初中九年级数学下册练习题29.2 三视图同步练习1

合集下载

人教版九年级下册数学 29.2三视图 同步测试

人教版九年级下册数学 29.2三视图 同步测试

人教版九年级下册数学29.2三视图同步测试一.选择题1.图中的三视图所对应的几何体是()A. B. C. D.2.下列几何体中,从左面看到的图形是圆的是()A. B. C. D.3.若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是()A.圆柱B.圆锥C.正三棱柱D.正三棱锥4.如图,是由大小一样的小立方块摆成的立体图形的三视图,则摆成这个立体图形所需的小立方块的个数为()A.3 B.4 C.5 D.65.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从三个方向看到的图都不相同C.从上面看到的图相同 D.从左面看到的图相同6.如图,某糕点包装盒的俯视图是正五边形,则正五边形的每一内角的度数为()A.72°B.108°C.120°D.540°7.如图,将小立方块①从6个大小相同的小立方块所搭的几何体中移走后,所得几何体()A.俯视图改变,左视图改变B.主视图不变,左视图不变C.主视图改变,左视图改变 D.俯视图不变,左视图改变8.如图2是图1长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=()A.a2+a B.2a2C.a2+2a+1 D.2a2+a9.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有()A.4个B.8个C.12个D.17个10.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.二.填空题11.一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),这个零件的表面积是cm2.12.如图,由5个相同的小正方体组成的立体图形,分别从正面、左面、上面三个不同方向观察这个立体图形,你可以看到哪些平面图形?.13.几个完全相同的小正方体搭成如图的几何体,从上面拿掉一个或者几个小正方体(不能直接拿掉被压在下面的小正方体)而不改变几何体的三视图的方法有种.14.一个立体图形如图,从面看到的形状是,从面看到的形状是,从面看到的形状是.15.用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要个小立方块.三.解答题16.分析图中几何体,请在下面的网格图中画出该几何体分别从正面、左面及上面所看到的形状图.17.如图所示是由几个小立方体所组成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的从正面看、从左面看的图形.18.如图,是由10个同样大小的小正方体搭成的物体.(1)请在网格中分别画出从正面、上面观察该几何体得到的平面图形并涂上阴影;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体从正面和上面观察得到的平面图形不变,你认为最多还可以添加个小正方体.。

人教版九年级下册数学 29.2三视图 同步测试(含解析)

人教版九年级下册数学 29.2三视图 同步测试(含解析)

29.2三视图同步测试一.选择题1.若一个立体图形从正面看和从左面看都是等腰三角形,从上面看是带有圆心的圆,则这个立体图形是()A.圆柱B.正三棱柱C.圆锥D.正三棱锥2.图中的三视图所对应的几何体是()A.B.C.D.3.下列几何体中,从左面看到的图形是圆的是()A.B.C.D.4.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从左面看到的图相同C.从上面看到的图相同D.从三个方向看到的图都不相同5.如图,是由大小一样的小立方块摆成的立体图形的三视图,则摆成这个立体图形所需的小立方块的个数为()A.3B.4C.5D.66.如图,某糕点包装盒的俯视图是正五边形,则正五边形的每一内角的度数为()A.72°B.108°C.120°D.540°7.如图2是图1长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=()A.a2+a B.2a2C.a2+2a+1D.2a2+a8.如图,将小立方块①从6个大小相同的小立方块所搭的几何体中移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图改变C.俯视图改变,左视图改变D.主视图不变,左视图不变9.如图是由5个立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上的小立方块的个数,则这个几何体的主视图是()A.B.C.D.10.在一张桌子上摆放着一些碟子,从3个方向看到的3种视图如图所示,则这个桌子上的碟子共有()A.4个B.8个C.12个D.17个二.填空题11.一个零件的主视图、左视图、俯视图如图所示(尺寸单位:厘米),这个零件的表面积是cm2.12.如图,由5个相同的小正方体组成的立体图形,分别从正面、左面、上面三个不同方向观察这个立体图形,你可以看到哪些平面图形?.13.一个立体图形如图,从面看到的形状是,从面看到的形状是,从面看到的形状是.14.几个完全相同的小正方体搭成如图的几何体,从上面拿掉一个或者几个小正方体(不能直接拿掉被压在下面的小正方体)而不改变几何体的三视图的方法有种.15.用小立方块搭一个几何体,使得它的主视图和俯视图如图所示,这样的几何体最少要个小立方块.三.解答题16.如图所示是由几个小立方体所组成的几何体的从上面看的形状图,小正方形中的数字表示在该位置的小立方体的个数,请画出这个几何体的从正面看、从左面看的图形.17.分析图中几何体,请在下面的网格图中画出该几何体分别从正面、左面及上面所看到的形状图.18.如图,是由10个同样大小的小正方体搭成的物体.(1)请在网格中分别画出从正面、上面观察该几何体得到的平面图形并涂上阴影;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体从正面和上面观察得到的平面图形不变,你认为最多还可以添加个小正方体.参考答案一.选择题1.解:∵主视图和左视图都是等腰三角形,∴此几何体为锥体,∵俯视图是一个圆,∴此几何体为圆锥.故选:C.2.解:观察图形可知选项B符合三视图的要求.故选:B.3.解:选项A中的几何体的左视图为三角形,因此不符合题意;选项B中的几何体其左视图为等腰三角形,因此选项B不符合题意;选项C中的几何体的左视图是长方形,因此选项C不符合题意;选项D中的几何体,其左视图为圆,因此选项D符合题意,故选:D.4.解:图①的三视图为:图②的三视图为:故选:C.5.解:由俯视图易得最底层有2个正方体,第二层有1个正方体,那么共有2+1=3个正方体组成.故选:A.6.解:∵正多边形的内角和公式为:(n﹣2)×180°,∴正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540°÷5=108°.故选:B.7.解:∵,∴俯视图的长为a+1,宽为a,∴,故选:A.8.解:观察图形可知,将小立方块①从6个大小相同的小立方块所搭的几何体中移走后,所得几何体主视图不变,左视图和俯视图都改变.故选:C.9.解:从正面看去,一共三列,左边有1个小正方形,中间有2个小正方形,右边有1个小正方形,主视图是.故选:A.10.解:易得三摞碟子数从左往右分别为5,4,3,则这个桌子上共有5+4+3=12个碟子.故选:C.二.填空题11.解:由三视图可得这个零件是圆柱体,表面积是:π×52×2+15×π×10=200π(cm2),故答案为:200π.12.解:图中的组合体,从正面、左面、上面看到的图形如下:故答案为:A、C、D.13.解:一个立体图形如图,从正面看到的形状是,从上面看到的形状是,从左面看到的形状是.故答案为:正;上;左.14.解:第一种可以把第二层前面这两个的左边这个拿掉,第二种可以把第二层前面这两个的右边这个拿掉,第三种可以把第二层后面这三个的中间这个拿掉,第四种可以把第二层前面这两个的左边这个拿掉和第二层后面这三个的中间这个拿掉.故答案为:4.15.解:观察图象可知:这样的几何体最少需要(2+1+1)+(3+1)+1=9个小立方块.故答案为:9.三.解答题16.解:由题意可得:.17.解:如图所示:18.解:(1)从正面、上面观察该几何体所得到的图形如图所示:(2)根据主视图和俯视图的关系,可得最多可以添加3个,故答案为:3.。

第二十九章 三视图 同步练习 2022—2023学年人教版数学九年级下册

第二十九章 三视图    同步练习 2022—2023学年人教版数学九年级下册

人教版九下 29.2 三视图一、选择题(共16小题)1. 如图是某几何体的三视图,该几何体是( )A. 正方体B. 圆锥C. 四棱柱D. 圆柱2. 如图所示的几何体,其俯视图是( )A. B.C. D.3. 如图是由4个小正方形体组合成的几何体,该几何体的主视图是( )A. B.C. D.4. 由若干个棱长为1cm的正方体堆积成一个几何体,它的三视图如图所示,则这个几何体的表面积是( )A. 15cm2B. 18cm2C. 21cm2D. 24cm25. 如图,是某几何体的三视图,该几何体是( )A. 圆柱B. 正方体C. 三棱柱D. 长方体6. 如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A. B.C. D.7. 若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是( )A. 球体B. 圆锥C. 圆柱D. 正方体8. 如图①,长方体的体积为120,图②是图①的三视图,用S表示面积,若S主=24,S 左=20,则S俯=( )A. 26B. 28C. 30D. 329. 下列选项中,如图所示的圆柱的三视图画法正确的是( )A. B.C. D.10. 如图所示,从左面看该几何体,看到的图形是( )A. B.C. D.11. 图②是图①中长方体的三视图,若用S表示面积,S主=a2,S左=a2+a,则S俯=( )A. a2+aB. 2a2C. a2+2a+1D. 2a2+a12. 一个几何体由若干个大小相同的小正方体组成,从上面看和从左面看得到的平面图形如图,那么组成该几何体所需小正方体的个数最少为( )A. 4B. 5C. 6D. 713. 如图所示的六角螺母,从上面看,得到的图形是( )A. B.C. D.14. 一个圆柱的三视图如图所示,则这个圆柱的体积为( )A. 24B. 24πC. 96D. 96π15. 如图,是一个几何体从正面、左面、上面看得到的图形,则这个几何体是( )A. B.C. D.16. 如图,下列关于物体的主视图画法正确的是( )A. B.C. D.二、填空题(共10小题)17. 如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.18. 下图是由一些相同长方体的积木块拾成的几何体的三视图,则此几何体共由块长方体的积木搭成.19. 在①长方体,②球,③圆锥,④圆柱,⑤三棱柱这五种几何体中,其主视图、左视图、俯视图都完全相同的是.(填上序号即可)20. 长方体的主视图、俯视图如图所示,则这个长方体的体积为;21. 一个几何体的三视图如下图所示,这个几何体是(填名称).22. 有四块如图(1)这样的小正方体摆在一起(各部分之间必须相连),其主视图如图(2),则左视图有种画法.23. 长方体直观图有多种画法,通常我们采用画法.24. 下图是由十个小正方体组成的几何体,若每个小正方体的棱长都是2,则该几何体的主视图和左视图的面积之和是.25. 图是某几何体的三视图及相关数据,则该几何体的侧面积是26. 图是由小正方体组合而成的几何体的主视图、左视图和俯视图,则至少再加个小正方体后,该几何体可成为一个正方体.三、解答题(共7小题)27. 如图是一个几何体的三视图,根据图示的数据计算出该几何体的表面积.28. 画出下列组合体的三视图.29. 学校食堂厨房的桌子上整齐地摆放着若干相同规格的碟子,碟子的个数与碟子的高度的关系如下表:碟子的个数1234⋯碟子的高度(单位:cm)22+1.52+32+4.5⋯(1)当桌子上放有x(个)碟子时,请写出此时碟子的高度(用含x的式子表示);(2)分别从正面、左面、上面三个方向看这些碟子,看到的形状图如图所示,厨房师傅想把它们整齐叠成一摞,求叠成一摞后的高度.30. 一个等腰Rt△ABC如图所示,将它绕直线AC旋转一周,形成一个几何体.(1)写出这个几何体的名称,并画出这个几何体的三视图;(2)依据图中的数据,计算这个几何体的表面积.(结果保留π)31. 如图是由一些大小相同的小立方块搭成的几何体.(1)图中有块小立方块;(2)请分别画出它的主视图,左视图和俯视图.32. 由一些大小相同,棱长为1的小正方体搭成的几何体的俯视图如下图所示,数字表示该位置上的小正方体个数.(1)请在下图中画出它的主视图和左视图;(2)给这个几何体喷上颜色(底面不喷色),需要喷色的面积为.(3)在不改变主视图和俯视图的情况下,最多可添加个小正方体.33. 一个零件是由长为34mm、高和宽都为17mm的长方体与直径为34mm、高度为17mm的半圆柱组成几何体后,又切去直径为17mm的圆柱后剩下的几何体,其实物直观图如图所示,请画出这个零件的三视图.答案1. D【解析】该几何体的视图为一个圆形和两个矩形.则该几何体可能为圆柱.2. D【解析】从上面看,是一个带圆心的圆.3. A【解析】该组合体的主视图如下:4. B【解析】由三视图可知该几何体的直观图如图所示.∵各个小正方体的棱长为1cm,∴这个几何体的表面积是3×6×1×1=18(cm2).5. D6. A【解析】从上边看,是一个矩形,矩形的内部有一个与矩形两边相切的圆.7. A【解析】解答这种类型的题目时,可以像画图题一样,面出每个选项中的几何体的三视图,然后和已知三视图比较得出答案;也可以通过已知的三个视图想象出几何体,从选项中寻找和它一致的几何体,进而得出答案.8. C【解析】由题意,长方体的宽为120÷24=5,长为120÷20=6,∴俯视图的面积为6×5=30.9. A【解析】放置的圆柱的主视图是长方形,左视图是圆,俯视图是长方形.10. B【解析】从左面看是一个长方形,中间有两条水平的虚线,故选B.11. A【解析】∵S主=a2=a⋅a,S左=a2+a=a(a+1),∴俯视图的长为a+1,宽为a,=a⋅(a+1)=a2+a.∴S俯12. B【解析】由从上面看与从左面看得到的平面图形知,组成该几何体所需小正方体个数最少的分布情况如图所示(不唯一);所以组成该几何体所需小正方体的个数最少为5,故选B.13. B【解析】从上面看,是一个正六边形,六边形的中间是一个圆.14. B【解析】由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,=πr2ℎ=π⋅22×6=24π,∴V圆柱故选B.15. B【解析】观察从正面、左面、上面看得到的图形发现,这个几何体是长方体和圆锥的组合图形.故选B.16. C【解析】主视图是从正面看几何体得到的图形,在画图时规定:看得见的轮廓线画成实线,看不见的轮廓线画成虚线,显然空心圆柱的主视图画法正确的是C,故选C.17. 3π【解析】由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.18. 419. ②20. 1221. 四棱锥22. 4【解析】左视图可能为以下4种.23. 斜二侧24. 48【解析】该几何体的主视图和左视图如下,∴面积之和为2×2×(6+6)=48.25. 16√7π【解析】根据三视图可知该几何体为圆锥,高为6,母线长为8,则底面半径为√82−62=2√7,所以S=π×2√7×8=16√7π.圆锥侧26. 22【解析】观察三视图,可知这个几何体各个位置上的小正方体的个数,在俯视图上标出如图所示,则由题意可知最小可以组成3×3×3的正方体,即组成的正方体共有27个小正方体,27−2−1−1−1=22,所以至少再加22个小正方体后,才能组成一个正方体.27. 由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长=√52+122=13,⋅2π⋅5⋅13=90π.所以圆锥的表面积=π⋅52+1228. 如图所示.29. (1)由图可知,每增加一个碟子高度增加1.5cm,桌子上放有x个碟子时,高度为2+1.5(x−1)=1.5x+0.5.(2)由图可知,共有3摞,左前一摞有5个,左后一摞有4个,右边一摞有3个,共有3+4+5=12(个),叠成一摞后的高度=2+1.5×11=18.5(cm).30. (1)这个几何体是圆锥,这个几何体的三视图如图所示.×2π×2×√22+22+π×22=(4√2+4)π.(2)这个几何体的表面积为1231. (1)6(2)如图所示.32. (1)该几何体的主视图和左视图如图所示.(2)32【解析】给这个几何体喷上颜色(底面不喷色),需要喷色的面有32个,所以喷色的面积为32.(3)1【解析】在俯视图中标数字“2”的正方形的位置上再添加1个小正方体,不会改变主视图和俯视图.33. 三视图如图所示:。

人教版九年级数学下29.2三视图(一)同步练习附答案解析

人教版九年级数学下29.2三视图(一)同步练习附答案解析

29.2三视图同步练习(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下面四个几何体中,其主视图为圆形的是()A.B.C.D.2、一个几何体的三视图如图,则该几何体是()A.B.C.D.3、如图所示的机器零件的左视图是().A.B.C.D.4、某几何体,从三个方向看到物体的形状,如图所示,这个几何体是()A. 圆柱B. 三棱柱C. 长方体D. 圆锥5、如图是一种常用的圆顶螺杆,它的俯视图是().A.B.C.D.6、把一个正五棱柱如图摆放,当投射线由正前方射到后方时,则它的正投影是().A.B.C.D.7、如图,是由个棱长为个单位的正方体摆放而成的,将正方体向右平移个单位,向后平移个单位后,所得几何体的________视图不变,_____视图改变.A.主视图不变,左视图和俯视图改变B. 主视图和左视图不变,俯视图改变C. 左视图不变,主视图和俯视图改变D. 俯视图和左视图不变,主视图改变8、下图的几何体中,主视图和左视图相同的几何体有__________.A. 个B. 个C. 个D. 个9、如图是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A. ③④②①B. ②④③①C. ③④①②D. ③①②④10、如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.11、如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.12、如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.D.13、如图所示的几何体的左视图是()A.B.C.D.14、若某几何体的三视图如图,则这个几何体是()A.B.C.D.15、如图,将Rt△ABC绕直角边AB旋转一周,所得的几何体的主视图是()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图是某几何体的三视图,则该几何体的体积是_______.17、如图是由一些相同的长方体积木块搭成的几何体从正、左、上面三种不同的角度看到的平面图形,则此几何体共由块长方体积木块搭成.18、已知一个几何体是由几个大小相同的小立方块搭成,如图是分别从正面、左面、上面看到的该几何体的形状图,则搭成这个几何体的小立方体的个数为()19、一个工件,外部是圆柱体,内部凹槽是正方体,如图所示,其中,正方体一个面的四个顶点都在圆柱底面的圆周上,若圆柱底面周长为,则正方体的体积为______.20、如图,正方形边长为,以直线为轴,将正方形旋转一周,所得圆柱的主视图(正视图)的周长是.三、解答题(本大题共有3小题,每小题10分,共30分)21、某个几何体的三视图如图所示,根据图中有关数据,求这个几何体的各个侧面积之和.22、画出几何体的俯视图、左视图.23、用数学的眼光去观察问题,你会发现很多图形都能看成是动静结合,舒展自如的.下面所给的三排图形都存在着某种联系,用线将它们连起来.29.2三视图同步练习(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、下面四个几何体中,其主视图为圆形的是()A.B.C.D.【答案】B【解析】解:根据从正面看到的是主视图可知正方体的主视图是正方形,不符合题意.球的主视图是圆形,符合题意.圆锥的主视图是三角形,不符合题意.圆柱的主视图是矩形,不符合题意.故正确答案为:.2、一个几何体的三视图如图,则该几何体是()A.B.C.D.【答案】D【解析】解:由三视图可知,该组合体的上部分为圆台,下部分为圆柱,故答案为:3、如图所示的机器零件的左视图是().A.B.C.D.【答案】D【解析】解:机器零件的左视图是一个矩形.中间有条横着的虚线. 故正确答案是4、某几何体,从三个方向看到物体的形状,如图所示,这个几何体是()A. 圆柱B. 三棱柱C. 长方体D. 圆锥【答案】C【解析】解:几何体的三视图都是长方形,这个几何体是长方体.5、如图是一种常用的圆顶螺杆,它的俯视图是().A.B.C.D.【答案】B【解析】解:俯视图是由上方看到的图形,看到的是两个圆组成的圆环. 故正确答案是6、把一个正五棱柱如图摆放,当投射线由正前方射到后方时,则它的正投影是().A.B.C.D.【答案】B【解析】解:当投射线由正前方射到后方时,不是正投影,此选项错误.当投射线由正前方射到后方时,这是正投影,此选项正确.当投射线由正前方射到后方时,不是正投影,此选项错误.当投射线由正前方射到后方时,不是正投影,此选项错误.7、如图,是由个棱长为个单位的正方体摆放而成的,将正方体向右平移个单位,向后平移个单位后,所得几何体的________视图不变,_____视图改变.A.主视图不变,左视图和俯视图改变B. 主视图和左视图不变,俯视图改变C. 左视图不变,主视图和俯视图改变D. 俯视图和左视图不变,主视图改变【答案】A【解析】解:因为平移前后左视图和俯视图改变了,而主视图没有改变,因此应该是主视图不变,俯视图和左视图改变.故正确答案为主视图不变,俯视图和左视图变了.8、下图的几何体中,主视图和左视图相同的几何体有__________.A. 个B. 个C. 个D. 个【答案】D【解析】解:①正方体主视图和左视图是相同的正方形,②圆柱的主视图和左视图是相同的矩形,③圆锥的主视图和左视图是相同的三角形,④球的主视图和左视图是相同的圆,因此四个几何体主视图与左视图都相同.故答案为个.9、如图是一天中四个不同时刻两个建筑物的影子:将它们按时间先后顺序进行排列,正确的是()A. ③④②①B. ②④③①C. ③④①②D. ③①②④【答案】C【解析】解:从早晨到傍晚物体的指向是:西—西北—北—东北—东,影长由长变短,再变长.故正确的答案是③④①②.10、如图是几何体的俯视图,所表示数字为该位置小正方体的个数,则该几何体的正视图是()A.B.C.D.【答案】B【解析】解:主视图,如图所示11、如图所示的几何体是由个大小相同的小立方块搭成,它的俯视图是()A.B.C.D.【答案】B【解析】解:俯视图是物体向下正投影得到的视图,上面往下看,能看到四个小正方形.12、如图是某几何体的三视图及相关数据,则该几何体的侧面积是()A.B.C.D.【答案】D【解析】解:由题意得底面直径为,母线长为,几何体的侧面积为.13、如图所示的几何体的左视图是()A.B.C.D.【答案】D【解析】解:从左向右看,得到的几何体的左视图是中间无线条的矩形.14、若某几何体的三视图如图,则这个几何体是()A.B.C.D.【答案】C【解析】解:该几何体的正视图为矩形,俯视图亦为矩形,侧视图是一个三角形和一个矩形.故正确的图形为15、如图,将Rt△ABC绕直角边AB旋转一周,所得的几何体的主视图是()A.B.C.D.【答案】D【解析】解:将绕直角边AB旋转一周可得圆锥,圆锥的主视图是等腰三角形.二、填空题(本大题共有5小题,每小题5分,共25分)16、如图是某几何体的三视图,则该几何体的体积是_______.【答案】【解析】解:由三视图知,这个几何体是圆锥.体积是:. 故正确答案是.17、如图是由一些相同的长方体积木块搭成的几何体从正、左、上面三种不同的角度看到的平面图形,则此几何体共由块长方体积木块搭成.【答案】4【解析】解:由从上面看的平面图可知最底层有块长方体,由从左面和从上面看的平面图可知,该几何体由两层,最上一层有块长方体,因此该几何体共由块长方体的积木块搭成.18、已知一个几何体是由几个大小相同的小立方块搭成,如图是分别从正面、左面、上面看到的该几何体的形状图,则搭成这个几何体的小立方体的个数为()【答案】【解析】解:从正面看,第一个正视图最底层含有个立方块。

人教版九年级下册数学29.2 三视图 同步练习(含解析)

人教版九年级下册数学29.2  三视图 同步练习(含解析)

29.2 三视图基础闯关全练1.如图29-2-1所示的几何体的主视图是( )A .B .C .D .2.下列几何体中,俯视图为三角形的是 ( )A .B . C. D .3.图29-2-2是由5个大小相同的小正方体摆成的立体图形,它的主视图是( )A .B .C .D .4.图29-2-3是由长方体和圆柱组成的几何体.它的俯视图是( )A .B .C .D .5.三本相同的书叠成如图29-2-4所示的几何体,它的主视图是( )A .B .C .D .6.如图29-2-5,画出此立体图形的三视图.7.由几个相同的边长为1的小立方块搭成的几何体的俯视图如图29-2-6所示,方格中的数字表示该位置上的小立方块的个数.(1)请在如图29-2-7所示的方格纸中分别画出这个几何体的主视图和左视图: (2)根据三视图,请求出这个几何体的表面积(包括底面积).8.图29-2-8是某几何体的三视图,则这个几何体是( )A .棱柱B .圆柱C .棱锥D .圆锥9.图29-2-9是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为( )A.6B.5C.4D.310.图29-2-10是一个几何体的三视图(图中尺寸单位:cm ),根据图中数据计算,这个几何体的表面积为_______ c m².能力提升全练1.如图29-2-11所示的几何体的主视图正确的是( )A.B.C.D.2.从一个棱长为3 cm 的大立方体中挖去一个棱长为1cm 的小立方体,得到的几何体如图29-2-12所示,则该几何体的左视图正确的是( )A.B.C.D.3.圆锥的主视图与左视图都是边长为4的等边三角形,则圆锥的侧面展开图中扇形的圆心角是 ( )A.90ºB.120ºC.150ºD.180º4.用四个相同的小立方体组成几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是 ( )A.B.C.D.5.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图29-2-13所示,则小正方体的个数不可能是( )A .5B .6C .7D .86.已知某几何体的三视图如图29-2-14所示,其中俯视图为正六边形,则该几何体的表面积为_________.三年模拟全练1.下列水平放置的几何体中,俯视图是矩形的是 ( )A.B.C.D.2.由五个相同的立方体搭成的几何体如图29-2-15所示,则它的左视图是( )A. B. C. D.3.图29-2-16是一几何体的三视图,则这个几何体可能是( )A .三棱柱B .三棱锥C .圆柱D .圆锥4.如图29-2-17,该几何体的左视图是( )A.B. C. D.5.一个几何体的三视图如图29-2-18所示,则该几何体的侧面展开图的面积为__________.五年中考全练1.下列几何体中,主视图与俯视图不相同的是 ( )A.B. C. D.2.如图29-2-19所示几何体的左视图是( )A.B.C.D.3.已知某物体的三视图如图29-2-20所示,那么与它对应的物体是( )A.B.C.D.4.图29-2-21是某圆锥的主视图和左视图,该圆锥的侧面积是( )A. 25π B .24π C .20π D.15π5.一个几何体的主视图和俯视图如图29-2-22所示,若这个几何体最多由a 个小正方体组成,最少由b 个小正方体组成,则a+b 等于( )A.10B.llC.12D.136.三棱柱(如图29-2-23①)的三视图如图29-2-23②所示,已知△EFG 中,EF=8 cm ,EG=12 cm ,∠E FG =45º,则AB 的长为_________cm.核心素养全练1.将如图29-2-24所示的直角三角形ABC 绕直角边AB 所在的直线旋转一周得到一个几何体,从正面看这个几何体,得到的平面图形应为 ( )A.B.C.D.2.在仓库里堆放着若干个相同的正方体货箱,这堆货箱的三视图如图29-2-25所示,若每个箱子里都装有10个篮球,则这堆正方体货箱中所装的篮球总数为_________.29.2三视图1.C 圆锥体的主视图是等腰三角形,故选C.2.C A项,圆锥的俯视图是圆且中心有一个点,故A不符合题意;B项,长方体的俯视图是矩形,故B不符合题意;C项,三棱柱的俯视图是三角形,故C符合题意;D 项,四棱锥的俯视图是由几个三角形拼成的四边形,故D不符合题意,故选C.3.A从正面看易得第一层有3个正方形,第二层有1个正方形,且位于中间的位置,故选A.4.A该组合体上方的圆柱的俯视图为圆,下方的长方体的俯视图为正方形,且圆的直径小于正方形的边长,故选A.5.B主视图是从正面看到的图形,故选B.6.解析该几何体的三视图如图所示.7.解析(1)如图所示.(2)该几何体的表面积为5+2+5+4+4+3+5=28.8.D 由题图可知主视图和左视图都是等腰三角形,∴该几何体为锥体,而俯视图是有圆心的圆,∴该几何体是圆锥,故选D.9.C由主视图得该几何体由两层小正方体构成,由俯视图得第一层有3个小正方体,再结合主视图和左视图可知第二层有1个小正方体,把小正方体的个数在俯视图上标出来(如图),所以共有4个小正方体,故选C.10.答案16π解析由三视图可知该几何体为圆锥,根据三视图知该圆锥的母线长为 6 cm ,底面圆的半径为2 cm ,故表面积为π×2×6+π×2²=16π(cm ²). 1.D 由主视图的定义知选D .2.C 从左侧观察此正方体,看到的是一个正方形,但在右上角有一个用虚线表示的小正方形,排除A 、B ,但D 选项用虚线表示的小正方形的边长过大,所以错误,故选C .3.D 由题意知圆锥的母线长为4,底面圆的直径为4,设圆锥的侧面展开图中扇形的圆心角是n º,根据题意,得ππ41804=⋅⋅n ,解得n=180,则所求圆心角是180º,故选D .4.C 选项A ,几何体的主视图、左视图是相同的;选项B ,几何体的主视图、俯视图是相同的;选项C ,几何体的主视图、左视图、俯视图都不相同;选项D ,几何体的主视图、左视图是相同的.故选C .5.A 由左视图可得,几何体第2层上至少有1个小正方体,由俯视图可知,几何体第1层上一共有5个小正方体,故小正方体的个数最少为6,故小正方体的个数不可能是5.故选A . 6.答案48+123解析由几何体的三视图判断这个几何体为正六棱柱,由主视图的数据可知,此正六棱柱的高为4,正六边形ABCDEF 外接圆的直径AD=4,则半径为2.故该几何体的表面积=S 侧面+2S 正六边形=2×6×4+2×6×21×2×3=48+123.一、选择题1.B 圆柱的俯视图是圆,故A 错误;长方体的俯视图是矩形,故B 正确;三棱柱的俯视图是三角形,故C 错误;圆锥的俯视图是有圆心的圆,故D 错误.故选B 2.D 左视图中第一层有三个小正方形,第二层的左边有一个小正方形.故选D . 3.A 根据主视图和左视图为矩形判断该几何体是柱体,根据俯视图是三角形可判断这个几何体是三棱柱.故选A .4.C 从左边看是一个正方形被水平地分成3部分,中间的两条线是虚线,故C 正确,故选C . 二、填空题 5.答案 6π cm ²解析由主视图和左视图为长方形可得该几何体为柱体,由俯视图为圆可得该几何体为圆柱,圆柱的侧面展开图为矩形,两边长分别为2π cm 和3 cm ,则侧面展开图的面积为2π×3=6π cm ². 一、选择题1.B 正方体的主视图和俯视图都是正方形:四棱锥的主视图是三角形,俯视图是矩形(包含对角线和交点);圆柱的主视图和俯视图都是矩形;球的主视图和俯视图都是圆,故选B .2.D 从左边看到的图形为矩形,要注意看不见的线用虚线画出,故选D .3.B 由主视图和左视图可得此几何体为柱体和柱体的组合体,根据俯视图可判断出此几何体上方部分为圆柱,下方部分为长方体,且长方体的宽与圆柱的直径相等,故选B .4.C根据圆锥的主视图、左视图知,该圆锥的轴截面是一个底边长为8,高为3的等腰三角形(如图),AB=2243 =5.底面半径为4,故侧面积为π×4×5=20π,故选C.5.C在俯视图中标出对应位置上的小正方体数,所有情况如图所示.由图可知,a=7,b=5,则a+b=12.二、填空题6.答案42解析由三视图的性质可知,△EFG中,边FG上的高长等于AB的长,∵EF=8 cm,∠E F G=45º,∴AB=8×sin 45º=42cm.1.C直角三角形ABC绕直角边AB所在直线旋转一周得到的几何体是圆锥,从正面看这个几何体,得到的平面图形是等腰三角形,故选C.2.答案90解析由俯视图知该几何体有2行3列,结合主视图和左视图知正方体货箱的分布情况如下:∴这堆正方体货箱中所装的篮球总数为10×(1+3+3+1+1)=90.。

人教版九年级下册数三视图同步练习

人教版九年级下册数三视图同步练习

第二十九章投影与视图29.2 三视图一、课前小测:1、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子(填“长”或“短”)2、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为 2.0m,小刚比小明矮5cm,此刻小明的影长是________m.3、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.6m,小明向墙壁走1m到B处发现影子刚好落在A点,则灯泡与地面的距离CD=_______.4、圆柱的左视图是,俯视图是;5、如图,一几何体的三视图如右:那么这个几何体是;主视图左视图俯视图二、基础训练:1、填空题(1)俯视图为圆的几何体是, .(2)画视图时,看得见的轮廓线通常画成 ,看不见的部分通常画成 . (3)举两个左视图是三角形的物体例子: , .(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称 .(5)请将六棱柱的三视图名称填在相应的横线上.(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有 ( )个碟子.俯视图 主视图左视图主视图2、有一实物如图,那么它的主视图()A B C D3、下图中几何体的主视图是().(A) (B) (C) (D)4、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有()(A)5桶(B) 6桶(C)9桶(D)12桶5、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( ) A.O B. 6 C.快 D.乐俯视图主(正)视图左视图三、综合训练:1.小明从正面观察下图所示的两个物体,看到的是( )2、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 5个B 6个C 7个D 8个B ACD 正面3、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A B C D4、下面是空心圆柱在指定方向上的视图,正确的是…()(A) (B) (C) (D)5、画出下面实物的三视图:第二十九章 投影与视图29.2 三视图 参考答案: 课前小测:1、短2、35723、1564 4、矩形,圆 5、空心圆柱 二、基础训练:1、(1)球,圆柱体;(2)实线,虚线;(3)圆锥,正四棱锥,倒放的正三棱柱等;(4)圆锥;(5)俯视图,正视图,左视图;(6)12.2、A;3、C4、B5、B三、综合训练:1、C2、D3、B;4、A;5、题图:主视图左视图俯视图先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

人教版九年级下册 29.2 三视图 同步练习

人教版九年级下册   29.2 三视图 同步练习

三视图真题专项训练(一)1.(2018 福建中考)某几何体的三视图如图所示,则该几何体是()A.圆柱B.三棱柱C.长方体D.四棱锥【解答】解:A、圆柱的主视图和左视图是矩形,但俯视图是圆,不符合题意;B、三棱柱的主视图和左视图是矩形,但俯视图是三角形,不符合题意;C、长方体的主视图、左视图及俯视图都是矩形,符合题意;D、四棱锥的主视图、左视图都是三角形,而俯视图是四边形,不符合题意;[来源:学,科,网]故选:C.2.(2018 柳州中考)如图,这是一个机械模具,则它的主视图是()A.B.B.C.D.【解答】解:主视图是从几何体正边看得到的图形,题中的几何体从正边看,得到的图形是并列的三个正方形和一个圆,其中圆在左边正方形的上面,故选:C.3.(2018 十堰市中考)今年“父亲节”佳佳给父亲送了一个礼盒,该礼盒的主视图是()A.B.C.D.【解答】解:由图可得,该礼盒的主视图是左边一个矩形,右面一个小正方形,故选:C.4.(2018 四川乐山)如图是由长方体和圆柱组成的几何体,它的俯视图是()A.B.C.D.【解答】从上边看外面是正方形,里面是没有圆心的圆.故选A.5.(2018 湖南益阳)下图是某几何体的三视图,则这个几何体是()A.棱柱B.圆柱C.棱锥D.圆锥【解答】解:由俯视图易得几何体的底面为圆,还有表示锥顶的圆心,符合题意的只有圆锥.故选:D.6.(2018 辽宁葫芦岛)下列几何体中,俯视图为矩形的是()A.B.C.D.【解答】解:A.圆锥的俯视图是圆,故A不符合题意;B.圆柱的俯视图是圆,故B错误;C.长方体的主视图是矩形,故C符合题意;D.三棱柱的俯视图是三角形,故D不符合题意;故选C.7.(2018 四川)如图,5个完全相同的小正方体组成了一个几何体,则这个几何体的主视图是()【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,.故选:D.8.(2018 新疆中考)如图是某个几何体的三视图,该几何体是()A.长方体B.正方体C.三棱柱D.圆柱【解答】解:A、长方体的三视图均为矩形,不符合题意;B、正方体的三视图均为正方形,不符合题意;C、三棱柱的主视图和左视图均为矩形,俯视图为三角形,符合题意;D、圆柱的主视图和左视图均为矩形,俯视图为圆,不符合题意;故选:C.9.(2018 吉林长春)下列立体图形中,主视图是圆的是()A.B.C.D.【解答】解:A、圆锥的主视图是三角形,故A不符合题意;B、圆柱的柱视图是矩形,故B错误;C、圆台的主视图是梯形,故C错误;D、球的主视图是圆,故D正确;故选:D.10.(2018 黑龙江龙江地区模拟)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.11.(2018 山东莱芜)已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2 C.120πcm2D.130πcm2【解答】解:根据三视图得到圆锥的底面圆的直径为10cm,即底面圆的半径为5cm,圆锥的高为12cm,所以圆锥的母线长==13,所以这个圆锥的侧面积=•2π•5•13=65π(cm2).故选:B.12.(2018 眉山市)下列立体图形中,主视图是三角形的是().A. B.C. D.【解析】分析:根据从正面看得到的图形是主视图,可得图形的主视图.详解:A、C、D主视图是矩形,故A、C、D不符合题意;B、主视图是三角形,故B正确;故选:B.13.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,【小试牛刀】1.(2018 北京顺义模拟)如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥【解答】解:观察图形可知,这个几何体是三棱柱.故选:A.2.(2018 山东临沂模拟)如图所示的几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选:D.3.图中三视图对应的正三棱柱是()A.B.C.D.【解答】解:由俯视图得到正三棱柱两个底面在竖直方向,由主视图得到有一条侧棱在正前方,于是可判定A选项正确.故选:A.4.(2018 江苏省盐城一模)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.B.C.D.【解答】解:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选:A.5.(2018 海南琼海模拟)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【解答】解:从左边看竖直叠放2个正方形.故选:C.6.(2018 山东青岛模拟)如图是由三个相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.【解答】解:从左边看竖直叠放2个正方形.故选:C.。

人教版初中数学九年级下册《29.2 三视图》同步练习卷(含答案解析

人教版初中数学九年级下册《29.2 三视图》同步练习卷(含答案解析

人教新版九年级下学期《29.2 三视图》同步练习卷一.选择题(共7小题)1.下面的几何体从左面看到的图形是()A.B.C.D.2.下列四个立体图形中,左视图为长方形的()A.①③B.①④C.②③D.③④3.如图所示的几何体的俯视图是()A.B.C.D.4.如图所示的某零件左视图是()A.B.C.D.5.如图是由几个相同小正方体组成的立休图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.如图,是一个几何体的三视图(单位:cm),则图中几何体的体积是()A.30 πcm3B.24 πcm3C.15 πcm3D.12 πcm3 7.某几何体由若干个大小相同的小正方体组成,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个二.填空题(共1小题)8.一个长方体从正面和左面看到的图形如图所示(单位cm),则从其上面看到的图形的面积是.三.解答题(共2小题)9.如图几何体是由棱长为m的正方体摆放成如图的形状.(1)请在3×3网格中画出这个几何体从正面、左面、上面看到的几何体的形状图?并用阴影表示.(2)求这个几何体的表面积?10.观察下面由8个小立方块组成的图形,请在指定的位置画出从正面、左面、上面看到的这个几何体的形状图.人教新版九年级下学期《29.2 三视图》同步练习卷参考答案与试题解析一.选择题(共7小题)1.下面的几何体从左面看到的图形是()A.B.C.D.【分析】从左边看得到的图形是左视图,圆锥的左视图是三角形.【解答】解:从左面看到的图形是三角形,故选:A.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.2.下列四个立体图形中,左视图为长方形的()A.①③B.①④C.②③D.③④【分析】左视图是从几何体的左边看所得到的视图.【解答】解:正方体左视图为正方形,也属于长方形,球左视图为圆;圆锥左视图是等腰三角形;圆柱左视图是长方形,故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握所有的看到的棱都应表现在三视图中.3.如图所示的几何体的俯视图是()A.B.C.D.【分析】根据直观图,由几何体的俯视图的定义进而得出答案.【解答】解:由题意可得:该几何体是长方体和圆柱的组合图形,则其俯视图为长方形中间为圆形,故选项B正确.故选:B.【点评】此题主要考查了由几何体判断三视图,正确得出几何体的组成是解题关键.4.如图所示的某零件左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个矩形,其中间含一个圆,如图所示:故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图,注意看到的线画实线.5.如图是由几个相同小正方体组成的立休图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.如图,是一个几何体的三视图(单位:cm),则图中几何体的体积是()A.30 πcm3B.24 πcm3C.15 πcm3D.12 πcm3【分析】根据三视图得出几何体为圆锥,再利用圆锥的体积公式解答即可.【解答】解:由三视图可得:几何体为圆锥,所以圆锥的体积=cm3,故选:D.【点评】此题考查三视图判定几何体,关键是根据三视图得出几何体为圆锥.7.某几何体由若干个大小相同的小正方体组成,其主视图与左视图如图所示,则组成这个几何体的小正方体最少有()A.4个B.5个C.6个D.7个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由主视图和左视图可确定所需正方体个数最少时俯视图为:,则组成这个几何体的小正方体最少有5个.故选:B.【点评】此题主要考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.二.填空题(共1小题)8.一个长方体从正面和左面看到的图形如图所示(单位cm),则从其上面看到的图形的面积是6cm2.【分析】先根据从左面、从正面看到的形状图的相关数据可得,从上面看到的形状图是长为3宽为2的长方形,再根据长方形的面积公式计算即可.【解答】解:根据从左面、从正面看到的形状图的相关数据可得:从上面看到的形状图是长为3宽为2的长方形,则从上面看到的形状图的面积是2×3=6cm2;故答案为:6cm2.【点评】此题考查了由三视图判断几何体,关键是根据从左面、从正面看到的形状图的相关数据得出从上面看到的形状图是长为3宽为2的长方形.三.解答题(共2小题)9.如图几何体是由棱长为m的正方体摆放成如图的形状.(1)请在3×3网格中画出这个几何体从正面、左面、上面看到的几何体的形状图?并用阴影表示.(2)求这个几何体的表面积?【分析】(1)根据三视图的定义,画出图形即可;(2)根据三视图确定表面有多少个正方形即可解决问题;【解答】解:(1)三视图如图所示:(2)这个几何体的表面一共有2(5+3+4)=24个正方形,∴这个几何体的表面积=24m2.【点评】本题考查作图﹣三视图,解题的关键是理解题意,正确作出三视图,属于中考常考题型.10.观察下面由8个小立方块组成的图形,请在指定的位置画出从正面、左面、上面看到的这个几何体的形状图.【分析】根据三视图的定义画出图形即可;【解答】解:【点评】本题考查三视图的定义,解题的关键是学会观察和想象,再画它的三视图.。

人教版九年级下册数学29 2三视图随堂练习1

人教版九年级下册数学29 2三视图随堂练习1

29.2 三视图一、课前小测:1、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子 (填“长”或“短”)2、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m ,小刚比小明矮5cm ,此刻小明的影长是_______m.3、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为 1.6m ,小明向墙壁走1m 到B处发现影子刚好落在A点,则灯泡与地面的距离CD =_____. 4、圆柱的左视图是 ,俯视图是 ;5、如图,一几何体的三视图如右:那么这个几何体是 ;主视图 左视图 俯视图二、基础训练:1、填空题(1)俯视图为圆的几何体是 , . (2)画视图时,看得见的轮廓线通常画成 ,看不见的部分通常画成 .(3)举两个左视图是三角形的物体例子: , . (4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称 . (5)请将六棱柱的三视图名称填在相应的横线上.(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有 ( )个碟子.2、有一实物如图,那么它的主视图 ( )A B C D3、下图中几何体的主视图是( ).俯视图 主视图 左视图主视图俯视图主(正)视图左视图 (A) (B) (C ) (D) 4、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有( )(A )5桶 (B ) 6桶(C )9桶 (D )12桶5、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )A .OB . 6C .快D .乐三、综合训练:1.小明从正面观察下图所示的两个物体,看到的是( )2、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 5个B 6个C 7个D 8个3、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )4、下面是空心圆柱在指定方向上的视图,正确的是…( )B AC D正面 A B C D (A) (B) (C) (D)5、画出下面实物的三视图:第二十九章 投影与视图29.2 三视图 参考〖答 案〗一、 课前小测:1、短2、35723、1564 4、矩形,圆 5、空心圆柱 二、基础训练:1、(1)球,圆柱体;(2)实线,虚线;(3)圆锥,正四棱锥,倒放的正三棱柱等;(4)圆锥;(5)俯视图,正视图,左视图;(6)12.2、A ;3、C4、B5、B三、综合训练:1、C2、D3、B ;4、A ;5、题图:主视图左视图俯视图。

人教版九年级数学下册29.2三视图同步练习

人教版九年级数学下册29.2三视图同步练习

29.2 三视图一、选择题1.主视图、左视图、俯视图都是圆的几何体是()。

A.圆锥B.圆柱C.球D.空心圆柱2.如图是一个包装盒的三视图,则这个包装盒的体积是()A.1000πcm3B.1500πcm3C.2000πcm3D.4000πcm33.已知某几何体的三视图如图所示,则该几何体可能是( )A. B.C. D.4.如图,几何体的左视图是( )A. B.C. D.5.如图是5个完全相同的小正方体搭成的的几何体,则该几何体的俯视图是()A. B. C.D.6.如图,是由小正方体组成的几何体,则选项中不是该几何体的三视图的是()A. B.C. D.7.一个几何体的三视图如图所示,则这个几何体是()A. B. C.D.8.下列四个物体的俯视图与右边给出视图一致的是()A. B.C. D.9.下列几何体中,俯视图为三角形的是()A.B.C.D.10.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. B.C.D.二、填空题11.下图是某个几何体的三视图,则该几何体的名称是_____________.12.如图,是由一些相同的小正方体构成的几何体从三个不同方向看到的形状图,则构成这个几何体的小正方体有个.13.一个几何体的三视图如图所示(其中标注的a、b、c为相应的边长),则这个几何体的体积是。

14.如图,由三个棱长均为1cm的小立方体搭成的几何体的主视图的面积是__________2cm.15.如图是某物体的三种视图,则该几何体的名称是.16.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的所有侧面积之和为.三、解答题17.画出下列几何体的三视图18.在平整的地面上,有若干个完全相同的棱长为1cm的小正方体堆成一个几何体,如图所示:(1)请画出这个几何体从正面、左面、上面看到的几何体的形状图;(2)如果在这个几何体露在外面的表面喷上黄色的漆,每平方厘米用2克,则共需克漆;(3)若现在你手头还有一些相同的小正方体,如果保持从上面看和从左边看不变,最多可以再添加个小正方体.19.一几何体的三视图如右所示,求该几何体的体积.20.如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)画出它的一种表面展开图;(3)若从正面看的高为3cm,从上面看三角形的边长都为2cm,求这个几何体的侧面积.。

新人教版初中数学九年级下册29.2三视图同步作业及答案-精品试题

新人教版初中数学九年级下册29.2三视图同步作业及答案-精品试题

29.2 三视图一、自主学习1.画三视图时,首先确定主视图的位置.画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.2.在下列几何体中,主视图是圆的是( )3.图29-14所示的水杯的俯视图是( )29-144.如图29-15所示,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图的三视图.图29-14二、基础巩固5.如图29-16所示,空心圆柱体在指定方向上的视图正确的是( )图29-166.一只小狗正在平面镜前欣赏自己的全身像(如图29-17所示),此时它所看到的全身像是( )图29-177.小明从正面观察图29-18所示的两个物体,看到的是图中的( )图29-188.“圆柱与球的组合体”如图29-19所示,则它的三视图是( )图29-199.某同学把图29-20所示的几何体的三种视图画出如图29-20①②③所示(不考虑尺寸);其中错误的是哪个图?答:是________________________.图29-2010.图29-21是直观图的三视图,它对应的直观图是下图中的( )图29-2111.请写出三种视图都相同的两种几何体是__________、_____________.12.画出下图所示的三视图.13.一个物体的俯视图是圆,则该物体的形状是( )A.球体B.圆柱C.圆锥D.以上都有可能14.一个几何体的三种视图如图29-22所示,则这个几何体是( )图29-22A.圆柱B.圆锥C.长方体D.正方体15.一个物体的正视图、俯视图如图29-23所示,请你画出该物体的左视图并说出该物体形状的名称.图29-23三、能力提高16.将如图29-24所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的____________(只填序号).图29-2417.如图29-25所示的物体中,一样的为( )A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(3)图29-2518.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图29-26所示,这个几何体最多可以由___________个这样的正方体组成.图29-2619.将图29-27所示的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是( )图29-2720.如图29-28所示,说出下列四个图形各是由哪些立体图形展开得到的?图29-28四、模拟链接21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.(1)请你画出这个几何体的一种左视图.(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.图29-29参考答案一、自主学习1.画三视图时,首先确定主视图的位置.画出主视图,然后在主视图的下面画出俯视图,在主视图的右面画出左视图.主视图反映物体的_______和_______,俯视图反映物体的_______和_______,左视图反映物体的_______和_______.因此,画三视图时,主、俯视图要长对正,主、左视图要高平齐,左、俯视图要宽相等.看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.答案:长高长宽高宽2.在下列几何体中,主视图是圆的是( )答案:D3.图29-14所示的水杯的俯视图是( )图29-14答案:D4.如图29-15所示,桌面上放着一个圆柱和一个正方体.请你说出右面的三幅图的三视图.图29-14答案:俯视图主视图左视图二、基础巩固5.如图29-16所示,空心圆柱体在指定方向上的视图正确的是( )图29-16答案:C 画视图时,看得见部分的轮廓线通常画成实线,看不见部分的轮廓线通常画成虚线.6.一只小狗正在平面镜前欣赏自己的全身像(如图29-17所示),此时它所看到的全身像是( )图29-17答案:A7.小明从正面观察图29-18所示的两个物体,看到的是图中的( )图29-18答案:C8.“圆柱与球的组合体”如图29-19所示,则它的三视图是( )图29-19答案:A9.某同学把图29-20所示的几何体的三种视图画出如图29-20①②③所示(不考虑尺寸);其中错误的是哪个图?答:是________________________.图29-20答案:左视图10.图29-21是直观图的三视图,它对应的直观图是下图中的( )图29-21答案:C11.请写出三种视图都相同的两种几何体是__________、_____________.答案:略12.画出下图所示的三视图.答案:略13.一个物体的俯视图是圆,则该物体的形状是( )A.球体B.圆柱C.圆锥D.以上都有可能答案:D14.一个几何体的三种视图如图29-22所示,则这个几何体是( )图29-22A.圆柱B.圆锥C.长方体D.正方体答案:A15.一个物体的正视图、俯视图如图29-23所示,请你画出该物体的左视图并说出该物体形状的名称.图29-23答案:略三、能力提高16.将如图29-24所示放置的一个直角三角形ABC(∠C=90°),绕斜边AB旋转一周所得到的几何体的主视图是四个图形中的____________(只填序号).图29-24答案:(2)17.如图29-25所示的物体中,一样的为( )A.(1)与(2)B.(1)与(3)C.(1)与(4)D.(2)与(3)图29-25答案:A18.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图29-26所示,这个几何体最多可以由___________个这样的正方体组成.图29-26答案:1319.将图29-27所示的阴影部分剪下来,围成一个几何体的侧面,使AB、DC重合,则所围成的几何体图形是( )图29-27答案:D20.如图29-28所示,说出下列四个图形各是由哪些立体图形展开得到的?图29-28答案:(1)正方体 (2)圆柱 (3)三棱柱 (4)四棱锥四、模拟链接21.由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.(1)请你画出这个几何体的一种左视图.(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.图29-29答案:(1)左视图有以下5种情形,如图D29-6所示(只要画对一种即可)图D29-6(2)n=8,9,10,11.。

人教版九年级下册数学 29.2三视图 同步练习

人教版九年级下册数学 29.2三视图 同步练习

29.2三视图同步练习一.选择题1.一个几何体由6个相同的小正方体搭成,若它的俯视图如图所示,则它的主视图不可能()A.B.C.D.2.如图的几何体由6个相同的小正方体组成,它的左视图是()A.B.C.D.3.下列由4个大小相同的正方体搭成的几何体,左视图与其它几何体的左视图不同的为()A.B.C.D.4.如图,是由大小一样的小立方块摆成的立体图形的三视图,则摆成这个立体图形所需的小立方块的个数为()A.3B.4C.5D.65.一个机器零件如图水平放置,它的俯视图是()A.B.C.D.6.某几何体由5个相同的小立方体构成,它的俯视图如图所示,俯视图中小正方形标注的数字表示该位置上的小立方体的个数,则这个几何体的主视图是()A.B.C.D.7.如图所示方式,把图1中正方体的一个角切割掉,形成了如图2的几何体,则如图2的俯视图是()A.B.C.D.8.如图,由8个大小相同的小正方体组成的几何体中,在几号小正方体上方添加一个小正方体,其左视图可保持不变()A.①B.②C.③D.④9.图①是一个正四棱锥,切去上面小的正四棱锥后得到一正四棱台(上、下底均为正方形),如图②所示,箭头所指是俯视方向,则其俯视图是()A.B.C.D.10.如图是大小相同的小正方体搭成的几何体的俯视图,小正方形内的数字表示该位置上小正方体的数量,数字“2”的位置上的小正方体向标数字“1”位置上平移一个,下列说法正确的是()A.主视图与俯视图不变B.左视图与俯视图不变C.主视图与左视图改变D.三种视图都不变二.填空题11.下列几何体中,主视图是三角形的是.12.由几个小正方体组成的几何组合体的主视图、左视图如图所示,那么这几何组合体至少由个小正方体组成.13.如图是由大小相同的小正方体组成的简单几何体的左视图和俯视图,那么组成这个几何体的小正方体的个数可能为.14.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.15.如图,是用8个大小相同的小正方体搭成的几何体,仅在该几何体中取走一块小正方体,使得到的新几何体同时满足两个要求:(1)从正面看到的形状和原几何体从正面看到的形状相同;(2)从左面看到的形状和原几何体从左面看到的形状也相同.在不改变其它小正方体位置的前提下,可取走的小正方体的标号是.三.解答题16.如图是由5个边长为1的正方体叠放而成的一个几何体,请画出这个几何体的三视图.(用铅笔描黑)17.如图是由几个小立方块所搭几何体从上面看到的图形,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体从正面、从左面看到的图形.18.如图1,是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)图中有个小正方体;(2)请在图1右侧方格中分别画出几何体的主视图、左视图;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加个小正方体.参考答案一.选择题1.解:由俯视图可知,几何体的主视图有三列,D中有四列,所以D不可能;故选:D.2.解:从左面看有两列,从左起第一列有两个正方形,第二列有一个正方形,如图所示:故选:D.3.解:选项A、B、D的左视图均为底层是两个小正方形,上层右边是一个小正方形,而选项C的左视图底层是两个小正方形,上层的左边是一个小正方形.故选:C.4.解:由俯视图易得最底层有2个正方体,第二层有1个正方体,那么共有2+1=3个正方体组成.故选:A.5.解:从上面看,是一个矩形,矩形的里面有两条纵向的虚线.故选:B.6.解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图左边一列有1个,中间一列有1个,右边一列有2个,所以主视图是.故选:B.7.解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.8.解:如图所示:在③号小正方体上方添加一个小正方体,其左视图可保持不变.故选:C.9.解:其俯视图是故选:D.10.解:∵小正方形内的数字表示该位置上小正方体的数量,数字“2”的位置上的小正方体向标数字“1”位置上平移一个,∴俯视图不变,由于最左边最高的是3个小正方体,故其后面的小正方体移动不会影响主视图,则主视图也不变,左视图第2行高度改变,其左视图改变.故选:A.二.填空题11.解:①的主视图的一行两个矩形;②的主视图是三角形,三角形的中间有一条虚线,③的主视图是等腰三角形.∴主视图是三角形的是③.故答案为:③.12.解:∵由主视图可得组合几何体有2列,由左视图可得组合几何体有3行,∴最底层几何体最少正方体的个数为:3,∵由主视图和左视图可得第二层有一个正方体,∴该组合几何体最少共有1+3=4个正方体.故答案为:413.解:由俯视图易得最底层有4个小正方体,第二层可能有1或2或3个小正方体,那么搭成这个几何体的小正方体可能是5个或6个或7个.故答案为:5个或6个或7个14.解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图15.解:若要使从正面看到的形状和原几何体从正面看到的形状相同,则可取走的小正方体是3号或4号、5号或7号,若要使从左面看到的形状和原几何体从左面看到的形状也相同,则可取走的小正方体是1号或3号或5号,故答案为:3号或5号.三.解答题16.解:如图所示:17.解:如图所示:.18.解:(1)正方体的个数:1+3+6=10,(2)如图所示:;(3)不改变(2)中所画的主视图和左视图,最多还能在图1中添加第一排的右边2列的2个,第2排的右边第3列的2个,2+2=4.答:最多还能在图1中添加4个小正方体.故答案为:10;4.。

人教版九年级下册数学 29.2三视图 同步习题

人教版九年级下册数学 29.2三视图 同步习题

29.2三视图同步习题一.选择题1.如图所示的是由5个相同的小正方体搭成的几何体,则它的俯视图是()A.B.C.D.2.下面立体图形中,从正面、侧面、上面看,都不能看到长方形的是()A.长方体B.圆柱C.圆锥D.正四棱锥3.如图所示的几何体,下列说法正确的是()A.主视图和左视图相同B.主视图和俯视图相同C.左视图和俯视图相同D.三视图各不相同4.如图是一个由多个相同小正方体堆积而成的几何体的从上面看到的形状图,图中所示的数字为该位置小正方体的个数,则这个几何体从左面看到的形状图是()A.B.C.D.5.如图所示几何体的左视图是()A.B.C.D.6.一个小正方体的六个面分别标有数字1、2、3、4、5、6,从不同方向看到的情形如图,1、2、5对面的数字分别是()A.3、4、6B.3、6、4C.4、6、3D.6、4、37.由6个大小相同的正方体搭成的几何体如图所示,比较从三个不同方向看到的平面图形的面积,则()A.从三个不同方向看到的平面图形的面积一样大B.从正面看到的平面图形面积最小C.从左面看到的平面图形的面积最小D.从上面看到的平面图形的面积最小8.如图是由一些相同的小正方体构成的立体图形分别从正面、左面看到的形状,那么构成这个立体图形的小正方体的个数最少为()A.4B.5C.6D.79.图1所示的几何体的俯视图是()A.B.C.D.10.如图所示的几何体的主视图是()A.B.C.D.二.填空题11.如图是一个组合几何体,右边是它的两种视图,根据图中的尺寸,这个几何体的表面积是(结果保留π).12.若干个桶装方便面摆放在桌子上,小明从三个不同方向看到的图形(分别是:主视图,左视图,和俯视图)如图所示,则这一堆方便面共有个.13.一个立体图形如图,从面看到的形状是,从面看到的形状是,从面看到的形状是.14.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算该几何体的底面周长为cm.15.由一些大小相同的小正方体搭成的几何体从正面和从左面看到的图形如图,则搭成这个几何体的小正方体的个数最多为,最少为.三.解答题16.(1)请在网格中画出如图所示的几何体的主视图、左视图、俯视图;(2)已知每个小正方体的棱长为1cm,求该几何体的表面积.17.(1)画出如图所示的几何体的主视图、左视图、俯视图;(2)已知一个直棱柱,它有21条棱,其中一条侧棱长为20,底面各边长都为4.①这是几棱柱?②它有多少个面?多少个顶点?③这个棱柱的所有侧面的面积之和是多少?18.用小立方块搭一个几何体,使它从正面和上面看到的形状如图所示,从上面看到形状中小正方形中的字母表示在该位置上小立方块的个数,请问:(1)b=;c=;(2)这个几何体最少由个小立方块搭成,最多由个小立方块搭成;(3)从左面看这个几何体的形状图共有种,请在所给网格图中画出其中的任意一种.参考答案一.选择题1.解:从上面看,是一行三个小正方形.故选:C.2.解:圆锥从正面看所得到的图形是等腰三角形,从侧面看所得到的图形是等腰三角形、从上面看所得到的图形是圆,因此圆锥符合题意,故选:C.3.解:从正面看,底层是一个较大的正方形,上层右边是一个小正方形;从左边看,底层是一个较大的正方形,上层左边是一个小正方形;从上边看,是一个较大的正方形,正方形内部的右上角是一个小正方形所以三视图各不相同.故选:D.4.解:观察图形可知,这个几何体从左面看到的形状图是.故选:A.5.解:从左边看是,底层是一个矩形,上层是一个直角三角形,左齐.故选:A.6.解:根据题意,与1相邻的面有4,5,2,6,所以1的对面的数字3;与5相邻的面有1,4,2,3,所以5的对面的数字6;与2相邻的面有3,5,1,6,所以2的对面的数字4;即1、2、5对面的数字分别是3、4、6.故选:A.7.解:主视图有5个小正方形,左视图有3个小正方形,俯视图有4个小正方形,从左面看图形面积最小.故选:C.8.解:根据主视图和左视图可得:构成这个立体图形的小正方体的个数最少为2+1+1=4(个).故选:A.9.解:上面看是正方形,正方形的右侧中间是两个小正方形.故选:B.10.解:从正面看是一个矩形,矩形的中间有两条纵向的实线,两旁有两条纵向的虚线.故选:C.二.填空题11.解:两个视图分别为主视图、俯视图,由主视图和俯视图中的数据可得:这个几何体的表面积是(5×8+2×8+2×5)×2+π•4×6=66×2+24π=132+24π.故答案为:132+24π.12.解:根据三视图的形状,可得到,俯视图上每个位置上放置的个数,进而得出总数量,俯视图中的数,表示该位置放的数量,故这一堆方便面共有2+2+1=5(个).故答案为:5.13.解:一个立体图形如图,从正面看到的形状是,从上面看到的形状是,从左面看到的形状是.故答案为:正;上;左.14.解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的底面半径为=2cm,则该几何体的底面周长为=2×2π=4πcm.故答案为:4π.15.解:根据左视图和主视图,这个几何体的底层最少有4个小正方体,最多有6个小正方体,第二层有2个小正方体,第三层有1个,所以最多有6+2+1=9个小正方体,最少有4+2+1=7个小正方体,故答案为:9,7.三.解答题16.解:(1)根据几何体的主视图、左视图、俯视图的画法画出图形如下:(2)(4+4+5)×2=26(cm2)答:该几何体的表面积为26cm2.17.解:(1)根据几何体的主视图、左视图、俯视图的画法画出图形如下:(2)①∵一个直棱柱有21条棱,∵这个直棱柱是七棱柱,②七棱柱有9个面,14个顶点,③七棱柱有7个侧面,都是长为20,宽为4的长方形,所以S侧面积=20×4×7=560,答:这个直棱柱是七棱柱,它有9个面,14个顶点,侧面积之和为560.18.解:(1)b=1,c=3;(2)这个几何体最少由4+2+3=9个小立方块搭成;这个几何体最多由6+2+3=11个小立方块搭成;word版初中数学(3)能搭出满足条件的几何体共有7种情况,其中从左面看该几何体的形状图共有4种;小立方块最多时几何体的左视图如图所示:故答案为:(1)1,1;(2)9,11;(3)4.11 / 11。

人教版九年级下册 292三视图 同步练习题

人教版九年级下册 292三视图 同步练习题

初中数学人教版九年级下册29.2三视图同步练习一、选择题1.某几何体的三视图如图所示,这个几何体是()三棱柱A. 三棱锥B. C.圆柱 D.圆锥其中小正方形中的数字表示在该是由几个大小相同的小立方块所搭几何体的俯视图,2.如图,)位置的小立方块的个数,则这个几何体的主视图是(3.如图,该正方体的俯视图是())4.将一根圆柱形的空心钢管任意放置,它的主视图不可能是(下列关于这个几何体的说法正1的正方体搭成,如图,一个几何体由5个大小相同、棱长为5. )确的是(5 A.主视图的面积为3 B.左视图的面积为5 俯视图的面积为C.4三种视图的面积都是D.得到一个如图所示的零件,的小正方体,挖去一个棱长为26.从棱长为的正方体毛坯的一角,1 )则这个零件的表面积是(.A.20B.22C.24D.26过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,7. )它的俯视图为(则小正方8.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,)体的个数不可能是(A.5B.6C.7D.8小正方形中的数字表示在该位置上的立如图,是由几个小立方体所搭成的几何体的俯视图,9. )方体的个数,这个几何体的主视图是(若某几何体的三视图如图所示,则这个几何体是()10.二、填空题由三视图想象立体图时,要先分别根据主视图、俯视图和左视图想象立体图11.此外还要,然后再综合起来考虑整体图形 . 的最后结合三视图的特从线和线想象几何体看得见和看不见的部分的轮廓线,.点,将这些要素综合起来想象几何体的整体形状..12.在长方体、圆柱、圆锥、球中,三视图均一样的几何体是为轴,将正方形旋转一周,所得几何体的主,以直线AB的边长为13.如图,正方形ABCD3cm.视图的面积是. 中可得出物体的长 14.物体的三视图中,从中可以得出物体的高,从.15.一个几何体的三视图如图所示,则这个几何体的名称是桌上放着一个三棱锥和一个恻柱体,如图中的①②③三幅图分别是从哪个方向看的?按图16.填写顺序 .(填“正面”、“左面”或“上面”)17.如图是某几何体的三视图,则该几何体是放置的.18.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中 .y= , x= 的字母和数字表示该位置上小立方体的个数,求三、解答题如图是一个由多个相同的小正方体堆积而成的几何体的俯视图,图中所示数字为该位置小19..正方体的个数,请根据俯视图画出该几何体的实物图及另外两个视图.20.画出下列几何体的三视图.根据几何体的三视图画出它的表面展开图21..22.如图,已知一个零件的主视图和俯视图,请描述这个零件的形状,并补画它的左视图.23.画出圆柱体的三视图这样的几何体只有一种24.用小立方块搭成一个几何体,使得它的主视图和俯视图如图所示. 吗?它最少需要多少个小立方块?最多需要多少个小立方体块?初中数学人教版九年级下册29.2三视图同步练习答案1~10.DCAAB,CBADC11.前面、上面和左面;实;虚.12.球.13.解:直线AB为轴,将正方形旋转一周可得圆柱体,圆柱的高为3cm,底面直径为6cm,几何体的主视图是长6cm,宽3cm的矩形,因此面积为:6×3=18(cm2),故答案为:18cm2.14.主视图或左视图;主视图或俯视图.15.三棱柱.16.左面、上面、正面.17.横着;空心圆柱.18.1或2;3.19.20.21.22.23.24.块.23块,第二列块,第三列13解:由主视图可知,它自下而上共有列,第一列块,从空中俯视的块数只3列,第一、二列各块,第三列1由俯视图可知,它自左而右共有3 要最低层有一块即可.其余为综合两图可知这个几何体的形状不能确定;并且最少时为第一列中有一个三层,因此,)块(如图),最多要块(如图一层,第三列一层,共101162。

人教版九年级下册数学 29.2三视图 同步测试(含解析)

人教版九年级下册数学 29.2三视图 同步测试(含解析)

29.2三视图同步测试一.选择题1.如图所示的是由5个相同的小正方体搭成的几何体,则它的俯视图是()A.B.C.D.2.下面立体图形中,从正面、侧面、上面看,都不能看到长方形的是()A.长方体B.圆柱C.圆锥D.正四棱锥3.如图所示的几何体,它的左视图是()A.B.C.D.4.下列几何体中,三视图完全相同的是()A.正方体B.圆柱体C.圆锥体D.五棱柱5.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到的这个几何体的形状图是()A.B.C.D.6.如图所示几何体的左视图是()A.B.C.D.7.一个小正方体的六个面分别标有数字1、2、3、4、5、6,从不同方向看到的情形如图,1、2、5对面的数字分别是()A.3、4、6B.3、6、4C.4、6、3D.6、4、38.由6个大小相同的正方体搭成的几何体如图所示,比较从三个不同方向看到的平面图形的面积,则()A.从三个不同方向看到的平面图形的面积一样大B.从正面看到的平面图形面积最小C.从左面看到的平面图形的面积最小D.从上面看到的平面图形的面积最小9.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的从三个方向看得图形,下列说法正确的是()A.从正面看到的图相同B.从左面看到的图相同C.从上面看到的图相同D.从三个方向看到的图都不相同10.一个几何体由若干个相同的正方体组成,其主视图和俯视图如图所示,则这个几何体中正方体的个数最少是()A.3B.4C.5D.611.如图是由若干个完全相同的小正方体组合而成的几何体,若将小正方形①移动到小正方形②的正上方,下列关于移动后几何体的三视图说法正确的是()A.左视图发生改变B.俯视图发生改变C.主视图发生改变D.左视图、俯视图、主视图都发生改变二.填空题12.如图,是一个几何体从三个不同方向看到的平面图形,则这个几何体的侧面积是(结果保留π).13.一个立体图形如图,从面看到的形状是,从面看到的形状是,从面看到的形状是.14.由若干个相同的小正方体搭成的一个几何体从正面和从左面看到的形状用如图所示,则所需的小正方体的个数最多是个.15.已知一个圆锥体的三视图如图所示,则这个圆锥体的母线长为.三.解答题16.分析图中几何体,请在下面的网格图中画出该几何体分别从正面、左面及上面所看到的形状图.17.如图是一个由若干个小正方体搭成的几何体从上面看到的形状图,其中小正方形内的数字是该位置小正方体的个数,请你画出它从正面和从左面看到的形状图,(1)请画出它从正面看,左面看的形状图;(2)若小立方体边长为1,则它的表面积为.18.一个几何体由大小相同的立方块搭成,从上面看到的形状如图所示,其中小正方形中的数字表示在该位置的立方块个数.①在所给的方框中分别画出该几何体从正面,从左面看到的形状图;②若允许从该几何体中拿掉部分立方块,使剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉个立方块.参考答案一.选择题1.解:从上面看,是一行三个小正方形.故选:C.2.解:圆锥从正面看所得到的图形是等腰三角形,从侧面看所得到的图形是等腰三角形、从上面看所得到的图形是圆,因此圆锥符合题意,故选:C.3.解:从左边看是两个同心圆,内圆要画成实线.故选:C.4.解:A、正方体的主视图、左视图、俯视图都是正方形;故本选项正确;B、圆柱体的主视图、左视图是矩形、俯视图是圆,故本选项错误;C、圆锥体的主视图、左视图都是三角形,俯视图是圆形;故本选项错误D、五棱柱的主视图、左视图是矩形、俯视图五角形,但大小不一定相同,故本选项错误.故选:A.5.解:根据所给出的图形和数字可得:主视图有4列,每列小正方形数目分别为1,2,3,2,则符合题意的是故选:C.6.解:从左边看是,底层是一个矩形,上层是一个直角三角形,左齐.故选:A.7.解:根据题意,与1相邻的面有4,5,2,6,所以1的对面的数字3;与5相邻的面有1,4,2,3,所以5的对面的数字6;与2相邻的面有3,5,1,6,所以2的对面的数字4;即1、2、5对面的数字分别是3、4、6.故选:A.8.解:主视图有5个小正方形,左视图有3个小正方形,俯视图有4个小正方形,从左面看图形面积最小.故选:C.9.解:图①的三视图为:图②的三视图为:故选:C.10.解:结合主视图和俯视图可知,第一层立方体的个数为4,由主视图可得第二层立方体的最少的个数是1.所以这个几何体中正方体的个数最少是5.故选:C.11.解:主视图发生变化,上层的小正方形由原来位于左边变为右边;俯视图和左视图都没有发生变化,故选:C.二.填空题12.解:该几何体是圆柱.其侧面积为:π×2×4=8π(cm2).答:这个几何体的侧面积是8πcm2.故答案为:8πcm2.13.解:一个立体图形如图,从正面看到的形状是,从上面看到的形状是,从左面看到的形状是.故答案为:正;上;左.14.解:综合主视图与左视图,第一行第一列一定有2个且只能是2个,第二行第一列一定有3个且只能是3个;第一行第二列和第二行第二列,这两个位置至少有一个地方有一个,不能都没有,但可以都有1个,所以最多有:2+1+3+1=7(个).故答案为:7.15.解:根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,所以圆锥的母线长==5.故答案为:5.三.解答题16.解:如图所示:17.解:(1)如图所示:,(2)它的表面积为:5+6+5+6+6+5=32.故答案为:32.18.解:①该几何体从正面,从左面看到的图形如图所示:②拿掉后,剩下的几何体从正面看到的形状图和原几何体从上面看到的形状图相同,则最多可拿掉5个,故答案为:5.。

新人教版九年级数学下册29.2三视图练习题及答案 (1)

新人教版九年级数学下册29.2三视图练习题及答案 (1)

29.2 三视图1.下面是一些立体图形的三视图(如图),•请在括号内填上立体图形的名称.2.如图4-3-26,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?3.如图,从不同方向看下面左图中的物体,右图中三个平面图形分别是从哪个方向看到的?4.一天,小明的爸爸送给小明一个礼物,小明打开包装后画出它的主视图和俯视图如图所示.根据小明画的视图,你猜小明的爸爸送给小明的礼物是()A.钢笔 B.生日蛋糕 C.光盘 D.一套衣服5.一个几何体的主视图和左视图如图所示,它是什么几何体?请你补画出这个几何体的俯视图.6.一个物体的三视图如图所示,试举例说明物体的形状.7.已知一个几何体的三视图如图所示,则该几何体的体积为多少?8.已知几何体的主视图和俯视图如图所示.(1)画出该几何体的左视图;(2)该几何体是几面体?它有多少条棱?多少个顶点?(3)该几何体的表面有哪些你熟悉的平面图形?9.小刚的桌上放着两个物品,它的三视图如图所示,你知道这两个物品是什么吗?10.一个由几个相同的小立方体搭成的几何体的俯视图如图所示,方格里的数字表示该位置的小立方体的个数,请你画出这个几何体的主视图和左视图.11.如图所示,下列三视图所表示的几何体存在吗?如果存在,请你说出相应的几何体的名称.12.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,求x,y的值.13.马小虎准备制作一个封闭的正方体盒子,他先用5•个大小一样的正方形制成如图所示的拼接图形(实线部分),经折叠后发现还少一个面,请你在下图中的每个图形上再接一个正方形,•使新拼接成的图形经过折叠能成为一个封闭的正方体盒子.(注:添加的正方形用阴影表示)14.由几个小立方体叠成的几何体的主视图和左视图如图,求组成几何体的小立方体个数的最大值与最小值.参考答案:1.圆柱,正三棱锥 2.圆锥圆柱正方体三棱柱3.上正侧 4.B 5.略6.如粉笔,灯罩等 7.1208.(1)略(2)六面体,12条,8个(3)等腰梯形,•正方形9.长方体木板的正前方放置了一个圆柱体 10.略 11.不存在12.x=1或x=2,y=3 13.略 14.12个,7个。

人教版九年级数学下册29.2三视图同步练习(1)a

人教版九年级数学下册29.2三视图同步练习(1)a

初中数学试卷 灿若寒星整理制作第二十九章 投影与视图29.2 三视图一、课前小测:1、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子 (填“长”或“短”)2、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m ,小刚比小明矮5cm ,此刻小明的影长是________m.3、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.6m ,小明向墙壁走1m 到B处发现影子刚好落在A点,则灯泡与地面的距离CD =_______.4、圆柱的左视图是 ,俯视图是 ;5、如图,一几何体的三视图如右:那么这个几何体是 ;主视图左视图 俯视图二、基础训练:1、填空题(1)俯视图为圆的几何体是,.(2)画视图时,看得见的轮廓线通常画成,看不见的部分通常画成.(3)举两个左视图是三角形的物体例子:, .(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称 . (5)请将六棱柱的三视图名称填在相应的横线上.(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有 ( )个碟子.2、有一实物如图,那么它的主视图 ( ) 俯视图 主视图 左视图主视图 左视图 俯视图俯视图主(正)视图左视图A B C D3、下图中几何体的主视图是( ).(A) (B) (C) (D)4、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有( )(A )5桶 (B )6桶(C )9桶 (D )12桶5、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ()A .OB . 6C .快D .乐三、综合训练:1.小明从正面观察下图所示的两个物体,看到的是( )2、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A 5个B 6个C 7个D 8个3、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )4、下面是空心圆柱在指定方向上的视图,正确的是…( )B AC D正面 A B C D (A) (B) (C) (D)5、画出下面实物的三视图:第二十九章 投影与视图29.2 三视图参考答案:一、 课前小测:1、短2、35723、1564 4、矩形,圆 5、空心圆柱 二、基础训练:1、(1)球,圆柱体;(2)实线,虚线;(3)圆锥,正四棱锥,倒放的正三棱柱等;(4)圆锥;(5)俯视图,正视图,左视图;(6)12.2、A ;3、C4、B5、B三、综合训练:1、C2、D3、B ;4、A ;5、题图:主视图左视图俯视图。

人教版初中数学九年级下册《29.2 三视图》同步练习卷

人教版初中数学九年级下册《29.2 三视图》同步练习卷

人教新版九年级下学期《29.2 三视图》同步练习卷一.选择题(共25小题)1.如图,是由几个相同的小正方体组合而成的立体图形的三视图,则这个几何体的小正方体的个数是()A.5B.6C.7D.82.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体3.由若干个完全相同的小立方块搭成一个几何体,这个几何体从左面和上面看到的形状如图所示,则小立方块的个数不可能是()A.5B.6C.7D.84.如图是某几何体的三视图,则该几何体的全面积等于()A.112B.136C.124D.845.如图所示的四棱柱的主视图为()A.B.C.D.6.如图几何体的主视图是()A.B.C.D.7.下列几何体中,俯视图是三角形的是()A.B.C.D.8.如图的立体图形,从左面看可能是()A.B.C.D.9.如图,正六棱柱的主视图是()A.B.C.D.10.在下图的四个立体图形中,从正面看是四边形的立体图形有()A.1个B.2个C.3个D.4个11.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是()A.B.C.D.12.在下面四个立体图形中,从左面看与从正面看所得到的平面图形不相同的是()A.正方体B.长方体C.球D.圆锥13.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.14.如图所示的几何体的从上面看到的形状图是()A.B.C.D.15.如图,下列图形从正面看是三角形的是()A.B.C.D.16.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③17.下面四个几何体中,从左面看到的图形是四边形的几何体共有几个?()A.1个B.2个C.3个D.4个18.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A.B.C.D.19.如图的四个几何体,它们各自从正面,上面看得到的形状图相同的几何体的个数是()A.1B.2C.3D.420.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个21.下列几何体中,左视图是圆的是()A.B.C.D.22.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.23.如图是由7个大小相同的小正方体搭成的几何体,从左面看到的几何体的形状图是()A.B.C.D.24.如图所示的物体的左视图是()A.B.C.D.25.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是()A.B.C.D.二.填空题(共1小题)26.从正面看、从上面看、从左面看都是正方形的几何体是.三.解答题(共14小题)27.如图①,是由边长为1的五个相同小正方体搭成的几何体.(1)在图②中画出该几何体的左视图、俯视图;(用阴影部分表示)(2)如图①,A、B两点是其中一个正方体在同一个面上的两个顶点,若连接AB,则线段AB的长是;(填“有理数”或“无理数”)(3)在左视图和俯视图不变的情况下,最多还可以添加个小正方体.28.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.29.在桌面上,有若干个完全相同的小正方体堆成的一个几何体A,如图所示.(1)请画出这个几何体A的三视图.(2)若将此几何体A的表面喷上红漆(放在桌面上的一面不喷),则三个面上是红色的小正方体有个.(3)若现在你的手头还有一些相同的小正方体可添放在几何体A上,要保持主视图和左视图不变,则最多可以添加个小正方体.30.如图①是由一些大小相同的小正方体组合成的简单几何体.(1)请在图②的方格纸中分别画出它的主视图、左视图和俯视图.(2)保持小正方体的个数不变,只改变小正方体的位置,搭一个不同于上图的几何体,使得它的俯视图和左视图与你在方格纸中所画的一致,还有种不同的搭法.31.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状.32.如图是一个正三棱柱的主视图和俯视图:(1)你请作出它的主、左视图;(2)若AC=2,AA'=3,求左视图的面积.33.把6个相同的小正方体摆成如图所示的几何体.(1)画出该几何体的主视图、左视图、俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加个小正方体.34.如图是由6个小立方体搭成的一个几何体,根据要求完成下列问题:(1)请在下面方格纸中分别画出这个几何体的主视图、左视图和俯视图;(2)用若干小小立方体重新搭一个几何体,使它的俯视图和左视图与原几何体的俯视图、左视图一致,则这个新几何体最少要个小立方体,最多要个小立方体.35.如图,由6相同的小正方体组合成的简单几何体.(1)请在方格纸中分别画出几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么最多可以再添加个小正方体.36.画出如图所示物体的主视图、左视图、俯视图.37.如图,是由6个棱长相同的小正方形组合成的几何体.(1)请在下面方格纸中分别画出它的主视图和俯视图:(2)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和俯视图不变,那么请在下面方格纸中画出添加小正方体后所得几何体可能的左视图(画出一种即可)38.在平整的地面上,有一个由若干个相同的小立方块搭成的几何体,如图所示.(1)请依次画出从正面、左面、上面看这个几何体得到的形状图;(2)若你手头还有一些相同的小立方块,如果保持从上面和左面观察到的形状图不变,那么最多可以添加几个小立方块?39.如图是6个小正方体搭成的几何体,请画出从它正面、左面和上面看到的平面图形.40.如图1,在平整的地面上,用若干个棱长完全相同的小正方体堆成一个几何体.(1)请画出这个几何体的三视图.(2)如图2,如果现在你手头还有一些相同的小正方体,要求保持俯视图和左视图不变,最多可以再添加几个小正方体.人教新版九年级下学期《29.2 三视图》2019年同步练习卷参考答案与试题解析一.选择题(共25小题)1.如图,是由几个相同的小正方体组合而成的立体图形的三视图,则这个几何体的小正方体的个数是()A.5B.6C.7D.8【分析】根据该几何体的俯视图可确定该几何体共有两行三列,再结合主视图,即可得出该几何体的小正方体的个数.【解答】解:综合三视图可知,这个几何体的底层应该有4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个.故选:A.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.2.如图是从三个方向看某个几何体得出的平面图形,该几何体是()A.棱柱体B.圆柱体C.圆锥体D.球体【分析】由主视图和俯视图可得此几何体为柱体,根据左视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和俯视图都是长方形,∴此几何体为柱体,∵左视图是一个圆,∴此几何体为平放的圆柱体.故选:B.【点评】本题考查了由三视图判断几何体,用到的知识点为:三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.3.由若干个完全相同的小立方块搭成一个几何体,这个几何体从左面和上面看到的形状如图所示,则小立方块的个数不可能是()A.5B.6C.7D.8【分析】根据左面看与上面看的图形,得到小立方块的个数可能的情况,从而确定正确的选项.【解答】解:根据俯视图发现最底层由5个小立方块,从左视图发现第二层最多有3个小立方块,最少有1个,即小立方块的个数为6或7或8,不可能为5,故选:A.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字4.如图是某几何体的三视图,则该几何体的全面积等于()A.112B.136C.124D.84【分析】由三视图可知该几何体是一个三棱柱,先根据勾股定理得到主视图三角形等边的长,再根据三棱柱的全面积=2个底面积+3个侧面积,列式计算即可求解.【解答】解:如图:由勾股定理=3,3×2=6,6×4÷2×2+5×7×2+6×7=24+70+42=136.故选:B.【点评】考查了由三视图判断几何体,由三视图求几何体的表面积,关键是由三视图得到数据的对应量.5.如图所示的四棱柱的主视图为()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:B.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.6.如图几何体的主视图是()A.B.C.D.【分析】依据从该几何体的正面看到的图形,即可得到主视图.【解答】解:由图可得,几何体的主视图是:故选:A.【点评】本题主要考查了三视图,解题时注意:视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.7.下列几何体中,俯视图是三角形的是()A.B.C.D.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:A、圆柱的俯视图是圆,故本选项错误;B、三棱锥的俯视图是三角形,故本选项正确;C、长方体的俯视图是长方形,故本选项错误;D、六棱柱的俯视图是六边形,故本选项错误;故选:B.【点评】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键.8.如图的立体图形,从左面看可能是()A.B.C.D.【分析】依据几何体的位置,从左面看该立体图形,可得左视图为一个三角形.【解答】解:如图的立体图形,从左面看可能是:故选:A.【点评】本题主要考查了简单几何体的三视图,掌握左视图的观察方向是解决问题的关键.9.如图,正六棱柱的主视图是()A.B.C.D.【分析】直接依据主视图即从几何体的正面观察,进而得出答案.【解答】解:正六棱柱主视图的是:故选:D.【点评】此题主要考查了简单几何体的三视图,正确把握观察角度是解题的关键.10.在下图的四个立体图形中,从正面看是四边形的立体图形有()A.1个B.2个C.3个D.4个【分析】找到从正面看所得到的图形比较即可.【解答】解:正方体的正视图是四边形;球的正视图是圆;圆锥的正视图是等腰三角形;圆柱的正视图是四边形;是四边形的有两个.故选:B.【点评】本题考查了三视图的知识,正视图是从物体的正面看得到的视图.11.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.依此找到从正面、左面、上面观察都不可能看到长方形的图形.【解答】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.【点评】本题重点考查了三视图的定义以及考查学生的空间想象能力.12.在下面四个立体图形中,从左面看与从正面看所得到的平面图形不相同的是()A.正方体B.长方体C.球D.圆锥【分析】主视图、左视图是分别从物体正面、左面看所得到的图形.根据主视图与左视图相同,可得答案.【解答】解:A、从左面看与从正面看都是正方形,即得到的平面图形相同;B、从左面看是小长方形,从正面看大长方形,得到的平面图形不相同;C、从左面看与从正面看都是圆,即得到的平面图形相同;D、从左面看与从正面看都是三角形,即得到的平面图形相同;本题是选择从左面看与从正面看所得到的平面图形不相同的,故选:B.【点评】本题考查了简单几何体的三视图,非常简单,锻炼了学生的空间想象力和抽象思维能力.13.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.【分析】根据圆柱从正面看的平面图形是矩形进行解答即可.【解答】解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.【点评】本题考查了简单几何体的三视图,关键是掌握所看的位置,以及注意所有的看到的棱都应表现在三视图中.14.如图所示的几何体的从上面看到的形状图是()A.B.C.D.【分析】从上面看是一个长方形,中间两条竖实线;据此画出即可.【解答】解:如图所示的几何体的从上面看到的形状图是.故选:D.【点评】考查了简单几何体的三视图,画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等15.如图,下列图形从正面看是三角形的是()A.B.C.D.【分析】分别写出各选项中几何体的从正面看到的图形,进一步选择答案即可.【解答】解:A、三棱柱从正面看到的是长方形,不合题意;B、圆台从正面看到的是梯形,不合题意;C、圆锥从正面看到的是三角形,符合题意;D、长方体从正面看到的是长方形,不合题意.故选:C.【点评】此题主要考查了简单几何体的三视图,关键是掌握简单几何体的特征.16.如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是()A.①②B.①③C.②③D.③【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正面看可得到两个左右相邻的中间没有界线的长方形,①错误;从左面看可得到两个上下相邻的中间有界线的长方形,②错误;从上面看可得到两个左右相邻的中间有界线的长方形,③正确.故选:D.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.17.下面四个几何体中,从左面看到的图形是四边形的几何体共有几个?()A.1个B.2个C.3个D.4个【分析】四个几何体的左视图:圆柱是矩形,四棱锥是等腰三角形,圆锥是等腰三角形,正方体是正方形,由此可确定答案.【解答】解:因为圆柱的左视图是矩形,四棱锥的左视图是等腰三角形,圆锥的左视图是等腰三角形,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体;故选:B.【点评】本题主要考查三视图的左视图的知识;考查了学生的空间想象能力,属于基础题.18.如图,在下面的四个几何体中,从它们各自的正面和左面看,不相同的是()A.B.C.D.【分析】从正面看是主视图,从左面看是左视图,利用主、俯:长对正;主、左:高平齐;俯、左:宽相等可对各选项进行判断.【解答】解:A、左视图和主视图都是相同的正方形,所以A选项错误;B、左视图和主视图虽然都是长方形,但是左视图的长方形的宽为三棱柱的底面三角形的高,主视图的长方形的宽为三棱柱的底面三角形的边长,所以B选项正确;C、左视图和主视图都是相同的长方形,所以C选项错误;D、左视图和主视图都是相同的等腰三角形,所以D选项错误.故选:B.【点评】本题考查了学生的思考能力和对几何体三种视图的空间想象能力.19.如图的四个几何体,它们各自从正面,上面看得到的形状图相同的几何体的个数是()A.1B.2C.3D.4【分析】主视图、俯视图是分别从物体正面、上面看所得到的图形.根据主视图与俯视图相同,可得答案.【解答】解:①正方体的主视图与俯视图都是边长相等的正方形,符合题意;②三棱柱的主视图是长方形,俯视图是三角形,不符合题意;③圆柱的主视图是长方形,俯视图是圆,不符合题意;④圆锥的主视图是等腰三角形,俯视图是圆,不符合题意;故选:A.【点评】本题考查了简单几何体的三视图,考核了学生的空间想象力.20.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有()A.1个B.2个C.3个D.4个【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【解答】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.21.下列几何体中,左视图是圆的是()A.B.C.D.【分析】分别找到四个立体图形的左视图即可,左视图是从左面看所得到的平面图形.【解答】解:A、球的三视图都是圆,符合题意;B、圆柱的左视图是矩形,不符合题意;C、圆锥的左视图是等腰三角形,不符合题意;D、圆台的左视图是等腰梯形,不符合题意;故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握左视图所看的位置.22.下列四个立体图形中,从正面看到的图形与其他三个不同的是()A.B.C.D.【分析】根据图中的主视图解答即可.【解答】解:A、图中的主视图是2,1;B、图中的主视图是2,1;C、图中的主视图是2,1;D、图中的主视图是2,2;故选:D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置.23.如图是由7个大小相同的小正方体搭成的几何体,从左面看到的几何体的形状图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是两个小正方形,第二、三层左边一个小正方形,故选:C.【点评】本题考查了简单几何体的三视图,从左边看得到的图象是左视图.24.如图所示的物体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是1个小正方形,第二层1个小正方形,故选:A.【点评】本题考查了简单几何体的三视图,从左边看得到的图象是左视图.25.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是()A.B.C.D.【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【解答】解:从正面看到的平面图形是,故选:A.【点评】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.二.填空题(共1小题)26.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.三.解答题(共14小题)27.如图①,是由边长为1的五个相同小正方体搭成的几何体.(1)在图②中画出该几何体的左视图、俯视图;(用阴影部分表示)(2)如图①,A、B两点是其中一个正方体在同一个面上的两个顶点,若连接AB,则线段AB的长是无理数;(填“有理数”或“无理数”)(3)在左视图和俯视图不变的情况下,最多还可以添加2个小正方体.【分析】(1)根据左视图和俯视图作图即可得;(2)根据勾股定理计算可得;(3)在左视图和俯视图不变的情况下,可以在从作数第2列和第3列后面一排各添加1个正方体,据此可得.【解答】解:(1)如图所示:(2)连接AB,则线段AB的长是,为无理数,故答案为:无理数;(3)在左视图和俯视图不变的情况下,可以在从作数第2列和第3列后面一排各添加1个正方体,故答案为:2.【点评】本题主要考查作图﹣三视图,解题的关键是掌握左视图和俯视图、主视图的概念与无理数.28.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.【分析】(1)观察几何体,作出三视图即可.(2)由已知条件可知,从正面看有2列,每列小正方数形数目分别为3,2;从左面看有2列,每列小正方形数目分别为2,3.据此可画出图形.【解答】解:(1)如图所示:(2)如图所示:【点评】此题主要考查了几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视图的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.29.在桌面上,有若干个完全相同的小正方体堆成的一个几何体A,如图所示.(1)请画出这个几何体A的三视图.(2)若将此几何体A的表面喷上红漆(放在桌面上的一面不喷),则三个面上是红色的小正方体有2个.(3)若现在你的手头还有一些相同的小正方体可添放在几何体A上,要保持主视图和左视图不变,则最多可以添加4个小正方体.【分析】(1)根据三视图的定义,画出三视图即可.(2)根据题意,找出三个面是红色的小正方体即可.(3)根据三视图的定义,解答即可.【解答】解:(1)三视图如图所示:(2)三个面上是红色的小正方体有2个,故答案为2.(3)要保持主视图和左视图不变,则最多可以添加4个小正方体,故答案为4.【点评】本题考查作图﹣三视图,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.30.如图①是由一些大小相同的小正方体组合成的简单几何体.(1)请在图②的方格纸中分别画出它的主视图、左视图和俯视图.(2)保持小正方体的个数不变,只改变小正方体的位置,搭一个不同于上图的几何体,使得它的俯视图和左视图与你在方格纸中所画的一致,还有2种不同的搭法.【分析】(1)根据三视图的定义画出图形即可.(2)将最上面的小正方体左右平移,得到的几何体的俯视图和左视图不变,有2种情形.【解答】解:(1)三视图如图所示:(2)将最上面的小正方体左右平移,得到的几何体的俯视图和左视图不变,有2种情形.故答案为:2.。

新人教版九年级数学下册 29.2 三视图 同步练习1(含答案)

新人教版九年级数学下册 29.2 三视图  同步练习1(含答案)

第二十九章 投影与视图29.2 三视图一、课前小测:1、身高相同的甲、乙两人分别距同一路灯2米、3米,路灯亮时,甲的影子比乙的影子(填“长”或“短”)2、小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m ,小刚比小明矮5cm ,此刻小明的影长是________m.3、墙壁D处有一盏灯(如图),小明站在A处测得他的影长与身长相等都为1.6m ,小明向墙壁走1m 到B处发现影子刚好落在A点,则灯泡与地面的距离CD =_______.4、圆柱的左视图是 ,俯视图是 ;5、如图,一几何体的三视图如右:那么这个几何体是 ;主视图左视图二、基础训练:1、填空题(1)俯视图为圆的几何体是 ,.(2)画视图时,看得见的轮廓线通常画成,看不见的部分通常画成.(3)举两个左视图是三角形的物体例子:, .(4)如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称.(5)请将六棱柱的三视图名称填在相应的横线上.(6)一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有 ()个碟子.2、有一实物如图,那么它的主视图 ( )AB C D3、下图中几何体的主视图是( ).俯视图 主视图 左视图主视图俯视图主(正)视图左视图(A) (B) (C ) (D)4、若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有( )(A )5桶 (B ) 6桶(C )9桶 (D )12桶5、水平放置的正方体的六面分别用“前面、后面、上面、下面、左面、右面”表示,如图是一个正方体的表面展开图,若图中“2”在正方体的前面,则这个正方体的后面是 ( )A .OB . 6C .快D .乐三、综合训练:1.小明从正面观察下图所示的两个物体,看到的是( )2、右图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是( )A 5个B 6个C 7个D 8个3、如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是 ( )4、下面是空心圆柱在指定方向上的视图,正确的是…( )BAC D A B C D (A) (B) (C) (D)5、画出下面实物的三视图:第二十九章 投影与视图29.2 三视图 参考答案:课前小测:1、短2、35723、15644、矩形,圆5、空心圆柱 二、基础训练:1、(1)球,圆柱体;(2)实线,虚线;(3)圆锥,正四棱锥,倒放的正三棱柱等;(4)圆锥;(5)俯视图,正视图,左视图;(6)12.2、A;3、C4、B5、B三、综合训练:1、C2、D3、B;4、A;5、题图:俯视图主视图左视图。

人教版初中数学九年级下册《29.2 三视图》同步练习卷(1)

人教版初中数学九年级下册《29.2 三视图》同步练习卷(1)

人教新版九年级下学期《29.2 三视图》同步练习卷一.填空题(共26小题)1.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有种.2.已知一个几何体的三视图如图所示,则该几何体是.3.某几何体的主视图、左视图和俯视图分别如图,则该几何体的体积为4.由几个相同的小正方体搭成的几何体从三面看的形状如图所示,则搭成的这个几何体的小正方体的个数是.5.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有.7.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放个小正方体.8.若一个圆锥的主视图如图,其中AB=6cm,BC=4cm,则该圆锥的侧面积为cm2.9.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于.10.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有种.11.一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.12.下列某种几何体从正面、左面、上面看到的形状图都相同,则这个几何体是(填写序号)①三棱锥;②圆柱;③球.13.从正面看、从上面看、从左面看都是正方形的几何体是.14.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是.15.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示,这个几何体是由个小立方块搭成的.16.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要个小立方块.17.一个几何体的三种视图如图所示,这个几何体的表面积是.(结果保留π)18.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是.19.请写出一个三视图都相同的几何体:.20.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是.21.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为cm.22.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为.23.某几何体的三视图如图所示,则这个几何体的名称是.24.长方体的主视图与俯视图如图所示,则这个长方体的体积是.25.用八个同样大小的小立方体粘成一个大立方体如图1,得到的几何体的三视图如图2所示,若小明从八个小立方体中取走若干个,剩余小立方体保持原位置不动,并使得到的新几何体的三视图仍是图2,则他取走的小立方体最多可以是个.26.如图是由大小相同的小正方体组成的简单几何体的主视图和左视图,那么组成这个几何体的小正方体的个数最少为个,最多为个.二.解答题(共24小题)27.如图是由一些棱长为单位1的相同的小正方体组合成的简单几何体.(1)请在右侧的方格中分别画出该几何体从正面和从左面看到的形状图;(2)不改变所画的从正面和从左面看到的形状图,最多还能在图中添加多少个小正方体?28.如图,是一个由边长为a的多个小立方块搭成的几何体.(1)从正面、左面、上面观察该几何体,分别画出你所看到的几何体的形状图;(2)该几何体的表面积是.29.如图,是小红用八块相同的小立方体搭成的一个几何体,请你在下面相应的位置分别画出从正面、左面和上面看所得到的几何体的形状图.(在答题卡上画完图后请用黑色笔描图)30.(1)如图1,AB=97,AD=40,点E在线段DB上,DC:CE=1:2,CE:EB=3:5,求AC的长度;(2)在下面4×4的网格中,请分别画出图2所示的几何体从三个方向看到的平面图形.31.某个几何体由若干个相同的小立方体组成,从正面和左面看到的形状图如图1所示:(1)这个几何体可以是图2甲、乙、丙中的;(2)这个几何体最多由个小立方块堆成:(3)当堆成这个几何体的小立方块个数最少时,画出从上面看到的形状图.32.如图是一些小正方块所搭几何体,请你在下面的方格中画出这个几何体的主视图和左视图.33.如图是一个几何体的三视图.(1)判断这个几何体的形状;(2)根据图中数据(单位:cm),求它的表面积和体积.34.如图所示,请画出这个几何体的三视图.35.如图①,是由边长为1的五个相同小正方体搭成的几何体.(1)在图②中画出该几何体的左视图、俯视图;(用阴影部分表示)(2)如图①,A、B两点是其中一个正方体在同一个面上的两个顶点,若连接AB,则线段AB的长是;(填“有理数”或“无理数”)(3)在左视图和俯视图不变的情况下,最多还可以添加个小正方体.36.如图是一些棱长均为2cm的小立方块所搭几何体从上面看到的形状图,小正方形中的数字表示该位置的小立方块的个数.(1)请画出从正面和左面看到的这个几何体形状图;(2)这个几何体的体积是cm3.37.李明和同学们一起研究“从三个不同方向看问题的形状”.(1)图1是由几个大小相同的小立方体搭成的几何体,请画出从正面看到的这个几何体的形状图;(2)图2是由几个大小相同的小立方体搭成的几何体,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示该位置的小立方体的个数.请画出从左面看到的这个几何体的形状图.38.在桌面上,有若干个完全相同的小正方体堆成的一个几何体A,如图所示.(1)请画出这个几何体A的三视图.(2)若将此几何体A的表面喷上红漆(放在桌面上的一面不喷),则三个面上是红色的小正方体有个.(3)若现在你的手头还有一些相同的小正方体可添放在几何体A上,要保持主视图和左视图不变,则最多可以添加个小正方体.39.如图①是由一些大小相同的小正方体组合成的简单几何体.(1)请在图②的方格纸中分别画出它的主视图、左视图和俯视图.(2)保持小正方体的个数不变,只改变小正方体的位置,搭一个不同于上图的几何体,使得它的俯视图和左视图与你在方格纸中所画的一致,还有种不同的搭法.40.如图,在平整的地面上,10个完全相同的棱长为8cm的小正方体堆成一个几何体.(1)在下面的网格中画出从左面看和从上面看的形状图.(2)如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.41.由若干个相同的小立方体组成一个几何体,几何体的俯视图如图所示,其中的数字表示在该位置上小立方体的层数,请分别画出它的主视图和左视图(画图痕迹用黑色签字笔加粗加黑).42.根据如图所示的主视图、左视图、俯视图,想象这个物体的形状,解决下列问题:(1)说出这个几何体的名称;(2)若如图所示的主视图的长、宽分别为5、2,求该几何体的体积.(结果保留π)43.从正面、左面、上面观察如图所示的几何体,分别画出你所看到的几何体的形状.44.如图是一个正三棱柱的主视图和俯视图:(1)你请作出它的主、左视图;(2)若AC=2,AA'=3,求左视图的面积.45.如图,是由一些棱长都为1cm的小正方体组合成的简单几何体.(1)该几何体的表面积(含下底面)是cm2;(2)该几何体的主视图如图所示,请在下面方格纸中分别画出它的左视图和俯视图.(3)若使该几何体主视图、俯视图不发生改变,最多还可以在几何体上再堆放个相同的小正方体.46.(1)根据如图(1)所示的主视图、左视图、俯视图,说出这个几何体的名称.(2)画出如图(2)所示几何体的主视图、左视图、俯视图.47.如图是某几何体从不同方向看到的图形.(1)写出这个几何体的名称;(2)若从正面看的高为10cm,从上面看的圆的直径为4m,求这个几何体的侧面积(结果保留π)48.按要求完成下列视图问题,(其中小正方体的棱长为1)(1)如图(一),它是由六个同样大小的正方体摆成的几何体.将正方体①移走后,新几何体的三视图与原几何体的三视图相比,哪一个视图没有发生改变?(2)如图(二),请你借助虚线网格(图四)画出该几何体的俯视图,该几何体的体积为.(3)如图(三),它是由几个小立方块组成的俯视图,小正方形上的数字表示该位置上的正方体的个数,请你借助虚线网格(图五)画出该几何体的主视图.49.由大小相同,棱长为1cm的小立方体块搭成的几何体如图所示(1)请在如图的方格纸中分别画出该几何体的主视图和左视图;(2)该几何体的表面积为cm2(包括底面积);(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的主视图和左视图不变,那么最多可以添加个小正方体.50.用小立方块搭一几何体,使它的主视图和俯视图如图所示.俯视图中小正方形中的字母表示在该位置小立方块的个数,请问:(1)a表示几?b的最大值是多少?(2)这个几何体最少由几个小正方块搭成?最多呢?人教新版九年级下学期《29.2 三视图》2019年同步练习卷参考答案与试题解析一.填空题(共26小题)1.一个由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,则这个几何体的搭法共有3种.【分析】由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.根据俯视图即可解决问题.【解答】解:由题意俯视图:除了A,B,C不能确定,其余位置上的小立方体是确定的数字如图所示.∵由13个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,∴A为1,B为2,C为2或A为2,B为2,C为1或A为2,B为1,C为2,共三种情形,故答案为3.【点评】本题考查三视图判定几何体,解题的关键是理解题意,灵活运用所学知识解决问题.2.已知一个几何体的三视图如图所示,则该几何体是圆柱.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看所得到的图形,从而得出答案.【解答】解:俯视图为圆的几何体为球,圆锥,圆柱,再根据其他视图,可知此几何体为圆柱.故答案为:圆柱.【点评】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.3.某几何体的主视图、左视图和俯视图分别如图,则该几何体的体积为3π【分析】根据三视图可以判断该几何体为倒放的圆柱,圆柱的底面半径为1,高为3,据此求得其体积即可.【解答】解:根据三视图可以判断该几何体为圆柱,圆柱的底面半径为1,高为3,故体积为:πr2h=π×1×3=3π,故答案为:3π.【点评】本题考查了由三视图判断几何体的知识,解题的关键是了解圆柱的三视图并清楚其体积的计算方法.4.由几个相同的小正方体搭成的几何体从三面看的形状如图所示,则搭成的这个几何体的小正方体的个数是5.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.【解答】解:综合三视图,我们可得出,这个几何体的底层应该有2+1=3个小正方体;第二层应该有1个小正方体;第三层应有1个小正方体;因此搭成这个几何体的小正方体的个数是3+1+1=5个.故答案为:5.【点评】本题意在考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.5.如图是一个几何体的三个视图,若这个几何体的体积是24,则它的主视图的面积是12.【分析】由2个视图是长方形,那么这个几何体为棱柱,另一个视图是三角形,那么可得该几何体是三棱柱,由三视图知,三棱柱的正面的高是3,根据三棱柱的体积公式得到三角形的底,根据三角形公式列式计算即可.【解答】解:由三视图知,几何体是一个三棱柱,三棱柱的正面是高为3的三角形,∵这个几何体的体积是24,∴三角形的底为=8,∴它的主视图的面积=×8×3=12,故答案为:12.【点评】此题考查了由三视图判断几何体和几何体的表面积求法,正确判断出几何体的形状是解题的关键.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图①主视图、②左视图、③俯视图中,是中心对称图形的有③俯视图.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,主视图是1,2,1,不是中心对称图形,左视图是1,2,1,不是中心对称图形,故答案为:③俯视图【点评】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图,又利用了中心对称图形.7.如图,是由10个完全相同的小正方体堆成的几何体.若现在你还有若干个相同的小正方体,在保证该几何体的从上面、从正面、从左面看到的图形都不变的情况下,最多还能放1个小正方体.【分析】根据主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图,可得答案.【解答】解:主视图是第一层三个小正方形,第二层是左边一个小正方形,中间一个小正方形,第三层是左边一个小正方形,俯视图是第一层三个小正方形,第二层三个小正方形,左视图是第一层两个小正方形,第二层两个小正方形,第三层左边一个小正方形,不改变三视图,中间第二层加一个,故答案为:1.【点评】本题考查了简单几何体的三视图,主视图是从正面看得到图形是主视图,从上面看得到的图形是俯视图,从左面看得到的图形是左视图.8.若一个圆锥的主视图如图,其中AB=6cm,BC=4cm,则该圆锥的侧面积为12πcm2.【分析】先根据主视图得出圆锥底面圆的半径为2cm,母线长为6cm,再根据扇形的面积公式S=LR求解可得.【解答】解:由题意知,该圆锥底面圆的半径为2cm,母线长为6cm,则该圆锥的侧面积为×2π×2×6=12π(cm2),故答案为:12π.【点评】本题主要考查由三视图判断几何体及圆锥的计算,解题的关键是掌握圆锥侧面积的计算和圆锥的三视图.9.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,则这个长方体的体积等于24cm3.【分析】根据长方体的体积公式可得.【解答】解:根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故答案为:24cm3.【点评】此题主要考查了简单几何体的三视图,关键是掌握长方体的体积公式.10.如图是由一些大小相同的小正方体组成的简单几何体的左视图和俯视图,符合条件的几何体有7种.【分析】从俯视图中可以看出最底层小正方体的个数及形状,从左视图可以看出每一层小正方体的层数和个数,从而得出答案.【解答】解:该几何体中小正方体的分布情况有如下7种可能结果,故答案为:7.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.11.一个由9个大小相同的正方体组成的立体图形如图所示,从左面观察这个立体图形,将得到的平面图形的示意图画在如下的画图区中.【分析】根据从左面看得到的图形是左视图,可得答案.【解答】解:从左面观察这个立体图形,分别是2个正方形,1个正方形,1个正方形,如图所示:【点评】本题考查了简单组合体的三视图,关键是把握好三视图所看的方向,从左面看得到的图形是左视图.12.下列某种几何体从正面、左面、上面看到的形状图都相同,则这个几何体是③(填写序号)①三棱锥;②圆柱;③球.【分析】根据常见几何体的三视图可得答案.【解答】解:球的三视图均为全等的圆,故答案为:③.【点评】本题主要考查由三视图判断几何体,解题的关键是掌握常见几何体的三视图及三视图的概念.13.从正面看、从上面看、从左面看都是正方形的几何体是正方体.【分析】正方体从三个方向看到的形状图都是正方形,即三视图都是正方形.【解答】解:一个几何体从三个方向看到的形状图都是正方形,即三视图均为正方形,这样的几何体是正方体.故答案为:正方体.【点评】本题考查由三视图确定几何体的形状,关键是根据对几何体的认识解答.14.由一些完全相同的小正方体搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是4或5.【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,上层最多有2个,最少1个,下层一定有3个,∴组成这个几何体的小正方体的个数可能是4个或5个,故答案为:4或5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示,这个几何体是由5个小立方块搭成的.【分析】从俯视图中可以看出最底层小立方块的个数及形状,从主视图可以看出每一层小立方块的层数和个数,从左视图可看出每一行小立方块的层数和个数,从而算出总的个数.【解答】解:由俯视图易得最底层小立方块的个数为4,由其他视图可知第二层有一个小立方块,那么共有4+1=5个小立方块.故答案为:5.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.16.一个几何体有若干大小相同的小立方块搭成,如图分别是从它的正面、左面看到的形状图,则搭成该几何体最多需要14个小立方块.【分析】从主视图上弄清物体的上下和左右形状,从左视图上弄清楚物体的上下和前后形状,综合分析,即可得出答案.【解答】解:根据主视图和左视图可得:搭这样的几何体最多需要6+3+5=14个小正方体;故答案为:14.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图;注意主视图主要告知组成的几何体的层数和列数.17.一个几何体的三种视图如图所示,这个几何体的表面积是100π.(结果保留π)【分析】根据三视图正视图以及左视图都为矩形,底面是圆形,则可想象出这是一个圆柱体,再根据表面积=侧面积+底面积×2列式计算即可.【解答】解:根据三视图正视图以及左视图都为矩形,底面是圆形,可得出这是一个圆柱体,∵圆柱的直径为10,高为5,∴表面积=π×10×5+π×(×10)2×2=100π.故答案为:100π.【点评】此题考查了由三视图判断几何体,用到的知识点是几何体的表面积,本题难点是确定几何体的形状,关键是根据公式列出算式.18.如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是5.【分析】先得出从上面看所得到的图形,再求出俯视图的面积即可.【解答】解:从上面看易得第一行有3个正方形,第二行有2个正方形,共5个正方形,面积为5.故答案为5.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,同时考查了面积的计算.19.请写出一个三视图都相同的几何体:球(或正方体).【分析】三视图分为主视图、左视图、俯视图,分别是从物体正面、左面和上面看,所得到的图形,找到从3个方向得到的图形全等的几何体即可.【解答】解:球的三视图是3个全等的圆;正方体的三视图是3个全等的正方形,故答案为:球(或正方体).【点评】考查三视图的有关知识,注意三视图都相同的常见的几何体有球或正方体.20.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是4πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,【点评】考查学生对三视图掌握程度和灵活运用能力,关键是由主视图和左视图确定是柱体,锥体还是球体.21.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为4cm.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.【点评】此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.22.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为108.【分析】观察该几何体的三视图发现该几何体为正六棱柱,然后根据提供的尺寸求得其侧面积即可.【解答】解:观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,所以其侧面积为3×6×6=108,故答案为:108.【点评】本题考查了由三视图判断几何体的知识,解题的关键是能够根据三视图判断几何体的形状及各部分的尺寸,难度不大.23.某几何体的三视图如图所示,则这个几何体的名称是圆柱.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为长方形判断出是柱体,根据俯视图是圆形可判断出这个几何体应该是圆柱,故答案为:圆柱.【点评】考查了由三视图判断几何体,主视图和左视图的大致轮廓为长方形的几何体为柱体,俯视图为圆就是圆柱.24.长方体的主视图与俯视图如图所示,则这个长方体的体积是36.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档