最新人教A版必修四高中数学同步习题1.2任意角的三角函数1.2.1(一)和答案

合集下载

【四维备课】高中数学 1.2.1《任意角的三角函数》同步练习(1) 新人教A版必修4

【四维备课】高中数学 1.2.1《任意角的三角函数》同步练习(1) 新人教A版必修4

1.2.1《任意角的三角函数》同步练习一、选择题1. α是第二象限角,P (x ,5)为其终边上一点,且x 42cos =α,则αsin 的值为( )A. 410B. 46C. 42D.410- 2. α是第二象限角,且2cos 2cos αα-=,则2α是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3.函数|cos x ||tan x |y cos x tan x =+的值域是( )A. {1, 2}B. {-2,0,2}C. {-2,2}D. {0, 1, 2}4.如果,42ππ<θ<那么下列各式中正确的是( ) A.cos tan sin θ<θ<θ B.sin cos tan θ<θ<θC.tan sin cos θ<θ<θD.cos sin tan θ<θ<θ二、填空题5. 已知α的终边过(-a 39,2+a )且0cos ≤α,0sin >α,则α的取值范围是 。

6. 函数x x y tan sin +=的定义域为 。

7. 4tan 3cos 2sin ⋅⋅的值为 (正数,负数,0,不存在)。

三、解答题8.已知角α的终边上一点P 的坐标为(3,y -)(y 0≠),且2sin y α=,求cos tan αα和。

9.若角θ的终边过P (t 4-,t 3)(0≠t )求θθcos sin 2+的值。

1.2.1任意角的三角函数同步练习一、选择题:1.A 2 .C 3.B 4 . D二、填空题5.]3,2(-6. ⎭⎬⎫⎩⎨⎧Z ∈+≠k k x x ,2|ππ 7.负数三、解答题8.解:由题意,得:2y2sin y43y α==+解得:y 5=±,所以615cos ,tan 43α=-α=±9.解:∵ t x 4-=,t y 3= ∴ t t t r 5)3()4(22=+-= 当0>t 时,5353sin ===t tr yθ,5454cos -=-==t t r x θ ∴ 5254532cos sin 2=-⨯=+θθ当0<t 时,53sin -=θ,54cos =θ∴ 5254)53(2cos sin 2-=+-⨯=+θθ。

人教版高中数学必修四1.2任意角的三角函数1.2.1二含答案

人教版高中数学必修四1.2任意角的三角函数1.2.1二含答案

1.2.1 任意角的三角函数(二) 课时目标 1.掌握正弦、余弦、正切函数的定义域.2.了解三角函数线的意义,能用三角函数线表示一个角的正弦、余弦和正切.1.三角函数的定义域正弦函数y =sin x 的定义域是______;余弦函数y =cos x 的定义域是______;正切函数y =tan x 的定义域是_____________________________________________________________.2.三角函数线如图,设单位圆与x 轴的正半轴交于点A ,与角α的终边交于P 点.过点P 作x 轴的垂线PM ,垂足为M ,过A 作单位圆的切线交OP 的延长线(或反向延长线)于T 点.单位圆中的有向线段______、______、________分别叫做角α的正弦线、余弦线、正切线.记作:sin α=______,cos α=______,tan α=______.一、选择题1. 如图在单位圆中角α的正弦线、正切线完全正确的是( )A .正弦线PM ,正切线A ′T ′B .正弦线MP ,正切线A ′T ′C .正弦线MP ,正切线ATD .正弦线PM ,正切线AT2.角α(0<α<2π)的正、余弦线的长度相等,且正、余弦符号相异,那么α的值为( ) A.π4 B.3π4 C.7π4 D.3π4或7π43.若α是第一象限角,则sin α+cos α的值与1的大小关系是( )A .sin α+cos α>1B .sin α+cos α=1C .sin α+cos α<1D .不能确定4.利用正弦线比较sin 1,sin 1.2,sin 1.5的大小关系是( )A .sin 1>sin 1.2>sin 1.5B .sin 1>sin 1.5>sin 1.2C .sin 1.5>sin 1.2>sin 1D .sin 1.2>sin 1>sin 1.5 5.若0<α<2π,且sin α<32,cos α>12,则角α的取值范围是( ) A.⎝⎛⎭⎫-π3,π3 B.⎝⎛⎭⎫0,π3 C.⎝⎛⎭⎫5π3,2π D.⎝⎛⎭⎫0,π3∪⎝⎛⎭⎫5π3,2π 6.如果π4<α<π2,那么下列不等式成立的是( ) A .cos α<sin α<tan α B .tan α<sin α<cos αC .sin α<cos α<tan αD .cos α<tan α<sin α二、填空题7.在[0,2π]上满足sin x ≥12的x 的取值范围为________. 8.集合A =[0,2π],B ={α|sin α<cos α},则A ∩B =________________.9.不等式tan α+33>0的解集是______________. 10.求函数f (x )=lg(3-4sin 2x )的定义域为________.三、解答题11.在单位圆中画出适合下列条件的角α终边的范围,并由此写出角α的集合.(1)sin α≥32; (2)cos α≤-12.12.设θ是第二象限角,试比较sin θ2,cos θ2,tan θ2的大小. 能力提升13.求函数f (x )=1-2cos x +ln ⎝⎛⎭⎫sin x -22的定义域.14.如何利用三角函数线证明下面的不等式?当α∈⎝⎛⎭⎫0,π2时,求证:sin α<α<tan α.1.三角函数线的意义三角函数线是用单位圆中某些特定的有向线段的长度和方向表示三角函数的值,三角函数线的长度等于三角函数值的绝对值,方向表示三角函数值的正负,具体地说,正弦线、正切线的方向同纵坐标轴一致,向上为正,向下为负;余弦线的方向同横坐标轴一致,向右为正,向左为负,三角函数线将抽象的数用几何图形表示出来了,使得问题更形象直观,为从几何途径解决问题提供了方便.2.三角函数的画法定义中不仅定义了什么是正弦线、余弦线、正切线,同时也给出了角α的三角函数线的画法即先找到P 、M 、T 点,再画出MP 、OM 、AT .注意三角函数线是有向线段,要分清始点和终点,字母的书写顺序不能颠倒.1.2.1 任意角的三角函数(二)答案知识梳理1.R R {x |x ∈R 且x ≠k π+π2,k ∈Z } 2.MP OM AT MP OM AT作业设计1.C2.D [角α终边落在第二、四象限角平分线上.]3.A [设α终边与单位圆交于点P ,sin α=MP ,cos α=OM , 则|OM |+|MP |>|OP |=1,即sin α+cos α>1.]4.C [∵1,1.2,1.5均在⎝⎛⎭⎫0,π2内,正弦线在⎝⎛⎭⎫0,π2内随α的增大而逐渐增大, ∴sin 1.5>sin 1.2>sin 1.]5.D [在同一单位圆中,利用三角函数线可得D 正确.]6.A [如图所示,在单位圆中分别作出α的正弦线MP 、余弦线OM 、正切线AT ,很容易地观察出OM <MP <AT ,即cos α<sin α<tan α.] 7.⎣⎡⎦⎤π6,5π6 8.⎣⎡⎭⎫0,π4∪⎝⎛⎦⎤54π,2π 9.⎩⎨⎧⎭⎬⎫α|k π-π6<α<k π+π2,k ∈Z 解析 不等式的解集如图所示(阴影部分),∴⎩⎨⎧⎭⎬⎫α|k π-π6<α<k π+π2,k ∈Z . 10.⎝⎛⎭⎫k π-π3,k π+π3,k ∈Z 解析 如图所示.∵3-4sin 2x >0,∴sin 2x <34,∴-32<sin x <32.∴x ∈⎝⎛⎭⎫2k π-π3,2k π+π3∪⎝⎛⎭⎫2k π+2π3,2k π+4π3 (k ∈Z ).即x ∈⎝⎛⎭⎫k π-π3,k π+π3 (k ∈Z ). 11.解 (1) 图1作直线y =32交单位圆于A 、B ,连结OA 、OB ,则OA 与OB 围成的区域(图1阴影部分),即为角α的终边的范围.故满足条件的角α的集合为{α|2k π+π3≤α≤2k π+2π3,k ∈Z }. (2)图2 作直线x =-12交单位圆于C 、D ,连结OC 、OD ,则OC 与OD 围成的区域(图2阴影部分),即为角α的终边的范围.故满足条件的角α的集合为{α|2k π+2π3≤α≤2k π+4π3,k ∈Z }. 12.解 ∵θ是第二象限角,∴2k π+π2<θ<2k π+π (k ∈Z ),故k π+π4<θ2<k π+π2(k ∈Z ). 作出θ2所在范围如图所示. 当2k π+π4<θ2<2k π+π2 (k ∈Z )时,cos θ2<sin θ2<tan θ2. 当2k π+5π4<θ2<2k π+32π (k ∈Z )时,sin θ2<cos θ2<tan θ2. 13.解 由题意,自变量x 应满足不等式组⎩⎪⎨⎪⎧ 1-2cos x ≥0,sin x -22>0. 即⎩⎨⎧ sin x >22,cos x ≤12.则不等式组的解的集合如图(阴影部分)所示,∴⎩⎨⎧⎭⎬⎫x |2k π+π3≤x <2k π+34π,k ∈Z . 14.证明如图所示,在直角坐标系中作出单位圆,α的终边与单位圆交于P ,α的正弦线、正切线为有向线段MP ,AT ,则MP =sin α,AT =tan α.因为S △AOP =12OA ·MP =12sin α,S 扇形AOP =12αOA 2=12α,S △AOT =12OA ·AT =12tan α, 又S △AOP <S 扇形AOP <S △AOT ,所以12sin α<12α<12tan α,即sin α<α<tan α.附赠材料答题六注意 :规范答题不丢分提高考分的另一个有效方法是减少或避免不规范答题等非智力因素造成的失分,具体来说考场答题要注意以下六点:第一,考前做好准备工作。

【人教A版】高中数学必修4教学同步讲练第一章《任意角的三角函数》练习题(含答案)

【人教A版】高中数学必修4教学同步讲练第一章《任意角的三角函数》练习题(含答案)

第一章 三角函数1.2 任意角的三角函数1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.已知角α终边经过P ⎝ ⎛⎭⎪⎫32,12,则cos α等于( )A.12B.32C.33 D .±122.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM3.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A.⎝ ⎛⎭⎪⎫12,32B.⎝ ⎛⎭⎪⎫-12,32C.⎝⎛⎭⎪⎫-32,12D.⎝ ⎛⎭⎪⎫12,-324.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能5.函数y =11+sin x的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈ZC.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z二、填空题6.(2016·四川卷)sin 750°=________. 7.sin 1 485°的值为________.8.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4.10.已知P (-2,y )是角α终边上一点,且sin α=-55,求cosα与tan α的值.B 级 能力提升1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( )A .0B .1C .2D .-22.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________.3.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合.参考答案第一章 三角函数1.2 任意角的三角函数1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.已知角α终边经过P ⎝ ⎛⎭⎪⎫32,12,则cos α等于( )A.12B.32C.33 D .±12解析:由三角函数定义可知,角α的终边与单位圆交点的横坐标为角α的余弦值,故cos α=32. 答案:B2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM解析:因为78π是第二象限角,所以sin 78π>0,cos 78π<0,所以MP >0,OM <0, 所以MP >0>OM . 答案:D3.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A.⎝ ⎛⎭⎪⎫12,32B.⎝ ⎛⎭⎪⎫-12,32C.⎝⎛⎭⎪⎫-32,12D.⎝ ⎛⎭⎪⎫12,-32解析:设P (x ,y ),因为角α=2π3在第二象限,所以x =-12,y =1-⎝ ⎛⎭⎪⎫-122=32,所以P ⎝ ⎛⎭⎪⎫-12,32.答案:B4.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能解析:因为sin αcos β<0,α,β∈(0,π),所以sin α>0,cos β<0,所以β为钝角.答案:B 5.函数y =11+sin x的定义域为( )A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈ZB.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈ZC.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z解析:因为1+sin x ≠0,所以sin x ≠-1. 又sin 3π2=-1,所以x ≠3π2+2k π,k ∈Z. 答案:A 二、填空题6.(2016·四川卷)sin 750°=________. 解析:sin 750°=sin(30°+2×360°)=sin 30°=12.答案:127.sin 1 485°的值为________.解析:sin 1 485°=sin(4×360°+45°)=sin 45°=22.答案:228.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.解析:作图如下,因为θ∈⎝ ⎛⎭⎪⎫π3,π2,所以θ >π4,根据三角函数线的定义可知AT >MP >OM .答案:AT >MP >OM 三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°; (2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4.解:(1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 120°cos 30°+cos 60°sin 30°=32×32+12×12=1. (2)原式=cos ⎣⎢⎡⎦⎥⎤π3+(-4)×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π=cosπ3+tan π4=12+1=32. 10.已知P (-2,y )是角α终边上一点,且sin α=-55,求cos α与tan α的值.解:因为点P 到原点的距离为r =4+y 2,所以sin α=y4+y 2=-55,所以y 2+4=5y 2,所以y 2=1.又易知y <0,所以y =-1,所以r =5,所以cos α=-25=-255,tan α=-1-2=12.B 级 能力提升1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( )A .0B .1C .2D .-2解析:因为α是第三象限角,所以sin α<0,cos α<0, 所以|sin α|sin α-cos α|cos α|=-1-(-1)=0.答案:A2.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________.解析:因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0,所以点(-3cos θ,4cos θ)到原点的距离r =5|cos θ|=-5cos θ, 所以cos α=-3cos θ-5cos θ=35.答案:353.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合. 解:如图,作出单位圆.所以角α满足的集合为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪k π-π4<α<k π+π4,k ∈Z .。

人教A版必修四高一数学同步练习—1.2任意角的三角函数(含解析).docx

人教A版必修四高一数学同步练习—1.2任意角的三角函数(含解析).docx

高一数学同步练习—1.2任意角的三角函数(含解析)一、选择题:共10题每题5分共50分1.已知扇形的周长是3 cm,面积是cm2,则扇形的圆心角的弧度数是A.1B.1或4C.4D.2或42.已知角的终边上一点A(2,2),则的大小为A. B.C. D.3.下列转化结果错误的是A.67°30'化成弧度是B.-化成度是-600°C.-150°化成弧度是D.化成度是15°4.下列说法正确的是A.第二象限的角比第一象限的角大B.若sinα=,则α=C.三角形的内角是第一象限角或第二象限角D.不论用角度制还是弧度制度量一个角,它们与扇形所对应的半径的大小无关5.在直径为10cm的定滑轮上有一条弦,其长为6cm,P是该弦的中点,该滑轮以每秒5弧度的角速度旋转,则点P在5秒内所经过的路程是A.10 cmB.20 cmC.50 cmD.100 cm6.已知角α是锐角,则2α是A.第一象限角B.第二象限角C.小于180°的正角D.第一或第二象限角7.-2 014°角是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角8.如图所示,终边落在阴影部分的角的集合是A.{α|-45°≤α≤120°}B.{α|120°≤α≤315°}C.{α|k·360°-45°≤α≤k·360°+120°,k∈Z}D.{α|k·360°+120°≤α≤k·360°+315°,k∈Z}9.若,,,则下列关系中正确的是A. B.C. D. ⫋ ⫋10.在0到2π范围内,与角终边相同的角是A. B. C. D.二、填空题:共6题每题4分共24分11.30°角的始边与x轴的非负半轴重合,把终边按顺时针方向旋转2周,所得角是 . 12.已知扇形的周长为8cm,圆心角为2弧度,则该扇形的面积为_______13.已知扇形的圆心角为120°,半径为cm,则此角形的面积为 .14.已知,且与120°角终边相同,则______.15.有一扇形其弧长为6,半径为3,则该弧所对弦长为 ,扇形面积为 .16.弧长为的扇形的圆心角为,则此扇形的面积为;三、解答题:共5题共76分17.(本题14分)已知扇形的圆心角为120°,半径长为6.(1)求的弧长;(2)求扇形的面积.18.(本题14分)已知集合,,,试确定M、N、P之间满足的关系.19.(本题14分)已知180°<+<240°,−180°<<60°,求2的取值范围. 20.(本题17分)如图,圆周上的点A依逆时针方向做匀速圆周运动.已知A点1分钟转过的弧度数为θ(0<θ<π),2分钟到达第三象限,14分钟后回到原来的位置,求θ.21.(本题17分)已知α是第三象限角,则2α,各是第几象限角?参考答案1.B【解析】无【备注】无2.C【解析】满足题中条件的角有无数多个,其中一个角为45°,故C正确.【备注】无3.C【解析】67°30'=67.5× rad= rad,A结果正确;-=-×180°=-600°,B结果正确;-150°=-150× rad=- rad,C结果错误;=×180°=15°,D结果正确.【备注】无4.D【解析】本题主要考查三角函数中角的定义,对角的概念的理解,A第二象限的角不一定大于第一象限的角,例如第一象限的角,第二象限的角为,;B选项sinα=时,或;C选项,三角形的内角可以为,不属于任何象限; D选项是正确的.【备注】无5.D【解析】本题考查弧长公式的应用.点P在5秒内所经过的弧度为25弧度,又点P到圆心的距离为4,所以点P经过的弧长为100 cm .【备注】根据弧度的定义,弧长6.C【解析】因为α是锐角,所以,所以,故选C.【备注】无7.B【解析】-2 014°=-6×360°+146°,所以-2 014°角与146°角的终边相同,而146°角为第二象限角,所以-2 014°角是第二象限角.【备注】无8.C【解析】由图可知,终边落在阴影部分的角的取值范围为k·360°-45°≤α≤k·360°+120°,k∈Z,故选C.【备注】该题易出现的问题是忽略角的方向,不能准确表示两个边界角.9.D【解析】集合A为终边在x轴非负半轴上角的集合;集合B为终边在x轴上角的集合;集合C 为终边在坐标轴上角的集合.因此⫋⫋.【备注】无10.D【解析】52,33πππ-=-+∴在0到2π范围内,与角3π-终边相同的角时53π.故选D.【备注】无11.-690°【解析】无【备注】无12.4 cm 2【解析】本题主要考查扇形的面积的计算,设扇形的半径为,可知【备注】无13.【解析】(1)设扇形弧长为l,因为,所以所以【备注】无14.【解析】题主要考查角的概念.由与120°角终边相同,故,,∵,∴.又,∴,此时.【备注】无15.,9【解析】本题主要考查弧长公式的应用以及圆的性质的应用.由弧长公式可得扇形的圆心角为=2,由圆的性质可得弦长等于,由扇形的面积公式可得S=【备注】无16.无【解析】本题主要考查的知识点是扇形的面积.根据题意,结合扇形的弧长公式弧长为的扇形的圆心角为,那么可知半径为12,那么可知此扇形的面积为,故可知答案为【备注】无17.解:(1)∵,,∴..(2)扇形【解析】本题主要考查扇形面积公式和弧长公式. (1)利用弧长公式,可得结论;(2)利,可得扇形OAB的面积.用)扇形【备注】无18.解法1:集合,或或,或,.解法2:,,,.【解析】无【备注】无19.解:设2α−β=A(α+β)+B(α−β),则2α−β=(A+B)α+(A−B)β,,解得∵180°<α+β<240°,∴−180°<α−β<−60°,.∴−180°<2α−β<30°即2α−β的取值范围为(−180°,30°).【解析】无【备注】无20.由题意,A点2分钟转过的弧度数为2θ,且π<2θ<,由于14分钟后回到原位,∴14θ=2kπ(k∈Z),得θ=(k∈Z),又<θ<,∴θ=或.【解析】无【备注】无21.由题意知k·360°+180°<α<k·360°+270°(k∈Z),因此2k·360°+360°<2α<2k·360°+540°(k∈Z),即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z),故2α是第一象限角或第二象限角或终边在y轴非负半轴上的角.又k·180°+90°<<k·180°+135°(k∈Z),当k为偶数时,令k=2n(n∈Z),则n·360°+90°<<n·360°+135°(n∈Z),此时,是第二象限角.当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<<n·360°+315°(n∈Z),此时,是第四象限角. 因此是第二象限角或第四象限角.【解析】无【备注】无。

高中数学人教版必修四课后练习(含解析):1.2.1任意角的三角函数(一)

高中数学人教版必修四课后练习(含解析):1.2.1任意角的三角函数(一)

高中数学学习材料金戈铁骑整理制作1.2.1 任意角的三角函数(一)班级:__________姓名:__________设计人:__________日期:__________课后练习基础过关1.角α的终边经过点(3m −9,m +2),且cosα≤0,sinα>0,那么m 的取值范围为 A. (−2,3)B. [−2,3)C. (−2,3]D. [−2,3]2.已知角θ的终边过点P (−4k ,3k )(k <0),则2sin θ+cos θ的值是 A. 25B. −25C. 25或−25D.随着k 的取值不同其值不同3.在△ABC 中,若sin A cos B tan C <0,则△ABC 是A.锐角三角形 B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形4.已知角α的终边经过点P (3a -9,a +2),且cos α≤0,sin α>0,则a 的取值范围是________. 5.设α是第二象限角,且|cos α2|=−cos α2,则角α2是第_______象限角.6.判断下列各式的符号. (1)sin3·cos4·tan5. (2)sin(cosθ)cos(sinθ)(θ为第二象限角)7.已知tan α,1tanα是关于x 的方程3x 2-3kx +3k 2-13=0的两实根,且3π<α<7π2,求cos(3π+α)+sin(π+α)的值.8.已知角α的终边上有一点P(−√3,m),且sinα=√2m4,求cos α,tan α的值.能力提升1.化简:tanx+tanx⋅sinx tanx+sinx ⋅(1+cosx)sinx(1+sinx)cosx .2.求函数y=|cosx|cosx+tanx |tanx|的值域.1.2.1 任意角的三角函数(一)详细答案【基础过关】 1.C【解析】本题考查三角函数的定义.根据定义cosα=x r≤0,sinα=y r>0,于是可得{3m −9≤0m +2>0解得−2<m ≤3. 【备注】不要忽视cosα=0即α终边在x 轴上的情形.2.B【解析】∵角θ的终边过点P(−4k ,3k )(k <0),∴r =√(−4k)2+(3k)2=5|k|=−5k , ∴sinθ=3k−5k =−35,cosθ=−4k−5k =45, ∴2sinθ+cosθ=2×(−35)+45=−25.故选B.3.C【解析】因为三角形内角的取值范围为(0,π),故sin A>0,故由sin A cos B tan C <0可得cos B tan C <0,所以B ,C 中必有一个为钝角,即△ABC 为钝角三角形.【备注】该题易出现的问题是忽视三角形内角的取值范围,从而无法准确判断sin A 的符号,导致判断失误. 4.(2,3]- 5.三【解析】因为角α是第二象限角,所以22()2k k k Z ππαππ+<<+∈, 所以()422k k k Z παπππ+<<+∈,当k 为偶数时,2α是第一象限角;当k 为奇数时,2α是第三象限角,又因为coscos22αα=-,即cos02α<,所以2α是第三象限角. 6.(1)因为32ππ<<,342ππ<<,3522ππ<<,所以sin 30,cos 40,tan 50><<,所以sin 3cos 4tan 50⋅⋅>.(2)因为θ为第二象限角,所以0sin 12πθ<<<,1cos 02πθ-<-<<, 所以sin(cos )0θ<,cos(sin )0θ>,所以sin(cos )0cos(sin )θθ<. 7.312+ 8.由题意知x =−√3,y =m ,所以r 2=(−√3)2+m 2,所以r =√3+m 2,从而sinα=√2m 4=m r=m √3+m2,解得m =0或sinα=√2m 4=m r=m √3+m 2.当m =0时,r =√3,r =√3,cosα=x r=−1,tanα=yx =0;当m =√5时,r =2√2,x =−√3,cosα=x r=−√64,tanα=yx =−√153; 当m =−√5时,r =2√2,x =−√3,cosα=x r=−√64,tanα=yx =√153. 【能力提升】 1.原式=sinx+sin 2xsinx+sinxcosx ·(1+cosx)sinx(1+sinx)cosx=sinx(1+sinx)sinx(1+cosx)⋅sinx(1+cosx)cosx(1+sinx)=sinx cosx=tanx.【解析】本题考查三角函数式的化简.化简三角函数式时,要灵活运用同角三角函数基本关系式,即正用,逆用和变形应用等技巧,注意常数1的变形.2.由题意得cos x≠0,且tan x≠0,∴角x 的终边不在x 轴上,也不在y 轴上. 当x 是第一象限角时,|cos x|=cos x,|tan x|=tan x,∴y=|cosx|cosx+tanx |tanx|=2; 当x 是第二象限角时,|cos x|=-cos x ,|tan x|=-tan x,∴y=|cosx|cosx +tanx |tanx|=-2;当x 是第三象限角时,|cos x|=-cos x ,|tan x|=tan x, ∴y=|cosx|cosx +tanx |tanx|=0;当x 是第四象限角时,|cos x|=cos x ,|tan x|=-tan x,∴y=|cosx|cosx+tanx|tanx|=0.故函数y 的值域为{-2,0,2}.。

【专业资料】新版高中数学人教A版必修4习题:第一章三角函数 1.2.1.1 含解析

【专业资料】新版高中数学人教A版必修4习题:第一章三角函数 1.2.1.1 含解析

1.2任意角的三角函数1.2.1任意角的三角函数第1课时三角函数的定义课时过关·能力提升基础巩固1sin 390°等于()A.12B.√22C.√32D.1解析:sin390°=sin(30°+360°)=sin30°=12.答案:A2若cos α<0,且tan α>0,则α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限解析:由于cosα<0,则α的终边在第二或第三象限,又tanα>0,则α的终边在第一或第三象限,所以α的终边在第三象限.答案:C3cos 1 110°的值为()A.1B.√3C.−1D.−√3解析:cos1110°=cos(3×360°+30°)=cos30°=√3.答案:B4√cos2201.2°可化为()A.cos 201.2°B.-cos 201.2°C.sin 201.2°D.tan 201.2°解析:∵201.2°是第三象限角,∴cos201.2°<0,∴√cos2201.2°=|cos201.2°|=-cos201.2°.答案:B5已知点P (1,y )是角α终边上一点,且cos α=√36,则y = . 解析:∵P (1,y )是角α终边上一点,且cos α=√36,∴r =√1+y 2,1r =√1+y =√36,∴y =±√11. 答案:±√116已知点P (−√3,−1)是角α终边上的一点,则cos α+tan α= .解析:∵x=−√3,y =−1,∴r =OP =√(-√3)2+(-1)2=2.∴cos α=−√32,tanα=√3=√33. ∴cos α+tan α=−√32+√33=−√36.答案:−√367已知α的终边经过点(3a-9,a+2),且sin α>0,cos α<0,则a 的取值范围是 .解析:∵sin α>0,cos α<0,∴α是第二象限角.∴点(3a-9,a+2)在第二象限.∴{3a -9<0,a +2>0,解得-2<a<3. 答案:(-2,3)8判断下列各式的符号.(1)tan 250°cos(-350°); (2)sin 105°cos 230°.解(1)∵250°是第三象限角,-350°=-360°+10°是第一象限角,∴tan250°>0,cos(-350°)>0,∴tan250°cos(-350°)>0.(2)∵105°是第二象限角,230°是第三象限角,∴sin105°>0,cos230°<0,∴sin105°cos230°<0.9利用定义求si n 5π4,cos 5π4,tan 5π4的值.解如图,在平面直角坐标系中画出角5π4的终边.设角5π4的终边与单位圆的交点为P ,则有P (-√22,-√22).故si n 5π4=−√22,cos 5π4=−√22,tan 5π4=-√22-√22=1.能力提升1已知角α的终边经过点P (m ,-3),且cos α=−45,则m 等于( )A.−114B.114C.−4D.4解析:由题意得cos α=2=−45,两边平方可解得m=±4.又cos α=−45<0,则α的终边在第二或三象限,则点P 在第二或三象限,所以m<0,则m=-4.答案:C2已知P (2,-3)是角θ终边上一点,则tan(2π+θ)等于( ) A .32B.23C.−32D.−23解析:tan(2π+θ)=tan θ=-32=−32. 答案:C3如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限 解析:由于点P (sin θ+cos θ,sin θcos θ)位于第二象限,则{sinθ+cosθ<0,sinθcosθ>0,所以有sin θ<0,cos θ<0,所以角θ的终边在第三象限.答案:C4已知角α的终边不在坐标轴上,则sinα|sinα|+cosα|cosα|+tanα|tanα|的取值集合是( )A.{1,2}B.{-1,3}C.{1,3}D.{2,3}解析:当α是第一象限角时,sinα|sinα|+cosα|cosα|+tanα|tanα|=3,当α是第二、三、四象限角时,其值为-1.所以sinα|sinα|+cosα|cosα|+tanα|tanα|的取值集合是{-1,3}.答案:B5已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(4,y)是角θ终边上一点,且sinθ=−2√55,则y=.解析:|OP|=√42+y2,根据任意角的三角函数的定义知,sinθ=√4+y2=−2√55,∴y<0,解得y=-8.答案:-8★6已知θ=−11π6,P为角θ终边上一点,|OP|=2√3,则点P的坐标为.解析:sinθ=si n(-11π6)=sin(-2π+π6)=sinπ6=12,cosθ=co s(-11π6)=cos(-2π+π6)=cosπ6=√32.设P(x,y),则sinθ=y|OP|,cosθ=x|OP|,∴y=|OP|·sinθ=2√3×1=√3,x=|OP|·cosθ=2√3×√3=3,∴P(3,√3).答案:(3,√3)★7已知角α的终边经过点P(-3cos θ,4cos θ),其中θ∈(2kπ+π2,2kπ+π)(k∈Z),求角α的各个三角函数值.分析本题中的点P的坐标是用θ的三角函数表示的,在求点P到原点的距离时,应特别注意角θ的范围对r值的影响.解∵θ∈(2kπ+π2,2kπ+π)(k∈Z),∴cosθ<0.∴点P在第四象限.∵x=-3cosθ,y=4cosθ,∴r=√x2+y2=√(-3cosθ)2+(4cosθ)2=|5cosθ|=-5cosθ.∴sinα=−45,cosα=35,tanα=−43.★8已知1|sinα|=-1sinα,且lg cos α有意义. (1)试判断角α所在的象限.(2)若角α的终边上一点是M (35,m),且|OM|=1(O 为坐标原点),求m 的值及sin α的值. 解(1)由1|sinα|=−1sinα可知sin α<0,所以α是第三或第四象限角或终边在y 轴的负半轴上的角. 由lgcos α有意义可知cos α>0,所以α是第一或第四象限角或终边在x 轴的正半轴上的角. 综上可知角α是第四象限的角.(2)因为|OM|=1,所以(35)2+m2=1,解得m=±45.又α是第四象限角,所以m<0,从而m=−45.由正弦函数的定义可知sin α=y r =m |OM |=-451=−45.。

高一数学必修4同步训练 1.2.1任意角的三角函数

高一数学必修4同步训练 1.2.1任意角的三角函数

第一章 三角函数1.2任意角的三角函数1.2.1任意角的三角函数一、选择题: 1. 有下列命题:①终边相同的角的同名三角函数的值相等; ②终边不同的角的同名三角函数的值不等; ③若sin α>0,则α是第一、二象限的角;④若α是第二象限的角,且P (x ,y )是其终边上一点,则cos α=22yx x +-.其中正确命题的个数是 A.1 B.2 C.3 D.42. 若sin θ²cos θ>0,则θ在 A.第一、二象限 B.第一、三象限 C.第一、四象限D.第二、四象限3. 函数y =x x x x x x x x cot |cot ||tan |tan cos |cos ||sin |sin +++的值域是 A.{-2,4} B.{-2,0,4}C.{-2,0,2,4}D.{-4,-2,0,4}4. 若θ是第二象限角,则 A.sin2θ>0 B.cos 2θ<0 C.tan 2θ>0 D. tan 2θ<05. 在(0,2π)内,使sin x >cos x 成立的x 的取值范围是A.⎪⎭⎫ ⎝⎛2π,4π∪⎪⎭⎫ ⎝⎛45π,πB. ⎪⎭⎫⎝⎛π,4πC. ⎪⎭⎫ ⎝⎛45π,4πD. ⎪⎭⎫ ⎝⎛π,4π∪⎪⎭⎫ ⎝⎛23π,π45 6. 已知sin α>sin β,那么下列命题成立的是 A.若α、β是第一象限的角,则cos α>cos β B.若α、β是第二象限的角,则tan α>tan β C.若α、β是第三象限的角,则cos α>cos β D.若α、β是第四象限的角,则tan α>tan β 二、填空题:7. 若角α的终边经过P (-3,b ),且cos α=-53,则b =___________,sin α=___________. 8. 函数y =x sin +tan x 的定义域 .9. 不等式(lg20)2cos x >1 , x ∈(0,π)的解为____________. 10. 已知点P (tan α,cos α)在第三象限,则角α的终边在第 象限. 二、解答题:11. (1)已知角α的终边经过点P (3,4),求角α的正弦、余弦和正切. (2)已知角α终边经过点P (3t ,4t ),t ≠0,求角α的正弦、余弦和正切.12. (1)在0到2π内,求使sin α>23的α的取值范围. (2)在任意角范围里,求使sin α>23的取值范围.13. 已知α∈⎪⎭⎫⎝⎛2π,0,求证:sin α<α<tan α.14. 若2π5<θ<3π,求3tan θ²2log 3+1241tan tan +-+θθ的值.15. 利用单位圆,求使下列不等式成立的x 的范围(其中0≤x <2π) (1)cos x ≥22 (2)tan x ≤1 (3)sin x ≤-21拓展创新——练能力16. 已知θ为锐角,求证:1<sin θ+cos θ≤2.17. (1)已知tan x >0,且sin x +cos x >0,求角x 的集合; (2)已知tan x <0,且sin x -cos x <0,求角x 的集合.18. 若0<α<β<2π,则α-β<sin α-sin β.参考答案:1. A.提示:根据任意角三角函数定义知①正确.对②,我们可举出反例 sin 3π=sin 3π2.对③,可指出sin 2π>0,但2π不是第一、二象限的角.对④,应是cos α=22yx x +.(因为α是第二象限的角,已知有x <0)综上可知,应选A.2. B 提示:∵sin θ²cos θ>0,∴sin θ、cos θ同号.当sin θ>0,cos θ>0时,θ在第一象限; 当sin θ<0,cos θ<0时,θ在第三象限.因此,选B.3. B 提示:对角x 分象限讨论若x 在第一象限,得y =x xx x x x x x cot cot tan tan cos cos sin sin +++=4; 若x 在第二象限,得y =x xx x x x x x cot cot tan tan cos cos sin sin -+-+-+=-2; 若x 在第三象限,得y =x xx x x x x x cot cot tan tan cos cos sin sin ++-+-=0; 若x 在第四象限,得y =xxx x x x x x cot cot tan tan cos cos sin sin -+-++-=-2. ∴函数值y 的集合是{-2,0,4}.∴应选B. 4. C 提示: 由2π+2k π<θ<π+2k π,k ∈Z ,得4π+k π<22πθ<+k π,k ∈Z因此2θ在第一或第三象限,∴tan 2θ>0. 5. C 提示:如图所示,在单位圆上作出第一、三象限的对角线,由正弦线、余弦线知应选C.6. 解法一:(直接证法)取α=60°,β=30°,满足sin α>sin β,此时有cos60°<cos30°,所以A 不正确. 取α=120°,β=150°,满足sin α>sin β,此时有tan120°<tan150°,所以B 不正确. 取α=210°,β=240°,满足sin α>sin β,此时有cos210°<cos240°,所以C 不正确. ∴应选D. 解法二:(直接证法)若α、β∈⎪⎭⎫⎝⎛2π,0,则由sin α>sin β得α>β,此时有cos α<cos β,所以A 不正确.若α、β∈⎪⎭⎫⎝⎛π,2π,则由sin α>sin β得α<β,此时有tan α<tan β,所以B 不正确.若α、β∈⎪⎭⎫⎝⎛23π,π,则由sin α>sin β得α<β,此时有cos α<cos β,所以C 不正确.∴应选D. 解法三:(借助于单位圆,运用三角函数定义来解) 如图所示,设P 1(x 1,y 1)、P 2(x 2,y 2)分别是角α、β的终边与单位圆的交点,则(1)当α、β为第一象限的角时, ∵sin α=y 1,sin β=y 2,sina >sin β, ∴y 1>y 2.∴x 1<x 2.而cos α=x 1,cos β=x 2,∴cos α<cos β.∴A 不正确. (2)当α、β为第二象限角时,知 y 1>y 2>0,① ∴x 2<x 1<0.∴-x 2>-x 1>0, ② tan α-tan β=.2121122211x x y x y x x y x y -=-③而x 1x 2>0(∵x 2<x 1<0),且依不等式性质及①②,有-x 2y 1>-x 1y 2,即x 2y 1-x 2y 2<0,将x 1x 2>0、x 2y 1-x 1y 2<0代入③,有tan α-tan β<0, ∴tan α<tan β.∴B 不正确.(3)当α、β为第三象限角时,采用同样的方法,可得C 也不正确(请同学们自己推出来).∴应选D.7. ±4 ±54提示: 由53932-=+-b 得b =±4.∴r =5,sin α=54±=r b . 8. 解:要使函数y =x sin +tan x 有意义,必须且只须⎪⎩⎪⎨⎧∈+≠≥Z k k x x ,20sin ππ 由sin x ≥0,则角x 的终边在第一、第二象限或在x 轴上或在y 轴的非负半轴上,即2k π≤x ≤π+2k π,k ∈Z 又x ≠k π+2π,k ∈Z ,因此函数的定义域为{x |2k π≤x <2π+2k π或2π+2k π<x ≤(2k +1)π,k ∈Z }.9. (0,2π).提示:∵20>10,∴lg20>lg10=1.∴对数函数单调递增.又(lg20)2cos x >1=(lg20)0,∴2cos x >0.∴x 在第一、四象限或x 轴的正半轴上.又x ∈(0,π),∴原不等式的解集为(0,2π). 10. 二 提示:因为点P (tan α,cos α)在第三象限,因此有⎩⎨⎧<<0cos 0tan αα,tan α<0⇒α在二、四象限,cos α<0⇒α在二、三象限(包括x 轴负半轴),所以α为第二象限角.即角α的终边在第二象限.11. 解析:(1)由x =3,y =4,得r =2243+=5. ∴sin α=54=r y ,cos α=53=r x ,tan α=34=x y (2)由x =3t ,y =4t ,得r =22)4()3(t t +=5|t |. 当t >0时,r =5t . 因此sin α=54,cos α=53,tan α=34. 当t<0时,r =-5t因此sin α=-54,cos α=-53,tan α=34. 12. 解析: 如图,作y =23与以原点为圆心的单位圆交于P 1、P 2.(1)在0到2π内,OP 1、OP 2分别是3π、32π角的终边.当角α的终边与单位圆O 的交点P (x ,y ),由P 1逆时针转到点P 2时P 点纵坐标y 由23逐渐增大到1后再逐渐减小到23,即sin α>23. 当P 点由点P 2继续逆时针旋转再回到P 1点时,其纵坐标y <23,即sin α<23. 因此在0到2π范围内使sin α>23的范围是3π<α<32π. (2)把(1)中情形推广到任意角范围,可得使sin α>23的角α范围是2k π+3π<α<2k π+32π(k ∈Z ).13. 证明:如图所示,在单位圆中设∠AOP =α rad ,则⌒AP 的长度为α,角α的正弦线为MP ,正切线为AT .∵△OP A 的面积<扇形OP A 的面积<△OAT 的面积,∴21²OA ²MP <21²OA ²α<21²OA ²AT , 即MP <α<AT .∴sin α<α<tan α.14. 分析:已知θ为第二象限角,可知tan θ<0,借助于指数函数的单调性进行运算.本题同时考查了指数函数与对数函数的运算性质. 解:∵2π5<θ<3π,∴θ为第二象限角.∴tan θ<0.∴2tan θ<20=1. 原式=(2log 33)tan θ+122)2(tan 2tan +⋅-θθ=2tan θ+|2tan θ-1|=1.15. 解:(1)如图,作x =22与以原点为圆心的单位圆交于P 1、P 2两点. 连OP 1、OP 2,则OP 1、OP 2分别为4π、47π角的终边,由图可观察出0≤x ≤4π或47π≤x <2π.(2)如图,作y =1与直线AT 交于T 点,作直线OT ,交与原点为圆心为单位圆于P 1、P 2两点,连OP 1、OP 2,则OP 1、OP 2分别为角4π、45π的终边,由图可观察0≤x ≤4π或2π<x ≤45π或23π<x <2π.(3)用同样方法可得67π≤x ≤611π. 16. 证明:设M (x ,y )为角θ终边上异于原点的一点, 则有sin θ=22yx y +,cos θ=22yx x +.∵θ为锐角,∴x >0,y >0.∴sin θ+cos θ=22yx yx ++=22222222)()(2)(y x y x y x y x y x +--+=++=222)(2yx y x +--≤2(当且仅当x =y 时取等号). 又sin θ+cos θ=2222222222)(y x xyy x y x y x yx yx +++=++=++=2221y x xy ++>1(∵222y x xy+>0).综上,不等式1<sin θ+cos θ≤2得证.17. 解析:(1)∵tan x >0,∴x 在第一或第三象限.若x 在第一象限,则sin x >0,cos x >0, ∴sin x +cos x >0若x 在第三象限,则sin x <0,cos x <0,与sin x +cos x >0矛盾,故x 只能在第一象限. 因此角x 集合是{x |2k π<x <2k π+2π,k ∈Z }.(2)∵tan x <0,∴x 在第二或第四象限. 若x 在第二象限,则sin x >0,cos x <0. ∴sin x -cos x >0与sin x -cos x <0矛盾. 若x 在第四象限,则sin x <0,cos x >0, ∴sin x -cos x <0,故x 只能在第四象限. 因此角x 集合是{x |2k π-2π<x <2k π,k ∈Z }.18. 证明:如图所示,设单位圆O 与x 轴正向相交于点A ,角α、β的终边与单位圆O 相交于P 、Q 两点,过点P 、Q 分别作x 轴的垂线,垂足分别为M 、N ,过点P 作PH ⊥QN 于点H ,则有 ⌒AP=α,⌒AQ =β,MP =sin α,NQ =sin β.由图可知HQ <PQ <PQ .∴sin β-sin α<β-α.故α-β<sin α-sin β.。

人教A版高中数学必修四练习:1.2任意角的三角函数1.2.1+第2课时+Word版含解析

人教A版高中数学必修四练习:1.2任意角的三角函数1.2.1+第2课时+Word版含解析

第一章 1.2 1.2.1 第2课时A 级 基础巩固一、选择题1.下列各式正确的是导学号 14434131( B ) A .sin1>sin π3B .sin1<sin π3C .sin1=sin π3D .sin1≥sin π3[解析] 1和π3的终边均在第一象限,且π3的正弦线大于1的正弦线,则sin1<sin π3.2.使sin x ≤cos x 成立的x 的一个变化区间是导学号 14434132( A )A .[-34π,π4]B .[-π2,π2]C .[-34π,34π]D .[0,π][解析] 当x 的终边落在如图所示的阴影部分时,满足sin x ≤cos x . 3.若MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论中正确的是导学号 14434133( D )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM[解析] 作出单位圆中的正弦线、余弦线,比较知D 正确.4.如图所示,角α的终边与单位圆交于点P ,过点P 作PM ⊥x 轴于点M ,过点A 作单位圆的切线AT 交OP 的反向延长线至点T ,则有导学号 14434134( D )A .sin α=OM ,cos α=PMB .sin α=MP ,tan α=OTC .cos α=OM ,tan α=ATD .sin α=MP ,tan α=AT5.在[0,2π]上,满足sin x ≥12的x 的取值范围是导学号 14434135( B )A .[0,π6]B .[π6,5π6]C .[π6,2π3]D .[5π6,π][解析] 如图易知选B .6.若tan x =33,且-π<x <2π,则满足条件的x 的集合为导学号 14434136( C ) A .{π6,7π6}B .{π3,4π3}C .{π6,7π6,-5π6}D .{π3,4π3,-2π3}[解析] ∵tan x =33,在单位圆中画出正切线AT =33的角的终边为直线OT (如图), ∴x =k π+π6,k ∈Z ,又因为-π<x <2π,所以x =-5π6,π6,7π6.二、填空题7.若角α的余弦线长度为0,则它的正弦线的长度为__1__.导学号 14434137 [解析] 由余弦线长度为0知,角的终边在y 轴上,所以正弦线长度为1.8.若角α的正弦线的长度为12,且方向与y 轴的正方向相反,则sin α的值为 -12.导学号 14434138 [解析] 由题意知|sin α|=12,且方向与y 轴正方向相反,∴sin α=-12.9.在单位圆中画出满足cos α=12的角α的终边,并写出α组成的集合.导学号 14434139[解析] 如图所示,作直线x =12交单位圆于M 、N ,连接OM 、ON ,则OM 、ON 为α的终边.由于cos π3=12,cos 5π3=12,则M 在π3的终边上,N 在5π3的终边上,则α=π3+2k π或α=5π3+2k π,k ∈Z . 所以α组成的集合为S ={α|α=π3+2k π或α=5π3+2k π,k ∈Z }.10.解不等式组⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0.导学号 14434140[解析] 由⎩⎪⎨⎪⎧sin x ≥0,2cos x -1>0,得⎩⎪⎨⎪⎧sin x ≥0,cos x >12,在直角坐标系中作单位圆,如图所示,由三角函数线可得⎩⎪⎨⎪⎧2k π≤x ≤2k π+π(k ∈Z ),2k π-π3<x <2k π+π3(k ∈Z ).解集恰好为图中阴影重叠的部分,故原不等式组的解集为{x |2k π≤x <2k π+π3,k ∈Z }.B 级 素养提升一、选择题1.已知11π6的正弦线为MP ,正切线为AT ,则有导学号 14434141( A )A .MP 与AT 的方向相同B .|MP |=|AT |C .MP >0,AT <0D .MP <0,AT >0[解析] 三角函数线的方向和三角函数值的符号是一致的.MP =sin 11π6<0,AT =tan11π6<0.2.已知α角的正弦线与y 轴正方向相同,余弦线与x 轴正方向相反,但它们的长度相等,则导学号 14434142( A )A .sin α+cos α=0B .sin α-cos α=0C .tan α=0D .sin α=tan α[解析] ∵sin α>0,cos α<0, 且|sin α|=|cos α| ∴sin α+co α=0.3.已知sin α>sin β,那么下列命题成立的是导学号 14434143( D ) A .若α、β是第一象限角,则cos α>cos β B .若α、β是第二象限角,则tan α>tan β C .若α、β是第三象限角,则cos α>cos β D .若α、β是第四象限角,则tan α>tan β[解析] 如图(1),α、β的终边分别为OP 、OQ ,sin α=MP >NQ =sin β,此时OM <ON ,∴cos α<cos β,故A 错;如图(2),OP 、OQ 分别为角α、β的终边,MP >NQ ,∴AC <AB ,即tan α<tan β,故B 错;如图(3),角α、β的终边分别为OP 、OQ ,MP >NQ 即sin α>sin β,∴ON >OM ,即cos β>cos α,故C 错,∴选D .4.y =sin x +lgcos xtan x的定义域为导学号 14434144( B )A .⎩⎨⎧⎭⎬⎫x |2k π≤x ≤2k π+π2B .⎩⎨⎧⎭⎬⎫x |2k π<x <2k π+π2C .{}x |2k π<x <(2k +1)πD .⎩⎨⎧⎭⎬⎫x |2k π-π2<x <2k π+π2(以上k ∈Z )[解析] ∵⎩⎨⎧sin x ≥0cos x >0tan x ≠0x ≠k π+π2,k ∈Z,∴2k π<x <2k π+π2,k ∈Z .二、填空题5.不等式cos x >0的解集是 {x |2k π-π2<x <2k π+π2,k ∈Z } .导学号 14434145[解析] 如图所示,OM 是角x 的余弦线,则有cos x =OM >0,∴OM 的方向向右.∴角x 的终边在y 轴的右方. ∴2k π-π2<x <2kx +π2,k ∈Z .6.已知点P (tan α,sin α-cos α)在第一象限,且0≤α≤2π,则角α的取值范围是 ⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4 .导学号 14434146 [解析] ∵点P 在第一象限,∴⎩⎪⎨⎪⎧tan α>0, (1)sin α-cos α>0, (2)由(1)知0<α<π2或π<α<3π2,(3)由(2)知sin α>cos α,作出三角函数线知,在[0,2π]内满足sin α>cos α的 α∈⎝⎛⎭⎫π4,5π4,(4)由(3)、(4)得α∈⎝⎛⎭⎫π4,π2∪⎝⎛⎭⎫π,5π4. 三、解答题7.求下列函数的定义域.导学号 14434147 (1)y =sin x +tan x ;(2)y =sin x +cos x tan x.[解析] (1)要使函数有意义,必须使sin x 与tan x 有意义,∴⎩⎪⎨⎪⎧x ∈R ,x ≠k π+π2(k ∈Z ),∴函数y =sin x +tan x 的定义域为{x |x ≠k π+π2,k ∈Z }.(2)要使函数有意义,必须使tan x 有意义,且tan x ≠0, ∴⎩⎪⎨⎪⎧x ≠k π+π2,x ≠k π(k ∈Z ),∴函数y =sin x +cos x tan x 的定义域为{x |x ≠k π2,k ∈Z }.8.求下列函数的定义域:导学号 14434148 (1)y =2cos x -1; (2)y =lg(3-4sin 2x ).[解析] 如图(1). ∵2cos x -1≥0,∴cos x ≥12.∴函数定义域为⎣⎡⎦⎤-π3+2k π,π3+2k π(k ∈Z ).(2)如图(2).∵3-4sin 2x >0,∴sin 2x <34,∴-32<sin x <32.∴函数定义域为⎝⎛⎭⎫-π3+2k π,π3+2k π∪⎝⎛ 2π3+2k π,⎭⎫4π3+2k π(k ∈Z ),即⎝⎛⎭⎫-π3+k π,π3+k π(k ∈Z ).C 级 能力拔高利用三角函数线证明:若0<α<β<π2,则β-α>sin β-sin α.导学号 14434149[解析] 如图所示,单位圆O 与x 轴正半轴交于点A ,与角β,α的终边分别交于点P ,Q ,过P ,Q 分别作OA 的垂线,垂足分别是M ,N ,则sin α=NQ ,sin β=MP .过点Q 作QH ⊥MP 于H ,则HP =MP -NQ =sin β-sin α.连接PQ ,由图可知HP <PQ <PQ 的长=AP 的长-AQ 的长=β -α,即β-α>sin β-sin α.。

新人教A版高中数学必修四同步练习(含答案)

新人教A版高中数学必修四同步练习(含答案)

福建省泉州师院附属鹏峰中学数学必修(4)同步练习第一章 三角函数§1.1 任意角和弧度制班级 姓名 学号 得分一、选择题1.若α是第一象限角,则下列各角中一定为第四象限角的是 ( ) (A) 90°-α(B) 90°+α (C)360°-α(D)180°+α2.终边与坐标轴重合的角α的集合是 ( ) (A){α|α=k ·360°,k ∈Z}(B){α|α=k ·180°+90°,k ∈Z}(C){α|α=k ·180°,k ∈Z}(D){α|α=k ·90°,k ∈Z}3.若角α、β的终边关于y 轴对称,则α、β的关系一定是(其中k ∈Z ) ( ) (A) α+β=π (B) α-β=2π(C) α-β=(2k +1)π (D) α+β=(2k +1)π 4.若一圆弧长等于其所在圆的内接正三角形的边长,则其圆心角的弧度数为 ( ) (A)3π (B)32π (C)3 (D)25.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C)6π(D)-6π*6.已知集合A ={第一象限角},B ={锐角},C ={小于90°的角},下列四个命题: ①A =B =C ②A ⊂C ③C ⊂A ④A ∩C =B ,其中正确的命题个数为 ( ) (A)0个(B)2个 (C)3个 (D)4个二.填空题7.终边落在x 轴负半轴的角α的集合为 ,终边在一、三象限的角平分线上的角β的集合是 . 8. -1223πrad 化为角度应为 . 9.圆的半径变为原来的3倍,而所对弧长不变,则该弧所对圆心角是原来圆弧所对圆心角的 倍.*10.若角α是第三象限角,则2α角的终边在 ,2α角的终边在 . 三.解答题11.试写出所有终边在直线x y 3-=上的角的集合,并指出上述集合中介于-1800和1800之间的角.12.已知0°<θ<360°,且θ角的7倍角的终边和θ角终边重合,求θ.13.已知扇形的周长为20 cm,当它的半径和圆心角各取什么值时,才能使扇形的面积最大?最大面积是多少?*14.如下图,圆周上点A依逆时针方向做匀速圆周运动.已知A点1分钟转过θ(0<θ<π)角,2分钟到达第三象限,14分钟后回到原来的位置,求θ.§1.2.1.任意角的三角函数班级姓名学号得分一.选择题1.函数y=|sin|sinxx+cos|cos|xx+|tan|tanxx的值域是( )(A){-1,1} (B){-1,1,3} (C) {-1,3} (D){1,3}2.已知角θ的终边上有一点P (-4a ,3a )(a ≠0),则2sin θ+cos θ的值是 ( ) (A)25(B) -25 (C) 25或 -25(D) 不确定3.设A 是第三象限角,且|sin 2A |= -sin 2A ,则2A是 ( ) (A) 第一象限角(B) 第二象限角 (C) 第三象限角 (D) 第四象限角4. sin2cos3tan4的值 ( ) (A)大于0(B)小于0 (C)等于0(D)不确定5.在△ABC 中,若cos A cos B cos C <0,则△ABC 是 ( ) (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)锐角或钝角三角形*6.已知|cos θ|=cos θ, |tan θ|= -tan θ,则2θ的终边在 ( ) (A)第二、四象限 (B)第一、三象限 (C)第一、三象限或x 轴上 (D)第二、四象限或x 轴上 二.填空题7.若sin θ·cos θ>0, 则θ是第 象限的角; 8.求值:sin(-236π)+cos 137π·tan4π -cos 133π= ; 9.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为 ;*10.设M =sin θ+cos θ, -1<M <1,则角θ是第 象限角.三.解答题11.求函数y =lg(2cos x的定义域12.求:13sin 330tan()319cos()cos6906ππ︒⋅--⋅︒的值.13.已知:P (-2,y )是角θ终边上一点,且sin θ= -55,求cos θ的值.*14.如果角α∈(0,2π),利用三角函数线,求证:sin α<α<tan α.§1.2.2 同角三角函数的基本关系式班级 姓名 学号 得分一、选择题1.已知sin α=45,且α为第二象限角,那么tan α的值等于 ( )(A)34(B)43- (C)43(D)43-2.已知sin αcos α=81,且4π<α<2π,则cos α-sin α的值为 ( )(A)23(B)43(C) (D)±233.设是第二象限角,则sin cos αα ( ) (A) 1 (B)tan 2α (C) - tan 2α (D) 1-4.若tan θ=31,π<θ<32π,则sin θ·cos θ的值为 ( )(A)±310(B)3105.已知sin cos 2sin 3cos αααα-+=51,则tan α的值是 ( )(A)±83 (B)83(C)83-(D)无法确定*6.若α是三角形的一个内角,且sin α+cos α=32,则三角形为 ( ) (A)钝角三角形(B)锐角三角形 (C)直角三角形(D)等腰三角形二.填空题7.已知sin θ-cos θ=12,则sin 3θ-cos 3θ= ; 8.已知tan α=2,则2sin 2α-3sin αcos α-2cos 2α= ;9.α为第四象限角)= ; *10.已知cos (α+4π)=13,0<α<2π,则sin(α+4π)= .三.解答题 11.若sin x = 35m m -+,cos x =425mm -+,x ∈(2π,π),求tan x12.化简:22sin sin cos sin cos tan 1+---x x xx x x .13.求证:tan 2θ-sin 2θ=tan 2θ·sin 2θ.*14.已知:sin α=m(|m |≤1),求cos α和tan α的值.§1.3 三角函数的诱导公式班级 姓名 学号 得分一.选择题1.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是 ( )(A)-53 (B)53 (C)±53 (D)54 2.若cos100°= k ,则tan ( -80°)的值为 ( )(A)(D)3.在△ABC 中,若最大角的正弦值是2,则△ABC 必是 ( ) (A)等边三角形 (B)直角三角形 (C)钝角三角形 (D)锐角三角形 4.已知角α终边上有一点P (3a ,4a )(a ≠0),则sin(450°-α)的值是 ( )(A)-45 (B)-35 (C)±35 (D)±455.设A ,B ,C 是三角形的三个内角,下列关系恒等成立的是 ( ) (A)cos(A +B )=cos C(B)sin(A +B )=sin C (C)tan(A +B )=tan C (D)sin2A B+=sin 2C *6.下列三角函数:①sin(n π+43π) ②cos(2n π+6π) ③sin(2n π+3π) ④cos[(2n +1)π-6π]⑤sin[(2n +1)π-3π](n ∈Z)其中函数值与sin 3π的值相同的是 ( )(A)①② (B)①③④ (C)②③⑤ (D)①③⑤二.填空题7.tan(150)cos(570)cos(1140)tan(210)sin(690)-︒⋅-︒⋅-︒-︒⋅-︒= .8.sin 2(3π-x )+sin 2(6π+x )= . 9.= .*10.已知f (x )=a sin(πx +α)+b cos(πx +β),其中α、β、a 、b 均为非零常数,且列命题:f (2006) =1516-,则f (2007) = .三.解答题11.化简23tan()sin ()cos(2)2cos ()tan(2)ππααπααπαπ-⋅+⋅---⋅-.12. 设f (θ)=3222cos sin (2)cos()322cos ()cos(2)θπθθπθπθ+-+--+++- , 求f (3π)的值.13.已知cos α=13,cos(α+β)=1求cos(2α+β)的值.*14.是否存在角α、β,α∈(-2π,2π),β∈(0,π),使等式sin(3π-α2π-β),cos (-α)=π+β)同时成立?若存在,求出α、β的值;若不存在,请说明理由.§1.4.1正弦函数、余弦函数的图象和性质班级 姓名 学号 得分一、选择题1.下列说法只不正确的是 ( ) (A) 正弦函数、余弦函数的定义域是R ,值域是[-1,1]; (B) 余弦函数当且仅当x =2kπ( k ∈Z) 时,取得最大值1; (C) 余弦函数在[2kπ+2π,2kπ+32π]( k ∈Z)上都是减函数; (D) 余弦函数在[2kπ-π,2kπ]( k ∈Z)上都是减函数2.函数f (x )=sin x -|sin x |的值域为 ( ) (A) {0} (B) [-1,1] (C) [0,1] (D) [-2,0]3.若a =sin 460,b =cos 460,c =cos360,则a 、b 、c 的大小关系是 ( ) (A) c > a > b (B) a > b > c (C) a >c > b (D) b > c > a4. 对于函数y =sin(132π-x ),下面说法中正确的是 ( ) (A) 函数是周期为π的奇函数 (B) 函数是周期为π的偶函数 (C) 函数是周期为2π的奇函数 (D) 函数是周期为2π的偶函数5.函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是 ( ) (A) 4(B)8 (C)2π (D)4π*6.为了使函数y = sin ωx (ω>0)在区间[0,1]是至少出现50次最大值,则的最小值是 ( ) (A)98π(B)1972π (C) 1992π (D) 100π 二. 填空题7.函数值sin1,sin2,sin3,sin4的大小顺序是 .8.函数y=cos(sin x)的奇偶性是.9. 函数f(x)=lg(2sin x+1)+ 的定义域是;*10.关于x的方程cos2x+sin x-a=0有实数解,则实数a的最小值是.三. 解答题11.用“五点法”画出函数y=12sin x+2,x∈[0,2π]的简图.12.已知函数y= f(x)的定义域是[0,14],求函数y=f(sin2x) 的定义域.13. 已知函数f(x) =sin(2x+φ)为奇函数,求φ的值.*14.已知y=a-b cos3x的最大值为32,最小值为12-,求实数a与b的值.§1.4.2正切函数的性质和图象班级 姓名 学号 得分一、选择题 1.函数y =tan (2x +6π)的周期是 ( ) (A) π (B)2π (C)2π (D)4π 2.已知a =tan1,b =tan2,c =tan3,则a 、b 、c 的大小关系是 ( ) (A) a <b <c(B) c <b <a (C) b <c <a (D) b <a <c3.在下列函数中,同时满足(1)在(0,2π)上递增;(2)以2π为周期;(3)是奇函数的是 ( )(A) y =|tanx | (B) y =cos x (C) y =tan 21x (D) y =-tanx 4.函数y =lgtan2x的定义域是 ( ) (A){x |k π<x <k π+4π,k ∈Z} (B) {x |4k π<x <4k π+2π,k ∈Z} (C) {x |2k π<x <2k π+π,k ∈Z} (D)第一、三象限5.已知函数y =tan ωx 在(-2π,2π)内是单调减函数,则ω的取值范围是 ( )(A)0<ω≤ 1 (B) -1≤ω<0 (C) ω≥1 (D) ω≤ -1*6.如果α、β∈(2π,π)且tan α<tan β,那么必有 ( )(A) α<β (B) α>β (C) α+β>32π (D) α+β<32π 二.填空题 7.函数y =2tan(3π-2x)的定义域是 ,周期是 ; 8.函数y =tan 2x -2tan x +3的最小值是 ; 9.函数y =tan(2x +3π)的递增区间是 ; *10.下列关于函数y =tan2x 的叙述:①直线y =a (a ∈R)与曲线相邻两支交于A 、B 两点,则线段AB长为π;②直线x =kπ+2π,(k ∈Z)都是曲线的对称轴;③曲线的对称中心是(4k π,0),(k ∈Z),正确的命题序号为 .三. 解答题11.不通过求值,比较下列各式的大小(1)tan(-5π)与tan(-37π) (2)tan(78π)与tan (16π)12.求函数y =tan 1tan 1x x +-的值域.13.求下列函数y 的周期和单调区间*14.已知α、β∈(2π,π),且tan(π+α)<tan(52π-β),求证: α+β<32π.§1.5 函数y =A sin(ωx +φ)的图象班级 姓名 学号 得分一、选择题1.为了得到函数y =cos(x +3π),x ∈R 的图象,只需把余弦曲线y =cos x 上的所有的点 ( )(A) 向左平移3π个单位长度 (B) 向右平移3π个单位长度 (C) 向左平移13个单位长度 (D) 向右平移13个单位长度2.函数y =5sin(2x +θ)的图象关于y 轴对称,则θ= ( ) (A) 2kπ+6π(k ∈Z ) (B) 2kπ+ π(k ∈Z ) (C) kπ+π(k ∈Z ) (D) kπ+ π(k ∈Z )3. 函数y =2sin(ωx +φ),|φ|<2π的图象如图所示,则 ( )(A) ω=1011,φ=6π (B) ω=1011,φ= -6π(C) ω=2,φ=6π (D) ω=2,φ= -6π 4.函数y =cos x 的图象向左平移3π个单位,横坐标缩小到原来的12,纵坐标扩大到原来的3倍,所得的函数图象解析式为 ( )(A) y =3cos(12x +3π) (B) y =3cos(2x +3π) (C) y =3cos(2x +23π) (D) y =13cos(12x +6π)5.已知函数y =A sin(ωx +φ)(A >0,ω>0)在同一周期内,当x =12π时,y max =2;当x =712π时,,y min =-2.那么函数的解析式为 ( )(A) y =2sin(2x +3π) (B) y =2sin(2x -6π) (C) y =2sin(2x +6π) (D) y =2sin(2x -3π)*6.把函数f (x )的图象沿着直线x +y =0的方向向右下方平移y =sin3x 的图象,则 ( ) (A) f (x )=sin(3x +6)+2 (B) f (x )=sin(3x -6)-2 (C) f (x )=sin(3x +2)+2 (D) f (x )=sin(3x -2)-2 二. 填空题7.函数y =3sin(2x -5)的对称中心的坐标为 ; 8.函数y =cos(23πx +4π)的最小正周期是 ; 9.函数y =2sin(2x +6π)(x ∈[-π,0])的单调递减区间是 ; *10.函数y =sin2x 的图象向右平移φ(φ>0)个单位,得到的图象恰好关于直线x =6π对称,则φ的最小值是 . 三. 解答题11.写出函数y =4sin2x (x ∈R )的图像可以由函数y =cos x 通过怎样的变换而得到.(至少写出两个顺序不同的变换)12.已知函数log 0.5(2sin x -1), (1)写出它的值域.(2)写出函数的单调区间.(3)判断它是否为周期函数?如果它是一个周期函数,写出它的最小正周期.13.已知函数y =2sin(3kx +5)周期不大于1,求正整数k 的最小值.*14. 已知N (2,2)是函数y =A sin(ωx +φ)(A >0,ω>0)的图象的最高点,N 到相邻最低点的图象曲线与x 轴交于A 、B ,其中B 点的坐标(6,0),求此函数的解析表达式.§1.6 三角函数模型的简单应用班级 姓名 学号 得分一、选择题1.已知A ,B ,C 是△ABC 的三个内角, 且sin A >sin B >sin C ,则 ( ) (A) A >B >C (B) A <B <C (C) A +B >2π (D) B +C >2π2.在平面直角坐标系中,已知两点A (cos800,sin800),B (cos200,sin200),则|AB |的值是 ( )(A) 12(B)(C) (D) 1 3. 02年北京国际数学家大会会标是由四个相同的直角三角形与中间的小 正方形拼成的一个大正方形,若直角三角形中较小的锐角为θ,大正方形的面积为1,小正方形的面积是125,则sin 2θ-cos 2θ的值是 ( )(A) 1 (B) 2425(C) 725(D) -7254.D 、C 、B 三点在地面同一直线上,DC =a ,从C 、D 两点测得A点的仰角 分别是α、 β(α>β),则A 点离地面的高度等于( )(A) tan tan tan tan a αβαβ- (B) tan tan 1tan tan a αβαβ+ (C)tan tantan a ααβ- (D) 1tan tan a αβ+5.甲、乙两人从直径为2r 的圆形水池的一条直径的两端同时按逆时针方向沿池做圆周运动,已知甲速是乙速的两倍,乙绕池一周为止,若以θ表示乙在某时刻旋转角的弧度数, l 表示甲、乙两人的直线距离,则l =f (θ)的图象大致是 ( )6.电流强度I (安培)随时间t(秒)变化的函数I =A sin(ωt +φ)的图象如图 所示,则当t =7120秒时的电流强度 ( )(A)0 (B)10 (C)-10 (D)5 二.填空题7.三角形的内角x 满足2cos2x +1=0则角x = ;8. 一个扇形的弧长和面积的数值都是5,则这个扇形中心角的度数是 ;9. 设y =f (t )是某港口水的深度y (米)关于时间t (小时)的函数,其中0≤t ≤24.下表是该港口某一天从0时至经长期观察,函数y =f (t )的图象可以近似地看成函数y =k +A sin(ωt +φ)的图象.则一个能近似表示表中数据间对应关系的函数是 .10.直径为10cm 的轮子有一长为6cm 的弦,P 是该弦的中点,轮子以5弧度/秒的角速度旋转,则经过5秒钟后点P 经过的弧长是 . 三.解答题11.以一年为一个周期调查某商品出厂价格及该商品在商店销售价格时发现:该商品的出厂价格是在6元基础上按月份随正弦曲线波动的,已知3月份出厂价格最高为8 元,7月份出厂价格最低为4元;而该商品在商店的销售价格是在8元基础上按月份也是随正弦曲线波动的.并已知5月份销售价最高为10元.9月份销售价最低为6元.假设某商店每月购进这种商品m 件,且当月能售完,请估计哪个月盈利最大?并说明理由.12.一个大风车的半径为8米,12离地面2米,求风车翼片的一个端点离地面距离h (米)t (分钟)之间的函数关系式.ABα β A B C13.一铁棒欲通过如图所示的直角走廊,试回答下列问题: (1)证明棒长L (θ)=965sin 5cos θθ+; (2)当θ∈(0,2π)(3)由(2)中的图象求L (θ)的最小值; (4)解释(3)中所求得的L 是能够通过这个直角走廊的铁棒的长度的最大值.第二章 平面向量§2.1 平面向量的实际背景及基本概念班级___________姓名____________学号____________得分____________一、选择题1.下列物理量中,不能称为向量的是 ( ) A .质量 B .速度 C .位移 D .力 2.设O 是正方形ABCD 的中心,向量AO OB CO OD 、、、是 ( ) A .平行向量 B .有相同终点的向量 C .相等向量 D .模相等的向量 3.下列命题中,正确的是 ( ) A .|a | = |b |⇒a = b B .|a |> |b |⇒a > b C .a = b ⇒a 与b 共线 D .|a | = 0⇒a = 0 4.在下列说法中,正确的是 ( ) A .两个有公共起点且共线的向量,其终点必相同; B .模为0的向量与任一非零向量平行;C .向量就是有向线段;D .若|a |=|b |,则a =b5.下列各说法中,其中错误的个数为 ( )(1)向量AB 的长度与向量BA 的长度相等;(2)两个非零向量a 与b 平行,则a 与b 的方向相同或相反;(3)两个有公共终点的向量一定是共线向量;(4)共线向量是可以移动到同一条直线上的向量;(5)平行向量就是向量所在直线平行A .2个B .3个C .4个D .5个 *6.△ABC 中,D 、E 、F 分别为BC 、CA 、AB 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段所表示的向量中,与EF 共线的向量有 ( )A .2个B .3个C .6个D .7个 二、填空题7.在(1)平行向量一定相等;(2)不相等的向量一定不平行;(3)共线向量一定相等;(4)相等向量一定共线;(5)长度相等的向量是相等向量;(6)平行于同一个向量的两个向量是共线向量中,说法错误的是_______________________.8.如图,O 是正方形ABCD 的对角线的交点,四边形OAED 、OCFB 是正方形,在图中所示的向量中,(1)与AO 相等的向量有_________________________;(2)与AO 共线的向量有_________________________; (3)与AO 模相等的向量有_______________________;(4)向量AO 与CO 是否相等?答:_______________.9.O 是正六边形ABCDEF 的中心,且AO =a ,OB =b ,AB =c ,在以A 、B 、C 、D 、E 、F 、O 为端点的向量中: (1)与a 相等的向量有 ;(2)与b 相等的向量有 ;(3)与c 相等的向量有 . *10.下列说法中正确是_______________(写序号)(1)若a 与b 是平行向量,则a 与b 方向相同或相反; (2)若AB 与CD 共线,则点A 、B 、C 、D 共线; (3)四边形ABCD 为平行四边形,则AB =CD ; (4)若a = b ,b = c ,则a = c ;(5)四边形ABCD 中,AB DC =且||||AB AD =,则四边形ABCD 为正方形;(6)a 与b 方向相同且|a | = |b |与a = b 是一致的; 三、解答题11.如图,以1×3方格纸中两个不同的格点为起点和终点的所有向量中,有多少种大小不同的模?有多少种不同的方向?12.在如图所示的向量a 、b 、c 、d 、e 中(小正方形边长为1相等的向量?若存在,请一一举出.13.某人从A 点出发向西走了200m 达到B 点,然后改变方向向西偏北600走了450m 到达C 点,最后又改变方向向东走了200m 到达D 点(1)作出向量AB 、BC 、CD (1cm 表示200m ); (2)求DA 的模.OA B C DE F*14.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来;若它位于图中的P 点,则这只“马”第一步有几种可能的走法?它能否走若干步从A 点走到与它相邻的B 点处?§2.2. 1 向量加减运算及几何意义班级___________姓名____________学号____________得分____________一、选择题1.化简PM PN MN -+所得的结果是 ( ) A .MP B .NP C .0 D .MN2.设OA =a ,OB =b 且|a |=| b |=6,∠AOB =120︒,则|a -b |等于 ( ) A .36 B .12 C .6D .363.a ,b 为非零向量,且|a + b |=| a |+| b |,则 ( )A .a 与b 方向相同B .a = bC .a =-bD .a 与b 方向相反 4.在平行四边形ABCD 中,若||||BC BA BC AB +=+,则必有 ( ) A .ABCD 为菱形 B .ABCD 为矩形 C .ABCD 为正方形 D .以上皆错 5.已知正方形ABCD 边长为1,AB =a ,BC =b ,AC =c ,则|a+b+c |等于 ( ) A .0 B .3 C .22 D .2*6.设()()AB CD BC DA +++=a ,而b 是一非零向量,则下列个结论:(1) a 与b 共线;(2)a + b =a ;(3) a +b = b ;(4)| a + b |<|a |+|b |中正确的是 ( ) A .(1) (2) B .(3) (4) C .(2) (4) D .(1) (3) 二、填空题7.在平行四边形ABCD 中,AB =a ,AD = b ,则CA =__________,BD =_______.8.在a =“向北走20km ”,b =“向西走20km ”,则a + b 表示______________. 9.若||AB =8,||AC =5,则||BC 的取值范围为_____________.*10.一艘船从A 点出发以32km /h 的速度向垂直于河岸的方向行驶,而船实际行驶速度的大小为4km /h ,则河水的流速的大小为___________. 三、解答题11.如图,O 是平行四边形ABCD 外一点,用OA OB OC 、、表示OD .12.如图,在任意四边形ABCD 中,E 、F 分别为AD 、BC 的中点,求证:AB DC EF EF +=+.13.飞机从甲地按南偏东100方向飞行2000km 到达乙地,再从乙地按北偏西700方向飞行2000km到达丙地,那么丙地在甲地的什么方向?丙地距离甲地多远?*14.点D 、E 、F 分别是△ABC 三边AB 、BC 、CA 上的中点,求证:(1)AB BE AC CE +=+;(2)EA FB DC ++=0.§2. 2. 2 向量数乘运算及其几何意义班级___________姓名____________学号____________得分____________一、选择题1.已知向量a = e 1-2 e 2,b =2 e 1+e 2, 其中e 1、e 2不共线,则a +b 与c =6 e 1-2 e 2的关系为( ) A .不共线 B .共线 C .相等 D .无法确定2.已知向量e 1、e 2不共线,实数(3x -4y )e 1+(2x -3y )e 2 =6e 1+3e 2 ,则x -y 的值等于 ( ) A .3 B .-3 C .0 D .23.若AB =3a , CD =-5a ,且||||AD BC =,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形4.AD 、BE 分别为△ABC 的边BC 、AC 上的中线,且AD =a ,BE =b ,那么BC 为( ) A .32a +34b B .32a -32b C .32a -34b D . -32a +34b 5.已知向量a ,b 是两非零向量,在下列四个条件中,能使a ,b 共线的条件是 ( ) ①2a -3b =4e 且a +2b = -3e②存在相异实数λ ,μ,使λa -μb =0 ③x a +y b =0 (其中实数x , y 满足x +y =0)D④已知梯形ABCD,其中AB=a,CD=bA.①②B.①③C.②D.③④*6.已知△ABC三个顶点A、B、C及平面内一点P,若PA PB PC AB++=,则()A.P在△ABC内部B.P在△ABC外部C.P在AB边所在直线上D.P在线段BC上二、填空题7.若|a|=3,b与a方向相反,且|b|=5,则a= b8.已知向量e1,e2不共线,若λe1-e2与e1-λe2共线,则实数λ=9.a,b是两个不共线的向量,且AB=2a+k b,CB=a+3b,CD=2a-b,若A、B、D三点共线,则实数k的值可为*10.已知四边形ABCD中,AB=a-2c,CD=5a+6b-8c对角线AC、BD的中点为E、F,则向量EF=三、解答题11.计算:⑴(-7)×6a=⑵4(a+b)-3(a-b)-8a=⑶(5a-4b+c)-2(3a-2b+c)=12.如图,设AM是△ABC的中线,AB=a,AC=b,求AM13.设两个非零向量a与b不共线,⑴若AB=a+b,BC=2a+8b,CD=3(a-b) ,求证:A、B、D三点共线;⑵试确定实数k,使k a+b和a+k b共线.*14.设OA ,OB 不共线,P 点在AB 上,求证:OP =λOA +μOB 且λ+μ=1(λ, μ∈R).§2. 3. 1平面向量基本定理及坐标表示(1)班级___________姓名____________学号____________得分____________一、选择题1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)43,21(-2.已知向量a 、b ,且AB =a +2b ,BC = -5a +6b ,CD =7a -2b ,则一定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D3.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量;②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0.A .①②B .②③C .③④D .仅②4.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =x AB ,AE =y AC ,xy ≠0,则11x y+的值为 ( ) A .4 B .3 C .2 D .15.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b*6.平面直角坐标系中,O 为坐标原点,已知两点A (3,1),B (-1,3),若点C (x , y )满足OC =αOA +βOB ,其中α,β∈R 且α+β=1,则x , y 所满足的关系式为 ( ) A .3x +2y -11=0 B .(x -1)2+(y -2)2=5 C .2x -y =0 D .x +2y -5=0二、填空题7.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 8.若A (2,3),B (x , 4),C (3,y ),且AB =2AC ,则x = ,y = ; 9.已知A (2,3),B (1,4)且12AB =(sin α,cos β), α,β∈(-2π,2π),则α+β=*10.已知a =(1,2) ,b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为三、解答题11.已知向量b 与向量a =(5,-12)的方向相反,且|b |=26,求b12.如果向量AB =i -2j ,BC =i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值使A 、B 、C 三点共线。

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。

高中数学必修四同步练习及答案(新课标人教A版)

高中数学必修四同步练习及答案(新课标人教A版)

高中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 ....................................................... 1 1.2任意角的三角函数 ..................................................... 3 1.3三角函数的诱导公式 ................................................... 5 1.4三角函数的图像与性质 . (7)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 .............. 10 第一章 三角函数基础过关测试卷 ........................................... 12 第一章三角函数单元能力测试卷 .. (14)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 .................... 18 2.2向量减法运算与数乘运算 .............................................. 20 2.3平面向量的基本定理及坐标表示 ........................................ 22 2.4平面向量的数量积与2.5平面向量应用举例 .............................. 25 第二章平面向量基础过关测试卷 ............................................ 27 第二章平面向量单元能力测试卷 .. (29)3.1两角和与差的正弦、余弦和正切公式 .................................... 33 3.2简单的三角恒等变换 .................................................. 36 第三章三角恒等变换单元能力测试卷 . (38)人教A 版必修4练习答案1.1任意角和弧度制 ...................................................... 42 1.2任意角的三角函数 .................................................... 42 1.3三角函数的诱导公式 .................................................. 43 1.4三角函数的图像与性质 (43)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 .............. 44 第一章三角函数基础过关测试卷 ............................................ 45 第一章三角函数单元能力测试卷 .. (45)2.1平面向量的实际背景及基本概念与2.2.1向量加法运算 .................... 46 2.2向量减法运算与数乘运算 .............................................. 46 2.3平面向量的基本定理及坐标表示 ........................................ 46 2.4平面向量的数量积与2.5平面向量应用举例 .............................. 47 第二章平面向量基础过关测试卷 ............................................ 48 第二章平面向量单元能力测试卷 .. (48)3.1两角和与差的正弦、余弦和正切公式 .................................... 49 3.2简单的三角恒等变换 .................................................. 49 第三章三角恒等变换单元能力测试卷 . (50)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( )A.,398- 38 B.,398- 142 C.,398- 1042 D.,14210422.集合α{=A ︱ 90⋅=k α,36-}Z k ∈,β{=B ︱180-180<<β},则B A 等于( )A.,36{- 54} B.,126{- 144} C.,126{-,36-,54144} D.,126{-54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角}, θ{=D ︱θ为小于 90的正角},则 ( ) A.B A = B.C B = C.C A = D.D A =4.若角α与β终边相同,则一定有 ( ) A.180=+βα B.0=+βαC.360⋅=-k βα,Z k ∈ D.360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3π B.3π- C.2π D.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π 8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B 的关系是 ( ) A.B A = B.B A ⊇ C.B A ⊆ D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________; 2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________; 4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________. 14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又720-<a < 0,求角a .16.已知角45=a ,(1)在区间720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同?18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( ) A.αsin B.αcos C.αtan D.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( )A.34B.43C.34±D.43± 5.函数x x y cos sin -+=的定义域是 ( )A.()Z k k k ∈+,)12(,2ππB.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角 二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________. 三、解答题(第15题20分,其余每题10分,共40分) 13.求43π的角的正弦,余弦和正切值.14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23 B.21C.23±D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23-C.m 32D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21-C.23D.23-4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa +C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( )A.33B.33-C.3D.-37.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0 B.1C.1-D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A .等腰三角形B .直角三角形C .等腰或直角三角形D .等腰直角三角形二、填空题(每题5分,共20分)9.求值:︒2010tan 的值为 .10.若1312)125sin(=-α,则=+)55sin(α . 11.=+++++76cos 75cos 74cos 73cos 72cos 7cos ππππππ .12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为 . 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( ) A.[]1,0 B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ2.函数)652cos(3π-=x y 的最小正周期是 ( )A52π B 25π C π2 D π5 3.x x y sin sin -=的值域是 ( ) A ]0,1- B ]1,0 C ]1,1[- D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 1C.0D.2- 7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( ) A.8 B.6 C.8± D.48.函数)32sin(π+=x y 的图象 ( )A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫ ⎝⎛-0,6π对称C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图.16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值. (1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω的一个可能值为 ( ) A.3 B.2 C.31 D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x fD.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为 ( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0πB.⎥⎦⎤⎢⎣⎡32,6ππC.⎥⎦⎤⎢⎣⎡1211,6ππD.⎥⎦⎤⎢⎣⎡1211,32ππ二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y ,1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间.12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章 三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( ) A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.233.函数x y sin 1-=的最大值为 ( ) A.1 B.0 C.2 D.1-4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( ) A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是( ) A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫ ⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,08.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________.10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值.14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫ ⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列值①)1000sin( -;②)2200cos(-;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A.0 B4π C 2πD π 4.已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34-C.43D.34 5.若α是第四象限的角,则πα-是 ( ) A 第一象限的角 B 第二象限的角 C 第三象限的角 D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( )A.1sin 2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-=x C 4π=x D 8π=9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( ) A.1个 B 2个 C 个 D 4个10.方程1sin 4x x π=的解的个数是( ) A B C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( )A.)45,()2,4(ππππ B.),4(ππ C.)45,4(ππ D.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是 ( )A.2π B 4π- C 4πD 34π二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15 若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数 其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π- (2))945cos( -18.比较大小:(1) 150sin ,110sin ; (2)200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域: (1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际背景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.两个孤立点 D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则b a =C.若b a =,则a ∥bD.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( ) A.相等向量 B.平行向量 C.模相等的向量 D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, b ++=( ) A.0 B.3 C.22+ D.225.58==,的取值范围是 ( ) A.[]8,3 B.()8,3 C.[]13,3 D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是A.CA BC AB =+ B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =,+= ( ) A.7 B.5 C.3 D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量a 与b <,则向量b a +与a 的方向相同C.向量a 与b 同向,则向量b a +与a 的方向相同D.向量a 与b 同向,则向量b a +与b 的方向相同二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=601==+__________.12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分) 1.在菱形ABCD 中,下列各式中不成立的是 ( ) A.-=AC AB BC B.-=AD BD AB C.-=BD AC BC D.-=BD CD BC2.下列各式中结果为O 的有 ( ) ①++AB BC CA ②+++OA OC BO CO ③-+-AB AC BD CD ④+-+MN NQ MP QP A.①② B.①③ C.①③④ D.①②③3.下列四式中可以化简为AB 的是 ( ) ①+AC CB ②-AC CB ③+OA OB ④-OB OA A.①④ B.①② C.②③ D.③④4. ()()=⎥⎦⎤⎢⎣⎡+-+ba b a24822131 ( )A.2a b -B.2b a -C.b a -D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( ) A.1 B.1- C.1± D.06.在△ABC 中,向量BC 可表示为 ( ) ①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④ 7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c 8.当C 是线段AB 的中点,则AC BC += ( ) A.AB B.BA C.AC D.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________, 两次位移和的和方向为__________,大小为__________. 11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分)13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值? 14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 表示DE 、BF 、CG15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?AGE F BD2.3平面向量的基本定理及坐标表示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a则向量b a2321-等于( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(-2.若),3,1(),4,2(==AC AB 则BC 等于 ( ) A.)1,1( B.)1,1(-- C.)7,3( D.)7,3(--3.21,e e 是表示平面内所有向量的一组基底,下列四组向量中,不能作为一组基底的是 ( )A.21e e +和21e e -B.2123e e -和1264e e -C.212e e +和122e e +D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且b a //,则实数m 的值等于 ( ) A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为 A.13- B.9 C.9- D.13 ( ) 6.已知平面向量),,2(),2,1(m b a -==且b a //,则b a 32+等于 ( ) A.)10,5(-- B.)8,4(-- C.)6,3(-- D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( ) A.若实数21,λλ使02211=+e e λλ,则021==λλ B.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+不一定在平面内D.对平面中的任一向量a ,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( ) A.1,2- B.2,1- C.1,2- D.2,1-9.已知),3,2(),2,1(-==b a 若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( )A.21-B.2C.21D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若,,b BD a AC == 则AF 等于 ( )A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且b a //,则=x __________12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求y x ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A ,,D 三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若b a ,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b aC.≠D.=2.下面给出的关系始终正确的个数是 ( )①00=⋅a ②a b b a ⋅=⋅ ③2a = ④()()c b a c b a ⋅⋅=⋅⋅ b a ⋅≤ A.0 B.1 C.2 D.33.对于非零向量b a ,,下列命题中正确的是 ( )A.000==⇒=⋅b a b a 或B. b a //a ⇒在bC.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅4.下列四个命题,真命题的是 ( ) A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形; B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形; C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ; D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB .5.e ,8=为单位向量,a 与e 的夹角为,60o 则a 在e 方向上的投影为 ( )A.34B.4C.24D.238+6.若向量b a ,a ,1==与b 的夹角为120,则=⋅+⋅b a a a ( )A.21 B.21- C.23 D.23-7.a ,631==与b 的夹角为,3π则b a ⋅的值为 ( )A.2B.2±C.1D.1±8.已知()(),5,5,0,3-==b a 则a 与b 的夹角为 ( ) A.4π B.3π C.43π D.32π9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆ 的形状为 ( ) A.正三角形 B.直角三角形 C.等腰三角形 D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( )A.25 B.2 C.1 D.27二、填空题(每题5分,共20分)11.(),2,1,3==b 且,b a ⊥则a 的坐标是_____________. 12.若(),8,6-=a 则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====b __________. 三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==b a b a ,求a 与b的夹角θ.16.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA ==,,d OD c OC ==则下列运算正确的是( )A.0=+++d c b a B.0 =-+-d c b a C.0 =--+d c b a D.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( ) A.1- B.9 C.9- D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( ) A.34-B. 32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b ac b c a =⇒⋅=⋅6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D的坐标为 ( ) A.)2,2( B.)0,6(- C.)6,4( D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e b --=共线的等价条件是 A.23=λ B.32=λ C.32-=λ D.23-=λ ( ) 8.下面给出的关系式中正确的个数是 ( )① 00 =⋅a ②a b b a ⋅=⋅ ③22a a = ④)()(c b a c b a ⋅=⋅ ⑤||||b a b a⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( ) ①一个平面内只有一对不共线的向量可作为基底; ②两个非零向量平行,则他们所在直线平行;ACOD③零向量不能作为基底中的向量; ④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P 延长线上,22PP =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(-11.若b a k b a b a b a 432,1||||-+⊥==与且也互相垂直,则k 的值为 ( ) A.6- B.6 C.3 D.3- 二、填空题(每题5分,共15分)12.已知向量)2,1(,3==b a,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a,则b a 与的夹角为__________.14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________. 三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)b a b a+⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD 为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+ ②AC BE BC EA +=- ③ED AB EA AD +=+ ④0AB BC CD DE EA ++++= ⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,=++b ( ) A.0 B.3 C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35-B.-59C.53-D.95-4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( ) A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为 A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( ) A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a =8,则向量a 与b 的夹角为 ( ) A.60B. 60-C.120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( )A.4πB.43π C.3π D.32π 9.若b a b a⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-NA BDM C10.已知a =(2,3),b =(4-,7),则a 在b上的投影值为 ( )A.13B.513 C.565 D.6511.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( ) A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( ) A.)11,2(-B.)3,34(C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分)13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b的夹角为__________.14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a cμλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.如图,ABCD 中,点M 是AB 的中点,点N 在BD 上,且BD BN 31=,求证:C N M ,,三点共线.18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC , 1)求点E 、F 及向量EF 的坐标; 2)求证:EF ∥AB .19.24==夹角为120,求:(1)b a ⋅;(2))()2(b a b a +⋅-;(3)a 3+.20.已知)2,3(),2,1(-==b a,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1. 345cos 的值等于 ( )A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23D.21- 3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( )A.2627-B.2627C.26217-D.26217 4.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( )A.45πB.4πC.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4-9.函数56sin2sin 5cos 2cos )(ππx x x f -=的单调递增区间是 ( ) A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分) 14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ.(2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=,(1)求)(x f 的最大值及最小正周期;(2)若锐角α满足323)(-=αf ,求α54tan 的值.16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A .23 B .23-C .21 D .21- 2.下列各式中,最小的是 ( ) A .40cos 22B .6cos 6sin 2 C .37sin 50cos 37cos 50sin - D .41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A .2πB .πC .π2D .π4 4.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( ) A .21 B .23 C .21- D .3-5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫ ⎝⎛+απ232cos ( ) A .97-B .31-C .31D .97 6.若函数x x y tan 2sin =,则该函数有 ( ) A .最小值0,无最大值 B .最大值2,无最小值 C .最小值0,最大值2 D .最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A .2cosαB .2sinαC .2cosα- D .2sinα-8.若()x x f 2sin tan =,则()=-1f ( ) A .1 B .1- C .21D .21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________.三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22.15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值.16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期;(2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( )A.26 B.23 C.45 D.431+2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( ) A.2 B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系 A.b a = B.b a > C.b a < D.b a ≠ ( )4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( )A.1B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为( ) A.π,1 B.π,2 C.π2,1 D.π2,2 6.xx xx sin cos sin cos -+= ( )A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x 7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( ) A.2 B.4 C.8 D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( )A.2B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( ) A.⎥⎦⎤⎢⎣⎡--65,ππ B.⎥⎦⎤⎢⎣⎡--6,65ππ C.⎥⎦⎤⎢⎣⎡-0,3π D.⎥⎦⎤⎢⎣⎡-0,6π 11.已知A 、B 为小于︒90的正角,且31sin =A ,21sin =B ,则)(2sin B A +的值是 A.97B.23C.1832+D.183724+ ( )12.若22)4sin(2cos -=-παα,则ααsin cos +的值为 ( ) A.27-B.21-C.21D.27 二、填空题(每题5分,共20分) 13.已知32tan=θ,则θθθθsin cos 1sin cos 1+++-=__________.14.函数)2sin()3sin(ππ+⋅+=x x y 的最小正周期T =__________. 15.已知xxx f +-=11)(,若),2(ππα∈则)cos ()(cos αα-+f f 可化简为__________.16.若2cos sin -=+αα,则ααtan 1tan +=__________. 三、解答题(第17题10分,其余每题12分,共70分) 17.(1)已知54cos =α,且παπ223<<,求2tan α.(2)已知1cos )cos()22sin(sin 3=⋅+--θθπθπθ,),0(πθ∈,求θ的值.18.已知135)43sin(=+πα,53)4cos(=-βπ,且434,44πβππαπ<<<<-, 求)cos(βα-的值.19.已知函数R x x x x x x f ∈++=,cos 3cos sin 2sin )(22, 求:(1)函数)(x f 的最大值及取得最大值的自变量x 的集合; (2)函数)(x f 的单调增区间.20.已知α、β),0(π∈,且αtan 、βtan 是方程0652=+-x x 的两根,求:(1)βα+的值;(2))cos(βα-的值.。

人教A版数学必修四1.2.1任意角的三角函数同步试题.docx

人教A版数学必修四1.2.1任意角的三角函数同步试题.docx

高中数学学习材料马鸣风萧萧*整理制作1.2.1任意角的三角函数同步试题一、选择题1. α是第二象限角,P (x ,5)为其终边上一点,且x 42cos =α,则αsin 的值为( ) A. 410 B. 46 C. 42 D. 410-2. α是第二象限角,且2cos 2cos αα-=,则2α是( )A. 第一象限角B. 第二象限角C. 第三象限角D. 第四象限角3、函数|cos x ||tan x |y cos x tan x =+的值域是( )A. {1, 2}B. {-2,0,2}C. {-2,2}D. {0, 1, 2} 4、如果,42ππ<θ<那么下列各式中正确的是( ) A. cos tan sin θ<θ<θ B. sin cos tan θ<θ<θC. tan sin cos θ<θ<θD. cos sin tan θ<θ<θ二、填空题5. 已知α的终边过(-a 39,2+a )且0co s ≤α,0sin >α,则α的取值范围是 。

6. 函数x x y tan sin +=的定义域为 。

7. 4tan 3cos 2sin ⋅⋅的值为 (正数,负数,0,不存在)三、解答题1.已知角α的终边上一点P 的坐标为(3,y -)(y 0≠),且2sin y 4α=,求cos tan αα和2. 若角θ的终边过P (t 4-,t 3)(0≠t )求θθcos sin 2+的值。

3.(1)求满足23sin >α的角α的取值范围。

(2)求满足ααcos sin >的角α的取值范围。

1.2.1任意角的三角函数同步试题答案一、选择题:1. A 2 . C 3.B 4 . D二、填空题5. ]3,2(-6.⎭⎬⎫⎩⎨⎧Z ∈+≠k k x x ,2|ππ 7. 负数 三、解答题1. 解:由题意,得:2y 2sin y 43y α==+ 解得:y 5=±,所以615cos ,tan 43α=-α=±2.解: ∵ t x 4-=,t y 3= ∴t t t r 5)3()4(22=+-= 当0>t 时,5353sin ===t t r y θ,5454cos -=-==t t r x θ ∴5254532cos sin 2=-⨯=+θθ 当0<t 时,53sin -=θ,54cos =θ ∴5254)53(2cos sin 2-=+-⨯=+θθ 3.解:(1)如图可知:ππαππ32232+<<+k k (Z ∈k )(2)如图可知:ππαππ45242+<<+kk(Z∈k)。

【人教A版】必修4高中数学同步辅导与检测题:第一章1.2-1.2.1任意角的三角函数(含答案)

【人教A版】必修4高中数学同步辅导与检测题:第一章1.2-1.2.1任意角的三角函数(含答案)

第一章 三角函数1.2 任意角的三角函数1.2.1 任意角的三角函数A 级 基础巩固一、选择题1.已知角α终边经过P ⎝ ⎛⎭⎪⎫32,12,则cos α等于( ) A.12 B.32 C.33 D .±12解析:由三角函数定义可知,角α的终边与单位圆交点的横坐标为角α的余弦值,故cos α=32. 答案:B2.如果MP 和OM 分别是角α=7π8的正弦线和余弦线,那么下列结论正确的是( )A .MP <OM <0B .OM >0>MPC .OM <MP <0D .MP >0>OM 解析:因为78π是第二象限角, 所以sin 78π>0,cos 78π<0, 所以MP >0,OM <0,所以MP >0>OM .答案:D3.若α=2π3,则α的终边与单位圆的交点P 的坐标是( ) A.⎝ ⎛⎭⎪⎫12,32 B.⎝ ⎛⎭⎪⎫-12,32 C.⎝ ⎛⎭⎪⎫-32,12 D.⎝ ⎛⎭⎪⎫12,-32 解析:设P (x ,y ),因为角α=2π3在第二象限, 所以x =-12,y = 1-⎝ ⎛⎭⎪⎫-122=32, 所以P ⎝ ⎛⎭⎪⎫-12,32. 答案:B4.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种情况都可能解析:因为sin αcos β<0,α,β∈(0,π),所以sin α>0,cos β<0,所以β为钝角.答案:B5.函数y =11+sin x的定义域为( ) A.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠3π2+2k π,k ∈Z B.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+2k π,k ∈ZC.{}x |x ≠2k π,k ∈ZD.⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠-3π2+2k π,k ∈Z 解析:因为1+sin x ≠0,所以sin x ≠-1.又sin 3π2=-1, 所以x ≠3π2+2k π,k ∈Z. 答案:A二、填空题6.(2016·四川卷)sin 750°=________.解析:sin 750°=sin(30°+2×360°)=sin 30°=12. 答案:127.sin 1 485°的值为________.解析:sin 1 485°=sin(4×360°+45°)=sin 45°=22. 答案:228.已知θ∈⎝ ⎛⎭⎪⎫π3,π2,在单位圆中角θ的正弦线、余弦线、正切线分别是MP ,OM ,AT ,则它们从大到小的顺序为____________.解析:作图如下,因为θ∈⎝ ⎛⎭⎪⎫π3,π2,所以θ >π4,根据三角函数线的定义可知AT >MP >OM .答案:AT >MP >OM三、解答题9.求下列各式的值:(1)sin(-1 320°)cos(1 110°)+cos(-1 020°)sin 750°;(2)cos ⎝ ⎛⎭⎪⎫-233π+tan 17π4. 解:(1)原式=sin(-4×360°+120°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 120°cos 30°+cos 60°sin 30°=32×32+12×12=1. (2)原式=cos ⎣⎢⎡⎦⎥⎤π3+(-4)×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π= cos π3+tan π4=12+1=32. 10.已知P (-2,y )是角α终边上一点,且sin α=-55,求cos α与tan α的值.解:因为点P 到原点的距离为r =4+y 2, 所以sin α=y 4+y 2=-55,所以y 2+4=5y 2, 所以y 2=1.又易知y <0,所以y =-1,所以r =5,所以cos α=-25=-255,tan α=-1-2=12. B 级 能力提升1.若α是第三象限角,则|sin α|sin α-cos α|cos α|=( ) A .0 B .1 C .2 D .-2解析:因为α是第三象限角,所以sin α<0,cos α<0,所以|sin α|sin α-cos α|cos α|=-1-(-1)=0. 答案:A2.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈⎝ ⎛⎭⎪⎫π2,π,则cos α=________.解析:因为θ∈⎝ ⎛⎭⎪⎫π2,π,所以cos θ<0, 所以点(-3cos θ,4cos θ)到原点的距离r =5|cos θ|=-5cos θ,所以cos α=-3cos θ-5cos θ=35. 答案:353.利用三角函数线,写出满足|cos α|>|sin α|的角α的集合. 解:如图,作出单位圆.所以角α满足的集合为⎩⎨⎧⎭⎬⎫a ⎪⎪⎪k π-π4<α<k π+π4,k ∈Z .。

高中数学人教A版必修四同步练测:1.2任意角的三角函数

高中数学人教A版必修四同步练测:1.2任意角的三角函数

1.2任意角的三角函数一、选择题(每小题5分,共20分)1.设α角属于第二象限,且2cos2cos αα-=,则2α角属于()A 第一象限B 第二象限C 第三象限D 第四象限2.下列函数中,周期为2π的是()A.y=sin 2xB.y=sin2xC.y=cos 4xD.y=cos4x3.4tan 3cos 2sin 的值() A 小于0B 大于0 C 等于0D 不存在4.在△ABC 中,若最大的一个角的正弦值是,则△ABC 是( )A 锐角三角形B 钝角三角形C 直角三角形D 等边三角形二、填空题(每小题5分,共10分)5.设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式:①0<<OM MP ;②0OM MP <<;③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________6.设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限三、解答题(共70分)7.(15分)已知角α的终边落在第一和第三象限的角平分线上,求α的六个三角函数值。

8.(20分)如果函数y =sin ²x ﹢a cos2x 的图像关于直线x =﹣8π对称,求a 的值.9.(20分)已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值10.(15分)已知)1,2(,cos sin ≠≤=+m m m x x 且,求(1)x x 33cos sin +;(2)x x 44cos sin +的值1.2任意角的三角函数答题纸得分:一、选择题二、填空题5. 6.三、解答题7.8.9.10.1.2任意角的三角函数答案一、选择题 1.C 解析:22,(),,(),2422k k k Z k k k Z ππαππαππππ+<<+∈+<<+∈当2,()k n n Z =∈时,2α在第一象限;当21,()k n n Z =+∈时,2α在第三象限;而coscoscos0222ααα=-⇒≤,2α∴在第三象限;2.D 解析:A.T ==4π,B.T =22π=π,C.T=412π=8π,D.T =42π=2π.3.A 解析:32,sin 20;3,cos30;4,tan 40;sin 2cos3tan 40222ππππππ<<><<<<<><4.B二、填空题5. ②解析:1717sin0,cos 01818MP OM ππ=>=< 6. 四、三、二解析:当θ是第二象限角时,sin 0,cos 0θθ><;当θ是第三象限角时,sin 0,cos 0θθ<<;当θ是第四象限角时,sin 0,cos 0θθ<>;三、解答题 7.解:(1)当的终边落在第一象限的角平分线时:(2)当的终边落在第三象限的角平分线时:8.解:∵x =﹣8π是函数y =sin2x +a cos2x 的对称轴. ∵f (﹣8π+x )=f (﹣8π-x )对任意x 均成立,令x =﹣8π,有f (﹣4π)=f (0)∵sin (﹣2π)+a cos (﹣2π)=sin0+a cos0,∴a =﹣1.9.解:21tan 31,2tan k k αα⋅=-=∴=±Q ,而παπ273<<,则1tan 2,tan k αα+==得tan 1α=,则sin cos 2αα==-,cos sin αα∴+=10.解:由sin cos ,x x m +=得212sin cos ,x x m +=即21sin cos ,2m x x -= (1)233313sin cos (sin cos )(1sin cos )(1)22m m m x x x x x x m --+=+-=-= (2)24244222121sin cos 12sin cos 12()22m m m x x x x --+++=-=-=。

高中数学人教A版必修四课时训练:1.2 任意角的三角函数 1.2.1(一) Word版含答案

高中数学人教A版必修四课时训练:1.2 任意角的三角函数 1.2.1(一) Word版含答案

§1.2 任意角的三角函数1.2.1 任意角的三角函数(一)一、选择题1.sin 780°等于( )A.32 B .-32 C.12 D .-12 2.点A (x ,y )是300°角终边上异于原点的一点,则y x的值为( ) A. 3 B .- 3 C.33 D .-333.若sin α<0且tan α>0,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角4.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( ) A .3 B .-3 C .±3 D .55.已知x 为终边不在坐标轴上的角,则函数f (x )=|sin x |sin x +cos x |cos x |+|tan x |tan x的值域是( ) A .{-3,-1,1,3} B .{-3,-1}C .{1,3}D .{-1,3}6.已知点P ⎝⎛⎭⎫sin 34π,cos 34π落在角θ的终边上,且θ∈[0,2π),则θ的值为( ) A.π4 B.3π4 C.5π4 D.7π4二、填空题7.若角α的终边过点P (5,-12),则sin α+cos α=______.8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为________.9.代数式:sin 2cos 3tan 4的符号是________.10.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________.三、解答题11.求下列各式的值.(1)cos ⎝⎛⎭⎫-233π+tan 174π; (2)sin 630°+tan 1 125°+tan 765°+cos 540°.12.已知角α终边上一点P (-3,y ),且sin α=34y ,求cos α和tan α的值.能力提升13.若θ为第一象限角,则能确定为正值的是( )A .sin θ2B .cos θ2C .tan θ2D .cos 2θ 14.已知角α的终边上一点P (-15a,8a ) (a ∈R 且a ≠0),求α的各三角函数值.§1.2 任意角的三角函数1.2.1 任意角的三角函数(一)答案知识梳理1.y r x r y x3.相等 sin α cos α tan α 作业设计1.A 2.B3.C [∵sin α<0,∴α是第三、四象限角.又tan α>0,∴α是第一、三象限角,故α是第三象限角.]4.A [r =b 2+16,cos α=-b r =-b b 2+16=-35.∴b =3.] 5.D [若x 为第一象限角,则f (x )=3;若x 为第二、三、四象限,则f (x )=-1. ∴函数f (x )的值域为{-1,3}.]6.D [由任意角三角函数的定义,tan θ=y x =cos 34πsin 34π=-2222=-1.∵sin 34π>0,cos 34π<0, ∴点P 在第四象限.∴θ=74π.故选D.] 7.-7138.-2<a ≤3解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0, ∴-2<a ≤3.9.负号解析 ∵π2<2<π,∴sin 2>0, ∵π2<3<π,∴cos 3<0,∵π<4<32π,∴tan 4>0. ∴sin 2cos 3tan 4<0.10.2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0, n =3m .∴|OP |=m 2+n 2=10|m |=-10m =10.∴m =-1,n =-3,∴m -n =2.11.解 (1)原式=cos ⎣⎡⎦⎤π3+(-4)×2π+tan ⎝⎛⎭⎫π4+2×2π=cos π3+tan π4=12+1=32. (2)原式=sin(360°+270°)+tan(3×360°+45°)+tan(2×360°+45°)+cos(360°+180°) =sin 270°+tan 45°+tan 45°+cos 180°=-1+1+1-1=0.12.解 sin α=y 3+y 2=34y . 当y =0时,sin α=0,cos α=-1,tan α=0.当y ≠0时,由y 3+y 2=3y 4,解得y =±213. 当y =213时,P ⎝⎛⎭⎫-3,213,r =433. ∴cos α=-34,tan α=-73. 当y =-213时,P (-3,-213),r =433, ∴cos α=-34,tan α=73. 13.C [∵θ为第一象限角,∴2k π<θ<2k π+π2,k ∈Z . ∴k π<θ2<k π+π4,k ∈Z . 当k =2n (n ∈Z )时,2n π<θ2<2n π+π4(n ∈Z ). ∴θ2为第一象限角, ∴sin θ2>0,cos θ2>0,tan θ2>0. 当k =2n +1 (n ∈Z )时,2n π+π<θ2<2n π+54π (n ∈Z ). ∴θ2为第三象限角, ∴sin θ2<0,cos θ2<0,tan θ2>0, 从而tan θ2>0,而4k π<2θ<4k π+π,k ∈Z , cos 2θ有可能取负值.]14.解 ∵x =-15a ,y =8a ,∴r =(-15a )2+(8a )2=17|a | (a ≠0).(1)若a >0,则r =17a ,于是sin α=817,cos α=-1517,tan α=-815. (2)若a <0,则r =-17a ,于是sin α=-817,cos α=1517,tan α=-815.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2 任意角的三角函数
1.2.1 任意角的三角函数(一) 课时目标 1.借助单位圆理解任意角的三角函数(正弦、余弦、正切)定义.2.熟记正弦、余弦、正切函数值在各象限的符号.3.掌握诱导公式(一)及其应用.
1.任意角三角函数的定义
设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=________,cos α=________,tan α=________.
2.正弦、余弦、正切函数值在各象限的符号
3.诱导公式一
终边相同的角的同一三角函数的值________,即:
sin(α+k ·2π)=______,cos(α+k ·2π)=________,
tan(α+k ·2π)=________,其中k ∈Z .
一、选择题
1.sin780°等于( ) A.32B .-32C.12D .-12
2.点A (x ,y )是300°角终边上异于原点的一点,则y x
的值为( )
A.3B .-3C.33D .-33
3.若sin α<0且tan α>0,则α是( )
A .第一象限角
B .第二象限角
C .第三象限角
D .第四象限角
4.角α的终边经过点P (-b,4)且cos α=-35
,则b 的值为( ) A .3B .-3C .±3D.5
5.已知x 为终边不在坐标轴上的角,则函数f (x )=
|sin x |sin x +cos x |cos x |+|tan x |tan x
的值域是( )
A .{-3,-1,1,3}
B .{-3,-1}
C .{1,3}
D .{-1,3}
6.已知点P ⎝
⎛⎭⎪⎫sin 34π,cos 34π落在角θ的终边上,且θ∈[0,2π),则θ的值为( )
A.π4
B.3π4
C.5π4
D.7π4
二、填空题
7.若角α的终边过点P (5,-12),则sin α+cos α=______.
8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为________.
9.代数式:sin2cos3tan4的符号是________.
10.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________.
三、解答题
11.求下列各式的值.
(1)cos ⎝ ⎛⎭
⎪⎫-233π+tan 174π; (2)sin630°+tan1125°+tan765°+cos540°.
12.已知角α终边上一点P(-3,y),且sinα=
3
4
y,求cosα和tanα的
值.
能力提升
13.若θ为第一象限角,则能确定为正值的是( )
A.sin θ
2
B.cos
θ
2
C.tan
θ
2
D.cos2θ
14.已知角α的终边上一点P(-15a,8a) (a∈R且a≠0),求α的各三角函数值.
1.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.
2.符号sin α、cos α、tan α是一个整体,离开“α”,“sin”、“cos”、“tan”不表示任何意义,更不能把“sin α”当成“sin”与“α”的乘积.
3.诱导公式一的实质是说终边相同的角的三角函数值相等.
作用是把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.
§1.2 任意角的三角函数
1.2.1 任意角的三角函数(一)
答案
知识梳理
1.y r x r y x
3.相等 sin α cos α tan α 作业设计
1.A 2.B
3.C [∵sin α<0,∴α是第三、四象限角.又tan α>0,
∴α是第一、三象限角,故α是第三象限角.]
4.A [r =b 2+16,cos α=-b
r =-b b 2+16
=-35.∴b =3.] 5.D [若x 为第一象限角,则f (x )=3;若x 为第二、三、四象限,则f (x )=
-1.
∴函数f (x )的值域为{-1,3}.]
6.D [由任意角三角函数的定义,tan θ=y x =cos 34πsin 34π=-2222
=-1.∵sin 34π>0,cos 34
π<0, ∴点P 在第四象限.∴θ=74
π.故选D.] 7.-713
8.-2<a ≤3
解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0,
∴-2<a ≤3.
9.负号
解析 ∵π2
<2<π,∴sin2>0, ∵π2<3<π,∴cos3<0,∵π<4<32
π,∴tan4>0. ∴sin 2cos 3tan 4<0.
10.2
解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0,
n =3m .
∴|OP |=m 2+n 2=10|m |=-10m =10.
∴m =-1,n =-3,∴m -n =2.
11.解 (1)原式=cos ⎣⎢⎡⎦⎥⎤π3
+-4×2π+tan ⎝ ⎛⎭
⎪⎫π4+2×2π=cos π3+tan π4=12+1=32.
(2)原式=sin(360°+270°)+tan(3×360°+45°)+tan(2×360°+45°)+cos(360°+180°)
=sin 270°+tan 45°+tan 45°+cos 180°
=-1+1+1-1=0.
12.解 sin α=y 3+y 2=34
y . 当y =0时,sin α=0,cos α=-1,tan α=0.
当y ≠0时,由y
3+y 2=3y 4,解得y =±213. 当y =213时,P ⎝
⎛⎭⎪⎫-3,213,r =433. ∴cos α=-34,tan α=-73
. 当y =-213时,P (-3,-213),r =433
, ∴cos α=-34,tan α=73
. 13.C [∵θ为第一象限角,∴2k π<θ<2k π+π2
,k ∈Z . ∴k π<θ
2<k π+π4
,k ∈Z . 当k =2n (n ∈Z )时,2n π<
θ2<2n π+π4 (n ∈Z ). ∴θ2
为第一象限角, ∴sin θ
2>0,cos θ
2>0,tan θ
2>0.
当k =2n +1 (n ∈Z )时, 2n π+π<θ2<2n π+54
π (n ∈Z ). ∴θ
2为第三象限角,
∴sin θ
2
<0,cos
θ
2
<0,tan
θ
2
>0,
从而tan θ
2
>0,而4kπ<2θ<4kπ+π,k∈Z,
cos2θ有可能取负值.]
14.解∵x=-15a,y=8a,
∴r=-15a2+a2=17|a| (a≠0).(1)若a>0,则r=17a,于是
sinα=
8
17
,cosα=-
15
17
,tanα=-
8
15
.
(2)若a<0,则r=-17a,于是
sinα=-
8
17
,cosα=
15
17
,tanα=-
8
15
.。

相关文档
最新文档