初中生数学模拟试题最新版5(免费下载)

合集下载

初三中考数学模拟试题

初三中考数学模拟试题

初三中考数学模拟试题一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 4x + 4 = 0的解?A. x = 2B. x = -2C. x = 1D. x = -12. 如果一个三角形的两边长分别为3和4,那么第三边的长度范围是多少?A. 1 < x < 7B. 1 < x < 5C. 3 < x < 7D. 0 < x < 73. 以下哪个函数是奇函数?A. y = x^2B. y = x^3C. y = x^4D. y = x4. 已知圆的半径为5,那么这个圆的面积是多少?A. 25πB. 50πC. 100πD. 200π5. 一个数的相反数是-3,那么这个数是多少?A. 3B. -3C. 0D. 66. 以下哪个选项是不等式2x - 3 > 5的解?A. x > 4B. x < 4C. x > 2D. x < 27. 函数y = 2x + 3的图象与x轴的交点坐标是多少?A. (-3/2, 0)B. (3/2, 0)C. (0, 3)D. (0, -3)8. 以下哪个选项是等腰三角形的性质?A. 两底角相等B. 三条边相等C. 三个角相等D. 两腰相等9. 一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -210. 以下哪个选项是方程2x + 3 = 7的解?A. x = 2B. x = 1C. x = 3D. x = 4二、填空题(每题3分,共15分)11. 已知一个直角三角形的两直角边长分别为6和8,那么斜边的长度是________。

12. 函数y = 3x - 6与y轴的交点坐标是________。

13. 一个数的立方是-8,那么这个数是________。

14. 已知一个扇形的圆心角为60度,半径为4,那么这个扇形的面积是________。

15. 一个数的绝对值是5,那么这个数可以是________或________。

九年级数学下学期中考模拟试题(5)

九年级数学下学期中考模拟试题(5)

九年级数学下学期中考模拟试题(5)(考试总分:120 分)一、单选题(本题共计8小题,总分24分)1.(3分)下列各数中,是负数的是( )A.0B.13C.−(−3)D.−√32.(3分)2023年春节假期,西安又火爆“出圈”,西安文旅全面复苏,接待人次、旅游收人双创新高,西安市监测的15家重点旅游景区累计接待游客227.8万人次,同比增长160%.数据227. 8万用科学记数法可表示为( )A.227.8×104B.2.278×105C.2.278×106D.2.278×1073.(3分)计算(−2a2b3)3的结果为( )A.−8a6b9B.−8a8b27C.−5a5b6D.−6a6b94.(3分)如图,一束光沿CD方向射入,先后经过平面镜OB,OA反射后,沿EF方向射出,若∠AOB =130°,∠CDB=30°,则∠DEF的度数为( )A.130°B.140°C.150°D.160°5.(3分)已知点(m,p),(m+1,q)在一次函数y=2x−1的图象上,则函数y=5x+(p−q)的图象不经过( )A.第一象限B.第二象限C.第二象限D.第四象限6.(3分)如图,在ΔABC中,AB=12,AC=10,若sinB=12,则cosC的值为( )A.45B.35C.12D.347.(3分)如图,ΔABC内接于⨀O,BD是⨀O的直径,过点A的切线交BD的延长线于点E,若∠E=50°,则∠C的度数为( )A.50°B.60°C.70°D.80°8.(3分)将抛物线L:y=−(x−b+1)2+b先向左平移3个单位长度,再向上平移1个单位长度后得到抛物线L′,若抛物线L′的顶点到原点的距离为5,则抛物线L′的顶点坐标为( )A.(0,5)B.(5,0)C.(0,−5)或(5,0)D.(0,5)或(−5,0)二、填空题(本题共计5小题,总分15分)9.(3分)计算:√16−32=________.10.(3分)在甲、乙两块小麦试验田中,随机测量若干株小麦的高度后,计算其方差分别为s甲2=2=13.8,则两块麦田中麦苗高度比较均匀的是________(填“甲”或“乙”).7.6,s乙11.(3分)中国清代数学百科全书《数理精蕴》中记载:“原有工人一百开河四十丈,二十日完工;今有工.人一千开河八十丈,问得日数几何?”其大意:已知100名工人开挖河道40丈需要20天完成,那么1000名工人开挖河道80丈需要多少天完成?设需要x天完成,则可列方程为____ ___________.12.(3分)如图,过原点O的直线与反比例函数y=k的图象交于A,B(m,−3)两点,过点B作BCx⊥x轴,垂足为C,连接AC,若ΔAOC的面积为3,则k=_________.13.(3分)如图,在四边形ABCD中,∠B=∠C=60°,M为BC上一点,且AB=MC=6cm,BM= CD=2cm,则线段AD的长度为________cm.三、 解答题 (本题共计13小题,总分81分)14.(5分)计算:√8−(12)0−2×(−5).15.(5分)解不等式组:{x +2>−1,1−2x 3⩽3. 16.(5分)化简:(1−4a+1)⋅a 2+aa 2−6a+9. 17.(5分)如图,D 为ΔABC 的边BC 上的三等分点,且BD <DC ,请用尺规作图的方法在边BC 上找一点P ,使得ΔAPC 的面积为ΔABP 的面积的一半.(保留作图痕迹,不写作法)18.(5分)如图,在四边形ABCD 中,AD//BC ,连接AC,E 是AC 上一点,连接BE ,已知∠CBE =∠ACD,BE =CD .求证:ΔABC 是等腰三角形.19.(5分)如图,在平面直角坐标系中,网格中每个小正方形的边长为1个单位长度.点A 、点B 均在x 轴上,且在小正方形的格点上.(1)点A的坐标为________,点B的坐标为________..(2)以点B为直角顶点,作出ΔABC,使得tan∠CAB=4720.(5分)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》《诗经》《唐诗》《宋词》(分别用字母A,B,C,D表示),将A,B,C,D四个字母分别写在四张完全相同的不透明卡片的正面,把这四张卡片背面朝上洗匀后放在桌面上.甲、乙两人参加诵读比赛,比赛时甲先从中随机抽取一张卡片,记录下卡片上的内容后,放回洗匀,再由乙从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)甲抽取到《唐诗》的概率是________.(2)请用画树状图或列表的方法求出甲、乙两人诵读相同材料的概率.21.(6分)诗中有云:“山外青山楼外楼.”某同学站在自家阳台中不禁思考对面的住宅楼比自家的住宅楼高多少于是便用所学知识解决问题.如图,该同学在自家阳台的地面A处观测对面住宅楼的顶端点B,并记录此时的仰角为∠1,然后在对面住宅楼底端点C处观测自家住宅楼顶端点D,并记录观测角为∠2,通过所测观测角的数据发现∠1=∠2.已知该同学了解到自家住宅楼每层高为3.5m,共有16层,且自家所在楼层为10层.图中所有点均在同一平面内,请你根据以上数据计算出该同学家对面住宅楼比自家住宅楼高多少米?22.(7分)共享经济的发展给人们的生活带来了便利,越来越多的城市给一些需要提升自己的人们提供了自习室服务,现有一家共享自习室的商家拟定某种收费方案:在选定自习座位后1小时以内(含1小时),收费6元,以后每增加1小时(不足1小时按1小时计)收费0.5元.设自习时间x(x为整数)小时的收费为y元.(1)请写出y与x之间的函数关系式.(2)若某同学去共享自习室学习,从14:00开始计费,离开时付款7.5元,请分析判断该同学离开自习室的时间范围.23.(7分)排球垫球是陕西中考体育的选考项目之一.某校为了解九年级学生排球垫球的情况,随机抽取了部分九年级学生测试规定时间内的垫球数(单位:个),统计测试结果并制成如下统计表:(1)填空:表中的频数a=_________,抽样的样本容量为_________.(2)被抽取的学生的排球垫球数的中位数落在________组别.(3)若该校九年级学生共有800人,试估算排球垫球数不少于30个的人数.24.(8分)如图,在RtΔABC中,∠ABC=90°,BD为边AC上的高,⨀O为ΔABD的外接圆,过点D作AB的垂线,与⨀O交于点F.(1)求证:BC为⨀O的切线.(2)当DF=BD,CD=12时,求⨀O的半径.25.(8分)已知抛物线L:y=x2+bx的顶点坐标为M(−1,−1),抛物线L与x轴交于A,B两点,且点A在点B的左侧.(1)求b的值.(2)若抛物线L′与抛物线L的形状、开口方向一致,记抛物线L′的顶点坐标为M′,当以A,B,M,M′四点构成的四边形为平行四边形时,求抛物线L′的表达式.26.(10分)问题提出=____ (1)如图1,ΔOAB与ΔOCD均为等腰直角三角形,∠OBA=∠ODC=90°,连接AC,BD,则BDAC_____.问题探究(2)如图2,在四边形ABCD中,∠A=∠B=90°,E为AB的中点,连接DE,DE⊥DC,若AB=4,AD =6,求线段BC的长.问题解决(3)某仓库的纵截面示意图如图3所示,在四边形ABCD中,AD=6m,AB=4m,BC=9m,∠A=∠B=90°,为了更好地观测仓库内的情况,仓库管理员打算在点D处安装一款可以移动观测的摄像头.已知摄像头可观测的最大角度为∠EDF=45°,由于观测的主体为地面BC部分,因此摄像头可观测的主要范围为线段EF(EF在线段BC上,且点E、点F可以与端点重合).请计算线段EF的最小值.。

中考数学模拟试题五

中考数学模拟试题五

中考数学模拟试题五一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.|-5|的相反数是()A.5 B.-5 C.-15D.153.已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A.8 B.9 C.10 D.114.实验表明,人体内某种细胞的形状可近似地看作球,它的直径约为0.00000156米,则这个数用科学记数法表示为()A.0.156×10-5B.0.156×105C.1.56×10-6D.1.56×1065.若不等式组恰有两个整数解,则m的取值范围是()A.-1≤m<0 B.-1<m≤0 C.-1≤m≤0 D.-1<m<06.如果一组数据a1,a2,…,a n的方差是2,那么一组新数据2a1,2a2,…,2a n的方差是()A.2 B.4 C.8 D.167.如图,在△ABC中,AB=AC=5,BC=8,⊙O经过B、C两点,且AO=4,则⊙O的半径长是()A.17或65B.4或65C.4或17D.4或17或658.银泰购物中心一月份的营业额为400万元,第一季度营业总额为1600万元,若平均每月增长率为x,则可列方程为()A.400(1+x)2=1600 B.400[1+(1+x)+(1+x)2]=1600C.400+400x+400x2=1600 D.400(1+x+2x)=16009.程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .+3(100﹣x )=100B .﹣3(100﹣x )=100C .3x +=100D .3x ﹣=100 10.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD=2.其中正确的结论有( B ) A.4个 B .3个 C .2个 D .1个二、填空题(本大题共6小题,每小题3分,满分18分.)11.分解因式:20-5a 2= .12.如图,在△ABC 中,D 为AC 边上的点,∠DBC=∠A ,BC =6,AC =3,则CD 的长为 _________ .13.已知:平面直角坐标系xOy 中,圆心在x 轴上的⊙M 与y轴交于点D (0,4)、点H ,过H 作⊙O 的切线交x 轴于点A ,若点M (-3,0),则sin ∠HAO 的值为 .14.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是 5 .15.如图,已知正方形ABCD 的边长为2,将正方形ABCD 沿直线EF 折叠,则图中折成的4个阴影三角形的周长之和为 .16.如图,在等边△ABC 中,AB=4,点P 是BC 边上的动点,点P 关于直线AB ,AC 的对称第10题图F E DB CA点分别为M ,N ,则线段MN 长的取值范围是 6≤MN ≤4 .三、解答下列各题(共72分)17、(5分)计算:21()3-20170+|2-23|-tan60°18. (6分)如右图,矩形ABCD ,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE 于F .(1)猜想:AD 与CF 的大小关系;(2)请证明上面的结论.19.(8分) “端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗,随州市某食品厂为了解市民对去年销售量较好的肉馅粽、豆沙粽、红枣粽、蛋黄馅粽(以下分别用A 、B 、C 、D 表示这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查结果绘制成如下两幅统计图.请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将不完整的条形图补充完整.(3)若居民区有8000人,请估计爱吃D 粽的人数?(4)若有外型完全相同的A 、B 、C 、D粽各一个煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个吃到的恰好是C 粽的概率?20.(7分)已知:如图,一次函数y=x+b的图象与反比例函数y=kx(k<0)的图象交于A、B两点,A点坐标为(1,m),连接OB,过点B作BC⊥x轴,垂足为点C,且△BOC的面积为32.(1)求k的值;(2)求这个一次函数的解析式.21.(7分)如图,中国海监船在钓鱼岛附近海域沿正西方向航行执行巡航任务,在A处望见钓鱼岛在南偏西45°方向,海监船航行到B处时望见钓鱼岛在南偏45°方向,又航行了15分钟到达C处,望见钓鱼岛在南偏60°方向,若海监船的速度为36海里/小时,求中国海监船在此次航行过程中离钓鱼岛的最近距离为多少海里?(3≈1.732,结果精确到0.1海里).22.(8分) 如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线CM.(1)求证:∠ACM=∠ABC;(2)延长BC到D,使CD=BC,连接AD与CM交于点E,若⊙O的半径为2,ED=1,求AC的长.23.(9分)实验中学九年级学生小凡、小文和小宇到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作.已知该水果的进价为8元/千克,下面是他们在活动结束后的对话.小凡:如果以9元/千克的价格销售,那么每天可售出350千克.小文:如果每千克的利润为2元,那么每天可售出300千克.小宇:如果以11元/千克的价格销售,那么每天可获取利润750元.物价部门规定:该水果的加价不得超过进价的45﹪.【利润=(销售价-进价)×销售量】(1)请根据他们的对话填写下表:(3分)销售单价x(元/kg)9 10 11销售量y(kg)(2)请你根据表格中的信息判断每天的销售量y(千克)与销售单价x(元)之间存在怎样的函数关系.并求y(千克)与x(元)(x>0)的函数关系式;(3分)(3)设该超市销售这种水果每天获取的利润为W元,求W与x的函数关系式.当销售单价为何值时,每天可获得的利润最大?最大利润是多少元?(3分)24.(10分)如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N是分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.(2)求△AMN面积的最小值;(3)求点P到直线CD距离的最大值;25. (12分)如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与点A重合),过点P作PD∥y 轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)在抛物线对称轴上是否存在点M,使|MA-MC|的值最大?若存在,请求出点M的坐标;若不存在,请说明理由.答案:21.22.(1)证明:连接OC.∵AB为⊙O的直径,∴∠ACB=90°.∴∠ABC+∠BAC=90°.∵CM是⊙O的切线,∴OC⊥CM.∴∠ACM+∠ACO=90°.∵CO=AO,∴∠BAC=∠ACO.∴∠ACM=∠ABC.(2)解:∵BC=CD,OB=OA,∴OC∥AD.又∵OC⊥CE,∴CE⊥AD,∵∠ACD=∠ACB=90°,∴∠AEC=∠ACD.∴△ADC∽△ACE.∴.∵⊙O的半径为2,∴AD=4.∴.∴AC=2.24.解:(1)如图1中,∵ABCD是菱形,∠ABC=60°,∴△ABC为等边三角形在△AMB和△ANC中,AB=AC∠B=∠ACN=60°BM=NC∴△AMB≌△ANC∴AM=AN,∠BAM+∠MAC=∠MAC+∠NAC=60°,∴∠MAN=60°,∴△AMN为等边三角形,当AM⊥BC时,△AMN的边长最小,面积最小,=•(2)2=3此时AM=MN=AN=2,S△AMN(2)如图2中,当AM⊥BC时,点P到CD距离最大.作PE⊥CD于E.理由:由(1)可知△AMN是等边三角形,当AM⊥BC时,△AMN的边长最小,此时PA长最小,PC的长最大,点P到直线CD距离的最大,∵BM=MC=2,∠CMP=30°,∠MPC=90°,∴PC=MC=1,在Rt △PCE 中,∵∠CPE=30°,PC=1,∴EC=PC=, ∴PE==.∴点P 到直线CD 距离的最大值为; 25.解:(1)∵抛物线y =x 2+bx +c 过点A (3,0),B (1,0),∴, 解得,∴抛物线的解析式为y =x 2-4x +3.(2)令x =0,则y =3,∴点C (0,3),又∵点A (3,0),∴直线AC 的解析式为y = -x +3,设点P (x ,x 2-4x +3),∵PD ∥y 轴,且点D 在AC 上,∴点D (x ,-x +3),∴PD =(-x +3)-(x 2-4x +3)=-x 2+3x =-(x-)2+, ∵a =-1<0,∴当x =时,线段PD 的长度有最大值,最大值为. (3)存在.由抛物线的对称性可知,对称轴垂直平分AB ,可得:MA =MB ,由三角形的三边关系,|MA -MC |<BC ,可得:当M 、B 、C 三点共线时,|MA -MC |最大,即为BC 的长度,设直线BC 的解析式为y =kx +b (k ≠0),由B 、C 两点的坐标分别为(1,0)、(0,3), 则, ⎩⎨⎧=++=++01039c b c b ⎩⎨⎧==3-4c b 23492349⎩⎨⎧==+30b b k解得,∴直线BC 的解析式为y = -3x +3,∵抛物线y =x 2-4x +3的对称轴为直线x =2,∴当x =2时,y=-3×2+3=-3,∴点M (2,-3),即抛物线对称轴上存在点M (2,-3),使|MA -MC |最大.⎩⎨⎧==3-3b k。

人教版初三下册《数学》模拟考试卷及答案【可打印】

人教版初三下册《数学》模拟考试卷及答案【可打印】

人教版九年级下册《数学》模拟考试卷一、选择题(每题3分,共30分)1.下列哪个数是实数?A. 2iB. 3C. √5D. 1/02.下列哪个函数的图像是一条直线?A. y=x²B. y=2x3C. y=x³D. y=|x|3.下列哪个数是负数?A. 5B. 0C. 5D. √94.下列哪个不等式成立?A. 2x+3<0B. 3x2>0C. 4x+1<0D. 5x3>05.下列哪个是正比例函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x36.下列哪个是反比例函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x37.下列哪个是二次函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x38.下列哪个是指数函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x39.下列哪个是对数函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x310.下列哪个是三角函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x3二、填空题(每题4分,共40分)11.下列数列中,第10项是几?1, 3, 5, 7,12.下列数列中,第n项是几?2, 4, 6, 8,13.下列数列中,第n项是几?1, 2, 4, 8,14.下列数列中,第n项是几?1, 3, 6, 10,15.下列数列中,第n项是几?1, 4, 9, 16,16.下列数列中,第n项是几?1, 8, 27, 64,17.下列数列中,第n项是几?1, 2, 4, 8,18.下列数列中,第n项是几?1, 3, 6, 10,19.下列数列中,第n项是几?1, 4, 9, 16,20.下列数列中,第n项是几?1, 8, 27, 64,三、解答题(每题10分,共50分)21.解方程:2x3=522.解方程组:\begin{align}2x+3y=7 \\3x2y=4\end{align}23.解不等式:3x2<024.解不等式组:\begin{align}2x+3y>7 \\3x2y<4\end{align}25.解方程:x²3x+2=026.解方程组:\begin{align}x²+y²=25 \\xy=5\end{align}27.解不等式:x²3x+2<028.解不等式组:\begin{align}x²+y²>25 \\xy<5\end{align}29.解方程:x³2x²+3x6=030.解方程组:\begin{align}x³+y³=27 \\x+y=3\end{align}四、证明题(每题10分,共20分)31.证明:若a²+b²=c²,则a、b、c为勾股数。

2024年辽宁省初中学业水平考试数学模拟试题

2024年辽宁省初中学业水平考试数学模拟试题

2024年辽宁省初中学业水平考试数学模拟试题一、单选题1.3的倒数是( )A .3B .3-C .3±D .132.2024年辽宁经济增长势头强劲,第一季度GDP 达到了6910亿,将6910亿用科学记数法表示为( )A .86.9110⨯B .106.9110⨯C .116.9110⨯D .120.69110⨯ 3.学校的颁奖台示意图如图所示,它的主视图是( )A .B .C .D .4.下列计算结果错误的是( )A .22223a a a +=B .22423a a a ⋅=C .()32628a a =D .32623a a a ÷=. 5.如图,已知直线AB CD P ,EG 平分BEF ∠,140∠=︒,则2∠的度数是( )A .54︒B .36︒C .72︒D .70︒6.方程22540x x -+=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断7.对于反比例函数3y x=-,下列说法正确的是( )A .图象位于第一、第三象限B .经过点()1,3C .图象关于原点成中心对称D .当0x >时,y 随x 的增大而减小8.我国明代《算法统宗》一书中有如下的类似问题:“一支竿子一条索,索比竿子长两托,对折索子来量竿,却比竿子短一托(一托按照5尺计算).”大意是:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长10尺;如果将绳索对折后再去量竿,就比竿短5尺.如果此题中设竿长x 尺,绳索长y 尺,根据题意可列方程组为( )A .1052x y x y +=⎧⎨-=⎩B .1052x y y x +=⎧⎪⎨-=⎪⎩C .1052x y y x =+⎧⎪⎨-=⎪⎩D .1025x y x y +=⎧⎨-=⎩9.如图1,平底烧瓶是实验室中使用的一种烧瓶类玻璃器皿,主要用来盛液体物质,可以轻度受热,如图2,它的截面图可以近似看作是由O e 去掉两个弓形后与矩形ABCD 组合而成的图形,其中∥BC MN ,若O e 的半径为25,361430AB BC MN ===,,,则该平底烧瓶的高度为( )A .20B .40C .60D .8010.如图,菱形ABCD 的边长为4,120A ∠=︒,点P 在对角线BD 上,点M 在边AD 上,1DM =,点N 为AB 中点,则PM PN +的最小值为( )A .4B .5 CD二、填空题11=12.如图,在平面直角坐标系中,ABC V 的顶点坐标分别是()1,4A ,()1,2B ,()4,2C,现将 ABC V 绕点A 逆时针旋转后,点B 的对应点B ',坐标为()3,4,则点C 的对应点C '的坐标为.三、单选题13.某同学将分别印有“我”“爱”“辽”“宁”的四张质地均匀、大小相同的卡片放入盒中,从中一次性随机抽取两张,则抽取的两张卡片刚好组成“辽宁”的概率是.四、填空题14.如图,在ABCD Y 中,4AB =,6BC =,60ABC ∠=︒.按以下步骤作图:①以点B 为圆心、AB 的长为半径作弧,交BC 于点E ;②分别以点A ,E 为圆心、大于12AE 的长为半径作弧,两弧交于点P ,作射线BP ;③连接AC 交BP 于点O .则OB 的长为.15.抛物线 21222y x x =--与y 轴交于点B ,已知点A 的坐标为()1,0,平移线段AB 得到线段DC (A 平移到D ,B 平移到C ),当点D ,C 都在抛物线上时,直线CD 的解析式为.五、解答题16.计算(1)()()2123422-+---÷;(2)2121111a a a a ⎛⎫⎛⎫-- ⎪⎪-++⎝⎭⎝⎭. 17.生态优先,绿色发展,让美丽的地球添上更多“中国绿”.某小区为抓好“园区绿化”,购买了甲、乙两种树苗,购买甲种树苗花了1200元,购买乙种树苗花了900元,甲种树苗的单价是乙种树苗的1.5倍,购买甲种树苗的数量比购买乙种树苗的数量少10棵.(1)求甲、乙两种树苗单价分别是多少元?(2)为扩大园区绿化面积,该小区准备再次购进甲、乙两种树苗共100棵,若总金额不超过1314元,问最少购进多少棵乙种树苗?18.2024年全国两会顺利召开,在.会议召开期间,有许多热点议题引起民众广泛关注,为了解民众对“两会信息”的了解情况,对某小区居民进行了随机抽样调查,选取其中五个热点议题的关键词,分别为A .放心消费;B .高质量就业;C .人工智能+;D .新兴科技;E .未来产业.每人只能从中选一个最关注的议题,根据调查结果绘制了两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)求本次调查所选取的人数,并补全条形统计图;(2)求出扇形统计图中a 的值及“B ”所对应扇形的圆心角度数;(3)请根据以上信息写出你得到了哪些结论(任写一条即可).19.某游泳馆为了促销,推出两种优惠活动.活动一:每次游泳费用为70元,没有其他费用;活动二:充值500元,每次游泳费用只需20元.设游泳x 次,花费y 元.(1)分别求出两种活动下y 与x 的函数关系式;(2)如图是两种活动下的y 与x 的函数图象.①求点P 的坐标;②观察函数图象,直接写出哪种消费方式更划算.20.如图,AB 是O e 的直径,D 为AB 上一点,C 为O e 上一点,且AD AC =,延长CD 交O e 于E ,连接CB .(1)求证:2CAB BCD ∠=∠;(2)若15BCE ∠=︒,6AB =,求CE 的长.21.某小区装修需要安装楼梯扶手,如图所示,这是楼梯横截面示意图,台阶高度均相等,扶手由两条长度相等的斜杆(14M M 和AB )和四条竖杆 ()121324M A M N M N M B ,,,组成,点1N 和2N 是水平台阶的中点,ABC V 为直角三角形,37BAC ∠=︒,14AB M M P , 2.4m AC =. (参考数据: sin370.60,cos370.80,tan370.75)︒≈︒≈︒≈(1)求BC 的长和每节台阶的高度;(结果精确到0.1m )(2)若竖杆1AM 的高度为1m ,求安装该楼梯扶手需要材料的长度.(结果精确到0.1m ) 22.【问题背景】已知在ABC V 中,=45ABC ∠︒,AB =90ACB ∠=︒,P 为射线BC 上一点,连接AP ,过点B 作BD AP ⊥交AP 的延长线于点D ,连接CD .【操作探究】(1)如图1,当点P 在线段BC 上(点P 不与点B C ,重合)时,CDB ∠的度数是; (2)如图2,当点P 在点C 的左侧时,过点B 作BE DC ⊥交DC 的延长线于点E ,过点D 作DF AC ∥交直线BE 于点F ,连接CF .请判断四边形ADFC 的形状,并说明理由;【拓展运用】(3)在【操作探究】的基础上,当12CD AP =时,请直接写出BP 的长.23.如图,已知抛物线22y ax bx =+-与x 轴相交于A ,()4,0B 两点,与y 轴相交于点C ,对称轴为直线32x =,直线l y kx m =+:经过B C ,两点,连接AC .(1)求抛物线和直线l 的解析式;(2)在直线BC 下方的抛物线上存在一点P ,使得POC △是以OC 为底边的等腰三角形,求点P 的坐标;(3)在直线BC 下方的抛物线上存在一点Q ,使得以A C Q B ,,,为顶点的四边形面积最大,求点Q 的坐标以及此时的最大面积.。

中考数学模拟考试试卷带答案

中考数学模拟考试试卷带答案

中考数学模拟考试试卷带答案学校:___________班级:___________姓名:___________考号:___________一、单选题(本大题共8小题,每小题5分,共40分)1.有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( )A .B .C .D .2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和度数分别为α和β,则正确的是( ) A .0αβ-= B .0αβ-< C .0αβ-> D .无法比较α与β的大小3.下列说法中,正确的是( )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=( ) A .23︒B .24︒C .25︒D .26︒5.不等式组43264x x x +⎧-≤⎪⎨⎪-<-⎩的解集在数轴上表示为( )A .B .C .D .6.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象第1题图 第2题图 第4题图大致是( )A .B .C .D .7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .()()8374x x -=+B .8374x x +=-C .3487y y -+=D .3487y y +-= 8.如图,抛物线2y ax bx c =++的对称轴为直线1x =,与x 轴的一个交点为(1,0)-,其部分函数图象如图所示,下列说法不正确的是( )A .0abc >B .20a b -=C .方程20ax bx c ++=的两个根为3和1-D .当1x <时,y 随x 的增大而减小二、填空题(本大题共4小题,每小题5分,共20分)9.因式分解:229ax ay -= .10.如图,ABC 和DEF 是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC 与DEF 的周长比是 .11.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若2AB =,60BAD ∠=︒则图中阴影部分的面积为 .12.如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为 .第6题图第8题图三、解答题(本大题共3小题,共40分)13.(8分)计算:﹣12024﹣|﹣sin45°|+(3.14﹣π)0+()﹣1﹣.14.(15分)如图,已知()1,0A -,()2,3B -两点在二次函数213y ax bx =+-与一次函数2y x m =-+的图象上.(1)求该一次函数和二次函数的表达式;(2)请直接写出当12y y >时,自变量x 的取值范围;(3)若二次函数的图象交y 轴于点C ,连接,AC BC ,求ABC 的面积.15.(17分)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP ,BP 的连接点P 在O 上,当点P 在O 上转动时,带动点A ,B 分别在射线OM ,ON 上滑动OM ON ⊥.当AP 与O 相切时,点B 恰好落在O 上,如图2.第10题图 第11题图 第12题图请仅就图2的情形解答下列问题.(1)求证:2PAO PBO ∠=∠;(2)若O 的半径为5,203AP = 求BP 的长. 参考答案一、单选题(本大题共8小题,每小题5分,共40分)1.有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是( B )A .B .C .D .2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和度数分别为α和β,则正确的是( A ) A .0αβ-= B .0αβ-< C .0αβ-> D .无法比较α与β的大小3.下列说法中,正确的是( A )A .调查某班45名学生的身高情况宜采用全面调查B .“太阳东升西落”是不可能事件C .为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D .任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4.如图,在O 中,半径,OA OB 互相垂直,点C 在劣弧AB 上.若19ABC ∠=︒,则BAC ∠=( D ) A .23︒B .24︒C .25︒D .26︒第1题图 第2题图 第4题图5.不等式组43264x x x +⎧-≤⎪⎨⎪-<-⎩的解集在数轴上表示为( A )A .B .C .D .6.如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( D )A .B .C .D .7.我国古代数学名著《九章算术》中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”意思是现有几个人共买一件物品,每人出8钱.多出3钱;每人出7钱,差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( D )A .()()8374x x -=+B .8374x x +=-C .3487y y -+=D .3487y y +-= 8.如图,抛物线2y ax bx c =++的对称轴为直线1x =,与x 轴的一个交点为(1,0)-,其部分函数图象如图所示,下列说法不正确的是( B )A .0abc >B .20a b -=C .方程20ax bx c ++=的两个根为3和1-D .当1x <时,y 随x 的增大而减小二、填空题(本大题共4小题,每小题5分,共20分)第6题图第8题图9.因式分解:229ax ay -= ()()33a x y x y +- .10.如图,ABC 和DEF 是以点O 为位似中心的位似图形.若:2:3OA AD =,则ABC 与DEF 的周长比是 2:5 . 11.如图,菱形ABCD 中,分别以点A ,C 为圆心,AD ,CB 长为半径画弧,分别交对角线AC 于点E ,F .若2AB =,60BAD ∠=︒,则图中阴影部分的面积为 233π . 12.如图,在边长为2的正方形ABCD 中,E ,F 分别是,BC CD 上的动点,M ,N 分别是EF AF ,的中点,则MN 的最大值为 2 .三、解答题(本大题共3小题,共40分)13.(8分)计算:﹣12024﹣|﹣sin45°|+(3.14﹣π)0+()﹣1﹣. =﹣1﹣√22 +1+ √22﹣3 ...........................................................................................................................................6分=﹣3. ..................................................................................................................................................................8分14.(15分)如图,已知()1,0A -,()2,3B -两点在二次函数213y ax bx =+-与一次函数2y x m =-+的图象上.(1)求该一次函数和二次函数的表达式;(2)请直接写出当12y y >时,自变量x 的取值范围;(3)若二次函数的图象交y 轴于点C ,连接,AC BC ,求ABC 的面积.(1)解:∵()1,0A -在一次函数2y x m =-+的图象上∵01m =+,解得:1m =-.............................................................................................................................................1分 ∵一次函数的表达式为21y x =--;................................................................................................................................2分 第10题图 第11题图 第12题图∵()1,0A -,()2,3B -两点在二次函数213y ax bx =+-的图象上∵304233a b a b --=⎧⎨+-=-⎩..........................................................................................................................................................4分 解得12a b =⎧⎨=-⎩.....................................................................................................................................................................6分 ∵二次函数的表达式为:2123y x x =--;....................................................................................................................7分(2)解:()1,0A - ()2,3B -由图象可得当12y y >时,自变量x 的取值范围为1x <-或2x >;............................................................................11分(3)解:∵二次函数2123y x x =--交y 轴于点C∵()0,3C -,......................................................................................................................................................................12分 又∵()2,3B -∵BC y ⊥轴2BC =...................................................................................................................................................13分∵ABC 的面积为1123322B BC y ⋅=⨯⨯=..................................................................................................................15分 15.(17分)在古代,智慧的劳动人民已经会使用“石磨”,其原理为在磨盘的边缘连接一个固定长度的“连杆”,推动“连杆”带动磨盘转动,将粮食磨碎,物理学上称这种动力传输工具为“曲柄连杆机构”.小明受此启发设计了一个“双连杆机构”,设计图如图1,两个固定长度的“连杆”AP ,BP 的连接点P 在O 上,当点P 在O 上转动时,带动点A ,B 分别在射线OM ,ON 上滑动OM ON ⊥.当AP 与O 相切时,点B 恰好落在O 上,如图2.请仅就图2的情形解答下列问题.(1)求证:2PAO PBO ∠=∠;(2)若O 的半径为5,203AP =求BP 的长 解:(1)证明:连接OP ,取y 轴正半轴与O 交点于点Q ,如下图:......................................................................1分 ,OP ON OPN PBO =∴∠=∠........................................................................................................................................2分 POQ ∠为PON △的外角2POQ OPN PBO PBO ∴∠=∠+∠=∠............................................................................................................................3分 90POQ POA POA PAO ∠+∠=∠+∠=︒......................................................................................................................4分 PAO POQ ∴∠=∠............................................................................................................................................................5分 2PAO PBO ∴∠=∠..........................................................................................................................................................6分 (2)过点Q 作PO 的垂线,交PO 与点C ,如下图:...................................................................................................7分由题意:在Rt APO 中53tan 2043OP PAO AP ∠===..........................................................................................................................................9分由(1)知:,QOC OAP APO OCQ ∠=∠∠=∠Rt APO Rt OCQ ∽......................................................................................................................................................11分 3tan ,54CQ COQ OQ CO ∴∠===....................................................................................................................................12分 4,3CO CQ ∴==............................................................................................................................................................13分 541PC PO CO ∴=-=-=............................................................................................................................................14分 221910PQ PC CQ ∴=++分 ∵NQ 是直径;∴∠BPQ=90。.....................................................................................................................................................................16分 在Rt QPB △中,由勾股定理得:2221010310BP BQ PQ --分 即310BP =。

2024年中考数学模拟试卷及答案

2024年中考数学模拟试卷及答案

20
21
22
23
-6-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
x+3≥-2,
5.在数轴上表示不等式组ቊ
的解集,正确的
7-x>5
是( C )
【解析】解不等式x+3≥-2,得x≥-5,解不等式7-
x>5,得x<2,∴-5≤x<2,只有C项符合题意.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
4
5
6
7
8
9
10
C.80°
11
12
13
14
15
16
D.85°
17
18
19
20
21
22
23
-8-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)
【解析】∵AC∥DF,∠A=45°,∴∠FGB=∠A=
45°.∵∠DEF=90°,∠D=60°,∴∠F=180°-
∠DEF-∠D=180°-90°-60°=30°(依据:三角
知某电阻式粮食水分测量仪的内部电路如图1所示,将粮食放在湿
敏电阻R1上,使R1的阻值发生变化,其阻值随粮食水分含量的变化
关系如图2所示.观察图象,下列说法不正确的是(
D)
A.当没有粮食放置时,R1的阻值为40 Ω
B.R1的阻值随着粮食水分含量的增大而减小
C.该装置能检测的粮食水分含量的最大值是12.5%
16
17
18
19
20
21
22
23
-14-
17.2024年合肥市第三十八中学教育集团信心信息卷(三)

河南中考数学模拟试卷(05)

河南中考数学模拟试卷(05)

河南中考数学模拟试卷(05)一.选择题(共10小题,满分30分,每小题3分)1.(3分)21的相反数是()A.21B.﹣21C.D.﹣2.(3分)有一个正方体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2022次后,骰子朝下一面的点数是()A.5B.3C.4D.23.(3分)如图,直线AB,CD相交于点O,若CO⊥AB,∠1=56°,则∠2等于()A.30°B.45°C.34°D.56°4.(3分)下列运算正确的是()A.(x﹣y)2=x2﹣y2B.=﹣3C.x2•x4=x6D.(2x2)3=6x65.(3分)如图,菱形ABCD的对角线AC、BD相交于O点,E、F分别是AB、BC边上的中点,连接EF,若EF=3,BD=8,则菱形ABCD的周长为()A.5B.14C.20D.286.(3分)一元二次方程6x2+2x+1=0的根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.(3分)甲同学射靶8次,成绩分别为:5,7,6,7,7,8,6,7,则甲同学的射靶成绩的众数为()A.5B.6C.7D.88.(3分)一种计算机每秒可以进行4×108次运算,则它工作3×103秒运算的次数为()A.12×1024B.1.2×1012C.12×1012D.1.2×1013 9.(3分)如图,在平面直角坐标系中,点A1在x轴的正半轴上,B1在第一象限,且△OA1B1是等边三角形.在射线OB1上取点B2,B3,…,分别以B1B2,B2B3,…为边作等边三角形△B1A2B2,△B2A3B3,…使得A1,A2,A3,…在同一直线上,该直线交y轴于点C.若OA1=1,∠OA1C=30°,则点B9的横坐标是()A.B.C.256D.10.(3分)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m个人共同完成需n天,选取6组数对(m,n),在坐标系中进行描点,则正确的是()A.B.C.D.二.填空题(共5小题,满分15分,每小题3分)11.(3分)写出同时具备下列两个条件的一次函数表达式:(1)y随着x的增大而减小;(2)图象经过点(﹣2,﹣1):(写出一个即可).12.(3分)不等式组的解集是.13.(3分)小南和小开在新华书店选购了部分课外阅读书籍,结账时发现该书店自助收银系统允许购书读者从“微信”“支付宝”“云闪付”“网银”四种支付方式中任选一种方式进行支付,则他们分别独立结账,恰好选择的是同一种支付方式的概率为.14.(3分)如图,在扇形ABC中,∠BAC=90°,AB=1,若以点C为圆心,CA为半径画弧,与交于点D,则图中阴影部分的面积和是.15.(3分)如图,直线CD与EF相交于点O,∠COE=60°,将一等腰直角三角尺AOB 的直角顶点与O重合,OA平分∠COE.将三角尺AOB以每秒2°的速度绕点O顺时针旋转,同时直线EF以每秒6°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤60),若直线EF平分∠BOD,则t的值为.三.解答题(共8小题,满分75分)16.(10分)计算:﹣|﹣1|+.17.(9分)为倡导绿色健康节约的生活方式,某社区开展“垃圾分类,从我做起”的活动,志愿者随机抽取了社区内50名居民,对其3月份垃圾分类投放次数进行了调查,并对数据进行了统计整理,以下是部分数据和不完整的统计图表:信息1:垃圾分类投放次数分布表信息组别投放次数频数A0≤x<5aB5≤x<1010C10≤x<15cD15≤x<2014E x≥20e合计50信息2:垃圾分类投放次数占比统计图信息3:C组包含的数据:12,12,10,12,13,10,11,13,12,11,13.请结合以上信息完成下列问题:(1)统计表中的a=,e=.(2)统计图中B组对应扇形的圆心角为度;(3)C组数据的众数是,抽取的50名居民3月份垃圾分类投放次数的中位数是;(4)根据调查结果,请你估计该社区2000名居民中3月份垃圾分类投放次数不少于15次的人数.18.(9分)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数的图象于点B.(1)若AB=2,求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.19.(9分)如图,从一栋两层楼的楼顶A处看对面的教学楼CD,测得教学楼底部点C处的俯角是45°,测得此大楼楼顶D处的仰角为60°,已知两栋楼的水平距离为8米.求该大楼CD的高度(结果保留根号).20.(9分)2020年5月,全国两会召开以后,应势复苏的“地摊经济”带来了市场新活力,雅苑社区拟建A,B两类摊位以激活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为50元,建B类摊位每平方米的费用为40元,用120平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共100个,且B类摊位的数量不少于A类摊位数量的4倍,求建造这100个摊位的最大费用.21.(9分)某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可售出200千克,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?22.(10分)如图,AB是⊙O的直径,弦CD⊥AB于H,E为CD延长线上一点,过E点作⊙O的切线,切点为G,连接AG交CD于F点.(1)求证:EF=EG;(2)若FG2=FD•FE,试判断AC与GE的位置关系,并说明理由;(3)在(2)的条件下,若sin E=,AH=3,求⊙O半径的长.23.(10分)如图,已知正方形ABCD的顶点D关于射线CP的对称点G落在正方形内,连接BG并延长交边AD于点E,交射线CP于点F.连接DF,AF,CG.(1)试判断DF与BF的位置关系,并说明理由;(2)若CF=4,DF=2,求AE的长;(3)若∠ADF=2∠F AD,求tan∠F AD的值.。

初中模拟数学试题及答案

初中模拟数学试题及答案

初中模拟数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 22. 计算下列哪个表达式的结果是负数?A. 3 + 4B. -3 - 4C. 3 × 4D. -3 × 43. 一个数的相反数是-7,那么这个数是:A. 7B. -7C. 14D. -144. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不对5. 一个数的平方是16,那么这个数是:A. 4B. -4C. 4或-4D. 以上都不对6. 一个数的立方是-27,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不对7. 下列哪个分数是最简分数?A. 6/8B. 3/4C. 5/9D. 8/128. 下列哪个选项是方程2x + 3 = 7的解?A. x = 1B. x = 2C. x = 3D. x = 49. 一个三角形的两边长分别为3cm和4cm,第三边长x满足的条件是:A. x > 1B. x < 7C. 1 < x < 7D. 以上都不对10. 一个圆的半径是5cm,那么它的周长是:A. 10π cmB. 20π cmC. 25π cmD. 30π cm二、填空题(每题4分,共20分)11. 一个数的平方根是4,那么这个数是______。

12. 如果一个数的立方根是2,那么这个数是______。

13. 一个数的倒数是1/3,那么这个数是______。

14. 一个数的绝对值是3,那么这个数可以是______或______。

15. 一个数的平方是25,那么这个数是______或______。

三、解答题(每题10分,共50分)16. 计算下列表达式的值:(2x - 3)(x + 4),其中x = 2。

17. 解方程:3x - 5 = 10。

18. 一个长方形的长是宽的两倍,如果宽是4cm,求长方形的周长。

2023-2024学年全国初中七年级下数学人教版模拟考试试卷(含答案解析)

2023-2024学年全国初中七年级下数学人教版模拟考试试卷(含答案解析)

20232024学年全国初中七年级下数学人教版模拟考试试卷一、选择题(每题2分,共20分)1.下列各数中,是整数的是()A. 0.5B. 2C. 2/3D. 1.52.下列各数中,是负数的是()A. 3B. 4C. 5/6D. 03.下列各数中,是正数的是()A. 3B. 0C. 2/3D. 44.下列各数中,是分数的是()A. 0B. 2C. 3/4D. 15.下列各数中,是正整数的是()A. 3B. 0C. 2/3D. 56.下列各数中,是负整数的是()A. 4B. 5C. 2/3D. 07.下列各数中,是正分数的是()A. 3/4B. 0C. 5/6D. 28.下列各数中,是负分数的是()A. 3/4B. 0C. 2/3D. 59.下列各数中,是零的是()A. 3B. 0C. 2/3D. 510.下列各数中,是自然数的是()A. 3B. 0C. 2/3D. 5二、填空题(每题2分,共20分)1.下列各数中,是整数的是__________。

2.下列各数中,是负数的是__________。

3.下列各数中,是正数的是__________。

4.下列各数中,是分数的是__________。

5.下列各数中,是正整数的是__________。

6.下列各数中,是负整数的是__________。

7.下列各数中,是正分数的是__________。

8.下列各数中,是负分数的是__________。

9.下列各数中,是零的是__________。

10.下列各数中,是自然数的是__________。

三、解答题(每题5分,共20分)1.解方程:2x + 3 = 7。

2.解方程:3x 2 = 5。

3.解方程:4x + 5 = 9。

4.解方程:5x 3 = 7。

四、应用题(每题10分,共20分)1.小明有5个苹果,小红有7个苹果,小华有3个苹果。

他们一共有多少个苹果?2.小明有3个苹果,小红有5个苹果,小华有7个苹果。

他们一共有多少个苹果?五、简答题(每题5分,共20分)1.简述整数的概念。

初三数学模拟题试卷及答案

初三数学模拟题试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()。

A. √-1B. πC. √4D. 无理数2. 如果 |a| = 5,那么 a 的值是()。

A. ±5B. 5C. -5D. 03. 下列各式中,正确的是()。

A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²4. 下列各图中,相似图形是()。

A.B.C.D.5. 一个等腰三角形的底边长为10cm,腰长为12cm,那么这个三角形的面积是()。

A. 60cm²B. 120cm²C. 100cm²D. 80cm²6. 如果x² - 5x + 6 = 0,那么 x 的值是()。

A. 2 或 3B. 1 或 4C. 2 或 -3D. 1 或 -47. 在直角坐标系中,点 A(-2,3)关于 x 轴的对称点是()。

A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)8. 下列函数中,是反比例函数的是()。

A. y = 2x + 3B. y = 3/xC. y = x²D. y = 3x9. 下列各式中,正确的是()。

A. a² = aB. (a + b)² = a² + b² + 2abC. (a - b)² = a² - b²D. (a + b)² = a² + b² - 2ab10. 下列各数中,绝对值最大的是()。

A. -3B. -2C. 1D. 0二、填空题(每题5分,共25分)11. 3 + (-5) 的值是 _______。

最新九年级数学中考模拟考卷及答案

最新九年级数学中考模拟考卷及答案

最新九年级数学中考模拟考卷及答案一、选择题(每题1分,共5分)1. 下列函数中,奇函数是()A. y=x^3B. y=x^2C. y=|x|D. y=2x2. 已知一组数据的方差是9,那么这组数据每个数都加上5后,方差是()A. 4B. 9C. 14D. 253. 下列等式中,正确的是()A. sin30°=1/2B. cos60°=1/2C. tan45°=1D. tan30°=1/24. 一个正方体的体积是8cm^3,那么它的表面积是()A. 24cm^2B. 32cm^2C. 36cm^2D. 48cm^25. 下列各数中是无理数的是()A. √9B. √16C. √3D. √1二、判断题(每题1分,共5分)1. 任何两个实数的和仍然是实数。

()2. 一元二次方程的解一定是实数。

()3. 对角线互相垂直的四边形一定是矩形。

()4. 任何数乘以0都等于0。

()5. 相似三角形的面积比等于边长比的平方。

()三、填空题(每题1分,共5分)1. 已知一组数据的平均数是10,那么这组数据的总和是______。

2. 一个等腰三角形的底边长是8cm,腰长是5cm,那么这个三角形的周长是______cm。

3. 若a+b=6,ab=2,则a=______,b=______。

4. 在直角坐标系中,点A(2,3)关于x轴的对称点是______。

5. 两个等差数列的通项公式分别是an=a1+(n1)d和bn=b1+(n1)d,那么这两个数列的前n项和分别是______和______。

四、简答题(每题2分,共10分)1. 简述平行线的性质。

2. 请解释无理数的概念。

3. 什么是二次函数的顶点坐标?4. 简述三角形面积的计算方法。

5. 请举例说明什么是等差数列。

五、应用题(每题2分,共10分)1. 某商店进行打折促销,原价100元的商品打8折,那么折后价格是多少?2. 一个长方体的长、宽、高分别是4cm、3cm、2cm,求它的体积。

初中数学模拟试卷含答案

初中数学模拟试卷含答案

一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √9B. √-9C. √-1D. √2答案:A2. 已知a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. 2a > 2bD. 2a - 2 > 2b - 2答案:D3. 若一个等腰三角形的底边长为5cm,腰长为8cm,则该三角形的周长为()A. 15cmB. 20cmC. 25cmD. 30cm答案:C4. 已知函数y = kx + b(k ≠ 0),若该函数图象过点(2,3),且斜率k > 0,则下列说法正确的是()A. b > 0B. b < 0C. k > b答案:A5. 若一个数的平方根是3,则这个数是()A. 9B. -9C. 9或-9D. 0答案:C6. 下列各式中,完全平方公式应用错误的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)(a - b) = a² - b²D. (a + b)² = a² - 2ab + b²答案:D7. 下列各图中,平行四边形是()A.B.C.D.答案:A8. 已知等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积是()A. 24cm²B. 36cm²D. 64cm²答案:C9. 若一个数的立方根是-2,则这个数是()A. -8B. 8C. -8或8D. 0答案:A10. 已知函数y = -2x + 3,若该函数图象过点(0,3),则下列说法正确的是()A. 斜率k > 0B. 斜率k < 0C. b > 0D. b < 0答案:D二、填空题(每题3分,共30分)11. 下列各数中,有理数是()A. √9B. √-9C. √-1D. √2答案:A12. 已知a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 > b - 2C. 2a > 2bD. 2a - 2 > 2b - 2答案:D13. 若一个等腰三角形的底边长为5cm,腰长为8cm,则该三角形的周长为()A. 15cmB. 20cmC. 25cmD. 30cm答案:C14. 已知函数y = kx + b(k ≠ 0),若该函数图象过点(2,3),且斜率k > 0,则下列说法正确的是()A. b > 0B. b < 0C. k > bD. k < b答案:A15. 若一个数的平方根是3,则这个数是()A. 9B. -9C. 9或-9D. 0答案:C16. 下列各式中,完全平方公式应用错误的是()A. (a + b)² = a² + 2ab + b²B. (a - b)² = a² - 2ab + b²C. (a + b)(a - b) = a² - b²D. (a + b)² = a² - 2ab + b²答案:D17. 下列各图中,平行四边形是()A.B.C.D.答案:A18. 已知等腰三角形的底边长为6cm,腰长为8cm,则该三角形的面积是()A. 24cm²B. 36cm²C. 48cm²D. 64cm²答案:C19. 若一个数的立方根是-2,则这个数是()A. -8B. 8C. -8或8D. 0答案:A20. 已知函数y = -2x + 3,若该函数图象过点(0,3),则下列说法正确的是()A. 斜率k > 0B. 斜率k < 0C. b > 0D. b < 0答案:D三、解答题(每题10分,共40分)21. 解下列方程:(1)3x - 5 = 2x + 1(2)2(x + 3) - 5 = 3(x - 2)答案:(1)x = 6(2)x = 122. 解下列不等式:(1)2x - 3 < 5(2)3x + 4 ≥ 2x - 1答案:(1)x < 4(2)x ≥ -523. 已知一个等腰三角形的底边长为6cm,腰长为8cm,求该三角形的面积。

2024—2025学年人教版九年级上册数学期中考试模拟试卷【含答案】

2024—2025学年人教版九年级上册数学期中考试模拟试卷【含答案】

2024—2025学年人教版九年级上册数学 期中考试模拟试卷一、单选题1.在平面直角坐标系中,点(﹣6,5)关于原点的对称点的坐标是( )A .(6,5)B .(﹣6,5)C .(6,﹣5)D .(﹣6,﹣5)2.在Rt ABC △中,90C Ð=°,D 为AC 上一点,CD =动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿C B A ®®匀速运动,到达点A 时停止,以DP 为边作正方形DPEF .设点P 的运动时间为()s t ,正方形DPEF 的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段AB 的长是( )A .6B .8C .D .3.对于一元二次方程230x x c -+=,当94c =时,方程有两个相等的实数根.若将c 的值在94的基础上减小,则此时方程根的情况是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定4.如图,△ABC 是等腰直角三角形,∠A =90°,BC =4,点P 是△ABC 边上一动点,沿B →A →C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD =x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .5.如图,在等边△ABC 中,D 是边AC 上一点,连接BD ,将△BCD 绕点B 逆时针旋转60°,得到△BAE ,连接ED ,若BC =10,BD =9,则△ADE 的周长为( )A .19B .20C .27D .306.下列函数是二次函数的是( )A .21y x x =+B .1(1)2y x x =-C .21y x =--D .()21y x x =+7.已知二次函数y=2x 2﹣12x +19,下列结果中正确的是( )A .其图象的开口向下B .其图象的对称轴为直线x=﹣3C .其最小值为1D .当x <3时,y 随x 的增大而增大8.如图,二次函数2y ax bx c =++的图象与x 轴相交于A ,()1,0B 两点,对称轴是直线1x =-,下列说法正确的是( )A .0a <B .当1x >-时,y 的值随着x 的值增大而减小C .点A 的坐标为()2,0-D .420a b c -+<9.二次函数()20y ax bx c a =++¹的部分图像如图所示,图像过点()1,0-,对称轴为直线2x =,下列结论:(1)40a b +=;(2)93a c b +>;(3)8720a b c ++>;(4)若点()13,A y -,点21,2B y æö-ç÷èø、点37,2C y æöç÷èø在该函数图像上,则132y y y <<;(5)若方程()()153a x x +-=-的两根为1x 和2x ,且12x x <,则1215x x <-<<.其中正确的结论有( )A .2个B .3个C .4个D .5个10.对于下列结论:①二次函数y=6x 2,当x >0时,y 随x 的增大而增大;②关于x 的方程a (x+m )2+b=0的解是x 1=﹣2,x 2=1(a 、m 、b 均为常数,a≠0),则方程a (x+m+2)2+b=0的解是x 1=﹣4,x 2=﹣1;③设二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,那么c 的取值范围是c≥3.其中,正确结论的个数是( )A .0个B .1个C .2个D .3个二、填空题11.二次函数21(3)22y x =+-的图象是由函数212y x =的图象先向 (左、右)平移 个单位长度,再向 (上、下)平移 个单位长度得到的.12.如图,已知二次函数()20y ax bx c a =++¹的图象与x 轴交于点()1,0A -,与y 轴的交点B 在()0,2-和()0,1-之间(不包括这两点),对称轴为直线1x =.下列结论:①0abc >;②420a b c ++>;③244ac b a -<-;④113a <<;⑤bc >.其中正确结论有 (填写所有正确结论的序号).13.关于x 的一元二次方程2410kx x +-=有两个不相等的实数根,则k 的取值范围是 .14.某种商品原价每件售价为400元,经过连续两次降价后,每件售价为288元,设平均每次降价的百分率为x ,则可列方程为 .15.已知抛物线248y x x =+-与直线l 交于点(5,)A m -,(),3B n -(0n >).若点()P x y , 在抛物线上且在直线l 下方(不与点A ,B 重合),则点P 的纵坐标的取值范围为 .三、计算题16.解方程:(1)()()2121x x -=-(2)22520x x --=四、作图题17.如图,正方形网格中,每个小方格都是边长为1的正方形△ABC 的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)将△ABC 向上平移5个单位长度,画出平移后的△A 1B 1C 1;(2)将△A 1B 1C 1绕坐标原点O 顺时针方向旋转90°,出旋转后的△A 2B 2C 2.五、解答题18.台风“杜苏芮”牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动,第一天收到捐款3000元,第三天收到捐款4320元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到的捐款的增长速度,第四天该单位能收到多少捐款?19.一块长方形铁皮长为4dm ,宽为3dm ,在四角各截去一个面积相等的正方形,做成一个无盖的盒子,要使盒子的底面积是原来铁皮的面积一半,若设盒子的高为xdm ,根据题意列出方程,并化成一般形式.20.已知关于x 的一元二次方程2320kx x --=有两个不相等的实数根.(1)求k 的取值范围;(2)若k 为小于2的整数,且方程的根都是整数,求k 的值.21.如图,长方形ABCG 与长方形CDEF 全等点B ,C ,D 和点C ,G ,F 分别在同一条直线上,其中4AB CD ==,8BC DE ==.连接对角线AC ,CE .(1)在图①中,连接AE ,直接判断ACE △形状是______;直接写出AE 的值______;(2)如图②,将图①中的长方形CDEF 绕点C 逆时针旋转,当CF 平分ACE Ð时,求此时点E 到直线AC 的距离.(3)如图③,将图①中的长方形CDEF 绕点C 逆时针旋转到某一个位置,连接AE ,连接DG 并延长交AE 于点M ,取AG 的中点N ,连接MN ,直接写出MN 长的最小值______;22.如图,已知点()()1,04,0A B -,,点C 在y 轴的正半轴上,且90ACB Ð=°,抛物线2y ax bx c =++经过A 、B 、C 三点,其顶点为M(1)求抛物线2y ax bx c =++的解析式;(2)试判断直线CM 与以AB 为直径的圆的位置关系,并加以证明;(3)在抛物线上是否存在点N ,使得4BCN S =V ?如果存在,那么这样的点有几个?如果不存在,请说明理由.23.已知抛物线()220y ax x c a =++¹经过点()0,1,对称轴是直线1x =.(1)求抛物线的解析式;(2)若点(),s t 在该抛物线上,且12s -<<;求t 的取值范围;(3)若设m 是抛物线与x 轴的一个交点的横坐标,记629140m M -=,比较M 的大小.1.C【分析】根据关于原点对称的点,横、纵坐标都互为相反数即可得出答案.【详解】点P (﹣6,5)关于原点对称点的坐标是(6,﹣5),故选:C .【点睛】本题考查了在平面直角坐标系中,关于原点对称的点的特征,关于原点对称的点,横、纵坐标都互为相反数;关于x 轴对称的点,y 互为相反数,x 不变;关于y 轴对称的点,x 互为相反数,y 不变,关于谁对称谁不变,另一个互为相反数.2.A【分析】本题考查了二次函数图象,求二次函数解析式,在Rt ABC △中,CD =,PC t =则22222S PD t t ==+=+,求得BC 的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在Rt ABC △中,CD =,PC t =则22222S PD t t ==+=+,当6S =时,262t =+,解得:2t =(负值已舍去),∴2BC =,∴抛物线经过点()2,6,∵抛物线顶点为:()4,2,设抛物线解析式为:()242S a t =-+,将()2,6代入,得:()26242a =-+,解得:1a =,∴()242S t =-+,当18y =时,()218420t t =-+=,(舍)或8t =,∴826AB =-=,故选:A .3.C【分析】根据一元二次方程根的判别式求解即可得.【详解】解:由题意可知:1a =,3b =-,当94c =时,24940b ac c D =-=-=,当94c<时,∴24940b ac cD=-=->,∴该方程有两个不相等的实数根,故C正确.故选:C.【点睛】本题考查一元二次方程利用根的判别式判断根的情况,解题的关键是熟练运用根的判别式进行求解.4.B【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=1 2BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=12x2;当2<x≤4时,如图2,易得PD=CD=4-x,根据三角形面积公式得到y=-12x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【详解】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=12BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=12•x•x=212x;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=12•(4﹣x)•x=2122x x-+,故选B.5.A【分析】先由△ABC 是等边三角形得出AC=AB=BC 根据图形旋转的性质得出AE=CD ,BD=BE ,由∠EBD=60°,BE=BD 即可判断出△BDE 是等边三角形,故DE=BD ,即可求出结果【详解】解:∵△ABC 是等边三角形,∴AC=AB=BC=10,∵△BAE 是△BCD 逆时针旋转60°得出,∴AE=CD ,BD=BE ,∠EBD=60°,∴AE+AD=AD+CD=AC=10,∵∠EBD=60°,BE=BD ,∴△BDE 是等边三角形,∴DE=BD=9,∴△AED 的周长=AE+AD+DE=AC+BD=19.故答案为19【点睛】此题重点考查学生对于图形旋转的理解,抓住旋转前后图形边角的关系是解题的关键6.B【分析】根据二次函数的定义:一般地,形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数进行分析.【详解】解:A 、含有分式,不是二次函数,故此选项不符合题意;B 、2111(1)=222y x x x x =--,是二次函数,故此选项正确;C 、是一次函数,故此选项不符合题意;D 、3y x x =+是三次函数,故此选项不符合题意;故选:B .【点睛】本题主要考查了二次函数定义,判断函数是否是二次函数,首先是要看它的右边是否为整式,若是整式且仍能化简的要先将其化简,然后再根据二次函数的定义作出判断,解题关键是注意二次项系数不为0.7.C【分析】根据二次函数的性质对各选项分析判断即可解答.【详解】∵二次函数y=2x 2﹣12x+19=2(x ﹣3)2+1,∴开口向上,顶点为(3,1),对称轴为直线x=3,有最小值1,当x >3时,y 随x 的增大而增大,当x <3时,y 随x 的增大而减小;所以C 选项正确.故选C .【点睛】本题考查了二次函数的性质,熟记性质是解题的关键.8.D【分析】本题主要考查了二次函数的图象与系数的关系,抛物线与x 轴的交点.抛物线开口向上则0a >,即可判断A ;又0a >,对称轴是直线1x =-,从而当1x >-时,y 的值随着x 的值增大而增大,故可判断B ;又(1,0)A ,对称轴是直线1x =-,则(3,0)B -,故可判断C ;结合(3,0)A -,(1,0)B ,抛物线开口向上,从而当2x =-时,420y a b c =-+<,进而可以判断D .【详解】解:Q 抛物线开口向上,0a \>,故A 错误;Q 开口向上,对称轴是直线1x =-,\当1x >-时,y 的值随着x 的值增大而增大,故B 错误.(1,0)B Q ,对称轴是直线1x =-,(3,0)A \-,故C 错误.结合(3,0)A -,(1,0)B ,抛物线开口向上,\当2x =-时,420y a b c =-+<.故D 正确.故选:D .9.B【分析】①正确,根据对称轴公式计算即可.②错误,利用x =-3时,y <0,即可判断,③正确.由图像可知抛物线经过(-1, 0)和(5, 0)列出方程组求出a 、b 即可判断.④错误,利用函数图像即可判断.⑤正确,利用二次函数与二次不等式关系即可解决问题.【详解】①正确:∵-22b a= ,所以4a +b =0.故①正确.②错误:∵x =-3时, y <0,∴9a - 3b +c <0,∴9a +c <3b ,故②错误.③正确,由图像可知抛物线经过(- 1,0)和(5,0) ,∴ a -b +c = 025a + 5b +c = 0解得b = -4a ,c = -5a ,∴8a +7b +2c =8a -28a -10a =-30a ,∵a <0,∴8a + 7b +2c >0 ,故③正确.④错误,∵点A (-3,y 1)、点B (-12,y 2)、点C (72,y 3)∵3.5-2= 1.5,2-(-0.5)=2.5 ,∴1.5< 2.5点C 离对称轴的距离近,∴y 3>y 2,∵a <0 , -3< -0.5<2,∴y 1<y 2∴y 1<y 2<y 3,故④错误.⑤正确.∵a <0 ,∴(x +1)(x -5)=-3a >0 ,即(x +1)(x -5)>0 ,故x <-1或x >5 ,故⑤正确.∴正确的有三个,故选B .【点睛】本题考查抛物线和x 轴交点的问题以及二次函数与系数关系,灵活掌握二次函数的性质是解决问题的关键,学会利用图像信息解决问题,属于中考常考题型.10.D【分析】①根据二次函数的性质即可得出抛物线y=6x 2的对称轴为y 轴,结合a=6>0即可得出当x >0时,y 随x 的增大而增大,结论①正确;②将x=﹣2和1代入一元二次方程可得出x+m 的值,再令x+m+2=该数值可求出x 值,从而得出结论②正确;③由“当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0”可得出当x=1时y=0且抛物线的对称轴≥2,解不等式即可得出b≤﹣4、c≥3,结论③正确.综上即可得出结论.【详解】∵在二次函数y=6x 2中,a=6>0,b=0,∴抛物线的对称轴为y 轴,当x>0时,y 随x 的增大而增大,∴①结论正确;∵关于x 的方程a (x+m )2+b=0的解是x 1=-2,x 2=1,∴x+m=-2+m 或1+m ,∴方程a (x+m+2)2+b=0中,x+m+2=-2+m 或x+m+2=1+m ,解得:x 1=-4,x 2=-1,∴②结论正确;∵二次函数y=x 2+bx+c ,当x≤1时,总有y≥0,当1≤x≤3时,总有y≤0,∴1022b c b ++=ìïí-ïî?解得:b≤-4,c≥3,∴结论③正确.故选D【点睛】此题重点考查学生随函数图象和性质理解,熟练掌握图象性质是解题的关键.11. 左 3 下2【分析】本题主要考查二次函数与几何变换,图象平移时函数表达式变化的特征是:图象向左平移()0n n >个单位,函数表达式中x 加上n ;图象向右平移()0n n >个单位,函数表达式中x 减去n ;图象向下平移()0m m >个单位,函数表达式中y 加上m ;图象向上平移()0m m >个单位,函数表达式中y 减去m ;根据以上平移规律,对题中的二次函数表达式进行分析,即可得出答案.【详解】解:由“左加右减”的原则将函数212y x =的图象向左平移3个单位,所得二次函数的解析式为:()2132y x =+;由“上加下减”的原则将函数()2132y x =+的图象向下平移2个单位,所得二次函数的解析式为:()21322y x =+-.故答案为:左,3,下,2.12.①③⑤【分析】此题主要考查图象与二次函数系数之间的关系,涉及了数形结合思想的应用.根据对称轴为直线1x =及图象开口向下,与y 轴的交点,可判断出a 、b 、c 的符号,从而判断①;求出图象与轴的另一个交点为()3,0,则可判断②;利用函数的最小值:2414ac b a-<-,可判断③;根据方程20ax bx c ++=的两根为121,3x x =-=,可得,32c b a a =-=-,可判断④⑤的正误.【详解】解:①∵函数开口方向向上,∴0a >;∵对称轴为直线1x =,∴12b a-=,∴20b a =-<,∵抛物线与y 轴交点在轴负半轴,∴0c <,∴0abc >,故①正确;②∵图象与x 轴交于点()1,0A -,对称轴为直线1x =,∴图象与轴的另一个交点为()3,0,当2x =时,420y a b c =++<,故②错误;③∵二次函数的图象与y 轴的交点在()0,1-的下方,对称轴在x 轴右侧,且0a >,∴函数的最小值:2414ac b a-<-,∴244ac b a -<-,故③正确;④∵图象与x 轴交于点()1,0A -,()3,0,∴方程20ax bx c ++=的两根为121,3x x =-=,∴132,133b c a a-=-+==-´=-,∴3c a =-,2b a =-,∴,32c b a a =-=-,∵图象与y 轴的交点B 在()0,2-和()0,1-之间,∴21c -<<-,∴1233a <<;故④错误;∵,32c b a a =-=-,∴32c b -=-,∵0c <,∴23b c c =>,故⑤正确.故答案为:①③⑤.13.1k >-且0k ¹【分析】此题考查了一元二次方程的定义,一元二次方程的判别式,解题的关键是熟练掌握一元二次方程的定义,一元二次方程的判别式.由一元二次方程的定义可得0k ¹,由一元二次方程2410kx x +-=有两个不相等的实数根,可得判别式240b ac D =->,解不等式求解即可.【详解】解:∵2410kx x +-=是一元二次方程,∴0k ¹,又∵一元二次方程2410kx x +-=有两个不相等的实数根,∴240b ac D =->,即()24410k -´->,解得:1k >-,综上所述,k 的取值范围是1k >-且0k ¹.故答案为:1k >-且0k ¹.14.()24001288x -=【分析】设平均每次降价的百分率为x ,利用经过连续两次降价后的价格=原价×(1-降价率)2,即可得出关于x 的一元二次方程,此题得解.【详解】解:设平均每次降价的百分率为x ,依题意得:400(1-x )2=288.故答案为:400(1-x )2=288.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.15.123y -£<-【分析】先求出点A 和点B 的坐标,确定直线l 的函数表达式,配合二次函数的图像求解即可;【详解】解:分别将(5,)A m - 、(),3B n - 代入248y x x =+-得:()()m =-+´--=-254583n n +-=-2483 ,解得:11n = ,25n =-(舍)∴(5,3)A --,(1,3)B -∴直线l 的表达式为:=3y -()y x x x =+-=+-2248212Q ∴y 的最小值为:12-y 的取值范围为:123y -£<-故答案为:123y -£<-【点睛】本题考查了二次函数的性质、二次函数图像与表达式的关系;熟练配合函数图像将复杂问题直观化是解决问题的关键.16.(1)121,3x x ==;(2)12x x ==【分析】(1)解一元二次方程,用因式分解法求解;(2)解一元二次方程,用公式法求解.【详解】解:(1)()()2121x x -=-()()21210x x ---=()()1120x x ---=1=0x -或120x --=121,3x x \==(2)22520x x --=2,5,2a b c ==-=-Q 224(5)42(2)410b ac \D =-=--´´-=>∴x \=1x \【点睛】本题考查解一元二次方程,掌握解方程的步骤因式分解的方法及求根公式,正确计算是解题关键.17.(1)见解析;(2)见解析.【分析】(1)利用点平移的坐标规律写出点A 1、B 1、C 1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A 1、B 1、C 1的对应点A 2、B 2、C 2即可.【详解】(1)解:如图,△A 1B 1C 1为所作;(2)解:如图,△A 2B 2C 2为所作;【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.18.(1)捐款增长率为20%(2)第四天该单位能收到5184元捐款【分析】(1)设捐款增长率为x ,根据“第一天收到捐款3000元,第三天收到捐款4320元,第二天、第三天收到捐款的增长率相同”列方程,解方程即可得到答案;(2)用第三天收到的捐款乘以()120%+即可得到答案.【详解】(1)设捐款增长率为x ,根据题意列方程得,23000(1)4320x ´+=,解得10.2x =,2 2.2x =-(不合题意,舍去);答:捐款增长率为20%.(2)第四天收到捐款为:()4320120%5184´+=(元),答:第四天该单位能收到5184元捐款.【点睛】此题考查了一元二次方程的应用,根据题意找到等量关系列出方程是解题的关键.19.241460x x -+=.【分析】首先表示出无盖长方体盒子的底面长为(4-2x )dm ,宽为(3-2x )dm 再根据长方形的面积可得方程()()14232432x x --=´´.【详解】由题意得:无盖长方体盒子的底面长为()42x dm -,宽为()32x dm -,由题意得,()()14232432x x --=´´整理得:241460x x -+=.【点睛】此题主要考查了由实际问题抽象出一元二次方程,关键是根据题意表示出无盖长方体盒子的长与宽.20.(1)98k >-且0k ¹(2)1k =-【详解】解:(1)2(3)4(2)9+8k k D =--´-=,∵一元二次方程2320kx x --=有两个不相等的实数根,∴9+800k k >ìí¹î∴98k >-且0k ¹.(2)∵k 为不大于2的整数,∴1k =-,1k =∴当1k =-时,方程2320x x ---=2-都是整数;当1k =时,方程2320x x --=综上所述,1k =-.21(3)2【分析】(1)由矩形ABCG 与矩形CDEF 全等得AC CE =,然后证明出90ACE Ð=°,再由勾股定理得AC =AE =;(2)由CF 平分ACE Ð结合等腰三角形“三线合一”得:CF AE ^,4AF EF ==,再由等面积法得点E 到直线AC (3)过点E 作AG 的平行线交DG 的延长线于H ,连接EG ,先证明HME GMA V V ≌得AM ME =,再由中位线定理得12MN GE =,再由在矩形CDEF 绕点C 逆时针旋转过程中GE的范围为:CE CG GE CE CG -££+得GE 的最小值为4,故MN 的最小值为2-.【详解】(1)Q 矩形ABCG 与矩形CDEF 全等,AC CE \=,ACB ECF Ð=Ð,90ACB ACG Ð+Ð=°Q ,90ECF ACG \Ð+Ð=°,90ACE \Ð=°,∴ACE △是等腰直角三角形,222AE AC CE \=+,QAC =,AE\=;(2)当CF平分ACEÐ时,AC CE=Q,由等腰三角形“三线合一”得:CF AE^,4AF EF==,\设点E到直线AC的距离为d,则由等面积法:1122ACES EF CF AC d =×=×V,d\=\此时点E到直线AC(3)如图,过点E作AG的平行线交DG的延长线于H,连接EG,HE AGQ∥,H MGA\Ð=Ð,CG CD=Q,CGD CDG\Ð=Ð,90AGC CDEÐ=Ð=°Q,90MGA CGD\Ð+Ð=°,90CDG HDEÐ+Ð=°,MGA HDE\Ð=Ð,HDE H\Ð=Ð,HE ED AG\==,在HMEV与GMAV中,HME GMAH MGAHE AGÐ=ÐìïÐ=Ðíï=î,(AAS)HME GMA\V V≌,AM ME\=,AGQ的中点为N,12MN GE \=,MN GE ∥,Q 在矩形CDEF 绕点C 逆时针旋转过程中GE 的范围为:CE CG GE CE CG -££+,44GE \-££+,GE \的最小值为4,MN \的最小值为2.【点睛】本题是矩形旋转变换综合题,主要考查了矩形的性质、旋转的性质、矩形全等的性质、全等三角形的判定与性质、等面积法求高、中位线定理,过点E 作AG 的平行线交DG 的延长线于H 、构造HME GMA V V ≌是本题的关键.22.(1)213++222y x x =-.(2)直线CM 与以AB 为直径的圆相切.(3)((()12321212,3N N N +---,,.【分析】二次函数综合题,待定系数法,曲线上点的坐标与方程的关系,相似三角形的判定和性质,二次函数的性质,直线与的位置关系,平行线的性质.(1)Rt ACB V 中,OC AB ^,利用相似三角形能求出OC 的长,即可确定C 点坐标,再利用待定系数法能求出该抛物线的解析式.(2)证明CM 垂直于过点C 的半径即可.(3)先求出线段BC 的长,根据BCN △的面积,可求出BC 边上的高,那么做直线l ,且直线l 与直线BC 的长度正好等于BC 边上的高,那么直线l 与抛物线的交点即为符合条件的N 点.【详解】(1)解:Rt ACB V 中,14OC AB AO BO ^==,,,∴ACO ABO V V ∽.∴CO AO OB CO =,∴24OC OA OB =×=.∴2OC =.∴点()0,2C .∵抛物线2y ax bx c =++经过A 、B 两点,∴设抛物线的解析式为:()()+14y a x x =-,将C 点代入上式,得:()()20+104a =-,解得1=2a -.∴抛物线的解析式:()()1x+142y x =--,即213++222y x x =-.(2)直线CM 与以AB 为直径的圆相切,理由如下:如图,设抛物线的对称轴与x 轴的交点为D ,连接CD .由于A 、B 关于抛物线的对称轴对称,则点D 为Rt ABC V 斜边AB 的中点,32CD AB =.由(1)知:22131325++2=22228y x x x æö=---+ç÷èø,则点325,28M æöç÷èø,259288ME =-= .而32CE OD ==,2OC =,∴ME CE OD OC =::.又∵90MEC COD Ð=Ð=°,∴COD CEM V V ∽.∴CME CDO Ð=Ð.∴9090CME CDM CDO CDM DCM Ð+Ð=Ð+Ð=°Ð=°,.∵CD 是D e 的半径,∴直线CM 与以AB 为直径的圆相切.(3)由()()4,00,2B C 、得:BC =则:11422BCN S BC h h h =×=´==V ,过点B 作BF BC ^,且使BF h =F 作直线l BC P 交x 轴于G .Rt BFGV中,sin sinBGF CBOÐ=Ð=1 2 -,sin4BG BF BGF=¸Ð==.∴()0,0G或()8,0.易知直线BC:122y x=-+,则可设直线l:12y x b=-+,将G点坐标代入,得:0b=或4b=,则:直线l:12y x=-142y x=-+;联立抛物线的解析式,得:21213++222y xy x xì=-ïïíï=-ïî或214213++222y xy x xì=-+ïïíï=-ïî.解得:2y1xì=+ïí=-ïî2y1xì=-ïí=-ïî或2y3x=ìí=î∴抛物线上存在点N,使得S4BCN=V,这样的点有3个:((()12321212,3N N N+---,,23.(1)221y x x=-++(2)22t-<£(3)当1m=M>;当1m=M<【分析】本题主要考查了求二次函数解析式,二次函数图象的性质,二次函数与x轴的交点问题:(1)把()0,1代入解析式可得1c=,再根据对称轴计算公式可得1a=-,据此可得答案;(2)根据(1)所求可得当1x£时,y随x的增大而增大;当1x>时,y随x的增大而减小,分别求出当1s=-时,当1s=时,t得值即可得到答案;(3)先根据题意得到2210m m -++=,即221m m =+,再把221m m =+整体代入分子中把分子进行降次求解即可.【详解】(1)解:把()0,1代入()220y ax x c a =++¹中得1c =.∵对称轴是直线1x =,∴212a-=,解得1a =-.∴抛物线的解析式为221y x x =-++.(2)解:∵由(1)知:221y x x =-++.∵对称轴是直线1x =,∴当1x £时,y 随x 的增大而增大;当1x >时,y 随x 的增大而减小,当1x =时,y 有最大值为212112-+´+=,∵点(),s t 在该抛物线上,且12s -<<,∴当1s =-时,2t =-;当2s =时,1t =;∴22t -<£;(3)解:∵m 是抛物线与x 轴的一个交点的横坐标,∴2210m m -++=,即221m m =+.∴629140m M -=()32911402m -+=()()2021212914m m -++=()()20214412914m m m -+++=()()129140214214m m m =++++éù-ëû()()1252911402m m +-+=22422529140m m ++-=()242122529140m m +++-=702929140m +-=2m =,∵221m m =+,∴m =∴2m =∴当1m =时,M > 当1m =M <.。

中考模拟数学试卷完整版

中考模拟数学试卷完整版

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3/2B. 2/3C. -1D. 02. 如果a < b,那么下列不等式中正确的是()A. a + 2 < b + 2B. a - 2 < b - 2C. a + 3 < b + 3D. a - 3 < b - 33. 已知等腰三角形的底边长为4,腰长为6,那么这个三角形的周长是()A. 14B. 16C. 18D. 204. 下列函数中,是反比例函数的是()A. y = 2x + 3B. y = 3/xC. y = x^2D. y = 3x^25. 下列各图中,图形的对称轴是直线y = x的是()A. B. C. D.6. 若一个等差数列的前三项分别为1,4,7,那么这个数列的公差是()A. 1B. 2C. 3D. 47. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^28. 在直角坐标系中,点P(2, -3)关于x轴的对称点是()A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)9. 下列各式中,正确的是()A. √(16) = 4B. √(25) = 5C. √(36) = 6D. √(49) = 710. 若a、b、c是等边三角形的三边长,则下列不等式中正确的是()A. a + b > cB. a + b ≥ cC. a + c > bD. a + c ≥ b二、填空题(每题3分,共30分)11. 若x^2 - 5x + 6 = 0,则x的值为________。

12. 下列函数中,y = kx + b(k≠0)是一次函数,则k________,b________。

初中全册数学模拟试卷

初中全册数学模拟试卷

一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √2B. πC. -3D. √-12. 下列各数中,无理数是()A. √4B. √9C. √16D. √253. 下列各数中,正数是()A. -2B. 0C. 1D. -34. 下列各数中,负数是()A. -2B. 0C. 1D. -35. 下列各数中,零是()A. -2B. 0C. 1D. -36. 下列各数中,绝对值最大的是()A. 2B. -3C. 4D. -57. 下列各数中,有理数加有理数一定是()A. 有理数B. 无理数C. 整数D. 小数8. 下列各数中,有理数减有理数一定是()A. 有理数B. 无理数C. 整数D. 小数9. 下列各数中,有理数乘以有理数一定是()A. 有理数B. 无理数C. 整数D. 小数10. 下列各数中,有理数除以有理数一定是()A. 有理数B. 无理数C. 整数D. 小数二、填空题(每题2分,共20分)11. 5的平方根是__________,3的立方根是__________。

12. (-2)的相反数是__________,|-3|的值是__________。

13. 下列各数中,2和-3的差是__________,2和-3的和是__________。

14. 下列各数中,2和-3的积是__________,2和-3的商是__________。

15. 下列各数中,-5和5的最大公约数是__________,-5和5的最小公倍数是__________。

16. 下列各数中,2和3的和是__________,2和3的差是__________。

17. 下列各数中,2和3的积是__________,2和3的商是__________。

18. 下列各数中,2和3的最大公约数是__________,2和3的最小公倍数是__________。

19. 下列各数中,下列各数中,2和3的和是__________,2和3的差是__________。

初中五模数学试卷及答案

初中五模数学试卷及答案

一、选择题(每题3分,共30分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 正方形B. 矩形C. 圆D. 等腰三角形3. 如果一个数减去它的倒数等于1,那么这个数是()A. 2B. 1/2C. 1D. -14. 在直角坐标系中,点A(-2,3)关于原点的对称点是()A. (-2,-3)B. (2,3)C. (2,-3)D. (-2,-3)5. 下列等式中,正确的是()A. a^2 = b^2,则a = bB. a^2 = b^2,则a = ±bC. a^2 = b^2,则a = 0D. a^2 = b^2,则a = ±b或a = 06. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = x^2C. y = 1/xD. y = 3x7. 下列各式中,能表示平行四边形对角线互相平分的条件是()A. 对角线相等B. 对边相等C. 对角线互相平分D. 对角线互相垂直8. 下列各式中,能表示等腰三角形两腰相等的条件是()A. 两边角相等B. 两边相等C. 三角形两边角相等D. 三角形两边角相等且夹角为60°9. 下列各数中,是质数的是()A. 17B. 16C. 18D. 2010. 下列各式中,能表示勾股定理的是()A. a^2 + b^2 = c^2B. a^2 - b^2 = c^2C. a^2 + c^2 = b^2D. b^2 + c^2 = a^2二、填空题(每题3分,共30分)11. √9的平方根是______。

12. 2的平方根与-2的平方根的和是______。

13. 在直角坐标系中,点B(3,4)关于x轴的对称点是______。

14. 如果一个数的平方是16,那么这个数是______。

15. 下列各数中,是负数的是______。

16. 下列各数中,是正数的是______。

初中学业水平数学模拟试卷

初中学业水平数学模拟试卷

一、选择题(每题4分,共40分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 2/32. 已知a > 0,b < 0,那么下列不等式中正确的是()A. a > bB. a < bC. -a < -bD. a > -b3. 下列函数中,自变量x的取值范围是()A. y = 2x + 3,x ≥ 0B. y = √(x - 1),x ≤ 1C. y = x^2 - 3x + 2,x ∈ RD. y = 1/x,x ≠ 04. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数是()A. 75°B. 90°C. 105°D. 120°5. 已知一元二次方程x^2 - 4x + 3 = 0,那么它的两个根分别是()A. x1 = 1,x2 = 3B. x1 = 2,x2 = 2C. x1 = -1,x2 = -3D. x1 = -2,x2 = 36. 下列函数中,反比例函数是()A. y = x + 1B. y = 2xC. y = 1/xD. y = x^27. 已知一次函数y = kx + b的图象经过点(2,3),则下列结论正确的是()A. k > 0,b > 0B. k < 0,b < 0C. k > 0,b < 0D. k < 0,b > 08. 在直角坐标系中,点A(2,-3),点B(-4,2),则线段AB的中点坐标是()A. (-1,-1)B. (-1,1)C. (1,-1)D. (1,1)9. 下列各数中,无理数是()A. √4B. √-1C. πD. 0.1234567891011121314……10. 已知正方形的对角线长为5cm,那么这个正方形的面积是()A. 25cm^2B. 10cm^2C. 12.5cm^2D. 15cm^2二、填空题(每题5分,共25分)11. 已知等腰三角形底边长为6cm,腰长为8cm,则其面积是____cm^2。

初三模拟数学试卷电子版

初三模拟数学试卷电子版

考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列数中,绝对值最小的是()A. -3B. 0C. 1.5D. -2.12. 已知x² - 5x + 6 = 0,则x的值为()A. 2B. 3C. 2或3D. 无法确定3. 在直角坐标系中,点P(2, -3)关于y轴的对称点是()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)4. 若sinα = 0.6,则cosα的值为()A. 0.8B. 0.4C. 0.6D. -0.65. 下列函数中,自变量x的取值范围正确的是()A. y = √(x + 1) x ≥ -1B. y = √(x² - 1) x ≤ 1 或x ≥ 1C. y = 1/x x ≠ 0D. y = 2x + 3 x为任意实数6. 下列方程中,无解的是()A. 2x - 4 = 0B. 3x + 5 = 0C. x + 2 = 5D. 5x - 2 = 07. 已知等腰三角形底边长为6,腰长为8,则该三角形的面积为()A. 24B. 32C. 48D. 568. 在△ABC中,∠A = 45°,∠B = 90°,∠C = 45°,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 无法确定9. 若a > b > 0,则下列不等式成立的是()A. a² > b²B. a < b²C. a² < b²D. a > b²10. 下列函数中,y是x的一次函数的是()A. y = x² + 2x + 1B. y = 2x + 3C. y = 2x - 3x + 1D. y = x³ + 2x² - 3二、填空题(每题3分,共30分)11. 若a = -2,b = 3,则a² + b² - 2ab = ________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.布袋里有黄、蓝、红三种颜色的筷子各8根,它们只有颜色不同,其他完全相同,现在从中至少摸出( )根筷子,才能保证有2双不同颜色的筷子。

11
2.36÷[(5/6-1/3)×3]=
24
3.一件衣服,原价100元,先提价10%,再降价10%,现价是( )元。

99
4.沿道路的一边,按3面红旗、2面黄旗、1面蓝旗的顺序插了一行彩旗。

第190面应该是(
)。

(填写“红旗”、“黄旗”、“蓝旗”)
黄旗
5.14.52-(3.7+4.52)=
6.3
6.在一张小麦产量条形统计图上,测得2010年收小麦
7.5万千克,图上直条高1.5厘米,2011
年收小麦9万干克,图上直条的高是( )厘米。

1.8
7.学校把植树任务按3:5分给五年级和六年级。

六年级实际植树108棵,超过原分配任务的20%。

原计划五年级植树( )棵?
54
8.妈妈给我在银行存入20000元的教育费,定期一年,年利率是3.50%,到期缴纳利息税(利息的5%)后,本金和税后利息一共是( )元?
20665
9.将一根木棒锯成4段需要6分钟,则将这根木棒锯成6段需要( )分钟。

10
10.如右下图所示,长方形草地ABCD被分成面积相等的甲、乙、丙、丁四份,其中图形甲的长和宽的比是a:b=2:1,则图形乙的长和宽的比是()
A.9:2
B.9:3
C.8:3
D.5:2
A(我把答案格式都更正)
11.甲数的小数点向左移动两位后,结果比原来减少了9.9,如果甲数是乙数的倒数,乙数是()。

0.1
12.分母是12的所有最简真分数的和是()。

2
13.用250粒黄豆做发芽试验,一直发芽率是98%,有()粒黄豆没有发芽。

5
14.一块三角形地的面积是0.8公顷,它的底是400米,它的高是多少米?
40米
15.用字母表示三角形面积公式是( )。

如果a=1.8分米,h=15厘米,则三角形的面积
S=( )平方分米。

(注意S、a、h大小写)
S=0.5ah 1.35平方分米(高h 是15厘米,那么应该是1.5分米,所以S应该是1.35平方分米)
选择
16.一条绳子截成两段,第一段长3/8米, ,第二段是全长的3/8,那么( )
A.第一段长
B.第二段长
C.一样长
D.无法比较
A
17.把右图线段比例尺改成数值比例尺是( )
A. 1:20
B.1:80000
C. 1 :1 2000000
C
18.如果把正方形的周长增加10%,那么,它的面积增加( )
A. 10%
B. 20%
C. 21%
D. 100%
C
19.半圆形花坛的半径用字母r表示,则它的周长是( )。

A. r(π+1)
B. r(π+2)
C. 2r(π+1)
D. 2(π+r)
B
20.笑笑用扣子摆正方形(如下图),第3个正方形由12粒扣子组成,按这样的规律摆下去,第17个正方形由( )粒扣子组成。

A. 68
B. 72
C. 96
A
计算
21.
(1)5.02-1.37-2.63
1.02
(2)1.25×2.5×32
100
(3)560÷16÷5=
7
(4)0.5÷1/4=
2
22.
(1)4x/3+8×0.5=16
X=9
(2)x:9/7=14:3.6
x=5
(3)x-10%x=18
x=20
23(1)
○1求图中阴影部分的面积(单位:厘米)。

A. 180平方厘米
B.190平方厘米
C.200平方厘米
D.210平方厘米
C
○2求图中阴影部分的面积(单位:厘米)。

A.56平方厘米
B.57平方厘米
C.58平方厘米
D.59平方厘米
B
(2) 一支未用过的圆柱形铅笔,长18厘米,体积是9立方厘米。

使用一段时间后,变成了如图的样子,这时体积是多少立方厘米?(5分)
A.3.5立方厘米
B.4立方厘米
C.5立方厘米
D.4.5立方厘米
A
24.六(1)班计算期中考试成绩,平均分为88. 13分,复查时发现李洋同学的成绩为98分,误写成了89分,重新计算后,该班平均成绩是88. 31分,六(1)班一共有多少人?
答:六(1)班一共有()人
50人
25.在阳光下,35米高的直立钢管影长25米,同时量得一座木塔的影长是155米,这座木塔的高度是多少米?
答:这座木塔的高度是()米
217米
26.宏利服装厂要生产2400套套装,前6天完成了总数的60%,照这样计算,完成这项任务一共需要多少天?(两种方法解)
答:完成这项任务一共需要()天
10天
27.A、B两港相距280千米,一艘轮船从A港驶往B港用了9小时,返回时因为逆水多用了2小时,求这艘船往返的平均速度。

答:这艘船往返的平均速度()
28千米/小时
28.在一条公路的两边植树,每隔3米种1棵,从公路的东头种到西头还剩5棵苗,如果改为每隔2. 5米种1棵,还缺树苗115棵。

问:这条公路长多少米?这批待种的树苗有多少棵?;
答:这条公路长()米;这批待种的树苗有()棵
900米;607棵
29.一只两层书架,上层放的书比下层的3被还多18本,如果把上层的书拿出101本放到下层,那么两层所放的书的本数相等。

原来上下层各有书几本?(用方程解)
答;上层( )本,下层( )本。

294;92。

相关文档
最新文档