2017-2018学年上海市青浦区八年级(下)期末数学试卷-0

合集下载

青浦区2017-2018学年度第二学期期末质量抽测 八年级(初二)数学真题卷

青浦区2017-2018学年度第二学期期末质量抽测 八年级(初二)数学真题卷

l O 4 2 x y 青浦区2017-2018学年度第二学期期末质量抽测 八年级 数 学 (考试时间90分钟,满分100分) 考生注意: 1.本试卷含四个大题,共27题; 2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤. 一、选择题(本大题共6题,每题2分,满分12分) 1.一次函数1y x =--不经过的象限是………………………………………………( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.关于方程0414=-x ,下列说法不正确的是………………………………………( ) A .它是个二项方程; B .它是个双二次方程; C .它是个一元高次方程; D .它是个分式方程. 3.如图,直线l 在x 轴上方的点的横坐标的取值范围是……………………………( ) A .0>x ; B .0<x ; C .2<x ; D .2>x . 4.如图,把矩形纸片ABCD 纸沿对角线折叠, 设重叠部分为△EBD ,那么,下列说法不正确的是………………………………( ) A .△EBD 是等腰三角形,EB =ED ; B .折叠后∠ABE 和∠CBD 一定相等; C .折叠后得到的图形是轴对称图形; D .△EBA 和△EDC 一定是全等三角形. 5.事件“关于y 的方程12=+y y a 有实数解”是……………………………………( )学校_______________________ 班级__________ 学号_________ 姓名______________ ……………………………………密○…………………………………………封○…………………………………○线…………………………………… 第3题图 E A B C D 第4题图。

2017—2018学年八年级数学下期末试题

2017—2018学年八年级数学下期末试题

2017 —2018 学年八年级数学下期末试题2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题(满分120 分,时间:120 分钟)一、选择题: 本大题共8 个小题,每题 3 分,共24 分,在每题给出的四个选项A、B、c、D 中,只有一项为哪一项正确的,请把正确的选项填在答题卡的相应地点1. 在数轴上与原点的距离小于8 的点对应的x 知足A.x <8B.x >8c.x <-8 或x>8D.-8 <x<82. 将多项式﹣6a3b2﹣3a2b2+12a2b3 分解因式时,应提取的公因式是A .-3a2b2B.-3abc .-3a2bD.-3a3b33. 以下分式是最简分式的是A .B.c.D.4. 如图,在Rt △ABc中,∠c=90°,∠ABc=30°,AB=8,将△ABc沿cB 方向向右平移获得△DEF.若四边形ABED的面积为8,则平移距离为A .2B.4c.8D.165. 如下图,在△ABc 中,AB=Ac,AD 是中线,DE⊥A B,D F⊥Ac,垂足分别为E、F,则以下四个结论中:①AB 上任一点与Ac 上任一点到D的距离相等;②AD上任一点到AB、Ac 的距离相等;③∠BDE=∠cDF;④∠1=∠2. 正确的有A.1 个B.2 个c.3 个D.4 个6. 每千克元的糖果x 千克与每千克n 元的糖果y 千克混淆成杂拌糖,这样混淆后的杂拌糖果每千克的价钱为A. 元B. 元c. 元D.元7. 如图,□ABcD的对角线Ac,BD交于点o,已知AD=8,BD=12,Ac=6,则△oBc 的周长为A .13B.26c.20D.178. 如图,DE是△ABc的中位线,过点 c 作cF∥BD交DE的延伸线于点F,则以下结论正确的选项是A .EF=cFB.EF=DEc.cF<BDD.EF>DE二、填空题(本大题共 6 个小题,每题 3 分,共18 分,只需求把最后的结果填写在答题卡的相应地区内)9. 利用因式分解计算:2012-1992= ;10. 若x+y=1,xy=-7 ,则x2y+xy2= ;11. 已知x=2 时,分式的值为零,则k=;12. 公路全长为sk,骑自行车t 小时可抵达,为了提早半小时抵达,骑自行车每小时应多走;13. 一个多边形的内角和是外角和的 2 倍,则这个多边形的边数为;14. 如图,△AcE 是以□ABcD的对角线Ac 为边的等边三角形,点 c 与点E对于x 轴对称.若E点的坐标是(7,﹣3),则D点的坐标是.三、解答题(本大题共78 分, 解答要写出必需的文字说明、演算步骤)15. (6 分)分解因式(1)20a3-30a2 (2)25(x+y)2-9 (x-y )216. (6 分)计算:(1)(2)17. (6 分)A、B 两地相距200 千米,甲车从 A 地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A 地80 千米.已知乙车每小时比甲车多行驶30 千米,求甲、乙两车的速度.18. (7 分)已知:如图,在△ABc中,AB=Ac,点D 是Bc 的中点,作∠EAB=∠BAD,AE边交cB 的延伸线于点E,延伸AD到点F,使AF=AE,连结cF.求证:BE=cF.19.(8 分)“二广”高速在益阳境内的建设正在紧张地进行,现有大批的沙石需要运输.“益安”车队有载重量为8 吨、10 吨的卡车共12 辆,所有车辆运输一次能运输110 吨沙石.(1)求“益安”车队载重量为8 吨、10 吨的卡车各有多少辆?(2)跟着工程的进展,“益安”车队需要一次运输沙石165 吨以上,为了达成任务,准备新增购这两种卡车共 6 辆,车队有多少种购置方案,请你一一写出.20. (8 分)如图,在Rt△ABc 中,∠AcB=90°,点D, E 分别在AB,Ac 上,cE=Bc,连结cD,将线段cD 绕点c 按顺时针方向旋转90°后得cF,连结EF.(1) 增补达成图形;(2) 若E F∥cD,求证:∠BDc=90° .21.(8 分)下边是某同学对多项式(x2-4x+2)(x2-4x+6)+4进行因式分解的过程.解:设x2-4x=y ,原式=(y+2)(y+6)+4 (第一步)=y2+8y+16 (第二步)= (y+4)2(第三步)= (x2-4x+4 )2(第四步)(1)该同学第二步到第三步运用了因式分解的.A .提取公因式B.平方差公式c .两数和的完整平方公式D.两数差的完整平方公式(2)该同学因式分解的结果能否完全?.(填“完全”或“不完全”)若不完全,请直接写出因式分解的最后结果.( 3 )请你模仿以上方法尝试对多项式(x2-2x)(x2-2x+2)+1 进行因式分解.22. (8 分)如图,四边形ABcD中,对角线Ac,BD订交于点o,点E,F 分别在oA,oc 上(1)给出以下条件;①oB=oD,②∠1=∠2,③oE=oF,请你从中选用两个条件证明△BEo≌△DFo;(2)在(1)条件中你所选条件的前提下,增添AE=cF,求证:四边形ABcD是平行四边形.23. (10 分)如图,在□ABcD中,E是Bc 的中点,连结AE并延伸交Dc 的延伸线于点F.(1)求证:AB=cF;(2)连结DE,若AD=2AB,求证:D E⊥A F.24. (11 分)如图,在直角梯形ABcD中,AD∥Bc,∠B=90°,且AD=12c,AB=8c,Dc=10c,若动点P从A点出发,以每秒2c 的速度沿线段AD向点D运动;动点Q从c 点出发以每秒3c 的速度沿cB 向B 点运动,当P点抵达D点时,动点P、Q 同时停止运动,设点P、Q 同时出发,并运动了t 秒,回答以下问题:(1)Bc=c;(2)当t 为多少时,四边形PQcD成为平行四边形?(3)当t 为多少时,四边形PQcD为等腰梯形?(4)能否存在t ,使得△DQc是等腰三角形?若存在,请求出t 的值;若不存在,说明原因.2017 ——2018 学年度第二学期期末教课质量检测八年级数学试题参照答案一、选择题( 每题 3 分,共24 分)1 、D 2、A 3、c4、A 5、c6、B7、D8、B二、填空题( 每题 3 分,共18 分)9.1.-711.-612.-13.6( 六)14. (5,0)三、解答题( 共78 分 )15. ( 1 )解:20a3 ﹣30a2=10a2 (2a ﹣3)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)解:25(x+y)2﹣9(x﹣y)2=[5 (x+y)+3(x﹣y)][5 (x+y)﹣3(x﹣y) ]= (8x+2y)(2x+8y);=4(4x+y)(x+4y) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分16. (1)解:== ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2)====⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分17. 设甲车的速度是x 千米/ 时,乙车的速度为(x+30)千米/ 时,⋯⋯⋯⋯⋯ 1 分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3 分解得,x=60,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分经检验,x=60 是原方程的解. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分则x+30=90,即甲车的速度是60 千米/ 时,乙车的速度是90 千米/ 时.⋯⋯⋯⋯⋯⋯⋯⋯ 6 分18. 证明:∵AB=Ac,点D是Bc 的中点,∴∠cAD= ∠BAD.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分又∵∠EAB=∠BAD,∴∠cAD= ∠EAB.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分在△AcF 和△ABE中,∴△AcF≌△ABE(SAS).∴BE=cF.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分19. 解:(1)设“益安”车队载重量为8 吨、10 吨的卡车分别有x 辆、y 辆,依据题意得:,解之得:.答:“益安”车队载重量为8 吨的卡车有 5 辆,10 吨的卡车有7 辆;⋯⋯⋯⋯⋯⋯⋯ 4 分(2)设载重量为8 吨的卡车增添了z 辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z <,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分∵z≥0 且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有 3 种购车方案:①载重量为8 吨的卡车购置 1 辆,10 吨的卡车购置 5 辆;②载重量为8 吨的卡车购置 2 辆,10 吨的卡车购置 4 辆;③载重量为8 吨的卡车不购置,10 吨的卡车购置 6 辆.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分20.(1) 解:补全图形,如图所示.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分(2) 证明:由旋转的性质得∠DcF=90°,Dc=Fc,∴∠DcE +∠EcF=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分∵∠AcB=90°,∴∠DcE+∠BcD=90°,∴∠EcF=∠BcD∵E F∥Dc,∴∠EFc+∠DcF=180°,∴∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分在△BDc和△EFc 中,Dc =Fc,∠BcD=∠EcF,Bc=Ec,∴△BDc≌△EFc(SAS),∴∠BDc= ∠EFc=90°. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分21. 解:(1)该同学第二步到第三步运用了因式分解的两数和的完整平方公式;故选:c;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(2)该同学因式分解的结果不完全,原式=(x2﹣4x+4)2=(x﹣2)4;故答案为:不彻底,(x ﹣ 2 )4⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)(x2﹣2x)(x2﹣2x+2)+1= (x2﹣2x)2+2(x2﹣2x)+1= (x2﹣2x+1)2= (x ﹣ 1 )4.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分22. 证明:(1)选用①②,∵在△BEo和△DFo中,∴△BEo ≌△DFo (ASA);⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(2)由(1)得:△BEo≌△DFo,∴Eo=Fo,Bo=Do,∵AE=cF,∴Ao=co,∴四边形ABcD 是平行四边形.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分23. 证明:(1)∵四边形ABcD是平行四边形,∴AB∥DF,∴∠ABE=∠FcE,∵E为Bc 中点,∴BE=cE,在△ABE与△FcE 中,,∴△ABE≌△FcE(ASA),∴AB=Fc;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分(2)∵AD=2AB,AB=Fc=cD,∴AD=DF,∵△ABE≌△FcE,∴AE=EF,∴DE ⊥A F.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分24. 解:依据题意得:PA=2t,cQ=3t ,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12c,在直角△cDE中,∵∠cED=90°,Dc=10c,DE=8c,∴Ec==6c,∴Bc=BE+Ec=18c.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分(直接写出最后结果18c 即可)(2)∵AD∥Bc,即PD∥cQ,∴当PD=cQ时,四边形PQcD为平行四边形,即12-2t=3t ,解得t= 秒,故当t= 秒时四边形PQcD 为平行四边形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分(3)如图,过D点作DE⊥Bc 于E,则四边形ABED为长方形,DE=AB=8c,AD=BE=12,c当PQ=cD时,四边形PQcD为等腰梯形.过点P 作PF⊥Bc 于点F,过点D作DE⊥Bc 于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△cDE中,,∴Rt△PQF≌Rt△cDE(HL),∴QF=cE,∴Qc-PD=Qc-EF=QF+Ec=2c,E即3t- (12-2t )=12,解得:t= ,即当t= 时,四边形PQcD 为等腰梯形;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分(4)△DQc是等腰三角形时,分三种状况议论:①当Qc=Dc时,即3t=10 ,∴t= ;②当DQ=Dc时,∴t=4 ;③当QD=Qc时,3t ×∴t= .故存在t ,使得△DQc是等腰三角形,此时t 的值为秒或 4 秒或秒.⋯⋯⋯11 分③在Rt△D Q中,DQ2=D2+Q236t=100t=。

2017--2018学年度第二学期沪科版(上海)八年级期末考试数学试卷

2017--2018学年度第二学期沪科版(上海)八年级期末考试数学试卷

…………外………内…………○…………绝密★启用前 2017--2018学年度第二学期 沪科版(上海)八年级期末考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分钟,满分120分1.(本题3分)已知y 是x 的一次函数,下表中列出了部分对应值,则m 等 A. -1 B. 0 C. -2 D. -12 2.(本题3分)已知点()()1242y y -,,,都在直线23y x b =-+上,则1y 与2y 的大小关系是() A. 12y y > B. 12y y = C. 12y y < D. 不能确定 3.(本题3分)小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程(y 单位:千米)与行驶时间(t 单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为() A. 43.5 B. 50 C. 56 D. 58………○…………○……※※在※※装※※订※※…○……线4.(本题3分)已知直线2y x =与y x b =-+的交点的坐标为(1, a ),则方程组2{ y xy x b ==-+的解是( )A. 1{ 2x y ==B. 2{ 1x y ==C. 2{ 3x y ==D. 1{ 3x y == 5.(本题3分)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.如果设甲每小时做x 个零件,那么下面所列方程中正确的是( )A. 90606x x =-B. 90606x x =+C. 90606x x =+D. 90606x x =-6.(本题3分)若关于x 的分式方程2213m xx x +-=-无解,则m 的值为( )A. -1.5B. 1C. -1.5或2D. -0.5或-1.57.(本题3分)如图,正方形ABCD 中,E 是BD 上一点,BE=BC ,则∠BEC 的度数是( )A. 45°B. 60°C. 67.5°D. 82.5°8.(本题3分)若菱形两条对角线的长分别为6和8,则这个菱形的边长为()A. 5B. 10C. 20D. 149.(本题3分)如图是四个全等的直角三角形围成的,若两条直角边分别为3和4,斜边为5,则向图中随机抛掷一枚飞镖,飞镖落在阴影区域的概率是(不考虑在线上的情形)()A. 35 B. 45 C. 1625 D. 254910.(本题3分)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )…………外…………○…………装……○…………订…………○……学校:___________姓______班级:___________考号…内…………○…………装…………○…………订…………线…………○…………………装…………○… A. 625 B. 15 C. 425 D. 725 二、填空题(计32分) x+2y=5与直线x+y=3的交点坐标是________. 12.(本题4分)有甲、乙两个长方体的蓄水池,将甲池中的水匀速注入乙池,甲、乙两个蓄水池中水的高度y(米)与注水时间x(小时)之间的函数图象如图所示,若要使甲、乙两个蓄水池的蓄水深度相同,则注水的时间应为_______. 13.(本题4分)直线y=kx 过点(x 1,y 1),(x 2,y 2),若x 1-x 2=1,y 1-y 2=-2,则k 的值为______. 14.(本题4分)如图,将一张长方形纸片ABCD 折叠成如图所示的形状,∠EGC=26°,则∠DFG= . 15.(本题4分)如图,E 是正方形ABCD 内一点,如果△ABE 为等边三角形,那么∠DCE=____度. 16.(本题4分)如图,把一个圆形转盘按1∶2∶3∶4的比例分成A ,B ,C ,D 四个扇形区域,自由转动转盘,停止后指针落在C 区域的概率是………○…………17.(本题4分)在一个不透明的盒子中装12个白球,若干个黄球,它们除了颜色不同外,其余都相同,若从中随机摸出一个球是黄球的概率是13,则黄球的个数为________。

2017-2018学年上海市青浦区八年级(下)期末数学试卷(解析版)

2017-2018学年上海市青浦区八年级(下)期末数学试卷(解析版)


8.(3 分)把函数 y=2x 的图象向右平移 1 个单位长度,得到的函数图象解析式为

9.(3 分)如果一次函数的图象经过点(﹣2,﹣6)和(5,2),那么函数值 y 随着自变量 x
的增大而

第 1 页(共 17 页)
10.(3 分)关于 x 的方程 ax﹣2x﹣5=0(a≠2)的解是

11.(3 分)方程
A.B. (1)求△AOB 的面积; (2)点 P 是 y 轴上的点,在坐标平面内是否存在点 Q,使以 A.B.P、Q 为顶点的四边形
第 3 页(共 17 页)
是菱形?若存在,请直接写出 Q 点的坐标;若不存在,请说明理由. 25.(12 分)如图,在矩形 ABCD 中,AB=8,AD=6,点 P、Q 分别是 AB 边和 CD 边上的
6.(2 分)如图,在四边形 ABCD 中,AC 于 BD 相交于点 O,∠BAD=90°,BO=DO,那 么下列条件中不能判定四边形 ABCD 为矩形的是( )
A.∠ABC=90
B.AO=OC
C.AB||CD
D.AB=CD
二、填空题(本大题共 12 题,每小题 3 分,满分 36 分)
7.(3 分)一次函数 y=1﹣5x 的截距是
取一个数,这个数恰好能被 2 整除的概率是

16.(3 分)某学校准备用 2400 元购买一批学习用品,已知甲种学习用品的单价比乙种学习
用品的单价少 2 元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买
200 件,问:这两种学习用品的单价分别是多少元?若设乙种学习用品的单价为 x 元,那
第 4 页(共 17 页)
2017-2018 学年上海市青浦区八年级(下)期末数学试卷

2017-2018学年上海市青浦区八年级(下)期末数学试卷

2017-2018学年上海市青浦区八年级(下)期末数学试卷

2017-2018学年上海市青浦区八年级(下)期末数学试卷一、选择题(本大题共6题,每题2分,满分12分)1.(2分)如果一次函数y=kx+1不经过第三象限,那么k的取值范围是()A.k<0B..k>0C..k≤0D..k≥02.(2分)下列方程中,无实数解的是()A.B.C.D.3.(2分)在一个多边形的内角中,锐角不能多于()A.2个B.3个C.4个D.5个4.(2分)下列关于向量的等式中,不正确的是()A.B.C.D.5.(2分)下列说法中错误的是()A.“买一张彩票中大奖”发生的概率是0B.“软木塞沉入水底”发生的概率是0C.“太阳东升西落”发生的概率是1D.“10只鸟关在3个笼子里,至少有一个笼子关的鸟超过3只”发生的概率是16.(2分)如图,在四边形ABCD中,AC于BD相交于点O,∠BAD=90°,BO=DO,那么下列条件中不能判定四边形ABCD为矩形的是()A.∠ABC=90B.AO=OC C.AB||CD D.AB=CD二、填空题(本大题共12题,每小题3分,满分36分)7.(3分)一次函数y=1﹣5x的截距是.8.(3分)把函数y=2x的图象向右平移1个单位长度,得到的函数图象解析式为.9.(3分)如果一次函数的图象经过点(﹣2,﹣6)和(5,2),那么函数值y 随着自变量x的增大而.10.(3分)关于x的方程ax﹣2x﹣5=0(a≠2)的解是.11.(3分)方程=1的解是.12.(3分)已知方程=1,如果设=y,那么原方程可以变形为关于y的整式方程为.13.(3分)在平行四边形ABCD中,两邻角的度数比是7:2,那么较小角的度数为.14.(3分)在平行四边形ABCD中,若,则=(用和表示).15.(3分)从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被2整除的概率是.16.(3分)某学校准备用2400元购买一批学习用品,已知甲种学习用品的单价比乙种学习用品的单价少2元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,问:这两种学习用品的单价分别是多少元?若设乙种学习用品的单价为x元,那么根据题意可列方程.17.(3分)如图,矩形ABCD中,BC=6,AB=3,R在CD边上,且CR=1,P为BC 上一动点,E、F分别是AP、RP的中点,当P从B向C移动时,线段EF的长度为.18.(3分)已知P是正方形ABCD内一点,将△ABP绕点B旋转,使得边BA与边BC重合,点P落在点P′的位置上.如果PB=2,那么PP′的长等于.三、解答题(本大题共7分,满分52分)19.(5分)解方程:﹣=20.(5分)解方程组:21.(5分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠CDB=30°.求:(1)求∠A的度数;(2)当AD=4时,求梯形ABCD的面积.22.(7分)庆华社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示.(1)求提高效率后,s关于t的函数关系式;(2)该绿化组提高工作效率后每小时完成的绿化面积比提高工作效率前每小时完成的绿化面积多多少?23.(8分)如图,四边形ABCD是平行四边形,AE∥BD,AE与CB的延长线交于点E,DE交AB于F.(1)求证:BC=BE;(2)连结CF,若∠ADF=∠BCF且AD=2AF,求证:四边形ABCD是正方形.24.(10分)如图,平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于点A.B.(1)求△AOB的面积;(2)点P是y轴上的点,在坐标平面内是否存在点Q,使以A.B.P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.25.(12分)如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD 边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.直线l为线段PQ的垂直平分线,与边BC交与点E设AP=x.(1)当直线l经过点B时,求x的值;(2)求BE的长(用含x的代数式表示);(3)连接EP、EQ,设△EPQ的面积为y,求y关于x的函数关系式,并写出它的定义域.2017-2018学年上海市青浦区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题2分,满分12分)1.(2分)如果一次函数y=kx+1不经过第三象限,那么k的取值范围是()A.k<0B..k>0C..k≤0D..k≥0【分析】根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.【解答】解:∵一次函数y=kx+1的图象不经过第三象限,∴一次函数y=kx+b的图象经过第一、二、四象限,∴k<0.故选:A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2.(2分)下列方程中,无实数解的是()A.B.C.D.【分析】通过解高次方程可对A进行判断;通过解无理方程可对B进行判断;利用判别式的意义可对C进行判断;通过解分式方程可对D进行判断.【解答】解:A、因为x4=,所以x=±,所以A选项的方程有实数解;B、方程化为x+2=1,解得x=﹣1,x=﹣1是原方程的解,所以B选项的方程有实数解;C、x2+x+6=0,△=12﹣4×6<0,方程没有实数解,所以C选项的方程没有实数解;D、方程化为x2=1,解得x=±1,经检验x=﹣1是原方程的解,所以B选项的方程有实数解.故选:C.【点评】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.也考查了解高次方程和分式方程.3.(2分)在一个多边形的内角中,锐角不能多于()A.2个B.3个C.4个D.5个【分析】外角和是360度,在外角中最多有3个钝角,若超过3个,外角的和就大于360度.多边形的内角与相邻的外角互补,因而在一个多边形的内角中,锐角不能多于3个.【解答】解:∵一个多边形外角中最多有3个钝角,∴一个多边形的内角中,锐角不能多于3个.故选:B.【点评】多边形的内角的问题可以转化为外角的问题,这样考虑会比较简单.4.(2分)下列关于向量的等式中,不正确的是()A.B.C.D.【分析】根据平面向量的加法法则判定即可.【解答】解:A、+=,正确,本选项不符合题意;B、+=,正确,不符合题意;C、﹣≠,错误,本选项符合题意;D、﹣+=++=+=,正确,不符合题意;故选:C.【点评】本题考查平面向量的加法法则,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.(2分)下列说法中错误的是()A.“买一张彩票中大奖”发生的概率是0B.“软木塞沉入水底”发生的概率是0C.“太阳东升西落”发生的概率是1D.“10只鸟关在3个笼子里,至少有一个笼子关的鸟超过3只”发生的概率是1【分析】根据事件的类型即可判断事件发生的可能性大小.【解答】解:A、“买一张彩票中大奖”发生的概率较小,但不是0,此选项错误;B、“软木塞沉入水底”是不可能事件,发生的概率是0,此选项正确;C、“太阳东升西落”是必然事件,发生的概率是1,此选项正确;D、10只鸟关在3个笼子里,至少有一个笼子关的鸟超过3只”是必然事件,发生的概率是1,此选项正确;故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(2分)如图,在四边形ABCD中,AC于BD相交于点O,∠BAD=90°,BO=DO,那么下列条件中不能判定四边形ABCD为矩形的是()A.∠ABC=90B.AO=OC C.AB||CD D.AB=CD【分析】根据矩形的判定定理:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形分别进行分析即可.【解答】解:A、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠ABC=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;B、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵AO=OC,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;C、∵AB||CD,∠BAD=90°,∴∠ADC=90°,∵BO=DO,∴OA=OB=OD,∴∠DAO=∠ADO,∴∠BAO=∠ODC,∵∠AOB=∠DOC,∴△AOB≌△DOC,∴AB=CD,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴▱ABCD是矩形,正确;D、∵∠BAD=90°,BO=DO,AB=CD,无法得出△ABO≌△DCO,故无法得出四边形ABCD是平行四边形,进而无法得出四边形ABCD是矩形,错误;故选:D.【点评】此题主要考查了矩形的判定,关键是熟练掌握矩形的判定定理.二、填空题(本大题共12题,每小题3分,满分36分)7.(3分)一次函数y=1﹣5x的截距是1.【分析】令x=0,则y=1,即一次函数与y轴交点为(0,1),即可得出答案.【解答】解:由y=1﹣5x,令x=0,则y=1,即一次函数与y轴交点为(0,1),∴一次函数的截距为1.故答案为:1.【点评】本题考查了一次函数图象上点的坐标特征,属于基础题,关键是令x=0求出与y轴的交点坐标.8.(3分)把函数y=2x的图象向右平移1个单位长度,得到的函数图象解析式为y=2(x﹣1).【分析】根据“左加右减”的原则进行解答即可.【解答】解:把函数y=2x的图象向右平移1个单位长度,得到的函数图象解析式为y=2(x﹣1).故答案为y=2(x﹣1).【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9.(3分)如果一次函数的图象经过点(﹣2,﹣6)和(5,2),那么函数值y 随着自变量x的增大而增大.【分析】根据一次函数的单调性即可直接得出答案.【解答】解:∵x=﹣2时,y=﹣6,x=5时,y=2,根据一次函数的单调性可得:函数值y随着自变量x的增大而增大.故答案为:增大.【点评】本题考查了一次函数的性质,属于基础题,关键是掌握一次函数的基本性质.10.(3分)关于x的方程ax﹣2x﹣5=0(a≠2)的解是.【分析】利用解一元一次方程的一般步骤解出方程.【解答】解:ax﹣2x﹣5=0(a﹣2)x=5x=,故答案为:.【点评】本题考查的是一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.11.(3分)方程=1的解是x=±.【分析】先把无理方程化为整式方程得x2﹣2=1,再解一元二次方程,然后进行检验确定原方程的解.【解答】解:两边平方得到x2﹣2=1,解得x=±,经检验x=±是原方程的解,所以原方程的解为x=±.【点评】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.12.(3分)已知方程=1,如果设=y,那么原方程可以变形为关于y的整式方程为3y2+3y﹣1=0.【分析】先把方程变形为含y的分式方程,再去分母得整式方程.【解答】解:方程=1,可变形为:×﹣=1,若设=y,则=所以原方程可变形为:﹣y=1两边都乘以3y,得3y2+3y﹣1=0.故答案为:3y2+3y﹣1=0【点评】本题考查了分式方程的换元法.题目难度不大,注意式子的变形.13.(3分)在平行四边形ABCD中,两邻角的度数比是7:2,那么较小角的度数为40°.【分析】本题主要依据平行四边形的性质,得出两邻角之和180°,再有两邻角的度数比是7:2,得出较小角的度数.【解答】解:设两邻角分别为7x、2x,则7x+2x=180°,解得:x=20°,∴较小的角为40°.故答案为:40°.【点评】本题主要考查了平行四边形的基本性质,属于基础题,解答本题的关键是熟练掌握平行四边形的两邻角之和为180°.14.(3分)在平行四边形ABCD中,若,则=(用和表示).【分析】由在平行四边形ABCD中,,根据平行四边形法则即可求得的值.【解答】解:∵在平行四边形ABCD中,,∴=﹣=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识.解题的关键是注意平行四边形法则的应用.15.(3分)从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被2整除的概率是.【分析】列表列举出所有情况,看两位数是偶数的情况数占总情况数的多少即可解答.【解答】解:列表如下:234232423234342434共有6种等可能的结果,其中这个数恰好能被2整除的有4种结果,所以这个数恰好能被2整除的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.16.(3分)某学校准备用2400元购买一批学习用品,已知甲种学习用品的单价比乙种学习用品的单价少2元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,问:这两种学习用品的单价分别是多少元?若设乙种学习用品的单价为x元,那么根据题意可列方程﹣=200.【分析】设乙种学习用品的单价为x元,则甲种学习用品单价为(x﹣2)元,根据某学校准备用2400元购买一批学习用品,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,列出方程即可.【解答】解:设乙种学习用品的单价为x元,则甲种学习用品单价为(x﹣2)元,根据题意,得﹣=200.故答案为﹣=200.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.17.(3分)如图,矩形ABCD中,BC=6,AB=3,R在CD边上,且CR=1,P为BC 上一动点,E、F分别是AP、RP的中点,当P从B向C移动时,线段EF的长度为.【分析】连接AR.在Rt△ADR中,利用勾股定理求出AR,再利用三角形的中位线定理即可求出EF.【解答】解:如图,连接AR.∵四边形ABCD是矩形,∴∠D=90°,∵BC=6,AB=3,CR=1,∴AD=6,DR=2,∴AR==2,∵AE=EP,PF=FR,∴EF=AR=×2=,故答案为:.【点评】本题考查矩形的性质、勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.(3分)已知P是正方形ABCD内一点,将△ABP绕点B旋转,使得边BA与边BC重合,点P落在点P′的位置上.如果PB=2,那么PP′的长等于2.【分析】如图,利用正方形的性质得BA=BC,∠ABC=90°,再根据旋转的性质得BP=BP′=2,∠PBP′=∠ABC=90°,则可判断△PBP′为等腰直角三角形,然后根据等腰直角三角形的性质求P P′的长.【解答】解:如图,∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,∵△ABP绕点B旋转,使得边BA与边BC重合,点P落在点P′的位置上.∴BP=BP′=2,∠PBP′=∠ABC=90°,∴△PBP′为等腰直角三角形,∴PP′=PB=2.故答案为2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三、解答题(本大题共7分,满分52分)19.(5分)解方程:﹣=【分析】去分母,把分式方程转化为整式方程,求解整式方程并验根.【解答】解:原方程可变形为+=方程的两边都乘以(x+1)(x﹣1),得6x+5(x+1)=(x+4)(x﹣1)整理,得x2﹣8x﹣9=0即(x﹣9)(x+1)=0解得,x1=9,x2=﹣1检验:当x=﹣1时,(x+1)(x﹣1)=0,所以x=﹣1不是原方程的根.所以原方程的解为:x=9.【点评】本题考查了分式方程的解法.题目难度不大,注意不能忘记检验.20.(5分)解方程组:【分析】把二次方程变形为两个一次方程,和组中的一次方程组成新的方程组,求解即可.【解答】解:由②,得(x+3y)(x﹣2y)=0,即x+3y=0或x﹣2y=0所以原方程组可转化为:或解方程组,得或所以原方程组的解为:或【点评】本题考查了高次方程的解法.解决本题的关键是把二次方程因式分解后再组成新的方程组.21.(5分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠CDB=30°.求:(1)求∠A的度数;(2)当AD=4时,求梯形ABCD的面积.【分析】(1)首先根据DC∥AB,求出∠ABD的度数是多少;然后根据角平分线的性质,求出∠A的度数是多少即可.(2)首先判断出△ABD是直角三角形,进而利用三角形的面积公式和梯形的面积公式解答即可.【解答】解:(1)∵DC∥AB,∴∠ABD=∠CDB=30°,∵BD平分∠ABC,∴∠A=2∠ABD=60°.(2)∵∠ABD=30°,∠A=60°,∴∠ADB=180°﹣30°﹣60°=90°,∴AB=2AD=2×4=8,∴BD==4,∴梯形的高=,∵BD平分∠ABC,∠CDB=30°.∴∠CBD=30°=∠CDB,∴DC=BC=AD=4,=.∴S梯形ABCD【点评】此题考查梯形的问题,关键是根据DC∥AB,求出∠ABD的度数.22.(7分)庆华社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示.(1)求提高效率后,s关于t的函数关系式;(2)该绿化组提高工作效率后每小时完成的绿化面积比提高工作效率前每小时完成的绿化面积多多少?【分析】(1)根据待定系数法可求直线AB的解析式,(2)根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:(1)设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,(2)∵直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.【点评】考查了一次函数的应用和函数的图象,关键是根据待定系数法求出该绿化组提高工作效率后的函数解析式,同时考查了工作效率=工作总量÷工作时间的知识点.23.(8分)如图,四边形ABCD是平行四边形,AE∥BD,AE与CB的延长线交于点E,DE交AB于F.(1)求证:BC=BE;(2)连结CF,若∠ADF=∠BCF且AD=2AF,求证:四边形ABCD是正方形.【分析】(1)根据平行四边形的性质得:AD∥BC,AD=BC,又由平行四边形的判定得:四边形AEBD是平行四边形,又由平行四边形的对边相等可得结论;(2)根据(1):四边形AEBD是平行四边形,对角线互相平分可得:AF=BF=AB,EF=FD,从而证明AD=AB,即邻边相等,证明EF=FC=FD,得∠FDC=∠FCD,从而∠BCD=90°,根据有一个角是直角,邻边相等的平行四边形是正方形可得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE∥BD,∴四边形AEBD是平行四边形,∴AD=EB,∴BC=BE;(2)由(1)知:四边形AEBD是平行四边形,∴AF=BF=AB,EF=FD,∵AD=2AF,∴AB=AD,∵AD∥EC,∴∠ADF=∠BCF,∴∠FEC=∠BCF,∴EF=FC=FD,∴∠FDC=∠FCD,∴∠ADF+∠FDC=∠FCD+∠BCF,即∠ADC=∠BCD,∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠BCD=90°,∴四边形ABCD是正方形.【点评】此题考查了平行四边形的性质、正方形的判定、等腰三角形的判定与性质、平行线的性质,属于基础题,正确利用平行四边形的性质是解题关键.24.(10分)如图,平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于点A.B.(1)求△AOB的面积;(2)点P是y轴上的点,在坐标平面内是否存在点Q,使以A.B.P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出A、B两点坐标即可解决问题;(2)①当AB是菱形的边时,分三种情形讨论求解;②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,构建方程即可解决问题;【解答】解:(1)对于直线y=﹣x+2,令x=0得到y=2,令y=0,得到x=2,∴A(2,0).B(0,2),∴OA=2,OB=2,=•OB•OA=2.∴S△AOB(2)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣2,0),在菱形ABP2Q2中,AQ2=AB=4,所以Q2点的坐标为(2,4),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(2,﹣4),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=22+(2﹣x)2,解得x=,所以Q4(2,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣2,0),Q2(2,4),Q3(2,﹣4),Q4(2,).【点评】本题考查了一次函数综合题,涉及的知识点有:解一元二次方程,两点之间的距离公式,三角形面积的计算,函数思想,分类思想的运用,菱形的性质,综合性较强,有一定的难度.25.(12分)如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD 边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.直线l为线段PQ的垂直平分线,与边BC交与点E设AP=x.(1)当直线l经过点B时,求x的值;(2)求BE的长(用含x的代数式表示);(3)连接EP、EQ,设△EPQ的面积为y,求y关于x的函数关系式,并写出它的定义域.【分析】(1)先确定出BP=8﹣x,进而得出BQ=8﹣x,再利用勾股定理即可得出结论;(2)先利用勾股定理得出PE2=(8﹣x)2+BE2,QE2=x2+(6﹣BE)2,进而建立方程即可得出结论;(3)同(2)的方法求出AF,DF,最后用面积差即可得出结论.【解答】解:(1)如图1,∵四边形ABCD 是矩形,∴CD=AB=8,BC=AD=6,∵AP=CQ=x ,∴BP=DQ=8﹣x ,连接BQ ,当直线l 过点B 时,直线l 必过点D ,∵l 是PQ 的垂直平分线,∴BQ=BP ,∴DQ=BQ=8﹣x ,在Rt △BCQ 中,根据勾股定理得,(8﹣x )2﹣x 2=36,∴x=;(2)如图2,连接PE ,QE ,∴PE=QE ,在Rt △PBE 中,PE 2=(8﹣x )2+BE 2,在Rt △ECQ 中,QE 2=x 2+(6﹣BE )2,∴(8﹣x )2+BE 2=x 2+(6﹣BE )2,∴BE=;(3)连接PE ,QE ,PF ,QF ,由(2)知,BE=, ∴CE=BC ﹣BE=,同(2)的方法得,DF=,AF=, ∴S=S 矩形ABCD ﹣S △APF ﹣S △DFQ ﹣S △BEP ﹣S △ECQ=6×8﹣x ×﹣(8﹣x )×﹣x ×﹣(8﹣x )×﹣=48﹣x ×﹣(8﹣x )×=x +,∵点E在线段BC上,∴0≤BE≤6,∴0≤≤6,∴≤x≤,即:y=x+(≤x≤).【点评】此题是四边形综合题,主要考查了垂直平分线的性质,矩形的性质,勾股定理,几何图形的面积的计算,作出辅助线是解本题的关键.。

上海市2017—2018学年八年级下册期末数学试卷含答案解析

上海市2017—2018学年八年级下册期末数学试卷含答案解析

2017—2018学年八年级(下)期末数学试卷一、选择题:(本大题共6题,每题3分,满分18分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.下列函数中,是一次函数的是()A.B.y=x+2 C.y=x2+2 D.y=kx+b2.用换元法解分式方程,如果设,那么原方程可以化为()A.y2+y﹣5=0 B.y2﹣5y+1=0 C.5y2+y+1=0 D.5y2+y﹣1=0 3.下列四个方程中,有一个根是x=2的方程是()A.B.C.D.4.下列说法错误的是()A.确定事件的概率是1B.不可能事件的概率是0C.必然事件的概率是1D.随机事件的概率是大于0且小于1的一个数5.下列关于向量的等式中,正确的是()A.B.﹣=C.D.6.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD二、填空题(本大题共12题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.直线y=x﹣2的截距是.8.已知一次函数y=(m﹣1)x﹣2的函数值y随着自变量x的值的增大而增大,那么m的取值范围是.9.关于x的方程ax﹣4x﹣2=0(a≠4)的解是.10.方程2x3﹣16=0的根是.11.方程的根是.12.一个二元二次方程的一个解是,写出符合要求的方程(只需写一个即可).13.已知▱ABCD,设,,那么用向量、表示向量=.14.一个正多边形的每一个外角都是72°,那么这个多边形是边形.15.在▱ABCD中,如果∠A+∠C=200°,那么∠B的度数是度.16.矩形ABCD的两条对角线AC、BD相交于点O,已知AC=12,∠ACB=30°,那么△DOC 的周长是.17.如果菱形的两条对角线长分别为6和8,那么这个菱形一边上的高是.18.在▱ABCD中,AB=5,BC=7,对角线AC和BD相交于点O,如果将点A绕着点O顺时针旋转90°后,点A恰好落在平行四边形ABCD的边AD上,那么AC的长是.三、解答题(共8题,满分58分)[将下列各题的解答过程做在答题纸的相应位置上19.解方程:=﹣1.20.解方程组:.21.一个不透明的布袋中装了分别标有数字1、2、3、4的四个小球,这些小球除标记数字不同外其余均相同.(1)如果从中任意摸出两个小球,用树形图法或列表法展现所有等可能的结果;(2)如果从中任意摸出两个小球,求摸到的两个小球上的数字之和是5的概率.22.已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,∠A=60°,对角线BD平分∠ABC.(1)求对角线BD的长;(2)求梯形ABCD的面积.23.某项研究表明:人的眼睛疲劳系数y与睡眠时间t之间成函数关系,它们之间的关系如图2所示.其中,当睡眠时间不超过4小时(0≤t≤4)时,眼睛疲劳系数y是睡眠时间t 的反比例函数;当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y是睡眠时间t的一次函数,且当睡眠时间达到6小时后,眼睛疲劳系数为0.根据图象,回答下列问题:(1)求当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y关于睡眠时间t之间的函数关系式;(2)如果某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时他的眼睛疲劳系数恰好减少了3,求t的值.24.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形.25.如图,在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别相交于点A和点B,点C在y轴的正半轴上,且OC=2OB.(1)求线段BC的长度;(2)如果点D在直线AB上,且以B、C、D、E为顶点的四边形为菱形,请直接写出点E 的坐标.26.已知:在正方形ABCD中,AB=2,点P是射线AB上的一点,联结PC、PD,点E、F 分别是AB和PC的中点,联结EF交PD于点Q.(1)如图1,当点P与点B重合时,△QPE的形状是(2)如图2,当点P在AB的延长线上时,设BP=x,EF=y,求y关于x的函数关系式,并写出定义域;(3)当点Q在边BC上时,求BP的长.参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分18分)[每小题只有一个正确选项,在答题纸相应题号的选项上用2B铅笔正确填涂]1.下列函数中,是一次函数的是()A.B.y=x+2 C.y=x2+2 D.y=kx+b【考点】一次函数的定义.【分析】直接利用一次函数的定义分析得出答案.【解答】解:A、y=+2,不符合一次函数的定义,故此选项错误;B、y=x+2,是一次函数,故此选项正确;C、y=x2+2,是二次函数,故此选项错误;D、y=kx+b(k≠0),故此选项错误;故选:B.2.用换元法解分式方程,如果设,那么原方程可以化为()A.y2+y﹣5=0 B.y2﹣5y+1=0 C.5y2+y+1=0 D.5y2+y﹣1=0【考点】换元法解分式方程.【分析】直接把化为y即可.【解答】解:设,则原方程化为5y﹣+1=0,去分母得,5y2+y﹣1=0.故选D.3.下列四个方程中,有一个根是x=2的方程是()A.B.C.D.【考点】无理方程;分式方程的解.【分析】可以先将各个选项的方程解出来,然后看看哪个方程的其中一个根是x=2,从而可以解答本题.【解答】解:当x=2时,方程中的分母x﹣2=0,故x=2不是方程的根,故选项A错误;,解得x=2,故的根是x=2,不符合题意,故选项B错误;=2,解得x=10,故选项C错误;,解得x=2或x=3,故方程,有一根是x=2,故选项D正确;故选D.4.下列说法错误的是()A.确定事件的概率是1B.不可能事件的概率是0C.必然事件的概率是1D.随机事件的概率是大于0且小于1的一个数【考点】概率的意义.【分析】确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0.不可能发生的事件就是一定不会发生的事件,因而概率为0.必然发生的事件就是一定发生的事件,因而概率是1.不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率>0并且<1.【解答】解:A、确定事件包括必然事件和不可能事件,必然事件的概率为1,不可能事件的概率为0,选项正确;B、不可能发生的事件概率为0,选项错误;C、必然发生的事件发生的概率为1,选项错误;D、随机事件发生的概率介于0和1之间,选项正确.故选A.5.下列关于向量的等式中,正确的是()A.B.﹣=C.D.【考点】*平面向量.【分析】根据平面向量的平行四边形法则和三角形法则对各选项分析判断即可得解.【解答】解:A、+=,而不是等于0,故本选项错误;B、﹣=,故本选项错误;C、+=,故本选项错误;D、∵+=,∴++=,故本选正确.故选D.6.如图,四边形ABCD的对角线AC、BD互相垂直,则下列条件能判定四边形ABCD为菱形的是()A.BA=BC B.AC、BD互相平分C.AC=BD D.AB∥CD【考点】菱形的判定.【分析】已知四边形的对角线互相垂直,可依据“对角线互相垂直且平分的四边形是菱形”的判定方法,来选择条件.【解答】解:四边形ABCD中,AC、BD互相垂直,若四边形ABCD是菱形,需添加的条件是:AC、BD互相平分;(对角线互相垂直且平分的四边形是菱形)故选B.二、填空题(本大题共12题,每小题2分,满分24分)[在答题纸相应题号后的空格内直接填写答案]7.直线y=x﹣2的截距是﹣2.【考点】一次函数的性质.【分析】把x=0代入一次函数的解析式求出y即可.【解答】解:把x=0代入y=x﹣2得:y=﹣2,故答案为:﹣2.8.已知一次函数y=(m﹣1)x﹣2的函数值y随着自变量x的值的增大而增大,那么m的取值范围是m>1.【考点】一次函数图象与系数的关系.【分析】由题意y=(m﹣1)x﹣2,y随x的增大而增大,可得自变量系数大于0,进而可得出m的范围.【解答】解:∵y=(m﹣1)x﹣2中,y随x的增大而增大,∴m﹣1>0,∴m>1.故答案为:m>1;9.关于x的方程ax﹣4x﹣2=0(a≠4)的解是.【考点】一元一次方程的解.【分析】根据解一元一次方程的方法可以求得方程ax﹣4x﹣2=0(a≠4)的解,本题得以解决.【解答】解:ax﹣4x﹣2=0(a≠4)移项及合并同类项,得(a﹣4)x=2,系数化为1,得x=,故答案为:.10.方程2x3﹣16=0的根是x=2.【考点】高次方程.【分析】求出x3=8,两边开立方根,即可求出x.【解答】解:2x3﹣16=0,2x3=16,x3=8,x=2,故答案为:2.11.方程的根是x=3.【考点】无理方程.【分析】方程两边平方,转化为一元二次方程,解一元二次方程并检验.【解答】解:方程两边平方,得x2=2x+3,即x2﹣2x﹣3=0,解得x1=3,x2=﹣1,代入原方程检验可知x=3符合题意,x=﹣1舍去.故答案为:x=3.12.一个二元二次方程的一个解是,写出符合要求的方程xy=2(只需写一个即可).【考点】高次方程.【分析】分析:方程的解是二元二次方程有很多,如:xy=2;x2+y=5等等.【解答】解:xy=2等13.已知▱ABCD,设,,那么用向量、表示向量=﹣.【考点】*平面向量;平行四边形的性质.【分析】根据=+即可解决问题【解答】解:如图,∵四边形ABCD是平行四边形,∴==,∵=+=﹣+=﹣,故答案为﹣14.一个正多边形的每一个外角都是72°,那么这个多边形是5边形.【考点】多边形内角与外角.【分析】由一个多边形的外角为360°和每一个外角都是72°,可求得其边数.【解答】解:∵一个多边形的每一个外角都是72°,多边形的外角和等于360°,∴这个多边形的边数为:360÷72=5,故答案为:5.15.在▱ABCD中,如果∠A+∠C=200°,那么∠B的度数是80度.【考点】平行四边形的性质.【分析】由在▱ABCD中,如果∠A+∠C=200°,即可求得∠A的度数,又由平行四边形的邻角互补,求得答案.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=200°,∴∠A=100°,∵AD∥BC,∴∠B=180°﹣∠A=80°.故答案为:80.16.矩形ABCD的两条对角线AC、BD相交于点O,已知AC=12,∠ACB=30°,那么△DOC 的周长是18.【考点】矩形的性质.【分析】直接利用矩形的性质得出∠OCD=60°,DO=CO=6,进而得出△OCD是等边三角形,即可得出答案.【解答】解:如图所示:∵矩形ABCD的两条对角线AC、BD相交于点O,AC=12,∠ACB=30°,∴∠OCD=60°,DO=CO=6,∴△OCD是等边三角形,∴△DOC的周长是:18.故答案为:18.17.如果菱形的两条对角线长分别为6和8,那么这个菱形一边上的高是.【考点】菱形的性质.【分析】根据对角线的长度即可计算菱形的面积,根据菱形对角线互相垂直平分的性质,可以求得△AOB为直角三角形,根据AO,BO可以求得AB的值,根据菱形的面积和边长即可解题.【解答】解:由题意知AC=6,BD=8,则菱形的面积S=×6×8=24,∵菱形对角线互相垂直平分,∴△AOB为直角三角形,AO=3,BO=4,∴AB==5,∴菱形的高h==.故答案为:.18.在▱ABCD中,AB=5,BC=7,对角线AC和BD相交于点O,如果将点A绕着点O顺时针旋转90°后,点A恰好落在平行四边形ABCD的边AD上,那么AC的长是或.【考点】旋转的性质;平行四边形的性质.【分析】如图,过O点作OE⊥AD于E,过C点作CF⊥AD于F,根据旋转的性质可得△AOA′是等腰直角三角形,△AA′C是等腰直角三角形,再根据勾股定理可求AA′,再根据等腰直角三角形的性质即可求解.【解答】解:如图,过O点作OE⊥AD于E,过C点作CF⊥AD于F,∵将点A绕着点O顺时针旋转90°后,点A恰好落在平行四边形ABCD的边AD上,∴△AOA′是等腰直角三角形,∴△AA′C是等腰直角三角形,设AA′=x,则CF=x,DF=7﹣x,在Rt△CDF中,x2+(7﹣x)2=52,解得x1=4,x2=3,在Rt△CFA中,AC=或.故答案为:或.三、解答题(共8题,满分58分)[将下列各题的解答过程做在答题纸的相应位置上19.解方程:=﹣1.【考点】解分式方程.【分析】观察可得最简公分母是(x+2)(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母,得4=(x+2)﹣(x+2)(x﹣2),整理,得x2﹣x﹣2=0,解得x1=﹣1,x2=2.经检验:x1=﹣1是原方程的根,x2=2是增根.故原方程的根为x=﹣1.20.解方程组:.【考点】高次方程.【分析】先由①得:(x﹣2y)(x﹣3y)=0,求出x=2y或x=3y,再分别代入②,求出x,y的值即可.【解答】解:,由①得:(x﹣2y)(x﹣3y)=0,则x=2y或x=3y,将x=2y代入②得y=,x=,将x=3y代入②得y=,x=,则方程组的解是:,.21.一个不透明的布袋中装了分别标有数字1、2、3、4的四个小球,这些小球除标记数字不同外其余均相同.(1)如果从中任意摸出两个小球,用树形图法或列表法展现所有等可能的结果;(2)如果从中任意摸出两个小球,求摸到的两个小球上的数字之和是5的概率.【考点】列表法与树状图法.【分析】(1)画树状图展示所有12种等可能的情况;(2)找出摸到的两个小球上的数字之和为5的结果数,然后根据概率公式求解.【解答】解:(1)画树状图:共有12种等可能的情况;(2)摸到的两个小球上的数字之和为5的结果数为4,所以摸到摸到的两个小球上的数字之和为5的概率==.22.已知:如图,在梯形ABCD中,DC∥AB,AD=BC=2,∠A=60°,对角线BD平分∠ABC.(1)求对角线BD的长;(2)求梯形ABCD的面积.【考点】梯形.【分析】(1)根据等腰梯形的同一底上的两个底角相等,即可求得∠B的度数,根据三角形的内角和定理证明△ABD是直角三角形,利用直角三角形的性质以及勾股定理即可求解;(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G,在直角△ADB中求得DH 和AH的长,则AB即可求得,然后利用梯形的面积公式求解.【解答】解:(1)∵DC∥AB,AD=BC,∴∠A=∠ABC.∵BD平分∠ABC,∠A=60°,∴∠ABD=∠ABC=30°.∴∠ADB=90°.∵AD=2,∴AB=2AD=4.∴BD=.(2)过点D、C分别作DH⊥AB,CG⊥AB,垂足为点H、G.∵DC∥AB,BD平分∠ABC,∴∠CDB=∠ABD=∠CBD.∵BC=2,∴DC=BC=2.在RT△ADH和RT△BCG中,,∴RT△ADH≌RT△BCG.∴AH=BG.∵∠A=60°,∴∠ADH=30°.∴AH=AD=1,DH=.∵DC=HG=2,∴AB=4.∴.23.某项研究表明:人的眼睛疲劳系数y与睡眠时间t之间成函数关系,它们之间的关系如图2所示.其中,当睡眠时间不超过4小时(0≤t≤4)时,眼睛疲劳系数y是睡眠时间t 的反比例函数;当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y是睡眠时间t的一次函数,且当睡眠时间达到6小时后,眼睛疲劳系数为0.根据图象,回答下列问题:(1)求当睡眠时间不少于4小时(4≤t≤6)时,眼睛疲劳系数y关于睡眠时间t之间的函数关系式;(2)如果某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时他的眼睛疲劳系数恰好减少了3,求t的值.【考点】反比例函数的应用.【分析】(1)根据图象经过的两点利用待定系数法确定函数的解析式即可;(2)首先利用待定系数法确定反比例函数的解析式,根据“某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时眼睛疲劳系数恰好减少了3”列方程求解.【解答】解:(1)根据题意,设当4≤t≤6时,眼睛疲劳系数y关于睡眠时间t的函数关系式为:y=kt+b(k≠0).∵它经过点(4,2)和(6,0),∴,解得:.…(2分)∴当睡眠时间不少于4小时,眼疲劳系数y关于睡眠时间t的函数关系式是y=﹣t+6.当睡眠时间不超过4小时(0≤t≤4)时,眼睛疲劳系数y是睡眠时间t的反比例函数,设这个反比例函数为:,∵它经过点(4,2),∴,∵某人睡眠了t(1<t<3)小时后,再连续睡眠了3小时,此时眼睛疲劳系数恰好减少了3,∴,整理得:t2﹣6t+8=0.解得:t1=2,t2=4,经检验:t1=2,t2=4是原方程的解,t2=4不符合题意舍去,∴t的值是2.24.如图,在△ABC中,点D是BC边的中点,点E是AD的中点,过A点作AF∥BC,且交CE的延长线于点F,联结BF.(1)求证:四边形AFBD是平行四边形;(2)当AB=AC时,求证:四边形AFBD是矩形.【考点】矩形的判定;平行四边形的判定与性质.【分析】(1)首先证明△AEF≌△DEC(AAS),得出AF=DC,进而利用AF BD得出答案;(2)利用等腰三角形的性质,结合矩形的判定方法得出答案.【解答】证明:(1)∵AF∥BC,∴∠AFC=∠FCD.在△AFE和△DCE中,∴△AEF≌△DEC(AAS).∴AF=DC,∵BD=DC,∴AF=BD,∴四边形AFBD是平行四边形;(2)∵AB=AC,BD=DC,∴AD⊥BC.∴∠ADB=90°.∵四边形AFBD是平行四边形,∴四边形AFBD是矩形.25.如图,在平面直角坐标系xOy中,直线y=x﹣2与x轴、y轴分别相交于点A和点B,点C在y轴的正半轴上,且OC=2OB.(1)求线段BC的长度;(2)如果点D在直线AB上,且以B、C、D、E为顶点的四边形为菱形,请直接写出点E 的坐标.【考点】一次函数图象上点的坐标特征;菱形的性质.【分析】(1)可先求得B点坐标,再结合OC=2OB,可求得BC的长度;(2)分BC为边和对角线,①当BC为边时有两种情况,BD为边或BD为对角线,当BD 为边时,则BD=BC,可先求得D点坐标,再根据DE∥BC且DE=BC可求得E点坐标;当BD为对称线时,则四边形为正方形,可求得E点坐标;②当BC为对角线时,则DE为BC的垂直平分线,可先求得D点坐标,利用对称性可求得E点坐标【解答】解:(1)∵直线y=x﹣2与x轴、y轴分别相交于点A和点B,∴点A(2,0),点B(0,﹣2),∴OB=2,∵OC=2OB,∴OC=4,点C(0,4),∴BC的长度是6;(2)①当BC为边时,有两种情况,BD为边或BD为对称线,当BD为边时,则有BD=BC=6,设D点坐标为(x,x﹣2),则=6,解得x=3或x=﹣3,∴D点坐标为(3,3﹣2)或(﹣3,﹣3﹣2),∵DE=BC=6,且DE∥BC,∴E点坐标为(,3+4)或(,﹣3+4);当BD为对角线时,则∠CBD=∠EBD=45°,如图1,则∠EBC=90°,∴四边形BCDE为正方形,∴BE=BC=6,且BE∥x轴,∴E点坐标为(6,﹣2);②当BC为对角线时,则有DE⊥BC,如图2,设BC与DE交于点F,则F为BC的中点,∴F(0,1),∴D点纵坐标为1,代入直线AB解析式可得1=x﹣2,解得x=3,∴D点坐标为(3,1),又D、E关于BC对称,∴E点坐标为(﹣3,1);综上可知点E的坐标可以为(,3+4)或(,﹣3+4)或(6,﹣2)或(﹣3,1).26.已知:在正方形ABCD中,AB=2,点P是射线AB上的一点,联结PC、PD,点E、F 分别是AB和PC的中点,联结EF交PD于点Q.(1)如图1,当点P与点B重合时,△QPE的形状是等腰直角三角形(2)如图2,当点P在AB的延长线上时,设BP=x,EF=y,求y关于x的函数关系式,并写出定义域;(3)当点Q在边BC上时,求BP的长.【考点】相似形综合题.【分析】(1)根据正方形的性质得到AB=BC,∠ABC=90°,根据等式的性质得到PE=PF,即可得到结论;(2)延长BA到点M,使得AM=BP,连接CM,根据已知条件得到EM=EP,根据三角形的中位线的性质得到EF=MC,根据正方形的性质得到∠MBC=90°,AB=BC,由已知条件得到BM=2+x.根据勾股定理得到MC==,于是得到结论;(3)当点Q在边BC上时,根据平行线的性质得到∠M=∠QEB,根据全等三角形的性质得到∠M=∠APD,推出QE=QP,根据等腰三角形的性质即可得到结论.【解答】解:(1)△QPE的形状是等腰直角三角形,理由:在正方形ABCD中,∵AB=BC,∠ABC=90°,∵点P与点B重合,∴AP=PC,∠APC=90°,∵点E、F分别是AB和PC的中点,∴PE=AP,PF=PC,∴PE=PF,∴△QPE是等腰直角三角形;故答案为:等腰直角三角形;(2)延长BA到点M,使得AM=BP,连接CM,∵AE=BE,∴AE+AM=BE+BP,即EM=EP,∵PF=CF,∴EF=MC,∵四边形ABCD是正方形,∴∠MBC=90°,AB=BC,∵AB=2,BP=AM=x,∴BM=2+x.∴MC==,∴EF=,∴y=(x>0);(3)当点Q在边BC上时,由(2)可知EF∥MC,∴∠M=∠QEB,∵在△ADP和△BCM中,,∴△ADP≌△BCM,∴∠M=∠APD,∴∠QEB=∠APD,∴QE=QP,∵QB⊥PE,∴BP=BE=AB=1.。

【精品】2017-2018学年上海市浦东新区八年级(下)期末数学试卷

【精品】2017-2018学年上海市浦东新区八年级(下)期末数学试卷

=0
D.第四象限 D. + =0
3.(3 分)如图,已知一次函数 y=kx+b 的图象经过 A、B 两点,那么不等式 kx+b
>0 的解集是(

A.x>3
B.x< 3
C.x>5
D.x<5
4.(3 分)下列事件:①上海明天是晴天,②铅球浮在水面上,③平面中,多边
形的外角和都等于 360 度,属于确定事件的个数有(
( 2) =
;(用 , 的式子表示)
( 3)若 AC⊥BD,| | =4,| | =6,则 | + | =

22.( 6 分)已知弹簧在一定限度内,它的长度 y(厘米)与所挂重物质量 x(千 克)是一次函数关系.
下表中记录的是两次挂不同重量重物的质量 (在弹性限度内) 与相对应的弹簧长 度:
所挂重物质量 x(千克)
C.当∠ DAB=∠ABC,AD∥BC时,∠ DAB=∠ CBA=90°,再根据 AC=BD,可得△ ABD ≌△ BAC,进而得到 AD=BC,即可得到四边形 ABCD是矩形;
D.当∠ DAB=∠DCB,AD∥BC时,∠ ABC+∠BCD=180°,即可得出四边形 ABCD是 平行四边形,再依据 AC=BD,可得四边形 ABCD是矩形;
b= 6 .
【分析】 根据两直线平行的问题得到 k=2,然后把(﹣ 2, 2)代入 y=2x+b 可计
第 8 页(共 24 页)
算出 b 的值. 【解答】 解:∵直线 y=kx+b 与直线 y=2x+1 平行, ∴ k=2, 把(﹣ 2,2)代入 y=2x+b 得 2×(﹣ 2)+b=2,解得 b=6. 故答案为 6; 【点评】 本题考查了两条直线相交或平行问题: 两条直线的交点坐标, 就是由这

青浦区2017学年第二学期八年级期终学业质量调研卷

青浦区2017学年第二学期八年级期终学业质量调研卷

青浦区2017学年第二学期八年级期终学业质量调研卷数学试卷一、选择题(本大题共6题,每题2分,满分12分)1.如果一次函数y=kx+1不经过第三象限,那么k的取值范围是()A. B. . C. . D. .2.下列方程中,无实数解的是()A. B. C. D.3.在一个多边形的所有内角中,锐角的个数最多有()A.2个B.3个C. 4个D. 5个4.下列关于向量的等式中,不正确的是()A. B. C. D.5.下列说法中错误的是()A.“买一张彩票中大奖”发生的概率是0;B.“软木塞沉入水底”发生的概率是0;C.“太阳东升西落”发生的概率是1;D.“10只鸟关在3个笼子里,至少有一个笼子关的鸟超过3只”发生的概率是1.6. 如图,在四边形ABCD中,AC于BD相交于点O,∠BAD=90,BO=DO,那么下列条件中不能判定四边形ABCD为矩形的是()A.∠ABC=90B.AO=OCC. AB|| CDD. AB=CD二、填空题(本大题共12题,每小题3分,满分36分)7.一次函数y=1-5x的截距是______.8.把函数y=2x的图像向右平移1个单位长度,得到的函数图像解析式为______.9.如果一次函数的图像经过点(-2,-6)和(5,2),那么函数值y随着自变量x的增大而______.10.关于x的方程的解是______.11.方程的解是______.12. 已知方程=1,如果设=y,那么原方程可以变形为关于y的整式方程为______.13. 在平行四边形ABCD中,两邻角的度数比是7:2,那么较小角的度数为______.14. 在平行四边形ABCD中,若则=______(用和表示)15. 从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被2整除的概率是___.16. 某学校准备用2400元购买一批学习用品,已知甲种学习用品的单价比乙种学习用品的单价少2元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,问:这两种学习用品的单价分别是多少元?若设乙种学习用品的单价为x元,那么根据题意可列方程。

2017-2018学年八年级数学下期末试卷附答案和解释

2017-2018学年八年级数学下期末试卷附答案和解释

2017-2018学年八年级数学下期末试卷附答案和解释一、选择题(本大题共6小题,共18.0分)1.下列函数中,一次函数是()A. B. C. D.2.下列判断中,错误的是()A. 方程是一元二次方程B. 方程是二元二次方程C. 方程是分式方程D. 方程是无理方程3.已知一元二次方程x2-2x-m=0有两个实数根,那么m的取值范围是()A. B. C. D.4.下列事件中,必然事件是()A. “奉贤人都爱吃鼎丰腐乳”B. “2018年上海中考,小明数学考试成绩是满分150分”C. “10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”D. “在一副扑克牌中任意抽10张牌,其中有5张A”5.下列命题中,真命题是()A. 平行四边形的对角线相等B. 矩形的对角线平分对角C. 菱形的对角线互相平分D. 梯形的对角线互相垂直二、填空题(本大题共12小题,共24.0分)6.一次函数y=2x-1的图象在轴上的截距为______7.方程x4-8=0的根是______8.方程-x=1的根是______9.一次函数y=kx+3的图象不经过第3象限,那么k的取值范围是______10.用换元法解方程-=1时,如果设=y,那么原方程化成以“y”为元的方程是______11.化简:()-()=______.12.某商品经过两次连续涨价,每件售价由原来的100元涨到了179元,设平均每次涨价的百分比为x,那么可列方程:______13.如果n边形的每一个内角都相等,并且是它外角的3倍,那么n=______14.既是轴对称图形,又是中心对称图形的四边形是______.15.在四边形ABCD中,AB=AD,对角线AC平分∠BAD,AC=8,S 四边形ABCD=16,那么对角线BD=______.16.在矩形ABCD中,∠BAD的角平分线交于BC点E,且将BC分成1:3的两部分,若AB=2,那么BC=______17.如图,在平行四边形ABCD中,AC与BD相交于点O∠AOB=60°,BD=4,将△ABC沿直线AC翻折后,点B落在点E处,那么S△AED=______三、解答题(本大题共8小题,共64.0分)18.解方程:-=219.解方程组:20.布袋中放有x只白球、y只黄球、2只红球,它们除颜色外其他都相同,如果从布袋中随机摸出一个球,恰好是红球的概率是.(1)试写出y与x的函数关系式;(2)当x=6时,求随机地取出一只黄球的概率P.21.如图,矩形ABCD中,对角线AC与BD相交于点O.(1)写出与相反的向量______;(2)填空:++=______;(3)求作:+(保留作图痕迹,不要求写作法).22.中国的高铁技术已经然走在了世界前列,2018年的“复兴号”高铁列车较“和谐号”速度增加每小时70公里.上海火车站到北京站铁路距离约为1400公里,如果选择“复兴号”高铁,全程可以少用1小时,求上海火车站到北京火车站的“复兴号”运行时间.23.已知:如图,在△ABC中,∠ACB=90°,点D是斜边AB的中点,DE∥BC,且CE=CD.(1)求证:∠B=∠DEC;(2)求证:四边形ADCE是菱形.24.如图,一次函数y=2x+4的图象与x,y轴分别相交于点A,B,以AB为边作正方形ABCD(点D落在第四象限).(1)求点A,B,D的坐标;(2)联结OC,设正方形的边CD与x相交于点E,点M在x轴上,如果△ADE与△COM全等,求点M的坐标.25.已知,梯形ABCD中,AD∥BC,∠ABC=90°,AB=3,BC=10,AD=5,M是BC边上的任意一点,联结DM,联结AM.(1)若AM平分∠BMD,求BM的长;(2)过点A作AE⊥DM,交DM所在直线于点E.①设BM=x,AE=y求y关于x的函数关系式;②联结BE,当△ABE是以AE为腰的等腰三角形时,请直接写出BM 的长.答案和解析1.【答案】A【解析】解:A、y=x属于一次函数,故此选项正确;B、y=kx(k≠0),故此选项错误;C、y=+1,不符合一次函数的定义,故此选项错误;D、y=x2-2,不符合一次函数的定义,故此选项错误;故选:A.利用一般地,形如y=kx+b(k≠0,k、b是常数)的函数,叫做一次函数,进而判断即可.此题主要考查了一次函数的定义,正确把握一次函数的定义是解题关键.2.【答案】D【解析】解:A、方程x(x-1)=0是一元二次方程,不符合题意;B、方程xy+5x=0是二元二次方程,不符合题意;C、方程-=2是分式方程,不符合题意;D、方程x2-x=0是一元二次方程,符合题意,故选:D.利用各自方程的定义判断即可.此题考查了无理方程,分式的定义,一元二次方程的定义,以及分式方程的定义,熟练掌握各自的定义是解本题的关键.3.【答案】B【解析】解:∵一元二次方程x2-2x-m=0有两个实数根,∴△=4+4m≥0,解得:m≥-1.故选:B.由方程有两个实数根,得到根的判别式的值大于等于0,列出关于m 的不等式,求出不等式的解集即可得到m的范围.考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.4.【答案】C【解析】解:A、“奉贤人都爱吃鼎丰腐乳”,是随机事件,故此选项错误;B、“2018年上海中考,小明数学考试成绩是满分150分”,是随机事件,故此选项错误;C、“10只鸟关在3个笼子里,至少有一只笼子关的鸟超过3只”是必然事件,故此选项正确;D、“在一副扑克牌中任意抽10张牌,其中有5张A”,是不可能事件.故选:C.直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.此题主要考查了随机事件以及必然事件、不可能事件的定义,正确区分各事件是解题关键.5.【答案】C【解析】解:A.平行四边形的对角线平分,错误;B.菱形的对角线平分对角,错误;C.菱形的对角线互相平分,正确;D.等腰梯形的对角线互相垂直,错误;故选:C.根据菱形、平行四边形、矩形、等腰梯形的性质分别判断得出即可.此题主要考查了菱形、平行四边形、矩形、等腰梯形的性质,熟练掌握相关定理是解题关键.6.【答案】-1【解析】解:一次函数y=2x-1的图象在y轴上的截距是-1,故答案为:-1,根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的性质,熟知一次函数的性质是解答此题的关键.7.【答案】±2【解析】解:x4-8=0,x4=8,x4=16,开方得:x2=4,开方得:x=±2,故答案为±2.移项,系数化成1,再开方即可.本题考查了解高次方程,能把高次方程转化成低次方程是解此题的关键.8.【答案】x=3【解析】解:-x=1,=1+x,2x+10=(1+x)2,x2=9,解得:x=±3,检验:把x=3代入方程-x=1得:左边=右边,所以x=3是原方程的解,把x=3代入方程-x=1得:左边≠右边,所以x=-3不是原方程的解,所以原方程的解为x=3,故答案为:x=3,移项后两边平方,即可得出整式方程,求出方程的解,再进行检验即可.本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.9.【答案】k<0【解析】解:∵一次函数y=kx+3的图象不经过第3象限,一次函数y=kx+3的图象即经过第一、二、四象限,∴k<0.故答案为:k<0,先判断出一次函数图象经过第一、二、四象限,则说明x的系数不大于0,由此即可确定题目k的取值范围.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.10.【答案】3y2-y-1=0【解析】解:-=1,设=y,原方程化为:3y-=1,即3y2-y-1=0,故答案为:3y2-y-1=0.设=y,原方程化为3y-=1,求出即可.本题考查了用换元法解分式方程,能够正确换元是解此题的关键.11.【答案】【解析】解:()-()=--+=(+)-(+)=-=.故答案为:.由去括号的法则可得:()-()=--+,然后由加法的交换律与结合律可得:(+)-(+),继而求得答案.此题考查了平面向量的知识.此题难度不大,注意掌握三角形法则的应用.12.【答案】100(1+x)2=179【解析】解:设平均每次涨价的百分比为x,那么可列方程:100(1+x)2=179.故答案为:100(1+x)2=179.设平均每次涨价的百分比为x,根据原价为100元,表示出第一次涨价后的价钱为100(1+x)元,然后再根据价钱为100(1+x)元,表示出第二次涨价的价钱为100(1+x)2元,根据两次涨价后的价钱为179元,列出关于x的方程此题考查了由实际问题抽象出一元二次方程,属于平均增长率问题,一般情况下,假设基数为a,平均增长率为x,增长的次数为n(一般情况下为2),增长后的量为b,则有表达式a(1+x)n=b,类似的还有平均降低率问题,注意区分“增”与“减”.13.【答案】8【解析】解:∵每个内角都相等,并且是它外角的3倍,设外角为x,可得:x+3x=180°,解得:x=45°,∴边数=360°÷45°=8.故答案为:8.根据正多边形的内角与外角是邻补角求出每一个外角的度数,再根据多边形的边数等于360°除以每一个外角的度数列式计算即可得到边数.本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.14.【答案】矩形(答案不唯一)【解析】解:矩形(答案不唯一).根据轴对称图形与中心对称图形的概念,写一个则可.掌握中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.15.【答案】4【解析】解:∵对角线AC平分∠BAD,∴∠BAO=∠DAO,在△BAO与△DAO中,,∴△BAO≌△DAO(SAS),∴∠BOA=∠DOA,∴AC⊥BD,∵AC=8,S四边形ABCD=16,∴BD=16×2÷8=4.故答案为:4.根据角平分线的定义可得∠BAO=∠DAO,根据SAS可证△BAO≌△DAO,再根据全等三角形的性质可得∠BOA=∠DOA,可得AC⊥BD,再根据对角线互相垂直的四边形面积公式计算即可求解.考查了多边形的对角线,角平分线,全等三角形的判定与性质,四边形面积,关键是根据SAS证明△BAO≌△DAO.16.【答案】8或【解析】解:①如图1中,∵四边形ABCD是矩形,AE平分∠BAD,∴∠BAE=∠AEB=45°,∴AB=BE=2,当EC=3BE时,EC=6,∴BC=8.②如图2中,当BE=3EC时,EC=,∴BC=BE+EC=.故答案为8或分两种情形画出图形分别求解即可解决问题;本题考查矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.17.【答案】【解析】解:如图连接EO.∵∠AOB=∠EOA=60°,∴∠EOD=60°,∵OB=OE=OD,∴△EOD是等边三角形,∴∠EDO=∠AOB=60°,∴DE∥AC,∴S△ADE=S△EOD=×22=.故答案为如图连接EO.首先证明△EOD是等边三角形,推出∠EDO=∠AOB=60°,推出DE∥AC,推出S△ADE=S△EOD即可解决问题;此题考查了折叠的性质,平行四边形的性质以及勾股定理的应用等知识.此题难度适中,解题的关键是准确作出辅助线,利用数形结合思想求解.18.【答案】解:方程两边都乘以(x+2)(x-2)得:(x-1)(x+2)-4=2(x+2)(x-2),即x2-x-2=0,解得:x=-1或2,检验:当x=-1时,(x+2)(x-2)≠0,所以x=-1是原方程的解,当x=2时,(x+2)(x-2)=0,所以x=2不是原方程的解,所以原方程组的解为:x=-1【解析】先去分母,把分式方程转化成整式方程,求出整数方程的解,再进行检验即可.本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【答案】解:由①得:x=4+y③,把③代入②得:(4+y)2-2y2=(4+y)y,解得:y1=4,y2=-2,代入③得:当y1=4时,x1=8,当y2=-2时,x2=2,所以原方程组的解为:,.【解析】由①得出x=4+y③,把③代入②求出y,把y的值代入③求出x即可.本题考查了解高次方程组,能把高次方程组转化成一元二次方程是解此题的关键.20.【答案】解:(1)因为布袋中放有x只白球、y只黄球、2只红球,且红球的概率是.所以可得:y=14-x(2)把x=6,代入y=14-6=8,所以随机地取出一只黄球的概率P==【解析】(1)让红球的个数除以球的总个数即为从布袋中随机摸出一个球是红球的概率,进而得出函数解析式.(2)让黄球的个数除以球的总个数即为从布袋中随机摸出一个球是黄球的概率.此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】,【解析】解:(1)与相反的向量有,,故答案为有,.(2)∵+=,+=,∴++=故答案为.(3)如图,作平行四边形OBEC,连接AE,即为所求;(1)根据相反的向量的定义即可解决问题;(2)利用三角形加法法则计算即可;(3)如图,作平行四边形OBEC,连接AE,即为所求;本题考查平面向量、作图-复杂作图、矩形的性质等知识,解题的关键是熟练掌握向量的加法法则,属于中考常考题型.22.【答案】解:设复兴号用时x小时,则和谐号用时(x+1)小时,根据题意得:=70+,解得:x=4或x=-5(舍去)答:上海火车站到北京火车站的“复兴号”运行时间为4小时.【解析】复兴号用时x小时,则和谐号用时(x+1)小时,然后依据“复兴号”高铁列车较“和谐号”速度增加每小时70公里列方程求解即可.此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.【答案】(1)证明:在△ABC中,∵∠ACB=90°,点D是斜边AB的中点,∴CD=DB,∴∠B=∠DCB,∵DE∥BC,∴∠DCB=∠CDE,∵CD=CE,∴∠CDE=∠CED,∴∠B=∠CED.(2)证明:∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEC,∴∠ADE=∠DEC,∴AD∥EC,∵EC=CD=AD,∴四边形ADCE是平行四边形,∵CD=CE,∴四边形ADCE是菱形.【解析】(1)利用等腰三角形的性质、直角三角形斜边中线定理证明即可;(2)首先证明AD=EC,AD∥EC,可得四边形ADCE是平行四边形,再根据CD=CE可得四边形是菱形;本题考查菱形的判定和性质、平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.24.【答案】解:(1)∵一次函数y=2x+4的图象与x,y轴分别相交于点A,B,∴A(-2,0),B(0,4),∴OA=2,OB=4,如图1,过点D作DF⊥x轴于F,∴∠DAF+∠ADF=90°,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠DAF+∠BAO=90°,∴∠ADF=∠BAO,在△ADF和△BAO中,,∴△ADF≌△BAO(AAS),∴DF=OA=2,AF=OB=4,∴OF=AF-OA=2,∵点D落在第四象限,∴D(2,-2);(2)如图2,过点C作CG⊥y轴于G,连接OC,作CM⊥OC交x轴于M,同(1)求点D的方法得,C(4,2),∴OC==2,∵A(-2,0),B(0,4),∴AB=2,∵四边形ABCD是正方形,∴AD=AB=2=OC,∵△ADE与△COM全等,且点M在x轴上,∴△ADE≌△OCM,∴OM=AE,∵OM=OE+EM,AE=OE+OA,∴EM=OA=2,∵C(4,2),D(2,-2),∴直线CD的解析式为y=2x-6,令y=0,∴2x-6=0,∴x=3,∴E(3,0),∴OM=5,∴M(5,0).【解析】(1)先利用坐标轴上点的特点求出点A,B的坐标,再构造全等三角形即可求出点D坐标;(2)先求出点C坐标,进而求出OC,判断出AD=OC,再用待定系数法求出直线CD解析式,即可求出点E坐标,即可得出结论.此题是一次函数综合题,主要考查了待定系数法,正方形的性质,全等三角形的判定和性质,构造全等三角形求出点D坐标是解本题的关键.25.【答案】解:(1)如图1中,作DH⊥BC于H.则四边形ABHD 是矩形,AD=BH=5,AB=DH=3.当MA平分∠DMB时,易证∠AMB=∠AMD=∠DAM,可得DA=DM=5,在Rt△DMH中,DM=AD=5,DH=3,∴MH===4,∴BM=BH-MH=1,当AM′平分∠BM′D时,同法可证:DA=DM′,HM′=4,∴BM′=BH+HM′=9.综上所述,满足条件的BM的值为1或9.(2)①如图2中,作MH⊥AD于H.在Rt△DMH中,DM==,∵S△ADM=•AD•MH=•DM•AE,∴5×3=y•∴y=.②如图3中,当AB=AE时,y=3,此时5×3=3,解得x=1或9.如图4中,当EA=EB时,DE=EM,∵AE⊥DM,∴DA=AM=5,在Rt△ABM中,BM==4.综上所述,满足条件的BM的值为1或9或4.【解析】(1)如图1中,作DH⊥BC于H.则四边形ABHD是矩形,AD=BH=5,AB=DH=3.分两种情形求解即可解决问题;(2)①如图2中,作MH⊥AD于H.利用面积法构建函数关系式即可;②分两种情形:如图3中,当AB=AE时,y=3,此时5×3=3,解方程即可;如图4中,当EA=EB时,DE=EM,利用勾股定理求解即可;本题考查四边形综合题、等腰三角形的判定和性质、勾股定理、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.。

2017-2018学年上海市浦东新区八年级(下)期末数学试卷(五四学制)(解析版)

2017-2018学年上海市浦东新区八年级(下)期末数学试卷(五四学制)(解析版)

2017-2018学年上海市浦东新区八年级(下)期末数学试卷(五四学制)一、选择题:(本大题共4题,每题3分,满分12分)1.(3分)在下列方程中,分式方程是()A.=1B.=1C.=1D.=12.(3分)函数y=﹣x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)在下列事件中,确定事件共有()①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A.1个B.2个C.3个D.4个4.(3分)在四边形ABCD中,对角线AC和BD相交于点O,AB=CD,添加下列条件后能判定这个四边形是平行四边形的是()A.AD∥BC B.AO=CO C.∠ABC=∠ADC D.∠BAC=∠DCA 二、填空题:(本大题共14题,每题2分,满分28分)5.(2分)方程2x3+54=0的解是.6.(2分)方程=x的解是x=.7.(2分)如果是方程mx2+y2=xy的一个解,那么m=.8.(2分)当k=时,方程kx+4=3﹣2x无解.9.(2分)当m=时,函数y=(m﹣1)x+m是常值函数.10.(2分)已知一次函数y=kx+b的图象经过第一象限,且它的截距为﹣5,那么函数值y 随自变量x值的增大而.11.(2分)已知一次函数y=2x+5,当函数值y<0时,自变量x值的取值范围是.12.(2分)已知一辆匀速行驶汽车的路程S(千米)与时间t(时)的函数关系如图所示,那么这辆汽车的速度是每小时千米.13.(2分)若一个多边形的内角和等于外角和,那么这个多边形的边数是.14.(2分)已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为平方厘米.15.(2分)已知在等腰梯形ABCD中,AD∥BC,AB=13厘米,AD=4厘米,高AH=12厘米,那么这个梯形的中位线长等于厘米.16.(2分)从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是.17.(2分)如图,已知在矩形ABCD中,AB=,BC=2,将这个矩形沿直线BE折叠,使点C落在边AD上的点F处,折痕BE交边CD于点E,那么∠DCF等于度.18.(2分)已知在平面直角坐标系xOy中,直线y=﹣x+4与x轴交于点A、与y轴交于点B,四边形AOBC是梯形,且对角线AB平分∠CAO,那么点C的坐标为.三、解答题:(本大题共8题,满分60分)19.(6分)解方程:=+2.20.(6分)解方程组:.21.(6分)已知直线y=kx+b与直线y=﹣x+k都经过点A(6,﹣1),求这两条直线与x 轴所围成的三角形面积.22.(8分)已知:如图,在平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE =DF,=,=,=.(1)用向量、、表示下列向量:向量=,向量=,向量=;(2)求作:+.23.(8分)已知:如图,在Rt△ABC中,∠C=90°,CD平分∠ACB,AD⊥CD,垂足为点D,M是边AB的中点,AB=20,AC=10,求线段DM的长.24.(8分)已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠F AC时,求证:四边形DEFG是正方形.25.(8分)从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.26.(10分)如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P与点B 不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.(1)求y关于x的函数解析式,并写出它的定义域;(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.2017-2018学年上海市浦东新区八年级(下)期末数学试卷(五四学制)参考答案与试题解析一、选择题:(本大题共4题,每题3分,满分12分)1.(3分)在下列方程中,分式方程是()A.=1B.=1C.=1D.=1【解答】解:A、该方程是整式方程,故本选项错误;B、该方程是无理方程,故本选项错误;C、该方程符合分式方程的定义,故本选项正确;D、该方程属于无理方程,故本选项错误;故选:C.2.(3分)函数y=﹣x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵k=﹣1<0,∴一次函数经过二四象限;∵b=﹣3<0,∴一次函数又经过第三象限,∴一次函数y=﹣x﹣3的图象不经过第一象限,故选:A.3.(3分)在下列事件中,确定事件共有()①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A.1个B.2个C.3个D.4个【解答】解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.4.(3分)在四边形ABCD中,对角线AC和BD相交于点O,AB=CD,添加下列条件后能判定这个四边形是平行四边形的是()A.AD∥BC B.AO=CO C.∠ABC=∠ADC D.∠BAC=∠DCA 【解答】解:A、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意;B、无法判定四边形是平行四边形,故本选项不符合题意;C、无法判定四边形是平行四边形,故本选项不符合题意;D、由∠BAC=∠DCA推出AB∥CD,结合AB=CD,可以推出四边形是平行四边形;故选:D.二、填空题:(本大题共14题,每题2分,满分28分)5.(2分)方程2x3+54=0的解是x=﹣3.【解答】解:方程整理得:x3=﹣27,开立方得:x=﹣3.故答案为:x=﹣3.6.(2分)方程=x的解是x=2.【解答】解:原方程变形为:x+2=x2即x2﹣x﹣2=0∴(x﹣2)(x+1)=0∴x=2或x=﹣1∵x=﹣1时不满足题意.∴x=2.故答案为:2.7.(2分)如果是方程mx2+y2=xy的一个解,那么m=﹣.【解答】解:把方程的解代入方程mx2+y2=xy,可得4m+1=﹣2,∴4m=﹣3,解得m=﹣,故答案为:﹣.8.(2分)当k=﹣2时,方程kx+4=3﹣2x无解.【解答】解:∵kx+4=3﹣2x,∴(k+2)x=﹣1,∴k+2=0时,方程kx+4=3﹣2x无解,解得k=﹣2.故答案为:﹣2.9.(2分)当m=1时,函数y=(m﹣1)x+m是常值函数.【解答】解:当m﹣1=0时,函数y=(m﹣1)x+m是常值函数,故m=1时,y=1.故答案为:1.10.(2分)已知一次函数y=kx+b的图象经过第一象限,且它的截距为﹣5,那么函数值y 随自变量x值的增大而增大.【解答】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为﹣5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;11.(2分)已知一次函数y=2x+5,当函数值y<0时,自变量x值的取值范围是x<﹣.【解答】解:∵一次函数y=2x+5中y<0,∴2x+5<0,解得x<﹣.故答案为:x<﹣.12.(2分)已知一辆匀速行驶汽车的路程S(千米)与时间t(时)的函数关系如图所示,那么这辆汽车的速度是每小时48千米.【解答】解:这辆汽车的速度是km/h,故答案为:4813.(2分)若一个多边形的内角和等于外角和,那么这个多边形的边数是4.【解答】解:设多边形的边数为n,则(n﹣2)×180°=360°,解得:n=4,故答案为:4.14.(2分)已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为8平方厘米.【解答】解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD=2•S△ABC=2××42=8,故答案为8.15.(2分)已知在等腰梯形ABCD中,AD∥BC,AB=13厘米,AD=4厘米,高AH=12厘米,那么这个梯形的中位线长等于9厘米.【解答】解:过D作DM⊥BC于M,∵AH⊥BC,∴AH∥DM,∠AHM=90°,∵AD∥BC,∴四边形AHDM是矩形,∴AH=DM=12厘米,AD=HM=4厘米,由勾股定理得:BH===5(厘米),同理CM=5(厘米),∴BC=BH+HM+CM=14厘米,∴梯形ABCD的中位线长是=9(厘米),故答案为:9.16.(2分)从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是.【解答】解:如图所示:,由树状图可得一共有18中组合,符合题意的有8种,故组成的三位数是奇数的概率是:=.故答案为:.17.(2分)如图,已知在矩形ABCD中,AB=,BC=2,将这个矩形沿直线BE折叠,使点C落在边AD上的点F处,折痕BE交边CD于点E,那么∠DCF等于22.5度.【解答】解:由折叠可得:BF=BC,∵BC=,∴BF=,∵四边形ABCD为矩形,∴∠A=90°,在Rt△BAF中,AF===,∴AB=AF,∴∠ABF=∠AFB=45°,∴∠FBC=90°﹣∠ABF=45°,∵在△CBF中,BF=BC,∠FBC=45°,∴∠BCF=∠BFC=(180°﹣∠CBF)÷2=67.5°,∴∠DCF=90°﹣∠BCF=90°﹣67.5°=22.5°,故答案为:22.5°.18.(2分)已知在平面直角坐标系xOy中,直线y=﹣x+4与x轴交于点A、与y轴交于点B,四边形AOBC是梯形,且对角线AB平分∠CAO,那么点C的坐标为(5,4).【解答】解:∵y=﹣x+4,∴y=0时,﹣x+4=0,解得x=8,∴A(8,0),x=0时,y=4,∴B(0,4).如图,四边形AOBC是梯形,且对角线AB平分∠CAO,∴BC∥OA,∠OAB=∠CAB,∴∠ABC=∠OAB,∴∠ABC=∠CAB,∴AC=BC.设点C的坐标为(x,4),则(x﹣8)2+42=x2,解得x=5,∴点C的坐标为(5,4).故答案为(5,4).三、解答题:(本大题共8题,满分60分)19.(6分)解方程:=+2.【解答】解:去分母得:7x=x﹣6+2(x﹣6)(x+1),整理得:x2﹣8x﹣9=0,解得:x1=9,x2=﹣1,经检验x=9是分式方程的解,x=﹣1是增根,则原方程的解为x=9.20.(6分)解方程组:.【解答】解:∵x2+xy﹣2y2=(x+2y)(x﹣y),∴原方程组可化为:或,解这两个方程组得原方程组的解为:或.21.(6分)已知直线y=kx+b与直线y=﹣x+k都经过点A(6,﹣1),求这两条直线与x 轴所围成的三角形面积.【解答】解:∵直线y=kx+b与直线y=﹣x+k都经过点A(6,﹣1),∴,解得,∴两条直线的解析式分别为y=x﹣7和y=﹣x+1,∴直线y=x﹣7与x轴交于点B(7,0),直线y=﹣x+1与x轴交于点C(3,0),∴S△ABC=×4×1=2,即这两条直线与x轴所围成的三角形面积为2.22.(8分)已知:如图,在平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE =DF,=,=,=.(1)用向量、、表示下列向量:向量=﹣,向量=﹣,向量=﹣;(2)求作:+.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADF=∠CBE,∵DF=BE,∴△ADF≌△CBE,∴∠AFD=∠CEB,AF=CE,∴∠AFB=∠CED,∴AF∥CE,∴=﹣=﹣=﹣,=+=﹣,=+=﹣,故答案为﹣,﹣,﹣.(2)延长EC到K,使得CK=EC,连接BK,则向量即为所求;23.(8分)已知:如图,在Rt△ABC中,∠C=90°,CD平分∠ACB,AD⊥CD,垂足为点D,M是边AB的中点,AB=20,AC=10,求线段DM的长.【解答】解:延长AD交BC于E,∵∠C=90°,∴BC==10,∵CD平分∠ACB,AD⊥CD,∴∠ACD=∠ECD,∠ADC=∠EDC=90°,∴∠CAD=∠CED,∴CA=CE=10,∴AD=DE,∵M是边AB的中点,∴DM=BE=×(10﹣10)=5﹣5.24.(8分)已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠F AC时,求证:四边形DEFG是正方形.【解答】证明:(1)在等边三角形ABC中,∵DE⊥BC,GF⊥BC,∴∠DEF=∠GFC=90°,∴DE∥GF,∵∠B=∠C=60°,BE=CF,∠DEB=∠GFC=90°,∴△BDE≌△CGF,∴DE=GF,∴四边形DEFG是平行四边形;(2)在平行四边形DEFG中,∵∠DEF=90°,∴平行四边形DEFG是矩形,∵∠BAC=60°,∠BAF=3∠F AC,∴∠GAF=15°,在△CGF中,∵∠C=60°,∠GFC=90°,∴∠CGF=30°,∴∠GF A=15°,∴∠GAF=∠GF A,∴GA=GF,∵DG∥BC,∴∠ADG=∠B=60°,∴△DAG是等边三角形,∴GA=GD,∴GD=GF,∴矩形DEFG是正方形.25.(8分)从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.【解答】解:设该客车在高速公路上行驶的平均速度是x千米/小时,依题意有﹣=6,整理得3x2﹣170x﹣9000=0,解得x1=90,x2=﹣(舍去),经检验,x=90是原方程的解.答:该客车在高速公路上行驶的平均速度是90千米/小时.26.(10分)如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P与点B 不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.(1)求y关于x的函数解析式,并写出它的定义域;(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.【解答】(1)解:作AH⊥BC于H.设AH=h.由题意:+10+h=24,整理得:h2﹣14h+48=0,解得h=8或6(舍弃),∴y=(10+24﹣x)×8,即y=﹣4x+136(0<x<24)(2)解:①当AP=AD=10时,∵AB=AD=10,∴AP=AB=10,∵BH=6,∴BP=2BH=12,即x=12,∴y=88.②当PD=AD=10时,四边形ABPD是平行四边形或等腰梯形,∴BP=AD=10或BP=2BH+AD=22,即x=10或22,∴y=96或48,综上所述,四边形APCD的面积为88或96或48.。

上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(共五套)

上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(共五套)

上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(共五套)上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(一)(考试时间90分钟,满分100分)考生注意:1.本试卷含三个大题,共26题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答 题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证 明或计算的主要步骤. 4.本次考试可使用科学计算器.一、选择题:(本大题共6题,每题3分,满分18分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】 1.下列方程中,不是分式方程的是 (A )21xx-=; (B 1223x +=-+;(C )22112x x x x ++=+; (D 2112x x +=-. 2.一次函数23y x =-+的图像一定经过(A )第一、二、三象限; (B )第一、三、四象限; (C )第二、三、四象限; (D )第一、二、四象限.3.已知C 是线段AB 的中点,那么下列结论中正确的是(A )0AC BC +=uuu r uu u r;(B )0AC BC -=uuu r uu u r;(C )0AC BC +=uuu r uu u r r;(D )0AC BC -=uuu r uu u r r.4.小杰两手中仅有一只手中有硬币.他让小敏猜哪只手中有硬币.下列说法正确的是(A )第一次猜中的概率与重放后第二次猜中的概率不一样; (B )第一次猜不中后,小杰重放后再猜1次肯定能猜中; (C )第一次猜中后,小杰重放后再猜1次肯定猜不中; (D )每次猜中的概率都是0.5.5.如图,在梯形ABCD 中,AB // CD ,AD = DC = CB ,AC ⊥BC ,那么下列结论不正确的是(A)AC = 2CD;(B)DB⊥AD;(C)∠ABC = 60º;(D)∠DAC =∠CAB.6.下列命题中,假命题是(A)有一组对角是直角且一组对边平行的四边形是矩形;(B)有一组对角是直角且一组对边相等的四边形是矩形;(C)有两个内角是直角且一组对边平行的四边形是矩形;(D)有两个内角是直角且一组对边相等的四边形是矩形.二、填空题(本大题共12题,每题2分,满分24分)7.一次函数35y x=--的图像在y轴上的截距为▲.8.已知直线y k x b=+经过点(-2,2),并且与直线21y x=+平行,那么b=▲.9.如果一次函数(2)y m x m=-+的函数值y随x的值增大而增大,那么m的取值范围是▲.10.关于x的方程21a x x+=的解是▲.11.方程x的解是▲.12.如图,一次函数y k x b=+的图像与x轴、y轴分别相交于A、B两点,那么当y < 0时,自变量x的取值范围是▲.13.2名男生和2名女生抓阄分派2张电影票,恰好2名女生得到电影票的概率是▲.14.如果一个八边形的每一个内角都相等,那么它的一个内角的度数等于▲度.15.在□ABCD中,如果∠A +∠C = 140º,那么∠B =▲度.16.在△ABC中,D、E分别是边AB、AC的中点,且DE = 6,那么BC =▲.17.在梯形ABCD中,AD // BC,AB = CD,AC⊥BD.如果AD = 4,BC = 10,那么梯形ABCD的面积等于▲.18.如图,在△AB C中,AB = AC,点M、N分别在边AB、AC上,且MN⊥AC.将四边形BCNM沿直线MN翻折,点B、C的对应点分别是点B′、C′,如果四边形ABB′C′是平行四边形,那么∠BAC =▲度.(第12题图)AB C(第18题图)A BCD(第5题图)三、计算题(本大题共8题,满分58分) 19.(本题满分6分)解方程:2(1)11x x x x--=-.20.(本题满分6分)解方程组:2221,4490.x y x x y y +=⎧⎨-+-=⎩21.(本题共2小题,每小题3分,满分6分)已知:如图,在△ABC 中,设BA a =uu r r ,BC b =uu u r r.(1)填空:CA =uu r ▲ ;(用a r 、b r的式子表示)(2)在图中求作a b +r r.(不要求写出作法,只需写出结论即可.) 22.(本题共2小题,每小题3分,满分6分)已知直线y k x b =+经过点A (–3,–8),且与直线23y x =的公共点B 的横坐标为6.(1)求直线y k x b =+的表达式;(2)设直线y k x b =+与y 轴的公共点为点C ,求△BOC 的面积.(第21题图)xyO(第22题图)23.(本题共2小题,每小题4分,满分8分)已知:如图,在正方形ABCD 中,点E 在边BC 上,点F 在边CD 的延长线上,且BE = DF . (1)求∠AEF 的度数;(2)如果∠AEB = 75º,AB = 2,求△FEC 的面积.24.(本题满分8分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时从学校出发.已知先遣队每小时比大部队多行进1千米,预计比大部队早半小时到达目的地.求先遣队与大部队每小时各行进了多少千米. 25.(本题共2小题,其中第(1)小题5分,第(2)小题3分,满分8分)已知:如图,在□ABCD 中,E 为边CD 的中点,联结AE 并延长,交边BC 的延长线于点F .(1)求证:四边形ACFD 是平行四边形; (2)如果∠B +∠AFB = 90º,求证:四边形ACFD 是菱形.A BCDEF (第23题图)ABCDE F(第25题图)26.(本题共3小题,其中第(1)小题3分,第(2)小题4分,第(3)小题3分,满分10分)已知:如图,在梯形ABCD 中,AD // BC ,AB ⊥BC,AB E 是边AB 的中点,联结DE 、CE ,且DE ⊥CE .设AD = x ,BC = y . (1)如果∠BCD = 60º,求CD 的长;(2)求y 关于x 的函数解析式,并写出自变量x 的取值范围; (3)联结BD .如果△BCD 是以边CD 为腰的等腰三角形,求x 的值.A B C D E (第26题图) A B C D E (备用图)参考答案及评分标准一、选择题:(本大题共6题,每题3分,满分18分) 1.B ; 2.D ; 3.C ; 4.D ; 5.A ; 6.C .二、填空题(本大题共12题,每题2分,满分24分) 7.-5; 8.6; 9.m > 2; 10.211x a =+; 11.x = 3; 12.x < 2; 13.16; 14.135; 15.110; 16.12; 17.49; 18.60.三、计算题(本大题共8题,满分58分) 19.解:设1xy x =-. 则原方程可化为21y y-=.………………………………………………(1分) 解得 12y =,21y =-.……………………………………………………(2分)当12y =时,得21xx =-.解得 12x =.………………………………(1分)当21y =-时,得11x x =--.解得 212x =. ……………………………(1分)经检验:12x =,212x =是原方程的根. ∴原方程的根是12x =,212x =. ……………………………………(1分) 20.解:由②,得 2(2)9x y -=.…………………………………………………(1分)即得 23x y -=,23x y -=-. …………………………………………(1分)则原方程组可化为21,23x y x y +=⎧⎨-=⎩;21,23.x y x y +=⎧⎨-=-⎩………………………………………………(2分) 解这两个方程组,得112,12x y =⎧⎪⎨=-⎪⎩;221,1.x y =-⎧⎨=⎩………………………………………………………(2分)21.(1)a b -r r;(2)作图正确,2分;结论正确,1分.22.解:(1)由 x = 6,得 2643y =⨯=.∴ 点B (6,4). ……………………(1分)由直线y k x b =+经过点A 、B ,得38,6 4.k b k b -+=-⎧⎨+=⎩…………………………………………………………(1分)解得 4,34.k b ⎧=⎪⎨⎪=-⎩∴ 所求直线表达式为443y x =-.…………………………………(1分) (2)当 x = 0时,得 4y =-.得 C (0,- 4).…………………………(1分)于是,由点B (6,4)、C (0,- 4), 得146122BOC S ∆=⨯⨯=.………………………………………………(2分)∴ △BOC 的面积为12.23.解:(1)由正方形ABCD ,得 AB = AD ,∠B =∠ADF =∠BAD = 90º.……(1分)在△ABE 和△ADF 中,∵ AB = AD ,∠B =∠ADF = 90º,BE = DF , ∴△ABE≌△ADF .……………………………………………………(1分)∴ ∠BAE =∠F AD ,AE = AF .∴ ∠BAD =∠BAE +∠EAD =∠F AD +∠EAD = 90º. 即得∠EAF=90º.……………………………………………………(1分)又∵ AE = AF ,∴ ∠AEF =∠AFE =45º. …………………………(1分)(2)∵ ∠AEB = 75º,∠AEF = 45º,∴ ∠BEF = 120º.即得 ∠FEC = 60º.……………………………………………………(1分)由正方形ABCD ,得 ∠C = 90º.∴ ∠EFC = 30º. ∴EF=2EC .…………………………………………………………(1分)设EC = x .则 EF = 2x ,2BE DF x ==-,4CF x =-. 在Rt △CEF 中,由勾股定理,得 222CE CF EF +=. 即得 222(4)4x x x +-=.解得 12x =,22x =-(不合题意,舍去).∴ 2EC =,6CF =- …………………………………(1分)∴ 112)(61222CEF S EC CF ∆=⋅=-=.…………(1分)∴ △FEC 的面积为12.24.解:设先遣队每小时行进x 千米,则大部队每小时行进(1)x -千米. ……(1分) 根据题意,得1515112x x -=-.……………………………………………(3分)解得 16x =,25x =-. ……………………………………………………(2分)经检验:16x =,25x =-是原方程的根,25x =-不合题意,舍去.……(1分)∴ 原方程的根为x = 6. ∴ 1615x -=-=.答:先遣队与大部队每小时分别行进6千米和5千米.…………………(1分)25.证明:(1)在□ABCD 中,AD // BF .∴∠ADC=∠FCD .…………………………………………………(1分)∵ E 为CD 的中点,∴ DE = CE .………………………………(1分)在△ADE 和△FCE 中,,,,AED FEC ADE FCE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ △ADE ≌△FCE .………………………………………………(1分)∴ AD = FC . 又∵ AD // FC ,∴ 四边形ACFD 是平行四边形.…………………………………(2分)(2)在△ABF 中,∵ ∠B +∠AFB = 90º,∴ ∠BAF = 90º.…………(1分)又∵ 四边形ABCD 是平行四边形,∴ AD = BC . ∵ AD = FC ,∴ BC = CF . 即得AC=CF .………………………………………………………(1分)∵ 四边形ACDF 是平行四边形, ∴四边形ACDF是菱形.…………………………………………(1分)26.解:(1)过点D 作DH ⊥BC ,垂足为点H .∵ AD // BC ,AB ⊥BC ,DH ⊥BC ,∴ DH AB ==. ………(1分)在Rt △DHC 中,∵ ∠BCD = 60º,∴ ∠CDH = 30º.∴ CD =2CH .………………(1分)设CH = x ,则 CD = 2x .利用勾股定理,得 222CH DH CD +=.即得 2224x x +=.解得 2x =(负值舍去). ∴CD=4.……………………………………………………………(1分) (2)在边CD 上截取一点F ,使DF = CF .∵ E 为边AB 的中点,DF = CF , ∴ 11()()22EF AD BC x y =+=+. ∵ DE ⊥CE ,∴ ∠DEC = 90º. 又∵DF=CF,∴2CD EF x y ==+.………………………………(1分)由AB ⊥BC ,DH ⊥BC ,得 ∠B =∠DHC = 90º.∴ AB // DH . 又∵ AB = DH ,∴ 四边形ABHD 是平行四边形. ∴ BH = AD = x . 即得CH y x =-.……………………………………………………(1分)在Rt △DHC 中,利用勾股定理,得 222CH DH CD +=. 即得 22()12()y x x y -+=+. 解得3y x=.……………………………………………………………(1分) ∴ 所求函数解析式为3y x=. 自变量x的取值范围是x >,且x 1分)(3)当△BCD 是以边CD 为腰的等腰三角形时,有两种可能情况:CD = BD 或CD = BC .(i )如果CD = BD ,由DH ⊥BC ,得 BH = CH . 即得 y = 2x .利用 3y x =,得 32x x =.解得 1x =,2x =经检验:1x =2x =,且2x =不合题意,舍去. ∴x =1分) (ii )如果CD = BC ,则 x y y +=.即得 x = 0(不合题意,舍去).…………………………………(1分)∴x =1分)上海市2017-2018学年八年级数学下学期期末模拟试卷及答案(二)一、选择题(本大题共6题,每题2分,满分12分)1. 下列方程中,属于无理方程的是………………………………( ) (A )03=+x ;(B )052=-x x ;(C )032=-+x ;(D )06=-x x2. 解方程33131122-=--+x x x x 时,去分母方程两边同乘的最简公分母是………( )(A ))1)(1(-+x x ; (B ))1)(1(3-+x x ; (C ))1)(1(-+x x x ; (D ))1)(1(3-+x x x .3.下列图形中,是中心对称图形,但不是轴对称图形的是…………………………( )(A )矩形; (B )平行四边形; (C ) 直角梯形; (D )等腰梯形. 4.关于x 的函数)1(+=x k y 和xky =(0≠k )在同一坐标系中的图像大致是…………( )(A ) (B) (C) (D)5.布袋中有大小一样的3个白球和2个黑球,从袋中任意摸出1个球,下列判断正确的是………………………………………………………………………………………………( )(A )摸出的球一定是白球; (B )摸出的球一定是黑球; (C )摸出的球是白球的可能性大; (D )摸出的球是黑球的可能性大. 6.顺次连接等腰梯形四边中点所得的四边形一定是……………………………………( )(A )等腰梯形 (B )平行四边形 (C )矩形 (D )菱形二、填空题(本大题共12题,每题3分,满分36分)7. 如果一次函数m x m y +-=)13(的函数值y 随x 的值增大而减少,那么m 的取值范围是 .8. 将一次函数x y 2=的图象向上平移3个单位,平移后,若y>0,那么x 的取值范围是 .9. 一次函数的图像在y 轴上的截距为3,且与直线12+-=x y 平行,那么这个一次函数的解析式是___________.DCBA10.方程27)1(3-=+x 的解是 .11. 当m 取 时,关于 x 的方程x m mx 2=+无解12. 在一个不透明的盒子中放入标号分别为1,2,3,4,5,6,7,8,9 的形状、大小、质地完全相同的9 个球,充分混合后,从中取出一个球,标号能被3 整除的概率是 .13. 一个多边形的内角和是外角和的4倍,那么这个多边形是 边形. 14. 在菱形ABCD 中,对角线AC 、BD 相交于点O ,P 为AB 边中点,菱形ABCD 的周长为24,那么OP 的长等于 .15. 直线)0(111<+=k b x k y 与)0(222>+=k b x k y 相交于点)0,2(-,且两直线与y 轴围成的三角形面积为6,那么12b b -的值是 .16.如图,在梯形ABCD 中,AB ∥CD ,∠ABC =︒90,如果AB =5,BC =4,CD =3,那么AD =____________. 第16题 第17题第18题17. 如图,四边形ABCD 的对角线交于点O ,从下列条件:①AD ∥BC ,②A B C D =,③AO CO =,④ABC ADC ∠=∠中选出两个可使四边形ABCD 是平行四边形,则你选的两个条件是 .(填写一组序号即可) 18. 如图,在四边形ABCD 中,∠ADC=∠ABC=90°,AD=CD ,DP ⊥AB 于P .若四边形ABCD 的面积是18,则DP 的长是 . 三、简答题:(本大题共4题,每题6分,满分24分)19.解方程: 011=-+-x x 20. 解方程组:⎩⎨⎧=+=--320222y x y xy xP DC B A21.解方程:022331222=++-+x x x x22. 如图,在平行四边形ABCD 中,点P 是BC 边的中点,设==,, (1)试用向量,表示向量,那么= .;(2)在图中求作:-. (保留作图痕迹,不要求写作法,写出结果).四、解答题:(第23和24题,每题6分,第25和26题,每题8分,满分28分)23.如图,梯形ABCD 中AD ∥BC ,AB = DC ,(1)求证:四边形AEFG 是平行四边形(2)当∠FGC=2∠EFB 时,求证:四边形AEFGABD FE M25题图1C24.某市为了美化环境,计划在一定的时间内完成绿化面积200万亩的任务,后来市政府调整了原定计划,不但绿化面积在原计划的基础上增加20%,而且要提前1年完成任务。

2017-2018沪科版数学八年级(下)期末试卷及答案

2017-2018沪科版数学八年级(下)期末试卷及答案

2017-2018沪科版数学八年级(下)期末试卷及答案一、选择题(共10小题,每小题4分,满分40分)1.(4分)下列根式中,不是最简二次根式的是()A. B.C.D.2.(4分)下列计算正确的是()A.﹣= B.3×2=6C.(2)2=16 D.=13.(4分)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.2 C.﹣1 D.﹣54.(4分)正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.135.(4分)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分6.(4分)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣6x+8=0的根,则该三角形的周长为()A.8 B.10 C.8或10 D.127.(4分)现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形8.(4分)在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.119.(4分)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°10.(4分)如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D 时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)11.(5分)要使代数式有意义,则x的取值范围是.12.(5分)方程x(x﹣1)=x的解为.13.(5分)如图所示,△ABC的顶点A、B、C在边长均为1的正方形网络的格点上,BD⊥AC于D,则BD的长=.14.(5分)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E 在线段AB上,连接EF、CF,则下列结论中一定成立的是.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.三、解答题(共2小题,满分16分)15.(8分)计算:(+1)(﹣1)+﹣()0.16.(8分)解方程:x2﹣2x=4.四、解答题(共2小题,满分16分)17.(8分)(1)如图1,在平行四边形ABCD中,请作出一条直线,将其分成面积相等的两部分;(2)如图2,在多边形ABCDEF中,AB∥CD∥EF,AF∥DE∥BC,请作出一条直线,将该多边形分成面积相等的两部分.(不写作法,保留作图痕迹)18.(8分)定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0.(1)求a的值;(2)请判断方程:2x2﹣bx+a=0的根的情况.五、解答题(共2小题,满分20分)19.(10分)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.20.(10分)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.05200.1060≤x<7030b70≤x<80a0.3080≤x<90800.4090≤x≤100请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?六、解答题(共1小题,满分12分)21.(12分)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.七、解答题(共1小题,满分12分)22.(12分)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC 于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.八、解答题(共1小题,满分14分)23.(14分)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.2017-2018沪科版数学八年级(下)期末试卷及答案参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2016•自贡)下列根式中,不是最简二次根式的是()A. B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:因为==2,因此不是最简二次根式.故选B.【点评】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.2.(4分)(2016•来宾)下列计算正确的是()A.﹣= B.3×2=6C.(2)2=16 D.=1【分析】A、和不是同类二次根式,不能合并;B、二次根式相乘,系数相乘作为积的系数,被开方数相乘,作为积中的被开方数;C、二次根式的乘方,把每个因式分别平方,再相乘;D、二次根式的除法,把分母中的根号化去.【解答】解:A、不能化简,所以此选项错误;B、3×=6,所以此选项正确;C、(2)2=4×2=8,所以此选项错误;D、==,所以此选项错误;本题选择正确的,故选B.【点评】本题考查了二次根式的混合运算,熟练掌握二次根式的计算法则是关键,要注意:①二次根式的运算结果要化为最简二次根式;②与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的;③灵活运用二次根式的性质,选择恰当的解题途径.3.(4分)(2017•潮阳区模拟)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A.5 B.2 C.﹣1 D.﹣5【分析】设方程的两个根为x1,x2,由根与系数的关系找出x1+x2=﹣3,代入x1=﹣2即可得出x2的值.【解答】解:设方程的两个根为x1,x2,∴x1+x2=﹣3,∵方程的一根x1=﹣2,∴x2=﹣1.故选C.【点评】本题考查了根与系数的关系,根据方程的系数找出x1+x2=﹣3是解题的关键.4.(4分)(2016•衡阳)正多边形的一个内角是150°,则这个正多边形的边数为()A.10 B.11 C.12 D.13【分析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:外角是:180°﹣150°=30°,360°÷30°=12.则这个正多边形是正十二边形.故选:C.【点评】考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数是解题关键.5.(4分)(2016•南宁)某校规定学生的学期数学成绩满分为100分,其中研究性学习成绩占40%,期末卷面成绩占60%,小明的两项成绩(百分制)依次是80分,90分,则小明这学期的数学成绩是()A.80分B.82分C.84分D.86分【分析】利用加权平均数的公式直接计算即可得出答案.【解答】解:由加权平均数的公式可知===86,故选D.【点评】本题主要考查加权平均数的计算,掌握加权平均数的公式=是解题的关键.6.(4分)(2016•青海)已知等腰三角形的腰和底的长分别是一元二次方程x2﹣6x+8=0的根,则该三角形的周长为()A.8 B.10 C.8或10 D.12【分析】用因式分解法可以求出方程的两个根分别是4和2,根据等腰三角形的三边关系,腰应该是4,底是2,然后可以求出三角形的周长.【解答】解:x2﹣6x+8=0(x﹣4)(x﹣2)=0∴x1=4,x2=2,由三角形的三边关系可得:腰长是4,底边是2,所以周长是:4+4+2=10.故选:B.【点评】本题考查的是用因式分解法解一元二次方程,用十字相乘法因式分解求出方程的两个根,然后根据三角形的三边关系求出三角形的周长.7.(4分)(2011•十堰)现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是()A.正方形和正六边形B.正三角形和正方形C.正三角形和正六边形D.正三角形、正方形和正六边形【分析】正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【解答】解:A、正方形和正六边形内角分别为90°、120°,由于90m+120n=360,得m=4﹣n,显然n取任何正整数时,m不能得正整数,故A选项不能铺满;B、正三角形和正方形内角分别为60°、90°,由于60°×3+90°×2=360°,故B选项能铺满;C、正三角形和正六边形内角分别为60°、120°,由于60°×2+120°×2=360°,故C 选项能铺满;D、正三角形、正方形和正六边形内角分别为60°、90°、120°,由于60°+90°+90°+120°=360°,故D选项能铺满.故选:A.【点评】考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.8.(4分)(2016•梧州)在△ABC中,AB=3,BC=4,AC=2,D、E、F分别为AB、BC、AC中点,连接DF、FE,则四边形DBEF的周长是()A.5 B.7 C.9 D.11【分析】先根据三角形中位线性质得DF=BC=2,DF∥BC,EF=AB=,EF∥AB,则可判断四边形DBEF为平行四边形,然后计算平行四边形的周长即可.【解答】解:∵D、E、F分别为AB、BC、AC中点,∴DF=BC=2,DF∥BC,EF=AB=,EF∥AB,∴四边形DBEF为平行四边形,∴四边形DBEF的周长=2(DF+EF)=2×(2+)=7.故选B.【点评】本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.9.(4分)(2016•海南)如图,矩形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.75°【分析】首先过点D作DE∥a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE∥a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°﹣∠1=90°﹣60°=30°,∵a∥b,∴DE∥a∥b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°﹣30°=60°.故选C.【点评】此题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.10.(4分)(2014•牡丹江)如图,点P是菱形ABCD边上一动点,若∠A=60°,AB=4,点P从点A出发,以每秒1个单位长的速度沿A→B→C→D的路线运动,当点P运动到点D时停止运动,那么△APD的面积S与点P运动的时间t之间的函数关系的图象是()A.B.C.D.【分析】根据∠A的度数求出菱形的高,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.【解答】解:∵∠A=60°,AB=4,∴菱形的高=4×=2,点P在AB上时,△APD的面积S=×4×t=t(0≤t≤4);点P在BC上时,△APD的面积S=×4×2=4(4<t≤8);点P在CD上时,△APD的面积S=×4×(12﹣t)=﹣t+12(8<t≤12),纵观各选项,只有B选项图形符合.故选:B.【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出相应的函数解析式是解题的关键.二、填空题(共4小题,每小题5分,满分20分)11.(5分)(2017春•安庆期末)要使代数式有意义,则x的取值范围是x ≥﹣1.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【点评】本题考查的知识点为:二次根式的被开方数是非负数.12.(5分)(2017•高新区一模)方程x(x﹣1)=x的解为x1=0,x2=2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x(x﹣1)=x,x(x﹣1)﹣x=0,x(x﹣1﹣1)=0,x=0,x﹣1﹣1=0,x1=0,x2=2.故答案为:x1=0,x2=2.【点评】本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.13.(5分)(2017春•安庆期末)如图所示,△ABC的顶点A、B、C在边长均为1的正方形网络的格点上,BD⊥AC于D,则BD的长=.【分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【解答】解:△ABC的面积=×BC×AE=2,由勾股定理得,AC==,则××BD=2,解得BD=.故答案为:.【点评】本题考查的是勾股定理,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.14.(5分)(2014•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE ⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是①②④.(把所有正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC =2S△CEF;④∠DFE=3∠AEF.【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC =S△CFM,∵MC>BE,∴S△BEC ≤2S△EFC故S△BEC =2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DMF是解题关键.三、解答题(共2小题,满分16分)15.(8分)(2015•大连)计算:(+1)(﹣1)+﹣()0.【分析】先根据平方差公式和零指数幂的意义得到原式=3﹣1+2﹣1,然后进行加减运算.【解答】解:原式=3﹣1+2﹣1=1+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.16.(8分)(2016•安徽)解方程:x2﹣2x=4.【分析】在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解【解答】解:配方x2﹣2x+1=4+1∴(x﹣1)2=5∴x=1±∴x1=1+,x2=1﹣.【点评】在实数运算中要注意运算顺序,在解一元二次方程时要注意选择适宜的解题方法.四、解答题(共2小题,满分16分)17.(8分)(2017春•安庆期末)(1)如图1,在平行四边形ABCD中,请作出一条直线,将其分成面积相等的两部分;(2)如图2,在多边形ABCDEF中,AB∥CD∥EF,AF∥DE∥BC,请作出一条直线,将该多边形分成面积相等的两部分.(不写作法,保留作图痕迹)【分析】(1)由于平行四边形是中心对称图形,于是过对角线的交点作直线即可;(2)延长CB交EF于G,过两个平行四边形的对角线交点作直线即可.【解答】解:(1)连接AC、BD交于点O,过O作直线,即把平行四边形面积等分;如图所示:(2)延长CB交EF于G,连接CE、DG交于点M,连接AG、BF交于点N,作直线MN,如图所示【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质是关键.18.(8分)(2017春•安庆期末)定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、减法、乘法及乘方运算.例如:﹣3☆2=(﹣3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0.(1)求a的值;(2)请判断方程:2x2﹣bx+a=0的根的情况.【分析】(1)根据新运算的定义式结合2☆a的值小于0,即可得出关于a的一元一次不等式,解之即可得出结论;(2)根据方程的系数结合根的判别式,即可得出△=b2﹣8a≥﹣8a>0,由此可得出方程2x2﹣bx+a=0有两个不相等的实数根.【解答】解:(1)∵2☆a的值小于0,∴22a+a=5a<0,解得:a<0.(2)∵在方程2x2﹣bx+a=0中,△=(﹣b)2﹣4×2a=b2﹣8a≥﹣8a>0,∴方程2x2﹣bx+a=0有两个不相等的实数根.【点评】本题考查了根的判别式以及实数的运算,解题的关键是:(1)根据新运算的定义式找出关于a的一元一次不等式;(2)牢记“当△>0时,方程有两个不相等的实数根”.五、解答题(共2小题,满分20分)19.(10分)(2017春•安庆期末)如图,在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求CD,AD的值;(2)判断△ABC的形状,并说明理由.【分析】(1)应用勾股定理,求出CD,AD的值各是多少即可.(2)判断出AC2+BC2=AB2,即可判断出△ABC为直角三角形.【解答】解:(1)∵CD⊥AB,∴△BCD和△ACD都是直角三角形,∴CD==12,AD==16.(2)△ABC为直角三角形,理由:∵AD=16,BD=9,∴AB=AD+BD=16+9=25,∵AC2+BC2=202+152=625=252=AB2,∴△ABC为直角三角形.【点评】此题主要考查了勾股定理的应用,以及勾股定理的逆定理的应用,要熟练掌握.20.(10分)(2015•长沙)中华文明,源远流长:中华汉字,寓意深广,为了传承优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<60100.05200.1060≤x<7030b70≤x<80a0.3080≤x<90800.4090≤x≤100请根据所给信息,解答下列问题:(1)a=60,b=0.15;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在80≤x<90分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该校参加这次比赛的3000名学生中成绩“优”等约有多少人?【分析】(1)根据第一组的频数是10,频率是0.05,求得数据总数,再用数据总数乘以第四组频率可得a的值,用第三组频数除以数据总数可得b的值;(2)根据(1)的计算结果即可补全频数分布直方图;(3)根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(4)利用总数3000乘以“优”等学生的所占的频率即可.【解答】解:(1)样本容量是:10÷0.05=200,a=200×0.30=60,b=30÷200=0.15;(2)补全频数分布直方图,如下:(3)一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在第四个分数段,所以这次比赛成绩的中位数会落在80≤x<90分数段;(4)3000×0.40=1200(人).即该校参加这次比赛的3000名学生中成绩“优”等的大约有1200人.故答案为60,0.15;80≤x<90;1200.【点评】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数和利用样本估计总体.六、解答题(共1小题,满分12分)21.(12分)(2016•毕节市)为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【分析】(1)设该县投入教育经费的年平均增长率为x,根据2014年该县投入教育经费6000万元和2016年投入教育经费8640万元列出方程,再求解即可;(2)根据2016年该县投入教育经费和每年的增长率,直接得出2017年该县投入教育经费为8640×(1+0.2),再进行计算即可.【解答】解:(1)设该县投入教育经费的年平均增长率为x,根据题意得:6000(1+x)2=8640解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去),答:该县投入教育经费的年平均增长率为20%;(2)因为2016年该县投入教育经费为8640万元,且增长率为20%,所以2017年该县投入教育经费为:y=8640×(1+0.2)=10368(万元),答:预算2017年该县投入教育经费10368万元.【点评】此题考查了一元二次方程的应用,掌握增长率问题是本题的关键,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.七、解答题(共1小题,满分12分)22.(12分)(2016•南通)如图,将▱ABCD的边AB延长到点E,使BE=AB,连接DE,交边BC于点F.(1)求证:△BEF≌△CDF;(2)连接BD、CE,若∠BFD=2∠A,求证:四边形BECD是矩形.【分析】(1)先根据平行四边形的性质得出AB=CD,AB∥CD,再由BE=AB得出BE=CD,根据平行线的性质得出∠BEF=∠CDF,∠EBF=∠DCF,进而可得出结论;(2)根据平行四边形的性质可得AB∥CD,AB=CD,∠A=∠DCB,再由AB=BE,可得CD=EB,进而可判定四边形BECD是平行四边形,然后再证明BC=DE即可得到四边形BECD是矩形【解答】(1)证明:∵四边形ABCD是平行四边形,∵AB=CD,AB∥CD.∵BE=AB,∴BE=CD.∵AB∥CD,∴∠BEF=∠CDF,∠EBF=∠DCF,在△BEF与△CDF中,∵,∴△BEF≌△CDF(ASA);(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠A=∠DCB,∵AB=BE,∴CD=EB,∴四边形BECD是平行四边形,∴BF=CF,EF=DF,∵∠BFD=2∠A,∴∠BFD=2∠DCF,∴∠DCF=∠FDC,∴DF=CF,∴DE=BC,∴四边形BECD是矩形.【点评】此题主要考查的值矩形的判定及平行四边形的性质,关键是掌握平行四边形的对边相等;对角相等;对角线互相平分.八、解答题(共1小题,满分14分)23.(14分)(2014•临沂)【问题情境】如图1,四边形ABCD是正方形,M是BC边上的一点,E是CD边的中点,AE平分∠DAM.【探究展示】(1)证明:AM=AD+MC;(2)AM=DE+BM是否成立?若成立,请给出证明;若不成立,请说明理由.【拓展延伸】(3)若四边形ABCD是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.【分析】(1)从平行线和中点这两个条件出发,延长AE、BC交于点N,如图1(1),易证△ADE≌△NCE,从而有AD=CN,只需证明AM=NM即可.(2)作FA⊥AE交CB的延长线于点F,易证AM=FM,只需证明FB=DE即可;要证FB=DE,只需证明它们所在的两个三角形全等即可.(3)在图2(1)中,仿照(1)中的证明思路即可证到AM=AD+MC仍然成立;在图2(2)中,采用反证法,并仿照(2)中的证明思路即可证到AM=DE+BM【解答】方法一:(1)解:如图1(1)过点E作EF⊥AM交AM于F点,连接EM,∵AE平分∠DAM∴∠DAE=∠EAF在△ADE和△AEF中,AE=AE∠D=∠AFE=90°∴△ADE≌△AEF∴AD=AF,EF=DE=EC,在△EFM和△ECM中,∠EFM=∠CEM=EMEF=CE∴△EFM≌△ECM,∴FM=MC,AM=AF+FM=AD+MC方法二:证明:延长AE、BC交于点N,如图1(2),∵四边形ABCD是正方形,∴AD∥BC.∴∠DAE=∠ENC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠ENC=∠MAE.∴MA=MN.在△ADE和△NCE中,∴△ADE≌△NCE(AAS).∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.方法一:证明:将△ADE绕点A顺时针旋转90°,得到新△ABF,如图1(3)∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM方法二:证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(4)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°﹣∠BAE=∠DAE.在△ABF和△ADE中,∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①结论AM=AD+MC仍然成立.证明:延长AE、BC交于点P,如图2(1),∵四边形ABCD是矩形,∴AD∥BC.∴∠DAE=∠EPC.∵AE平分∠DAM,∴∠DAE=∠MAE.∴∠EPC=∠MAE.∴MA=MP.在△ADE和△PCE中,∴△ADE≌△PCE(AAS).∴AD=PC.∴MA=MP=PC+MC=AD+MC.②结论AM=DE+BM不成立.证明:假设AM=DE+BM成立.过点A作AQ⊥AE,交CB的延长线于点Q,如图2(2)所示.∵四边形ABCD是矩形,∴∠BAD=∠D=∠ABC=90°,AB∥DC.∵AQ⊥AE,∴∠QAE=90°.∴∠QAB=90°﹣∠BAE=∠DAE.∴∠Q=90°﹣∠QAB=90°﹣∠DAE=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠QAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠QAB=∠QAM.∴∠Q=∠QAM.∴AM=QM.∴AM=QB+BM.∵AM=DE+BM,∴QB=DE.在△ABQ和△ADE中,∴△ABQ≌△ADE(AAS).∴AB=AD.与条件“AB≠AD“矛盾,故假设不成立.∴AM=DE+BM不成立.【点评】本题考查了正方形及矩形的性质、全等三角形的性质和判定、等腰三角形的判定、平行线的性质、角平分线的定义等知识,考查了基本模型的构造(平行加中点构造全等三角形),考查了反证法的应用,综合性比较强.添加辅助线,构造全等三角形是解决这道题的关键.。

青浦区2017学年第二学期八年级数学期末卷参考答案

青浦区2017学年第二学期八年级数学期末卷参考答案

青浦区2017学年第二学期八年级期末学业质量调研参考答案及评分说明2018.6一、选择题:1.C ; 2.B ; 3.A ; 4.B ; 5.A ; 6.D .二、填空题:7.一切实数; 8.3-; 9.2<k ; 10.1=x ; 11.1=+x a ; 12.12;13.+ a b ; 14.12; 15.()2501+=60x ; 16.; 17; 18. 三、解答题:19.解:方程两边同时乘以()2-x x ,得2252-+-=x x x . ······································································· (1分) 整理,得260-=x x . ······································································ (1分) 解得10=x ,26=x . ······································································ (1分) 经检验:10=x 是增根,舍去. ························································· (1分) 所以,原方程的根是6=x . ····························································· (1分)20.解:由②得3-=x y 或3-=-x y . ························································· (1分)原方程组可化为73.,+=⎧⎨-=⎩x y x y 或73.,+=⎧⎨-=-⎩x y x y ··········································· (2分) 解得原方程组的解是1152,;=⎧⎨=⎩x y 2225,.=⎧⎨=⎩x y ················································· (2分) 21.解:(1)联结AF .设CF 为x .∵EF 垂直平分AC ,∴F A =FC . ····················································· (1分)∵四边形ABCD 为矩形,∴∠D =90°.∵222+=AD DF AF ,∴()22224+-=x x , 解得5=2x . ················································································ (1分) (2)设AC 、EF 交于点G .∵四边形ABCD 为矩形,∴AE //FC .∴∠GAE =∠GCF ,∠GEA =∠GFC .又∵GA =GC ,∴△GAE ≌△GCF ,∴AE =FC . ··························································· (1分) ∴四边形AFCE 为平行四边形,又∵EF ⊥AC ,∴四边形AFCE 为菱形, ················································· (1分) ∴四边形AFCE 的周长=4FC=54=102⨯. ·············································· (1分) 22.解:(1)由题意,设1l :()110=≠s k t k .∵(10,5)在此函数图像上,∴110=5k ,解得112=k , ∴12=s t . ·························································································· (1分) 由题意,设2l :()22+0=≠s k t b k .∵(0,5),(10,7)在此函数图像上,∴205107.,+=⎧⎨+=⎩b k b ··················································································· (1分) 解得2155,==k b . ∴1+55=s t . ······················································································ (1分) (2)由题意,得121+5.5,⎧=⎪⎪⎨⎪=⎪⎩s t s t 解得:50325.3,⎧=⎪⎪⎨⎪=⎪⎩t s ································································ (2分) ∵25123<, ∴B 能追上A . ······················································································· (1分) 此时B 离海岸的距离为253. ····································································· (1分) 23.证明:(1)∵AB=AC ,∴∠B=∠ACB , ··························································· (1分)∵AD//BC ,∴∠DAC=∠ACB , ······························································· (1分) ∴∠B=∠DAC ,又∵AB=AC ,BE=AD ,∴△ABE ≌△CAD ,∴AE =DC . ······························································ (1分)(2)∵AE=AF ,∴∠AEF=∠AFE , ∴∠AEB=∠AFC , ····························· (1分) 又∵AB=AC ,∠B=∠ACB ,∴△ABE ≌△ACF ,∴BE =FC ,∠BAE=∠CAF . ·································································· (1分) ∴AD =FC ,∴四边形AFCD 是平行四边形.······························································ (1分) ∵∠B +∠BAE +∠EAF +∠F AC +∠ACF =180°,∴∠EAF=180°−2∠B −2∠F AC .∵∠EAF=180°−4∠B ,∴∠B=∠F AC=∠ACF .∴F A=FC , ························································································· (1分) ∴四边形AFCD 是菱形. ······································································· (1分)24.解:(1)把A ()22,-代入2=+y kx ,得222-=+k ,解得2=-k ,∴22=-+y x .········································································ (1分)令0=y ,则1=x ,∴点E 的坐标为(1,0). ······································································· (1分) ∴EO =1,∴直线AB 平移的距离为1. ···································································· (1分)(2)令0=x ,则2=y ,∴点B 的坐标为(0,2). ······································································· (1分) ∵直线AB 向左平移了1个单位,∴C (1,−2)、D (1,−2). ···································································· (2分) ∴C 、D 关于原点O 对称.Ⅰ 当DC 为矩形对角线时得OD =OF .∵∴1F(0),2F0). ························································· (2分) Ⅱ 当DC 为矩形一边时得∠ODF =90°,过点D 作DH ⊥OF ,垂足为点H .设FO 为m .∵222+=FD OD FO ,∴()222221212-+++=m m , 解得m=5, ∴3F (-5,0). ··············································· (1分) 由对称性可知4F (5,0). ···································································· (1分) 综上所述, F 点的坐标为:1F(0),2F0),3F (-5,0),4F (5,0).25.解:(1)∵四边形ABCD 是正方形,∴∠DCB =90°. ······································· (1分) ∵EF ⊥BC ,∴∠EFB =90°.∴EF//DC , ··················································· (1分) ∴= EFD EFC S S . ················································································· (1分)(2)∵四边形ABCD 是正方形,∴∠ACB =45°,∴EF=FCEC . ························································ (1分) ∵AB=BC=2,∠B =90°,∴AC=, ···················································· (1分) ∴EC=-x . ················································································· (1分) ∵= EFD EFC S S ,∴== EFD EFC y S S ························································ (1分)221122y EF EC ⎫==⋅⎪⎝⎭)212⎫=⋅-⎪⎪⎝⎭x .(0<<x ) ···················· (2分) (3)Ⅰ 当CE=CD 时∵CD=2,∴CE=2,∴AE=2. ············································ (1分) Ⅱ 当DE=DC 时,点E 与点A 重合,此种情况不存在. ························· (1分)Ⅲ 当ED=EC 时,此时点E 为AC 的中点,所以. ····················· (1分) 综上所述, AE的长为2-.。

2017-2018学年上海市青浦区八年级(下)期末数学试卷

2017-2018学年上海市青浦区八年级(下)期末数学试卷

2017-2018学年上海市青浦区八年级(下)期末数学试卷一、选择题(本大题共6题,每题2分,满分12分)1.(2分)如果一次函数y=kx+1不经过第三象限,那么k的取值范围是()A.k<0B..k>0C..k≤0D..k≥02.(2分)下列方程中,无实数解的是()A.B.C.D.3.(2分)在一个多边形的内角中,锐角不能多于()A.2个B.3个C.4个D.5个4.(2分)下列关于向量的等式中,不正确的是()A.B.C.D.5.(2分)下列说法中错误的是()A.“买一张彩票中大奖”发生的概率是0B.“软木塞沉入水底”发生的概率是0C.“太阳东升西落”发生的概率是1D.“10只鸟关在3个笼子里,至少有一个笼子关的鸟超过3只”发生的概率是16.(2分)如图,在四边形ABCD中,AC于BD相交于点O,∠BAD=90°,BO=DO,那么下列条件中不能判定四边形ABCD为矩形的是()A.∠ABC=90B.AO=OC C.AB||CD D.AB=CD二、填空题(本大题共12题,每小题3分,满分36分)7.(3分)一次函数y=1﹣5x的截距是.8.(3分)把函数y=2x的图象向右平移1个单位长度,得到的函数图象解析式为.9.(3分)如果一次函数的图象经过点(﹣2,﹣6)和(5,2),那么函数值y 随着自变量x的增大而.10.(3分)关于x的方程ax﹣2x﹣5=0(a≠2)的解是.11.(3分)方程=1的解是.12.(3分)已知方程=1,如果设=y,那么原方程可以变形为关于y的整式方程为.13.(3分)在平行四边形ABCD中,两邻角的度数比是7:2,那么较小角的度数为.14.(3分)在平行四边形ABCD中,若,则=(用和表示).15.(3分)从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被2整除的概率是.16.(3分)某学校准备用2400元购买一批学习用品,已知甲种学习用品的单价比乙种学习用品的单价少2元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,问:这两种学习用品的单价分别是多少元?若设乙种学习用品的单价为x元,那么根据题意可列方程.17.(3分)如图,矩形ABCD中,BC=6,AB=3,R在CD边上,且CR=1,P为BC 上一动点,E、F分别是AP、RP的中点,当P从B向C移动时,线段EF的长度为.18.(3分)已知P是正方形ABCD内一点,将△ABP绕点B旋转,使得边BA与边BC重合,点P落在点P′的位置上.如果PB=2,那么PP′的长等于.三、解答题(本大题共7分,满分52分)19.(5分)解方程:﹣=20.(5分)解方程组:21.(5分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠CDB=30°.求:(1)求∠A的度数;(2)当AD=4时,求梯形ABCD的面积.22.(7分)庆华社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示.(1)求提高效率后,s关于t的函数关系式;(2)该绿化组提高工作效率后每小时完成的绿化面积比提高工作效率前每小时完成的绿化面积多多少?23.(8分)如图,四边形ABCD是平行四边形,AE∥BD,AE与CB的延长线交于点E,DE交AB于F.(1)求证:BC=BE;(2)连结CF,若∠ADF=∠BCF且AD=2AF,求证:四边形ABCD是正方形.24.(10分)如图,平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于点A.B.(1)求△AOB的面积;(2)点P是y轴上的点,在坐标平面内是否存在点Q,使以A.B.P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.25.(12分)如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD 边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.直线l为线段PQ的垂直平分线,与边BC交与点E设AP=x.(1)当直线l经过点B时,求x的值;(2)求BE的长(用含x的代数式表示);(3)连接EP、EQ,设△EPQ的面积为y,求y关于x的函数关系式,并写出它的定义域.2017-2018学年上海市青浦区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题2分,满分12分)1.(2分)如果一次函数y=kx+1不经过第三象限,那么k的取值范围是()A.k<0B..k>0C..k≤0D..k≥0【分析】根据图象在坐标平面内的位置关系确定k的取值范围,从而求解.【解答】解:∵一次函数y=kx+1的图象不经过第三象限,∴一次函数y=kx+b的图象经过第一、二、四象限,∴k<0.故选:A.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.2.(2分)下列方程中,无实数解的是()A.B.C.D.【分析】通过解高次方程可对A进行判断;通过解无理方程可对B进行判断;利用判别式的意义可对C进行判断;通过解分式方程可对D进行判断.【解答】解:A、因为x4=,所以x=±,所以A选项的方程有实数解;B、方程化为x+2=1,解得x=﹣1,x=﹣1是原方程的解,所以B选项的方程有实数解;C、x2+x+6=0,△=12﹣4×6<0,方程没有实数解,所以C选项的方程没有实数解;D、方程化为x2=1,解得x=±1,经检验x=﹣1是原方程的解,所以B选项的方程有实数解.故选:C.【点评】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.也考查了解高次方程和分式方程.3.(2分)在一个多边形的内角中,锐角不能多于()A.2个B.3个C.4个D.5个【分析】外角和是360度,在外角中最多有3个钝角,若超过3个,外角的和就大于360度.多边形的内角与相邻的外角互补,因而在一个多边形的内角中,锐角不能多于3个.【解答】解:∵一个多边形外角中最多有3个钝角,∴一个多边形的内角中,锐角不能多于3个.故选:B.【点评】多边形的内角的问题可以转化为外角的问题,这样考虑会比较简单.4.(2分)下列关于向量的等式中,不正确的是()A.B.C.D.【分析】根据平面向量的加法法则判定即可.【解答】解:A、+=,正确,本选项不符合题意;B、+=,正确,不符合题意;C、﹣≠,错误,本选项符合题意;D、﹣+=++=+=,正确,不符合题意;故选:C.【点评】本题考查平面向量的加法法则,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.(2分)下列说法中错误的是()A.“买一张彩票中大奖”发生的概率是0B.“软木塞沉入水底”发生的概率是0C.“太阳东升西落”发生的概率是1D.“10只鸟关在3个笼子里,至少有一个笼子关的鸟超过3只”发生的概率是1【分析】根据事件的类型即可判断事件发生的可能性大小.【解答】解:A、“买一张彩票中大奖”发生的概率较小,但不是0,此选项错误;B、“软木塞沉入水底”是不可能事件,发生的概率是0,此选项正确;C、“太阳东升西落”是必然事件,发生的概率是1,此选项正确;D、10只鸟关在3个笼子里,至少有一个笼子关的鸟超过3只”是必然事件,发生的概率是1,此选项正确;故选:A.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(2分)如图,在四边形ABCD中,AC于BD相交于点O,∠BAD=90°,BO=DO,那么下列条件中不能判定四边形ABCD为矩形的是()A.∠ABC=90B.AO=OC C.AB||CD D.AB=CD【分析】根据矩形的判定定理:有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形分别进行分析即可.【解答】解:A、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵∠ABC=90°,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;B、∵∠BAD=90°,BO=DO,∴OA=OB=OD,∵AO=OC,∴AO=OB=OD=OC,即对角线平分且相等,∴四边形ABCD为矩形,正确;C、∵AB||CD,∠BAD=90°,∴∠ADC=90°,∵BO=DO,∴OA=OB=OD,∴∠DAO=∠ADO,∴∠BAO=∠ODC,∵∠AOB=∠DOC,∴△AOB≌△DOC,∴AB=CD,∴四边形ABCD是平行四边形,∵∠BAD=90°,∴▱ABCD是矩形,正确;D、∵∠BAD=90°,BO=DO,AB=CD,无法得出△ABO≌△DCO,故无法得出四边形ABCD是平行四边形,进而无法得出四边形ABCD是矩形,错误;故选:D.【点评】此题主要考查了矩形的判定,关键是熟练掌握矩形的判定定理.二、填空题(本大题共12题,每小题3分,满分36分)7.(3分)一次函数y=1﹣5x的截距是1.【分析】令x=0,则y=1,即一次函数与y轴交点为(0,1),即可得出答案.【解答】解:由y=1﹣5x,令x=0,则y=1,即一次函数与y轴交点为(0,1),∴一次函数的截距为1.故答案为:1.【点评】本题考查了一次函数图象上点的坐标特征,属于基础题,关键是令x=0求出与y轴的交点坐标.8.(3分)把函数y=2x的图象向右平移1个单位长度,得到的函数图象解析式为y=2(x﹣1).【分析】根据“左加右减”的原则进行解答即可.【解答】解:把函数y=2x的图象向右平移1个单位长度,得到的函数图象解析式为y=2(x﹣1).故答案为y=2(x﹣1).【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.9.(3分)如果一次函数的图象经过点(﹣2,﹣6)和(5,2),那么函数值y 随着自变量x的增大而增大.【分析】根据一次函数的单调性即可直接得出答案.【解答】解:∵x=﹣2时,y=﹣6,x=5时,y=2,根据一次函数的单调性可得:函数值y随着自变量x的增大而增大.故答案为:增大.【点评】本题考查了一次函数的性质,属于基础题,关键是掌握一次函数的基本性质.10.(3分)关于x的方程ax﹣2x﹣5=0(a≠2)的解是.【分析】利用解一元一次方程的一般步骤解出方程.【解答】解:ax﹣2x﹣5=0(a﹣2)x=5x=,故答案为:.【点评】本题考查的是一元一次方程的解法,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.11.(3分)方程=1的解是x=±.【分析】先把无理方程化为整式方程得x2﹣2=1,再解一元二次方程,然后进行检验确定原方程的解.【解答】解:两边平方得到x2﹣2=1,解得x=±,经检验x=±是原方程的解,所以原方程的解为x=±.【点评】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.注意:用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根.12.(3分)已知方程=1,如果设=y,那么原方程可以变形为关于y的整式方程为3y2+3y﹣1=0.【分析】先把方程变形为含y的分式方程,再去分母得整式方程.【解答】解:方程=1,可变形为:×﹣=1,若设=y,则=所以原方程可变形为:﹣y=1两边都乘以3y,得3y2+3y﹣1=0.故答案为:3y2+3y﹣1=0【点评】本题考查了分式方程的换元法.题目难度不大,注意式子的变形.13.(3分)在平行四边形ABCD中,两邻角的度数比是7:2,那么较小角的度数为40°.【分析】本题主要依据平行四边形的性质,得出两邻角之和180°,再有两邻角的度数比是7:2,得出较小角的度数.【解答】解:设两邻角分别为7x、2x,则7x+2x=180°,解得:x=20°,∴较小的角为40°.故答案为:40°.【点评】本题主要考查了平行四边形的基本性质,属于基础题,解答本题的关键是熟练掌握平行四边形的两邻角之和为180°.14.(3分)在平行四边形ABCD中,若,则=(用和表示).【分析】由在平行四边形ABCD中,,根据平行四边形法则即可求得的值.【解答】解:∵在平行四边形ABCD中,,∴=﹣=﹣.故答案为:﹣.【点评】此题考查了平面向量的知识.解题的关键是注意平行四边形法则的应用.15.(3分)从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被2整除的概率是.【分析】列表列举出所有情况,看两位数是偶数的情况数占总情况数的多少即可解答.【解答】解:列表如下:234232423234342434共有6种等可能的结果,其中这个数恰好能被2整除的有4种结果,所以这个数恰好能被2整除的概率为=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.16.(3分)某学校准备用2400元购买一批学习用品,已知甲种学习用品的单价比乙种学习用品的单价少2元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,问:这两种学习用品的单价分别是多少元?若设乙种学习用品的单价为x元,那么根据题意可列方程﹣=200.【分析】设乙种学习用品的单价为x元,则甲种学习用品单价为(x﹣2)元,根据某学校准备用2400元购买一批学习用品,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,列出方程即可.【解答】解:设乙种学习用品的单价为x元,则甲种学习用品单价为(x﹣2)元,根据题意,得﹣=200.故答案为﹣=200.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.17.(3分)如图,矩形ABCD中,BC=6,AB=3,R在CD边上,且CR=1,P为BC 上一动点,E、F分别是AP、RP的中点,当P从B向C移动时,线段EF的长度为.【分析】连接AR.在Rt△ADR中,利用勾股定理求出AR,再利用三角形的中位线定理即可求出EF.【解答】解:如图,连接AR.∵四边形ABCD是矩形,∴∠D=90°,∵BC=6,AB=3,CR=1,∴AD=6,DR=2,∴AR==2,∵AE=EP,PF=FR,∴EF=AR=×2=,故答案为:.【点评】本题考查矩形的性质、勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.(3分)已知P是正方形ABCD内一点,将△ABP绕点B旋转,使得边BA与边BC重合,点P落在点P′的位置上.如果PB=2,那么PP′的长等于2.【分析】如图,利用正方形的性质得BA=BC,∠ABC=90°,再根据旋转的性质得BP=BP′=2,∠PBP′=∠ABC=90°,则可判断△PBP′为等腰直角三角形,然后根据等腰直角三角形的性质求P P′的长.【解答】解:如图,∵四边形ABCD为正方形,∴BA=BC,∠ABC=90°,∵△ABP绕点B旋转,使得边BA与边BC重合,点P落在点P′的位置上.∴BP=BP′=2,∠PBP′=∠ABC=90°,∴△PBP′为等腰直角三角形,∴PP′=PB=2.故答案为2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三、解答题(本大题共7分,满分52分)19.(5分)解方程:﹣=【分析】去分母,把分式方程转化为整式方程,求解整式方程并验根.【解答】解:原方程可变形为+=方程的两边都乘以(x+1)(x﹣1),得6x+5(x+1)=(x+4)(x﹣1)整理,得x2﹣8x﹣9=0即(x﹣9)(x+1)=0解得,x1=9,x2=﹣1检验:当x=﹣1时,(x+1)(x﹣1)=0,所以x=﹣1不是原方程的根.所以原方程的解为:x=9.【点评】本题考查了分式方程的解法.题目难度不大,注意不能忘记检验.20.(5分)解方程组:【分析】把二次方程变形为两个一次方程,和组中的一次方程组成新的方程组,求解即可.【解答】解:由②,得(x+3y)(x﹣2y)=0,即x+3y=0或x﹣2y=0所以原方程组可转化为:或解方程组,得或所以原方程组的解为:或【点评】本题考查了高次方程的解法.解决本题的关键是把二次方程因式分解后再组成新的方程组.21.(5分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠CDB=30°.求:(1)求∠A的度数;(2)当AD=4时,求梯形ABCD的面积.【分析】(1)首先根据DC∥AB,求出∠ABD的度数是多少;然后根据角平分线的性质,求出∠A的度数是多少即可.(2)首先判断出△ABD是直角三角形,进而利用三角形的面积公式和梯形的面积公式解答即可.【解答】解:(1)∵DC∥AB,∴∠ABD=∠CDB=30°,∵BD平分∠ABC,∴∠A=2∠ABD=60°.(2)∵∠ABD=30°,∠A=60°,∴∠ADB=180°﹣30°﹣60°=90°,∴AB=2AD=2×4=8,∴BD==4,∴梯形的高=,∵BD平分∠ABC,∠CDB=30°.∴∠CBD=30°=∠CDB,∴DC=BC=AD=4,=.∴S梯形ABCD【点评】此题考查梯形的问题,关键是根据DC∥AB,求出∠ABD的度数.22.(7分)庆华社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示.(1)求提高效率后,s关于t的函数关系式;(2)该绿化组提高工作效率后每小时完成的绿化面积比提高工作效率前每小时完成的绿化面积多多少?【分析】(1)根据待定系数法可求直线AB的解析式,(2)根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:(1)设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,(2)∵直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.【点评】考查了一次函数的应用和函数的图象,关键是根据待定系数法求出该绿化组提高工作效率后的函数解析式,同时考查了工作效率=工作总量÷工作时间的知识点.23.(8分)如图,四边形ABCD是平行四边形,AE∥BD,AE与CB的延长线交于点E,DE交AB于F.(1)求证:BC=BE;(2)连结CF,若∠ADF=∠BCF且AD=2AF,求证:四边形ABCD是正方形.【分析】(1)根据平行四边形的性质得:AD∥BC,AD=BC,又由平行四边形的判定得:四边形AEBD是平行四边形,又由平行四边形的对边相等可得结论;(2)根据(1):四边形AEBD是平行四边形,对角线互相平分可得:AF=BF=AB,EF=FD,从而证明AD=AB,即邻边相等,证明EF=FC=FD,得∠FDC=∠FCD,从而∠BCD=90°,根据有一个角是直角,邻边相等的平行四边形是正方形可得结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE∥BD,∴四边形AEBD是平行四边形,∴AD=EB,∴BC=BE;(2)由(1)知:四边形AEBD是平行四边形,∴AF=BF=AB,EF=FD,∵AD=2AF,∴AB=AD,∵AD∥EC,∴∠ADF=∠BCF,∴∠FEC=∠BCF,∴EF=FC=FD,∴∠FDC=∠FCD,∴∠ADF+∠FDC=∠FCD+∠BCF,即∠ADC=∠BCD,∵AD∥BC,∴∠ADC+∠BCD=180°,∴∠BCD=90°,∴四边形ABCD是正方形.【点评】此题考查了平行四边形的性质、正方形的判定、等腰三角形的判定与性质、平行线的性质,属于基础题,正确利用平行四边形的性质是解题关键.24.(10分)如图,平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于点A.B.(1)求△AOB的面积;(2)点P是y轴上的点,在坐标平面内是否存在点Q,使以A.B.P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.【分析】(1)利用待定系数法求出A、B两点坐标即可解决问题;(2)①当AB是菱形的边时,分三种情形讨论求解;②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,构建方程即可解决问题;【解答】解:(1)对于直线y=﹣x+2,令x=0得到y=2,令y=0,得到x=2,∴A(2,0).B(0,2),∴OA=2,OB=2,=•OB•OA=2.∴S△AOB(2)存在.①当AB是菱形的边时,如图所示,在菱形AP1Q1B中,Q1O=AO=1,所以Q1点的坐标为(﹣2,0),在菱形ABP2Q2中,AQ2=AB=4,所以Q2点的坐标为(2,4),在菱形ABP3Q3中,AQ3=AB=2,所以Q3点的坐标为(2,﹣4),②当AB为菱形的对角线时,如图所示的菱形AP4BQ4,设菱形的边长为x,则在Rt△AP4O中,AP42=AO2+P4O2,即x2=22+(2﹣x)2,解得x=,所以Q4(2,).综上可得,平面内满足条件的Q点的坐标为:Q1(﹣2,0),Q2(2,4),Q3(2,﹣4),Q4(2,).【点评】本题考查了一次函数综合题,涉及的知识点有:解一元二次方程,两点之间的距离公式,三角形面积的计算,函数思想,分类思想的运用,菱形的性质,综合性较强,有一定的难度.25.(12分)如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD 边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.直线l为线段PQ的垂直平分线,与边BC交与点E设AP=x.(1)当直线l经过点B时,求x的值;(2)求BE的长(用含x的代数式表示);(3)连接EP、EQ,设△EPQ的面积为y,求y关于x的函数关系式,并写出它的定义域.【分析】(1)先确定出BP=8﹣x,进而得出BQ=8﹣x,再利用勾股定理即可得出结论;(2)先利用勾股定理得出PE2=(8﹣x)2+BE2,QE2=x2+(6﹣BE)2,进而建立方程即可得出结论;(3)同(2)的方法求出AF,DF,最后用面积差即可得出结论.【解答】解:(1)如图1,∵四边形ABCD 是矩形,∴CD=AB=8,BC=AD=6,∵AP=CQ=x ,∴BP=DQ=8﹣x ,连接BQ ,当直线l 过点B 时,直线l 必过点D ,∵l 是PQ 的垂直平分线,∴BQ=BP ,∴DQ=BQ=8﹣x ,在Rt △BCQ 中,根据勾股定理得,(8﹣x )2﹣x 2=36,∴x=;(2)如图2,连接PE ,QE ,∴PE=QE ,在Rt △PBE 中,PE 2=(8﹣x )2+BE 2,在Rt △ECQ 中,QE 2=x 2+(6﹣BE )2,∴(8﹣x )2+BE 2=x 2+(6﹣BE )2,∴BE=;(3)连接PE ,QE ,PF ,QF ,由(2)知,BE=, ∴CE=BC ﹣BE=,同(2)的方法得,DF=,AF=, ∴S=S 矩形ABCD ﹣S △APF ﹣S △DFQ ﹣S △BEP ﹣S △ECQ=6×8﹣x ×﹣(8﹣x )×﹣x ×﹣(8﹣x )×﹣=48﹣x ×﹣(8﹣x )×=x +,∵点E在线段BC上,∴0≤BE≤6,∴0≤≤6,∴≤x≤,即:y=x+(≤x≤).【点评】此题是四边形综合题,主要考查了垂直平分线的性质,矩形的性质,勾股定理,几何图形的面积的计算,作出辅助线是解本题的关键.。

上海市名校2017-2018学年八年级下学期期末考试数学试题

上海市名校2017-2018学年八年级下学期期末考试数学试题

8B.m>89C.m=9上海市名校2017-2018学年八年级下学期期末考试数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(本题共12个小题,每小题3分,满分36分)1.下面条件中,能判定四边形是平行四边形的条件是()A.一组对角相等B.对角线互相平分C.一组对边相等D.对角线互相垂直2.下列交通标志中,既是轴对称图形又是中心对称图形的是()3.如图,一次函数y=2x+3的图象大致是()4.甲、乙、丙三个游客团的年龄的方差分别是S甲2=1.47,S乙2=10.2,S丙2=2.3,导游小邱最喜欢带游客年龄相近的团队,若在这三个游客团中选择一个,则他应选()A.甲队B.乙队C.丙队D.哪个都可以5.如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()A.m>98D.m=896.周日,小华从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小华离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中不正确的是()A.小华家离报亭的距离是1200mB.小华从家去报亭的平均速度是80m/minC.小华从报亭返回家中的平均速度是80m/minD.小华在报亭看报用了15min7.对于一次函数y=x+2,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴交点坐标是(0,2)C.函数图象与x轴正方向成45°角D.函数图象不经过第四象限8.如图,菱形ABCD的对角线AC、BD相交于点O,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=8,则菱形ABCD的周长为()A.14B.20C.22D.289.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.12x(x﹣1)=28C.x(x﹣1)=28D.x(x﹣1)=2810.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:甲组乙组158158159159160160160161160161161163169165以下叙述错误的是()A.甲组同学身高的众数是160A.(﹣3,0)B.(﹣6,0)C.(﹣5B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大11.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.2,60°B.4,30°C.1,30°D.3,60°12.如图,直线y=23x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,当PC+PD最小时,点P的坐标为()3,0)D.(﹣,0)22二、填空题:(本大题共8个小题,每小题填对最后结果得5分,满分40分。

青浦区期末八年级数学试卷

青浦区期末八年级数学试卷

一、选择题(每题3分,共30分)1. 若实数a、b满足a+b=2,ab=1,则a²+b²的值为()A. 2B. 3C. 4D. 52. 下列各数中,有最小正整数解的一元一次方程是()A. 3x+4=7B. 5x-2=0C. 2x+3=9D. 4x-1=83. 若等腰三角形的底边长为10,腰长为8,则该三角形的周长为()A. 24B. 26C. 28D. 304. 已知二次函数y=ax²+bx+c的图象开口向上,且顶点坐标为(-2,3),则a、b、c的符号分别为()A. a>0,b<0,c>0B. a>0,b>0,c>0C. a<0,b<0,c<0D. a<0,b>0,c>05. 在平面直角坐标系中,点A(-3,4)关于y轴的对称点坐标为()A.(3,4)B.(-3,-4)C.(3,-4)D.(-3,-4)6. 若等差数列{an}的第一项为3,公差为2,则第10项an的值为()A. 19B. 21C. 23D. 257. 下列函数中,y=2x+1在x=1时的函数值为()A. 3B. 4C. 5D. 68. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 75°B. 105°C. 120°D. 135°9. 若一个正方形的对角线长为6cm,则该正方形的周长为()A. 12cmB. 14cmC. 16cmD. 18cm10. 下列各式中,正确的是()A. √9=±3B. (-3)²=9C. 2²=8D. (-2)³=-8二、填空题(每题3分,共30分)11. 若一个数的平方根是2,则这个数是______。

12. 若一个等腰三角形的底边长为8cm,腰长为6cm,则该三角形的周长是______cm。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年上海市青浦区八年级(下)期末数学试卷
一、选择题(本大题共6题,每题2分,满分12分)
1.(2分)如果一次函数y=kx+1不经过第三象限,那么k的取值范围是()A.k<0B..k>0C..k≤0D..k≥0
2.(2分)下列方程中,无实数解的是()
A.B.
C.D.
3.(2分)在一个多边形的内角中,锐角不能多于()
A.2个B.3个C.4个D.5个
4.(2分)下列关于向量的等式中,不正确的是()
A.B.
C.D.
5.(2分)下列说法中错误的是()
A.“买一张彩票中大奖”发生的概率是0
B.“软木塞沉入水底”发生的概率是0
C.“太阳东升西落”发生的概率是1
D.“10只鸟关在3个笼子里,至少有一个笼子关的鸟超过3只”发生的概率是1
6.(2分)如图,在四边形ABCD中,AC于BD相交于点O,∠BAD=90°,BO=DO,那么下列条件中不能判定四边形ABCD为矩形的是()
A.∠ABC=90B.AO=OC C.AB||CD D.AB=CD
二、填空题(本大题共12题,每小题3分,满分36分)
7.(3分)一次函数y=1﹣5x的截距是.
8.(3分)把函数y=2x的图象向右平移1个单位长度,得到的函数图象解析式
为.
9.(3分)如果一次函数的图象经过点(﹣2,﹣6)和(5,2),那么函数值y 随着自变量x的增大而.
10.(3分)关于x的方程ax﹣2x﹣5=0(a≠2)的解是.
11.(3分)方程=1的解是.
12.(3分)已知方程=1,如果设=y,那么原方程可以变形
为关于y的整式方程为.
13.(3分)在平行四边形ABCD中,两邻角的度数比是7:2,那么较小角的度数为.
14.(3分)在平行四边形ABCD中,若,则=(用和表示).
15.(3分)从2、3、4这三个数字中任选两个组成两位数,在组成的所有两位数中任意抽取一个数,这个数恰好能被2整除的概率是.
16.(3分)某学校准备用2400元购买一批学习用品,已知甲种学习用品的单价比乙种学习用品的单价少2元,若用这些钱全部购买甲种学习用品比全部购买乙种学习用品可多买200件,问:这两种学习用品的单价分别是多少元?
若设乙种学习用品的单价为x元,那么根据题意可列方程.17.(3分)如图,矩形ABCD中,BC=6,AB=3,R在CD边上,且CR=1,P为BC上一动点,E、F分别是AP、RP的中点,当P从B向C移动时,线段EF的长度为.
18.(3分)已知P是正方形ABCD内一点,将△ABP绕点B旋转,使得边BA 与边BC重合,点P落在点P′的位置上.如果PB=2,那么PP′的长等于.
三、解答题(本大题共7分,满分52分)
19.(5分)解方程:﹣=
20.(5分)解方程组:
21.(5分)已知:如图,在梯形ABCD中,DC∥AB,AD=BC,BD平分∠ABC,∠CDB=30°.
求:(1)求∠A的度数;
(2)当AD=4时,求梯形ABCD的面积.
22.(7分)庆华社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示.
(1)求提高效率后,s关于t的函数关系式;
(2)该绿化组提高工作效率后每小时完成的绿化面积比提高工作效率前每小时完成的绿化面积多多少?
23.(8分)如图,四边形ABCD是平行四边形,AE∥BD,AE与CB的延长线交于点E,DE交AB于F.
(1)求证:BC=BE;
(2)连结CF,若∠ADF=∠BCF且AD=2AF,求证:四边形ABCD是正方形.
24.(10分)如图,平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴
分别交于点A.B.
(1)求△AOB的面积;
(2)点P是y轴上的点,在坐标平面内是否存在点Q,使以A.B.P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.
25.(12分)如图,在矩形ABCD中,AB=8,AD=6,点P、Q分别是AB边和CD边上的动点,点P从点A向点B运动,点Q从点C向点D运动,且保持AP=CQ.直线l为线段PQ的垂直平分线,与边BC交与点E设AP=x.
(1)当直线l经过点B时,求x的值;
(2)求BE的长(用含x的代数式表示);
(3)连接EP、EQ,设△EPQ的面积为y,求y关于x的函数关系式,并写出它的定义域.
2017-2018学年上海市青浦区八年级(下)期末数学试卷
参考答案
一、选择题(本大题共6题,每题2分,满分12分)
1.A;2.C;3.B;4.C;5.A;6.D;
二、填空题(本大题共12题,每小题3分,满分36分)
7.1;8.y=2(x﹣1);9.增大;10.;11.x=±;12.3y2+3y ﹣1=0;13.40°;14.;15.;16.﹣=200;17.;
18.2;
三、解答题(本大题共7分,满分52分)
19.;20.;21.;22.;23.;24.;
25.;。

相关文档
最新文档