考研题型经典总结高数部分
考研数学高数:常考十大题型全解析
![考研数学高数:常考十大题型全解析](https://img.taocdn.com/s3/m/7feda75acbaedd3383c4bb4cf7ec4afe04a1b1f5.png)
考研数学高数:常考十大题型全解析2023年考研数学高数:常考十大题型全解析2023年考研数学高数备考已经开始,掌握常考的十大题型是非常重要的。
这些题型涵盖了整个高数课程,并突出了重要的概念、公式和技巧。
下面是我们整理的常考十大题型解析,希望能帮助大家顺利备考。
1. 极限计算型题目极限计算型题目是高数考试的基本题型,不仅在高数课堂上经常出现,而且在高数考试中的分值通常较高。
这种题型一般需要理解极限的定义、性质和计算方法,同时需要掌握重要的变换和技巧,如代数运算、分式分解、换元等。
2. 连续定义型题目连续定义型题目常出于微积分的章节中,主要考查学生是否掌握连续函数的定义和性质,以及相关的推论和定理。
需要特别注意的是,有许多连续定义型题目需要结合导数的概念来解决。
3. 导数计算型题目导数计算型题目需要掌握导函数、导数的四则运算法则、高阶导数、隐函数公式、参数方程求导等基本知识,同时需要注意不同类型的函数的特殊性质和特殊的导数计算方法。
4. 函数图像分析型题目函数图像分析型题目经常出现在很多高数课程的章节中,需要掌握函数的基本性质、图像特征、渐进线和极限,以及掌握函数变换的方法和图像的作法。
同时,还需要了解如何应用导数分析函数图像的特征。
5. 平面解析几何型题目平面解析几何型题目主要考查平面向量、点线面的基本概念和性质,以及各种向量的计算、几何关系的判断和使用解析几何方法去解决实际问题。
6. 空间解析几何型题目空间解析几何型题目常出现在立体几何、空间向量以及曲面理论等章节中。
需要熟悉三维坐标系、点、向量、直线和平面的表示方法和相互关系,以及空间几何的基本概念和性质。
7. 微分方程型题目微分方程型题目主要考查一阶微分方程、二阶微分方程和常微分方程的求解方法和特殊类型的微分方程,如齐次方程、变量分离方程、一阶非齐次方程等。
8. 重积分型题目重积分型题目主要考查重积分的定义、性质、计算方法和应用,需要掌握极坐标、球坐标和柱坐标下的重积分计算。
考研高等数学的重点内容和常见题型
![考研高等数学的重点内容和常见题型](https://img.taocdn.com/s3/m/024bbc80ba4cf7ec4afe04a1b0717fd5360cb2ec.png)
考研高等数学的重点内容和常见题型考研高等数学是考研数学科目中的一部分,也是考研数学中的一个重要组成部分。
高等数学内容繁多,涵盖面广,知识点多,需要考生花费大量时间进行学习和领悟。
本文将主要介绍考研高等数学的重点内容和常见题型,帮助考生更好地复习和备考。
一、高等数学的重点内容1. 微积分微积分是高等数学的重要内容,包括导数、微分、积分等。
在考研数学中,微积分的题目涉及面广,涉及的知识点多。
考生需要掌握函数的极限、连续性、导数和微分、不定积分和定积分等内容,并能够灵活运用相关知识解决问题。
2. 线性代数线性代数是高等数学的另一个重要内容,包括矩阵、行列式、向量、空间、线性方程组等。
线性代数在考研数学中占有重要地位,与微积分一样,涉及的知识点也比较多。
考生需要掌握矩阵的运算、特征值和特征向量、向量空间和线性变换等内容,理解相关概念和定理,并能够灵活运用。
3. 概率论与数理统计概率论与数理统计是高等数学的另一个重点内容,包括事件的概率、随机变量、概率分布、统计量及估计、假设检验等。
在考研数学中,概率论与数理统计的题目也比较常见,考生需要掌握相关概念和定理,并能够灵活运用相关知识解决实际问题。
4. 偏微分方程偏微分方程也是高等数学的重要内容之一,包括一阶偏微分方程、二阶线性偏微分方程及其解法等。
在考研数学中,偏微分方程的题目也比较常见,考生需要掌握相关的概念和解法,并能够熟练解题。
5. 复变函数复变函数是高等数学中的重点内容之一,包括复数的基本运算、复函数的连续性和可导性、柯西-黎曼方程等。
在考研数学中,复变函数的题目也有一定的出现频率,考生需要掌握相关的概念和定理,并能够熟练解题。
二、高等数学的常见题型定积分的计算是考研数学中比较常见的题型之一,通常涉及到一些特殊函数的定积分、参数方程的定积分、广义积分等,考生需要熟练掌握定积分的计算方法,并能够灵活应用。
线性代数在考研数学中也有一定的出现频率,题型涉及到矩阵的秩、特征值和特征向量、线性方程组的解法等。
考研数学:高数讲义重点题型解答(二)
![考研数学:高数讲义重点题型解答(二)](https://img.taocdn.com/s3/m/0d048c828762caaedd33d495.png)
由 2m ≤ f ′′′(ξ1 ) + f ′′′(ξ2 ) ≤ 2M 得 m ≤ 3 ≤ M ,由介值定理,存在ξ ∈[ξ1,ξ2 ] ⊂ (−1,1) ,
使得 f ′′(ξ ) = 3 。
【例题 3】设 a1 < a2 < " < an 为 n 个不同的实数,函数 f (x) 在[a1, an ] 上有 n 阶导数,并
【例题 3】设 f (x) ∈ C[0,1] ,在 (0,1) 内可导,且 f (0) = 0, f (1) = 1 ,证明:对任意的正数 a, b ,
存在ξ ,η ∈ (0,1) ,使得
a+ f ′(ξ )
b f ′(η)
=
a+b。
【解答】因为 f (0) < a < f (1) ,所以存在 c ∈ (0,1) ,使得 f (c) = a 。
【 例 题 2 】 设 f (x) 二 阶 连 续 可 导 , 且 f ′′(x) ≠ 0 , 又 f (x + h) = f (x) + f ′(x + θh)h
( 0 < θ < 1 )。
证明: limθ = 1 。
h→0
2
【解答】由泰勒公式得
f (x + h) =
f (x) +
f ′(x)h +
两边取极限再由二阶连续可导得
lim
h→0
θ
=
1 2
。
题型二:证明 f (n) (ξ ) = 0
常见思路:(1)罗尔定理; (2)极值法; (3)泰勒公式
【例题 1】设 f (x) ∈ C[0,3] ,在 (0,3) 内可导,且 f (0) + f (1) + f (2) = 3, f (3) = 1 ,证明:
考研数学高数复习有些常考内容及题型
![考研数学高数复习有些常考内容及题型](https://img.taocdn.com/s3/m/9dca813c4a73f242336c1eb91a37f111f1850d9d.png)
考研数学高数复习有些常考内容及题型高等数学是考研数学重中之重自不必说,高数知识点不少,考生要捋清孰轻孰重,可参照去年大纲复习。
为大家精心准备了考研数学高数复习常考内容及题型的资料,欢送大家前来阅读。
1、考试内容(1)几何级数与级数及其收敛性;(2)常数项级数的收敛与发散的概念;(3)收敛级数的和的概念;(4)交织级数与莱布尼茨定理;(5)级数的根本性质与收敛的必要条件;(6)正项级数收敛性的判别法;(7)函数项级数的收敛域与和函数的概念;(8)任意项级数的绝对收敛与条件收敛;(9)幂级数的和函数;(10)简单幂级数的和函数的求法;(11)幂级数在其收敛区间内的根本性质;(12)幂级数及其收敛半径、收敛区间(指开区间)和收敛域;(13)初等函数的幂级数展开式;(14)狄利克雷(Dirichlet)定理;(15)“无穷级数”考点和常考题型上的正弦级数和余弦级数。
(其中14-17只要求数一考生掌握,数三考试不要求掌握)。
(16)函数的傅里叶(Fourier)系数与傅里叶级数;(17)“无穷级数”考点和常考题型上的傅里叶级数;2、考试要求(1)了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系;(2)理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的根本性质及收敛的必要条件;(3)掌握正项级数收敛性的比拟判别法和比值判别法,会用根值判别法;(4)掌握几何级数与级数的收敛与发散的条件;(5)掌握交织级数的莱布尼茨判别法;(6)了解函数项级数的收敛域及和函数的概念;(7)了解幂级数在其收敛区间内的根本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;(8)理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法;(9)了解函数展开为泰勒级数的充分必要条件;(10)了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.(其中11只要求数一考生掌握,数二、数三考试不要求掌握)(11)掌握“无穷级数”考点和常考题型的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开成幂级数;3、常考题型(1)把函数展开成傅立叶级数、正弦级数、余弦级数;(2)求幂级数的和函数;(3)狄利克雷定理(4)判定级数的敛散性;(5)把函数展开成幂级数;(6)求幂级数的收敛域和收敛半径;(7)特殊的常数项级数的求和。
考研高数题型总结
![考研高数题型总结](https://img.taocdn.com/s3/m/07676c9332d4b14e852458fb770bf78a64293a60.png)
考研高数题型总结考研高等数学题型总结考研高等数学是考研数学中的一门重要课程,占据了相当大的比重。
它涵盖了诸多数学的基础知识和重要概念,考查的题型也非常丰富多样。
以下是对考研高等数学题型的总结,以供考生参考。
一、函数与极限部分1. 函数的概念与性质:要求掌握诸如定义域、值域、单调性、奇偶性、周期性、反函数等等函数的基本性质。
2. 极限与连续:需要熟练掌握函数极限的概念、性质及相关定理,以及函数连续的概念、性质及相关定理。
3. 无穷级数:包括数项级数的概念、收敛性的判定及常见级数的和等相关内容。
二、导数与微分部分1. 导数的概念与性质:包括导数的定义、几何意义、导数的运算法则等。
2. 基本求导法则:考查对常见基本函数的求导运算,如常数函数、幂函数、指数函数、对数函数、三角函数等。
3. 高阶导数与隐函数求导:要求熟悉高阶导数的概念与计算方法,能够灵活运用链式法则、参数方程与极坐标的导数计算等。
4. 微分中值定理:要能够熟练运用拉格朗日中值定理、柯西中值定理等定理来解题。
三、积分部分1. 定积分:要求掌握定积分的定义、性质及求解方法,如牛顿-莱布尼茨公式等。
2. 不定积分:考查对常见函数的不定积分运算,如幂函数、指数函数、对数函数、三角函数等。
3. 定积分的应用:包括面积的计算、曲线长度的计算、旋转体的体积、质心、物理应用等相关内容。
四、级数与常微分方程部分1. 函数项级数:考查级数的收敛性、收敛半径及级数运算、函数项级数的收敛性及相关定理。
2. 常微分方程:包括一阶与二阶常系数齐次与非齐次线性方程、常系数线性方程的解法、以及常微分方程的应用等。
3. 潜水艇问题:需要灵活运用常微分方程进行建模与求解,考查对常微分方程的计算及应用能力。
五、空间解析几何与多元函数微分学部分1. 空间几何与向量:需要熟练掌握向量的定义、数量积、向量积、混合积及相关几何应用。
2. 多元函数微分学:考查多元函数的偏导数、全微分、极值条件、隐函数、条件极值、拉格朗日乘数法等相关内容。
考研高等数学复习:典型题型归纳
![考研高等数学复习:典型题型归纳](https://img.taocdn.com/s3/m/e4e33c6931b765ce04081406.png)
凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!考研高等数学复习:典型题型归纳一、一元函数微分学求给定函数的导数与微分(包括高阶导数),隐函数和由参数方程所确定的函数求导,特别是分段函数和带有绝对值的函数可导性的讨论;利用洛比达法则求不定式极限;讨论函数极值,方程的根,证明函数不等式;利用罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒中值定理证明有关命题,如“证明在开区间内至少存在一点满足……”,此类问题证明经常需要构造辅助函数;几何、物理、经济等方面的最大值、最小值应用问题,解这类问题,主要是确定目标函数和约束条件,判定所讨论区间;利用导数研究函数性态和描绘函数图形,求曲线渐近线。
二、一元函数积分学计算题:计算不定积分、定积分及广义积分;关于变上限积分的题:如求导、求极限等;有关积分中值定理和积分性质的证明题;定积分应用题:计算面积,旋转体体积,平面曲线弧长,旋转面面积,压力,引力,变力作功等;综合性试题。
三、函数、极限与连续求分段函数的复合函数;求极限或已知极限确定原式中的常数;讨论函数的连续性,判断间断点的类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数,或确定方程在给定区间上有无实根。
四、向量代数和空间解析几何凯程考研历史悠久,专注考研,科学应试,严格管理,成就学员!计算题:求向量的数量积,向量积及混合积;求直线方程,平面方程;判定平面与直线间平行、垂直的关系,求夹角;建立旋转面的方程;与多元函数微分学在几何上的应用或与线性代数相关联的题目。
五、多元函数的微分学判定一个二元函数在一点是否连续,偏导数是否存在、是否可微,偏导数是否连续;求多元函数(特别是含有抽象函数)的一阶、二阶偏导数,求隐函数的一阶、二阶偏导数;求二元、三元函数的方向导数和梯度;求曲面的切平面和法线,求空间曲线的切线与法平面,该类型题是多元函数的微分学与前面向量代数与空间解析几何的综合题,应结合起来复习;多元函数的极值或条件极值在几何、物理与经济上的应用题;求一个二元连续函数在一个有界平面区域上的最大值和最小值。
考研数学解析高等数学中的微积分与线性代数的典型题型
![考研数学解析高等数学中的微积分与线性代数的典型题型](https://img.taocdn.com/s3/m/8e2ad9e3dc3383c4bb4cf7ec4afe04a1b071b0c4.png)
考研数学解析高等数学中的微积分与线性代数的典型题型考研数学是很多考生必考科目之一,其中涉及的高等数学包括微积分和线性代数两个部分。
微积分和线性代数都是数学的基础学科,对于考研数学的学习和理解至关重要。
本文将解析高等数学中微积分与线性代数的典型题型,帮助考生更好地掌握和应对考试。
一、微积分的典型题型解析1. 导数与微分在微积分中,导数和微分是非常重要的概念。
导数描述了函数在某一点上的变化率,而微分则是导数的计算结果。
考生需要掌握导数和微分的定义、计算方法和性质,并能够灵活运用。
典型题型1:计算函数f(x) = 2x^3 - 3x^2 + 4x - 1在x = 2处的导数和微分。
解析:首先求导数,根据导数的定义,我们有f'(x) = 6x^2 - 6x + 4。
然后计算微分,根据微分的定义,我们有df(x) = f'(x)dx = (6x^2 - 6x + 4)dx。
代入x = 2,得到f'(2) = 20和df(2) = 20dx。
2. 极限极限是微积分中另一个重要的概念,描述了函数在某一点或无穷远处的趋势。
考生需要掌握极限的定义、计算方法和性质,并能够正确判断函数的极限存在与否。
典型题型2:判断函数f(x) = (x^2 - 1)/(x - 1)的极限是否存在,并计算存在时的极限值。
解析:观察这个函数,我们可以看到当x趋近于1时,分母趋于0,因此需要进一步化简。
将分子进行因式分解得f(x) = x + 1,此时可以看出函数在x = 1处没有定义,因此极限不存在。
3. 不定积分不定积分是微积分中的重要概念,也是求解函数的积分的方法。
考生需要掌握不定积分的定义、计算方法和性质,并能够灵活运用。
典型题型3:求函数f(x) = 3x^2 - 2x + 1的不定积分。
解析:根据不定积分的性质,我们可以逐项积分得到F(x) = x^3 - x^2 + x + C,其中C为常数项。
二、线性代数的典型题型解析1. 矩阵运算与线性方程组矩阵运算和线性方程组是线性代数中最基础的内容。
考研高等数学的重点内容和常见题型
![考研高等数学的重点内容和常见题型](https://img.taocdn.com/s3/m/c2b7ea7d5627a5e9856a561252d380eb6394236f.png)
考研高等数学的重点内容和常见题型考研高等数学是考研数学一门重要的学科,它是一门数学基础的核心课程,也是考研数学中的一大难点。
考研高等数学的学习对于考研学生来说至关重要。
下面将介绍考研高等数学的重点内容和常见题型,希望能够帮助考生更好地备考。
一、重点内容1. 空间解析几何空间解析几何是高等数学的一个难点和重点,它包括空间直角坐标系、向量及其运算、空间曲线的参数方程与一般方程、空间平面方程及其性质、空间曲面的方程与性质等内容。
考生需要熟练掌握这些内容,尤其是向量的线性运算和数量积、向量积的基本运算法则和应用。
2. 线性代数线性代数是数学的一个重要分支,它包括线性方程组、矩阵与行列式、向量空间、线性变换、特征值与特征向量等内容。
考生需要重点掌握线性方程组的解法,特别是矩阵的初等变换、矩阵的秩与逆、线性方程组的解法和应用等方面的知识。
3. 微积分微积分是数学分析的一部分,它包括微分学和积分学。
考生需要重点掌握函数的极限、导数与微分、不定积分与定积分、微分方程等内容,特别是函数的极限和导数的计算与应用,不定积分的计算与应用等方面的知识。
4. 概率论与数理统计概率论与数理统计是数学的一个重要分支,它包括随机事件与概率、随机变量与概率分布、数理统计基本概念等内容。
考生需要重点掌握随机事件的概率、随机变量的概率分布、大数定律和中心极限定理等内容,特别是概率分布的计算与应用,数理统计的基本概念和应用等方面的知识。
5. 傅立叶级数与傅立叶变换傅立叶级数与傅立叶变换是数学分析的一个重要分支,它是数学中的一大难点。
考生需要重点掌握周期函数的傅立叶级数展开和非周期函数的傅立叶变换,特别是傅立叶级数和傅立叶变换的性质和计算方法等内容。
二、常见题型1. 计算题计算题是高等数学考试中的常见题型,它包括向量的运算、矩阵的运算、函数的极限和导数的计算、不定积分和定积分的计算、概率分布和数理统计的计算、傅立叶级数和傅立叶变换的计算等内容。
考研数学高数六大必考题型
![考研数学高数六大必考题型](https://img.taocdn.com/s3/m/8c61bb6fa4e9856a561252d380eb6294dd8822f6.png)
考研数学高数六大必考题型高等数学作为考研数学的一大重点,其紧凑的教学进度和抽象的公式推导常常使得很多人望而却步。
考研高数的题型涉及面广,但是真正重要的题型永远只有那几类。
在考研高数的备考过程中,要针对这些必考题型深入学习掌握,才能取得高分。
本文将介绍考研高数中必考的六大题型。
一、极限极限是高等数学中的基础知识,在高考数学中有一定的考察比例,在考研数学高数中则更是不可或缺的重要考点。
考生需要对极限相关的定义、性质及其计算方法深入掌握和理解。
在考研数学高数中,极限的考查形式有很多种,如判断是否存在、确定极限值、用极限计算等。
所以,一个熟练掌握极限的考生才有可能在考试中稳固切实地应对题目。
二、一元函数微积分高等数学中的一元函数微积分是考研数学高数必考的重点及难点。
主要从导数、微分、微分中值定理、高阶导数等多个方面进行考查,理论和计算性能力都是考生必须掌握的。
在考试中,考生需要熟练掌握一元函数微积分的概念、性质等,以及计算方法,同时需要注意分析函数对应的图像。
只有这样,考生才能够在考试中应对这个重点难点的题型。
三、双重积分双重积分作为高等数学中的重要内容,也是考研数学高数中的重中之重。
其主要考察内容包括二元函数的积分、极坐标系、重积分计算、如何转化、应用等。
在考试中,考生需要充分掌握双重积分的原理和计算方法,掌握积分区域的确定及转换方式的掌握,同时需要注意掌握运用所要求的积分计算柱状体、空间曲面面积、质心的计算等。
只有准确把握这些要点,考生才能在双重积分的考试中稳定答题。
四、曲线积分曲线积分是高等数学中的重点难点,也是考研数学高数中的必考重点之一。
其主要考察内容包括第一型曲线积分和第二型曲线积分的计算及应用等。
在考试中,考生需要充分掌握曲线积分的基本原理和计算方法,学会正确理解题目要求,将曲线积分转换成对应的计算题目,并能正确的运用曲线积分的知识求出相关的问题。
只有这样,考生才能够在曲线积分的考试中稳定答题。
考研数学一高数重点及题型
![考研数学一高数重点及题型](https://img.taocdn.com/s3/m/58ad1b0c86c24028915f804d2b160b4e767f810e.png)
考研数学一高数重点及题型考研数学一高数重点及题型考研数学一高等数学重要考点及题型章节知识点题型第一章函数、极限、连续等价无穷小代换、洛必达法那么、泰勒展开式求函数的极限函数连续的概念、函数连续点的类型判断函数连续性与连续点的类型第二章一元函数微分学导数的定义、可导与连续之间的关系按定义求一点处的导数,可导与连续的关系函数的单调性、函数的.极值讨论函数的单调性、极值闭区间上连续函数的性质、罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理微分中值定理及其应用第三章一元函数积分学积分上限的函数及其导数变限积分求导问题有理函数、三角函数有理式、简单无理函数的积分计算被积函数为有理函数、三角函数有理式、简单无理函数的不定积分和定积分第五章多元函数微分学隐函数、偏导数、全微分的存在性以及它们之间的因果关系函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系多元复合函数、隐函数的求导法求偏导数,全微分第六章多元函数积分学格林公式、平面曲线积分与途径无关的条件平面第二型曲线积分的计算,平面曲线积分与途径无关条件的应用高斯公式计算第二型曲面积分二重积分的概念、性质及计算二重积分的计算及应用第七章无穷级数级数的根本性质及收敛的必要条件,正项级数的比拟判别法、比值判别法和根式判别法,交织级数的莱布尼茨判别法数项级数敛散性的判别傅里叶级数、正弦级数和余弦级数,狄利克雷定理将函数展开为傅里叶级数、正弦级数和余弦级数,写出傅里叶级数的和函数的表达式第八章常微分方程一阶线性微分方程、齐次方程,微分方程的简单应用用微分方程解决一些应用问题。
考研高数经典题目(最新)
![考研高数经典题目(最新)](https://img.taocdn.com/s3/m/39af38fa81c758f5f61f678f.png)
§1 高等数学部分
第一部分 函数、极限
1.1)若
x
→
0
时,(1
−
ax2
()
由于
n
→
∞
等价于
xn
→
0,
所以
lim
n→∞
xn+1 xn
sin
1 xn 2
a 故,a (
= lim
x→0
= 0; sin x )
x
1 x2
=
e−
1 6
第二部分 导数、微分
{
17.设 f (x) =
xλ
cos
1 x
,
0,
取值范围.
x ̸= 0 x=0
, 其导函数在 x = 0 处连续, 求 λ 的
(C) 恰有两个不可导点. (D) 至少有三个不可导点.
【解】(C) 分别是:1,-1
25.设函数 f (u) 可导, y = f (x2) 当自变量 x 在 x = −1 处取得增量
∆x = −0.1 时, 相应的函数增量 ∆y 的线性主部为 0.1, 则 f ′(1) = .
(A) − 1,(B) 0.1,(C) 1,(D) 0.5
(cos
x
−
b)
=
5,则
a
=
,b=
.
【解】a = 1; b = −{4 6. 设函数 f (x) =
, 1−etan x
arcsin
考研题型经典总结高数部分
![考研题型经典总结高数部分](https://img.taocdn.com/s3/m/367a6d1ca32d7375a4178083.png)
2011考研必备:超经典的考研数学考点与题型归类分析总结 1高数部分1.1 高数第一章《函数、极限、连续》1.2 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim=→x xx 、e x x x =+→1)1(lim 、e xx x =+∞→)1(1lim ;4.夹逼定理。
1.3 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。
所以可以这样建立起二者之间的联系以加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-aadx x f )(型定积分,若f(x)是奇函数则有⎰-aadx x f )(=0;若f(x)为偶函数则有⎰-aadx x f )(=2⎰adx x f 0)(;对于⎰2)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。
考研高等数学各题型总结
![考研高等数学各题型总结](https://img.taocdn.com/s3/m/dcd65c09e87101f69e3195a7.png)
题型三 结论中含§,还含有a,b
1)将a,b与§分离,根据a,b的式子采用拉格朗日或柯西中值定理;
2)不能分离时,利用题型二的还原法
题型四 结论中含两个或两个以上中值的问题
情形一:只含两个简单中值:找出函数3个点,用两次拉格朗日证;
情形二:只含两个中值,但是两项的复杂程度不同:取出复杂项单独研究,若是乘积形式,则找原函数用拉格朗日证即可;若是商形式,则找原函数用柯西。
题型六 含变积分限的函数极限
1)换元2)再利用罗必达去积分号
题型七 间断点及其分类
1)0点的连续》》f(0+0)=f(0-0)
题型八 闭区间上的连续函数
看到【 】闭区间的函数证明题,考虑介值定理:m<=f(§)<=M
第二章导数与微分
题型一 导数
1)可导》》f`+=f`-
2)绝对值不影响函数的连续性,但是可能导数,在f(a)=0处受影响
情形二:设f(x)属于c[a,b]且f(x)单调若被证明积分区间相同采用相减求导积分区间不同,采用换元法化为相同积分或通过积分项处理采用中值定理法
情形三:设f(x)在[a,b]上一阶可导 1)若所证明的积分等式或不等式涉及f,f’,一般有两个工具需要使用:若被积函数不含f’(x),则使用拉格朗日中值:F(x)-f(a)=f’(§)(x-a)若被积函数含f(x),则使用牛顿-莱布尼兹公式: 2)若f(x)连续且定积分区间的长度与定积分前面的常数为倒数关系,一般使用积分中值定理。
题型四 分段函数的积分:分段积分,但是常数C要统一,利用分段点求C.
第五章定积分及其应用
题型一 变积分限的函数问题
用换元法去掉积分限中的字母
考研数学 数一常考题型和知识点归纳
![考研数学 数一常考题型和知识点归纳](https://img.taocdn.com/s3/m/bbb6a5eb998fcc22bcd10d90.png)
第二篇高等数学第一章函数、极限、连续思考的鱼点拨“函数、极限、连续”这一部分的概念及运算是高等数学的基础,它们是每年必考的内容之一,数学一中本部分分数平均每年约占高等数学部分的10%.本章的考题类型及知识点大致有:1.求函数的表达式:(1)给出函数在某一区间上的表达式及某些条件,求该函数在另一区间上的表达式(数学(二)考过);(2)求分段复合函数的表达式(1990一(3)题考过,数学(二)考过多次).2.数列的极限的概念理解与运算定理:(1)数列极限的概念的理解及定义的等价叙述(数学(二)考过);(2)运算定理的正确运用与性质的正确理解(2003二(2)题);(3)求数列的极限:①化成积分和式求极限(1998七题);②夹逼定理求极限(1998七题,2005二(7)题);③单调有界定理求极限或讨论极限的存在性(2006三(16)题,2008一(4)题);④化成函数极限求极限(2006三(16)题).3.函数的极限:(1)求七种待定型的极限(1998一(1)题,1999一(1)题,2003一(1)题,2006一(1)题,2008三(15)题,2003三题,1997五题);(2)运算定理的正确使用与性质的正确理解(1997一(1)题,2000三题,2004二(8)题):(3)已知某些极限求其中的某些参数(2009一(1)题);(4)已知某函数的极限,求与此有关的另一函数的极限(数学(二)考过).4.无穷小的比较:(1)给了若干个无穷小,比较它们的阶的高低(2004二(7)题,2007一(1)题);(2)给了两个无穷小,已知一个是另一个的等价(或高阶)无穷小,求其中的参数(2002三题).5.函数的连续与间断:(1)讨论初等函数的间断点及类型(数学(二)考过多次);(2)讨论分段函数的连续性或由连续性确定其中的参数(数学(二)考过多次);(3)函数以极限形式表达,讨论该函数的连续性(数学(二)考过多次);(4)已知某些函数的连续性(间断点),讨论与此有关的另一些函数的连续性(间断点)(数学(二)考过多次);(5)连续函数介值定理的应用(2005三(18)题,2004三(18)题,数学(二)考过多次).读者请注意,上面提到的类型,数学(一)有许多未曾考到,所以本章尚有相当大的命题空间.其次,以后各章要用到本章内容,从而掌握本章内容是十分基础、十分重要的.第二章一元函数微分学思考的鱼点拨导数与微分是微分学的基本概念,导数与微分的计算是微分学的基本计算,导数与微分的应用——利用导数研究函数的性质是微分学的基本内容,每年必考,本部分分数在数学中平均约占高等数学部分的17%.本章的考题类型及知识点大致有:1.求导数与微分,导数的几何意义:(1)显函数求导数(未考过);(2)隐函数求导数(2002一(2)题,2008二(10)题);(3)参数式求导数(1997一(3)题);(4)在直角坐标中求切线斜率、切线方程(2004一(1)题),2002四题,2003三题,2005三(17)题);(5)在极坐标中求切线斜率、切线方程(1997一(3)题);(6)奇、偶、周期函数的导数(2005二(8)题);(7)变限积分求导数(2002四题,1997一(2)题,1998二(1)题,1999二(1)题,1997五题);(8)导数的变量变换(变量变换变化微分方程)(2003七题).2.按定义求一点处的导数,可导与连续的关系.(1)讨论分段函数在分界点处的可导性或求导数(2005二(7)题);(2)按定义讨论某点的可导性(1999二(2)题);(3)已知某极限存在讨论某点可导,或反之,或利用导数求极限,利用极限求某点处的导数(200l二(3)题;2007 (4)题;2009三(18)题);(4)已知某点可导,求其中参数(2002三题);(5)绝对值函数求导数(1998二(2)题);(6)由极限表示的函数的可导性(2005一(7)题).3.讨论函数单调性、极值、凹凸性、拐点、渐近线、曲率:(1)单调性与极值(2003二(1)题,2004二(8)题);(2)增量、导数与微分的关系(1998二(3)题,2006二(7)题);(3)凹向与拐点(2005三(17)题);(4)渐近线(2005—1)题,2007一(2)题);(5)曲率(1991九题考过).4.中值定理及其应用:(1)不等式的证明(2000二(1)题,1999六题,2004三(15)题);(2)零点问题(2005三(18)题,1998九题,2000九题,2007三(19)题);(3)有关函数与导数的关系(2001二(1)题,2002二(3)题,2007一(5)题);(4)有关“中值”的极限问题(2001七题);(5)泰勒公式的应用(1999六题,2001七题,2002三题);(6)中值定理的证明(2009三(18)题).由上列举可见,本章的知识点及考题类型几乎全部考到,频率出现多的是:变限积分求导数,按定义求导,不等式与零点问题,泰勒公式的应用.在按定义求导数时,应与使用洛必达法则的条件相区别.其他频率出现少的,也应注意,例如导数的几何意义、单调性与极值、绝对值函数求导数等.第三章一元函数积分学思考的鱼点拨定积分与不定积分的概念及运算是积分学的基础,利用定积分表示与计算一些几何、物理量是积分学的基本应用,每年必考,本部分分数在数学一中平均约占高等数学部分的17%.本章的考题类型及知识点大致有:1.不定积分与定积分的计算:(1)分段函数求不定积分(未考过);(2)分段函数求定积分与变限积分(数学(二)考过);(3)计算带绝对值号的定积分(数学(二)考过);(4)计算般不定积分(2004 (2)题,2001三题);(5)计算一般定积分(2000一(1)题,2007二(11)题):(6)计算反常积分(2002 (1)题);(7)计算被积函数含有导数或变限积分的积分(2005三(17)题).2.定积分的应用:(1)几何应用(1997二(2)题,2003三题,2007一(3)题,2009一(3)题,2009三(16)题,2009三(17)题);(2)物理应用(1997七题,2003六题);(3)利用积分和式求极限(1998七题).3.定积分(变限积分)的证明题:(1)不等式问题(包括估值问题)(1997二(2)题,1997二(3)题);(2)零点问题(1998九题,2000九题);(3)关于奇、偶函数、周期函数的证明题(1999二(1)题,2005二(8)题,2008三(18)题):(4)变限函数关于单调性的题(2009一(3)题);(5)变限函数求导问题(1999一(2)题,1998二(1)题,1997五题,2008一(1)题);(6)积分中值定理的应用(2000九题).本章虽然各类型大都考过,但变换具体函数去命题,考题空间仍很大,读者注意举一反三,掌握一般方法.第四章向量代数与空间解析几何思考的鱼点拨向量代数主要是向量的表示法与向量的代数运算(加减、数乘、点积、叉积),空间锯析几何主要是曲面与空间曲线的方程,重点是平面、直线以及常见曲面(球面、柱面以及旋转面等)的方程,历年考题中直接对本部分命制的题目不多,且多为选择题或填空题.本章的考题类型及知识点大致有:1.关于向量运算:(1)给出一些关系求另一些关系(1995一(3)考过);(2)两向量平行、垂直、交角、模等问题(未考过);(3)三点共线与三向量共面问题(未考过);2.直线与平面问题(大都与空间曲面的切平面、空间曲线的切线相结合的问题):(1)求直线方程(1998三题),2000一(2)题,1992二(3)考过);(2)求平面方程(1997四(1)题,2000一(2)题,2003一(2)题,1989二(2)题,1990一(1)题,1991一(3)题,1994一(2)题,1996一(2)题都考过);(3)平面与直线的相对位置(平行、垂直、交角等)(1993二(3)题,1995二(1)题都考过);(4)点到平面的距离(2006一(4)题,1999八题).3.二次曲面的题(大都与第六章相结合,给出二次曲面,要求知道它的位置及大致图形.二次曲面中常用的图形为椭球面(包括球面)、旋转抛物面、锥面、母线与坐标面平行的柱面.求旋转面的方程(2009三(17)题).由以上列举看出,近十年来本章单独考的不多,与第五章相结合的考过四次.应该说是属于不常考的章节.但基本公式、基本方法仍应掌握.第五章多元函数微分学思考的鱼点拨多元函数微分学包括有若干基本概念及其联系,多元函数的复合函数求导法及其应用,梯度向量与方向导数的计算方法,多元函数微分学的几何应用(求空间曲线的切线、法平面与空间曲面的切平面、法线)极值判断与最值问题等,在历年考试中多元函数微分学的平均分数约占高等数学的l/7,也是比较重要的.本章的考题类型及知识点大致有:1.求偏导数,全微分,方向导数,梯度,散度,旋度:(1)给出具体函数关系的复合函数求偏导数或全微分(1994 (3)考过);(2)给出抽象函数关系的复合函数求偏导数或全微分(1998一(2)题,2005二(9)题,2006二(10)题,2000四题,2001四题,2007二(12)题,2006三(15)题,2009二(9)题);(3)给出方程经变量变换化简方程(1997四(2)题,1996四(2)也考过);(4)给出具体的方程求隐函数的偏导数或全微分(199l一(2)考过);(5)给出抽象的方程(方程组)求隐函数的偏导数或全微分(1999三题);(6)求方向导数,梯度,散度,旋度(200l一(2)题,2005一(3)题,3.5(2002八题,2008一(2)题,1992一(2)也考过).2.函数在一点处极限的存在性,连续性,偏导数的存在性,全微分存在性与偏导数的连续性的讨论与它们之间的因果关系:(1)函数在点处极限不存在性讨论(1997二(1)题);(2)隐函数的存在性(2005二(10)题);(3)偏导数的存在性(1997二(1)题);(4)全微分的存在性(200l二(2)题);(5)函数在一点处连续性,偏导数存在性,全微分存在性与偏导数的连续性的因果关系讨论(2002二(1)题).3.曲面的切平面,曲线的切线:(1)曲面的法向量、切平面与法线(2000一(2)题,2003一(2)题,1997四(1)题,1999八题,1993一(2)也考过,1994一(2)也考过);(2)曲线的切向量、切线与曲线的法平面(2001二(2)题).4.极值与最值:(1)按定义讨论极值(2003二(3)题);(2)极值的必要条件,驻点的讨论(2006二(10)题);(3)求极值(含拉格朗日乘数法)与最值(2002八题,2007三(17)题,2008三(17)题,2009三(15)题);(4)求隐函数的极值(2004三(19)题).由以上可见,本章各知识点大都考过,主要是计算.考题频率最高的是抽象函数关系的复合函数求偏导数,其次是方向导数,曲面的法向量与切平面(与空间解析几何相合).关于概念(见以上“2”)方面的题,应引起注意.关于“4”极值与最值的题,出题频率虽然不高,但有一定的综合性与难度,从考试结果看,这部分碍分不理想,考生不应忽视.第六章多元函数积分学思考的鱼点拨多元函数积分学包括各类积分的概念、计算和应用;格林公式、高斯公式和斯托克斯公式及其应用;平面曲线积分与路径无关及全微分式的原函数问题等.在历年的考试中多元函数积分学占有最重要的地位,平均分数约占高等数学总分的1/4.本章的考题类型及知识点大致有:1.二重积分的计算及应用:(1)二重积分在直角坐标中的计算(单独未考过,在其他题中出现过);(2)二重积分在极坐标中的计算与直极互化(2006二(8)题,2001八题,2005三(15)题,2006三(15)题);(3)交换积分次序(2001一(3)题,2004二(10)题,1990一(4)题考过);(4)绝对值函数的二重积分(二次积分)的计算(未考过);(5)分块函数的二重积分(二次积分)的计算(2002五题,2005三题);(6)利用对称性、轮换对称性化简计算(2003五题,2006三(15)题,2009~(2)题);(7)二重积分的证明题与二重积分的估值(2003五题);(8)三重积分的应用(2001八题).2.三重积分的计算及应用:(1)三重积分在直角坐标中的计算(单独未考过);(2)三重积分在球面坐标与柱面坐标中的计算(2005一(4)题,2006一(3)题,1997三(1)题,2000八题,2003八题,2009二(12)题);(3)利用对称性、轮换对称性化简计算(2000八题,1995三(2)题考过);(4)三重积分的应用(2000八题).3.化多重积分为定积分:(1)化二重积分为变限积分求导问题(2004二(10)题);(2)化二重积分为定积分求其中未知函数(数学(三)1997八题考过);(3)化其它积分为定积分或二重积分的证明题(2003五题,2003八题).4.第一型曲线积分与第型曲面积分:(1)计算(1999八题,2009二(11)题);(2)利用对称性、轮换对称性化简(1998一(3)题,2000二(2)题,2007二(14)题);(3)应用(未考过).5.平面第二型曲线积分及应用:(1)用参数式计算(2004—(3)题,2000五题,2003五题);(2)用格林公式或加、减弧段格林公式法(1999四题,2003五题,2008三(16)题);(3)路径无关问题与原函数法(1998四题,1999四题,2002六题,2005三(19)题,2006三(19)题,2007一(6)题);(4)与微分方程有关的问题(2005三(19)题);(5)挖洞法(2000五题);(6)应用(1990九题考过).6.第二型曲面积分及应用:(1)用投影法计算(1998六题,2001六题,2004三(17)题);(2)用高斯公式或加、减曲面片高斯公式法(2005一(4)题,2006一(3)题,1998六题,2000六题,2004三(17)题,2007三(18)题,2008二(12)题);(3)转换投影法或化成第一型曲面积分计算(2001六题,2004三(17)题);(4)挖洞法(2009三(19)题);(5)与微分方程有关的问题(2000六题).7.空间第二型曲线积分:(1)用参数式计算(1997三(2)题,2001六题);(2)用斯托克斯公式计算(1997三(2)题,2001六题);由以上可见,本章在数学(一)中的地位至关重要,考分占总分的1/6,考得最多的是(1)二重积分:包括极坐标中计算,交换积分次序,利用对称性、轮换对称性化简计算;(2)三重积分:包括在球面坐标、柱面坐标中的计算,利用对称性、轮换对称性化简计算;(3)平面第二型曲线积分:包括用参数式计算,用格林公式或加、减弧段格林公式计算,路径无关问题的讨论与路径无关问题计算该积分,原函数法与求原函数,与微分方程相结合的题;(4)第二型曲面积分:包括用投影法计算,用高斯公式或加、减曲面片高斯公式法计算,转换投影法计算或化成第一型曲面积分计算,与微分方程相结合的题.以上各类题的计算,都有一套规范的方法.关键是选择方便而有效的方法,可以起到事半功倍的作用.以上诸项中,“3”以及“5(3)”,有时涉及一些理论,可能会有点困难.但是,正如俗话所说“熟能生巧”,熟了也就不难了.第七章无穷级数思考的鱼点拨级数部分包括级数的若干基本概念,判别级数的敛散性(包括条件收敛与绝对收敛)的各种方法,幂级数的收敛性与和函数的性质,幂级数收敛域的求法,求幂级数的和函数与求函数的幂级数展开式的方法,还有傅里叶级数和它的和函数等.此部分在历年试题中的平均分数约占高等数学总分的l/6.若分为数值级数、幂级数与傅氏级数三大部分,则幂级数部分考得最多,占级数总分的一半还强,求幂级数的收敛域,实质上就是级数敛散性的判断,若把它划入级数敛散性判断部分,这部分的分数将接近级数总分的一半.求一般函数项级数的收敛域在考试大纲中也是要求的,但从未考过.不过这个问题实质上也是级数敛散性的判断问题.本章的考题类型及知识点大致有:1.数项级数判敛:(1)给出具体的数项级数判敛(1999二(3))题考过,1992二(2)题考过,1995二(4)题考过;(2)已知某抽象数项级数的敛散性,讨论与此有关的另一些级数的敛散性(2000二(3)题),2002二(2)题,2004二(9)题,2006二(9)题,2009一(4)题);(3)通项由某些条件(具体或抽象)给出,讨论该级数的敛散性(1997六题,1998八题,1999九题,2004三(18)题);(4)讨论交错级数或任意项级数的敛散性(2000七题).2.关于幂级数:(1)求幂级数的收敛半径、收敛区间与收敛域(2000七题,2005三(16)题,2008二(11)题,1995一(4)题考过);(2)已知幂级数在某点收敛或发散或条件收敛,或已知收敛半径,讨论另一与此有关的幂级数在另一点处的敛散性,或求收敛半径、收敛区间(的范围)(1997一(2)题);(3)将函数展开成x-x0的幂级数并求收敛域,并求某数项级数的和(2001五题,2003四题,2006三(17)题);(4)求幂级数的和函数或可通过幂级数求和的数项级数求和(2005三(16)题,1990四题考过);(5)验证或设某幂级数满足某微分方程从而求此幂级数的和函数(2002七题,2007三(20));(6)求某些数项级数的和(1999九题,2009三(16)题).3.傅里叶级数:(1)求傅里叶系数或傅里叶级数(2003一(3)题,2008三(19),1991五题考过,1993一(3)题考过);(2)按正弦展开或按余弦展开求其傅里叶系数或傅里叶级数(1995四(2)题考过);(3)按狄利克雷定理求傅里叶系数在某点的收敛和(1999二(3)题,1989二(4)题考过,1992一(3)题考过);(4)由傅里叶级数讨论与此有关的另一些数项级数的和(2008三(19)题,1991五题考过)由以上可见,数项级数判敛问题中的1(1),早期考过几次,后来不考了.近期考得多的是1(2)与1(3).函数展开成幂级数并讨论其成立范围,以及简单幂级数求和,仍是考试热点,考生对此应引起足够重视.函数展开成幂级数采用间接展开法,有一套规范步骤.简单幂级数求和,虽说有一点难度,但作为考研来说,处理的手法还是有法可依.傅里叶级数的考题较简单,由于求傅里叶级数计算量大,所以考得较少,按狄利克雷定理求某点处的收敛和,相对说来考得较多,考生对此应足够重视.第八章常微分方程思考的鱼点拨微分方程问题是积分问题的延伸,有着极为广泛的应用,是历年考研必考内容.在高等数学部分,微分方程在数学一中平均每年所占分数约为15%.本章的考试类型及知识点大致有:1.12种典型类型求解以及自由项为特殊情形时的线性非齐次方程特解y*的设定:(1)一阶5种类型求解(2005 (2)题,2006一(2)题,2008二(9)题,1992一(4)题,1993二(4)题,1993三(3)题,1994五题均考过);(2)二阶可降阶3种类型求解(2000一(3)题,2002一(3)题);(3)二阶及高阶常系数线性齐次方程与非齐次方程3种类型求解(1999 —(3)题,2007二(13)题,2008一(3)题,2009二(10)题);(4)欧拉方程求解(2004一(4)题);(5)y*的设定(数学(二)考过).2.线性非齐次微分方程与对应的线性齐次微分方程的解的关系:(1)已知非齐次方程的解求对应的齐次方程的(通)解(未考过);(2)已知非齐次方程足够多的解求该非齐次方程的通解(1989二(3)题考过,2006数学(三)、(四)考过.3.已知(通)解求微分方程:(1)未说明方程是什么形式,已知通解求微分方程(未考过);(2)已知二阶(或一阶或更高阶)线性方程的通解(或若干个线性无关的特解)求该方程(2001 (1)题,2009二(10)题).4.自由项为绝对值函数或有间断点的函数的线性微分方程求解:(1)自由项为绝对值函数的情形(未考过);(2)自由项为有跳跃间断点的函数的情形(数学(三)1999六题考过).5.经变量变换解微分方程:(1)经反函数变量变换(2003七题);(2)给出已知的变量变换(数学(二)考过多次).6.将积分方程或偏微分方程化成微分方程求解:(1)积分方程化为微分方程求解(1991二(2)考过);(2)偏微分方程化为微分方程求解(1997四(2)题,2006三(18)题).7.微分方程的应用(1)几何方面(1999五题,1995五题考过,1996六题考过);(2)物理方面(1998五题,2004三(16)题);(3)变化率方面(1997三(3)题,2001八题).由上可见,本章常考的是“1”与“7”.有许多类型未命过题或很少命题,命题空间很大,例如1(5),4,以及6可以与其他章节结合来命题,值得重视.第三篇线性代数第一章行列式思考的鱼点拨行列式在整个试卷中所占比重不是很大,一般以填空题,选择题为主,但它是必考内容当然,不只是考查行列式的概念、性质、运算,还会涉及到其他各章、节的内容,例如矩阵的可逆、矩阵的秩、向量的线性相关性、线性方程组、矩阵的特征值、正定二次型等等,如果试卷中没有独立的行列式的试题,那必然会在其他章节的试题中得到体现.一般有关行列式的试题有两大类:计算题和判断题1.行列式的计算题.例如:计算行列式计算行列式的值这类属于数字型的直接计算题,一般利用性质,消零展开或消零化成上(下)三角形行列式即可解决.多数行列式的试题,属于与后续章节有关的、抽象型的行列式的计算题,如 1.1题,1.2题这类题增加了考核的知识点,有一定的综合性.要求考生充分利用题设条件,通过知识的内在联系,化简、运算,最后得出所求行列式的值.(2)行列式的判别题,主要是判别行列式是否为零.例2.1题,因为行列式是否为零对矩阵是否可逆、是否满秩,对方程组A n×n X=O是否有非零解,A n×n X=b是否有唯一解,对A中的列(行)向量组是否线性相关等都起到了“分水岭”的作用,会引起矩阵重要性质的变化.︳A n×n ︳是否为零,除直接计算出︳A ︳=O(或≠0),或计算出︳A ︳=k︳A ︳,其中k≠1,︳A n×n ︳=0(≠0)⇔A n×n不可逆(可逆)⇔r(A)<n,不满秩(=n,满秩)⇔A n×n X=O有非零解(只有零解)⇔A n×n X=b有唯一解(解不唯一;可能无解;若有解,则为无穷解)⇔A n×n 的n个行(列)线性相关(线性无关)注意这些都是充分必要条件,可以相互判别.第二章矩阵思考的鱼点拨矩阵及其运算是线性代数的核心,后续各章的基础,考点较多,重点考点是逆矩阵、伴随矩阵及矩阵方程,这几年还频频出现初等变换与初等阵的试题,应注意到的大致有以下几部分内容.1.基本运算:要搞清概念,熟练掌握运算规则并保证运算的正确性,重点关注以下几点.(1)搞清能否运算,怎样运算,运算结果是什么.(2)搞清数的运算、行列式的性质,与矩阵运算的区别.(3)充分利用运算规则,如计算中结合律、分配律的利用,但矩阵运算没有交换律,消去律.2.逆矩阵:理解逆矩阵的概念,掌握运算法则,掌握矩阵可逆的充分必要条件,会证矩阵可逆,并能正确求出逆矩阵.求逆矩阵的方法:对数值矩阵,一般有(1)公式法.A-1=1/︳A ︳A*,特别适用二阶矩阵;(2)初等变换法.[A ︳B]→[E ︳A].对抽象矩阵,一般有(3)定义法,化成AB=E,则A可逆,且A-1=B;(4)化成已知可逆矩阵的乘积,即若化成A=BC,其中B,C均是可逆阵,则A可逆,A-1=(BC)-1=C-1B-1.证明A可逆的方法:A可逆⇔︳A ︳≠0⇔AX=0有唯一零解⇔AX=b有唯一解⇔r(A)=n⇔A的行(列)向量组线性无关,或用反证法.3.伴随矩阵A*:理解伴随矩阵的概念,注意A i j与A*的联系,能熟练得出A,A-1,A*,(A *)-1,︳A ︳,︳A*︳之间的关系,如(1)︳A*︳=︳A ︳n-1,(2)若A可逆,(A*)-1=1/︳A ︳A,A*=︳A ︳A-1.若公式中将A代入kA时,有(kA)(kA)*=︳kA ︳E,得(kA)*=k n-1A*;若公式中将A代入A*时,有A*(A*)*=︳A*︳E,得(A*)*=︳A ︳n-2A.A*的秩只有n,1,0三种可能,且4.矩阵方程:矩阵方程的试题较多,这类试题具有定的综合性,既考查了利用矩阵运算法则、性质等把方程化简,又考查了具体的数值计算.解这类试题要求分二步走,“先化简”,写出所求矩阵的最简表达式,再代入具体的数值矩阵,进行数值运算(如题2.3).5.初等变换、初等阵、矩阵的秩及等价矩阵理解初等变换的概念,了解初等阵及其性质,能将矩阵的初等变换表达成矩阵乘初等阵,反之能将矩阵乘初等阵翻译成作初等变换(如题2.1~2.3)理解矩阵秩的概念,掌握用初等变换求秩及逆矩阵的方法6.分块阵:了解分块阵及其运算,会求分块对角阵的n次幂及分块对角阵的逆等.第三章向量思考的鱼点拨向量组的线性相关性是线性代数中的难点,也是考试的重点,考生应深刻理解线性相关性的内在的含义外,还应与线性表出、向的秩及线性方程组等相联系,从各个侧面加强对线性相关性的理解.本章试题大致有以下四个部分:1.向量的线性表出向量β能否由向量组α1,α2,…αs,线性表出⇔方程组α1x1+α2x2+…αs x n=[α1,α2,…αs]X=A n×s X=β是否有解,其解即是表出系数⇔r(A)和r(A︳β)是否相等.若α1,α2,…αs线性无关,α1,α2,…αs,β线性相关,则β可由α1,α2,…αs线性表出,且表出法唯一.若α1,α2,…αs线性相关,则至少存在一个向量αi可由其余向量线性表出.向量组(I) β1,β2,…βs中任一个向量βi(1,2,…,s)都可由(Ⅱ) α1,α2,…αs线性表出,称向量组(I)可由向量组(Ⅱ)线性表出,两组向量可以相Ⅰ互表出,则称两向量组等价,等价向量组等秩,反之不成立.2.向量组线性相关性的判别和证明要说明或证明向量组α1,α2,…αs线性相关,只要求出(观察出)有不全为零的数k1,k2,…k s,使k1α1+k2α2+…+k sαs=0.即说明或证明方程组有k1α1+k2α2+…+k sαs=0有非零解.证明一组向量α1,α2,…αs线性无关,有两类题型:(1)若题设条件中只有一组向量(附有一些其他条件),则应利用定义证明(实质上是反证法);(2)若已知一组向量线性无关,要证另一组向量也线性无关,则可以用定义证明,也可以用等价向量组、秩、方程组等方法证明(例题2.5).3.求向量组的极大线性无关组及向量组的秩应理解向量组的极大线性无关组的概念,并掌握其求法则向量组α1,α2,…αs和α1',α2',…αs'是等价向量组,等价向量组等秩.A=[β1,β2,…βs][ β1',β2',…βs'],则β1,β2,…βs与β1',β2',…βs'中任何对应的部分向量组有相同的线性相关性.向量组极大线性无关组不唯一,但极大无关组的向量个数是唯一的,此数即是向量组的秩.(4)向量空间,要求了解向量空间、子空间、解空间,基、维数,坐标等概念,了解基变换公式、坐标变换公式,会求过渡矩阵,掌握施密特标准正交化方法,这部分内容相对试题较少,从1987年考研数学统考以来,共出过4题,二个题是过渡矩阵的(例题1.1),一题是求解空间的标准正交基,一题是求一个向量在一组基下的坐标.第四章线性方程组思考的鱼点拨本章要求理解线性齐次方程组有非零解、唯一零解,线性非齐次方程组无解、唯一解、无穷多解的充分必要条件,理解线性齐次方程组的基础解系、通解、解空间的概念,掌握求解的方法,并会求解,理解非齐次线性方程组解的结构及通解的概念,并会求解.本章试题大致有三种类型:1.判别齐次方程组是否有非零解,非齐次方程组AX=b是否无解、唯一解、无穷多解A m×n X=O 有非零解(唯一零解)⇔r(A)<n(=n) ⇔A的列向量组线性相关(线性无关).A m×n X=O无解⇔r(A)≠r[A ︳b].唯一解⇔r(A)=r[A ︳b]=n.无穷多解⇔r(A)= r[A ︳b]=r<n.当A是n×n矩阵时,还可用︳A ︳=O(或≠0)判别(例题1.1),并说明解的几何意义.判别某向量,或某向量集合是否是方程的解或方程组的通解,及两个方程组是否同解等(例题2.1).2.求解线性齐次方程组的基础解系和通解(例题3.5),求解非齐次方程组的通解(例题3.6)(包括含有参数时,有解情况的讨论),求解方程组时,请注意每个步骤的正确性.步骤如下:(1)抄对系数矩阵或增广矩阵;(2)正确进行初等行变换,含有参数时,要选择合适的消元的顺序;(3)全面讨论参数的取值与解的关系;(4)认定r(A)(即独立未知量,独立方程个数),认定自由未知量,并赋予合适的特定值,。
考研数学高数必考题型总结
![考研数学高数必考题型总结](https://img.taocdn.com/s3/m/4e659ea0b307e87100f6962c.png)
考研数学高数必考题型总结考研数学高数必考6类题型总结第一:求极限。
无论数学一、数学二还是数学三,求极限是高等数学的基本要求,所以也是每年必考的内容。
区别在于有时以4分小题形式出现,题目简单;有时以大题出现,需要使用的方法综合性强。
比如大题可能需要用到等价无穷小代换、泰勒展开式、洛比达法则、分离因子、重要极限等中的几种方法,有时考生需要选择其中简单易行的组合完成题目。
另外,分段函数个别点处的导数,函数图形的渐近线,以极限形式定义的函数的连续性、可导性的研究等也需要使用极限手段达到目的,须引起注意!第二:利用中值定理证明等式或不等式,利用函数单调性证明不等式。
证明题虽不能说每年一定考,但也基本上十年有九年都会涉及。
等式的证明包括使用4个微分中值定理,1个积分中值定理;不等式的证明有时既可使用中值定理,也可使用函数单调性。
这里泰勒中值定理的使用是一个难点,但考查的概率不大。
第三:一元函数求导数,多元函数求偏导数。
求导数问题主要考查基本公式及运算能力,当然也包括对函数关系的处理能力。
一元函数求导可能会以参数方程求导、变限积分求导或应用问题中涉及求导,甚或高阶导数;多元函数(主要为二元函数)的偏导数基本上每年都会考查,给出的函数可能是较为复杂的显函数,也可能是隐函数(包括方程组确定的隐函数)。
另外,二元函数的极值与条件极值与实际问题联系极其紧密,是一个考查重点。
极值的充分条件、必要条件均涉及二元函数的偏导数。
第四:级数问题。
常数项级数(特别是正项级数、交错级数)敛散性的判别,条件收敛与绝对收敛的本质含义均是考查的重点,但常常以小题形式出现。
函数项级数(幂级数,对数一来说还有傅里叶级数,但考查的频率不高)的收敛半径、收敛区间、收敛域、和函数等及函数在一点的幂级数展开在考试中常占有较高的分值。
第五:积分的计算。
积分的计算包括不定积分、定积分、反常积分的计算,以及二重积分的计算,对数学考生来说常主要是三重积分、曲线积分、曲面积分的计算。
考研高等数学的重点内容和常见题型
![考研高等数学的重点内容和常见题型](https://img.taocdn.com/s3/m/1592e75afbd6195f312b3169a45177232f60e4fa.png)
考研高等数学的重点内容和常见题型高等数学是考研数学中十分重要的一部分,它是考研数学的基础和核心内容,也是考研数学中难度较大的一部分。
高等数学的知识点繁多,涵盖面广,考研学子们在备考高等数学时需要着重掌握其中的重点内容和常见题型。
本文将就考研高等数学的重点内容和常见题型进行详细介绍。
一、重点内容1. 极限与连续极限与连续是高等数学中的重要概念和基础知识,它们在微积分、数学分析等领域都有着重要的应用。
在考研高等数学中,对极限和连续的理论知识和计算题型要求掌握得非常透彻。
考生需要熟练掌握极限的定义、性质、计算方法、无穷小量与无穷大量的比较、极限存在的判定方法等知识点;并且需要熟练掌握函数的连续性的定义、连续函数的性质、连续函数的运算等内容。
2. 导数与微分3. 不定积分与定积分4. 微分方程微分方程是高等数学中的重要内容,它在数学分析、物理学、工程学等领域都有着广泛的应用。
在考研高等数学中,微分方程的理论知识和计算题型是非常重要的一部分。
考生需要熟练掌握微分方程的基本概念、常微分方程的解法、微分方程的初值问题、线性微分方程、二阶线性常系数齐次微分方程等知识点。
5. 多元函数微分学以上就是考研高等数学的重点内容,考生在备考高等数学时,需要着重掌握以上内容,并且要灵活运用这些知识点解决各种问题。
二、常见题型1. 计算题型考研高等数学中的计算题型包括极限的计算、导数的计算、不定积分与定积分的计算、微分方程的解法、多元函数微分的计算等。
这些题型需要考生熟练掌握相关知识点,并且要灵活运用不同的计算方法解题。
2. 证明题型考研高等数学中的证明题型包括极限的性质证明、导数的性质证明、积分的性质证明、微分方程的解的存在唯一性证明等。
这些题型需要考生深入理解相关概念和性质,灵活运用相关定理和方法进行证明。
3. 应用题型4. 综合题型考研高等数学中的综合题型会将多个知识点进行综合运用,考查考生的综合运用能力。
这些题型需要考生全面掌握各种知识点,并且要在解题过程中合理组织思路,抓住主要问题,快速解决问题。
【考研数学】考研数学常考70题型通法
![【考研数学】考研数学常考70题型通法](https://img.taocdn.com/s3/m/9b695d49cd7931b765ce0508763231126edb7739.png)
《高等数学部分》题型考点01极限的概念与性质【通用方法】极限与无穷小的关系:00lim (),()(1)x x f x A x x f x A o .题型考点02无穷小的比较(1)高阶无穷小、等价无穷小【通用方法】用定义转化成函数极限的计算问题.(2)无穷小排序【通用方法】利用0()lim0n x f x k x,解得n ,然后排序.题型考点03函数求极限【通用方法】(1)分析:把?x 代入极限,分析类型和化简方法(2)化简:①根式有理化②提公因子③计算非零因子④等价无穷小替换⑤拆分极限存在的项⑥幂指函数指数化⑦变量替换(尤其是倒代换)(3)计算:①洛必达法则②泰勒公式题型考点04极限的反问题(1)已知极限求另一极限【通用方法】加减乘除凑已知极限(2)已知极限求参数【通用方法】7种化简方法、泰勒公式、洛必达法则题型考点05函数的渐近线【通用方法】(1)垂直渐近线:若 )(lim x f ax ,则函数存在渐近线a x ;(2)水平渐近线:若b x f x)(lim ,则函数存在渐近线b y ;(3)斜渐近线:若b kx x f kx x f x x ])([lim )(lim ,则函数存在渐近线b kx y .题型考点06利用单调有界准则求数列极限【通用方法】(1)单调性①计算n n u u 1.若01 n n u u ,则}{n u 单调递增;若01 n n u u ,则}{n u 单调递减.②若)(1n n u f u ,构造函数)(x f ,单调数列应该有0)( x f ,若12u u ,则}{n u 单调递增;若12u u ,则}{n u 单调递减;另外,若0)( x f ,则数列不单调.(2)有界性①数学归纳法②均值不等式题型考点07求n 项和的数列极限【通用方法】①定积分定义②夹逼准则题型考点08判断函数的连续性与间断点【通用方法】①连续的定义②四种间断点的定义题型考点09一个点的导数【通用方法】一个点的导数用定义题型考点10切线方程与法线方程【通用方法】①求00(),()f x f x ②代入切线方程与法线方程.题型考点11各类函数求导(1)反函数求导【通用方法】反函数的导数等于原来函数导数的倒数.(2)复合函数求导【通用方法】从外层往内层逐层求导相乘.(3)隐函数求导【通用方法】把y 看成x 的函数,等式两边直接求导.(4)参数方程求导【通用方法】()()(),()()y t h t y h t y x t x t.(5)变限积分函数求导【通用方法】①设)()(21)()(x x dt t f x F,则)()]([)()]([)(1122x x f x x f x F ;②设xdt t xf x F 0)()(,则)()()()(00x xf dt t f dt t f x x F xx;注:被积函数中含有求导的变量时,要把变量分离出来,再求导.③设xdt t x f x F 0)()(,则令t x u , xdu u f x F 0)()(,)()(x f x F .注:被积函数中含有求导的变量但不能直接分离时,要通过换元分离,再求导.(6)分段函数求导【通用方法】分段函数分段求,分段点处定义求题型考点12求0x 处的n 阶导数【通用方法】利用泰勒公式的唯一性题型考点13判断函数的单调性、极值点与凹凸性、拐点【通用方法】求函数的一阶导数、二阶导数进行判断题型考点14不等式的证明【通用方法】利用单调性证明(1)移项到大于号一边,构造()F x (2)求()()F x F x ,,判断()F x 的单调性(3)找()F x 的最小值点,验证最小值大于等于0.题型考点15方程根的问题【通用方法】①单调性②零点定理题型考点16曲率与曲率半径(仅数一、二要求)【通用方法】曲率公式232)1(y y K,KR 1.题型考点17罗尔定理的证明题【通用方法】(1)证明一阶导等于零(0)( f ),找两个原函数的点相等;(2)证明二阶导等于零(0)( f ),找三个原函数的点相等,或者两个一阶导相等;(3)证明表达式的题目(0)](),(,[ f f G ),思路如下:草稿纸上:① 换成x 把要证明的表达式抄下来;②两边移项,目的是便于积分求原函数注:遇到)(x f 可以把它除到)(x f 下面去,积分为)(ln x f ;③两边积分,目的是构造有用的)(x F 试卷上:令 )(x F ,易知)(x F 在],[b a 上连续,),(b a 内可导,再证明)(x F 两个点相等即可.(4)双介值问题:解题思路:①分离介值,把含不同介值的表达式移到等号两边;②结合(3)的思路,分别使用微分中值定理证明左边C ,右边C 即可注:C 为某常数,需要通过其中一边C ,满足罗尔定理的情况下,求得.另外,若只是证明存在两个介值,则不需要把区间分段;若要求证明存在两个不同的介值,则必须把区间分段,证明介值分别来自两个不同的区间.题型考点18拉格朗日中值定理的证明题【通用方法】找对区间(一般需要将区间等分或者根据第一问提示点将区间分开),在各区间上使用拉氏定理,然后相加相减凑所证结论.题型考点19泰勒中值定理的证明题【通用方法】找对展开点(一般为区间中点或端点),然后写出泰勒展开式,带入端点值,相加相减凑所证结论.题型考点20不定积分的计算【通用方法】①凑微分②去根号③分部积分④有理函数积分题型考点21定积分的计算【通用方法】①牛顿莱布尼兹公式②定积分的换元法③区间再现④分段函数分段积分⑤含抽象函数的积分使用分部积分题型考点22积分不等式的证明【通用方法】①转化为函数不等式,利用单调性证明②积分中值定理题型考点23含变限积分函数的等式方程【通用方法】①初值②求导题型考点24反常积分的计算【通用方法】在瑕点处拆开,直接按定积分计算.题型考点25反常积分敛散性的判定【通用方法】根据比较审敛法的极限形式,与P 积分进行比较判断.题型考点26定积分的几何应用【通用方法】微元法(1)求平面图形的面积① dxx y x y S ba121② d r S2221③dtt t ydx S ba3(2)求旋转体的体积① dxx fV bax2②bay dxx xf V2③d y V Dx(3)求平面曲线的弧长d r r dt t y t x dxx y ds 222221(仅数一、二要求)(4)求旋转体的侧面积ydsd S 2 侧(仅数一、二要求)题型考点27定积分的物理应用(仅数一、二要求)【通用方法】微元法(1)变力沿曲线做功①FSW ②maF (2)静水侧压力①PS F ②ghP(3)引力问题①221r m m GF 万②221r Q Q kF 库题型考点28微分方程的求解【通用方法】根据各类微分方程的固定求解步骤进行即可.(1)一阶微分方程①可分离变量的方程②齐次方程③一阶线性微分方程(2)可降阶的微分方程①不显含y 的微分方程②不显含x 的微分方程(3)二阶常系数线性微分方程①二阶常系数线性齐次方程②二阶常系数线性非齐次方程(4)伯努利方程、欧拉方程(仅数一)通过换元化为常见方程求解题型考点29微分方程的物理应用(仅数一、二要求)【通用方法】从问题出发,找两个变量,列微分方程.题型考点30多元复合函数求偏导【通用方法】①画出复合函数关系图②从外往内逐层求偏导题型考点31多元隐函数求偏导【通用方法】①直接求②公式法③一阶微分形式不变性(全微分法)题型考点32偏积分【通用方法】注意对x 积分时加)(y C ,对y 积分时加)(x C .题型考点33多元函数极值【通用方法】①令偏导数等于0解得驻点②根据充分条件判断极值题型考点34多元函数条件极值【通用方法】①代入法②拉格朗日乘数法题型考点35多元函数求闭区域上的最值【通用方法】①开区域内求极值②边界上求条件极值③比大小题型考点36各类积分比大小【通用方法】①不等式性质②对称性③格林公式、高斯公式(仅数一)题型考点37二重积分的计算【通用方法】①画D②观察对称性③选择坐标系和积分次序④化为累次积分计算题型考点38数项级数敛散性的判断(仅数一、三)【通用方法】(1)正项级数①比较审敛法(极限形式)②比值(根植)审敛法(2)交错级数①加绝对值后判断是否绝对收敛②莱布尼兹判别法(3)一般级数①加绝对值后判断是否绝对收敛②级数敛散性的性质题型考点39幂级数的收敛域及和函数(仅数一、三)【通用方法】(1)收敛域比值法(2)和函数逐项积分,逐项求导(3)函数展开成幂级数①逐项积分,逐项求导②常见泰勒级数题型考点40函数展开成傅里叶级数(仅数一)【通用方法】(1)周期为 2的傅里叶级数①10sin cos 2~)(n n n nx b nx a a x f ,其中,2,1,sin )(1,)(1,2,1,cos )(1n nxdx x f b dx x f a n nxdx x f a n n.②余弦级数若)(x f 为偶函数,则10cos 2~)(n n nx a a x f ,其中.0,)(2,2,1,cos )(200n n b dx x f a n nxdx x f a③正弦级数若)(x f 为奇函数,则1sin ~)(n nnx bx f ,其中,2,1,sin )(2,2,1,0,00n nxdx x f b n a n n(2)周期为l 2的傅里叶级数10sincos 2~)(n n n lxn b l x n a a x f ,其中 l l n l l n dx lxn x f l b dx l x n x f l a sin )(1,cos )(1.(3)狄里克雷收敛定理设)(x f 是周期为 2的可积函数,且满足①)(x f 上],[ 连续或只有有限个第一类间断点;②)(x f 上],[ 只有有限个单调区间,则)(x f 的以 2为周期的傅里叶级数收敛,且2)0()0()(000x f x f x S .题型考点41空间解析几何(仅数一)【通用方法】(1)平面与直线①平面点法式②直线点向式(2)曲面与曲线①旋转曲面轨迹法②投影曲线消元法(3)空间曲面的切平面与空间曲线的切线①曲面的法向量),,(z y x F F F ②曲线的切向量))(),(),((t z t y t x 或))(),(,1(x z x y 等.题型考点42三重积分的计算(仅数一)【通用方法】①投影法②截面法③柱面坐标④球面坐标题型考点43曲线积分的计算(仅数一)【通用方法】(1)第一类曲线积分①对称性②参数法(2)第二类曲线积分①对称性②参数法③积分与路径无关④格林公式题型考点44曲面积分的计算(仅数一)【通用方法】(1)第一类曲面积分①对称性②一投二代三计算(2)第二类曲面积分①对称性②一投二代三定号③轮换投影法④高斯公式题型考点45多元积分学的应用(仅数一)【通用方法】(1)质心、形心①质心横坐标D Dd y x f d y x xf x),(),(;dVz y x f dV z y x xf x ),,(),,(;LL dsy x f ds y x xf x ),(),(;dSz y x f dS z y x xf x ),,(),,(.②形心横坐标(数二、三的同学要求掌握平面图形的形心)DDd xd x;dVxdV x ;L Ldsxds x ;dSxdSx .(2)转动惯量2mr I 题型考点46场论公式(仅数一)【通用方法】(1)方向导数①定义),()cos ,cos (lim 00000y x f y x f l.②可微函数cos cos y x f f l.(2)梯度),(),(y x f f y x gradf (3)散度zR y Q x P A div(4)旋度Qy j A rot题型考点47经济学应用(仅数三)【通用方法】(1)边际)(x f dxdy(2)弹性xdx y dy E yx《线性代数部分》题型考点01数值型行列式的计算【通用方法】边化零,边展开题型考点02抽象行列式的计算【通用方法】①化为乘法②特征值的乘积题型考点03方阵的幂【通用方法】(1)找规律(2)若1)( A r ,则A A 1n nl,其中)(A tr l .(3)若1A P ΛP ,则P ΛP A nn1.题型考点04矩阵的秩【通用方法】①化行阶梯形②利用秩的9个结论题型考点05具体方程组的求解【通用方法】①化行阶梯形②化行最简形③写出同解方程组④写出通解题型考点06抽象方程组的求解【通用方法】解的结构(1)齐次方程组的基础解系:①是解②无关③个数()n r A (2)非齐次方程组的通解: 通通特非齐非题型考点07向量组的线性相关性【通用方法】①秩②定义题型考点08向量组的线性表示【通用方法】①秩②定义题型考点09向量组的极大无关组【通用方法】①部分组②无关③个数()r A .题型考点10相似对角化【通用方法】(1)解0 E A 得特征值123,, ;(2)解()0x E A 得特征向量123,,ααα;(3)令123(,,) P ααα,则1P AP Λ.题型考点11正交变换法化二次型为标准形【通用方法】(1)解0 E A 得特征值123,, ;(2)解()0x E A 得特征向量123,,ααα;(3)正交化得:123,,βββ;(4)单位化得:123,,γγγ;(5)令123(,,) Q γγγ,则在正交变换x y Q 下,二次型的标准形为222112233y y y .题型考点12配方法化二次型为标准形【通用方法】①优先配交叉项少的变量②所用变换必须为可逆变换题型考点13二次型的正定型【通用方法】等价条件:①0,0Tx x x A ;②特征值均大于0;③正惯性指数为n ;④顺序主子式均大于0.《概率统计部分》题型考点01概率计算公式【通用方法】(1)加法公式()P A B C 加奇减偶(2)减法公式()()()P AB P A P AB (3)乘法公式()(|)()(|)()P AB P A B P B P B A P A (4)条件概率()(|)()P AB P A B P B(5)全概率公式1()(|)()nk k k P A P A B P B (6)贝叶斯公式(|)()(|)()k k k P A B P B P B A P A题型考点02概率密度与分布函数【通用方法】(1)概率密度①()1f x dx;(,)1xoyf x y d ②()0f x ;(,)0f x y (2)分布函数①规范性()0,()1F F ②右连续性00(0)()F x F x ③单调不减性题型考点03常见分布【通用方法】题型考点04二维连续型随机变量的分布【通用方法】(1)边缘概率密度()(,),()(,)X Y f x f x y dy f y f x y dx(2)条件概率密度(,)()()X Y Y f x y f x y f y(3)独立性若(,)()()X Y f x y f x f y ,则,X Y 独立(4)事件概率{(,)}(,)DP X Y D f x y d题型考点05随机变量函数的分布【通用方法】(1)一维连续型随机变量函数的概率密度分布函数法:①定义②代入③讨论④求导(2)一维连续型随机变量函数的概率密度分布函数法:①定义②代入③讨论④求导公式法:()(,(,))Z y f z f x y x z dx z(3)离散型+连续型随机变量函数的概率密度分布函数法:①定义②代入③全概率公式④讨论⑤求导题型考点06数字特征【通用方法】(1)随机变量的数字特征①期望 取值概率②方差性质化简,公式计算③协方差性质化简,公式计算④相关系数性质化简,公式计算(2)统计量的数字特征①E X EX②1D X DX n③2ES DX④2()E n n⑤2()2D n n题型考点07二维正态分布的性质【通用方法】若221212(,)~(,;,;)X Y N ,则:(1)边缘分布都是服从一维正态分布,即 221122~,,~,X NY N .(2)X 和Y 任意的非零线性组合aX bY 服从一维正态分布.(3)X 和Y 相互独立的充要条件是相关系数0 .(4)若12,Z Z 是,X Y 的非零线性组合,则 12,Z Z 也服从二维正态分布.题型考点08三大抽样分布【通用方法】(1)2分布:222212()nn X X X (2)F 分布:22()(,)()m mF m n n n(4)t 分布:()t n(5)若12,,,n X X X 为来自正态总体2~(,)X N 的简单随机样本,则:~(0,1)X N②222(1)~(1)n S n ~(1)X t n 题型考点09点估计【通用方法】(1)矩估计总体的矩等于样本的矩(2)最大似然估计①离散型1()()n i i L P X X ;1()ln(())ni i LnL P X X ②连续型1()()ni i L f x ;1()ln(())ni i LnL f x 题型考点10估计量的评选标准【通用方法】(1)无偏性 ()E(2)有效性若 12()()D D ,则 1 比 2更有效(3)一致性P。
考研数学考点与题型归类分析总结
![考研数学考点与题型归类分析总结](https://img.taocdn.com/s3/m/c038ee1ced630b1c58eeb500.png)
考研数学考点与题型归类分析总结1高数部分1.1 高数第一章《函数、极限、连续》 求极限题最常用的解题方向: 1.利用等价无穷小;2.利用洛必达法则00型和∞∞型直接用洛必达法则∞0、0∞、∞1型先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim 0=→x xx 、e x x x =+→10)1(lim 、e x xx =+∞→)1(1lim ; 4.夹逼定理。
1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第三章《不定积分》提醒:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。
所以可以这样加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。
第四章《定积分及广义积分》解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-aadx x f )(型定积分,若f(x)是奇函数则有⎰-aa dx x f )(=0;若f(x)为偶函数则有⎰-aadx x f )(=2⎰adx x f 0)(;对于⎰2)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=⎰-a a奇函数、⎰⎰=-aa a2偶函数偶函数。
在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。
这种思路对于证明定积分等式的题目也同样有效。
1.3高数第五章《中值定理的证明技巧》用以下逻辑公式来作模型:假如有逻辑推导公式A⇒E、(A B)⇒C、(C D E)⇒F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A、B、D,求证F。
考研数学复习 高数经典题型总结
![考研数学复习 高数经典题型总结](https://img.taocdn.com/s3/m/a5dd782a1fb91a37f111f18583d049649b660eb4.png)
考研数学复习高数经典题型总结作为考研数学的重要组成部分,高等数学被众多考生视为难点。
高等数学的内容极为丰富,而其中又有一些经典题型,掌握了这些题型,就能提高我们复习高等数学的效率。
本文将为大家总结高等数学的经典题型,希望能够帮助各位考生更好地完成对高等数学的复习。
极限极限是高等数学的基础知识之一,是我们复习高等数学必须要掌握的知识点。
在复习过程中,常见的极限题型包括:基本的极限题型这类题型一般考察常见函数的极限,需要我们掌握一些基本的极限公式。
例如:$$\\lim_{x\\to0}\\frac{sinx}{x}$$这类题型的基本思路是,将函数化简为一个已知的形式,即$$\\lim_{x\\to0}\\frac{sinx}{x}=1$$夹逼定理题型夹逼定理可以使用于许多函数,我们需要灵活掌握夹逼定理的使用。
例如:$$\\lim_{x\\to\\infty}(\\frac{1}{x}+cosx)$$利用夹逼定理,我们可以将这个极限简化为:$$-1\\le cosx\\le 1$$$$0\\le\\frac{1}{x}\\le\\frac{1}{x}+cosx$$当$x\\to \\infty$时,cosx的值不断振荡,但不会超出[−1,1]的范围,而$\\frac{1}{x}$的值趋近于0。
因此,由夹逼定理可得:$$\\lim_{x\\to\\infty}(\\frac{1}{x}+cosx)=0$$变量代换法问题变量代换法在极限计算中常常使用,所谓变量代换,就是将题目中的某一变量引入一个新变量,并使得原有极限可以通过新变量的极限来计算。
例如:$$\\lim_{x\\to0}\\frac{sinmx}{n^2+cosnx}$$利用变量代换a=mx和b=nx,这个极限便可以化简为另一个新的极限:$$\\lim_{a\\to0}\\lim_{b\\to0}\\frac{sin a}{n^2+cos b}$$这样就可以通过更简单的方法来计算原有极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011考研必备:超经典的考研数学考点与题型归类分析总结1高数部分1.1 高数第一章《函数、极限、连续》1.2 求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法则,对于00型和∞∞型的题目直接用洛必达法则,对于∞0、0∞、∞1型的题目则是先转化为00型或∞∞型,再使用洛比达法则;3.利用重要极限,包括1sin lim 0=→x x x 、e x x x =+→10)1(lim 、e x x x =+∞→)1(1lim ;4.夹逼定理。
1.3 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。
对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。
在此只提醒一点:不定积分⎰+=C x F dx x f )()(中的积分常数C 容易被忽略,而考试时如果在答案中少写这个C 会失一分。
所以可以这样建立起二者之间的联系以加深印象:定积分⎰dx x f )(的结果可以写为F(x)+1,1指的就是那一分,把它折弯后就是⎰+=C x F dx x f )()(中的那个C,漏掉了C 也就漏掉了这1分。
第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下限上做文章:对于⎰-a a dx x f )(型定积分,若f(x)是奇函数则有⎰-aa dx x f )(=0;若f(x)为偶函数则有⎰-a a dx x f )(=2⎰a dx x f 0)(;对于⎰20)(πdx x f 型积分,f(x)一般含三角函数,此时用x t -=2π的代换是常用方法。
所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u 和利用性质0=⎰-aa 奇函数 、⎰⎰=-aa a 02偶函数偶函数。
在处理完积分上下限的问题后就使用第三章不定积分的套路化方法求解。
这种思路对于证明定积分等式的题目也同样有效。
1.4 高数第五章《中值定理的证明技巧》由本章《中值定理的证明技巧》讨论一下证明题的应对方法。
用以下这组逻辑公式来作模型:假如有逻辑推导公式A ⇒E 、(A B)⇒C 、(C D E)⇒F,由这样一组逻辑关系可以构造出若干难易程度不等的证明题,其中一个可以是这样的:条件给出A 、B 、D ,求证F 成立。
为了证明F 成立可以从条件、结论两个方向入手,我们把从条件入手证明称之为正方向,把从结论入手证明称之为反方向。
正方向入手时可能遇到的问题有以下几类:1.已知的逻辑推导公式太多,难以从中找出有用的一个。
如对于证明F 成立必备逻辑公式中的A ⇒E 就可能有A ⇒H 、A ⇒(I K)、(A B) ⇒M 等等公式同时存在,有的逻辑公式看起来最有可能用到,如(A B) ⇒M ,因为其中涉及了题目所给的3个条件中的2个,但这恰恰走不通; 2.对于解题必须的关键逻辑推导关系不清楚,在该用到的时候想不起来或者弄错。
如对于模型中的(A B) ⇒C ,如果不知道或弄错则一定无法得出结论。
从反方向入手证明时也会遇到同样的问题。
通过对这个模型的分析可以看出,对可用知识点掌握的不牢固、不熟练和无法有效地从众多解题思路中找出答案是我们解决不了证明题的两大原因。
针对以上分析,解证明题时其一要灵活,在一条思路走不通时必须迅速转换思路,而不应该再从头开始反复地想自己的这条思路是不是哪里出了问题;另外更重要的一点是如何从题目中尽可能多地获取信息。
当我们解证明题遇到困难时,最常见的情况是拿到题莫名其妙,感觉条件与欲证结论简直是风马牛不相及的东西,长时间无法入手;好不容易找到一个大致方向,在做若干步以后却再也无法与结论拉近距离了。
从出题人的角度来看,这是因为没能够有效地从条件中获取信息。
“尽可能多地从条件中获取信息”是最明显的一条解题思路,同时出题老师也正是这样安排的,但从题目的“欲证结论”中获取信息有时也非常有效。
如在上面提到的模型中,如果做题时一开始就想到了公式(C D E) ⇒F 再倒推想到 (A B) ⇒C 、 A ⇒E 就可以证明了。
如果把主要靠分析条件入手的证明题叫做“条件启发型”的证明题,那么主要靠“倒推结论”入手的“结论启发型”证明题在中值定理证明问题中有很典型的表现。
其中的规律性很明显,甚至可以以表格的形式表示出来。
下表列出了中值定理证明问题的几种类型:的条件是一样的,同时A 也只多了一条“可导性”而已;所以在面对这一部分的题目时,如果把与证结论与可能用到的几个定理的的结论作一比较,会比从题目条件上挖掘信息更容易找到入手处。
故对于本部分的定理如介值、最值、零值、洛尔和拉格朗日中值定理的掌握重点应该放在熟记定理的结论部分上;如果能够做到想到介值定理时就能同时想起结论“存在一个ε使得k f =)(ε”、看到题目欲证结论中出现类似“存在一个ε使得k f =)(ε”的形式时也能立刻想到介值定理;想到洛尔定理时就能想到式子0)(='εf ;而见到式子)()()()()()(a g b g a f b f g f --=''εε也如同见到拉格朗日中值定理一样,那么在处理本部分的题目时就会轻松的多,时常还会收到“豁然开朗”的效果。
所以说,“牢记定理的结论部分”对作证明题的好处在中值定理的证明问题上体现的最为明显。
综上所述,针对包括中值定理证明在内的证明题的大策略应该是“尽一切可能挖掘题目的信息,不仅仅要从条件上充分考虑,也要重视题目欲证结论的提示作用,正推和倒推相结合;同时保持清醒理智,降低出错的可能”。
希望这些想法对你能有一点启发。
不过仅仅弄明白这些离实战要求还差得很远,因为在实战中证明题难就难在答案中用到的变形转换技巧、性质甚至定理我们当时想不到;很多结论、性质和定理自己感觉确实是弄懂了、也差不多记住了,但是在做题时那种没有提示、或者提示很少的条件下还是无法做到灵活运用;这也就是自身感觉与实战要求之间的差别。
这就像在记英语单词时,看到英语能想到汉语与看到汉语能想到英语的掌握程度是不同的一样,对于考研数学大纲中“理解”和“掌握”这两个词的认识其实是在做题的过程中才慢慢清晰的。
我们需要做的就是靠足量、高效的练习来透彻掌握定理性质及熟练运用各种变形转换技巧,从而达到大纲的相应要求,提高实战条件下解题的胜算。
依我看,最大的技巧就是不依赖技巧,做题的问题必须要靠做题来解决。
1.5 高数第六章《常微分方程》本章常微分方程部分的结构简单,陈文灯复习指南对一阶微分方程、可降阶的高阶方程、高阶方程都列出了方程类型与解法对应的表格。
历年真题中对于一阶微分方程和可降阶方程至少是以小题出现的,也经常以大题的形式出现,一般是通过函数在某点处的切线、法线、积分方程等问题来引出;从历年考察情况和大纲要求来看,高阶部分不太可能考大题,而且考察到的类型一般都不是很复杂。
对于本章的题目,第一步应该是辨明类型,实践证明这是必须放在第一位的;分清类型以后按照对应的求解方法按部就班求解即可。
这是因为其实并非所有的微分方程都是可解的,在大学高等数学中只讨论了有限的可解类型,所以出题的灵活度有限,很难将不同的知识点紧密结合或是灵活转换。
这样的知识点特点就决定了我们可以采取相对机械的“辨明类型——〉套用对应方法求解”的套路 ,而且各种类型的求解方法正好也都是格式化的,便于以这样的方式使用。
先讨论一下一阶方程部分。
这一部分结构清晰,对于各种方程的通式必须牢记,还要能够对易混淆的题目做出准确判断。
各种类型都有自己对应的格式化解题方法,这些方法死记硬背并不容易,但有规律可循——这些方法最后的目的都是统一的,就是把以各种形式出现的方程都化为f(x)dx=f(y)dy 这样的形式,再积分得到答案。
对于可分离变量型方程0)()()()(2211=+dy y g x f dx y g x f ,就是变形为dx x f x f )()(21=-dy y g y g )()(12,再积分求解;对于齐次方程)(x yf y ='则做变量替换x y u =,则y '化为dxdu x u +,原方程就可化为关于x u 和的可分离变量方程,变形积分即可解;对于一阶线性方程)()(x q y x p y =+'第一步先求0)(=+'y x p y 的通解,然后将变形得到的dx x p y dy)(-=积分,第二步将通解中的C 变为C(x)代入原方程)()(x q y x p y =+'解出C(x)后代入即可得解;对于贝努利方程)()(x q y x p y =+'n y ,先做变量代换n y z -=1代入可得到关于z 、x 的一阶线性方程,求解以后将z 还原即可;全微分方程M(x,y)dx+N(x,y)dy 比较特殊,因为其有条件x N y M ∂∂∂∂=,而且解题时直接套用通解公式⎰+xx dx y x M 0),(0⎰=y y C dy y x N 0),(.所以,对于一阶方程的解法有规律可循,不用死记硬背步骤和最后结果公式。
对于求解可降阶的高阶方程也有类似的规律。
对于)()(x f y n =型方程,就是先把)1(-n y 当作未知函数Z ,则Z y n '=)( 原方程就化为 dx x f dz )(= 的一阶方程形式,积分即得;再对)2(-n y 、)3(-n y 依次做上述处理即可求解;),(y x f y '='' 叫不显含 y 的二阶方程,解法是通过变量替换 p y ='、p y '='' (p 为x 的函数)将原方程化为一阶方程;),(y y f y '=''叫不显含x 的二阶方程,变量替换也是令p y ='(但此中的p 为y 的函数),则p p p y dy dp dx dydy dp '==='',也可化为一阶形式。
所以就像在前面解一阶方程部分记“求解齐次方程就用变量替换u xy =”,“求解贝努利方程就用变量替换n y z-=1”一样,在这里也要记住“求解不显含y 的二阶方程就用变量替换p y ='、p y '='' ”、“求解不显含x 的二阶方程就用变量替换p y ='、p p y '=''”。