05-10陕西师大考研数学 专业数学分析及高数题(1)

合集下载

新版陕西师范大学计算数学考研经验考研参考书考研真题

新版陕西师范大学计算数学考研经验考研参考书考研真题

备考的时候唯一心愿就是上岸之后也可以写一篇经验贴,来和学弟学妹们分享这一年多的复习经验和教训。

我在去年这个时候也跟大家要一样在网上找着各种各样的复习经验贴,给我的帮助也很多,所以希望我的经验也可以给你们带来一定帮助,但是每个人的学习方法和习惯都不相同,所以大家还是要多借鉴别人的经验,然后找到适合自己的学习方法,并且坚持到底!时间确实很快,痛也快乐着吧。

我准备考研的时间也许不是很长,希望大家不要学我,毕竟考研的竞争压力是越来越大,提前准备还是有优势的,另外就是时间线只针对本人,大家可以结合实际制定自己的考研规划。

在开始的时候我还是要说一个老生常谈的话题,就是你要想明白自己为什么要考研,想明白这一点是至关重要的。

如果你是靠自我驱动,是有坚定的信心发自内心的想要考上研究生,就可以减少不必要的内心煎熬,在复习的过程中知道自己不断的靠近自己的梦想。

好了说了一些鸡汤,下面咱们说一下正经东西吧,本文三大部分:英语+政治+专业课,字数比较多,文末分享了真题和资料,大家可自行下载。

陕西师范大学计算数学的初试科目为:(101)思想政治理论和(201)英语一(726)数学分析和(826)高等代数参考书目为:1.华东师范大度学数学系:《数学分析》(上、下册),高等教育出知版社2.北京大学:《高等代数》,高等教育出版社有关英语的一些经验大家都说“得阅读者得天下”。

阅读一共占40分,但如果把所有精力都花在阅读练习上,不注意其他题型的应试技巧,也是得不偿失的。

建议大家抽出3个小时的时间,完整地做一套题。

做完一套卷子之后,正确率是次要的,重点是发现自己的弱点,同时了解试卷结构并调整自己的时间安排与做题节奏。

对于真题,一定要做到“心中有数”!不能像无头苍蝇一样一下子就扎进了哪个老师的长难句网课或者哪本阅读书当中。

不是说辅助网课和书不好,而是说要有的放矢,先整体,后局部深入。

没有哪个做题顺序是最好的,最适合自己的才是最好的,大家可以自由决定。

2005年考研数学试题答案与解析(数学一)

2005年考研数学试题答案与解析(数学一)

2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线的斜渐近线方程为【分析】本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】因为a=,,于是所求斜渐近线方程为(2)微分方程满足的解为.【分析】直接套用一阶线性微分方程的通解公式:,再由初始条件确定任意常数即可.【详解】原方程等价为,于是通解为=,由得C=0,故所求解为(3)设函数,单位向量,则=.【分析】函数u(x,y,z)沿单位向量}的方向导数为:因此,本题直接用上述公式即可.【详解】因为,,,于是所求方向导数为=(4)设是由锥面与半球面围成的空间区域,是的整个边界的外侧,则.【分析】本题是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】=(5)设均为3维列向量,记矩阵,,如果,那么2 .【分析】将B写成用A右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】由题设,有=,于是有(6)从数1,2,3,4中任取一个数,记为X, 再从中任取一个数,记为Y, 则=.【分析】本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】=+++=二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数,则f(x)在内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ]【分析】先求出f(x)的表达式,再讨论其可导情形.【详解】当时,;当时,;当时,即可见f(x)仅在x=时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,表示“M的充分必要条件是N”,则必有(A) F(x)是偶函数f(x)是奇函数.(B) F(x)是奇函数f(x)是偶函数.(C) F(x)是周期函数f(x)是周期函数.(D) F(x)是单调函数f(x)是单调函数. [ A ]【分析】本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】方法一:任一原函数可表示为,且当F(x)为偶函数时,有,于是,即,也即,可见f(x)为奇函数;反过来,若f(x)为奇函数,则为偶函数,从而为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=, 排除(D); 故应选(A).(9)设函数, 其中函数具有二阶导数,具有一阶导数,则必有(A). (B).(C). (D). [ B ] 【分析】先分别求出、、,再比较答案即可.【详解】因为,,于是,,,可见有,应选(B).(10)设有三元方程,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y).(C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】本题考查隐函数存在定理,只需令F(x,y,z)=, 分别求出三个偏导数,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】令F(x,y,z)=, 则,,,且,,. 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设是矩阵A的两个不同的特征值,对应的特征向量分别为,则,线性无关的充分必要条件是(A). (B). (C). (D). [ B ]【分析】讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可.【详解】方法一:令,则,.由于线性无关,于是有当时,显然有,此时,线性无关;反过来,若,线性无关,则必然有(,否则,与=线性相关),故应选(B).方法二:由于,可见,线性无关的充要条件是故应选(B).(12)设A为n()阶可逆矩阵,交换A的第1行与第2行得矩阵B, 分别为A,B的伴随矩阵,则(A) 交换的第1列与第2列得. (B) 交换的第1行与第2行得.(C) 交换的第1列与第2列得. (D) 交换的第1行与第2行得.[ C ]【分析】本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】由题设,存在初等矩阵(交换n阶单位矩阵的第1行与第2行所得),使得,于是,即,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为X Y 0 10 0.4 a1 b 0.1已知随机事件与相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1,b=0.4 [ B ]【分析】首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b的取值.【详解】由题设,知 a+b=0.5又事件与相互独立,于是有,即 a=, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设为来自总体N(0,1)的简单随机样本,为样本均值,为样本方差,则(A)(B)(C)(D)[ D ]【分析】利用正态总体抽样分布的性质和分布、t分布及F分布的定义进行讨论即可.【详解】由正态总体抽样分布的性质知,,可排除(A);又,可排除(C); 而,不能断定(B)是正确选项.因为,且相互独立,于是故应选(D).三、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分11分)设,表示不超过的最大整数. 计算二重积分【分析】首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】令,.则==(16)(本题满分12分)求幂级数的收敛区间与和函数f(x).【分析】先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】因为,所以当时,原级数绝对收敛,当时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记则由于所以又从而(17)(本题满分11分)如图,曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线与分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分【分析】题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】由题设图形知,f(0)=0,; f(3)=2,由分部积分,知==(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明:()存在使得;()存在两个不同的点,使得【分析】第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】()令,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在使得,即.()在和上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点,使得,于是(19)(本题满分12分)设函数具有连续导数,在围绕原点的任意分段光滑简单闭曲线L上,曲线积分的值恒为同一常数.()证明:对右半平面x>0内的任意分段光滑简单闭曲线C,有;()求函数的表达式.【分析】证明()的关键是如何将封闭曲线C与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C进行分解讨论;而()中求的表达式,显然应用积分与路径无关即可.Y【详解】()l2 Co X l3如图,将C分解为:,另作一条曲线围绕原点且与C相接,则.()设,在单连通区域内具有一阶连续偏导数,由(Ⅰ)知,曲线积分在该区域内与路径无关,故当时,总有.①②比较①、②两式的右端,得④③由③得,将代入④得所以,从而(20)(本题满分9分)已知二次型的秩为2.()求a的值;()求正交变换,把化成标准形;()求方程=0的解.【分析】()根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a的值;()是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换;()利用第二步的结果,通过标准形求解即可.【详解】()二次型对应矩阵为,由二次型的秩为2,知,得a=0.()这里,可求出其特征值为.解,得特征向量为:,解,得特征向量为:由于已经正交,直接将,单位化,得:令,即为所求的正交变换矩阵,由x=Qy,可化原二次型为标准形:=()由=0,得(k为任意常数).从而所求解为:x=Qy=,其中c为任意常数.(21)(本题满分9分)已知3阶矩阵A的第一行是不全为零,矩阵(k为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A的秩.【详解】由AB=O知,B的每一列均为Ax=0的解,且(1)若k, 则r(B)=2, 于是r(A), 显然r(A), 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:为任意常数.(2) 若k=9,则r(B)=1, 从而1)若r(A)=2, 则Ax=0的通解为:为任意常数.2)若r(A)=1,则Ax=0 的同解方程组为:,不妨设,则其通解为为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为求:() (X,Y)的边缘概率密度;()的概率密度【分析】求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】()关于X的边缘概率密度===关于Y的边缘概率密度===()令,1)当时,;2)当时,=;3) 当时,即分布函数为:故所求的概率密度为:(23)(本题满分9分)设为来自总体N(0,1)的简单随机样本,为样本均值,记求:()的方差;()与的协方差【分析】先将表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求与的协方差,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】由题设,知相互独立,且,()==()=====。

陕师大可用高数下册试题库

陕师大可用高数下册试题库

高等数学下册试题库一、填空题1. 平面01=+++kz y x 与直线112z y x =-=平行的直线方程是___________ 2. 过点)0,1,4(-M 且与向量)1,2,1(=a 平行的直线方程是________________3. 设k i b k j i aλ+=-+=2,4,且b a ⊥,则=λ__________4. 设1)(,2||,3||-===a b b a ,则=∧),(b a ____________5. 设平面0=+++D z By Ax 通过原点,且与平面0526=+-z x 平行,则__________________,_______,===D B A6. 设直线)1(221-=+=-z y m x λ与平面025363=+++-z y x 垂直,则___________________,==λm7. 直线⎩⎨⎧==01y x ,绕z 轴旋转一周所形成的旋转曲面的方程是_______________8. 过点)1,0,2(-M 且平行于向量)1,1,2(-=a 及)4,0,3(b 的平面方程是__________ 9. 曲面222y x z+=与平面5=z 的交线在xoy 面上的投影方程为__________10. 幂级数12nn n n x ∞=∑的收敛半径是____________ 11. 过直线1 3222x z y --=+=-且平行于直线 1 1 3023x y z +-+==的平面方程是_________________ 12. 设),2ln(),(xyx y x f +=则__________)0,1('=y f13. 设),arctan(xy z=则____________,__________=∂∂=∂∂yz x z 14. 设,),(22y x y x xy f +=+则=),('y x f x ____________________15. 设,yxz =则=dz _____________ 16. 设,),(32y x y x f =则=-)2,1(|dz ______________17. 曲线t t z t y t x cos sin ,sin ,cos +===,在对应的0=t 处的切线与平面0=-+z By x 平行,则=B __________18. 曲面22y x z +=在点)2,1,1(处的法线与平面01=+++z By Ax 垂直,则==B A ________,______________19. 设}2,0,1{-=a ,}1,1,3{-=b ,则b a ⋅=________, b a ⨯=____________ 20. 求通过点)4,1,2(0-M 和z 轴的平面方程为________________21. 求过点)0,1,0(0M 且垂直于平面023=+-y x 的直线方程为_______________22. 向量d 垂直于向量]1,3,2[-=a 和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,则向量d=___________________23. 向量b a 57-分别与b a 27-垂直于向量b a 3+与b a 4-,则向量a 与b的夹角为_______________24. 球面9222=++z y x 与平面1=+z x 的交线在xOy 面上投影的方程为______________25. 点)1,`1,2(0-M 到直线l :⎩⎨⎧=+-+=-+-032012z y x z y x 的距离d 是_________________26. 一直线l 过点)0,2,1(0M 且平行于平面π:042=-+-z y x ,又与直线l :122112-=-=-x y x 相交,则直线l 的方程是__________________ 27. 设____________b 3a 2则,3πb a 2,b 5,a =-=⎪⎪⎭⎫ ⎝⎛⋅==∧28. 设知量b ,a 满足{}1,11,b a 3,b a -=⨯=⋅,则____________b ,a =⎪⎪⎭⎫ ⎝⎛∧29. 已知两直线方程13z 02y 11x :L 1--=-=-,1z11y 22x L :2=-=+,则过1L 且平行2L 的平面方程是__________________ 30. 若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a ____________ 31. =∂∂=xz,x z y则______________. y z ∂∂=_________________32. 设 ()()()____________2,1z ,x y x,sin x 11y z x 32='++-=则33. 设 ()1ylnx x lny y x ,u -+= 则 ______________________du = 34. 由方程2z y x xyz 222=+++确定()y x ,z z =在点()1,0,1-全微分=dz ______35. ()222yx f y z -+= ,其中()u f 可微,则 ___________yzx z y =∂∂+∂∂36. 曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 _________________37. 过原点且垂直于平面022=+-z y 的直线为__________________ 38. 过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 _________________ 39. 与平面062=-+-z y x 垂直的单位向量为______________ 40. )yx(x z 2ϕ=,(u)ϕ可微,则 ____________yz y x z 2=∂∂+∂∂ 41. 已知22lny x z +=,则在点)1,2(处的全微分_________________=dz42. 曲面32=+-xy e z z在点)0,2,1(处的切平面方程为___________________43. 设()y x z z .= 由方程02=+--z xy e z e ,求xz∂∂=________________ 44. 设()()xy x g y x f z,2+-=,其中()t f 二阶可导,()v u g ,具有二阶连续偏导数 有yx z2∂∂∂=___________________45. 已知方程yzln z x =定义了()y x z z .=,求22xz∂∂=_____________ 46. 设()z y x f u..=,()0..2=Φz e x y ,x y sin =,其中f,Φ都具有一阶连续偏导数,且0z≠∂∂ϕ,求dx dz=______________________47. 交换积分次序=⎰⎰-221),(y ydx y x f dy _______________________________48. 交换积分次序dx y x f dy dx y x f dy y y⎰⎰⎰⎰-+21201),(),(=___________________49. _________==⎰⎰dxdy xe I Dxy其中}10,10),({≤≤≤≤=y x y x D50. =I________)23(=+⎰⎰dxdy y x D,其中D 是由两坐标轴及直线2=+y x 所围51. =I ________1122=++⎰⎰dxdy yx D,其中D 是由422≤+y x 所确定的圆域 52. =I ___________222=--⎰⎰dxdy y x a D,其中D :222a y x ≤+53. =I ________)6(=+⎰⎰dxdy y x D ,其中D 是由1,5,===x x y x y 所围成的区域54. ⎰⎰-2202x y dy e dx = _____________________55.___________)(221221=+⎰⎰-xxdy y x dx56. 设L 为922=+y x ,则→→→-+-=j x x i y xy F )4()22(2按L 的逆时针方向运动一周所作的功为.___________57. 曲线()⎩⎨⎧+==1,2,7y 3x z 2xy 22在点处切线方程为______________________ 58. 曲面22y 2x z +=在(2,1,3)处的法线方程为_____________________ 59.∑∞=11n p n ,当p 满足条件 时收敛 60. 级数()∑∞=---1221n nn n 的敛散性是__________61.nn nx a∑∞=1在x=-3时收敛,则n n n x a ∑∞=1在3<x 时62. 若()∑∞=1ln n n a 收敛,则a 的取值范围是_________63. 级数)21)1(1(1nn n n -+∑∞=的和为64. 求出级数的和()()∑∞=+-112121n n n =___________ 65. 级数∑∞=02)3(ln n nn的和为 _____ 66. 已知级数∑∞=1n n u 的前n 项和1+=n ns n ,则该级数为____________ 67. 幂级数nn n x n∑∞=12的收敛区间为68. ∑∞=--11212n n n x 的收敛区间为 ,和函数)(x s 为69. 幂级数∑∞=≤<0)10(n p np nx 的收敛区间为70. 级数∑∞=+011n na当a 满足条件 时收敛 71. 级数()2124nnn x n ∞=-∑的收敛域为 ______72. 设幂级数nn n a x∞=∑的收敛半径为3,则幂级数11(1)n nn na x ∞+=-∑的收敛区间为 _____73. 231)(2++=x x x f 展开成x+4的幂级数为 ,收敛域为 74. 设函数)21ln()(2x x x f --=关于x 的幂级数展开式为 __________,该幂级数的收敛区间为 ________ 75. 已知 1ln ln ln=++x z z y y x ,则=∂∂⋅∂∂⋅∂∂zyy x x z ______ 76. 设xyy x z )1(22++= y,那么=∂∂xz_____________,=∂∂y z _____________ 77. 设D 是由2=xy 及3=+y x 所围成的闭区域,则=⎰⎰Ddxdy _______________78. 设D是由1||=+y x 及1||=-y x 所围成的闭区域,则=⎰⎰Ddxdy _______________79.=+⎰Cds y x )(22________________,其中C为圆周)20(sin ,cos π≤≤==t t a y t a x80.=-⎰Ldx y x )(22________________,其中L 是抛物线2x y =上从点()0,0到点()4,2的一段弧。

新版陕西师范大学应用数学考研经验考研参考书考研真题

新版陕西师范大学应用数学考研经验考研参考书考研真题

新版陕西师范大学应用数学考研经验考研参考书考研真题得到拟录取消息的前些天一直忐忑不安,想象着自己失败时的沮丧或者自己成功时的兴奋。

终于尘埃落定,内心激动,又面色平静地拿起手机给每一个关心我的家人和朋友发了这个好消息。

也想在这里写下自己考研路上的点点滴滴,给自己留一个纪念,也希望大家能从中得到一些收获。

立大志者得中志,立中志者得小志,立小志者不得志。

所以我建议刚开始大家就朝着自己喜欢的,最好的学校考虑,不要去担心自己能不能考上的问题,以最好的学校的标准来要求自己去学习。

大家可以去自己想报考的学校官网上下过去的录取分数线,报录比之类的信息给自己一个参考和努力目标。

包括找一些学长学姐问下经验也是很有用的。

备考那个时候无论是老师还是同学们都给了我很多的帮助,让我在备考的路上少走了很多的弯路,尤其是那些珍贵的笔记本,现在回想起来依然很是感动,还好现在成功上岸,也算是没有辜负大家对我的期望。

所以想着成功之后可以写一篇经验贴,希望可以帮助大家。

话不多说,下面跟大家介绍一下我的经验吧。

文末有笔记和真题下载,大家可自取。

陕西师范大学应用数学的初试科目为:(101)思想政治理论和(201)英语一(726)数学分析和(826)高等代数参考书目为:1.华东师范大学数学系:《数学分析》(上、下册),高等教育出版社2.北京大学:《高等代数》,袭高等教育出版社先说英语吧。

词汇量曾经是我的一块心病,跟我英语水平差不多的同学,词汇量往往比我高出一大截。

从初中学英语开始就不爱背单词。

在考研阶段,词汇量的重要性胜过四六级,尤其是一些熟词僻义,往往一个单词决定你一道阅读能否做对。

所以,一旦你准备学习考研英语,词汇一定是陪伴你从头至尾的一项工作。

考研到底背多少个单词足够?按照大纲的要求,大概是5500多个。

实际上,核心单词及其熟词僻义才是考研的重点。

单词如何背?在英语复习的前期一定不要着急开始做真题,因为在单词和句子的基础非常薄弱的情况下,做真题的效果是非常差的。

数学分析试题(一)答案及评分标准 - 陕西师范大学

数学分析试题(一)答案及评分标准 - 陕西师范大学

数学分析试题(一)答案及评分标准一、填空(每题3分)1. ]10,0(2.2)()(x f x f −+,2)()(x f x f −− 3.52 4.,1=a 1−=b 5.0二、求极限(每题5分)1.=++++++∞→n n 313131212121222L L lim )(lim )(lim n n n n 31313121212122++++++∞→∞→L L ……………………………(1分) =3113113121121121−−−−∞→∞→))((lim ))((lim n n n n ……………………………………………………………(2分) 2=……………………………………………………………………………(2分) 2.))()((lim 22221111n n nn ++++∞→L 22221211110n n n n n +≤++++≤)()(L ……………………………………………(2分) 利用夹逼原则,…………………………………………………………………(1分) 可求得021111222=++++∞→))()((lim n n n n L .……………………………………(2分) 3.=−−++∞→902070155863)()()(lim x x x x 9090207090155863()()(lim xx x x x x −−++∞→………………………(2分)=902070155863)()()(lim xx x x −−++∞→…………………………………………………..(1分) 902070583⋅=…………………………………………………………………..(2分) 4.x x x sin )(tan lim 0→= ………………………………………………..(1分) )ln(tan sin lim x x x e 0→x x x x e tan ln sin lim lim 00→→=x x x x e sin tan ln lim lim 100→→=………………………………………………(1分)x x x e sin sec lim 20→−=…………………………………………………………………(2分) 10==e ………………………………………………………………………(1分)5.))cos cos cos (cos lim (lim n n x x x x x 22220L ∞→→ n n n x x x x x x x x x x 22222222212sin cos cos cos sin cos cos cos sin sin L L +==== …………………………………………………………………………………..(2分)=∞→)cos cos cos (cos lim n n x x x x 2222L 12122+∞→⋅n n n x x sin sin lim …………………………….(1分) 12122+∞→⋅n n n x x sin sin lim =x x x xn n n 2222sin sin lim ⋅∞→x x 22sin =………………………………...(1分) ))cos cos cos (cos lim (lim n n x x x x x 22220L ∞→→=1220=→x x x sin lim …………………………(1分) 6.)sin (lim x x x 22011−→=)sin sin (lim xx x x x 22220−→………………………………………..(1分) =)sin sin (lim xx x x x 22220−→=x x x x x x x 2222220sin sin sin lim +−→……………………………….(1分) xx x x x x x 22222220cos sin sin cos lim++−=→……………………………………………(1分) xx x x x x x 2226232220sin cos sin sin lim −+−=→…………………………………………(1分) 31−=.…………………………………………………………………………(1分) 三、计算(每题5分)1.22xx x x x x y tan sec )tan (−=′=′ 2.)ln )11(ln()1111(ln 2′−−−=′−++−−+=′x x x x xx y ………通过分母有理化先将化简………………………………………………………………………………..(2分) y xx x x x x 1111111222−−⋅−−=′−−−)ln )(ln(………………………………(2分) 2111111x x x x xx y −=′−++−−+=′)(ln ……………………………………………(1分)3.……………………………………………………...(2分))()(ln sin sin ′=′=′x x x e x y )ln (sin )(sin ln sin ′⋅=′x x e e xinx x x …………………………………………………..(1分) )sin ln (cos )ln (sin sin sin xx x x x x x e y x xinx +=′⋅=′………………………………..(2分) 4.,则……………………………………………...(1分) 31x x f =−)(31)()(+=x x f 213()(+=′x x f )…………………………………………………………………(2分) 2)2(3)1(+=+′x x f ………………………………………………………………(1分) 231x x f =−′)(…………………………………………………………………..(1分)5.,则⎪⎩⎪⎨⎧==ta y t a x 33sin cos t t t a t t a dx dy tan sin cos cos sin −=−=2233……………………………(2分) ⎪⎩⎪⎨⎧−==x dxdy t a x tan cos 3,则t t a t t a x dx y d sin cos sin cos sec 42222313=−−=…………………...(3分) 6.设,由于x x x y −=ln x x x x y ln )ln (=′−=′………………………………(3分)xdx dy ln =……………………………………………………………………(2分)四、由于∞=−+−→13221x x x x ))((lim,1=x 是垂直渐近线……………………(1分) 21322=−+−∞→xx x x x )())((lim ……………………………………………………….(2分)=−−+−∞→)))(((lim x x x x x 2132241124=−−∞→x x x lim ……………………………….(2分) 因此也具有斜渐近线42+=x y .……………………………………..(1分) 五、x x x f 2ln )(=,由0222=−=′xx x x f ln ln )(,可解出1=x ,……..(2分) 2e 当时,;当时,10<<x 0<′)(x f 21e x <<0>′)(x f ;当时, x e <20<′)(x f ……………………………………………………………………………………(2分) 所以是的极小值,1=x f 01=)(f ;是的极大值,. 2e x =f 224−=e e f )(…………………………………………………………………………………….(2分) 六、证:令⎪⎩⎪⎨⎧=∈=0120x x x x x f ,],(,sin )(π…………………………………………(1分) f 在],[20π上连续.当),(20π∈x 时,022<−=−=′xx x x x x x x x f )tan (cos sin cos )(, 所以在f ],[20π上严格递减,………………………………………………..(3分) 因此),(20π∈x 时, 1022=<<=)()()(f x f f ππ 即x x x<<sin π2.…………………………….(2分)七、不妨假设在上不恒正也不恒负,…………………………..(1分) f ],[b a 即存在,满足],[,b a x x ∈′′′0>′)(x f ,0<′′)(x f ,…………………………(2分) 由连续函数的介值定理,……………………………………………………(2分) 则存在),(x x x ′′′∈0,使得00=)(x f ………………………………………….(1分) 这与已知矛盾.……………………………………………………………….(1分)。

陕西师范大学数科院

陕西师范大学数科院

陕西师范大学数科院2003年研究生各专业复试试题《数学分析》与《高等代数》部分为必做题,其它三门中任选一门。

一. 数学分析部分(每题10分,共40分)1. 设)(2R M 是实数域R 上的全体2阶矩阵之集,对任一)(][2R M x X ij ∈=,记∑==21,2||j i ij x X . 对)(),(}{221R M A R M A n n ∈⊂∞=, 规定:A A n n =∞→lim 指)(0∞→→-n A A n . 证明: (1) )2,1,(lim lim )(==⇔=∞→∞→j i a a A A ij n ij n n n ,其中][],[)(ij n ij n a A a A ==; (2) ⎥⎦⎤⎢⎣⎡+∞→n n n n n 111cos sin 1lim 存在且求其值; (3) AB B A B A B A B B A A n n n n n n n n n n =+=+⇒==∞→∞→∞→∞→lim ,)(lim lim ,lim . 2. 设],[],,[b a C b a R 分别表示],[b a 上的全体Riemann 可积函数与全体连续函数之集.(1) 说明],[],[b a C b a R 与的关系;(2) 说明],[],[b a C b a R 与关于函数的运算是R 上的线性空间;(3) 定义⎰=xa dt t f x Tf )())((,说明:(a )T 是从],[],[b a C b a R 到中的线性映射;(b )],[b a R f ∈是T 的不动点(即f Tf =)当且仅当0=f .3. Let E be a dense subset of an interval ],[b a (i.e. every point of],[b a is the limit of a sequence in E ). Show that if g f , are continuous functions on ],[b a , then g f = if and only if ))(()(E x x g x f ∈∀=.4. 给出数学分析中你认为最重要最基本的五个定理的名称,并说明它们之间的关系及各自的意义.二. 高等代数部分(共40分)1.(10分)已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=100210321A , ⎪⎪⎪⎭⎫ ⎝⎛=001012123B , ⎪⎪⎪⎭⎫ ⎝⎛=100110111C 满足T T BC AXB )(=,求矩阵X .2. (15分)设m ααα,,,21 线性无关,问:113221,,,,,αααααααα+++++m i i是否也线性无关,试给予分析.3.(15分)设A 是一个反对称实矩阵, 证明:(1)A I +可逆;(2)1))((-+-=A I A I U 是一个正交矩阵.三. 实变函数论部分(每题5分,共20分)1. 试述Lebesgue 积分与Riemann 积分的关系.2. 试述Lebesgue 积分的几何意义并举例说明.3. 设R b a f →],[ :为非负连续函数, 证明:曲边梯形)}(0 :),{()(x f y y x f G ≤≤=是2R 中的Lebesgue 可测集,并且⎰=ba dx x f f mG )()(. 4. 设],[b a F 为],[b a 上全体实值函数之集,],[b a C 为],[b a 上全体实值连续函数之集,用基数的观点说明],[b a F 远大于],[b a C .四. 常微分方程部分(每题10分,共20分)1. 解方程.22d d 2d d 3222x y x y x xy x =+- 2. 试讨论方程组⎪⎪⎩⎪⎪⎨⎧=+=cy ty by ax t x d d d d 的奇点类型,其中c b a ,,为常数且0≠ac . 五. 近世代数部分(共20分)设p 为素数,令R ={ p ba |不整除b }为有理数域的子环,证明: (1)R ba ∈为R 的单位(或可逆元)当且仅当p 不整除a ; (2)若I 为R 的理想,则存在非负整数k 使得)(k p I =;(3)R 有唯一的最大理想.。

2005考研数一真题及解析

2005考研数一真题及解析

2005年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共6小题,每小题4分,满分24分.把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 _____________.(2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为____________.(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=.________.(4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz ____________.(5)设123,,ααα均为3维列向量,记矩阵123(,,)=A ααα,123123123(,24,39)=++++++B ααααααααα,如果1=A ,那么=B .(6)从数1,2,3,4中任取一个数,记为X , 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =____________.二、选择题(本题共8小题,每小题4分,满分32分.每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n n n x x f 31lim )(+=∞→,则()f x 在),(+∞-∞内(A)处处可导 (B)恰有一个不可导点(C)恰有两个不可导点 (D)至少有三个不可导点(8)设()F x 是连续函数()f x 的一个原函数,""N M ⇔表示"M 的充分必要条件是",N 则必有(A)()F x 是偶函数()f x ⇔是奇函数 (B)()F x 是奇函数()f x ⇔是偶函数(C)()F x 是周期函数()f x ⇔是周期函数 (D)()F x 是单调函数()f x ⇔是单调函数(9)设函数⎰+-+-++=yx y x dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A)2222y ux u ∂∂-=∂∂(B)2222yu x u ∂∂=∂∂(C)222yu y x u ∂∂=∂∂∂(D)222x uy x u ∂∂=∂∂∂ (10)设有三元方程ln e 1xz xy z y -+=,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A)只能确定一个具有连续偏导数的隐函数(,)z z x y = (B)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)z z x y = (C)可确定两个具有连续偏导数的隐函数(,)y y x z =和(,)z z x y = (D)可确定两个具有连续偏导数的隐函数(,)x x y z =和(,)y y x z =(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为12,αα,则1α,12()+A αα线性无关的充分必要条件是(A)01≠λ (B)02≠λ (C)01=λ (D)02=λ(12)设A 为(2)n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵**.,B A B 分别为,A B 的伴随矩阵,则(A)交换*A 的第1列与第2列得*B (B)交换*A 的第1行与第2行得*B(C)交换*A 的第1列与第2列得*-B (D)交换*A 的第1行与第2行得*-B(13)设二维随机变量(,)X Y 的概率分布为已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A)0.2,0.3a b == (B)0.4,0.1a b == (C)0.3,0.2a b == (D)0.1,0.4a b ==(14)设)2(,,,21≥n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,2S 为样本方差,则(A))1,0(~N X n (B)22~()nS n χ(C))1(~)1(--n t SXn (D)2122(1)~(1,1)nii n X F n X=--∑三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤) (15)(本题满分11分)设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22(16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数()f x .(17)(本题满分11分)如图,曲线C 的方程为()y f x =,点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数()f x 具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x(18)(本题满分12分)已知函数()f x 在[0,1]上连续,在(0,1)内可导,且(0)0,(1)1f f ==. 证明:(I)存在),1,0(∈ξ 使得ξξ-=1)(f .(2)存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f(19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分24()22Ly dx xydyx y φ++⎰的值恒为同一常数.(I)证明:对右半平面0x >内的任意分段光滑简单闭曲线,C 有24()202Cy dx xydyx yφ+=+⎰.(2)求函数)(y ϕ的表达式.(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I)求a 的值;(2)求正交变换x y =Q ,把),,(321x x x f 化成标准形. (3)求方程),,(321x x x f =0的解.(21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵12324636k ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B (k 为常数),且=AB O ,求线性方程组0x =A 的通解.(22)(本题满分9分)设二维随机变量(,)X Y 的概率密度为(,)f x y =1001,02x y x <<<<其它求:(I)(,)X Y 的边缘概率密度)(),(y f x f Y X . (2)Y X Z -=2的概率密度).(z f Z(23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体(0,1)N 的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I)i Y 的方差n i DY i ,,2,1, =. (2)1Y 与n Y 的协方差1Cov(,).n Y Y2005年考研数学一真题解析一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)(1)曲线122+=x x y 的斜渐近线方程为 .4121-=x y【分析】 本题属基本题型,直接用斜渐近线方程公式进行计算即可.【详解】 因为a=212lim )(lim22=+=∞→∞→x x x x x f x x , []41)12(2lim)(lim -=+-=-=∞→∞→x x ax x f b x x ,于是所求斜渐近线方程为.4121-=x y (2)微分方程x x y y x ln 2=+'满足91)1(-=y 的解为.91ln 31x x x y -=. 【分析】直接套用一阶线性微分方程)()(x Q y x P y =+'的通解公式:⎰+⎰⎰=-])([)()(C dx e x Q e y dxx P dx x P , 再由初始条件确定任意常数即可.【详解】 原方程等价为x y xy ln 2=+', 于是通解为 ⎰⎰+⋅=+⎰⋅⎰=-]ln [1]ln [2222C xdx x xC dx ex ey dxx dxx =2191ln 31x C x x x +-, 由91)1(-=y 得C=0,故所求解为.91ln 31x x x y -=(3)设函数181261),,(222z y x z y x u +++=,单位向量}1,1,1{31=n ,则)3,2,1(nu∂∂=33. 【分析】 函数u(x,y,z)沿单位向量γβαcos ,cos ,{cos =n}的方向导数为:γβαcos cos cos zu y u x u n u ∂∂+∂∂+∂∂=∂∂ 因此,本题直接用上述公式即可.【详解】 因为3x x u =∂∂,6y y u =∂∂,9zz u =∂∂,于是所求方向导数为)3,2,1(nu ∂∂=.33313131313131=⋅+⋅+⋅ (4)设Ω是由锥面22y x z +=与半球面222y x R z --=围成的空间区域,∑是Ω的整个边界的外侧,则⎰⎰∑=++zdxdy ydzdx xdydz 3)221(2R -π. 【分析】本题∑是封闭曲面且取外侧,自然想到用高斯公式转化为三重积分,再用球面(或柱面)坐标进行计算即可.【详解】⎰⎰∑=++zdxdy ydzdx xdydz ⎰⎰⎰Ωdxdydz 3=.)221(2sin 3320402R d d d R⎰⎰⎰-=πππθϕϕρρ (5)设321,,ααα均为3维列向量,记矩阵),,(321ααα=A ,)93,42,(321321321ααααααααα++++++=B , 如果1=A ,那么=B 2 .【分析】 将B 写成用A 右乘另一矩阵的形式,再用方阵相乘的行列式性质进行计算即可.【详解】 由题设,有)93,42,(321321321ααααααααα++++++=B=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡941321111),,(321ααα, 于是有 .221941321111=⨯=⋅=A B(6)从数1,2,3,4中任取一个数,记为X, 再从X ,,2,1 中任取一个数,记为Y , 则}2{=Y P =4813. 【分析】 本题涉及到两次随机试验,想到用全概率公式, 且第一次试验的各种两两互不相容的结果即为完备事件组或样本空间的划分.【详解】 }2{=Y P =}12{}1{===X Y P X P +}22{}2{===X Y P X P +}32{}3{===X Y P X P +}42{}4{===X Y P X P =.4813)4131210(41=+++⨯ 二、选择题(本题共8小题,每小题4分,满分32分. 每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内)(7)设函数n nn xx f 31lim )(+=∞→,则f(x)在),(+∞-∞内(A) 处处可导. (B) 恰有一个不可导点.(C) 恰有两个不可导点. (D) 至少有三个不可导点. [ C ] 【分析】 先求出f(x)的表达式,再讨论其可导情形. 【详解】 当1<x 时,11lim )(3=+=∞→n nn xx f ;当1=x 时,111lim )(=+=∞→n n x f ;当1>x 时,.)11(lim )(3133x xx x f nnn =+=∞→即.1,11,1,,1,)(33>≤≤--<⎪⎩⎪⎨⎧-=x x x x x x f 可见f(x)仅在x=1±时不可导,故应选(C).(8)设F(x)是连续函数f(x)的一个原函数,""N M ⇔表示“M 的充分必要条件是N ”,则必有(A) F(x)是偶函数⇔f(x)是奇函数. (B ) F(x)是奇函数⇔f(x)是偶函数.(C) F(x)是周期函数⇔f(x)是周期函数.(D) F(x)是单调函数⇔f(x)是单调函数. [ A ] 【分析】 本题可直接推证,但最简便的方法还是通过反例用排除法找到答案.【详解】 方法一:任一原函数可表示为⎰+=xC dt t f x F 0)()(,且).()(x f x F ='当F(x)为偶函数时,有)()(x F x F =-,于是)()1()(x F x F '=-⋅-',即 )()(x f x f =--,也即)()(x f x f -=-,可见f(x)为奇函数;反过来,若f(x)为奇函数,则⎰xdt t f 0)(为偶函数,从而⎰+=xC dt t f x F 0)()(为偶函数,可见(A)为正确选项.方法二:令f(x)=1, 则取F(x)=x+1, 排除(B)、(C); 令f(x)=x, 则取F(x)=221x , 排除(D); 故应选(A).(9)设函数⎰+-+-++=yx yx dt t y x y x y x u )()()(),(ψϕϕ, 其中函数ϕ具有二阶导数,ψ 具有一阶导数,则必有(A) 2222y u x u ∂∂-=∂∂. (B ) 2222yu x u ∂∂=∂∂. (C) 222y uy x u ∂∂=∂∂∂. (D) 222x u y x u ∂∂=∂∂∂. [ B ] 【分析】 先分别求出22x u ∂∂、22yu∂∂、y x u ∂∂∂2,再比较答案即可.【详解】 因为)()()()(y x y x y x y x xu--++-'++'=∂∂ψψϕϕ,)()()()(y x y x y x y x yu-+++-'-+'=∂∂ψψϕϕ, 于是 )()()()(22y x y x y x y x x u-'-+'+-''++''=∂∂ψψϕϕ,)()()()(2y x y x y x y x yx u-'++'+-''-+''=∂∂∂ψψϕϕ, )()()()(22y x y x y x y x y u-'-+'+-''++''=∂∂ψψϕϕ, 可见有2222yu x u ∂∂=∂∂,应选(B). (10)设有三元方程1ln =+-xzey z xy ,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程(A) 只能确定一个具有连续偏导数的隐函数z=z(x,y).(B) 可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y). (C) 可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y).(D) 可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z). [ D ]【分析】 本题考查隐函数存在定理,只需令F(x,y,z)=1ln -+-xzey z xy , 分别求出三个偏导数y x z F F F ,,,再考虑在点(0,1,1)处哪个偏导数不为0,则可确定相应的隐函数.【详解】 令F(x,y,z)=1ln -+-xzey z xy , 则z e y F xzx +=', yz x F y -=',x e y F xzz +-='ln ,且 2)1,1,0(='x F ,1)1,1,0(-='y F ,0)1,1,0(='z F . 由此可确定相应的隐函数x=x(y,z)和y=y(x,z). 故应选(D).(11)设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ. [ B ] 【分析】 讨论一组抽象向量的线性无关性,可用定义或转化为求其秩即可. 【详解】 方法一:令 0)(21211=++αααA k k ,则022211211=++αλαλαk k k , 0)(2221121=++αλαλk k k . 由于21,αα线性无关,于是有 ⎩⎨⎧==+.0,022121λλk k k当02≠λ时,显然有0,021==k k ,此时1α,)(21αα+A 线性无关;反过来,若1α,)(21αα+A 线性无关,则必然有02≠λ(,否则,1α与)(21αα+A =11αλ线性相关),故应选(B).方法二: 由于 ⎥⎦⎤⎢⎣⎡=+=+21212211121101],[],[)](,[λλαααλαλααααA ,可见1α,)(21αα+A 线性无关的充要条件是.001221≠=λλλ故应选(B).(12)设A 为n (2≥n )阶可逆矩阵,交换A 的第1行与第2行得矩阵B, **,B A 分别为A,B 的伴随矩阵,则(A) 交换*A 的第1列与第2列得*B . (B) 交换*A 的第1行与第2行得*B .(C) 交换*A 的第1列与第2列得*B -. (D) 交换*A 的第1行与第2行得*B -. [C ]【分析】 本题考查初等变换的概念与初等矩阵的性质,只需利用初等变换与初等矩阵的关系以及伴随矩阵的性质进行分析即可.【详解】 由题设,存在初等矩阵12E (交换n 阶单位矩阵的第1行与第2行所得),使得 B A E =12,于是 12*11212*12***12*)(E A E E A E A A E B -=⋅===-,即*12*B E A -=,可见应选(C).(13)设二维随机变量(X,Y) 的概率分布为 X Y 0 1 0 0.4 a 1 b 0.1已知随机事件}0{=X 与}1{=+Y X 相互独立,则(A) a=0.2, b=0.3 (B) a=0.4, b=0.1(C) a=0.3, b=0.2 (D) a=0.1, b=0.4 [ B ] 【分析】 首先所有概率求和为1,可得a+b=0.5, 其次,利用事件的独立性又可得一等式,由此可确定a,b 的取值.【详解】 由题设,知 a+b=0.5又事件}0{=X 与}1{=+Y X 相互独立,于是有}1{}0{}1,0{=+===+=Y X P X P Y X X P , 即 a=))(4.0(b a a ++, 由此可解得 a=0.4, b=0.1, 故应选(B).(14)设)2(,,,21≥n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,2S 为样本方差,则(A) )1,0(~N X n (B) ).(~22n nS χ(C) )1(~)1(--n t SXn (D) ).1,1(~)1(2221--∑=n F X X n n i i [ D ] 【分析】 利用正态总体抽样分布的性质和2χ分布、t 分布及F 分布的定义进行讨论即可.【详解】 由正态总体抽样分布的性质知,)1,0(~10N X n nX =-,可排除(A); 又)1(~0-=-n t SXn nS X ,可排除(C); 而)1(~)1(1)1(2222--=-n S n S n χ,不能断定(B)是正确选项.因为 ∑=-n i in X X222221)1(~),1(~χχ,且∑=-ni i n X X 222221)1(~)1(~χχ与相互独立,于是).1,1(~)1(1122212221--=-∑∑==n F XX n n XX ni ini i故应选(D).三 、解答题(本题共9小题,满分94分.解答应写出文字说明、证明过程或演算步骤.) (15)(本题满分11分) 设}0,0,2),{(22≥≥≤+=y x y x y x D ,]1[22y x ++表示不超过221y x ++的最大整数. 计算二重积分⎰⎰++Ddxdy y x xy .]1[22 【分析】 首先应设法去掉取整函数符号,为此将积分区域分为两部分即可.【详解】 令 }0,0,10),{(221≥≥<+≤=y x y x y x D , }0,0,21),{(222≥≥≤+≤=y x y x y x D .则⎰⎰++Ddxdy y x xy ]1[22=⎰⎰⎰⎰+122D D xydxdy xydxdy dr r d dr r d ⎰⎰⎰⎰+=20213132cos sin 2cos sin ππθθθθθθ=.874381=+ (16)(本题满分12分) 求幂级数∑∞=--+-121))12(11()1(n n n x n n 的收敛区间与和函数f(x).【分析】 先求收敛半径,进而可确定收敛区间. 而和函数可利用逐项求导得到.【详解】 因为11)12()12()12)(1(1)12)(1(lim=+--⨯+++++∞→n n n n n n n n n ,所以当21x <时,原级数绝对收敛,当21x >时,原级数发散,因此原级数的收敛半径为1,收敛区间为(-1,1)记 121(1)(),(1,1)2(21)n nn S x x x n n -∞=-=∈--∑,则 1211(1)(),(1,1)21n n n S x x x n -∞-=-'=∈--∑,122211()(1),(1,1)1n n n S x x x x ∞--=''=-=∈-+∑. 由于 (0)0,(0)0,S S '==所以 201()()arctan ,1xxS x S t dt dt x t '''===+⎰⎰2001()()arctan arctan ln(1).2x x S x S t dt tdt x x x '===-+⎰⎰又21221(1),(1,1),1n nn x xx x ∞-=-=∈-+∑ 从而 22()2()1x f x S x x =++2222arctan ln(1),(1,1).1x x x x x x=-++∈-+ (17)(本题满分11分)如图,曲线C 的方程为y=f(x),点(3,2)是它的一个拐点,直线1l 与2l 分别是曲线C 在点(0,0)与(3,2)处的切线,其交点为(2,4). 设函数f(x)具有三阶连续导数,计算定积分⎰'''+32.)()(dx x f x x【分析】 题设图形相当于已知f(x)在x=0的函数值与导数值,在x=3处的函数值及一阶、二阶导数值.【详解】 由题设图形知,f(0)=0, 2)0(='f ; f(3)=2, .0)3(,2)3(=''-='f f 由分部积分,知⎰⎰⎰+''-''+=''+='''+330302232)12)(()()()()()()(dx x x f x f x x x f d x x dx x f x x=dx x f x f x x f d x ⎰⎰'+'+-='+-3330)(2)()12()()12(=.20)]0()3([216=-+f f(18)(本题满分12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1. 证明: (I )存在),1,0(∈ξ 使得ξξ-=1)(f ;(II )存在两个不同的点)1,0(,∈ζη,使得.1)()(=''ζηf f【分析】 第一部分显然用闭区间上连续函数的介值定理;第二部分为双介值问题,可考虑用拉格朗日中值定理,但应注意利用第一部分已得结论.【详解】 (I ) 令x x f x F +-=1)()(,则F(x)在[0,1]上连续,且F(0)=-1<0, F(1)=1>0,于是由介值定理知,存在),1,0(∈ξ 使得0)(=ξF ,即ξξ-=1)(f .(II ) 在],0[ξ和]1,[ξ上对f(x)分别应用拉格朗日中值定理,知存在两个不同的点)1,(),,0(ξζξη∈∈,使得0)0()()(--='ξξηf f f ,ξξζ--='1)()1()(f f f于是 .1111)(1)()()(=-⋅-=--⋅=''ξξξξξξξξζηf f f f (19)(本题满分12分)设函数)(y ϕ具有连续导数,在围绕原点的任意分段光滑简单闭曲线L 上,曲线积分⎰++Ly x xydydx y 4222)(ϕ的值恒为同一常数.(I )证明:对右半平面x>0内的任意分段光滑简单闭曲线C ,有022)(42=++⎰Cyx xydydx y ϕ;(II )求函数)(y ϕ的表达式.【分析】 证明(I )的关键是如何将封闭曲线C 与围绕原点的任意分段光滑简单闭曲线相联系,这可利用曲线积分的可加性将C 进行分解讨论;而(II )中求)(y ϕ的表达式,显然应用积分与路径无关即可.【详解】 (I )如图,将C 分解为:21l l C +=,另作一条曲线3l=++⎰Cy x xydydx y 4222)(ϕ-++⎰+314222)(l l y x xydydx y ϕ022)(3242=++⎰+l l y x xydydx y ϕ.(II ) 设2424()2,22y xyP Q x yx yϕ==++,,P Q 在单连通区域0x >内具有一阶连续偏导数,由(Ⅰ)知,曲线积分24()22Ly dx xydyx y ϕ++⎰在该区域内与路径无关,故当0x >时,总有Q Px y∂∂=∂∂. 24252422422(2)4242,(2)(2)Q y x y x xy x y y x x y x y ∂+--+==∂++ ①243243242242()(2)4()2()()4().(2)(2)P y x y y y x y y y y y y x y x y ϕϕϕϕϕ'''∂+-+-==∂++ ② 比较①、②两式的右端,得435()2,()4()2.y y y y y y y ϕϕϕ'=-⎧⎨'-=⎩ 由③得2()y y c ϕ=-+,将()y ϕ代入④得 535242,y cy y -= 所以0c =,从而2().y y ϕ=-(20)(本题满分9分)已知二次型21232221321)1(22)1()1(),,(x x a x x a x a x x x f +++-+-=的秩为2.(I ) 求a 的值;(II ) 求正交变换Qy x =,把),,(321x x x f 化成标准形; (III ) 求方程),,(321x x x f =0的解.【分析】 (I )根据二次型的秩为2,可知对应矩阵的行列式为0,从而可求a 的值;(II )是常规问题,先求出特征值、特征向量,再正交化、单位化即可找到所需正交变换; (III )利用第二步的结果,通过标准形求解即可.【详解】 (I ) 二次型对应矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++-=200011011a a a a A , 由二次型的秩为2,知 020011011=-++-=aa a a A ,得a=0. (II ) 这里⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=200011011A , 可求出其特征值为0,2321===λλλ. 解 0)2(=-x A E ,得特征向量为:⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100,01121αα,解 0)0(=-x A E ,得特征向量为:.0113⎪⎪⎪⎭⎫ ⎝⎛-=α由于21,αα已经正交,直接将21,αα,3α单位化,得:③ ④⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=01121,100,01121321ηηη令[]321ααα=Q ,即为所求的正交变换矩阵,由x=Qy ,可化原二次型为标准形:),,(321x x x f =.222221y y + (III ) 由),,(321x x x f ==+222122y y 0,得k y y y ===321,0,0(k 为任意常数).从而所求解为:x=Qy=[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0003321c c k k ηηηη,其中c 为任意常数. (21)(本题满分9分)已知3阶矩阵A 的第一行是c b a c b a ,,),,,(不全为零,矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=k B 63642321(k 为常数),且AB=O, 求线性方程组Ax=0的通解.【分析】 AB=O, 相当于告之B 的每一列均为Ax=0的解,关键问题是Ax=0的基础解系所含解向量的个数为多少,而这又转化为确定系数矩阵A 的秩.【详解】 由AB=O 知,B 的每一列均为Ax=0的解,且.3)()(≤+B r A r(1)若k 9≠, 则r(B)=2, 于是r(A)1≤, 显然r(A)1≥, 故r(A)=1. 可见此时Ax=0的基础解系所含解向量的个数为3-r(A)=2, 矩阵B 的第一、第三列线性无关,可作为其基础解系,故Ax=0 的通解为:2121,,63321k k k k k x ⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=为任意常数.(2) 若k=9,则r(B)=1, 从而.2)(1≤≤A r1) 若r(A)=2, 则Ax=0的通解为:11,321k k x ⎪⎪⎪⎭⎫⎝⎛=为任意常数.2) 若r(A)=1,则Ax=0 的同解方程组为:0321=++cx bx ax ,不妨设0≠a ,则其通解为2121,,1001k k a c k a b k x ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=为任意常数.(22)(本题满分9分)设二维随机变量(X,Y)的概率密度为 .,20,10,0,1),(其他x y x y x f <<<<⎩⎨⎧=求:(I ) (X,Y)的边缘概率密度)(),(y f x f Y X ; (II )Y X Z -=2的概率密度).(z f Z【分析】 求边缘概率密度直接用公式即可;而求二维随机变量函数的概率密度,一般用分布函数法,即先用定义求出分布函数,再求导得到相应的概率密度.【详解】 (I ) 关于X 的边缘概率密度)(x f X =⎰+∞∞-dy y x f ),(=.,10,0,20其他<<⎪⎩⎪⎨⎧⎰x dy x=.,10,0,2其他<<⎩⎨⎧x x关于Y 的边缘概率密度)(y f Y =⎰+∞∞-dx y x f ),(=.,20,0,12其他<<⎪⎩⎪⎨⎧⎰y dx y=.,20,0,21其他<<⎪⎩⎪⎨⎧-y y (II ) 令}2{}{)(z Y X P z Z P z F Z ≤-=≤=, 1) 当0<z 时,0}2{)(=≤-=z Y X P z F Z ;2) 当20<≤z 时,}2{)(z Y X P z F Z ≤-= =241z z -; 3) 当2≥z 时,.1}2{)(=≤-=z Y X P z F Z即分布函数为: .2,20,0,1,41,0)(2≥<≤<⎪⎩⎪⎨⎧-=z z z z z z F Z故所求的概率密度为:.,20,0,211)(其他<<⎪⎩⎪⎨⎧-=z z z f Z (23)(本题满分9分)设)2(,,,21>n X X X n 为来自总体N(0,1)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=求:(I ) i Y 的方差n i DY i ,,2,1, =; (II )1Y 与n Y 的协方差).,(1n Y Y Cov【分析】 先将i Y 表示为相互独立的随机变量求和,再用方差的性质进行计算即可;求1Y 与n Y 的协方差),(1n Y Y Cov ,本质上还是数学期望的计算,同样应注意利用数学期望的运算性质.【详解】 由题设,知)2(,,,21>n X X X n 相互独立,且),,2,1(1,0n i DX EX i i ===,.0=X E(I )∑≠--=-=ni j j i i i X n X n D X X D DY ]1)11[()(=∑≠+-nij ji DXnDX n 221)11(=.1)1(1)1(222n n n n n n -=-⋅+- (II ) )])([(),(111n n n EY Y EY Y E Y Y Cov --= =)])([()(11X X X X E Y Y E n n --==)(211X X X X X X X E n n +--=211)(2)(X E X X E X X E n +-=22121)(][20X E X D X X X E n nj j +++-∑==.112nn n -=+-。

陕西师范数学真题答案解析

陕西师范数学真题答案解析

陕西师范数学真题答案解析近年来,数学作为一门严谨而又具有挑战性的学科,备受广大考生和教师的关注。

陕西师范数学真题一直以其高难度和复杂性而著称,这使得许多考生在备考过程中感到困惑和无力。

为了帮助广大考生更好地解决问题并获得更好的成绩,以下将对陕西师范数学真题进行答案解析。

1. 题目A解析:该题是一道代数题,要求计算多项式的值。

首先,我们将多项式进行展开,然后将给定的数值代入多项式中,即可求得结果。

2. 题目B解析:该题是一道几何题,需要求解两个平面的交线。

对于这种题目,我们可以先将两个平面的方程进行整理,然后将其联立求解,得出交线的方程。

最后,我们可以根据所求得的方程,判断交线的性质和特点。

3. 题目C解析:该题是一道概率题,要求计算事件发生的概率。

我们可以通过列举所给条件,并运用概率公式进行计算,进而得出正确答案。

4. 题目D解析:该题是一道解析几何题,要求确定两个线段的位置关系。

对于解析几何题,我们可以先确定两个线段的方程,然后通过判断两个线段是否相交或平行来确定其位置关系。

通过以上对陕西师范数学真题的解析,我们可以看到不同题型的求解方法和技巧。

在备考过程中,考生应该注重对基本概念和知识点的学习,同时也要经常进行真题练习,从而熟悉考试的要求和题型。

另外,数学是一门需要逻辑思维和推理能力的学科,考生在备考过程中应注重培养这些能力,通过多角度、多层次的思考来解决问题。

然而,我们也要认识到数学作为一门纯粹的学科,并不仅仅是解答题目那么简单。

数学的应用在日常生活和科学研究中起着重要作用。

通过学习数学,我们能够培养出数理思维、逻辑思维和解决问题的能力。

数学不仅仅是为了应对考试,更是为了提升自身的综合素质和解决实际问题。

综上所述,陕西师范数学真题的答案解析不仅仅是对题目的一种解释,更是对数学本质和应用的一种呈现。

通过对数学题目的解析和思考,我们能够更好地理解数学的价值和意义。

只有掌握了数学基本知识和解题技巧,我们才能在考试中取得好成绩,更重要的是,我们能够运用数学思维解决实际问题,提高自身的能力和素质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档