1.4.2正余弦函数的性质(二)
1.4.2 正弦函数、余弦函数的性质(二)
【正、余弦函数的定义域、值域】 正弦曲线:
余弦曲线:
由正、余弦曲线很容易看出正弦函数、余弦函数的定义域都是实数集 R ,值域都 是 .对于正弦函数 y=sin x,x∈R 有: 当且仅当 x= 时,取得最大值 1; 当且仅当 x= 时,取得最小值-1. 对于余弦函数 y=cos x,x∈R 有: 当且仅当 x= 时,取得最大值 1; 当且仅当 x= 时,取得最小值-1. 【正、余弦函数的单调性】 正弦函数和余弦函数都是周期函数,且周期都是 2π,首先研究它们在一个周期区间上函 数值的变化情况,再推广到整个定义域. π 3π 函数 y=sin x,x∈ -2, 2 的图象如图所示:
2
1.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函 数值的大小比较,再利用单调性作出判断. 2.求三角函数值域或最值的常用求法 将 y 表示成以 sin x(或 cos x)为元的一次或二次等复合函数再利用换元或配方或利用函 数的单调性等来确定 y 的范围. 【当堂训练】
例 1 利用三角函数的单调性,比较下列各组数的大小. π 23 π 17 (1)sin 与 cos 156° ;(3)cos -18与 sin-10;(2)sin 196° - 5 π与 cos- 4 π.
小结 用正弦函数或余弦函数的单调性比较大小时,应先将异名化同名,把不在同一单 调区间内的角用诱导公式转化到同一单调区间,再利用单调性来比较大小.
3
鸡西市第十九中学高一数学组
训练 1
比较下列各组数的大小. 37 49 - π与 sin π;(2)cos 870° (1) sin 与 sin 980° . 6 3
例2
1 π 求函数 y=1+sin -2x+4,x∈[-4π,4π]的单调减区间.
正弦函数余弦函数的性质(二)
1.4.2 正弦函数、余弦函数的性质(二)学习目标:1.借助图象理解正、余弦函数在[0,2π]上的性质(单调性、最值、图象与x轴的交点等).(重点) 2.能利用性质解决一些简单问题.(重点、难点)课前自主预习:一、教材梳理正、余弦函数的图象与性质________y=cos x二、效果自测:(1)函数y =-12sin x ,x ∈⎣⎡⎦⎤0,π2的值域是_____________. (2)函数y =2+2cos x 的单调递增区间是_______________.三、疑难点拨:1.解读正弦、余弦函数的单调性(1)理解正弦函数、余弦函数的单调性,通常作函数y =sin x ,x ∈⎣⎡⎦⎤-π2,3π2,y =cos x ,x ∈[-π,π]的简图. (2)单调区间要在定义域内求解.(3)求解或判断正弦函数、余弦函数的单调区间(或单调性)是求与之相关的复合函数值域(最值)关键的一步.(4)确定含有正弦函数或余弦函数的较复杂函数的单调性时,要注意使用复杂函数的判断方法来判断. 2.解析正弦函数、余弦函数的最值(1)明确正弦、余弦函数的有界性,即|sin x|≤1,|cos x|≤1.(2)对有些函数,其最值不一定就是1或-1,要依赖函数的定义域来决定. (3)形如y =Asin(ωx +φ)(A >0,ω>0)的函数求最值时,通常利用“整体代换”,即令ωx +φ=z ,将函数转化为y =Asin z 的形式求最值.课堂互动探究题型一:求三角函数的单调区间例1、求函数y =2sin ⎝⎛⎭⎫π4-x 的单调增区间.规律总结:求与正、余弦函数有关的单调区间的策略 (1)结合正、余弦函数的图象,熟记它们的单调区间;(2)形如y =Asin(ωx +φ)(A >0,ω>0)的函数求单调区间时,应采用“换元法”整体代换,将“ωx +φ”看作一个整体“z”,即通过求y =Asin z 的单调区间而求出原函数的单调区间.求形如y =Acos(ωx +φ)(A >0,ω>0)的函数的单调区间,方法同上.【互动探究】求函数y =2cos ⎝⎛⎭⎫π4-x 的单调增区间.题型二:比较三角函数值的大小问题例2、比较下列各组数的大小:(1)cos ⎝⎛⎭⎫-235π与cos ⎝⎛⎭⎫-174π; (2)sin 194°与cos 160°; (3)sin 1,sin 2,sin 3.规律总结:比较三角函数值大小的方法(1)通常利用诱导公式化为锐角三角函数值;(2)不同名的函数化为同名函数; (3)自变量不在同一单调区间化至同一单调区间. 活学活用:1.比较下列各组数的大小:)1(sin(-320°)与sin 700°; (2)cos 17π8与cos 379π. 题型三:正、余弦函数的值域与最值问题例3、求下列函数的最大值和最小值.(1)y =3+2cos ⎝⎛⎭⎫2x +π3; (2)y =2sin ⎝⎛⎭⎫2x +π3⎝⎛⎭⎫-π6≤x ≤π6.规律总结:求正、余弦函数最值问题的关注点(1)形如y =asin x(或y =acos x)的函数的最值要注意对a 的讨论. (2)将函数式转化为y =Asin(ωx +φ)或y =Acos(ωx +φ)的形式. (3)换元后配方利用二次函数求最值. 活学活用2.求下列函数的最值:(1)y =3sin x -1sin x +2; (2)y =3-4cos ⎝⎛⎭⎫2x +π3,x ∈⎣⎡⎦⎤-π3,π6. 易错误区系列(六) 用换元法求三角函数最值中的常见错误典例:函数y =cos2 x -4cos x +5的值域是________.【即时演练】求函数y =1-2cos2 x +5sin x 的最大值和最小值.学业达标测试:1.函数y =-cos x 在区间⎣⎡⎦⎤-π2,π2上是( )A .增函数B .减函数C .先减后增函数D .先增后减函数 2.已知函数y =3cos(π-x ),则当x =____________时,函数取得最大值. 3.函数y =cos ⎝⎛⎭⎫x -π3的单调减区间是___________________________________.4.cos 1,cos 2,cos 3的大小关系是______________________________________ 5.求使下列函数取得最大值、最小值的自变量x 的集合,并分别写出最大值、最小值:(1)y =3-2sin x ; (2)y =cos x3.作业:1、设函数f (x )=a cos x +b 的最大值是1,最小值是-3,试确定g (x )=b sin ⎝⎛⎭⎫ax +π3的最大值.2、已知ω是正数,函数f (x )=2sin ωx 在区间⎣⎡⎦⎤-π3,π4上是增函数,求ω的取值范围.。
1.4.2 正弦函数、余弦函数的性质(二) 知识点及习题
1.4.2 正弦函数、余弦函数的性质(二)课时目标 1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y =sin x ,y =cos x 的单调性,并能用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.______时,y min =-1一、选择题1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( ) A .第一象限B .第二象限 C .第三象限D .第四象限2.若α,β都是第一象限的角,且α<β,那么( ) A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定 3.函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1D.⎣⎡⎦⎤-1,54 4.函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4C.⎝⎛⎭⎫π,3π2D.⎝⎛⎭⎫3π2,2π 5.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°6.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π)D .y =cos(x +π)7.函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是____________. 8.函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________.9.sin1,sin2,sin3按从小到大排列的顺序为__________________.10.设|x |≤π4,函数f (x )=cos 2x +sin x 的最小值是______.三、解答题11.求下列函数的单调增区间.(1)y =1-sin x2;(2)y =log 12(cos2x ).12.已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.能力提升13.已知sin α>sin β,α∈⎝⎛⎭⎫-π2,0,β∈⎝⎛⎭⎫π,32π,则( ) A .α+β>πB .α+β<πC .α-β≥-32πD .α-β≤-32π14.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C .2D .31.4.2 正弦函数、余弦函数的性质(二)答案知识梳理R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-π2+2k π,π2+2k π](k ∈Z ) [π2+2k π,3π2+2k π] (k ∈Z ) [-π+2k π,2k π] (k ∈Z ) [2k π,π+2k π] (k ∈Z ) x =π2+2k π (k ∈Z ) x =-π2+2k π (k ∈Z ) x =2k π (k ∈Z ) x =π+2k π (k ∈Z )作业设计 1.C 2.D3.C [y =sin 2x +sin x -1=(sin x +12)2-54当sin x =-12时,y min =-54;当sin x =1时,y max =1.]4.C [由y =|sin x |图象易得函数单调递增区间⎣⎡⎦⎤k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,32π为y =|sin x |的单调递增区间.]5.C [∵sin168°=sin (180°-12°)=sin12°, cos 10°=sin (90°-10°)=sin 80° 由三角函数线得sin 11°<sin 12°<sin 80°, 即sin 11°<sin 168°<cos 10°.]6.A [因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符合.故选A.] 7.⎣⎡⎦⎤π2,π 8.[0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3.∴0≤sin(2x +π3)≤1,∴y ∈[0,2]9.b <c <a解析 ∵1<π2<2<3<π,sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2. ∵b <c <a . 10.1-22解析 f (x )=cos 2x +sin x =1-sin 2x +sin x=-(sin x -12)2+54∵|x |≤π4,∴-22≤sin x ≤22.∴当sin x =-22时,f (x )min =1-22. 11.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z ,得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x2的增区间为[4k π+π,4k π+3π] (k ∈Z ).(2)由题意得cos2x >0且y =cos2x 递减.∴x 只须满足:2k π<2x <2k π+π2,k ∈Z .∴k π<x <k π+π4,k ∈Z .∴y =log 12(cos2x )的增区间为⎝⎛⎫k π,k π+π4,k ∈Z . 12.解 ∵0≤x ≤π2,∴-π3≤2x -x 3≤23π,∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1, f (x )min =-3a +b =-5.由⎩⎪⎨⎪⎧ 2a +b =1-3a +b =-5,解得⎩⎪⎨⎪⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1, f (x )min =2a +b =-5.由⎩⎪⎨⎪⎧ -3a +b =12a +b =-5,解得⎩⎪⎨⎪⎧a =-12+63b =19-123. 13.A [∵β∈⎝⎛⎭⎫π,32π, ∴π-β∈⎝⎛⎭⎫-π2,0,且sin(π-β)=sin β. ∵y =sin x 在x ∈⎝⎛⎭⎫-π2,0上单调递增, ∴sin α>sin β⇔sin α>sin(π-β) ⇔α>π-β⇔α+β>π.]14.B [要使函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则应有T 4≤π3或34T ≤π4,即2π4ω≤π3或6πω≤π,解得ω≥32或ω≥6. ∴ω的最小值为32,故选B.]。
2019A新高中数学必修第一册:1.4.2 正余弦函数的性质(第2课时)
∴ sin250>sin260.
5. 利用三角函数的单调性, 比较下列各组中两
个三角函数值的大小:
(1) sin250与sin260; (2) cos185 与 cos194;
解:
(3) (2)
cos515与cos530;
习题 1.4 A组
第 2、4、5 题.
练习: (课本40页)
1. 观察正弦曲线和余弦曲线, 写出满足下列条件 的区间:
(1) sinx>0;
(2) sinx<0;
(3) cosx>0;
(4) cosx<0.
y=sinx
y
1
-3
5
2
-2
3
2
o 21
3 2 5 3 x
2
2
2
(1) sinx>0 x(2k, 2k+). (2) sinx<0 x(2k, 2k).
2
时,
sinx 取得最小值 1,
则 y = 2sinx 取得最小值 2.
即 函数取得最大值 2 时, x 的取值集合为
{x| x = 2k
+
2
,
kZ};
函数取得最小值 2 时, x 的取值集合为
{x| x = 2k
2
,
kZ}.
3. 求使下列函数取得最大值、最小值的自变量的
集合, 并写出最大值、最小值各是多少?
(4) sin( 574 )= sin(8
+ (274))s=ins(in52774, )与sin( 683 ).
sin(
正弦函数、余弦函数性质二
1.4.2 正弦函数、余弦函数的性质(二)【一、学习目标】1、了解周期函数的概念;2、掌握正、余弦函数的性质,会求正、余弦函数的周期、奇偶性、单调性、最值等。
【二、学法指导】1、熟读教材P34-40,用红笔勾画,并对重要部分二次阅读,并回答提出的问题;2、限时完成导学案中合作探究部分,书写规范;3、激情投入,高效学习,培养良好的学习思维品质。
【三、问题导学】1. sin y x =和cos y x =的对称轴,对称中心分别是什么?_____________________________________________________________________________________2.如何把函数sin()y A x ωϕ=+平移成奇函数或偶函数?_____________________________________________________________________________________【四、尝试训练】1.求函数4cos()3y x π=+的对称轴及对称中心。
2.已知函数()sin (0)f x x ωωπ⎛⎫=+> ⎪3⎝⎭的最小正周期为π,则该函数的图象( ) A .关于点0π⎛⎫ ⎪3⎝⎭,对称 B .关于直线x π=4对称C .关于点0π⎛⎫ ⎪4⎝⎭,对称D .关于直线x π=3对称 3.把函数4cos()3y x π=+的图象向左平移ϕ个单位,所得的函数为偶函数,则ϕ的最小值是( ) A .3π4 B .3π2 C .3π D .3π5 4.设函数x b x a x f cos sin )(-=图象的一条对称轴方程为4x π=, 则,a b 满足( ) A . 0a b += B . 0a b -= C .1ab = D .1ab =-【五、例题分析】例1、 判断下列函数的奇偶性 )sin 1lg(sin )3(1sin 1cos )2(sin )1(22x x y x x y x x y ++=--==例2、求下列函数的最值,并求出相应的自变量的x 集合 )3cos(2)3(2sin 3)2(1cos )1(π---=-=+=x y x y x y例3、求下列函数的值域 3sin 3sin )3(5cos cos )2(cos log )1(25+-=+-==x x y x x y xy例4、利用三角函数的单调性,比较下列各组数的大小 )417cos()523cos()2()10sin()18sin()1(ππππ----与与例5、求下列函数的单调区间 )431cos(log )3()6cos(21)2()24sin()1(21πππ+=--=-=x y x y x y的值。
1.4.2 正、余弦函数的性质(二)
正弦曲线的对称轴为________________________;对称中心为_______________________;
余弦曲线的对称轴为________________________;对称中心为_______________________;
典例精析
例1判断下列函数的奇偶性
增大到 ;在每一上闭区间______________________________上都是减函数,其值从 减小到 。
(2)余弦函数在每一个闭区间______________________________上都是增函数,其值从
增大到 。在每一个闭区间______________________________上都是减函数,其值从 减小到 。
1.4.2 正、余弦函数的性质(二)
学习目标:
1、掌握正弦、余弦函数的奇偶性、单调性、对称性;
2、通过正余弦函数的图象来理解性质,培养数形结合的能力;
3、体会正余弦函数的有界性,并根据此性质来解决一些最值有关的问题;
自学导引
1.奇偶性
(1)正弦函数的奇偶性:如果点 是函数 的图象上任意一点,那么与它关于原点对称的点__________也在函数 的图象上,这时我们说函数 是_______函数。即:若__________________,则称函数 为奇函数。
A B C D
2、(1)函数 在 ( )
A 上是增函数 B 上是减函数
C 上是减函数 D 上是减函数
(2) 的奇偶性为 ( )
A 奇函数 B 偶函数 C 非奇非偶函数 D 既奇又偶函数
3、已知函数 的图象关于直线 对称,则 可能是( )
A B C D
4、已知函数 的最小正周期为 ,则该函数的图象 ( )
正弦函数、余弦函数的性质
1 变式2 : 求函数y cos( x ), x [2,2] 2 3 的单调递减区间 .
2 4 ( , ) 3 3
例2、求使下列不等式成立 x的集合 : 的
3 (1) sin x ( x R ); 2
( 2) 2 2 cos x 0( x R ).
5 3 +4kπ, 3 +4kπ]
, sin( x ), x [2 ,2 ] 2 3 的单调递增区间.
练习
1 练习 、求函数y cos( x )的单调递减 1 2 3 2 4 区间. (4k ,4k )
1 例3、求函数y sin( x )的单调递增 2 3 区间. 1 例4、求函数y cos( x )的单调递减 2 3 区间.
小结
1.正余弦函数的最值 2.正弦函数及余弦函数的单调
性与奇偶性
作业
课本40页练习
2
+2kπ 2
+2kπ
时
时取得
最小值-1 最大值1,当且仅当x=
值-1
对余弦函数当且仅当x= (2k+1)π 时取得
(2k-1)π
时取得最小
新课
记忆方法:
y
sin x 1 sin x 0 cos x 1
o
y
cos x 0 cos x 1
x
sin x 0
o
x
y sin x
]
y
2
3 2
2
o
2
3 2
2
x
余弦函数在每个闭区间[2k ,2k ]( k Z )上都是增函数, 在每一个闭区间[2k ,2k
高中数学第一章三角函数1.4.2正弦函数、余弦函数的性质第2课时正弦函数、余弦函数的性质(二)
(3)换元后配方利用二次函数求最值.
12/9/2021
第二十一页,共三十三页。
已知函数 f(x)=sin2x+cos x+43x∈0,23π,则
函数 f(x)的值域为( )
A.[1,2]
B.-14,74
C.-34,1
12/9/2021
第九页,共x+φ)(A>0,ω>0)的函数(hánshù)求 单调区间时,应采用“换元法”整体代换,将“ωx+φ”看作一个整体 “z”,即通过求y=Asin z的单调区间而求出原函数的单调区间.求形如y= Acos(ωx+φ)(A>0,ω>0)的函数的单调区间,方法同上.
D.cos-π6<cos-π5
【答案】C
12/9/2021
第六页,共三十三页。
3 . (2018 年 内 蒙 古 呼 伦 贝 尔 二 模 ) 若 函 数 f(x) = 1 + asin ax+π6 (a > 0) 的 最 大 值 为 3 , 则 f(x) 的 最 小 正 周 期 为 ________.
求最值.
12/9/2021
第二十七页,共三十三页。
1.函数 y=cos 2x 在下列哪个区间上是减函数( )
A.-π4,4π C.0,π2 【答案】C
B.π4,34π D.π2,π
【解析】若函数 y=cos 2x 递减,应有 2kπ≤2x≤π+2kπ,k
∈Z,即 kπ≤x≤π2+kπ,k∈Z,令 k=0 可得 0≤x≤π2.
第2课时(kèshí) 正弦函数、余弦函数的性质(二)
12/9/2021
第一页,共三十三页。
目标定位
重点难点
1.借助图象理解正、余弦函数在
高中数学 正弦、余弦函数性质(二)
学生班级: 姓名: 小组序号: 评价: 使用时间必修四 1.4.2正弦函数、余弦函数的性质(二)【学习目标】1、理解正弦、余弦函数的定义域、值域和最值的意义;2、理解并掌握三角函数的单调性,能求出正、余弦函数的值域和单调区间;3、能综合运用三角函数的图象和性质解决具体问题.【学习重点】重点:正、余弦函数的单调性.难点:正、余弦函数的单调性的理解与应用. 【学法指导】1.先预习课本P 34-P 42,然后开始做导学案。
2. 带“*”的C 层可以不做。
预习案一、问题导学1、正弦函数、余弦函数是定义域上的单调函数吗?2、“正弦函数在第一象限是增函数”的说法对吗? 二、知识梳理三、预习自测1、当]2,0[π∈x 时,函数x y sin =的值域为 ,单调增区间为 。
2、)4sin(π+=x y 的一条对称轴是( ).(A) x 轴 (B) y 轴 (C) 直线4π=x (D) 直线4π-=x3、x y 2cos 1+=的最大值是 ,此时x 的取值集合是 。
探究案四、合作探究探究一:正弦、余弦函数的单调性及其应用:例1:求函数)32sin(π+=x y 的单调增区间。
思考:当]2,2[ππ-∈x 时,此函数的单调增区间又是什么?例2:比较下列各组数的大小: (1))10sin()18sin(ππ--与 (2))417cos()523cos(ππ--与探究二:正弦、余弦函数的最值问题例3:下列函数有最大值、最小值吗?如果有,请写出取最大值、最小值时的自变量x 的集合。
并说出最大值、最小值分别是什么。
R x x y ∈+=,1cos )1( R x x y ∈-=,2sin 3)2(五、课堂小结训练案六、当堂训练 1、函数)32sin(π+=x y 的对称中心为 。
2、y =)(x f 是以π2为周期的奇函数,若1)2(=-πf ,则)25(πf 的值为( ) A .1- B .1 C .2π D .2π-3、已知函数)32sin()(π-=x x f ,求:(1)求()f x 的最小正周期;(2)求()f x 的最值及相应的x 的集合;(3)求()f x 的单调增区间。
1.4.2 正弦函数、余弦函数的性质(二)
跟踪训练
2.判断下列函数的奇偶性: 2x+5π; (1)f(x)= 2sin 2 (2)f(x)= 2sin x-1.
解析: (1)∵函数的定义域为(-∞,+∞),即定义域关于 原点对称, 2x+5π= 2cos 2x, 且 f(x)= 2sin 2 显然有 f(-x)= 2cos(-2x)= 2cos 2x=f(x), 2x+5π是偶函数; ∴函数 f(x)= 2sin 2
-π+2kπ,π+2kπ ,(k∈Z) 增函数 2 2 (k∈Z) 减函数 增函数 减函数
π+2kπ,3π+2kπ, 2 2
思考应用 1.正弦函数、余弦函数是单调函数吗?能否说“正弦
函数在第一象限是增函数”?
解析:正弦函数、余弦函数都不是定义域上的单调函
数.“正弦函数在第一象限是增函数”也是错误的,因为
2.使 y=sin x 和 y=cos x 均为减函数的一个区间是( 0,π π,π A. B. 2 2 π,3π 3π,π C. D. 2 2
)
解析:由y=sinx,x∈[0,2π]
与y=cos x,x∈[0,2π]的图象知:y
=sin x和y=cos x的均为减函数的
三角函数的奇偶性 判断下列函数的奇偶性:
(1)f(x)=sin4x-cos4x+cos 2x;
1-sin x-cos x (2)f(x)= . 1+sin x+cos x
分析:本题考查函数的奇偶性问题. 解析: (1)∵函数的定义域为(-∞,+∞),即定义域关 于原点对称, 且f(-x)=sin4(-x)-cos4(-x)+cos(-2x)=sin4x-cos4x +cos 2x=f(x),
基础梳理 一、正弦函数和余弦函数的单调性
1.4.2 正弦 余弦函数的性质(单调性、最值)
3 5 对称中心: ( ,0),( ,0),( ,0),( ,0) 2 2 2 2
2
k ,0) k Z
1 例5:求函数 y sin( x ) 的单调递增区间: 2 3
解:
2
1 y sin x 3 2
y sin z
2k z
余弦函数的单调性
y
1 -3
5 2
-2
3 2
-
2
o
-1
2
3 2
2
5 2
x
3
7 2
4
x
cosx
-
-1
…
2
…
0
1
…
2
…
-1
0
0
y=cosx (xR) 增区间为 [ +2k, 2k],kZ + ], kZ 减区间为 [2k, 2k, 其值从-1增至1 其值从 1减至-1
y cos x
3 5 2
2
y
1
任意两相邻对称轴 ( 或对称中心 ) 的间距为 3 2 O 5 x 3 半个周期;
2
2
1
2
2
3
2
对称轴与其相邻的对称中心的间距为
对称轴:x
,0, , 2
四分之一个周期.
(
x k , k Z
o
-1
2
3
4
5
6
x
sin(-x)= - sinx (xR) cos(-x)= cosx (xR)
1.4.2 正弦函数、余弦函数的性质(二)
1.4.2 正弦函数、余弦函数的性质(二)[学习目标]1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域和最值.2.掌握y =sin x ,y =cos x 的单调性,并能利用单调性比较大小. 3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间. [知识链接]1.怎样求函数f (x )=A sin(ωx +φ)(或f (x )=A cos(ωx +φ))的最小正周期答 由诱导公式一知:对任意x ∈R ,都有A sin [(ωx +φ)+2π]=A sin(ωx +φ), 所以A sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +2πω+φ=A sin(ωx +φ),即f ⎝ ⎛⎭⎪⎫x +2πω=f (x ),所以f (x )=A sin(ωx +φ)(ω≠0)是周期函数,2πω就是它的一个周期.由于x 至少要增加2π|ω|个单位,f (x )的函数值才会重复出现,因此,2π|ω|是函数f (x )=A sin(ωx +φ)的最小正周期.同理,函数f (x )=A cos(ωx +φ)也是周期函数,最小正周期也是2π|ω|.2.观察正弦曲线和余弦曲线,正、余弦函数是否存在最大值和最小值?若存在,其最大值和最小值分别为多少?答 正、余弦函数存在最大值和最小值,分别是1和-1. [预习导引]正弦函数、余弦函数的性质:续表续表要点一 求正、余弦函数的单调区间 例1 求函数y =2sin ⎝ ⎛⎭⎪⎫π4-x 的单调递增区间.解 y =2sin ⎝ ⎛⎭⎪⎫π4-x =-2sin ⎝ ⎛⎭⎪⎫x -π4,令z =x -π4,则y =-2sin z .因为z 是x 的一次函数,所以要求y =-2sin z 的递增区间,即求sin z 的递减区间,即2k π+π2≤z ≤2k π+3π2(k ∈Z ). ∴2k π+π2≤x -π4≤2k π+3π2(k ∈Z ), 2k π+3π4≤x ≤2k π+7π4(k ∈Z ), ∴函数y =2sin ⎝ ⎛⎭⎪⎫π4-x 的递增区间为⎣⎢⎡⎦⎥⎤2k π+3π4,2k π+7π4(k ∈Z ). 规律方法 用整体替换法求函数y =A sin(ωx +φ)或y =A cos(ωx +φ)的单调区间时,如果式子中x 的系数为负数,先利用诱导公式将x 的系数变为正数再求其单调区间.再将最终结果写成区间形式. 跟踪演练1 求下列函数的单调递增区间: (1)y =1+2sin ⎝ ⎛⎭⎪⎫π6-x ;(2)y =log cos x .解 (1)y =1+2sin ⎝ ⎛⎭⎪⎫π6-x =1-2sin ⎝ ⎛⎭⎪⎫x -π6.令u =x -π6,则根据复合函数的单调性知,所给函数的单调递增区间就是y =sin u 的单调递减区间,即2k π+π2≤u ≤2k π+32π(k ∈Z ), 亦即2k π+π2≤x -π6≤2k π+3π2(k ∈Z ). 亦即2k π+23π≤x ≤2k π+53π(k ∈Z ),故函数y =1+2sin ⎝ ⎛⎭⎪⎫π6-x 的单调递增区间是⎣⎢⎡⎦⎥⎤2k π+23π,2k π+53π(k ∈Z ).(2)由cos x >0,得2k π-π2<x <2k π+π2,k ∈Z . ∵12<1,∴函数y =log 12cos x 的单调递增区间即为 u =cos x ,x ∈⎝ ⎛⎭⎪⎫2k π-π2,2k π+π2(k ∈Z )的递减区间,∴2k π≤x <2k π+π2,k ∈Z .故函数y =log 12cos x 的单调递增区间为 ⎣⎢⎡⎭⎪⎫2k π,2k π+π2(k ∈Z ). 要点二 正、余弦函数的单调性的应用例2 利用三角函数的单调性,比较下列各组数的大小. (1)sin ⎝ ⎛⎭⎪⎫-π18与sin ⎝ ⎛⎭⎪⎫-π10;(2)sin 196°与cos 156°; (3)cos ⎝ ⎛⎭⎪⎫-235π与cos ⎝ ⎛⎭⎪⎫-174π. 解 (1)∵-π2<-π10<-π18<π2, ∴sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10.(2)sin 196°=sin(180°+16°)=-sin 16°,cos 156°=cos(180°-24°)=-cos 24°=-sin 66°, ∵0°<16°<66°<90°,∴sin 16°<sin 66°; 从而-sin 16°>-sin 66°,即sin 196°>cos 156°. (3)cos ⎝ ⎛⎭⎪⎫-235π=cos 235π=cos(4π+35π)=cos 35π, cos ⎝ ⎛⎭⎪⎫-174π=cos 174π=cos ⎝ ⎛⎭⎪⎫4π+π4=cos π4. ∵0<π4<35π<π,且y =cos x 在[0,π]上是减函数, ∴cos 35π<cos π4,即cos ⎝ ⎛⎭⎪⎫-235π<cos ⎝ ⎛⎭⎪⎫-174π.规律方法 用正弦函数或余弦函数的单调性比较大小时,应先将异名化同名,把不在同一单调区间内的角用诱导公式转化到同一单调区间,再利用单调性来比较大小.跟踪演练2 比较下列各组数的大小. (1)sin ⎝ ⎛⎭⎪⎫-376π与sin ⎝ ⎛⎭⎪⎫493π;(2)cos 870°与sin 980°.解 (1)sin ⎝ ⎛⎭⎪⎫-376π=sin ⎝ ⎛⎭⎪⎫-6π-π6=sin ⎝ ⎛⎭⎪⎫-π6, sin ⎝ ⎛⎭⎪⎫493π=sin ⎝ ⎛⎭⎪⎫16π+π3=sin π3, ∵y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,∴sin ⎝ ⎛⎭⎪⎫-π6<sin π3,即sin ⎝ ⎛⎭⎪⎫-376π<sin 493π. (2)cos 870°=cos(720°+150°)=cos 150°,sin 980°=sin(720°+260°)=sin 260°=sin(90°+170°)=cos 170°, ∵0°<150°<170°<180°,∴cos 150°>cos 170°,即cos 870°>sin 980°. 要点三 求正、余弦函数的最值(值域)例3 (1)求函数y =3-2sin x 取得最大值、最小值时的自变量x 的集合,并分别写出最大值、最小值;(2)求函数f (x )=2sin 2x +2sin x -12,x ∈⎣⎢⎡⎦⎥⎤π6,5π6的值域.解 (1)∵-1≤sin x ≤1,∴当sin x =-1,即x =2k π+3π2,k ∈Z 时,y 取得最大值5,相应的自变量x的集合为⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x =2k π+3π2,k ∈Z .当sin x =1,即x =2k π+π2,k ∈Z 时,y 取得最小值1,相应的自变量x 的集合为⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫x =2k π+π2,k ∈Z .(2)令t =sin x ,y =f (t ),∵x ∈⎣⎢⎡⎦⎥⎤π6,5π6,∴12≤sin x ≤1,即12≤t ≤1.∴y =2t 2+2t -12=2⎝ ⎛⎭⎪⎫t +122-1,∴1≤y ≤72,∴函数f (x )的值域为⎣⎢⎡⎦⎥⎤1,72.规律方法 (1)形如y =a sin x +b (或y =a cos x +b )的函数的最值或值域问题,利用正、余弦函数的有界性(-1≤sin x ,cos x ≤1)求解.求三角函数取最值时相应自变量x 的集合时,要注意考虑三角函数的周期性.(2)求解形如y =a sin 2 x +b sin x +c (或y =a cos 2x +b cos x +c ),x ∈D 的函数的值域或最值时,通过换元,令t =sin x (或cos x ),将原函数转化为关于t 的二次函数,利用配方法求值域或最值即可.求解过程中要注意t =sin x (或cos x )的有界性. 跟踪演练3 求函数y =sin ⎝ ⎛⎭⎪⎫π3+4x +cos ⎝ ⎛⎭⎪⎫4x -π6的周期、单调区间及最大、最小值.解 ∵⎝ ⎛⎭⎪⎫π3+4x +⎝ ⎛⎭⎪⎫π6-4x =π2,∴cos ⎝ ⎛⎭⎪⎫4x -π6=cos ⎝ ⎛⎭⎪⎫π6-4x=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3+4x =sin ⎝ ⎛⎭⎪⎫π3+4x . 从而原式就是y =2sin ⎝ ⎛⎭⎪⎫4x +π3,这个函数的最小正周期为2π4,即T =π2.当-π2+2k π≤4x +π3≤π2+2k π(k ∈Z )时函数单调递增,所以函数的单调递增区间为⎣⎢⎡⎦⎥⎤-5π24+k π2,π24+k π2(k ∈Z ). 当π2+2k π≤4x +π3≤3π2+2k π(k ∈Z )时函数单调递减,所以函数的单调递减区间为⎣⎢⎡⎦⎥⎤π24+k π2,7π24+k π2(k ∈Z ). 当x =π24+k π2(k ∈Z )时,y max =2; 当x =-5π24+k π2(k ∈Z )时,y min =-2.1.函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6的一个递减区间是( )A.⎣⎢⎡⎦⎥⎤-π2,π2 B .[-π,0] C.⎣⎢⎡⎦⎥⎤-23π,23π D.⎣⎢⎡⎦⎥⎤π2,23π答案 D解析 由π2≤x +π6≤32π解得π3≤x ≤43π.故选D. 2.下列不等式中成立的是( ) A .sin ⎝ ⎛⎭⎪⎫-π8>sin ⎝ ⎛⎭⎪⎫-π10B .sin 3>sin 2C .sin 75π>sin ⎝ ⎛⎭⎪⎫-25πD .sin 2>cos 1 答案 D解析 ∵sin 2=cos ⎝ ⎛⎭⎪⎫π2-2=cos ⎝ ⎛⎭⎪⎫2-π2,且0<2-π2<1<π, ∴cos ⎝ ⎛⎭⎪⎫2-π2>cos 1,即sin 2>cos 1.故选D.3.函数y =cos ⎝ ⎛⎭⎪⎫x +π6,x ∈⎣⎢⎡⎦⎥⎤0,π2的值域是( )A.⎣⎢⎡⎦⎥⎤-32,12B.⎣⎢⎡⎦⎥⎤-12,32 C.⎣⎢⎡⎦⎥⎤32,1 D.⎣⎢⎡⎦⎥⎤12,1答案 B解析 ∵0≤x ≤π2,∴π6≤x +π6≤23π. ∴cos 23π≤cos ⎝ ⎛⎭⎪⎫x +π6≤cos π6,∴-12≤y ≤32.故选B.4.求函数y =f (x )=sin 2 x -4sin x +5的值域. 解 设t =sin x ,则|t |≤1, f (x )=g (t )=t 2-4t +5(-1≤t ≤1) g (t )=t 2-4t +5的对称轴为t =2.开口向上,对称轴t =2不在研究区间[-1,1]内. g (t )在[-1,1]上是单调递减的,∴g(t)max=g(-1)=(-1)2-4×(-1)+5=10,g(t)min=g(1)=12-4×1+5=2,即g(t)∈[2,10].所以y=f(x)的值域为[2,10].1.求函数y=A sin(ωx+φ)(A>0,ω>0)单调区间的方法是:把ωx+φ看成一个整体,由2kπ-π2≤ωx+φ≤2kπ+π2(k∈Z)解出x的范围,所得区间即为增区间,由2kπ+π2≤ωx+φ≤2kπ+32π (k∈Z)解出x的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.3.求三角函数值域或最值的常用求法:将y表示成以sin x(或cos x)为元的一次或二次等复合函数再利用换元或配方或利用函数的单调性等来确定y的范围.一、基础达标1.若y=sin x是减函数,y=cos x是增函数,那么角x在()A.第一象限B.第二象限C.第三象限D.第四象限答案C2.若α,β都是第一象限的角,且α<β,那么()A.sin α>sin βB.sin β>sin αC.sin α≥sin βD.sin α与sin β的大小不定答案D3.函数y=2sin2x+2cos x-3的最大值是()A .-1B .1C .-12 D .-5 答案 C解析 由题意,得y =2sin 2 x +2cos x -3=2(1-cos 2x )+2cos x -3= -2⎝ ⎛⎭⎪⎫cos x -122-12.∵-1≤cos x ≤1, ∴当cos x =12时,函数有最大值-12. 4.对于下列四个命题:①sin ⎝ ⎛⎭⎪⎫-π18>sin ⎝ ⎛⎭⎪⎫-π10;②cos ⎝ ⎛⎭⎪⎫-25π4>cos ⎝ ⎛⎭⎪⎫-17π4;③tan 138°>tan 143°;④tan 40°>sin 40°. 其中正确命题的序号是( )A .①③B .①④C .②③D .②④ 答案 B5.下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin(2x +π2) B .y =cos(2x +π2) C .y =sin(x +π2) D .y =cos(x +π2)答案 A解析 因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎢⎡⎦⎥⎤π4,π2上为增函数,故B 不符合.故选A. 6.若f (x )=2sin ωx (0<ω<1)在区间⎣⎢⎡⎦⎥⎤0,π3上的最大值是2,则ω=________.答案 34解析 ∵x ∈⎣⎢⎡⎦⎥⎤0,π3,即0≤x ≤π3,且0<ω<1,∴0≤ωx ≤ωπ3<π3. ∵f (x )max =2sin ωπ3=2,∴sin ωπ3=22,ωπ3=π4,即ω=34. 7.求下列函数的单调增区间. (1)y =1-sin x2; (2)y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z , 得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x2的增区间为[4k π+π,4k π+3π] (k ∈Z ).要求原函数的增区间,即求函数y =cos ⎝ ⎛⎭⎪⎫x 2-π3的减区间,且cos ⎝ ⎛⎭⎪⎫x 2-π3>0.∴2k π≤x 2-π3<2k π+π2(k ∈Z ). 整理得4k π+23π≤x <4k π+53π(k ∈Z ).所以函数y =log 12cos ⎝ ⎛⎭⎪⎫π3-x 2的单调递增区间是⎣⎢⎡⎭⎪⎫4k π+23π,4k π+53π(k ∈Z ).二、能力提升8.函数y =|sin x |的一个单调增区间是( ) A.⎝ ⎛⎭⎪⎫-π4,π4 B.⎝ ⎛⎭⎪⎫π4,3π4 C.⎝ ⎛⎭⎪⎫π,3π2 D.⎝ ⎛⎭⎪⎫3π2,2π 答案 C解析 由y =|sin x |图象易得函数单调递增区间⎣⎢⎡⎦⎥⎤k π,k π+π2,k ∈Z ,当k =1时,得⎝ ⎛⎭⎪⎫π,3π2为y =|sin x |的单调递增区间. 9.设a >0,对于函数f (x )=sin x +asin x (0<x <π),下列结论正确的是( ) A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值答案 B解析 因为sin x >0,分子分母同除以sin x 得:f (x )=1+a sin x ,因为a >0,0<x <π,所以0<sin x ≤1,故选B.10.sin 1,sin 2,sin 3按从小到大排列的顺序为__________________. 答案 sin 3<sin 1<sin 2解析 ∵1<π2<2<3<π,sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝ ⎛⎭⎪⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2.11.若函数y =a cos x +b (a ,b 为常数)的最大值为1,最小值为-7,求函数y =3+ab sin x 的最值和最小正周期.解 ∵-1≤cos x ≤1,当a >0时,b -a ≤y ≤a +b∴{ b -a =-7a +b =1∴{ a =4b =-3.当a <0时,a +b ≤y ≤b -a ,∴{ b -a =1a +b =-7∴{ a =-4b =-3.当a =4,b =-3时,y =3-12sin x ,∴y max =15,y min =-9,T =2π; 当a =-4,b =-3时,y =3+12sin x ,∴y max =15,y min =-9,T =2π.12.(2013·福建理改编)已知函数f (x )=sin(ωx +φ)(ω>0,0<φ<π)的周期为π,图象的一个对称中心为⎝ ⎛⎭⎪⎫π4,0,将函数f (x )图象上的所有点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移π2个单位长度后得到函数g (x )的图象.求函数f (x )与g (x )的解析式.解 由函数f (x )=sin(ωx +φ)的周期为π,ω>0,得ω=2又曲线y =f (x )的一个对称中心为⎝ ⎛⎭⎪⎫π4,0,φ∈(0,π) 故f ⎝ ⎛⎭⎪⎫π4=sin ⎝ ⎛⎭⎪⎫2×π4+φ=0,得φ=π2,所以f (x )=cos 2x 将函数f (x )图象上所有点的横坐标伸长到原来的2倍(纵坐标不变)后可得y =cos x的图象,再将y =cos x 的图象向右平移π2个单位长度后得到函数g (x )=sin x .三、探究与创新13.设函数y =-2cos ⎝ ⎛⎭⎪⎫12x +π3,x ∈⎣⎢⎡⎦⎥⎤28π5,a ,若该函数是单调函数,求实数a 的最大值.解 由2k π≤12x +π3≤2k π+π(k ∈Z )得4k π-23π≤x ≤4k π+43π(k ∈Z ).∴函数的单调递增区间是⎣⎢⎡⎦⎥⎤4k π-23π,4k π+43π(k ∈Z ), 同理函数的单调递减区间是⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π(k ∈Z ). 令285π∈⎣⎢⎡⎦⎥⎤4k π-23π,4k π+43π,即1615≤k ≤4730,又k ∈Z ,∴k 不存在. 令285π∈⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π,得k =1. ∴285π∈⎣⎢⎡⎦⎥⎤4k π+43π,4k π+103π, 这表明y =-2cos ⎝⎛⎭⎫12x +π3在⎣⎡⎦⎤28π5,22π3上是减函数,∴a 的最大值是22π3.。
1.4.2 正弦函数、余弦函数的性质(二) 奇偶性
3
鸡西市第十九中学高一数学组
4
在下图中利用平移画出余弦曲线
观察图像填下列各空: 从函数图象看,正弦函数 y=sin x 的图象关于 关于 对称;从诱导公式看,sin (-x)=
对称,余弦函数 y=cos x 的图象 ,cos(-x)= 均对一切 x∈R 函数.
恒成立.所以说,正弦函数是 R 上的
函数,余弦函数是 R 上的
【注意】判断函数的奇偶性应坚持“定义域优先”原则,即先求其定义域,看它是否关
2
鸡西市第十九中学高一数学组
求值区间内. 训练 3 π π 5π 若 f(x)是以 为周期的奇函数,且 f 3=1,求 f- 6 的值. 2
【当堂训练】 3 1.函数 y=sin(4x+ π)的周期是( 2 A.2π B.π ) B.y=sin 2x D.y=cos(-4x) 1-sin x (2)f(x)= . 1+sin x ) π C. 2பைடு நூலகம்π D. 4
鸡西市第十九中学高一数学组
鸡西市第十九中学学案
2014 年( )月( )日 班级 姓名
1.4.2 学习 目标 重点 难点
正弦函数、余弦函数的性质(二) 奇偶性
1.掌握函数 y=sin x,y=cos x 的奇偶性, 2.会判断简单三角函数的奇偶性. 正弦函数、余弦函数奇(偶)函数的图像特征
【奇函数】一般地,对于函数 f ( x) 的 定义域的任意一个 x ,都有 f ( x) f ( x) ,那 么 f ( x) 就叫做奇函数.奇函数的图象关于 关于 例如: 对称,那么这个函数为奇函数. ; 对称.反过来,如果一个函数的图象
1
鸡西市第十九中学高一数学组
于原点对称,一些函数的定义域比较容易观察,直接判断 f(-x)与 f(x)的关系即可;一 些复杂的函数要防止没有研究定义域是否关于原点对称而出错. 例 1 判断下列函数的奇偶性. 1 π 1+sin x-cos2x - x+ ; (1)f(x)=sin (2) f ( x ) = lg(1 - sin x ) - lg(1 + sin x ) ; (3) f ( x ) = . 2 2 1+sin x
【高中数学必修四】1.4.2正余弦函数的性质(两课时)
7 2
y=cosx
4
x y=sinx
正弦函数y=sinx 定义域 值域
余弦函数y=cosx R [-1,1] 当x= 2kπ (k∈Z)时ymax=1 当x=2kπ +π (k∈Z)时ymin=-1 最小正周期2π
R
[-1,1] 当x=2kπ + 2 (k∈Z)时ymax=1 3 当x=2kπ + 2 (k∈Z)时ymin=-1
3
2
3 2
2
o
-1
2
3 2
2
5 2
3
7 2
y=cosx
4
x y=sinx
正弦函数y=sinx 定义域 值域
余弦函数y=cosx R [-1,1] 当x= 2kπ (k∈Z)时ymax=1 当x=2kπ +π (k∈Z)时ymin=-1
R
[-1,1] 当x=2kπ + 2 (k∈Z)时ymax=1 3 当x=2kπ + 2 (k∈Z)时ymin=-1
分析:先用诱导公式化到同一单调区间内
正弦、余弦函数的单调性
1 例3、求函数y sin x , x 2 ,2 3 2 的单调增区间。
分析:复合函数的换元法
y
1
4
5 2
正 弦 函 数 与 余 弦 函 数 的 性 质
7 2
3
2
正弦、余弦函数的周期
例3.求下列函数的周期 1 y 3 cos x, x R
2 y sin 2 x, x R
1 3 y 2 sin x , x R 6 2
正弦、余弦函数的周期
1.4.2正弦函数、余弦函数的性质2(奇偶性、单调性及最值)
作业:P40练习3,5,6.
函 数 y= sinyx (k∈z)
y= cosx y(k∈z)
பைடு நூலகம்性质
定义域 值域
周期性 奇偶性 单调性
最值
对称中心 对称轴
0
2 -1 2
3 2 x
2
2
0
-1 2
3 x
2
R
R
[-1,1]
周期为T=2kπ
奇函数
在x∈[2kπ-
π
2
π
, 2kπ+ 2
]
上都是增函数
在x∈[2kπ+
(1)
sin(
18
)与
sin(
10
);
(2) cos(
23
5
)与
cos(
17
4
).
解:cos(
23
5
) cos
23
5
cos
3
5
,
cos(
17
4
)
cos
17
4
cos
4
.
Q
0
4
3
5
,
且 y=cosx 在[0, π] 上是减函数,
cos
4
cos
3
5
,
即
cos(
17
4
)
cos(
23
5
).
例4.求函数 y sin(1 x ),x∈[-2π,2π]的单调递
-2
y
1
- o
-1
2
3
4
5 6 x
sin(-x)=- sinx (xR)
y=sinx (xR) 是奇函数
142正弦函数、余弦函数的性质(二)
三、最大值和最小值探究
y
y sin x 1
x
-3 5 -2 3
2
2
-
o
2
2
3
2
2
5 2
3
7 2
4
-1
正弦函数当且仅当 x __2___2_k__,_k__Z___时取得最大值__1_
当且仅当 x ___2__2_k__, k___Z__时取得最小值__1_
三、最大值和最小值探究
y cos x y
B
5
3
4k
x
3
4k , k
Z
可得 A
B
5
3
,
3
.
所以原函数的单调递增区间为
5
3
,
3
.
1.观察正弦曲线和余弦曲线,写出满足下列条件的区间:
(1)sin x 0
(2)sin x 0
2k, 2k ,k Z 2k,2 2k , k Z
(3) cos x 0
(4) cos x 0
2
在每个增区间,函数值从 1增大到 ,1
在每个减区间,函数值从 1减小到 . 1
正弦函数在每一个闭区间
2
2k
,
2
2k
,
(k
Z)
上都是增函数,其值从-1增大到1;
在每一个闭区间
2
2k , 3
2
2k
,
(k
Z )上都是减函数,
其值从1减小到-1.
4.余弦函数可以得到怎样相似的结论呢?
y cos x
——王安石
一、奇偶性探究
1.观察正弦曲线和余弦曲线的对称性,你有什么发现?
y
高中数学 第一章 三角函数 1.4 三角函数的图象与性质 1.4.2 正弦函数、余弦函数的性质(第2
1.4.2 正弦函数、余弦函数的性质第2课时 正、余弦函数的性质1.掌握y =sin x ,y =cos x 的性质:周期性、奇偶性,了解其图象的对称性. 2.掌握y =sin x ,y =cos x 的单调性,会结合它们的图象说出单调区间,并能根据单调性比较大小.3.掌握y =sin x ,y =cos x 的最大值、最小值,会求简单三角函数的值域或最值,并能指出取得最大(小)值时自变量x 的值的集合.1.正弦函数的图象与性质正弦函数的图象与性质如下表所示:____当x =____________时,y 取最大值1正弦曲线是中心对称图形,其所有的对称中心坐标为(k π,0)(k ∈Z ),即正弦曲线与x 轴的所有交点;正弦曲线也是轴对称图形,其所有的对称轴方程是x =k π+π2(k ∈Z ),所有对称轴垂直于x 轴,且与正弦曲线交点的纵坐标是正弦函数的最大(小)值.【做一做1】 已知函数y =sin x ,x ∈R ,则下列说法不正确的是( ) A .定义域是RB .最大值与最小值的和等于0C .在⎣⎢⎡⎦⎥⎤-π2,π2上是减函数 D .最小正周期是2π2.余弦函数的图象与性质余弦函数的图象与性质如下表所示:__当x =________时,y 取最大值1余弦曲线是中心对称图形,其所有的对称中心坐标是⎝ ⎛⎭⎪⎫k π+π2,0(k ∈Z ),即余弦曲线与x 轴的所有交点;余弦曲线也是轴对称图形,其所有的对称轴方程是x =k π(k ∈Z ),所有对称轴垂直于x 轴,且与余弦曲线交点的纵坐标是余弦函数的最大(小)值.【做一做2】 已知函数y =cos x ,x ∈R ,则下列说法错误的是( ) A .值域为[-1,1]B .是奇函数C .在定义域上不是单调函数D .在[0,π]上是减函数答案:1.R [-1,1] 2k π+π2(k ∈Z ) 2k π-π2(k ∈Z ) 2π 奇 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2【做一做1】 C2.R 2k π(k ∈Z ) 2k π+π(k ∈Z ) 2π 偶 [(2k -1)π,2k π] [2k π,(2k +1)π]【做一做2】 B正、余弦函数的性质与图象的关系剖析:(1)定义域是R ,反映在图象上是所有垂直于x 轴的直线与图象有且只有一个交点.(2)正、余弦函数的单调性,反映在图象上是曲线的上升与下降的情况.(3)正、余弦函数的周期性,反映在图象上是曲线有规律地重复出现.相邻两对称中心的间隔是半个周期,相邻两对称轴的间隔也是半个周期,相邻的对称中心与对称轴的间隔是四分之一个周期.(4)正、余弦函数的奇偶性,反映在图象上是曲线关于原点或y 轴对称,即sin(-x )=-sin x ,cos(-x )=cos x .(5)正、余弦函数的最大值和最小值,反映在图象上,就是曲线的最高点和最低点.题型一 判断三角函数的奇偶性 【例1】 判断下列函数的奇偶性:(1)f (x )=sin x cos x ;(2)f (x )=1+sin x -cos 2x1+sin x.分析:先判断函数的定义域是否关于原点对称,再判断f (-x )与f (x )的关系,进而可确定函数的奇偶性.反思:1.判断函数奇偶性的依据是函数奇偶性的定义,定义域关于原点对称是函数有奇偶性的前提.另外还要注意诱导公式在判断f (x )与f (-x )之间关系时的应用.2.本例(2)中,易忽视f (x )的定义域,违背定义域优先的原则,而进行非等价变形,得f (x )=sin x (1+sin x )1+sin x=sin x ,从而导致结果错误.题型二 求三角函数的单调区间【例2】 求函数y =2sin ⎝⎛⎭⎪⎫3x +π4的单调递减区间. 反思:求函数y =A sin(ωx +φ)的单调区间时,利用整体思想,把ωx +φ看成一个整体,借助于正弦函数的单调区间来解决.题型三 求三角函数的值域(最值) 【例3】 求下列函数的值域: (1)y =3-2cos 2x ,x ∈R ;(2)y =cos 2x +2sin x -2,x ∈R .分析:(1)将2x 看成一个整体,利用余弦函数的值域求得;(2)把sin x 看成一个整体,利用换元法转化为求二次函数的值域.反思:求三角函数的值域的方法:①化为y =A sin(ωx +φ)+b 或y =A cos(ωx +φ)+b (A >0),则其值域为[-A +b ,A +b ].如本例(1)小题;②把sin x 或cos x 看成一个整体,利用换元法转化为求二次函数在闭区间上的值域,如本例(2)小题.题型四 比较三角函数值的大小 【例4】 比较下列各组数的大小: (1)sin 194°与cos 160°;(2)sin ⎝ ⎛⎭⎪⎫sin 3π8与sin ⎝⎛⎭⎪⎫cos 3π8.分析:(1)先将异名三角函数化为同名三角函数,并且利用诱导公式化到同一单调区间上.(2)先比较sin 3π8与cos 3π8的大小,然后利用正弦函数单调性求解.反思:比较三角函数值大小的步骤:①异名函数化为同名函数;②利用诱导公式把角化到同一单调区间上;③利用函数的单调性比较大小.题型五 易错辨析易错点 忽视x 的系数是-1【例5】 求y =sin ⎝ ⎛⎭⎪⎫π3-x 的单调递增区间.错解:令π3-x =t ,∵y =sin t 的递增区间为⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ), ∴2k π-π2≤π3-x ≤2k π+π2(k ∈Z ),解得-2k π-π6≤x ≤-2k π+56π,即2k π-π6≤x ≤2k π+5π6(k ∈Z ),即y =sin ⎝ ⎛⎭⎪⎫π3-x 的单调递增区间为⎣⎢⎡⎦⎥⎤2k π-π6,2k π+5π6(k ∈Z ). 错因分析:在π3-x 中,x 的系数-1是负数,应整体代入正弦函数的单调递减区间,求原函数的单调递增区间.答案:【例1】 解:(1)定义域为R .f (-x )=sin(-x )cos(-x )=-sin x cos x =-f (x ),∴f (x )是奇函数.(2)要使函数有意义,自变量x 的取值应满足1+sin x ≠0, ∴sin x ≠-1.∴x ≠2k π+32π,k ∈Z .∴函数的定义域为⎩⎨⎧x ⎪⎪⎪⎭⎬⎫x ∈R ,且x ≠2k π+3π2,k ∈Z .f ⎝ ⎛⎭⎪⎫π2=1+sin π2-cos2π21+sinπ2=1,但f ⎝ ⎛⎭⎪⎫-π2无意义,∴函数f (x )既不是奇函数也不是偶函数. 【例2】 解:由于函数y =2sin x 的递减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2(k ∈Z ). 令2k π+π2≤3x +π4≤2k π+3π2,得2k π3+π12≤x ≤2k π3+5π12(k ∈Z ). 故所求的单调递减区间为⎣⎢⎡⎦⎥⎤2k π3+π12,2k π3+5π12(k ∈Z ). 【例3】 解:(1)∵-1≤cos 2x ≤1,∴-2≤-2cos 2x ≤2. ∴1≤3-2cos 2x ≤5,即1≤y ≤5.∴函数y =3-2cos 2x ,x ∈R 的值域为[1,5].(2)y =cos 2x +2sin x -2=-sin 2x +2sin x -1=-(sin x -1)2.∵-1≤sin x ≤1,∴函数y =cos 2x +2sin x -2,x ∈R 的值域为[-4,0]. 【例4】 解:(1)sin 194°=sin(180°+14°)=-sin 14°, cos 160°=cos(180°-20°)=-cos 20°=-sin 70°. ∵0°<14°<70°<90°,∴sin 14°<sin 70°, 从而-sin 14°>-sin 70°,即sin 194°>cos 160°. (2)∵cos 3π8=sin π8,∴0<cos 3π8<sin 3π8<1.而y =sin x 在(0,1)内递增,∴sin ⎝ ⎛⎭⎪⎫cos 3π8<sin ⎝⎛⎭⎪⎫sin 3π8. 【例5】 正解:∵y =sin ⎝ ⎛⎭⎪⎫π3-x =-sin ⎝⎛⎭⎪⎫x -π3,∴要求原函数的单调递增区间,只需求y =sin ⎝⎛⎭⎪⎫x -π3的单调递减区间.令2k π+π2≤x -π3≤2k π+3π2(k ∈Z ),∴2k π+5π6≤x ≤2k π+116π(k ∈Z ).∴y =sin ⎝ ⎛⎭⎪⎫π3-x 的单调递增区间是 ⎣⎢⎡⎦⎥⎤2k π+5π6,2k π+116π(k ∈Z ).1.函数y =sin 2cos xx+是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数2.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin11°3.函数y =sin 2x -cos x 的值域是__________. 4.函数y =3-2π32cos 33x ⎛⎫-+ ⎪⎝⎭的最大值为____________,此时自变量x 的取值集合是__________.5.求函数y =π2sin 4x ⎛⎫- ⎪⎝⎭的单调递增区间.答案:1.A 定义域为R ,f (-x )=sin()2cos()x x -+-=sin 2cos xx-+=-f (x ),则f (x )是奇函数.2.C ∵sin 168°=sin(180°-168°)=sin 12°,cos 10°=sin 80°, sin 11°<sin 12°<sin 80°, ∴sin 11°<sin 168°<cos 10°.3.51,4⎡⎤-⎢⎥⎣⎦设cos x =t ,-1≤t ≤1,则y =1-cos 2x -cos x =-t 2-t +1=21524t ⎛⎫-++ ⎪⎝⎭. 由于-1≤t ≤1,则有-1≤y ≤54. 4.5 {x |x =3k π+π,k ∈Z } 当2πcos 33x ⎛⎫+⎪⎝⎭=-1时,y max =3-2×(-1)=5.此时x 的取值集合为{x |x =3k π+π,k ∈Z }. 5.解:y =π2sin 4x ⎛⎫- ⎪⎝⎭=π2sin 4x ⎛⎫-- ⎪⎝⎭.令2k π+π2≤x -π4≤2k π+3π2 (k ∈Z ),得 2k π+3π4≤x ≤2k π+7π4(k ∈Z ).函数y =π2sin 4x ⎛⎫-⎪⎝⎭的递增区间为 3π7π2π,2π44k k ⎡⎤++⎢⎥⎣⎦(k ∈Z ).。
高中数学《正弦函数、余弦函数的性质(2)》课件
课前预习
课堂互动
课堂反馈
预习教材 P37-38 完成下面问题: 知识点 正弦函数、余弦函数的图象和性质
正弦函数
余弦函数
图象
值域
__[_-__1_,_1_] __
__[_-__1_,1_]___
课前预习
课堂互动
课堂反馈
正弦函数
余弦函数
单 调 性
在[_-__π2_+__2_k_π_,__π2_+__2_k_π_] (k∈Z) 上递增,在_[π2_+__2_k_π_,__3_2π_+__2_kπ]
课前预习
课堂互动
课堂反馈
解得a=12, b=1.
∴y=-4acos bx=-2cos x,
∴ymax=2,ymin=-2,T=2π.
课前预习
课堂互动
课堂反馈
规律方法 求三角函数值域或最值的常用方法 (1)可化为单一函数y=Asin(ωx+φ)+k或y=Acos(ωx+φ)+ k,其最大值为|A|+k,最小值-|A|+k(其中A,ω,k,φ为 常数,A≠0,ω≠0). (2)可化为y=Asin2x+Bsin x+C或y=Acos2x+Bcos x+C (A≠0),最大值、最小值可利用二次函数在定义域上的最大 值、最小值的求法来求(换元法).
课前预习
课堂互动
课堂反馈
方向 3 含参数的最值问题 【例 3-3】 若函数 y=a-bcos x(b>0)的最大值为32,最小值为
-12,求函数 y=-4acos bx 的最值和最小正周期. 解 ∵y=a-bcos x(b>0), ∴ymax=a+b=32,ymin=a-b=-12. 由aa+-bb==32-,12,
课前预习
课堂互动
课堂反馈
正余弦函数的性质2
第一章三角函数1.4.2(2)正弦、余弦函数的性质(二)学习目的:要求学生能理解三角函数的奇、偶性和单调性;掌握正、余弦函数的奇、偶性的判断,并能求出正、余弦函数的单调区间。
学习重点:正、余弦函数的奇、偶性和单调性;学习难点:正、余弦函数奇、偶性和单调性的理解与应用 课堂探究:1.奇偶性请同学们观察正、余弦函数的图形,说出函数图象有怎样的对称性?其特点是什么? (1)余弦函数的图形当自变量取一对相反数时,函数y 取同一值。
例如:f (-3π)=21,f (3π)=21 ,即f (-3π)=f (3π);……由于cos(-x)=cosx ∴f (-x)= f (x).以上情况反映在图象上就是:如果点(x,y )是函数y=cosx 的图象上的任一点,那么,与它关于y 轴的对称点(-x,y)也在函数y=cosx 的图象上,这时,我们说函数y=cosx 是偶函数。
定义:一般地,如果对于函数f (x)的定义域内任意一个x ,都有f (-x)= f (x),那么函数f (x)就叫做偶函数。
例如:函数f (x)=x 2+1, f (x)=x 4-2等都是偶函数。
(2)正弦函数的图形观察函数y=sinx 的图象,当自变量取一对相反数时,它们对应的函数值有什么关系?这个事实反映在图象上,说明函数的图象有怎样的对称性呢?函数的图象关于原点对称。
也就是说,如果点(x,y )是函数y=sinx 的图象上任一点,那么与它关于原点对称的点(-x,-y )也在函数y=sinx 的图象上,这时,我们说函数y=sinx 是奇函数。
定义:一般地,如果对于函数f (x)的定义域内任意一个x ,都有 f(-x)=-f(x) ,那么函数f (x)就叫做奇函数。
例如:函数y=x, y=x1 都是奇函数。
如果函数f (x)是奇函数或偶函数,那么我们就说函数f (x)具有奇偶性。
注意:从函数奇偶性的定义可以看出,具有奇偶性的函数: (1)其定义域关于原点对称;(2)f (-x)= f (x)或f (-x)=- f (x)必有一成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.4.2正余弦函数的性质(二)学习目标1.知识与技能:(1)根据正、余弦函数的图象研究正、余弦函数的奇偶性、单调性;(2)能利用正、余弦函数的性质解决一些有关正、余弦函数的最值,比较大小、单调区间等问题.2.过程与方法:通过对正、余弦函数的图象的观察探究研究正余弦函数的奇偶性、单调性、对称性. 3.情感态度与价值观:通过本节的学习,学会求简单函数的定义域、值域、最小正周期和单调区间;渗透数形结合思想,培养辩证唯物主义观点. 4.重点与难点:(1)重点:正、余弦函数的奇、偶性和单调性.(2)难点:正、余弦函数奇、偶性和单调性的理解与应用. 学习过程【一层练习】1.以下函数既是奇函数又是增函数的是 ( )A .x y = B.x y sin = C.x y cos = D.x y tan = 【解析】只有x y =满足条件.故选A.2.],[,cos ππ-∈=x x y 的一个单调增区间的是 ( ) A.],[ππ- B.]2,[ππ- C.]0,[π- D.],0[π【解析】],[,cos ππ-∈=x x y 在]0,[π-是增函数.故选C. 3.函数)6sin(3π--=x y 的最大值是______________..【解析】由1)6sin(1≤-≤-πx 可得42≤≤y ,故填:4.反思小结:1.正弦函数在每一个闭区间______________上都是增函数,其值从-1增大到1;在每一个闭区间_________________上都是减函数,其值从1减小到-1.【解析】观察正弦函数图象可得.填:[-π2 +2k π,π2 +2k π](k ∈Z ); [π2 +2k π,3π2+2k π](k ∈Z ).2. 余弦函数在每一个闭区间________________上都是增函数,其值从-1增加到1;在每一个闭区间______________________上都是减函数,其值从1减小到-1.【解析】观察余弦函数图象可得. 填:[(2k -1)π,2k π](k ∈Z ); [2k π,(2k +1)π](k ∈Z )【二层练习】1.函数y =cos(2x +π6 )的单调递增区间为__________________.【解析】①设u =2x +π6,则y =cos u当2k π-π≤u ≤2k π时y =cos u 随u 的增大而增大 又∵u =2x +π6随x ∈R 增大而增大∴y =cos(2x +π6 )当2k π-π≤2x +π6 ≤2k π(k ∈Z )即k π-7π12 ≤x ≤k π-π12 时,y 随x 增大而增大∴y =cos(2x +π6 )的单调递增区间为:[k π-7π12 π,k π-π12 ](k ∈Z )2.试判断函数cos sin y x x x =-的奇偶性.【解析】函数cos sin y x x x =-的定义域为R ,)sin()()cos()(x x x x f ----=- ∵x x x x sin )sin(,cos )cos(=-=- ∴)(sin cos )(x f x x x x f =-=- ∴cos sin y x x x =-为偶函数.反思小结:1.正余弦函数的奇偶性:正弦函数是_____函数,余弦函数是_________函数. 【解析】根据函数奇偶性定义可得正弦函数是奇函数,余弦函数是偶函数.2.怎样求函数)sin(ϕω+=x A y )0(>ω的单调区间?【解析】求函数)sin(ϕω+=x A y )0(>ω的单调区间时,要用整体换元代入的思想,即由Z k k x k ∈+≤+≤-,2222ππϕωππ或Z k k x k ∈+≤+≤+,23222ππϕωππ求得x 的范围就是函数的单调区间.求)cos(ϕω+=x A y )0(>ω的单调区间也用这个方法. 【三层练习】求函数2sin 4cos 2-+=x x y 的最大、最小值,并求出此时x 的取值.【解析】2sin 4cos 2-+=x x y =1sin 4sin 2sin 4sin 122-+-=-+-x x x x =3)2(sin 2+--x∵1sin 1≤≤-x ,∴当Z k k x ∈+=,22ππ时1sin =x 此时2m a x =y ;当Z k k x ∈+-=,22ππ时1sin -=x 此时6m in -=y .反思小结:1.怎样理解正余弦函数的有界性与最值?【解析】有关正余弦函数的有界性:1sin 1≤≤-x ,当Z k k x ∈+=,22ππ时1sin =x ,当Z k k x ∈+-=,22ππ时1sin -=x ;1cos 1≤≤-x ,当Z k k x ∈=,2π时1cos =x ,当Z k k x ∈+=,)12(π时1cos -=x .在求三角函数值域时要充分利用三角函数的有界性. 当堂检测1.若函数)sin(ϕ+=x y 的图象关于y 轴对称,则ϕ的一个取值是 ( )A .2π B.4πC.πD.π2 【解析】当2πϕ=时,x x x y cos )2sin()sin(=+=+=πϕ为偶函数,图象关于y 轴对称.故选A.2.x x y sin sin -=的值域是( )A .]0,1[-B .]1,0[C .]1,1[-D .]0,2[-【解析】⎩⎨⎧<≤-≤≤=-=0sin 1,sin 21sin 0,0sin sin x x x x x y ,∴]0,2[-∈y .故选D.3.当[0,2]x π∈时,函数x y sin =是递增函数,且cos y x =是递减函数, 则______x ∈ 【解析】在],0[π上cos y x =是递减函数,在]2,23[],2,0[πππ上x y sin =是递增函数,故填:]2,0[π.学习小结:1.正余弦函数的单调性:正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z)上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z)上都是减函数,其值从1减小到-1.余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z)上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z)上都是减函数,其值从1减小到-1.2.正余弦函数的奇偶性:正弦函数是奇函数,图象关于原点对称;余弦函数是偶函数,图象关于y 轴对称.3.正余弦函数的最值:当Z k k x ∈+=,22ππ时1sin =x ,当Z k k x ∈+-=,22ππ时1sin -=x ;当Z k k x ∈=,2π时1cos =x ,当Z k k x ∈+=,)12(π时1cos -=x .达标练习基础训练1.函数cos y x =的一个单调递增区间为 ( )A .,22ππ⎛⎫-⎪⎝⎭ B .()0,π C .3,22ππ⎛⎫⎪⎝⎭D .(),2ππ 【解析】函数cos y x =在每一个闭区间[(2k -1)π,2k π](k ∈Z)都是增函数,故选D. 2.下列函数中,在区间02π⎛⎫⎪⎝⎭,上为增函数且以π为周期的函数是( )A .sin2xy = B . sin y x = C . x y cos = D . cos 2y x =- 【解析】由函数以π为周期,可排除A 、B ,C,故选D. 3.设函数()R x x x f ∈⎪⎭⎫⎝⎛-=,22sin π,则()x f 是 ( ) A. 最小正周期为π的奇函数 B.最小正周期为π的偶函数 C.最小正周期为2π的奇函数 D.最小正周期为2π的偶函数 【解析】()x x x f 2cos 22sin -=⎪⎭⎫⎝⎛-=π,故是最小正周期为π的偶函数.故选B. 4、 设3sin ,2sin ,1sin ===c b a ,则三个数c b a ,,的大小关系是( )A.c b a >>B.a b c <<C.b c a >>D.b a c <<【解析】 ∵函数x y s i n =在,22ππ⎛⎫- ⎪⎝⎭上是增函数,)3sin(3sin ),2sin(2sin -=-=ππ,22130πππ<-<<-<,∴)2sin(1sin )3sin(-<<-ππ即2sin 1sin 3sin <<.故选D.5.函数2sin3xy =-的最大值是___________;此时x=_________________. 【解析】当13sin -=x 时,3max =y ,此时Z k k x ∈+-=,223ππ即Z k k x ∈+-=,623ππ.填:3; Z k k x ∈+-=,623ππ.6.函数1()sin()23f x x π=-的单调增区间是_______________________ 【解析】令Z k k x k ∈+≤-≤+-,223222πππππ得Z k k x k ∈+≤≤+-,43543ππππ,故填:)](435,43[Z k k k ∈++-ππππ.7.若 ],6[ππ-∈x ,求函数2()cos sin f x x x =+的值域.【解析】2()cos sin f x x x =+45)21(sin sin sin 122+--=+-=x x x ∵],6[ππ-∈x , ∴]1,21[sin -∈x ,∴当21s in =x 时函数)(x f 有最大值45,当121s in 或-=x 时,)(x f 有最小值2,∴函数2()cos sin f x x x =+的值域为]45,2[.8.求函数]2,2[),23sin(πππ-∈-=x xy 的单调区间.【解析】方法一:∵)32sin()23sin(ππ--=-=x x y∴令Z k k x k ∈+≤-≤+-,223222πππππ得Z k k x k ∈+≤≤+-,43543ππππ;令Z k k x k ∈+≤-≤+,2233222πππππ得Z k k x k ∈+≤≤+,4311435ππππ; 设]2,2[ππ-=A ,⎭⎬⎫⎩⎨⎧∈+≤≤+-=Z k k x k x B ,43543|ππππ, ⎭⎬⎫⎩⎨⎧∈+≤≤+=Z k k x k x C ,4311435|ππππ,由]35,3[ππ-=⋂B A ,由]2,35[]3,2[ππππ⋃-=⋂C A ,故函数]2,2[),23sin(πππ-∈-=x x y 在区间]35,3[ππ-上单调递减;在区间]3,2[ππ-和]2,35[ππ上单调递增.方法二:)32sin()23sin(ππ--=-=x x y ,∵]2,2[ππ-∈x ,∴]32,34[32πππ-∈-x ,作出函数x x f sin )(=且]32,34[ππ-∈x 的草图如下,所以,当]2,34[32πππ--∈-x 和]32,2[32πππ∈-x 时,即]3,2[ππ-∈x 和]2,35[ππ∈x 时函数)32sin()23sin(ππ--=-=x x y 单调递增;当]2,2[32πππ-∈-x 即]35,3[ππ-∈x 时函数)32sin()23sin(ππ--=-=x x y 单调递减.拓展提升9.设函数)(),0)(2sin()(x f y x x f =<<-+=ϕπϕ的图象的一条对称轴为直线8π=x .(1)求ϕ;(2)求y =f (x)的单调增区间;(3)画出y =f (x)在[0,π]上的图象.。