM=OP =21AO=25,OQ=ON-QN=,23 MN=PQ=,222=-OQ OP BM=BN-MN=1 BP=.22922=+PM BM在△POB 中,由余弦定理,cos ∠AOB=BOPO BP BO PO ⋅⋅-+2222=522)2921(5)25(222⋅⋅-+=2524,∴sin ∠AOB=AOB ∠-2cos 1=.257)2524(12=-∴mn=7×25=175.例9(1962年北京中学生数学竞赛题)任意剪六个圆形纸片放在桌面上,使得没有一个纸片的中心落在另一纸片上或被另一纸片盖住,然后用一枚针去世扎这一堆纸片.证明:不论针尖落在哪一点,总是不能一次把六个纸片全部扎中.分析 这命题等价于:平面上有六个圆,每个圆心都在其余各圆的外部,证明平面上任意一点都不会同时在这六个圆内部.证明 (反证法)如图35-9,设平面上有一点M 同时在这六个圆内部,连结六个圆心:MO 1,MO 2,…,MO 6.则∠O 1MO 2+∠O 2MO 3+…+∠O 6MO 1=360°.因此,至少有一个角不大于60°,不妨设∠O 1MO 2≤60°,即γ≤60°.又,α+β+γ=180°则α,β中必有一个不小于60°.不妨设β≥60°,则β≥γ.∴O 1O 2≤O 1M <r 1(r 1为圆⊙O 1的半径).故O 2在⊙O 1内,这与题设矛盾,这就证明了M 点不可能同时在六个圆的内部.例10(第21届国际中学生数学竞赛题)如图35-10,平面上两圆相交,其中一交点为 A.两动点各以匀速自A 点出发在不同的圆周上同向移动,这两点移动一周后同时返回到A 点.求证平面上有一定点P ,它不论在何时皆和两动点等距离.解设⊙O 1与⊙O 2相交于A 和A ′并设两动点Q 1和Q 2分别在⊙O 1和⊙O 2上,使∠AO 1Q 1=∠AO 2Q 2.连Q 1A ′Q 2A ′.因为圆周角等于同弧所对圆心角的一半, 故∠AA ′Q 1=∠21AO 1Q 1,∠AA ′Q 2=π-∠AXQ 2=π-21∠AO 2Q 2.∴∠AA ′Q 1+∠AA ′Q 2=π.即有Q 1、B 、Q 2三点共线.过A 点作MN ⊥AA ′分别交两圆于M 、N ,(如图35-11),设Q 1和Q 2表示两动点在任一时刻的位置.由圆内接四边形两对角互补可知∠MQ 1A ′=∠A ′Q 2N=.2π 作Q 1Q 的中垂线,交MN 于它的中点P ,点P 就是所求的定点.它显然和Q 1,Q 2等距离.后记;。
十年初中数学竞赛试题全包括(含答案)
1999年全国初中数学联合竞赛试卷第一试(4月4日上午8:30--9:30)一、选择题(本题满分42分,每小题7分)本题共有6个小题,每小题都给出了(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后的圆括号内。
每小题选对得7分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分。
1、计算的值是( D )。
(A)1;(B)-1;(C)2;(D)-2。
解:原式=。
2、△ABC的周长是24,M是AB的中点,MC=MA=5,则△ABC的面积是( C )。
(A)12;(B)16;(C)24;(D)30。
解:∵MA=MB=MC=5,∴∠ACB=90°,已知周长是24,则AC+BC=14,AC2+BC2=102。
∴2AC×BC=(AC+BC)2-(AC2+BC2)=142-102=4×24。
∴。
3、设,将一次函数与的图象画在同一平面直角坐标系内,则有一组的取值,使得下列4个图中的一个为正确的是( B )。
解:由方程组的解知两直线的交点为,而图A中交点横坐标是负数,故图A不对;图C中交点横坐标是2≠1,故图C不对;图D中交点纵坐标是大于,小于的数,不等于,故图D不对;故选B。
4、若函数,则当自变量取1、2、3、…、100这100个自然数时,函数值的和是( B )。
(A)540;(B)390;(C)194;(D)97。
解:当时,。
∴当自变量取2、3、…、98时,函数值都为0。
而当取1、99、100时,,故所求的和为:5、如图,在等腰梯形ABCD中,AB∥DC,AB=998,DC=1001,AD=1999,点P在线段AD上,则满足条件∠BPC=90°的点P的个数为( C )。
(A)0;(B)1;(C)2;(D)不小于3的整数。
解:AD的中点M对BC张成90°角,又在AD上取点N使AN=998,则ND=1001。
1990年第2届“五羊杯”初中数学竞赛初一试卷(解析版)
1990年第2届“五羊杯”初中数学竞赛初一试卷一、选择题(每题5分,满分50分)1.(5分)时针和分针在()重合过一次.A.2:30~3:00 B.7:30~7:45 C.12:45~13:00 D.18:00~18:30 2.(5分)所有4位数中,有()个数能同时被2、3、5、7和11整除.A.1 B.2 C.3 D.43.(5分)如图,长方形ABCD中,F为边CD的中点,边BC的长等于BE长的3倍,则长方形ABCD面积等于阴影部分面积的()倍.A.2 B.3 C.4 D.54.(5分)16÷(0.40+0.41+0.42+…+0.59)的值的整数部分是()A.1 B.2 C.3 D.45.(5分)4位同学到商店买毛笔或铅笔,每人只买了1枚笔,而且至少有1人买了铅笔,则共有()种可能的买法.A.4 B.5 C.15 D.166.(5分)设n是100到200之间的自然数,则满足7n+2是5的倍数的n的个数是()A.10 B.11 C.20 D.217.(5分)堆放在地面上垒成长方体形状的一堆砖,长为30块砖,宽为20块砖,高为10块砖,给这堆砖露出的表面普遍洒上石灰水,则没有洒上石灰水的砖的块数是()A.4959 B.4536 C.4400 D.40328.(5分)如果一个数等于某个自然数的平方,就称它为完全平方数,已知a和b是两个完全平方数.a的个位数字为1,十位数字为x;b的个位数字为6,十位数字为y,则()A.x、y都是奇数B.x、y都是偶数C.x奇y偶D.x偶y奇9.(5分)有18支代表队参加比赛开幕式,进场时,第1支代表队有27人,第2支代表队有26人,…,第18支代表队有10人.若他们都是一路纵队进场,并且按进场先后次序把18支代表队的所有代表编上1、2、…、333号,则有()支代表队的最后一名代表编号为奇数.A.8 B.9 C.10 D.1110.(5分)李明和王宁同做a×b(a、b都是正整数)的乘法习题,李明把a的个位数字7误看成1,得乘积255,李明把a的十位数字5误看成6,得乘积335,则正确的乘积应为()A.285 B.305 C.375 D.380二、填空题(每小题5分,共50分)11.(5分)光明文具厂一月份生产铅笔80万枝,以后每月增产5%,则四月份生产铅笔枝.12.(5分)100个数之和为1990,把第一个数减1,第二个数加2,第三个数减3,…,第100个数加100,则所得新数之和为.13.(5分)方程的根x=.14.(5分)全由奇数数码组成且能被125整除的最小的6位数是.15.(5分)如图所示,4个半径为1厘米的圆紧紧地放在一个正方形内,则阴影部分的面积是平方厘米(精确到小数点后第2位数字).16.(5分)若a、b均为质数且a﹣b=35,则ab=.17.(5分)有4人对话如下:甲:我们当中只有1个人说假话;乙:我们当中仅有2个人说假话;丙:我们当中恰有3个人说假话;丁:我们都在说假话.则说假话的有个人.18.(5分)假设(a*b)=(a2﹣b2)÷(ab)(ab≠0),则*(3*2)=.19.(5分)如图,把边长为4的正方形分为16个边长为1的小正方形,则图中共有个长方形(包括正方形),这些长方形面积之和为.20.(5分)用等长的火柴摆成如图所示的长方形网格,这个网格纵向有19根火柴的长,横向有90根火柴,则共用了根火柴.1990年第2届“五羊杯”初中数学竞赛初一试卷参考答案与试题解析一、选择题(每题5分,满分50分)1.(5分)时针和分针在()重合过一次.A.2:30~3:00 B.7:30~7:45 C.12:45~13:00 D.18:00~18:30【解答】解:A、2:30时,分针指向6,时针指向2和3中间,3:00时,分针指向12,时针指向3,故没重合.B、7:30时,分针指向6,时针指向7和8中间,8:00时,分针指向12,时针指向8,故重合一次.C、12:45时,分针指向9,时针指向12和1中间,13:00时,分针指向12,时针指向1,故没重合.D、18:00时,分针指向12,时针指向6,18:30时,分针指向6,时针指向6和7中间,故没重合.故选:B.2.(5分)所有4位数中,有()个数能同时被2、3、5、7和11整除.A.1 B.2 C.3 D.4【解答】解:2,3,5,7,和11都是质数,∴最小公倍数是2×3×5×7×11=2310,故符合题意的四位数必须能被2310整除,∵10000÷2310=4余760,故所有4位数中,有4个数能同时被2、3、5、7和11整除.故选:D.3.(5分)如图,长方形ABCD中,F为边CD的中点,边BC的长等于BE长的3倍,则长方形ABCD面积等于阴影部分面积的()倍.A.2 B.3 C.4 D.5【解答】解:设长方形ABCD中,BC=x,CD=y,则S长方形ABCD=xy,∵F为边CD的中点,BC=3BE,∴CF=y,EC=x,∴S△CEF=CF•EC=×y×x=xy,S△BCD=BC•CD=xy,∴S阴影=S△BCD﹣S△CEF=xy=S长方形ABCD.∴长方形ABCD面积等于阴影部分面积的3倍.故选:B.4.(5分)16÷(0.40+0.41+0.42+…+0.59)的值的整数部分是()A.1 B.2 C.3 D.4【解答】解:∵0.40+0.41+0.42+…+0.59==9.9,∴16÷(0.40+0.41+0.42+…+0.59)=16÷9.9≈1.6,则所求式子值的整数部分是1.故选:A.5.(5分)4位同学到商店买毛笔或铅笔,每人只买了1枚笔,而且至少有1人买了铅笔,则共有()种可能的买法.A.4 B.5 C.15 D.16【解答】解:每人有2种选择,4人有2×2×2×2=16种买法,4人都买毛笔不合要求,满足要求的买法有15种.故选:C.6.(5分)设n是100到200之间的自然数,则满足7n+2是5的倍数的n的个数是()A.10 B.11 C.20 D.21【解答】解:当n的尾数为4或9时,7n的尾数为8或3,7n+2的尾数为0或5,100到200之间符合这个条件的数有104,109,114,119,…,194,199共20个.故选:C.7.(5分)堆放在地面上垒成长方体形状的一堆砖,长为30块砖,宽为20块砖,高为10块砖,给这堆砖露出的表面普遍洒上石灰水,则没有洒上石灰水的砖的块数是()A.4959 B.4536 C.4400 D.4032【解答】解:∵垒成长方体形状的一堆砖,长为30块砖,宽为20块砖,高为10块砖,∴被洒上石灰水的砖数=(30﹣2)×(20﹣2)×(10﹣2)=28×18×8=4032(块).故选:D.8.(5分)如果一个数等于某个自然数的平方,就称它为完全平方数,已知a和b是两个完全平方数.a的个位数字为1,十位数字为x;b的个位数字为6,十位数字为y,则()A.x、y都是奇数B.x、y都是偶数C.x奇y偶D.x偶y奇【解答】解:∵a的个位数字为1,十位数字为x,∴x为偶数,∵b的个位数为6,十位数字为y,∴y为奇数.故选:D.9.(5分)有18支代表队参加比赛开幕式,进场时,第1支代表队有27人,第2支代表队有26人,…,第18支代表队有10人.若他们都是一路纵队进场,并且按进场先后次序把18支代表队的所有代表编上1、2、…、333号,则有()支代表队的最后一名代表编号为奇数.A.8 B.9 C.10 D.11【解答】解:∵第1支代表队有27人,第2支代表队有26人,…,第18支代表队有10人,按进场先后次序把18支代表队的所有代表编上1、2、…、333号,∴第1支代表队末尾数是:27,第2支代表队末尾数是:27+26=53,第3支代表队末尾数是:27+26+25=78,第4支代表队末尾数是:27+26+25+24=102,第,5支代表队末尾数是:102+23=125,第6支代表队末尾数是:125+22=147,第7支代表队末尾数是:147+21=168,第8支代表队末尾数是:168+20=188,第9支代表队末尾数是:188+19=207,第10支代表队末尾数是:207+18=225,第11支代表队末尾数是:225+17=242,第12支代表队末尾数是:242+16=258,第13支代表队末尾数是:258+15=273,第14支代表队末尾数是:273+14=287,第15支代表队末尾数是:287+13=300,第16支代表队末尾数是:300+12=312,第17支代表队末尾数是:312+11=323,第18支代表队末尾数是:323+10=333,∴代表队的最后一名代表编号为奇数的有10代表队.故选:C.10.(5分)李明和王宁同做a×b(a、b都是正整数)的乘法习题,李明把a的个位数字7误看成1,得乘积255,李明把a的十位数字5误看成6,得乘积335,则正确的乘积应为()A.285 B.305 C.375 D.380【解答】解:∵李明把a的个位数字7误看成1∴a的个位数字为7,∵李明把a的十位数字5误看成6∴a的十位数字为5∴a=57∵51×b=255∴b=5∴a×b=57×5=285.故选:A.二、填空题(每小题5分,共50分)11.(5分)光明文具厂一月份生产铅笔80万枝,以后每月增产5%,则四月份生产铅笔92.61万枝.【解答】解:由题意得:80(1+5%)3=92.61(万枝).故答案为:92.61万.12.(5分)100个数之和为1990,把第一个数减1,第二个数加2,第三个数减3,…,第100个数加100,则所得新数之和为2040.【解答】解:∵﹣1+2﹣3+4﹣5+6﹣…﹣99+100=50,∴1990+(﹣1+2﹣3+4﹣5+6﹣…﹣99+100)=2040,故答案为2040.13.(5分)方程的根x=.【解答】解:去分母,得x﹣=(+)移项,合并得x=解得x=.14.(5分)全由奇数数码组成且能被125整除的最小的6位数是111375.【解答】解:能被125整除的数,它的后三为数也能被125整除,所以这个六位数的后三位数可能是125,250,375,500,525,750,900又因这个六位数的各个数位上的数码都是奇数码,所以这个六位数的后三位数只能是375,所以满足条件的最小六位数是111375.故答案为111375.15.(5分)如图所示,4个半径为1厘米的圆紧紧地放在一个正方形内,则阴影部分的面积是0.86平方厘米(精确到小数点后第2位数字).【解答】解:由图形可知,阴影的面积等于一个边长为2的正方形的面积减去一个半径为1的圆的面积,阴影的面积=S正方形﹣S圆=4﹣π=0.86cm2.故答案为:0.86.16.(5分)若a、b均为质数且a﹣b=35,则ab=74.【解答】解:∵a﹣b=35,∴a,b为一个奇数、一个偶数,∵a,b均为质数,在所有偶数中只有2是质数,∴a=2或b=2,当a=2时,b=2﹣35=﹣33(不合题意舍去);当b=2时,a=35+2=37,∴ab=2×37=74.17.(5分)有4人对话如下:甲:我们当中只有1个人说假话;乙:我们当中仅有2个人说假话;丙:我们当中恰有3个人说假话;丁:我们都在说假话.则说假话的有3个人.【解答】解:若甲为真,则乙,丙,丁都为假(这与甲的话矛盾)若乙为真,则甲,丙都为假,若丙为真,甲、乙、丙所说此时成立,∴丙为真成立,丁不可能为真.故答案为:3.18.(5分)假设(a*b)=(a2﹣b2)÷(ab)(ab≠0),则*(3*2)= 4.8.【解答】解:3*2=(32﹣22)÷(3×2)=,∴*(3*2)=*,=[()2﹣()2]÷(×),=4.8.19.(5分)如图,把边长为4的正方形分为16个边长为1的小正方形,则图中共有40个长方形(包括正方形),这些长方形面积之和为200.【解答】解:每一行组成的长方形有10个,面积为20,每两行组成的长方形有10个,面积为40,每三行组成的长方形有10个面积为60,每四行小正方形组成的长方形有10个,面积为80,图中总有40个长方形,面积为200,故答案为40、200.20.(5分)用等长的火柴摆成如图所示的长方形网格,这个网格纵向有19根火柴的长,横向有90根火柴,则共用了3529根火柴.【解答】解:水平方向每行有90根火柴,则19根火柴可排列20行,则水平方向的火柴为90×20=1800,竖直方向每列有19根火柴,则90根火柴可以排91列,则竖直方向的火柴为91×19=1729,总共火柴为1800+1729=3529根,故答案为3529.。
全国初中数学联赛数论题目汇编
33. (1998 联赛)1, 2, 3, · · · , 98 共 98 个自然数中, 能够表示成两整数的平方差的个数是
34. (1998 联赛) 每一本书都有一个国际书号:ABCDEF GHIJ , 其中 ABCDEF GHI 由九个数字排列而 成, J 是检查号码. 令 S = 10A + 9B + 8C + 7D + 6E + 5F + 4G + 3H + 2I ,r 是 S 除以 11 所得的 余数, 若 r 不等于 0 或 1, 则规定 J = 11 − r. (若 r = 0, 则规定 J = 0; 若 r = 1, 规定 J 用 x 表示) 现有一本书的书号是 962y 707015, 那么 y = .
20. (1990 联赛)12 , 22 , 32 , · · · , 1234567892 的和的个位数的数字是 21. (1990 联赛)[x] 表示不超过实数 x 的最大整数, 令 {x} = x − [x] 1 (1) 找出一个实数 x, 满足 {x} + { } = 1 x (2) 证明: 满足上述等式的 x, 都不是有理数.
3 29. (1997 联赛) 若正整数 x,y 满足 x2 + y 2 = 1997, 则 x + y 等于 .
30. (1997 联赛) 已知定理:“若三个大于 3 的质数,a, b, c 满足关系式 2a + 5b = c, 则 a + b + c 是整数 n 的倍数”. 试问: 上述定理中的整数 n 的最大可能值是多少? 并证明你的结论. 31. (1998 联赛) 满足 19982 + m2 = 19972 + n2 (0 < m < n < 1998) 的整数对 (m, n), 共有 32. (1998 联赛) 设平方数 y 2 是 11 个相继整数的平方和, 则 y 的最小值是 . . 个.
历年全国初中数学竞赛试卷及答案解析
历年全国初中数学竞赛试卷及答案解析历年全国初中数学竞赛试卷及答案解析目录1998年全国初中数学竞赛试卷及答案解析 (3)1999年全国初中数学竞赛试卷及答案解析 (10)2000年全国初中数学竞赛试卷及答案解析 (19)2001年全国初中数学竞赛试卷及答案解析 (26)2002年全国初中数学竞赛试卷及答案解析 (34)2003年全国初中数学竞赛试卷及答案解析 (42)2004年全国初中数学竞赛试卷及答案解析 (53)2005年全国初中数学竞赛试卷及答案解析 (61)2006年全国初中数学竞赛试卷及答案解析 (69)2007年全国初中数学竞赛试卷及答案解析 (78)2008年全国初中数学竞赛试卷及答案解析 (91)2009年全国初中数学竞赛试卷及答案解析 (100)2010年全国初中数学竞赛试卷及答案解析 (110)2011年全国初中数学竞赛试卷及答案解析 (119)2012年全国初中数学竞赛试卷及答案解析 (128)2013年全国初中数学竞赛试卷及答案解析 (144)2014年全国初中数学竞赛预赛试题及参考答案 (153)1998年全国初中数学竞赛试卷及答案解析一、选择题(本大题共5小题,每小题6分,共30分).1、已知c b a ,,都是实数,并且c b a >>,那么下列式子中正确的是(B ).A. ;bc ab >B. ;c b b a +>+C. ;c b b a ->-D..cbc a > 【解析】B.根据不等式的基本性质.2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为(D ).A. 2;B. 4;C. ;3D. .5【解析】D..514)(14)()(.1.200422212212212121212=⇒⨯--=⇒-+=-∴⎩⎨⎧=-=+>⇒⎭⎬⎫>>-=∆p p x x x x x x x x px x x x p p p 为方程的两根,那么有、设由3、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且64==⊥CE BD CE BD ,,,那么△ABC的面积等于(C ). A. 12; B. 14;C. 16;D. 18.【解析】C..16123434.4141.12642121=⨯==∴=-⇒=⇒∆=⨯⨯=⋅⋅=⇒⊥∆∆∆∆∆BCDE ABC ABC BCDE ABC ABC AED BCDE S S S S S S S ABC DE CE BD S CE BD DE 四边形四边形四边形的中位线是,则如图所示,连接Θ4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第()象限.(B ) A. 一、二; B. 二、三; C. 三、四; D. 一、四.【解析】B...11222.12.10.02)()(2一定通过第二、三象限直线过第二、三、四象限时,直线当过第一、二、三象限;时,直线当或或p px y x y p x y p p p cc c b a p c b a c b a p c b a p c b a pba c pa cb pcb a p b ac a c b c b a +=∴--=-=+==-==∴-=-=+=⇒=++=++=⇒++=++⇒⎪⎩⎪⎨⎧=+=+=+⇒=+=+=+ΘΘ5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有(C ). A. 17个; B. 64个; C. 72个; D. 81个.【解析】C..7298)(.832313029282726259987654321.322490483190.89个有,满足条件的整数有序对个,共,,,,,,,个;,共,,,,,,,,则依题意,知由原不等式组可得=⨯∴==∴⎩⎨⎧≤<≤<⇒⎪⎩⎪⎨⎧≤<≤<<≤b a b a b a b a b x a二、填空题(本大题共5小题,每小题6分,共30分).6、在矩形ABCD 中,已知两邻边AD =12,AB =5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE +PF =_____.【解析】.1360 .136013560135.1355125sin 135605125)12(sin .12)120(2222=-+=+∴=+⋅=∠⋅=-=+⨯-=∠⋅=∴-=<<=x x PF PE xx PAF AP PF xx PDE DP PE x DP x x AP ;,则如图所示,设FEADCBP7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于_____.【解析】6..639211121)31()91(21'.''').93()11(32''''2=⨯⨯-⨯⨯-+⨯+⨯=--=-=+-=∆∆∆O BB O AA B B AA OAB S S S S B A x BB AA B A x y x y 梯形则,轴,垂足分别为分别垂直于,作,,,的交点为与抛物线如图所示,直线8、已知圆环内直径为cm a ,外直径为cm b ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为_____cm .【解析】49a+b..49)150(225050242332222b a ab b b a ab b b a ab b +=-⨯--⋯⋯+=⨯--+=⨯--个时,链长为当圆环为;个时,链长为当圆环为;个时,链长为如图所示,当圆环为9、已知方程())(015132832222是非负整数其中a a a x a a x a =+-+--,至少有一个整数根,那么a =_____.【解析】1,3或5..53151322)2()83(2)15132(4)83()83(21222222222,或,可取故,a ax a x a a a a a a a a a a a a a x -=-=∴+±-=+---±-=Θ10、B 船在A 船的西偏北o 45处,两船相距km 210,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是_____km .【解析】52..52''620)6-(5)210()10(''''./.''.102221045sin 102221045cos 22222o o 取得最小值时,当则船的速度为并设处,船分别航行到船、小时后,设经过,如图所示,B A xt xt xt xt C B C A B A h km x A B A B A t AB BC AB AC =+=-+-=+==⨯=⋅==⨯=⋅=三、解答题(本大题共3小题,每小题20分,共60分).11、如图,在等腰ABC ∆中,o 901=∠=A AB ,,点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE ,求△CEF 的面积.AB CEF【解】解法一:.24161212121612214522122∽9090.o o o =⨯⨯=⋅⋅=∴=⇒=-∴=⇒=∠-=-=∴=⇒==∴=⇒∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆GF CE S GF GF GF GF CG C GFGE CE CG GF GE AEABGF GE GEABGF AE GEF Rt ABE Rt GEF ABE AEB GEF AEB ABE G CE FG CEF ΘΘ于如图所示,作解法二:241)21()(∽9090.22o o ==∴====∴∆∆∴∠=∠⇒⎭⎬⎫=∠+∠=∠+∠⊥∆∆AEABCH CE CE AB CH AE AB CE S S CEH Rt ABE Rt CEH ABE AEB CEH AEB ABE H EF CE CH C ABE CEH ,的延长线交于,与作如图所示,过Θ.2412112141324132322.45o =⨯⨯⨯⨯=⨯==∴==∴⇒∠⇒=∠=∠∆∆∆∆∆ABE CHE CEF CHF CEF S S S CH CE S S CE CH F HCE CF HCF ECF 的距离相等、到的角平分线是Θ12、设抛物线452)12(2++++=a x a x y 的图象与x 轴只有一个交点.(1)求a 的值; (2)求618323-+a a 的值. 【解】.5796)138(323)15972584(3231381011)1(310113)2)(53(1115344)1(44)2()1(1212)1(12)1()1(11101159725846101597)1(9876101597987)1)(610987(610987169546)1(441169546441)1321()(1321412)1(94129)23()(2312)1(12)1()(101)1()2(.251010)452(4)12(.0452)12(.452)12()1(618224622224222222216182228162224822224222222=+-++=+∴+-=+-+=+-=+-+-=⋅=+-=+-+=+-=+-==+-=+-+=+-=-==-=∴=--+=+++=++=++=⋅=+=+++=++=+==+=+++=++=+==+=+++=++=+==+=∴=--±=∴=+-=+-+=∆∴=++++∴++++=-a a a a a a a a a a a aa a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a x a x x a x a x y 又知,由,即有两个相等的实根一元二次方程轴只有一个交点的图像与抛物线ΘΘ13、A 市、B 市和C 市有某种机器10台、10台、8台,现在决定把这些机器支援给D 市18台,E 市10台.已知:从A 市调运一台机器到D 市、E 市的运费为200元和800元;从B 市调运一台机器到D 市、E 市的运费为300元和700元;从C 市调运一台机器到D 市、E 市的运费为400元和500元.(1)设从A 市、B 市各调x 台到D 市,当28台机器调运完毕后,求总运费W (元)关于x (台)的函数关系式,并求W 的最大值和最小值.(2)设从A 市调x 台到D 市,B 市调y 台到D 市,当28台机器调运完毕后,用x 、y 表示总运费W (元),并求W 的最大值和最小值. 【解】.1420014200100142001720010300020017200)(300200.98009800810980017200183001020017200)(300200.1810100100172003005001810100100818010010017200300500)10(500)10(700)10(800)18(400300200.101010182.132005100009958218010017200800)102(500)10(700)10(800)218(400300200.10210102181元的最大值是,故时,,即当;又元的最小值是,故时,,即当是整数,,,且又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(元取到最大值时,元;当取到最小值时,所以,当又于是台,,机器台数分别为市的台,发往,,市的机器台数分别为市发往市、市、)由题设知,(W W y x y x x W W W y x y x x W y x y x y x y x W y x y x y x y x y x y x y x y x y x W y x y x E y x y x D C B A W x W x x x x x x x x x x x W x x x E x x x D C B A ====+⨯-⨯-≤++--=====+⨯-⨯-≥++--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤+--=∴⎪⎩⎪⎨⎧≤+≤≤≤≤≤⇒⎪⎩⎪⎨⎧≤--≤≤≤≤≤+--=-++-+-+--++=-+----==≤≤⇒⎩⎨⎧≤-≤≤≤+-=-+-+-+-++=----1999年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).14、一个凸n 边形的内角和小于1999°,那么n 的最大值是(C ).A. 11;B. 12;C. 13;D. 14.【解析】C.18019131999)2(180o o <⇒<-n n .15、某城市按以下规定收取每月煤气费:用煤气如果不超过60立方米,按每立方米0.8元收费;如果超过60立方米,超过部分按每立方米1.2元收费.已知某用户4月份的煤气费平均每立方米0.88元,那么4月份该用户应交煤气费(B ). A. 60元; B. 66元; C. 75元; D. 78元.【解析】B.设4月份用户使用煤气x (x >60)立方米.则 60×0.8+1.2×(x -60)=0.88x .解得x =75. 故4月份该用户应交煤气费0.88×75=66元.16、已知11=-a a,那么代数式a a +1的值为(D ).A.;25 B. ;25-C. ;5-D. .5【解析】D..1111110②52321)1(113111110①2222222此时无解时,当;时,当-=+⇒=+⇒=-<=+=++=+=+⇒+∴=+⇒=-⇒=->a aa a a a a a aa a a a a a a aa a a a a17、在ABC ∆中,D 是边BC 上的一点,已知51065====CD BD AD AC ,,,,那么ABC ∆的面积是(B ). A. 30; B. 36; C. 72; D. 125.【解析】B..36524)510(212152454621214353621215.2222=⨯+⨯=⋅⋅=∴=⨯=⋅=⇒⋅⋅=⋅⋅=∴=-=-=∴=⨯==⇒⊥==⊥⊥∆∆AF BC S CD CE AD AF AF CD CE AD S AE AC CE AD AE AD CE CD AC F BC AF E AD CE ABC ADC ,则于,于如图所示,作18、如果抛物线1)1(2----=k x k x y 与x 轴的交点为A ,B ,顶点为C ,那么△ABC 的面积的最小值是(A ). A. 1; B. 2;C. 3;D. 4.【解析】A.().1184)1(452522145221214524)]1([)1(444212)1(252)1(4)1(4)(11.01)1(32222212222221221212121212取得最小值时,当,,则,的两实根为设一元二次方程ABC C ABC S k k k kk k k k x x y AB S k k k k a b ac k k a b k k k k x x x x x x k x x k x x x x k x k x ∆∆-=++=++⋅++⋅=++⋅-⋅=⋅⋅=∴++-=-----=--=---=-++=----=-+=-∴--=-=+=----19、在正五边形ABCDE 所在的平面内能找到点P ,使得△PCD 与△BCD 的面积相等,并且△ABP 为等腰三角形,这样的不同的点P 的个数为(D ). A. 2; B. 3; C. 4; D. 5.【解析】D..③②①.31452P P BA B P BA BP P AB A P AB AP P P AB P BP AP ABP CD CD B P BCD PCD ,为半径的圆上,此时有为圆心,必在以时,点当;为半径的圆上,此时有为圆心,必在以时,点当;,的中垂线上,此时有必在线段时,点当是等腰三角形,则要使的对称直线上的直线或此直线关于且平行于一定在过点的面积相等,则点与如图所示,要使===∆∆∆二、填空题(本大题共6小题,每小题5分,共30分).20、已知231231-=+=y x ,,那么22y x +的值为_____. 【解析】10..10)23)(23(2)]23()23[(2)(23232312312222=+--++-=-+=+∴+=-=⇒-=+=xy y x y x y x y x ,,Θ21、如图,正方形ABCD 的边长为10cm ,点E 在边CB 的延长线上,且EB =10cm ,点P 在边DC 上运动,EP 与AB 的交点为F .设DP =xcm ,△EFB 与四边形AFPD的面积和为ycm 2,那么,y 与x 之间的函数关系式是_____(0<x <10).【解析】y=5x+50.50510)]215([2110)215(21)(2121215)215(10215)10(21)(212121101010∽+=⨯++⨯+⨯-⨯=⋅+⋅+⋅⋅=+=∴+=--=-=∴-=-=-==⇒=+==⇒∆∆∆x x x x AD AF DP BE BF S S y xx BF AB AF x x DP DC CP BF EC EB CP BF ECP EBF AFPD EFB 四边形Θ22、已知02022=-+≠b ab a ab ,,那么ba ba +-22的值为_____. 【解析】3135或. 35)2(2)2(22231222220)2)((0222=+-⨯--⨯=+-=+-=+-∴-==⇒=+-⇒=-+b b b b b a b a b b b b b a b a b a b a b a b a b ab a 或或Θ23、如图,已知边长为1的正方形OABC 在直角坐标系中,A 、B 两点在第Ⅰ象限内,OA 与x 轴的夹角为30°,那么点B 的坐标是_____.【解析】)213213(+-,.212321232323130cos 2121130sin 2323130cos 2121130sin .o o o o +=+=+=-=-=-=∴=⨯=⋅==⨯=⋅==⨯=⋅==⨯=⋅=⊥⊥⊥AE BF FD BF BD AF OE DE OE OD AB BF AB AF OA OE OA AE F BD AF D x BD E x AE ,,,则于,轴于,轴于如图所示,作F EDCBOxyA24、设有一个边长为1的正三角形,记作A1(如图3),将A1的每条边三等分,在中间的线段上向形外作正三角形,去掉中间的线段后所得到的图形记作A2(如图4);将A2的每条边三等分,并重复上述过程,所得到的图形记作A3(如图5);再将A3的每条边三等分,并重复上述过程,所得到的图形记作A4,那么A4的周长_____.【解析】964..964])31(1)[43(316])31(1)[43(4)311()43(313.31433422321=⨯⨯=⨯⨯=⨯⨯⨯=⨯的周长是,的周长是,的周长是,的周长是为原来的条边,每条线段长度变把一条边变成变化规律为:每次变化AAAA25、江堤边一洼地发生了管涌,江水不断地涌出,假定每分钟涌出的水量相等.如果用2台抽水机抽水,40分钟可抽完;如果用4台抽水机抽水,16分钟可抽完.如果要在10分钟内抽完水,那么至少需要抽水机_____台.【解析】6..6103210316010103231601641640240台故至少需要抽水机,则水,每台抽水机每分钟抽,每分钟涌出的江水是涌出的江水是设使用抽水机抽水前已=⨯+=+⎪⎩⎪⎨⎧==⇒⎩⎨⎧⨯=+⨯=+ccccbacbcacbacbacba三、解答题(本大题共3小题,每小题20分,共60分).26、设实数ts,分别满足019991991922=++=++ttss,,并且1≠st,求tsst14++的值.【解】.519141991419199191991.199911119199)1(19919222-=++--=++∴⎩⎨⎧=--=⇒⎪⎩⎪⎨⎧=⋅-=+∴=++∴≠⇒≠=+⋅+⇒=++∴ssstsststssttstsxxtsststssss的两个不等实根是一元二次方程,Θ27、如图,已知四边形ABCD内接于直径为3的圆O,对角线AC是直径,对角线AC和BD的交点是P,AB=BD,且PC=0.6,求四边形ABCD的周长.【解】如图所示,连接BO并延长交AD于H,连接OD.则HDPOAB.632213)6(36)2123()2221()()21(221316.0236.023∽∥909022222222222222o o +++∴=-=-==++⨯=++=+==-=-==-⨯=⋅=∴=⇒∆∆∴∠=∠⇒∴=∠⇒∠=∠=∠⇒≅∆∴的周长为四边形上的圆周角是直径ABCD AB AC BC OH BO AD BH AH AB CD AC AD OP CP OB CD CPOPCD OB CPD OPB CDP OBP CD BH ADC AC ADC DHB AHB DBH ABH Θ28、有人编了一个程序:从1开始,交错地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次的运算结果加2或加3;每次乘法,将上次的运算结果乘2或乘3.例如,30可以这样得到:30108413223−→−−→−−→−−→−⨯+⨯+.(1)证明:可以得到22; (2)证明:可以得到22297100-+.【解析】(1)倒过来考虑:①22假设是通过乘法得到,则必是×2; A ,11假设是通过+2得到; 9必是×3得到. 3必是+2得到.(*) B ,11假设是通过+3得到. 8必是×2得到. (A)4是+2得到; 2必是×2得到.(*) (B)4是+3得到.(*) ②22假设是通过加法得到.A ,假设是+2得到; 20必是×2得到. (A)10假设是+2得到; 8必是×2得到. a ,4是+2得到; 2必是×2得到.(*) b ,4是+3得到.(*) (B)10假设是+3得到. 7不能通过乘法得到,不满足.B ,假设是+3得到.19不能通过乘法得到,不满足. 故所有方法有148102022124810202214811221248112213911223-22-22-22-22-22-3-23-222-23-22-32-2−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−÷÷÷÷÷÷÷÷÷÷÷÷(2)倒过来考虑:148423)2293(423223423123322122222③)(2471416222)23247(222422122222②)(247222)2296(222422222①3-222-2952-952963-96396992-969929710023-22-1423-29598296993-969929710023-0322-96992971002-97100−→−−→−=-⨯→-÷−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-+−→−-+−→−-+−→−−→−−→−−→−=-+→÷-÷−→−−→−−→−⋯-+−→−-+−→−-+−→−-+−→−−→−=-+→÷-−→−−→−⋯-+−→−-+−→−-+÷÷÷÷÷÷÷÷÷÷÷÷÷÷,次不满足,,次不满足,次【解】证明:(1)22119312232−→−−→−−→−−→−⨯+⨯+. 或222010841222010842122118412211842122223222222232323222−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−−→−+⨯+⨯++⨯+⨯+⨯⨯+⨯+⨯+⨯+⨯证明:(2)222229129329123423)2292(423223423223423223197100972962963963962242323222223-+=-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯→⨯+−→−−→−⋯-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−-⨯−→−⨯+⨯+⨯+⨯+⨯+⨯+,次2000年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).29、设a,b,c的平均数为M,a,b的平均数为N,N,c的平均数为P,若cba>>,则M与P的大小关系是(B).A.;PM=B.;PM>C.;PM<D.不确定.【解析】B..1221221224234222223PMccccbaPMcbacbacbacbaPMcbacbacNPbaNcbaM>⇒=-+>-+=-∴>>-+=++-++=-∴++=++=+=+=++=ΘΘ,,30、某人骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b﹤a),再前进c千米,则此人离起点的距离S与时间t的关系示意图是(C).【解析】C.图(A)中没有反映休息所消耗的时间;图(B)虽表明折返后S 的变化,但没有表示消耗的时间;图(D)中没有反映沿原始返回的一段路程,唯图(C)正确地表述了题意.31、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么(A).A. 甲比乙大5岁;B. 甲比乙大10岁;C. 乙比甲大10岁;D. 乙比甲大5岁.【解析】A.设甲、乙的年龄差是x 岁.则乙现在(10+x )岁,甲现在(25-x )岁,年龄差为[(25-x )-(10+x )]=15-2x 岁. 故15-2x =x ,即x =5.32、一个一次函数图象与直线49545+=x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有(B ). A. 4个; B. 5个; C. 6个; D. 7个.【解析】B..5012340419419)(419190)()4950()019().19(4549545)251(4954500000个点故共有,,,,是整数点,则上横纵坐标都是整数的是线段,设,,,则的一次函数的解析式是,平行,且过与直线----=⇒≤-=≤-⇒⎩⎨⎧=-≤≤∴--=-=--+=t x t t tx x AB y x B A x x y x y33、设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A 、∠B 的关系是(B ). A. ∠B >2∠A ; B. ∠B =2∠A ; C. ∠B <2∠A ;D. 不确定.【解析】B.BACD BAD D ABC DBAD D BAC DAC ABC DCACAC BC C C DAC ABC c a CD AB BD D CB c a b b a c b a b b a a b a c b a b a b a c b a b a b a ∠=∠=∠+∠=∠∴∠=∠∠=∠⇒∆∆∴=∠=∠∆∆+==+=⇒+++-++-=--⇒+++=--⇒+++=22∽.)()(Θ,中,和在,于是,使到如图所示,延长ca bcDC B A34、已知ABC ∆的三边长分别为c b a ,,,面积为S ,111C B A ∆的三边长分别为111c b a ,,,面积为S 1,且111c c b b a a >>>,,,则S 与S 1的大小关系一定是(D ). A. ;1S S > B. ;1S S < C. ;1S S = D. 不确定.【解析】D..2121214121..2.2.11111111111111111`111S S h CB S S h CB S S h CB h AB S CB AB S c c b b a a ABc b a h AB C B A AB c ABAB b a l C AB l AB B >>==<<⋅=⋅⋅=>>>===∆==>=时,;当时,;当时,当,而,,显然满足,则为为边的等边三角形,高是以,则上任一点为的中垂线,是的中点,是如图所示,二、填空题(本大题共6小题,每小题5分,共30分).35、已知:333124++=a ,那么=++32133aa a _____. 【解析】1..11)]12(1[1)11(1)1(113313313312111)2()124)(12()12(12433333323323233333333333=--+=-+=-+=-+++=++=++∴-=⇒=-=++-=-⇒++=aa a a a a a a a a a a a aa a Θ36、在梯形ABCD 中,o o 12045268∥=∠=∠==BAD BCD BC AB DC AB ,,,,,则梯形ABCD 的面积等于_____.【解析】3666+..36666)]3214(8[21)(21321468323223630tan30120.62264526.oooo+=⨯++=⋅+=∴+=++=++=∴=⨯=⋅=⇒=∠⇒=∠====⇒=∠=AECDABSFCEFDEDCAEDEDAEBADCFBFAEBCDBCFEDCBFAEABCD梯形,、于垂直、如图所示,作37、已知关于x的方程012)1(2=--+-axxa的根都是整数,那么符合条件的整数有_____个.【解析】5..5①②.32121112111②11①.0)]1()1)[(1(12)1(212个有知,符合条件的整数结合,,,,即,是整数知,,由,时,当;时,当aaaxaxxaxaaxaxaxxa-=±±=----==≠===++--⇒=--+-38、如图,工地上竖立着两根电线杆AB、CD,它们相距15米,分别自两杆上高出地面4米、6米的A、C处,向两侧地面上的E、D;B、F点处,用钢丝绳拉紧,以固定电线杆.那么钢丝绳AD与BC的交点P离地面的高度为_____米.【解析】2.4..4.24.21561541515615∽415∽.米离地面的高度是即点则于如图所示,作PPQPQPQBQQDPQCDBDPQBQBDBQCDPQBCDBPQPQABBDPQQDBDQDABPQDABDPQQBDPQ=⇒=+∴=+=⋅=⇒=⇒∆∆=⋅=⇒=⇒∆∆⊥Θ39、如图,在直角坐标系中,矩形OABC的顶点B的坐标为(15,6),直线bxy+=31恰好将矩形OABC 分成面积相等的两部分,那么b=_____.【解析】0.5..211)515()0(===-==+b BQ OP S S b BQ b OP b Q b P OPQA BQPC,即,则要使,,知,,,由梯形梯形40、某商场经销一种商品,由于进货时价格比原进价降低了6.4%,使得利润率增加了8个百分点,那么经销这种商品原来的利润率是_____.)进价进价销售价(注:利润率%100⨯-=【解析】17%.%17%10017.117.1%8%100%100%)4.61(%)4.61(%.100%)4.61(%)4.61(%4.6%.100=⨯-==⨯--⨯---⨯---⨯-xxx xy x x y x x y xxy xxy y x 率为故这种商品原来的利润解得,依题意得,为后,在销售时的利润率原进价降低的利润率为元,那么按原进价销售元,销售价为设原进价为三、解答题(本大题共3小题,每小题20分,共60分).41、设m 是不小于-1的实数,使得关于x 的方程033)2(222=+-+-+m m x m x 有两个不相等的实数根21x x ,.(1)若62221=+x x ,求m 的值; (2)求22212111x mx x mx -+-的最大值. 【解】.1011.101.11)11(25)23(2)13(2)13(2)1()13)(1(2)2882(1)42()33()]42)(33()10102[(1)()]([)1)(1()]1()1([11)2(.217511217561010210102)33(2)]2(2[2)()1(.1110)33(4)]2(2[.033)2(222212122222232222121212122212112222122212122222122122212222的最大值是故取得最大值时,当上是单调递减的在设根据题设,有有两个不相等的实数根方程x mx x mx y m m y m m m m y m m m m m m m m mm m m m m m m m m m m m m m x x x x x x x x x x m x x x x x x m x mx x mx m m m m m m m m m m x x x x x x m m m m m m m x m x -+--=∴<≤-<≤---=+-=+-=-+--=--+-=+-++--+-++-=++-+-+=---+-=-+--=∴<≤-±=⇒=+-∴+-=+----=-+=+<≤-<⇒>+---=∆∴=+-+-+ΘΘΘΘ42、如图,已知四边形ABCD 外接圆O 的半径为2,对角线AC 与BD 的交点为E ,322===BD AE AB EC AE ,且,,求四边形ABCD 的面积.【解】由题设,得ADAB ADB ABE ACBADB ACB ABE ACB ABE BACEAB AB AE AC AB AC AE AB EC AE AE AB AE AB =⇒∠=∠∴∠=∠∠=∠⇒∆∆∴∠=∠=⇒⋅=⇒⎭⎬⎫==⇒=ΘΘ∽2222232333.313221211121)3(233221212222=+=+=∴==∴=⨯⨯=⋅⋅=∴=-=-==-=-=∴=⨯===⇒∆≅∆∴∠=∠⇒∆≅∆∆∆∆∆∆ABD CBD ABCD ABD CBD ABD S S S S S AC E AH BD S OH OA AH BH OB OH BD DH BH ADH ABH DAO BAO ADO ABO H BD AO DO BO AO 四边形的中点是,,则于交,、、如图所示,连接Θ43、一幢33层的大楼有一部电梯停在第一层,它一次最多能容纳32人,而且只能在第2层至第33层中的某一层停一次.对于每个人来说,他往下走一层楼梯感到1分不满意,往上走一层楼梯感到3分不满意.现在有32个人在第一层,并且他们分别住在第2至第33层的每一层,问:电梯停在哪一层,可以使得这32个人不满意的总分达到最小?最小值是多少?(有些人可以不乘电梯而直接从楼梯上楼)【解】易知,这32个人恰好是第2至第33层各住1人.先证明:要使不满意的总分达到最小,则对于每个乘电梯上、下楼的人,他所住的层数一定大于直接走楼梯上楼的人所住的层数.证明:设乘电梯上、下楼和直接走楼梯上楼的2个人分别住第s 和第t 层. 并设电梯停在第x 层.①当x ≤s 时,这两者不满意总分为3(s -x )+3(t -1)=3s +3t -3x -3.与t ,s 的大小关系无关; ②当x >s 时,这两者不满意总分为(x -s )+3(t -1)=3t +x -s -3,要使总分最小,则t <s . 故s <t ,即乘电梯上、下楼的人,他所住的层数大于直接走楼梯上楼的人所住的层数. 今设电梯停在第x 层,并设住在第2层到第a (a <x )层的人直接走楼梯上楼. 那么不满意总分为:.31672774101316)7(815)4101(216832)101(22)33)(34(32)1)((2)1(32)33)](33(1[32)1)](1(1[2)1)](1(1[3)]33(21[3)]1(21[)]1(21[32222取得最小值时,当S a x a a x a a x a a x a x x x a x a x a a x x a x a x a a x a x a S ⎩⎨⎧==⇒⎪⎩⎪⎨⎧=+=+-++-=+-++-=--+---+-=--+⨯+----++--+⨯=-+⋯+++--+⋯+++-+⋯++= 所以,当电梯停在第27层时,这32个人不满意的总分达到最小,最小值为316分.2001年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).44、化简)2(2)2(2234++-n n n ,得(C ). A. ;8121-+nB. ;12+-nC. ;87 D. .47【解析】C.872122)12(2222)2(2)2(223343141434=-=-=-=-+++++++n n n n n n n n .45、如果c b a ,,是三个任意整数,那么222ac c b b a +++,,(C ). A. 都不是整数; B. 至少有两个整数; C. 至少有一个整数; D. 都是整数.【解析】C.①若a ,b ,c 中有0个奇数,则3个数都是整数; ②若a ,b ,c 中有1个奇数,则只有1个数是整数; ③若a ,b ,c 中有2个奇数,则只有1个数是整数; ④若a ,b ,c 中有3个奇数,则3个数都是整数.46、如果b a ,是质数,且01301322=+-=+-m b b m a a ,,那么baa b +的值为(B ). A.;22123B.;或222125C.;22125D..222123或 【解析】B.①当a =b 时,2=+=+aa a ab a a b ; ②当a ≠b 时,a ,b 是一元二次方程x 2-13x +m =0的两实根.故a +b =13. 又a ,b 是质数,故a =2,b =11或a =11,b =2.故22125112211=+=+b a a b . 47、如图,若将正方形分成k 个全等的矩形,其中上、下各横排两个,中间竖排若干个,则k 的值为(B ).A. 6;B. 8;C. 10;D. 12.【解析】B.设正方形的边长为a ,则分成的矩形的长为a /2.宽为(a -a /2)/2=a /4,故中间竖排有4个.所以,正方形分成8个全等的矩形.48、如图,若PA =PB ,∠APB =2∠ACB ,AC 与PB 交于点D ,且PB =4,PD =3,则AD ·DC 等于(B ).A. 6;B. 7;C. 12;D. 16.【解析】B.如图所示,以P 为圆心,以PA =PB 为半径作圆,延长BD 交圆于M .则由∠APB =2∠ACB ,知点C 必在⊙P 上.故根据相交弦定理,有AD •DC =BD •DM =(PB -PD )(PM +PD )=(4-3)×(4+3)=7.49、若b a ,是正数,且满足)111)(111(12345b a -+=,则b a 和之间的大小关系是(A ).A. ;b a >C. ;b a <D. 不能确定.【解析】A.由12345=(111+a )(111-b ),得111(a -b )-ab =24>0,故a >b .二、填空题(本大题共6小题,每小题5分,共30分).50、已知:23232323-+=+-=y x ,.那么=+22y x x y _____. 【解析】970.9701101310)()(3)(110625625232323232323223322=⨯⨯-=+-+=+=+∴⎩⎨⎧==+⇒⎩⎨⎧+=-=⇒⎪⎪⎩⎪⎪⎨⎧-+=+-=xy y x xy y x y x y x y x xy xy y x y x y x Θ.51、若281422=++=++x xy y y xy x ,,则y x +的值为_____.【解析】6或-7.两式相加,得(x +y )2+(x +y )-42=0,即[(x +y )-6][(x +y )+7]=0,故x +y =6或-7.52、用长为1,4,4,5的线段为边作梯形,那么这个梯形的面积等于_____.【解析】1036或.①若1,4为底.如图所示,延长DA ,CB 相交于G ,并设AG =x ,BG =y ,则35345414==⇒+==+⇒==y x y y x x GC GB DC AB GD GA ,.在△GAB 中,GA 2+AB 2=GB 2,故△GAB 是直角三角形,即∠D =∠GAB =90o .于是,S =(AB +DC )·AD /2=(1+4)·4/2=10. ②若1,5为底.如图所示,作AE 、BF 垂直DC 于E 、F .则DE =CF =(5-1)/2=2,32242222=-=-=DE AD AE .于是,3632)51(21)(21=⨯+=⋅+=AE DC AB S .③若4,4为底.应为平行四边形,但不满足.④若4,5为底.则1,4为腰,由于1+4=5,故不满足.53、销售某种商品,如果单价上涨%m ,则售出的数量就将减少150m.为了使该商品的销售总金额最大,那么m 的值应该确定为_____.【解析】25.设这种商品的原单价为A ,原销售量为B ,销售总额为W ,则)1500050(15000150150100100)1501(%)1(2---=-⋅+⋅=-⋅+=m m AB m m AB m B m A W当25250=--=m 时,W 取得最大值.54、在直角坐标系xOy 中,x 轴上的动点)0(,x M 到定点)12()55(,、,Q P 的距离分别为MP 和MQ ,那么当MP +MQ 取最小值时,点M 的横坐标=x _____.【解析】25.如图所示,作P 关于x 轴的对称点P’.则MP +MQ =MP’+MQ ,故当Q 、M 、P’三点共线时,MP +MQ最小.过P’,Q 分别作x 轴的垂线,垂足分别为I ,H .于是255251'=⇒--=⇒=x x x IM HM I P QH . 55、已知实数b a ,满足22221b a ab t b ab a --==++,且,那么t 的取值范围是_____.【解析】313-≤≤-t . 31)1(2123113121210)(211310)(231122222222222222-=--⨯≥-=--=-=-⨯≤-=--=∴-≥⇒≥+=++=+⇒++=≤⇒≥-=+-=-⇒++=ab b a ab t ab b a ab t ab b a b ab a ab b ab a ab b a b ab a ab b ab a Θ.三、解答题(本大题共3小题,每小题20分,共60分).56、某个学生参加军训,进行打靶训练,必须射击10次.在第6、第7、第8、第9次射击中,分别得了9.0环、8.4环、8.1环、9.3环.他的前9次射击所得的平均环数高于前5次射击所得的平均环数.如果他要使10次射击的平均环数超过8.8环.那么他在第10次射击中至少要得多少环?(每次射击所得环数都精确到0.1环)【解】设前5次射击的平均环数为x ,则前9次射击的平均环数为98.34593.91.84.80.95+=++++x x . 由题设知,x x >+98.345,即7.8<x . 故前9次的总环数至多为8.7×9-0.1=78.2.所以,第10次射击至少得8.8×10+0.1-78.2=9.9(环).57、如图,已知点P 是⊙O 外一点,PS 、PT 是⊙O 的两条切线,过点P 作⊙O 的割线PAB ,交⊙O 于A ,B 两点,并交ST 于点C .求证:)11(211PBPA PC +=.【解】如图所示,作OE ⊥AB 于E ,连接OP 交ST 于F ,连接OT .PBPA PB PA PB PA PC PB PA PC PB PA PE PC PB PA PE PC PB PA PBPA PT PAB PT POPF PT POPTPT PF PTO PFT PEPC PO PF PE PFPO PC POE PCF BEAE ST OP 112)(222.∽∽22+=⋅+=∴+⋅=⋅⇒⋅=⋅⇒⋅=⋅∴⋅=⇒⋅=⇒=⇒∆∆⋅=⋅⇒=⇒∆∆∴=⊥∴是割线是切线,,ΘΘ58、已知:关于x 的方程01)1)(72()1)(1(22=+-+---x x a x x a 有实根. (1)求a 取值范围;(2)若原方程的两个实数根为21x x ,,且113112211=-+-x x x x ,求a 的值.【解】(1)令1-=x xt ,得)1(1≠-=t t t x . 原方程转化为关于t 的方程01)72()1(22=++--t a t a 有不为1的实数根. ①当a 2-1=0时,符合题意; ②当a 2-1≠0时,28530)1(4)]72([22-≥⇒≥--+-=∆a a a . 若t =1,则22101)72()1(2±=⇒=++--a a a . 故a 的取值范围是2212853±≠-≥a a 且. (2))(3810113172113111721)72(112122211222211舍去,-==⇒=-+∴=-+--+=-+--=-+-a a a a x x x x a a a a x x x x Θ.所以,a 的值为10.2002年全国初中数学竞赛试卷及答案解析一、选择题(本大题共6小题,每小题5分,共30分).59、设ab b a b a 4022=+<<,,则ba ba -+的值为(A ). A. ;3 B. ;6 C. 2; D. 3.【解析】A ..3242422)()()(0002222222=-+=-+++=-+=-+=-+∴>-+⇒⎩⎨⎧<+<-⇒<<abab abab ab b a ab b a b a b a b a b a b a b a b a b a b a b a b a Θ60、已知200219992001199920001999+=+=+=x c x b x a ,,,则多项式ca bc ab c b a ---++222的值为(D ). A. 0; B. 1; C. 2; D. 3.【解析】D..3]2)1()1[(21])()()[(21222222222=+-+-=-+-+-=---++a c c b b a ca bc ab c b a61、如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于(D ).A. ;65B. ;54 C. ;43 D. .32【解析】D..32612)(261412412....=⨯-=+-=∴=+⇒⎪⎩⎪⎨⎧=+==+=∴====∴=∆∆∆∆∆∆a a a S y x S S S ay x a y x S a y x S y S S x S S BC AB ABCD F E BG a S ABCD ABCD ABCDAGCD ABF CBE AGE BGE BGF CGF ABCD 矩形矩形矩形四边形矩形,的中点、的边是矩形、如图所示,连接设Θ62、设c b a 、、为实数,323232222πππ+-=+-=+-=a c z c b y b a x ,,,则z y x 、、中至少有一个值(A ). A. 大于0; B. 等于0; C. 不大于0; D. 小于0.【解析】A..00)3()1()1()1(222323232222222222中至少有一个大于、、,,z y x c b a c b a c b a z y x a c z c b y b a x ∴>-+-+-+-=+---++=++∴+-=+-=+-=ππΘ63、设关于x 的方程09)2(2=+++a x a ax 有两个不等的实数根21211x x x x <<,且,,那么a 的取值范围是(D ). A. ;5272<<-a B. ;52>aC. ;72-<aD. .0112<<-a 【解析】D..0112102012901)(0)1)(1(121212121<<-⇒-<+⇒<+++∴<++-⇒<--⇒<<a a a a a x x x x x x x x Θ64、9321A A A A ⋯是一个正九边形,b A A a A A ==3121,,则51A A 等于(D ).A. ;22b a +B. ;22b ab a ++C. ;)(21b a + D. .b a +【解析】D.ba A A A A P A A A P A A A A PA A PA A PA A PA A A A A A A A A A A PA A PA A A A Ab A A A A A A P A A A A +=+=+==∴∆∆∴=+=∠=∠∴=-=∠=∠∆=-=∠=∠∴=-⨯⋯==42212211515142oo o 2442ooo243423432oo o 3432o o 93213142424521.602040202140180.40140180.1409)29(180..是等边三角形是等边三角形,中,在的每个内角都为正九边形则,连接相交于点,如图所示,延长Θ6A二、填空题(本大题共6小题,每小题5分,共30分).65、设21x x 、是关于x 的一元二次方程22=++a ax x 的两个实数根,则)2)(2(1221x x x x --的最大值为_____.【解析】863-. .863863)49(21892)2(9)(29)(25]2)[(25)(2)2)(2(.04)2()2(4222212212121221212221122122-≤---=-+-=-+-⨯-=++-=+-+-=++-=-->+-=--=∆a a a a a x x x x x x x x x x x x x x x x x x a a a a 为一切实数知,由66、已知b a 、为抛物线2))((----=d c x c x y 与x 轴交点的横坐标,b a <,则b c c a -+-的值为_____.【解析】b-a...))((a b c b a c b c c a b c a x d c x c x y d c c -=-+-=-+-∴<<---=+则轴的交点与是抛物线,如图所示,67、如图,在△ABC 中,∠ABC =60o ,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB=_____.【解析】34..3468∽6060120o o o =⨯=⋅=∴=∴∆∆∴∠=∠∴=∠+∠=∠+∠∴=∠=∠⇒∠=∠=∠PC PA PB PBPAPC PB PBCPAB PBC PAB PBC PBA PBA PAB BPC APB CPA BPC APB ΘΘ68、如图,大圆O 的直径cm a AB =,分别以OA 、OB 为直径作⊙O 1、⊙O 2,并在⊙O 与⊙O 1和⊙O 2的空隙间作两个等圆⊙O 3和⊙O 4,这些圆互相内切或外切,则四边形O 1O 2O 3O 4的面积为_____cm 2.【解析】261a ..61322212132)62(22.6)4()4()2(244⊙24321343222331134321a a a O O O O S aa a OO O O a x x a a x a xa OO x a O O a OO x O O O O O =⨯⨯=⋅⋅=∴=-⨯==∴=⇒+=+-∴-=+==菱形,,,则的半径为设69、满足1)1(22=--+n n n 的整数n 有_____个.【解析】4.201211211021)1(2222,,,是偶数或或--=⇒⎩⎨⎧-=--+=--=+⇒=--+n n n n n n n n n n70、某商品的标价比成本高%p ,当该商品降价出售时,为了不亏本,售价的折扣(即降价的百分数)不得超过%d ,则d 可以用p 表示为_____.【解析】ppd +=100100. .100100%)1%)(1(ppd a d p a a +=⇒=-+,则设成本为三、解答题(本大题共3小题,每小题20分,共60分).。
历届1991-2015初联全国初中数学联赛试卷及答案
1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是 (A )3 ; (B )31; (C )2; (D )35.答( )2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是(A ) 10; (B )12; (C ) 16; (D )18. 答( )3. 方程012=--x x 的解是(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±. 答( ) 4.已知:)19911991(2111n nx --=(n 是自然数).那么n x x )1(2+-,的值是 (A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n . 答( ) 5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M(A)能被2整除,但不能被3整除; (B)能被3整除,但不能被2整除; (C)能被4整除,但不能被3整除; (D)不能被3整除,也不能被2整除.答( )6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是 (A)1-;(B)5-;(C)0;(D)1. 答( ) 7.如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是(A)2;(B)3;(C)2 ;(D)3. 答( )8.在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则(A)21< c < 2 ; (B)0< c ≤21;答( )(C )c > 2; (D )c = 2. 答( ) 二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a cb 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m x x x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试11=S 3S =132=S120135xx + y,x -y,x y,y四个数中的三个又相同的数值,求出所有具有这样性质的数对(x , y).二、ΔABC中,AB<AC<BC,D点在BC上,E点在BA的延长线上,且BD=BE=AC,ΔBDE的外接圆与ΔABC的外接圆交于F点(如图).求证:BF=AF+CF三、将正方形ABCD分割为2n个相等的小方格(n是自然数),把相对的顶点A,C染成红色,把B,D染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是(A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是(A)1; (B)3; (C)5; (D)7. 答( )4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为(A)7; (B)6; (C)5; (D)4. 答( )5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xky 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是(A)21S S > (B)21S S = (C)21S S < (D)不确定答( )6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是 (A)0; (B)1; (C)2; (D)3. 答( )7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD ,︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , F A=AB .则AE :EB 等于(A)1:2 (B)1:3 (C)2:5 (D)3:10 答( )8.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是(A)8; (B)9; (C)10; (D)11. 答( ) 二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是(A)1; (B)-1; (C)1-x ; (D)1+x ; 2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是 (A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ 4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x 其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是 (A)54321x x x x x >>>>; (B )53124x x x x x >>>>; (C )52413x x x x x >>>>; (D )24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解(A )等于4 (B )小于4 (C )大于5 (D )等于56.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是(A)22-(B)22 (C)23(D)21-.答( )7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n ,p ,那么m :n :p 等于(A)cb a 1:1:1; (B)c b a ::(C)C B A cos :cos :cos (D)C B A sin :sin :sin . 答( )8.13333)919294(3-+-可以化简成 (A))12(333+; (B))12(333- (C)123- (D)123+ 答( )二.填空题1.当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x . (1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ; (3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试(4月3日上午8:30—9:30)考生注意:本试共两道大题,满分80分.一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A,B、C,D,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,zA.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于0〔答〕( )3.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长A.等于4B.等于5C.等于6D.不能确定〔答〕( )A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角A.4对B.8对C.12对D.16对〔答〕( )〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
-1990年全国初中数学联合竞赛试卷
1990年全国初中数学联合竞赛试卷第 一 试一、 选择题本题共有8个小题,每小题都给出了(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请把正确结论的代表字母写在题后的圆括号内。
1.31231131144++-++的值是( )(A )1 (B )-1 (C )2 (D )-22.在△ABC 中,AD 是高,且AD 2 = BD ²CD ,那么∠BAC 的度数是( )(A )小于90° (B )等于90°(C )大于90° (D )不确定3.方程k k k x k x (02)13(722=--++-是实数)有两个实根α、β,且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k <4; (B )-2<k <-1;(C )3<k <4或-2<k <-1 (D )无解。
4.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同整数是( )(A )17 (B )18 (C )35 (D )365.△ABC 中,22=AB ,2=AC ,2=BC ,设P 为BC 边上任一点,则( )(A )PB PA<2²PC (B )PB PA =2²PC (C )PB PA >2²PC (D )PB PA 与2²PC 的大小关系并不确定 6.若六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形,那么,这样的六边形( )(A )不存在 (B )只有一个(C )有有限个,但不只一个 (D )有无穷多个7.若b a log 的尾数是零,且2log log 1log a b b b a a>>,那么下列四个结论:( ) (1)21a b b>> (2)0log log =+a b b a (3)10<<<b a (3)01=-ab 中,正确的结论的个数是( )(A )1 (B )2 (C )3 (D )48.如图,点P ,Q ,R 分别在△ABC 的边上AB 、BC 、CA 上,且1====RC QR PQ BP ,那么,△ABC 面积的最大值是( )(A )3 (B )2 (C )5 (D )3二、 填空题1. 已知82121=+-x x ,则xx 12+= 2. 2223,2,1,…,1234567892的和的个位数的数字是3. 方程01)8)((=---x a x ,有两个整数根,则=a4. △ABC 中,2==AC AB ,BC 边有100个不同的点1P ,2P ,…,100P ,记i i i BP AP m +=2²C Pi ( =i 1,2,…,100) 则 ++21m m …100m +=第 二 试一、已知在凸五边形ABCDE 中,∠BAE = 3α,BC=CD=DE ,且∠BCD=∠CDE=180°-2α,求证:∠BAC=∠CAD=∠DAE二、[]x 表示不超过实数x 的最大整数,令{}[]x x x -=(1) 找出一个实数x ,满足{}11=⎭⎬⎫⎩⎨⎧+x x(2) 证明:满足上述等式的x ,都不是有理数三、设有n n 22⨯个正方形方格棋盘,在其中任意的n 3个方格中各有一枚棋子。
2000-2011年全国初中数学联赛试题(含答案)
则方程 的两个整数根为α+1、β+1,
由根与系数关系得:α+β=-a,(α+1)(β+1)=a
两式相加得:αβ+2α+2β+1=0即(α+2)(β+2)=3
∴ 或 解得: 或
又∵a=-(α+β),b=αβ,c=-[(α+1)+(β+1)]
∴a=0,b=-1,c=-2或a=8,b=15,c=6
A.-13. B.-9. C.6. D.0.
5.在△ 中,已知 ,D,E分别是边AB,AC上的点,且 , , ,则 ( B )
A.15°. B.20°. C.25°. D.30°.
6.对于自然数 ,将其各位数字之和记为 ,如 , ,则 (D)
A.28062. B.28065. C.28067. D.28068.
即 .
又 ,所以
,
解得 .
二.(本题满分25分)已知△ABC中,∠ACB=90°,AB边上的高线CH与△ABC的两条内角平分线AM、BN分别交于P、Q两点.PM、QN的中点分别为E、F.求证:EF∥AB.
解因为BN是∠ABC的平分线,所以 .
又因为CH⊥AB,所以 ,
因此 .
又F是QN的中点,所以CF⊥QN,所以 ,因此C、F、H、B四点共圆.
2001年全国初中数学联合竞赛试题及答案
2002年全国初中数学联合竞赛试题及答案
2003年全国初中数学联合竞赛试题及答案
2005年全国初中数学联合竞赛试题及答案
2005年全国初中数学联合竞赛决赛试题及答案
2006年全国初中数学联合竞赛决赛试题及答案
答案:
2007年全国初中数学联合竞赛决赛试题及答案
答案:
解点P 、Q 在二次函数 的图象上,故 , ,
1991__2014年全国初中数学联赛试题【共24份有答案】
1991年全国初中数学联合竞赛决赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内. 1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( ) (A )3 ; (B )31; (C )2; (D )35.2. 如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是( ) (A ) 10; (B )12;(C ) 16; (D )18.3. 方程012=--x x 的解是( )(A )251±; (B )251±-; (C )251±或251±-; (D )251±-±.4.已知:)19911991(2111n nx --=(n 是自然数).那么n x x )1(2+-,的值是( )(A)11991-; (B)11991--; (C)1991)1(n -; (D)11991)1(--n .5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M为自然数,n 为使得等式成立的最大的自然数,则M( )(A)能被2整除,但不能被3整除;(B)能被3整除,但不能被2整除;(C)能被4整除,但不能被3整除;(D)不能被3整除,也不能被2整除.6. 若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么 d c b a +++的最大值是( ) (A)1-;(B)5-;(C)0;(D)1. 7.如图,正方形OPQR 内接于ΔABC .已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是( ) (A)2;(B)3;(C)2 ;(D)3. 8. 在锐角ΔABC 中,1=AC ,c AB =, 60=∠A ,ΔABC 的外接圆半径R ≤1,则( )(A)21< c < 2 ; (B)0< c ≤21; (C )c > 2; (D )c = 2. 11=S 3S =132=S二、填空题1.E是平行四边形ABCD 中BC 边的中点,AE 交对角线BD 于G ,如果ΔBEG 的面积是1,则平行四边形ABCD 的面积是 .2.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a cb 32 .3.设m ,n ,p ,q 为非负数,且对一切x >0,qpn m xx x x )1(1)1(+=-+恒成立,则 =++q p n m 22)2( .4.四边形ABCD 中,∠ ABC 135=,∠BCD 120=,AB 6=,BC 35-=,CD = 6,则AD = .第二试一、实数x 与y ,使得x + y , x - y , x y ,yx 四个数中的三个有相同的数值,求出所有具有这样性质的数对(x , y ).二、ΔABC 中,AB <AC <BC ,D 点在BC 上,E 点在BA 的延长线上,且 BD =BE =AC ,ΔBDE 的外接圆与ΔABC 的外接圆交于F 点(如图).求证:BF =AF +CF三、将正方形ABCD 分割为 2n 个相等的小方格(n 是自然数),把相对的顶点A ,C 染成红色,把B ,D 染成蓝色,其他交点任意染成红、蓝两色中的一种颜色.证明:恰有三个顶点同色的小方格的数目必是偶数.1992年全国初中数学联合竞赛决赛试题第一试120135一.选择题本题共有8个题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.满足1=+-ab b a 的非负整数),(b a 的个数是( ) (A)1; (B)2; (C)3; (D)4.2.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是( )(A)∆>M (B)∆=M (C)∆>M ; (D)不确定. 3.若01132=+-x x ,则44-+x x 的个位数字是( )(A)1; (B)3; (C)5; (D)7.4.在半径为1的圆中有一内接多边形,若它的边长皆大于1且小于2,则这个多边形的边数必为( )(A)7; (B)6; (C)5; (D)4.5.如图,正比例函数)0(>==a ax y x y 和的图像与反比例函数)0(>=k xky 的图像分别相交于A 点和C 点.若AOB Rt ∆和COD ∆的面积分别为S 1和S 2,则S 1与S 2的关系是( ) (A)21S S > (B)21S S = (C)21S S < (D)不确定6.在一个由88⨯个方格组成的边长为8的正方形棋盘内放一个半径为4的圆,若把圆周经过的所有小方格的圆内部分的面积之和记为1S ,把圆周经过的所有小方格的圆内部分的面积之和记为2S ,则21S S 的整数部分是( )(A)0; (B)1; (C)2; (D)3.7.如图,在等腰梯形ABCD 中, AB //CD , AB=2CD , ︒=∠60A ,又E 是底边AB 上一点,且FE=FB=AC , F A=AB .则AE :EB 等于( )(A)1:2 (B)1:3 (C)2:5 (D)3:108.设9321,,,,x x x x ⋅⋅⋅均为正整数,且921x x x <⋅⋅⋅<<,220921=+⋅⋅⋅++x x x ,则当54321x x x x x ++++的值最大时,19x x -的最小值是( )(A)8; (B)9; (C)10; (D)11.二.填空题1.若一等腰三角形的底边上的高等于18cm ,腰上的中线等15cm ,则这个等腰三角形的面积等于________________.2.若0≠x ,则xx x x 44211+-++的最大值是__________.3.在ABC ∆中,B A C ∠∠=∠和,90 的平分线相交于P 点,又AB PE ⊥于E 点,若3,2==AC BC ,则=⋅EB AE .4.若b a ,都是正实数,且0111=+--b a b a ,则=+33)()(ba ab . 第二试一、设等腰三角形的一腰与底边的长分别是方程062=+-a x x 的两根,当这样的三角形只有一个时,求a 的取值范围.二、如图,在ABC ∆中,D AC AB ,=是底边BC 上一点,E 是线段AD 上一点,且A CED BED ∠=∠=∠2.求证:CD BD 2=.三、某个信封上的两个邮政编码M 和N 均由0,1,2,3,5,6这六个不同数字组成,现有四个编码如下:A :320651B :105263C :612305D :316250已知编码A 、B 、C 、D 各恰有两个数字的位置与M 和N 相同.D 恰有三个数字的位置与M 和N 相同.试求:M 和N.1993年全国初中数学联合竞赛决赛试题第一试 一.选择题本题共有8个小题,每小题都给出了(A), (B), (C), (D)四个结论,其中只有一个是正确的.请把正确结论的代表字母写在题后的圆括号内.1.多项式1612+-x x 除以12-x 的余式是( )(A)1; (B)-1; (C)1-x ; (D)1+x ; 2.对于命题Ⅰ.内角相等的圆内接五边形是正五边形.Ⅱ.内角相等的圆内接四边形是正四边形,以下四个结论中正确的是( ) (A )Ⅰ,Ⅱ都对 (B )Ⅰ对,Ⅱ错 (C )Ⅰ错,Ⅱ对. (D )Ⅰ,Ⅱ都错. 3.设x 是实数,11++-=x x y .下列四个结论: Ⅰ.y 没有最小值;Ⅱ.只有一个x 使y 取到最小值;Ⅲ.有有限多个x (不止一个)使y 取到最大值; Ⅳ.有无穷多个x 使y 取到最小值.其中正确的是( )(A )Ⅰ (B )Ⅱ (C )Ⅲ (D )Ⅳ 4.实数54321,,,,x x x x x 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++.;;;;52154154354324321321a x x x a x x x a x x x a x x x a x x x 其中54321,,,,a a a a a 是实常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是( ) (A)54321x x x x x >>>>; (B )53124x x x x x >>>>; (C )52413x x x x x >>>>; (D )24135x x x x x >>>>. 5.不等式73)1(12+<-<-x x x 的整数解的个解( )(A )等于4 (B )小于4 (C )大于5 (D )等于5 6.在ABC ∆中,BC AO O A =∠,,是垂心是钝角, 则)cos(OCB OBC ∠+∠的值是( ) (A)22-(B)22 (C)23(D)21-.7.锐角三角ABC 的三边是a , b , c ,它的外心到三边的距离分别为m , n , p ,那么m :n :p 等于()(A)cb a 1:1:1; (B)c b a ::(C)C B A cos :cos :cos (D)C B A sin :sin :sin .8.13333)919294(3-+-可以化简成( ) (A))12(333+; (B))12(333- (C)123- (D)123+ 二.填空题1.当x 变化时,分式15632212++++x x x x 的最小值是___________.2.放有小球的1993个盒子从左到右排成一行,如果最左面的盒里有7个小球,且每四个相邻的盒里共有30个小球,那么最右面的盒里有__________个小球.3.若方程k x x =--)4)(1(22有四个非零实根,且它们在数轴上对应的四个点等距排列,则k =____________.4.锐角三角形ABC 中,︒=∠30A .以BC 边为直径作圆,与AB , AC 分别交于D , E ,连接DE , 把三角形ABC 分成三角形ADE 与四边形BDEC ,设它们的面积分别为S 1, S 2,则S 1:S 2=___________.第二试一.设H 是等腰三角形ABC 垂心,在底边BC 保持不变的情况下让顶点A 至底边BC 的距离变小,这时乘积HBC ABC S S ∆∆⋅的值变小,变大,还是不变?证明你的结论.二.ABC ∆中, BC =5, AC =12, AB =13, 在边AB ,AC 上分别取点D , E , 使线段DE 将ABC ∆分成面积相等的两部分.试求这样的线段DE 的最小长度.三.已知方程0022=++=++b cx x c bx x 及分别各有两个整数根21,x x 及21,x x '',且,021>x x 021>''x x .(1)求证:;0,0,0,02121<'<'<<x x x x (2)求证:1-b ≤c ≤1+b ;(3)求c b ,所有可能的值.1994年全国初中数学联赛试题第一试一、选择题(本题满分48分,每小题6分)本题共有8个小题都给出了A ,B 、C ,D ,四个结论,其中只有一个是正确的,请把你认为正确结论的代表字母写在题后答案中的圆括号内,每小题选对得6分;不选、选错或选出的代表字母超过一个(不论是否写在圆括号内),一律得0分.〔答〕( )2.设a,b,c是不全相等的任意实数,若x=a2-bc,y=b2-ca,z=c2-ab,则x,y,z( )A.都不小于0B.都不大于0C.至少有一个小0于D.至少有一个大于03.如图1所示,半圆O的直径在梯形ABCD的底边AB上,且与其余三边BC,CD,DA相切,若BC=2,DA=3,则AB的长( )A.等于4B.等于5C.等于6D.不能确定A.1 B.-1 C.22001D.-22001〔答〕( )5.若平行直线EF,MN与相交直线AB,CD相交成如图2所示的图形,则共得同旁内角( )A.4对B.8对C.12对D.16对〔答〕( )7.设锐角三角形ABC的三条高AD,BE,CF相交于H。
1990年全国高中数学联合竞赛试题及解答
sin
cos
(cos ) cos (cos ) sin
(cos ) cos (sin ) cos
◆答案:D ★解析: ∴ (cos )
cos
, 得 0 cos sin 1 , 4 2 (sin ) cos ; (cos ) sin (cos ) cos ;选 D
0
0
0
6
★解析:点 P 在单位圆上, sin( 2t 60 ) cos(150 2t ) , cos( 2t 60 ) sin(150 2t ) .当 t 由
0
0
0
0
1 3 1 3 运动到 , 150 变到 450 时,点 P 沿单位圆从 , 2 2 2 2 .线段 AP 扫过的面积等于扇形面积
2 2 k 2 2 k
2
2
则 Ak 1 ( a b )
2
2 k 1
sin k 1 (a 2 b 2 ) k 1 sin k cos cos k sin Ak B1 A1 Bk 为整数.
Bk 1 (a 2 b 2 ) k 1 cosk 1 (a 2 b 2 ) k 1 cos k cos sin k sin Bk B1 A1 Ak 也为整数.
1990*2、 设 f ( x ) 是定义在实数集上的周期为 2 的函数, 且是偶函数, 已知当 x 2,3时, f ( x ) x , 则当 x 2,0 时, f ( x ) 的解析式是( A. f ( x ) x 4 ◆答案:C ★解析:设 x 2,1 ,则 x 4 2,3 ,于是 f ( x 4) x 4 ,所以 f ( x ) f ( x 4) x 4 , 又设 x 1,0 ,则 x 0,1 ,故 f ( x ) x 2 ,由 f ( x ) f ( x ) x 2 . 综上可得: f ( x ) 3 x 1 故选 C. 1990*3、设双曲线的左右焦点是 F1 , F2 ,左右顶点是 M , N ,若 PF1 F2 的顶点 P 在双曲线上,则 ) PF1 F2 的内切圆与边 F1 F2 的切点位置是( A.在线段 MN 内部 B. 在线段 F1M 内部或线段 NF2 内部 C.点 M 或点 N D.不能确定的 ◆答案:C ★解析:设内切圆在三边上切 点分别为 D, E , F , 当 P 在右支上时, PF1 PF2 2a .又 PF1 PF2 DF1 DF2 2a ,即 D 与 N 重合; 当 P 在左支上时,同理 D 与 M 重合.故选 C. 1990*4、点集 ( x, y ) | lg x A. 0 ◆答案:B B. f ( x ) 2 x ) C. f ( x ) 3 x 1 D. f ( x ) 2 x 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1990年全国初中数学联合竞赛试卷第 一 试一、 选择题本题共有8个小题,每小题都给出了(A)、(B)、(C)、(D)四个结论,其中只有一个是正确的,请把正确结论的代表字母写在题后的圆括号内。
1.31231131144++-++的值是( )(A )1 (B )-1 (C )2 (D )-22.在△ABC 中,AD 是高,且AD 2 = BD ²CD ,那么∠BAC 的度数是( )(A )小于90° (B )等于90°(C )大于90° (D )不确定3.方程k k k x k x (02)13(722=--++-是实数)有两个实根α、β,且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k <4; (B )-2<k <-1;(C )3<k <4或-2<k <-1 (D )无解。
4.恰有35个连续自然数的算术平方根的整数部分相同,那么这个相同整数是( )(A )17 (B )18 (C )35 (D )365.△ABC 中,22=AB ,2=AC ,2=BC ,设P 为BC 边上任一点,则( )(A )PB PA<2²PC (B )PB PA =2²PC (C )PB PA >2²PC (D )PB PA 与2²PC 的大小关系并不确定 6.若六边形的周长等于20,各边长都是整数,且以它的任意三条边为边都不能构成三角形,那么,这样的六边形( )(A )不存在 (B )只有一个(C )有有限个,但不只一个 (D )有无穷多个7.若b a log 的尾数是零,且2log log 1log a b b b a a>>,那么下列四个结论:( ) (1)21a b b>> (2)0log log =+a b b a (3)10<<<b a (3)01=-ab 中,正确的结论的个数是( )(A )1 (B )2 (C )3 (D )48.如图,点P ,Q ,R 分别在△ABC 的边上AB 、BC 、CA 上,且1====RC QR PQ BP ,那么,△ABC 面积的最大值是( )(A )3 (B )2 (C )5 (D )3二、 填空题1. 已知82121=+-x x ,则xx 12+= 2. 2223,2,1,…,1234567892的和的个位数的数字是3. 方程01)8)((=---x a x ,有两个整数根,则=a4. △ABC 中,2==AC AB ,BC 边有100个不同的点1P ,2P ,…,100P ,记i i i BP AP m +=2²C Pi ( =i 1,2,…,100) 则 ++21m m …100m +=第 二 试一、已知在凸五边形ABCDE 中,∠BAE = 3α,BC=CD=DE ,且∠BCD=∠CDE=180°-2α,求证:∠BAC=∠CAD=∠DAE二、[]x 表示不超过实数x 的最大整数,令{}[]x x x -=(1) 找出一个实数x ,满足{}11=⎭⎬⎫⎩⎨⎧+x x(2) 证明:满足上述等式的x ,都不是有理数三、设有n n 22⨯个正方形方格棋盘,在其中任意的n 3个方格中各有一枚棋子。
求证:可以选出n 行和n 列,使得n 3枚棋子都在这n 行和n 列中。
1990年全国初中数学联合竞赛试卷答案第一试一、 选择题1.(D )原式=312312++-=223222322-=--+-+ 2.(D )如图,由BD AD =2²CD ,有2BD AD 22=²CD2222AD CD BD ++=BD CD BD 222++²CD)()(2222CD AD AD BD +++=2)(CD BD +即 222BD AC AB =+可得 ∠BAC =90°如图,虽然 BD AD =2²CD ,D 点在△ABC 外,∠ABC >90°,∠BAC <90°因此∠BAC 的度数不确定3.(C )记2)13(7)(22--++-=k k x k x x f由124303)2(082)1(02)0(222-<<-<<⇒⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧>-=<--=>--=k k k k f k k f k k f 或4.(A )高这35个连续自然数最小的是2n ,最大的是1)1(2-+n∴ 35)1(2=-+n n即 3512=+n∴ 17=n5.(C )如图,设x BP =,x PC -=2,在△ABP 中,由余弦定理,有 AB BP AB PA 2222-+=²BPcosBB x x cos 2482-+=在△ABC 中,由余弦定理,有2222)2(2)22(cos 222-+=B 8252810== ∴ 8522+-=x x PA而 22)2(x x x x PC PB -=-=令 222285x x x x PC PB PA y +-+-=-=0815)47(287222>+-=+-=x x x ∴ PC PB PA >26.(D )若能找到6个整数,,21a a …,,6a 使满足(1)++21a a …206=+a ;(2)1a ≤2a ,21a a +≤3a ,32a a +≤4a ;43a a +≤5a ,54a a +≤4a ;(3)54321a a a a a ++++>6a .则以,,21a a …6,a 为边长的六边形,即可符合要求.事实上,对任选三整数1≤i <j <k ≤6,必有j i a a +≤k a ,可见此六边形的任三边不能构成一个三角形.现取 8,5,3,2,1654321======a a a a a a ,则4321,,,a a a a , 65,a a 满足全部条件.故这样的六边形至少存在一个.又由n 边形(n ≥4)的不稳定性,即知这样的六边形有无穷多个.7. (A) 由b b b b a a a a log 21log log 1log >->得. 所以 b a log <0得0log 1,11,1<<>><a b a b a b 且或,所以结论(3)与结论(2)都是错误的.在结论(1)中,若2.1.1,1a b a b b b<><>得从而得.所以结论(1)也是错误的. 这样,只有结论(4)是正确的.事实上,由2log log a b a a>,可得 ba b a b a log 1log 2log 21=> 又因为0log 2,4)(log ,0log 2<<-<<b b b a a a 即所以.018)8(2=-++-a x a x CP BP AP m i i i i ⋅+=2因为b a log 为整数,所以b a log =-1, 即1,1==ab ab 从而,结论(4)正确. 8. (B)首先,若以Ⅰ,Ⅱ,Ⅲ,Ⅳ分别记PQR CRQ BPQ APR ∆∆∆∆,,,,则S Ⅱ,S Ⅲ,S Ⅳ均不大于211121=⨯⨯.又因为A C B PQR ∠=∠+∠-︒=∠)(180, 所以易证:2h ≤1h (1h ,2h 分别为APR QRP ∆∆,公共边PR 上的高,因若作出△PQR 关于PR 的对称图形PQ ’R ,这时Q’,A 都在以PR 为弦的含∠A 的弓形弧上,且因PQ ’=Q’R ,所以Q ’为这弧中点,故可得出h 1≤h 2)。
从而1S ≤S Ⅳ≤21,这样 ABC S ∆=S Ⅰ+S Ⅱ+S Ⅲ+S N ≤2214=⨯最后,当AB =AC -2,∠A =90°时,S △ABC =2即可以达到最大值2。
二.填空题1. 622. 5因 123456789=10³12345678+9所以所求数字等于(1+4+9+6+5+6+9+4+1+0)³12345678+(1+4+9+6+5+6+9+4+1)的结果的个位数字。
即5³8+5=45的个位数的数字,故所求数字为5。
3. 8原方程整理为设x 1,x 2为方程的两个整数根,由x 1+x 2=a +8,知a 为整数,因此,x -a 和x -8都是整数。
故由原方程知x-a=x-8(=±1) ∴所以a=84.400作AD ⊥BC ,如图,则BD =DC 。
设BD =DC =y ,DP i =x ,则 .4))((2222222==+=+-=+-+=AC y AD y x AP y x x y AP i i∴40010021=+⋅⋅⋅++m m m .第二试.622)(11221212=-++=+-x x x x xx一.证明 如图, 连BD, CE.因 CDE BCD CDE BCD DE CD BC ∆≅∆⇒⎭⎬⎫-︒=∠=∠==α2180. α=∠=∠=∠=∠⇒DEC DCE CDB CBD .∴ ααα3180)2180(-︒=--︒=∠BCE又∵ α3=∠BAE ,共圆共圆同理可证共圆E D C B A E D B A E C B A ,,,,,,,,,,⇒⎭⎬⎫⇒ α=∠=∠=∠⇒DAE CAD BAC .二.解法1 设0,,(1,为整数n m n xm x βα+=+=≤)1,<βα, 若 {x}+{x1}=α+β=1 ∴11++=++++=+n m n m xx βα是整数。
令 ),(1为整数k xx =+ 即 012=+-kx x解得 ).4(212-±=k k x 当1,2==x k 时易验证它不满足所设等式。
当k ≥3时,)4(212-±=k k x 是满足等式的全体实数。
由于42-k 不是完全平方数(事实上,若224h k =-则422=-h k 但当k ≥3时, 两个平方数之差不小于5)。
所以x 是无理数,即满足题设等式的x ,都不是有理数。
解法2 (1)取)53(21+=x 或)53(21-=x (2)用反证法证明之。
反设满足等式之x 为有理数。
首先,若x 为整数,则{x }=0,代入等式得{x 1}=1,与0≤{x 1}<1矛盾。
其次,若x 为非整数的有理数。
令 pq n x +=(其中n ,p ,q 均为整数1. ≤q ≤p 且(q ,p )=1) 则qnp r x x ++=1(其中s,r 为整数当n ≥0时0≤r <np+q 当n ≤-1时,np+q <r ≤0){x 1}=qnp r + 若x 满足等式,即 1=++qnp r p q 即 )()(q np p pr q np q +=++.从而得])1([2r q n np p q --+=.即 1),(,2=q p q p 与整除矛盾.故满足等式之x 都不是有理数.三.证明 设各行的棋子数分别n n n P P P P P 2121,,,,⋅⋅⋅⋅⋅⋅+.且1P ≥2P ≥…≥n P ≥1+n P ≥…≥n P 2.由题设 ,32121n P P P P P n n n =⋅⋅⋅++⋅⋅⋅+++ ①选取含棋子数为,,,21n P P P ⋅⋅⋅的这n 行,则n P P P +⋅⋅⋅++21≥n 2,否则, 若n P P P +⋅⋅⋅++21≤12-n , ②则 n P P P ⋅⋅⋅,,21中至少有一个不大于1,由①,②得 n n P P 21+⋅⋅⋅++≥1+n ,从而n n P P 21⋅⋅⋅+中至少有一个大于1,这与所设矛盾.选出的这n 行已含有不少于2n 枚棋子,再选出n 列使其包含其余的棋子(不多于n 枚),这样选取的n 行和n 列包含了全部3n 枚棋子.。