光纤光缆基础知识
1.光纤光缆基础知识
THANK YOU!
产生光损耗的原因大部分为光纤具有的固有损耗和光纤制造后 的附加损耗。前者主要包括瑞利散射损耗、吸收损耗、波导结构不完 善引起的损耗;后者包括微弯损耗、弯曲损耗、接续损耗等。
损耗成因
瑞利散射损耗
吸收损耗
固有损耗
附加损耗
对于光纤损耗的成因及其解决方案,在这里不做深入的研究,了解即可。
微弯损耗
弯曲损耗
接续损耗
N/A
GSK/GMK/GCF
B5
G656
N/A
B6
G657
N/A
多模62.5/125
A1b
N/A
OM1
MCF
OM2
ACF
多模50/125
A1a
G651.1
OM3
OM4
我们公司最常用的光 纤为G652D和G655
G.652是常规单模光纤,零色散 点在1300nm,此点色散最小;同 时根据PMD又分为G. 652A、B、C、 D四种。
按传输模式分类
类型
解释
纤芯只能传输 单模光纤 单个模式的光
纤
多模光纤
纤芯能传输多 个模式的光纤
纤芯直径 包层外径
8μm-10μm 125μm
50μm、 62.5μm
125μm
2. 光纤分类
2.3 总结
光纤 类型
单模 光纤
传输模式
只能传输单 模式的光纤
多模 光纤
能传输多个 模式的光纤
传输距离 传输距离远
6. 光缆简介
6.2 光缆分类
用途
光纤种类
光纤芯数
加强件配置
传输导体、介质状况 铺设方式
结构方式
用户光缆 单模光缆 单芯光缆
光纤光缆基础知识
光纤 类型 Ala Alb Alc Ald
表 2 四种梯度型多模光纤的传输性能及应用场合
芯/包直径 (μm)
工作波长 (μm)
带宽 (MHz)
数值孔径
衰减系数 (dB/km)
50/125
0.85,1.30 200~1500 0.20~0.24 0.8~1.5
62.5/125 85/125 100/125
其在不同的传输速率的 SDH 系统的应用情况,将 G.652 光纤进一步细分为 G.652A、
G.652B 和 G.652C。究其实质而言,G.652 光纤可分为两种,即常规单模光纤(G.652A
和 G.652B)和低水峰单模光纤(G.652C)。
a. 常规单模光纤
6
常规单模光纤于 1983 年开始商用。常规单模光纤的性能特点是:(1)在 1310nm 波长处的色散为零;(2)在波长为 1550nm 附近衰减系数最小,约为 0.22dB/km,但在 1550nm 附近其具有最大色散系数,为 17ps/(nm·km)。(3)这种光纤工作波长即可选 在 1310nm 波长区域,又可选在 1550 nm 波长区域,它的最佳工作波长在 1310 nm 区 域。这种光纤常称为“常规”或“标准”单模光纤。它是当前使用最为广泛的光纤。 迄今为止,其在全世界各地累计铺设数量已高达 7 千万公里。
标准化部门 ITU-T 在 2000 年 10 月对其中 4 种单模光纤已给出最新建议:G.652、G.653、
G.654 和 G.655 光纤。单模光纤的分类、名称、IEC 和 ITU-T 命名对应关系如下:
名称
ITU-T
IEC
非色散位移单模光纤
G.652:A、B、C B1.1 和 B1.3
光纤光缆知识培训
光纤光缆知识培训一、光纤光缆的基本概念光纤光缆是一种用于传输光信号的通信线路,它由一根或多根纤维组成,每根纤维都是以光波导的形式将光信号进行传输。
光纤光缆能够实现宽带、高速、远距离传输,并且具有抗干扰能力强、信息安全性高的优点。
光纤光缆的基本构造包括光纤芯、包层和护套。
光纤芯是传输光信号的主体,其材料通常为二氧化硅。
包层用于包裹光纤芯以提高光纤的抗折和抗拉性能,通常采用二氧化硅或者氟化聚合物。
护套则是用于保护整根光缆的材料,一般为聚乙烯或者聚氯乙烯等塑料材料。
二、光纤光缆的传输特性1. 带宽大:相比于传统的铜质电缆,光纤光缆的带宽更大,能够支持更高速的数据传输。
2. 传输距离远:光纤光缆能够实现较长距离的信号传输,通常能够实现几十公里到上百公里的传输距离。
3. 信号衰减小:光纤光缆的信号衰减非常小,可以在长距离内保持信号的稳定传输。
4. 抗干扰性强:由于光信号是以光波导的形式进行传输,光纤光缆具有良好的抗干扰性,能够在电磁干扰较严重的环境下实现稳定的传输。
5. 信息安全性高:光纤光缆传输的是光信号,而非电信号,因此很难被窃听,具有较高的信息安全性。
三、光纤光缆的应用领域1. 通信网络:光纤光缆是构建光纤通信网络的关键基础设施,其宽带、高速、远距离传输的特性使得其被广泛应用于长途、城域通信网的建设。
2. 数据中心:在数据中心网络中,光纤光缆能够提供高速、大容量的数据传输,以满足大数据处理和云计算等应用的需求。
3. 工业自动化:光纤光缆的抗干扰性强,使得其在工业自动化领域得到广泛应用,用于传输各类传感器信息、控制信号等。
4. 医疗领域:光纤光缆被广泛应用于医疗设备中,用于传输医学图像、激光手术器械等。
5. 军事领域:由于其信息安全性高的特性,光纤光缆在军事通信和指挥控制系统中得到广泛应用。
四、光纤光缆的安装和维护1. 安装前的准备:在进行光纤光缆的安装前,需要对线路进行详细的规划设计,包括线路路径选择、光缆类型选择等。
光纤光缆基本知识
光纤光缆基本知识光纤光缆基本知识1、光纤通信及发展史1、1966年英籍华⼈⾼锟提出'光纤通信'.2、以激光为光源,经光纤为传输媒质的通信⽅式,叫做光纤通信.3、1983年武汉三镇使⽤光纤通信投⼊电话⽹中使⽤,标志着我国光纤通信进⼊使⽤阶段.⼆、光通信原理介绍及光纤通信的特点1、全反射原理:1)光从光密介质射⼊光疏介质。
2)⼊射⾓⼤于临界⾓。
2、光通信特点:优点:1)传输频带宽、通信容量⼤2) 中继距离远、损耗低3)抗电磁能⼒强、⽆串话4)重量轻5)资源丰富6)抗化学腐蚀、柔软可绕缺点:1)强度不如⾦属2)连接⽐较困难3)分路耦合不变4)弯曲半径不宜太⼩5)传输能量⽐较困难三、光纤通信系统的组成光发送光传输光接收光端机四、光纤简介1、光纤的结构:由纤芯、包层、涂覆层组成2、光纤分类:1)按材料组成分:玻璃光纤、塑料光纤2)按传输模式分:单模光纤、多模光纤3)按折射率分布分:突变型、渐变型、阶跃型单模光纤G652 折射率:1310nm 1.4677 1550nm 1.4682G655 折射率:1550nm 1.4690多模光纤芯径62.5um A1b 折射率:850nm 1.496 1300nm 1.487芯径50um A1a 折射率:850nm 1.482 1300nm 1.4773、常⽤光纤的主要技术特性及部分指标介绍指标的介绍:1) 衰减:光在光纤中传输时能量的损耗2) ⾊散:光脉冲在光纤中传输时脉冲的展宽3) 偏振模⾊散:基模可分解成两个垂直相交的偏振模,光脉冲在光纤中传输时现两个垂直的偏振模间的时延差4) 光纤⼏何参数:包层直径、涂层直径、光纤不圆度同⼼度误差:芯/包层<1um><>不圆度=长轴直径-短轴直径/标准值4、模场直径:基模光斑的⼤⼩标准:9.2+0.4um模:光在光纤中的传输⽅式(单模、多模)纤芯直径:8.3um5、截⽌波长:保证光纤以基模传输的最⼩波长(G652 1100-1330nm)常⽤光纤的主要技术特性G652 衰减 1310nm≤0.36dB/km 1550nm≤0.22dB/km模场直径 1310nm 9.3+0.5um 1550nm 10.5+0.8um包层直径 125+1.0um包层不圆度 ≤02%模场/包层同⼼度误差 ≤1um涂层直径 245+5um涂层不圆度 /涂层与包层同⼼度误差 <>截⽌波长 1100nm≤λc≤1330nm零⾊散波长 1300nm-1324nm零⾊散斜率 ≤0.093Ps/nm2.km1288-1339nm波长范围内⾊散系数≤3.5 Ps/nm.km1271-1360nm波长范围内⾊散系数≤5.3 Ps/nm.km1550nm波长范围内⾊散系数 ≤17 Ps/nm.km衰减不连续性—--在1310nm或1550nm处均没有⼤于0.01dB的不连续点,实际⼀般控制≤0.03dB.衰减不均匀性----在光纤后向散射曲线上,任意500⽶长度上的实测衰减值与全长平均每500⽶的衰减值之差的最坏值应≤0.05dB.外观检查----排丝整齐,颜⾊鲜明涂覆层牢固光洁,不脱⽪.G655 (康宁LEAF、朗讯真波、长飞⼤保实)康宁 LEAF :衰减: 1550nm ≤ 0.22dB/km模场直径(MFD):9.5±0.6um截⽌波长(λcc) 1470nm⾊散:1530-1565nm 2.0-6.0 PS/nm.km1565-1625nm 4.5-11.2 PS/nm.km零⾊散斜率 ≤0.1Ps/nm2.kmPMD ≤0.1PS/km 1/2朗讯真波:衰减:1550nm≤ 0.22dB/km模场直径(MFD):9.4±0.6um截⽌波长(λcc) 1260nm⾊散:1530-1565nm 2.0-6.0 PS/nm.km1565-1625nm 4.0-8.6 PS/nm.km零⾊散斜率 ≤0.05Ps/nm2.kmPMD ≤0.5PS/km 1/2光缆的简单介绍1、缆的分类按光纤类别分:单模光纤光缆、多模光纤光缆按缆芯结构分:中⼼束管式、层绞式、⾻架式层绞式把松套光纤绕在中⼼加强件周围绞合⽽构成。
光缆光纤的基础知识
光缆光纤基础知识1.光缆的基本结构光缆一般由缆芯、加强构件和护层三部分组成。
缆芯:由单根或多根光纤芯线组成,有紧套和松套两种结构。
紧套光纤有二层和三层结构。
加强构件:用于增强光缆敷设时可承受的负荷。
一般是金属丝或非金属纤维。
护层:具有阻燃、防潮、耐压、耐腐蚀等特性,主要是对已成缆的光纤芯线进行保护。
根据敷设条件可由铝带图1-1 光缆结构/聚乙烯综合纵包带粘界外护层(LAP),钢带(或钢丝)铠装和聚乙烯护层等组成。
2.光缆的分类①按敷设方式分类:直埋光缆、管道光缆、架空光缆、水底光缆;②按缆芯结构分类:层绞式、骨架式、中心束管式、带状式、单元式;③按外护套结构分类:无铠装、钢带铠装、钢丝铠装;④按维护方式分类:充油光缆、充气光缆;⑤按光缆中有无金属分类:有金属光缆、无金属光缆;⑥按适用范围分类:中继光缆、海底光缆、用户光缆、局内光缆、长途光缆;⑦按所使用的光线分类:单模光缆、多模光缆、(阶跃型、渐变型)。
3.光缆的结构特点室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。
每种光缆的结构特点如下:①中心束管式光缆:光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。
图3-1中心束管式光缆结构②层绞式光缆:加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。
此类光缆如G YT A、G YT S等,通过对松套管的组合可以得到较大芯数的光缆。
绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。
图3-2层绞式光缆结构③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。
该种结构光缆在国内较少见,所占的比例较小。
光纤光缆基础知识培训
光子晶体光纤
光子晶体光纤在光通信、光学传感、激光雷达等领域 具有广泛的应用前景。例如,在光通信领域,可以实 现高保密性的光子加密传输;在光学传感领域,可以 实现高灵敏度的光学传感。
光子晶体光纤是一种新型的光纤,由于其特殊的结构 ,可以实现一些常规光纤无法实现的功能。例如,可 以实现无截止单模传输、高双折射等。
超高速率光纤通信系统的实现主要依赖于调制技术和信号处理技术的进 步。例如,采用更高速的调制格式、更先进的信号处理算法等,可以进
一步提高光纤通信系统的传输速率。
超大容量光纤通信系统的实现主要依赖于多信道复用技术和光子集成电 路技术的发展。例如,采用更高阶的复用技术、更紧凑的光子集成电路 等,可以进一步提高光纤通信系统的通信容量。
光纤光缆基础知识培训
目录
• 光纤光缆简介 • 光纤光缆的工作原理 • 光纤光缆的应用场景 • 光纤光缆的制造与维护 • 光纤光缆的发展趋势 • 案例分析
01 光纤光缆简介
光纤光缆的定义
总结词
光纤光缆是一种传输光信号的通信线缆,由光导纤维和保护 层组成。
详细描述
光纤光缆是利用光波在光导纤维中传输信息的通信线缆。它 由多根光导纤维和保护层组成,其中光导纤维是传输光信号 的核心部分,保护层则起到保护光导纤维的作用。
光纤光缆的分类
总结词
光纤光缆根据不同的分类标准可以分为多种类型,如 按传输模式可分为单模光纤和多模光纤;按折射率可 分为突变型和渐变型光纤。
详细描述
根据传输模式的不同,光纤光缆可以分为单模光纤和 多模光纤。单模光纤只传输单一的模态,适用于长距 离传输;多模光纤则可以传输多个模态,适用于短距 离或低速率的传输。此外,根据折射率分布的不同, 光纤光缆还可以分为突变型光纤和渐变型光纤。突变 型光纤的折射率在纤芯中保持不变,而渐变型光纤的 折射率则从纤芯中心向外部逐渐减小。
光纤光缆21条基本知识
光纤光缆21条基本知识
光纤光缆是在互联网时代发展起来的一种新型光纤技术,具有宽带大小、高速
稳定等特点。
它通过利用多条光缆传输信号,并通过光学技术完成高速数据传输,从而可以解决传统信号传输中的抖动和噪声等问题。
光纤光缆可以满足互联网要求,使网络性能达到更高水平,是互联网实现极致连接的重要部分。
光纤光缆普遍由21条芯微纤,每条芯微纤可分为索、芯材、几何和核心四部分。
其中,索包括抗拉套和内裹护套,它可以增强光纤的耐拉性、耐压性,从而提高产品性能;芯材由硅氧玻璃纤维制成,它可以把电能转换成光信号,实现数据传输;几何的位置关系有助于定义每个芯微纤的层次,从而实现准确的数据传输;核心是光纤的特有功能,它可以把多条光芯材的信号传输到同一个尺寸,并准确地把信号传输到每一条光纤上。
光纤光缆功能多样,可以完成百兆甚至是千兆的高数据传输,使宽带传输变得
更加流畅。
此外,光纤光缆还可以抵抗电磁波干扰和电磁干扰,因此它可以有效阻挡非法用户对网络的入侵,保证网络安全和稳定性。
除此之外,光纤光缆的耐用性比传统的电缆要强,它可以长久的在不同的环境中使用。
光纤光缆已经在互联网时代得到普遍应用,它可以为多种应用场景提供稳定高效、安全性可靠、维护成本低的数据传输服务。
它以及使得物联网、大数据应用和智能制造等更加便捷,也为云计算的快速发展提供了可靠的保障。
因此,光纤光缆也被看作是当下互联网发展的重要支柱。
光纤光缆的基本知识
光纤光缆的基本知识一、内容描述首先让我们先来了解一下光纤光缆是什么,光纤光缆简单来说,就是一种用光信号来传输信息的线缆。
它是由玻璃或者塑料制成的一根细细的线,里面隐藏着强大的能量和信息传输能力。
就像我们生活中的快递小哥一样,光纤光缆是信息传输的快递员,快速、稳定地把我们的数据、声音、图像等送到目的地。
接下来我们就来详细说说光纤光缆的一些基本知识。
1. 光纤光缆的概念与重要性光纤光缆这个词,听起来好像很高科技,但其实它已经成为我们生活中不可或缺的一部分了。
光纤光缆是什么?简单来说就是一种用光信号传递信息的通信线路,它里面藏着一根细细的玻璃丝或者塑料丝,通过这丝“光的高速公路”,信息就像光一样快速地传输着。
你可能想不到,无论我们打电话、上网冲浪,还是看电视节目,背后都有光纤光缆在默默支撑着我们的通信需求。
那么光纤光缆的重要性体现在哪里呢?首先它的传输速度非常快,能够迅速传递大量的信息。
其次光纤光缆的抗干扰能力强,不容易受到电磁干扰或天气的影响。
因此它在我们的日常生活中扮演着越来越重要的角色,光纤光缆技术的发展让信息的传递变得更快更方便,也给我们的生活带来了更多乐趣和便利。
每一次的拨通电话、每一条的信息传递背后,都是光纤光缆的默默付出。
现在你是不是对光纤光缆有了更深的认识和感慨呢?接下来我们将更深入地探讨光纤光缆的其他基本知识。
2. 光纤光缆的应用领域简介好的接下来让我为您撰写关于《光纤光缆的基本知识》中的“光纤光缆的应用领域简介”的部分:您知道吗?如今我们生活中的许多地方,都离不开小小的光纤光缆呢。
咱们一起来看看它们究竟应用在哪些地方吧!光纤光缆的广泛应用真可谓是无处不在呢!从城市的高楼大厦到偏远山区的小村落,都有它们的身影。
首先最明显的应用就是在通信领域了,无论是电话、手机还是互联网,光纤光缆都扮演着传输信息的角色,它们像信息的超级快递员一样,将信息快速准确地送达千家万户。
不仅如此光纤光缆还广泛应用于有线电视信号的传输,让我们的电视节目更加清晰稳定。
光纤光缆的基础知识
光纤光缆的基础知识一、光纤1.光纤的定义光纤是光导纤维的简称,即用来通光传输的石英玻璃丝。
2.光纤的结构组成和作用1)光纤的构成:光纤是由光折射率较高的纤芯和折射率较低的包层组成,为了保护光纤不受外力和环境的影响,在包层的外面都加上一层塑料护套(也叫涂覆层)。
2)光纤各组成部分的作用:纤芯:siO2+GeO2(作用是导光通信)包层:siO2(作用是使全反射成为可能)涂覆层:光固化丙烯酸环氧树脂或热固化的硅酮树脂(作用是防止光纤表面受损产生微裂纹,将光纤表面与环境中的水分、化学物质隔开,防止已有的微小裂纹逐步生长扩大)3.光纤的分类A:按组成光纤的材料分类:玻璃(石英)光纤、塑料光纤;B:按光纤横截面上折射率分布分类:有突变型光纤(普通单模光纤)、渐变型光纤(多模光纤)、阶跃型光纤等;C:按光纤传输模式分类:多模光纤、单模光纤等。
单模光纤中光偏振状态要传输过程中是否保持不变,又可分为偏振模保持光纤和非偏振模保持光纤;D:按工作波长窗口分类:长波长光纤和短波长光纤等注:单模光纤是指只能传输一种模式(基模或最低阶模)的光纤,其信号畸变很小。
多模光纤是一种能承载多种模式的光纤,即能够允许多个传导模的通过。
模是指光在光纤中的传输方式(单模/多模)。
单模光纤具有很小的芯径,以确保其传输单模,但是其包层直径要比芯径在十多倍,以避免光的损耗。
单模光纤以其衰减小、频带宽、容量大、成本低和易于扩容等优点,作为一种理想的光通信媒介,在全世界得到及为广泛的应用。
4.光纤的特性A:几何特性和光学特性(主要针对单模光纤)纤芯直径:A、多模光纤(50um/62.5um两种标称直径)B、单模光纤(8.3um)包层直径:125.0±1.0um包层不圆度:≤1.0%涂层外径:245±5.0um纤芯、包层同心度:≤0.5um翘曲度:曲率半径≥4.0m模场直径:指光纤中基模场的电场强度随空间的分布。
它描述了单模光纤中光能集中程度的参量。
光纤光缆基本知识
光纤光缆基本知识⼀、光纤1、概述光纤和同轴电缆相似,只是没有⽹状屏蔽层。
中⼼是光传播的玻璃芯。
在多模光纤中,芯的直径是15mm~50mm,⼤致与⼈的头发的粗细相当。
⽽单模光纤芯的直径为8mm~10mm。
芯外⾯包围着⼀层折射率⽐芯低的玻璃封套,以使光纤保持在芯内。
再外⾯的是⼀层薄的塑料外套,⽤来保护封套。
光纤通常被扎成束,外⾯有外壳保护。
纤芯通常是由⽯英玻璃制成的横截⾯积很⼩的双层同⼼圆柱体,它质地脆,易断裂,因此需要外加⼀保护层。
其结构如图1所⽰。
陆地上的光纤通常埋在地下1⽶处,有时会受到地下⼩动物的破坏。
在靠近海岸的地⽅,越洋光纤外壳被埋在沟⾥。
在深⽔中,它们处于底部,极有可能被鱼类咬坏或被渔船撞坏。
2、分类光纤主要分以下两⼤类:1)传输点模数类传输点模数类分单模光纤(Single Mode Fiber)和多模光纤(Multi Mode Fiber)。
单模光纤的纤芯直径很⼩, 在给定的⼯作波长上只能以单⼀模式传输,传输频带宽,传输容量⼤。
多模光纤是在给定的⼯作波长上,能以多个模式同时传输的光纤。
与单模光纤相⽐,多模光纤的传输性能较差。
2)折射率分布类折射率分布类光纤可分为跳变式光纤和渐变式光纤。
跳变式光纤纤芯的折射率和保护层的折射率都是⼀个常数。
在纤芯和保护层的交界⾯,折射率呈阶梯型变化。
渐变式光纤纤芯的折射率随着半径的增加按⼀定规律减⼩, 在纤芯与保护层交界处减⼩为保护层的折射率。
纤芯的折射率的变化近似于抛物线。
折射率分布类光纤光束传输如图2所⽰。
3、连接⽅式光纤有三种连接⽅式。
⾸先,可以将它们接⼊连接头并插⼊光纤插座。
连接头要损耗10%到20%的光,但是它使重新配置系统很容易。
第⼆,可以⽤机械⽅法将其接合。
⽅法是将两根⼩⼼切割好的光纤的⼀端放在⼀个套管中,然后钳起来。
可以让光纤通过结合处来调整,以使信号达到最⼤。
机械结合需要训练过的⼈员花⼤约5分钟的时间完成,光的损失⼤约为10%。
第三,两根光纤可以被融合在⼀起形成坚实的连接。
光纤光缆基础知识培训
一、光纤基础知识 二、常见光缆结构介绍
三、光缆命名规则
四、光缆的主要性能指标
光缆生产工艺过程
1、室内光缆工艺过程
原光纤 紧套工序 护套工序 成品
2、蝶形光缆工艺过程
原光纤
多芯
着色工序
单芯
护套工序
成品
3、室外光缆工艺过程
原光纤 着色工序 套塑工序
层绞式
成缆工序
护套工序
中心管式
成 品
Logo
光纤基础知识
室内光缆按光纤芯数分类,主要有单芯、双芯及多芯光缆等。根据 实际应用需要可以选择单模或多模光纤来生产。
常见光缆结构
1、单芯室内光缆(GJFJH/GJFJV)
常见光缆结构
2、双芯室内光缆(GJFJBH/GJFJBV)
常见光缆结构
3、多芯室内光缆(GJFJH/GJFJV)
光缆结构
4、分支型室内光缆(GJBFJH/GJBFJV)
光纤基础知识
3、多模光纤的区别
对于多模光纤,由于目前在接入网部分使用的较多,我们通过综合布 线标准ISO11801来详细了解一下。 2002年9月,ISO/IEC 11801正式颁布了新的多模光纤标准等级,将 多模光纤重新分为OM1、OM2和OM3三类,其中OM1、OM2指目前传统 的62.5μm 及50μm多模光纤,OM3是指万兆多模光纤。2009年,又新增 加了一种OM4万兆多模光纤。 这几种多模光纤的区别如下表:
Ⅳ. 护套代号 Y----聚乙烯护套 V----聚氯乙烯护套 U----聚氨酯护套 A----铝-聚乙烯粘结 护套 S----钢-聚乙烯粘结 护套 W----夹带平行钢丝 的钢-聚乙烯粘结护 套 L----铝护套 G----钢护套 Q----铅护套。
光纤光缆21条基础知识
光纤光缆基础知识1. 光纤的结构是怎么样的?光纤裸纤一般分为三层:纤芯、包层和涂覆层。
光纤的结构:光纤纤芯和包层是由不同折射率的玻璃组成,中心为高折射率玻璃纤芯(掺锗二氧化硅),中间为低折射率硅玻璃包层(纯二氧化硅)。
光以一特定的入射角度射入光纤,在光纤和包层间发生全发射(由于包层的折射率稍低于纤芯),从而可以在光纤中传播。
涂覆层的主要作用是保护光纤不受外界的损伤,同时又增加光纤的柔韧性。
正如前面所述,纤芯和包层都是玻璃材质,不能弯曲易碎,涂覆层的使用则起到保护并延长光纤寿命的作用。
2.光缆的组成光纤由纯石英以特别的工艺拉丝成比头发还细中间有几介质的玻璃管,它的质地脆易断,因此需要外加一层保护层。
光纤外层加上塑料保护套管及塑料外皮就成了光缆。
光缆包含光纤,光纤就是光缆内的玻璃纤维,广泛上来说光纤是光缆,都是一种传输介质。
但严格意义上讲,两者是不相同的产品,光纤和光缆的区别:光纤是一种传输光束的细而柔软的媒质。
多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆。
所以光纤是光缆的核心部分,光纤经过一些构件极其附属保护层的保护就构成了光缆。
3.光纤的工作波长?光是由它的波长来定义,在光纤通信中,使用的光是在红外区域中的光,此处光的波长大于可见光。
在光纤通信中,典型的波长是800到1600nm,其中最常用的波长是850nm、1310nm和1550nm。
在选择传输波长时,主要综合考虑光纤损耗和散射。
目的是通过向最远的距离、以最小的光纤损耗来传输最多的数据。
在传输中信号强度的损耗就是衰减。
衰减度与波形的长度有关,波形越长,衰减越小。
光纤中使用的光在850、1310、1550nm处的波长较长,故此光纤的衰减较小,这也导致较少的光纤损耗。
并且这三个波长几乎具有零吸收,最为适合作为可用光源在光纤中传输。
4.最小色散波长和最小损耗波长在目前商用光纤中,什么波长的光具有最小色散?什么波长的光具有具有最小损耗?1310nm波长的光具有最小色散,1550nm波长的光具有最小损耗。
光纤光缆基础知识
光纤光缆基础知识项⽬1-2 光缆识别⼀、资询、准备阶段⾸先,⽼师就光缆⼯程实训室器材展⽰柜中的各种类型的光缆分配给各个⼩组,让各⼩组同学直观感受⼀下光缆。
项⽬及要求说明:各⼩组经过学习讨论后,详细说明所取到的光缆的结构特征、类型、应⽤场合、光缆型号及其含义;纤芯数量、光纤结构、特性等。
图1 光缆实物图学⽣⼩组讨论学习要点:⾸先,光缆是怎么制作出来的?>> 知识连接1、光缆的结构分那⼏部分?典型的光缆结构有哪⼏种?>> 知识连接2、光缆可以分为哪⼏类?>> 知识连接3、如何识别光缆上的型号?>> 知识连接4、如何识别光缆的端别及纤序?>> 知识连接6. 典型光纤由⼏部分组成?各部分的作⽤是什么? >> 知识连接7. 光纤中光是如何传输的?为什么包层的折射率必须⼩于纤芯的折射率?>> 知识连接8.光纤损耗主要有⼏种原因?其对光纤通信系统有何影响?>> 知识连接9.光纤⾊散主要有⼏种类型?其对光纤通信系统有何影响?>> 知识连接教师职责:负责准备相关资料,同时,列出本项任务需要同学们掌握的重要专业知识点。
可以提问的⽅式引导⼩组讨论学习。
⼆、计划阶段学⽣根据⽼师布置的任务,准备相关知识的查找、学习,拟定学习和归纳总结的重点。
上交学习计划书。
教师根据学⽣拟定的学习计划评定学⽣的学习、总结能⼒。
三、项⽬实施⼩组根据布置的任务和拿到的光缆进⾏学习讨论。
各⼩组经过⾃主学习讨论后形成⼀个对光缆指标参数的⼀个成⽂的报告。
教师职责:⼩组讨论过程中,教师随时准备解答学⽣⼀切可能的问题。
同时,教师注意观察各⼩组的讨论情况,注意收集问题。
四、展⽰或汇报阶段⼩组成员陈述光缆识别的结果。
陈述过程中,其他组成员可提问,教师及时对问题进⾏补充说明或引申。
五、评分表附表:⼩组展⽰评价指标评选今⽇之星 _______________。
光纤光缆必备知识
光纤光缆必备知识光纤光缆的60条必备知识,收藏随身查!1.简述光纤的组成?答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。
2.描述光纤线路传输特性的基本参数有哪些?答:包括损耗、色散、带宽、截止波长、模场直径等。
3. 产生光纤衰减的原因有什么?答:光纤的衰减是指在一根光纤的两个横截面间的光功率的减少,与波长有关。
造成衰减的主要原因是散射、吸收以及由于连接器、接头造成的光损耗。
4.光纤衰减系数是如何定义的?答:用稳态中一根均匀光纤单位长度上的衰减(dB/km)来定义。
5.插入损耗是什么?答:是指光传输线路中插入光学部件(如插入连接器或耦合器)所引起的衰减。
6.光纤的带宽与什么有关?答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。
光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。
7.光纤的色散有几种?与什么有关?答:光纤的色散是指一根光纤内群时延的展宽,包括模色散、材料色散及结构色散。
取决于光源、光纤两者的特性。
8.信号在光纤中传播的色散特性怎样描述?答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。
9.什么是截止波长?答:是指光纤中只能传导基模的最短波长。
对于单模光纤,其截止波长必须短于传导光的波长。
10.光纤的色散对光纤通信系统的性能会产生什么影响?答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。
影响误码率的大小,和传输距离的长短,以及系统速率的大小。
光纤中由光源光谱成分中不同波长的不同群速度所引起的光脉冲展宽的现象。
11.什么是背向散射法?答:背向散射法是一种沿光纤长度上测量衰减的方法。
光纤中的光功率绝大部分为前向传播,但有很少部分朝发光器背向散射。
在发光器处利用分光器观察背向散射的时间曲线,从一端不仅能测量接入的均匀光纤的长度和衰减,而且能测出局部的不规则性、断点及在接头和连接器引起的光功率损耗。
OTDR正是利用背向散射来测光缆线路的损耗,长度等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤和光缆基础知识湖北凯乐新材料科技股份有限公司二OO二年六月光纤和光缆基础知识一、光纤1. 光纤结构光纤(Optical Fiber)是由中心的纤芯和外围的包层同轴组成的圆柱形细丝。
纤芯的折射率比包层稍高,损耗比包层更低,光能量主要在纤芯内传输。
包层为光的传输提供反射面和光隔离,并起一定的机械保护作用。
图1示出光纤的外形。
设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。
纤芯和包层的相对折射率差△=( n1-n2)/n1的典型值,一般单模光纤为0.3%~0.6%,多模光纤为1%~2%。
△越大,把光能量束缚在纤芯的能力越强,但信息传输容量却越小。
图1 光纤的外形2.光纤类型光纤种类很多,这里只讨论作为信息传输波导用的由高纯度石英(SiO2)制成的光纤。
实用光纤主要有三种基本类型,图2示出其横截面的结构和折射率分布,光线在纤芯传播的路径,以及由于色散引起的输出脉冲相对输入脉冲的畸变。
这些光纤的主要特征如下。
突变型多模光纤 (Step-Index Fiber, SIF) 如图2(a),纤芯折射率为n1保持不变,到包层突然变为n2。
这种光纤一般纤芯直径2a=50~80μm,光线以折线形状沿纤芯中心轴线方向传播,特点是信号畸变大。
渐变型多模光纤 (Graded-Index Fiber, GIF) 如图2(b),在纤芯中心折射率最大为n1,沿径向r向外围逐渐变小,直到包层变为n2。
这种光纤一般纤芯直径2a为50μm,光线以正弦形状沿纤芯中心轴线方向传播,特点是信号畸变小。
单模光纤 (Single-Mode Fiber, SMF) 如图2(c) 折射率分布和突变型光纤相似,纤芯直径只有8~10μm,光线以直线形状沿纤芯中心轴线方向传播。
因为这种光纤只能传输一个模式(两个偏振态简并),所以称为单模光纤,其信号畸变很小。
图2 三种基本类型的光纤(a)突变型多模光纤; (b)渐变型多模光纤; (c)单模光纤相对于单模光纤而言,突变型光纤和渐变型光纤的纤芯直径都很大,可以容纳数百个模式,所以称为多模光纤。
渐变型多模光纤和单模光纤,包层外径2b都选用125μm。
实际上,根据应用的需要,可以设计折射率介于SIF和GIF之间的各种准渐变型光纤。
为调整工作波长或改善色散特性,可以在图2(c)常规单模光纤的基础上,设计许多结构复杂的特种单模光纤。
最有用的若干典型特种单模光纤的横截面结构和折射率分布示于图3,这些光纤的特征如下。
双包层光纤如图3(a)所示,折射率分布像W形,又称为W型光纤。
这种光纤有两个包层,内包层外直径2a′与纤芯直径2a的比值a′/a≤2。
适当选取纤芯、外包层和内包层的折射率n1、n2和n3,调整a值,可以得到在1.3~1.6μm之间色散变化很小的色散平坦光纤(Dispersion-Flattened Fiber,DFF),或把零色散波长移到1.55μm的色散移位光纤(Dispersion-Shifted Fiber,DSF)。
三角芯光纤如图3(b)所示,纤芯折射率分布呈三角形,这是一种改进的色散移位光纤。
这种光纤在1.55μm有微量色散,有效面积较大,适合于密集波分复用和孤子传输的长距离系统使用,康宁公司称它为长距离系统光纤,这是一种非零色散光纤。
椭圆芯光纤如图3(c)所示,纤芯折射率分布呈椭圆形。
这种光纤具有双折射特性,即两个正交偏振模的传输常数不同。
强双折射特性能使传输光保持其偏振状态,因而又称为双折射光纤或偏振保持光纤。
图3 典型特种单模光纤(a)双包层; (b)三角芯; (c)椭圆形以上各种特征不同的光纤,其用途也不同。
突变型多模光纤信号畸变大,相应的带宽只有10~20MHz·km,只能用于小容量(8Mb/s以下)短距离(几km以内)系统。
渐变型多模光纤的带宽可达1~2GHz·km,适用于中等容量(34~140Mb/s)中等距离(10~20km)系统。
大容量(565Mb/s~2.5Gb/s)长距离(30km以上)系统要用单模光纤。
特种单模光纤大幅度提高光纤通信系统的水平。
1.55μm色散移位光纤实现了10Gb/s容量的100km的超大容量超长距离系统。
色散平坦光纤适用于波分复用系统,这种系统可以把传输容量提高几倍到几十倍。
三角芯光纤有效面积较大,有利于提高输入光纤的光功率,增加传输距离。
外差接收方式的相干光系统要用偏振保持光纤,这种系统最大优点是提高接收灵敏度,增加传输距离。
3. 光纤种类和应用1)光纤种类(1) 多模光纤①结构两种多模光纤结构,如图4和图5所示。
通常,光纤的纤芯用来导光,包层保证光全反射只发生在芯内,涂覆层则为保护光纤不受外界作用和吸收诱发微变的剪切应力。
表1列出了当今常用的AI类多模光纤的结构尺寸参数。
图4 梯度型多模光纤结构图5 阶跃型多模光纤结构表1 Al 类多模光纤的结构尺寸参数② 种类A. 梯度型多模光纤梯度型多模光纤包括Ala 、Alb 、Alc 和Ald 类型。
它们可用多组分玻璃或掺杂石英玻璃制得。
为降低光纤衰减,梯度型多模光纤的制备选用的材料纯度比大多数阶跃型多模光纤材料纯度高得多。
正是由于折射率呈梯度分布和更低的衰减,所以梯度型多模光纤的性能比阶跃型多模光纤性能要好得多。
一般在直径(包括缓冲护套)相同的情况下,梯度型多模光纤的芯径大大小于阶跃型多模光纤,这就赋予梯度型多模光纤更好的抗弯曲性能。
四种梯度型多模光纤的传输性能及应用场合,如表2所列。
表2 四种梯度型多模光纤的传输性能及应用场合B. 阶跃型多模光纤阶跃型多模光纤A2、A3和A4三类九个品种。
它们可选用多组分玻璃或掺杂玻璃或塑料作为芯、包层来制成光纤。
由于这些多模光纤具有大的纤芯和大的数值孔径,所以它们可更为有效地与非相干光源,例如发光二极管(LED)耦合。
链路接续可通过价格低廉的注塑型连接器,从而降低整个网络建设费用。
因此,阶跃型多模光纤,特别是A4类塑料光纤将在短距离通信中扮演着重要的角色。
A2、A3和A4三类阶跃型多模光纤的传输性能和应用场合,如表3所列。
表3 三类九种阶跃型多模光纤的传输性能及应用场合(2) 单模光纤①结构单模光纤的结构,如图6所示。
单模光纤具有小的芯径,以确保其传输单模,但是其包层直径要比芯径大十多倍,以避免光损耗。
单模光纤结构的各部分作用与多模光纤类似,与多模光纤所不同的是用与波长有关的模场直径w。
来表示芯直径。
表4和表5分别列出了当今光纤通信工程中广泛使用的B1.1和B4两类单模光纤的尺寸参数。
图6 阶跃型单模光纤结构表4 B1.1类单模光纤的结构尺寸参数表5 B4类单模光纤的结构尺寸参数②分类单模光纤以其衰减小、频带宽、容量大、成本低和易于扩容等优点,作为一种理想的光通信传输媒介,在全世界得到极为广泛的应用。
目前,随着信息社会的到来,人们研究出了光纤放大器、时分复用、波分复用和频分复用技术,从而使单模光纤的传输距离、通信容量和传输速率进一步提高。
值得指出的是,光纤放大器延伸了传输距离,复用技术在带来的高速率、大容量信号传输的同时,使色散、非线性效应对系统的传输质量的影响增大。
因此,人们专门研究开发了几种光纤:色散位移光纤、非零色散位移光纤、色散平坦光纤和色散补偿光纤,它们在解决色散和非线性效应问题上各有独道之处。
按照零色散波长和截止波长位移与否可将单模光纤分为5种,国际电信联盟电信标准化部门ITU-T在2000年10月对其中4种单模光纤已给出最新建议:G.652、G.653、G.654和G.655光纤。
单模光纤的分类、名称、IEC和ITU-T命名对应关系如下:名称 ITU-T IEC非色散位移单模光纤 G.652:A、B、C B1.1和B1.3单模光纤色散位移单模光纤 G.653 B2截止波长位移单模光纤 G.654 B1.2非零色散位移单模光纤 G.655:A、B B4色散补偿单模光纤A.非色散位移单模光纤2000年10月国际电信联盟第15专家组会议通过了非色散位移单模光纤(ITU-T G.652)最新标准文本、即按G.652光纤的衰减、色散、偏振模色散、工作波长范围及其在不同的传输速率的SDH系统的应用情况,将G.652光纤进一步细分为G.652A、G.652B和G.652C。
究其实质而言,G.652光纤可分为两种,即常规单模光纤(G.652A 和G.652B)和低水峰单模光纤(G.652C)。
a.常规单模光纤常规单模光纤于1983年开始商用。
常规单模光纤的性能特点是:(1)在1310nm 波长处的色散为零;(2)在波长为1550nm附近衰减系数最小,约为0.22dB/km,但在1550nm附近其具有最大色散系数,为17ps/(nm·km)。
(3)这种光纤工作波长即可选在1310nm波长区域,又可选在1550 nm波长区域,它的最佳工作波长在1310 nm区域。
这种光纤常称为“常规”或“标准”单模光纤。
它是当前使用最为广泛的光纤。
迄今为止,其在全世界各地累计铺设数量已高达7千万公里。
今天,绝大多数光通信传输系统都选用常规单模光纤。
这些系统包括在1310nm 和1550nm工作窗口的高速数字和CATV(Cable Television)模拟系统、然后,在1550nm 波长处的大色散成为高速系统中这种光纤中继距离延长的“瓶颈”。
利用常规单模光纤进行速率大于2.5Gbit/s的信号长途传输时,必须采取色散补偿措施进行色散补偿,并需引入更多的掺铒光纤放大器来补偿由引入色散补偿产生的损耗。
常规单模光纤(G.652A和G.652B)的色散,如图7所示。
常规单模光纤的传输性能及其应用场所,如表6所示。
图7 G.652光纤的色散表6 常规单模光纤的性能及应用b. 低水峰单模光纤为解决城域网发展面临着业务环境复杂多变、直接支持用户多、传输短(通常仅为50~80km)等问题,人们采取的解决方案是选用数十至上百个复用波长的高密集波分复用技术,即:将不同速率和性质的业务分配到不同的波长,在光路上进行业务量的选路和分插。
为此,需要研发出具有更宽的工作波长区的低水峰光纤(ITU-T G.652C) 来满足高密集波分城域网发展的需要。
众所周知,常规单模光纤G.652工作波长区窄的原因是1385nm附近高的水吸收峰。
在1385nm附近,常规G.652光纤中只要含有10-9量级个数的OH-离子就会产生几个分贝的衰减,使其在1350~1450nm的频谱区因衰减太高而无法使用。
为此,国外著名光纤公司都纷纷致力于研究消除这一高水峰的新工艺技术,从而研发出了工作波长区大大拓宽的低水峰光纤。
现以美国朗讯科技公司1998年研究出的低水峰光纤——全波光纤为例,说明该光纤的性能特点。
全波光纤与常规单模光纤G.652的折射率剖面一样。