八年级下册数学期末试卷北师大版(含答案)
北师大版八年级数学下册期末测试题(含答案)
八年级数学下册期末测试卷第I 卷(选择题共48分)有一项是符合题目要求的.)A.2x+1=0B.x 2+y=1 C. x2+2=0 D.-x2 .不等式x+1<0的解集在数轴上表示正确的是(3 .在平面直角坐标系中,点 (-2,-a 2-3)一定在 A.第一象限 B.第二象限C.第三象限 D.第四象限4 .下列各曲线中不能表示 y 是x 函数的是y=2x-3向右平移2个单位。
再向上平移 2个单位后,得到直线 y=kx+b.则下列A.与y 轴交于(0, -5)B. 与x 轴交于(2, 0)C.y 随x 的增大而减小D. 经过第一、二、四象限、选择题(本大题共12个小题,每小题 4分,48分,在每小题给出的四个选项中,只1.下列方程中二次方程的是关于直线 y=kx+b 的说法正确的是6 .关于x 的方程 x 2-mx+2m=0的一个实数根是 3,并且它的两个实数根恰好是等腰△ABC 的两边长,则4ABC的腰长为(A.3B.6C.6 或9D.3 或67 .如图,四边形 ABCM 矩形,依据尺规作图的痕迹,Z ”与/ 3的度数之间的关系为A. 3 = 180- “B. 3 =18。
° - 1a C.23 =901a D. 3 =90 — - a25.将直线8.如图,在^ ABC中,AB=3, BC=4, AC=5,点D在边BC上,以AC为对角线的所有平行四边形ADCE中,DE的最小值是()A. 2B.3C.4D.59如图,在平面直角坐标系中,已知点A (1,3), B(n, 3),若直线y=2x与线段AB有公共点,则n的值^1 *A.1.4B. 1.5C. 1.6D.1.710.如图,在^ ABC中,/ C=90° , AC=8, BC=6,点P为斜边AB上一动点,过点P作PE± AC于E, PF, BC 于点F,连结EF,则线段EF的最小值为()第11卷(非选择题共102分)、填空题(本大题共6个小题.每小题4分,共24分.把箸案填在答题卡的横线上)13. 2x-3>- 5 的解集是.14.定义运算a^b=a- ab,若a=x+1, b=x,a*b=-3,则x 的值为.15.如图,已知EF是4ABC的中位线,DE! BC交AB于点D, CD与EF交于点不可能是()边形BDEF是正方形,若点C的坐标为(3 , 0),则点A. (1, 3)B. (1 , 1 V3 )C. (1,V3) D.(12.如图,正方形ABCM边长为6,点E、F分别在边的长为()A. 5-^0-B. 2.10C.3 「5D. 10 . 5D的坐标为()北,1 V3)AR BC上,若F是BC的中点,且/ EDF=45 ,贝U DE 11.如图,在平面直角坐标系xOy中,点A、C F在坐标轴上,E是OA的中点,四边形AOC呢矩形,四G,若CD£ AC,EF=8, EG=3,贝U AC的长为16.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单彳(元/张)20 30 40 70 90某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为元.17.如图1,边长为a的正方形发生形变后成为边长为a的菱形,如果这个菱形的一组对边之间的距离为h,我们把a的值叫做这个菱形的“形变度”。
北师大版八年级下 期末数学试题 6套(含答案).
A、x≥32B 北师大版八下学期期末考试题1一、选择题(5×3=15分)1、不等到式2x-3≥0的解集是()322B、x>C、x<D、x<2332、如图,线段AB:BC=1:2,那么AC:BC等于()A、1:3B、2:3C、3:1D、3:2A B C3、如图,ΔABC中,DE∥BC,如果AD=1,DB=2,那么DE BC2111A、B、C、D、3432的值为()AD E4、若x2+mxy+9y2是一个完全平方式,则m=()CA、6B、12C、±6D、±125、调查某班级的的对数学老师的喜欢程度,下列最具有代表性的样本是()A、调查单数学号的学生B、调查所有的班级干部C、调查全体女生D、调查数学兴趣小组的学生二、填空题(8×3=24分)x2-96、对于分式,当x________时,分式有意义,当x________时,分式的值为0.x+37、不等式2x-2≤7的正整数解分别是_________.Ax32x-y8、已知=,则=______.y5y B E FC9、如图,在ΔABC中,EF∥BC,AE=2BE,则ΔAEF与梯形BCFE的面积比_______.10、分解因式:m2(x-y)+4n2(y-x)=___________________________.11、下列调查中,____适宜使用抽样调查方式,_____适宜使用普查方式.(只填相应的序号)①张伯想了解他承包的鱼塘中的鱼生长情况;②了解全国患非典性肺炎的人数;③评价八年级十班本次期末数学考试的成绩;④张红想了解妈妈煲的一锅汤的味道.12、把命题“对顶角相等”改写成:如果_________________________________________,那么_____________________________________________。
13、设C是线段AB的黄金分割点(AC>BC),AB=4cm,则AC=________.三、解答题(本大题共10小题,14~17题每小题7分,18~21题每小题8分,22题10分,23题11分,共81分)14、分解因式:x2(x-y)+(y-x)⎛3x x⎫x2-115、先化简,再求值: -⎪•⎝x-1x+1⎭x,其中x=2-2.16、解不等式组⎨⎧2x-5<0⎩x-2(x+1)<0,并把解集在数轴上表示出来17、解方程:x+14-x-1x2-1=118、如图,AB表示路灯,CD表示小明所在的位置,小明发现在CD的位置上,他的影子长是自己身高的2倍,他量得自己和身高为1.6米,此时他离路灯的距离为6.8米,你能帮他算出路灯的高度吗?ACE D B19、如图,梯形ABCD中,AD∥BC,∠BAD=90°,对角线BD⊥DC,ΔABD与ΔBCD相似吗?为什么?D AC B20、如图,已知∠BED=∠B+∠D,求证:AB∥CD.A BEC D21、某中学部分同学参加全国初中数学竞赛,取得了优异成绩.指导老师统计了所有参赛同学的成绩(成绩都是整数,试题满分120分),并且绘制了“频数分布直方图”如图。
【北师大版】数学八年级下册《期末测试题》含答案
A.1B.2C.3D.4
【答案】B
【解析】
【分析】
由四边形ABCD是平行四边形,若AF、BE分别是 、 的平分线,易得 与 是等腰三角形,继而求得 ,则可求得答案.
【详解】 四边形ABCD是平行四边形,
, , ,
3.下列分式中,最简分式是
A B. C. D.
4.如图, 沿直线边BC所在的直线向右平移得到 ,下列结论中不一定正确的是
A. B.
C. D.
5.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则
∠CBE的度数为
A.80°B.70°C.40°D.30°
【详解】∵AB=AC,∠A=40°,
∴∠ABC=∠C=(180°−∠A)÷2=70°,
∵线段AB的垂直平分线交AB于D,交AC于E,
∴AE=BE,
∴∠ABE=∠A=40°,
∴∠CBE=∠ABC-∠ABE=30°,
故选D.
【点睛】本题考查了线段垂直平分线的性质以及等腰三角形的性质,熟练掌握相关性质,运用数形结合思想是解题的关键.
如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;
在 的前提下,求EF的最小值和此时 的面积;
当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则 大小是否变化?请说明理由.
30.如图, 中, , ,在AB的同侧作正 、正 和正 ,求四边形PCDE面积的最大值.
25.如图,平面直角坐标系中,已知点 , 若对于平面内一点C,当 是以AB为腰的等腰三角形时,称点C时线段AB的“等长点”.
北师大版八年级下学期数学期末试卷含答案(共5套)
北师大版八年级下学期期末调研测试题一、选择题(本大题共12小题,每小题4分,共48分)1.“抛一枚均匀的硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件2.下列条件中不能判断四边形是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.方程x(x+3)=0的根是()A.x=0B.x=-3C.x1=0,x2=3D.x1=0,x2=-34.某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方形C.球D.圆锥5.如图,在口ABCD中,过点C的直线CE⊥AB,垂足为E,∠EAD=53°,则∠BCE的度数为()A.37°B.47°C.53°D.127°EDAB C6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,则k的取值范围是()A.k>-1B.k≥-1C.k≠0D.k>-1且k≠07.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.若菱形的周长为8cm,高为1cm,则菱形两邻角的度数比为()A.3∶1B.4∶1C.5∶1D.6∶19.下列各组图形可能不相似的是( )A .各有一个角是45°的两个等腰三角形B .各有一个角是60°的两个等腰三角形C .各有一个角是105°的两个等腰三角形D .两个等腰直角三角形10.如图,P 为口ABCD 的边AD 上的一点,E 、F 分别是PB 、PC 的中点,△PEF 、△PDC 、△P AB 的面积分别为S 、S 1、S 2,若S =3,则S 1+S 2的值是( ) A .3 B .6 C .12 D .2411.如图,正方形ABCD 的边长为3,点E 、F 分别在边BC 、CD 上,将AB 、AD 分别沿AE 、AF 折叠,点B 、D 恰好都落在点G 处,已知BE =1,则EF 的长为( )A .32B .52C .94D .312.如图,已知在Rt △ABC 中,AB =AC =2,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ,再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形……依次进行下去,则第n 个内接正方形的边长为( )A .23×(12)n -1B .223×(12)n -1C .23×(12)nD .223×(12)n二、填空题(本大题共6小题,每小题4分,共24分)13.一个多边形图案在一个有放大功能的复印机上复印出来,它的一条边由原来的1cm 变成了2cm ,那么它的面积会由原来的6cm 2变为___________.14.有一个正多边形的每一个外角都是60°,则这个多边形的边数是_______________.15.如图所示,直线a经过正方形ABCD的顶点A,分别过此正方形的顶点B、D作BF⊥a于点F、DE⊥a于点E,若DE=4,BF=3,则EF的长为____________.16.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长为____________.17.设a,b是方程x2+x-2017=0的两个不相等的实数根,则a2+2a+b的值为_________________.18.如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是___________________.三、解答题(本大题共9小题,共78分)19.解方程:(1)x2-2x-3=0; (2)x2-4x+1=020.如图,在口ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F.求证:BF=DE.21.小玲用下面的方法来测量学校教学大楼AB的高度:如图,在水平面上放一面平面镜,镜子与教学楼的距离EA=12米,当她与镜子的距离CE=2米时,她刚好能从镜子中看到教学楼的顶端B.已知她的眼睛距地面的高度DC=1.5米.请你帮助小玲计算出教学楼的高度AB是多少米(根据光的反射定律:反射角等于入射角.)22.某市为改善生态环境,积极开展向雾霾宣战,还碧水蓝天专项整治活动.已知2014年共投资1000万元,2016年共投资1210万元.(1)求2014年到2016年的平均增长率;(2)该市预计2017年的投资增长率与前两年相同,则2017年的投资预算是多少万元?23.小明和小丽用形状大小相同,面值不同的5张邮票设计了一个游戏,将面值1元、2元、3元的邮票各一张装入一个信封,面值4元、5元的邮票各一张装入另一个信封,游戏规定:分别从两个信封中各抽取1张邮票,若它们的面值和是偶数,则小明赢;若它们的面值之和是奇数,则小丽赢.请你判断这个游戏是否公平,并说明理由.24.如图1,将矩形ABCD沿DE折叠,使顶点A落在DC上的点A′处,然后将矩形展平,沿EF折叠,使顶点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处,如图2.(1)求证:EG=CH;(2)已知AF=2,求AD和AB的长.25. 如图,在萎形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.26. 如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t(0<t≤15).过点D作DE⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由;(3)当t为何值时,△DEF为直角三角形?请说明理由.27. 如图1,四边形ABHC与四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由;(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G,交AC于点M,求证:BD⊥CF;(3)在(2)的条件下,当AB=4,AD=2时,求线段CM的长.参考答案八年级第二学期期末考试数学试卷(北师大版)考试时间90分钟 满分100分一、选择题(每小题3分,共24分) 1.下列关于的方程:①;②;③;④();⑤1x =-1,其中一元二次方程的个数是( ) A .1 B .2 C .3 D .42.已知α为锐角,且sin(α-10°)=22,则α等于( )A .45°B .55°C .60°D .65°3.如图,是由6个棱长为1个单位的正方体摆放而成的,将正方体A 向右平移2个单位,向后平移1个单位后,所得几何体的视图( ) A.主视图改变,俯视图改变 B.主视图不变,俯视图不变 C.主视图不变,俯视图改变 D.主视图改变,俯视图不变4.二次函数y=ax 2+bx 的图象如图所示,若一元二次方程ax 2+bx+m=0有两个不相等的实数根,则整数m 的最小值为( )A .﹣3B .﹣2C .﹣1D .2(第4题图) (第5题图) (第6题图)5.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),(6,1),以点C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )A .(6,0)B .(6,3)C .(6,5)D .(4,2) 6.如图,将一个长为,宽为 的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为( ) A. B. C. D.DCBA7.如图,平面直角坐标系中,直线y=﹣x+a与x、y轴的正半轴分别交于点B和点A,与反比例函数y=﹣的图象交于点C,若BA:AC=2:1,则a的值为( )A.2 B.﹣2 C.3 D.﹣38.观察二次函数y=ax2+bx+c(a≠0)的图象,下列四个结论:①4ac﹣b2>0;②4a+c<2b;③b+c<0;④n(an+b)﹣b<a(n≠1).正确结论的个数是()A. 4个 B. 3个 C. 2个 D. 1个(第7题图) (第8题图) (第12题图) (第13题图)二、填空题(每小题3分,共21分)9.计算:﹣14+﹣4cos30°= .10.在同一平面直角坐标系中,若一个反比例函数的图象与一次函数=-2+6y x 的图象无.公共点,则这个反比例函数的表达式是(只写出符合条件的一个即可).11.若关于x的一元二次方程..(m-2)x²+2x-1=0有实数根,求m的取值范围。
北师大版八年级下册数学期末考试卷含答案
八 年 级 数 学 下 册 期 末 测 试(北师大版)全卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间共120分钟。
A 卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其它类型的题。
A 卷(共100分)第Ⅰ卷(选择题,共30分)注意事项:1.第Ⅰ卷共2页,答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在试卷和答题卡上。
考试结束,监考人员将试卷和答题卡一并收回。
2.第Ⅰ卷全是选择题,各题均有四个选项,只有一项符合题目要求,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答一、选择题:(每小题3分,共30分)1、-3x <-1的解集是( ) A 、x <31 B 、x <-31 C 、x >31 D 、x >-31 2、下列从左到右的变形是分解因式的是( )A 、(x -4)(x +4)=x 2-16B 、x 2-y 2+2=(x +y )(x -y )+2C 、2ab +2ac =2a (b +c )D 、(x -1)(x -2)=(x -2)(x -1). 3、下列命题是真命题的是( )A 、相等的角是对顶角B 、两直线被第三条直线所截,内错角相等C 、若n m n m ==则,22D 、有一角对应相等的两个菱形相似4、分式222b ab a a +-,22ba b-,2222b ab a b ++的最简公分母是( ) A 、(a2-2ab+b2)(a2-b2)(a2+2ab+b2) B 、(a+b )2(a -b )2C 、(a+b )2(a-b )2(a2-b2)D 、44b a -5、人数相等的八(1)和八(2)两个班学生进行了一次数学测试,班级平均分和方差如下:2212128686259186.x x s s ====,,, 则成绩较为稳定的班级是( )A 、八(1)班B 、八(2)班C 、两个班成绩一样稳定D 、无法确定 6、如图1,能使BF ∥DG 的条件是( ) A 、∠1=∠3 B 、∠2=∠4 C 、∠2=∠3? D 、∠1=∠47、如图2,四边形木框ABCD 在灯泡发出的光照射下形成的影子是四边形A B C D '''',若:1:2AB A B ''=,则四边形ABCD 的面积∶四边形A B C D ''''的面积为( )图1 图2A 、4:1 BC.1:D .1:48、如图3,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使DEF △与ABC △相似,则点F 应是G ,H ,M ,N 四点中的( )A 、H 或MB 、G 或HC 、M 或ND 、G 或M图39、如图4,DE ∥BC ,则下列不成立的等式是( )A 、EC AEBD AD= B 、AE ACAD AB =C 、DB ECABAC =D 、BCDEBD AD =图410、直线1l :1y k x b =+与直线2l :2y k x =在同一平面直角坐标系中的图象如图5所示,则关于x 的不等式12k x b k x +>的解为( )A 、x >-1B 、x <-1C 、x <-2D 、无法确定 图5二、填空题:(共6小题,每题4分,共24分)11、计算:(1)(-x )2÷y·y1=____________。
初二下学期期末考试数学试卷含答案(共3套,北师大版)
北师大版八年级下学期期末考试数学试卷含答案一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.将具有下列长度的三条线段首尾顺次相连,能组成直角三角形的是( ) A.1,2,3 B.5,12,13 C.4,5,7 D.9,10,112.在实数722-、0、3-、506、π、..101.0中,无理数的个数是 ( )A.2个B.3个C.4个D.5个 3.4的平方根是( )A . 4B .-4C . 2D . ±2 4.下列平方根中, 已经化简的是( )A. 31B. 20C. 22D. 1215.在平行四边形、菱形、矩形、正方形、圆中,既是中心对称图形又是轴对称图形的图形个数为 ( ) A.1B.2C.3D.46. 点P (-1,2)关于y 轴对称的点的坐标为 ( ) A.(1,-2) B.(-1,-2) C.(1,2) D.(2,1)7. 矩形具有而菱形不一定具有的性质是 ( ) A. 对角线互相平分 B.对角线相等 C. 四条边都相等 D. 对角线互相垂直8.下列说法正确的是 ( )A.平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B.平移和旋转的共同点是改变图形的位置C.图形可以向某个方向平移一定距离,也可以向某方向旋转一定距离D. 经过旋转,对应角相等,对应线段一定相等且平行9. 鞋厂生产不同号码的鞋,其中,生产数量最多的鞋号是调查不同年龄的人的鞋号所构成的数据的 ( )A.平均数B.众数C.中位数D.众数或中位数10. 一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度h(厘米)与燃烧时间t(时)的函数关系的图象是( )A. B. C. D.二、填空题(每小题3分,共30分)11. 在Rt △ABC 中,∠C=90°a=3,b=4,则c= 。
12. 一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的面积等于 13. 在ABCD 中,若AB=3cm ,BC=4cm ,则ABCD 的周长为 。
八年级数学下册期末考试卷附答案(北师大版)
八年级数学下册期末考试卷附答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。
(每小题4分,共40分)1.下列图形中,既是轴对称图形,又是中心对称图形的是( )2.若x >y ,则下列不等式一定成立的是( )A.x+4>y+6B.x -8<y -8C.x9>y9 D.﹣a >﹣b 3.下列各式:①3x ;②a+b 4;③y 3y ;④xyπ+2,其中是分式的是( )A.①③B.③④C.①②D.①②③④ 4.关于x 的方程5x x -2=ax -2+1有增根,则a 的值是( )A.0B.2或3C.2D.3 5.如果把5a a+b中的a ,b 同时扩大10倍,那么这个代数式的值( )A.不变B.扩大50倍C.扩大10倍D.缩小大原来的1106.如图,在四边形ABCD 中,AB ∥CD ,要使四边形ABCD 是平行四边形,下列添加的条件不正确的是( )A.AB=CDB.BC=ADC.∠A=∠CD.BC ∥AD(第6题图) (第7题图) (第8题图) 7.如图,正五边形ABCDE 中,连接BE ,则∠ABE 的度数为( ) A.30° B.36° C.54° D.72°8.如图,一个长为2,宽为1的长方形以所示姿态从直线l的左侧水平平移至右侧(图中的虚线是水平线),其中,平移的距离是()A.1B.2C.3D.2√29.若不等式组{x<1x<a的解集是x<a,则a的取值范围是()A.a≤1B.a=1C.a≥1D.a<1二.填空题。
(每小题4分,共24分)11.因式分解:a2-6a= .12.若分式x+1x-1的值为0,则x的值是 .13.如图,正方形AMNP的边AM在正五边形ABCDE的边AB上,则∠PAE等于 .(第13题图)(第15题图)(第16题图)14.若不等式(a-4)x>1的解集是x<1a-4,则m的取值范围是 .15.如图,在平行四边形ABCD中,CE平分∠BCD,若CD=5,BC=3,则AE的长是 .16.如图,点A的坐标为(1,3),点B在x轴上,把△OAB沿x轴向右平移到△ECD,若四边形ABDC的面积为15,则点C的坐标为 .三.解答题。
八年级下学期数学期末考试卷及答案(北师大版)
八年级下学期数学期末考试卷及答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。
(每小题4分,共40分) 1.要使分式2x -1有意义,则x 的取值满足( )A.x ≠0B.x ≠1C.x ≠2D.x 为任意实数 2.下列等式从左到右的变形,是因式分解的是( )3.在平行四边形ABCD 中,若∠A+∠C=80°,则∠B 的度数是( ) A.140° B.100° C.40° D.120°4.如图,在菱形ABCD 中,两条对角线长AC=6,BD=8,则菱形的面积为( ). A.48 B.24 C.20 D.12(第4题图) (第8题图) (第10题图)5.下列式子中,能运用平方差公式因式分解的是( )A.﹣4a 2+b 2B.x 2+4C.a 2+c 2-2acD.﹣a 2-b 2 6.化简m -1m 2÷1-m m 3的结果是( )A.mB.1m C.﹣m D.﹣1m7.已知关于x 的一元二次方程x 2-2x -k -1=0有两个实数根,则k 的取值范围是( ) A.k >﹣2 B.k ≥﹣2 C.k ≤﹣2 D.k <﹣28.如图,将△ABC 沿着它的中位线DE 对折,使点A 落在点F 处,若∠C=120°,∠A=20°,则∠FEB 的度数是( )A.140°B.120°C.100°D.80°二.填空题。
(每小题4分,共24分) 11.因式分解:m 2-4m .12.一个正多边形的一个外角等于45°,则这个正多边形的边数是 . 13.关于x 的一元二次方程x 2+mx -5=0有一个根x=﹣1,则另一个根是 .14.如图,EF 过平行四边形ABCD 对角线的交点O ,交AD 于点E ,交BC 于点F ,若平行四边形ABCD 的周长是30,OE=3,则四边形ABFE 的周长是 .(第14题图) (第15题图) (第16题图)15.如图,在平面直角坐标系中,平行四边形OABC 的边OC 落在x 轴的正半轴上,且点C (4,0),B (6,2),直线y=2x+1以每秒1个单位长度的速度向下平移,经过 秒该直线将平行四边形OABC 的面积平分..16.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE=1,F 为边AB 上的一个动点,连接EF ,以EF 为边向右作等边△EFG ,连接CG ,则CG 的最小值是 . 三.解答题。
最新北师大版八年级数学下册期末试卷(附答案)
最新北师大版八年级数学下册期末试卷(附答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知31416181279a b c ===,,,则a b c 、、的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>2.若关于x 的方程3m(x +1)+5=m(3x -1)-5x 的解是负数,则m 的取值范围是( )A .m >-54B .m <-54C .m >54D .m <543.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.已知-10m 是正整数,则满足条件的最大负整数m 为( )A .-10B .-40C .-90D .-1605.方程组33814x y x y -=⎧⎨-=⎩的解为( ) A .12x y =-⎧⎨=⎩ B .12x y =⎧⎨=-⎩ C .21x y =-⎧⎨=⎩ D .21x y =⎧⎨=-⎩6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( )A .20B .24C .40D .487.下列说法中错误的是( )A .12是0.25的一个平方根B .正数a 的两个平方根的和为0C .916的平方根是34D .当0x ≠时,2x -没有平方根8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A .6cm 2B .8 cm 2C .10 cm 2D .12 cm 210.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.分解因式:22a 4a 2-+=__________.3.若23(1)0m n -++=,则m -n 的值为________.4.如图,已知函数y=x+b 和y=ax+3的图象交点为P ,则不等式x+b >ax+3的解集为________.5.如图所示,把一张长方形纸片沿EF 折叠后,点D C ,分别落在点D C '',的位置.若65EFB︒∠=,则AED'∠等于________.6.如图,已知点E在正方形ABCD的边AB上,以BE为边向正方形ABCD外部作正方形BEFG,连接DF,M、N分别是DC、DF的中点,连接MN.若AB=7,BE=5,则MN=________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)352526x yx y-=⎧⎨+=⎩(2)3()1242(2)5()5x y yx y x y-⎧+=⎪⎨⎪+=++⎩2.先化简,再求值:(1﹣11x-)÷22441x xx-+-,其中x5 23.解不等式组()31511242x xxx⎧-<+⎪⎨-≥-⎪⎩,并写出它的所有非负整数解.4.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC 交AB、AC于E、F.(1)图①中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系.(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O 点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF 关系又如何?说明你的理由.5.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、A4、A5、D6、A7、C8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、1002、()2 2a1-3、44、x>15、50°6、13 2三、解答题(本大题共6小题,共72分)1、(1)34xy=⎧⎨=⎩;(2)12xy=-⎧⎨=-⎩2、12xx+ -,3、非负整数解是:0,1、2.4、(1)△AEF、△OEB、△OFC、△OBC、△ABC共5个,EF=BE+FC;(2)有,△EOB、△FOC,存在;(3)有,EF=BE-FC.5、(1)略(2)90°(3)AP=CE6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
北师大版八年级下册数学期末考试试卷含答案
北师大版八年级下册数学期末考试试题一、单选题1.下列垃圾分类标识中,是中心对称图形的是()A .B .C .D .2.如果x y <,那么下列不等式正确的是()A .22x y<B .22x y-<-C .11x y ->-D .11x y +>+3.若分式242x x -+的值为0,则x 的值为()A .-2B .0C .2D .±24.如图,在平行四边形ABCD 中,∠A =40°,则∠C 大小为()A .40°B .80°C .140°D .180°5.下列各式从左到右的变形一定正确的是()A .n m=11n m ++B .22x y x y--=x ﹣yC .b a =22b aD .b a=2a b a 6.下列多项式能直接用完全平方公式进行因式分解的是()A .x 2+2x ﹣1B .x 2﹣x +14C .x 2+xy +y 2D .9+x 2﹣3x7.下列命题不正确的是()A .等腰三角形的两底角相等B .平行四边形的对角线互相平分C .角平分线上的点到角两边的距离相等D .三个角分别对应相等的两个三角形全等8.下列条件不能判定四边形ABCD 是平行四边形的是()A .,AD BC AB CD ==B .,AC BD ∠=∠∠=∠C .//,AB CD BC AD=D .//,AD BC B D∠=∠9.如图,一次函数1y kx b =+的图象与直线2y m =相交于点P (-1,3),则关于x 的不等式0kx b m +->的解集为()A .3x >B .1x <-C .1x >-D .3x <10.如图,已知∠ABC ,小彬借助一把没有刻度且等宽的直尺,按如图的方法画出了∠ABC 的平分线BP .他这样做的依据是()A .在一个角的内部,且到角两边的距离相等的点在这个角的平分线上B .角平分线上的点到这个角两边的距离相等C .三角形三条角平分线的交点到三条边的距离相等D .测量垂直平分线上的点到这条线段的距离相等二、填空题11.若一个多边形的每一个外角都等于30°,则这个多边形的边数为_________.12.如图,在△ABC 中,BC =8cm ,D 是BC 的中点,将△ABC 沿BC 向右平移得△A′DC′,则点A 平移的距离AA′=___cm .13.计算:223211a a a +-=--______________.14.实验初中初二(1)班同学参加社会实践活动,几名同学打算包租一辆车前往,该车的租价为180元,出发时,又增加了两名同学,结果每名同学比原来少分摊了3元车费.设参加实践活动的学生原有x 人,则可列方程为_______.15.如图,四边形ABCD 中,∠B +∠D =180°,AC 平分∠DAB ,CM ⊥AB 于点M ,若AM =4cm ,BC =2.5cm ,则四边形ABCD 的周长为_____cm.16.如图,▱ABCD 中,∠ABC =45°,EF 是BC 的垂直平分线,EB =AB ,若BD =6,则AB =_______.三、解答题17.分解因式:(1)2242x x -+(2)22()9()a x yb y x -+-18.利用数轴求出不等式组的解集.3212125x x x x <+⎧⎪++⎨>⎪⎩.19.先化简:(7211a a a +--+)÷2231a aa +-,再从﹣3、﹣2、﹣1、0、1中选一个合适的数作为a 的值代入求值.20.解分式方程:21133x xx x -=++21.如图所示,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣2,1),C (﹣1,3).(1)若△ABC 经过平移后得到△A 1B 1C 1,已知点C 1的坐标为(4,0),画出△A 1B 1C 1;(2)将△ABC 绕着点O 按顺时针方向旋转90°得到△A 2B 2C 2,则点A 2的坐标为,点C 2的坐标为.(3)点D是平面直角坐标系内一点,若以A、B、C、D为顶点的四边形为平行四边形,直接写出满足条件的D点坐标.22.如图,在▱ABCD中,对角线AC、BD相交于点O,E、F为直线BD上的两个动点(点E、F始终在▱ABCD的外面),且DE=12OD,BF=12OB,连接AE、CE、CF、AF.(1)求证:四边形AFCE为平行四边形.(2)若AC=6,EF=10,AF=4,则平行四边形AFCE的周长为.23.某网店预测一种时尚T恤衫能畅销,用4800元购进这种T恤衫,很快售完,接着又用6600元购进第二批这种T恤衫,第二批T恤衫数量是第一批T恤衫数量的1.5倍,且每件T恤衫的进价第二批比第一批的少5元.(1)求第一批T恤衫每件的进价是多少元?(2)若第一批T恤衫的售价是80元/件,老板想让这两批T恤衫售完后的总利润不低于4060元,则第二批T恤衫每件至少要售多少元?(T恤衫的售价为整数元)24.如图,在四边形ABCD中,∠B=60°,AB=DC=4,AD=BC=8,延长BC到E,使CE =4,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC ﹣CD ﹣DA 向终点A 运动,设点P 运动的时间为t 秒(t >0).(1)当t =3时,BP =;(2)当t =时,点P 运动到∠B 的角平分线上;(3)当0<t <6时,请用含t 的代数式表示△ABP 的面积S ;(4)当0<t <6时,直接写出点P 到四边形ABED 相邻两边距离相等时t 的值.25.如图,四边形ABCD 中,45ABC ADC ∠=∠=︒,将BCD ∆绕点C 顺时针旋转一定角度后,点B 的对应点恰好与点A 重合,得到ACE ∆.(1)请求出旋转角的度数;(2)请判断AE 与BD 的位置关系,并说明理由;(3)若2AD =,3CD =,试求出四边形ABCD 的对角线BD 的长.26.思维启迪(1)如图,△ABC 中,AB =4,AC =2,点在AB 上,AD =AC ,AE ⊥CD 垂足为E ,点F 是BC 中点,则EF 的长度为.思维探索(2)如图2,等边三角形ABC 的边长为4,AD ⊥BC 垂足为D ,点E 是AC 的中点,点M 是AD 的中点,点N 是BE 的中点,求MN 的长.(3)将(2)中的△CDE 绕C 点旋转,其他条件不变,当点D 落在直线AC 上时,画出图形,并直接写出MN长.参考答案1.B【分析】利用中心对称图形的定义进行解答即可.【详解】解:A.不是中心对称图形,故此选项不合题意;B.是中心对称图形,故此选项符合题意;C.不是中心对称图形,故此选项不合题意;D.不是中心对称图形,故此选项不合题意;故选:B.【点睛】此题主要考查了中心对称图形,关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.A【解析】【分析】根据不等式的性质对各选项分析判断后利用排除法求解.【详解】解:A 、由x <y 可得:22x y <,故选项成立;B 、由x <y 可得:22x y ->-,故选项不成立;C 、由x <y 可得:11x y -<-,故选项不成立;D 、由x <y 可得:11x y +<+,故选项不成立;故选A.【点睛】本题考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.3.C 【解析】【详解】由题意可知:24020x x =⎧-⎨+≠⎩,解得:x=2,故选C.4.A 【解析】【分析】由平行四边形的性质:对角相等,得出∠C=∠A .【详解】解:∵四边形ABCD 是平行四边形,∴∠C=∠A=40°,故选A .【点睛】本题考查了平行四边形的性质,解答本题的关键是掌握平行四边形的对角相等.5.D 【解析】【分析】根据分式的基本性质(分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变)逐个判断即可.【详解】解:A.11n m m n ++≠,故本选项不符合题意;B.22x y x y--=()()x y x y x y +--=x +y ,故本选项不符合题意;C.当b =﹣2,a =1时,22bb a a ≠,故本选项不符合题意;D.2b ab a a =,故本选项符合题意;故选:D .【点睛】本题考查了分式的基本性质,解题的关键是正确理解并运用分式的基本性质.6.B 【解析】【分析】根据能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍进行分析即可.【详解】解:A 、x 2+2x ﹣1不能直接用完全平方公式进行因式分解,故此选项不合题意;B 、x 2﹣x +14=(x ﹣12)2,能直接用完全平方公式进行因式分解,故此选项符合题意;C 、x 2+xy +y 2不能直接用完全平方公式进行因式分解,故此选项不合题意;D 、9+x 2﹣3x 不能直接用完全平方公式进行因式分解,故此选项不合题意;故选:B .【点睛】本题考查了公式法分解因式,解题的关键是掌握完全平方公式:()2222a ab b a b ±+=±.7.D 【解析】【分析】利用等腰三角形的性、平行四边形的性质、角平分线的性质及全等三角形的判定分别判断后即可确定正确的选项.【详解】解:A、等腰三角形的两底角相等,正确,不符合题意;B、平行四边形的对角线互相平分,正确,不符合题意;C、角平分线上的点到角两边的距离相等,正确,不符合题意;D、三个角分别对应相等的两个三角形不一定全等,故错误,符合题意,故选:D.【点睛】本题考查了判断命题的正误,等腰三角形的性、平行四边形的性质、角平分线的性质及全等三角形的判定,掌握相关的性质定理是解题的关键.8.C【解析】【分析】根据平行四边形的判定逐一判断即可.【详解】解:A.由AD=BC,AB=CD可根据两组对边分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;B.由∠A=∠C,∠B=∠D可根据两组对角分别相等的四边形是平行四边形知四边形ABCD 是平行四边形,此选项不符合题意;C.由AB∥CD,BC=AD不能判定四边形ABCD是平行四边形,此选项符合题意;D.由AD∥BC知∠A+∠B=180°,结合∠B=∠D知∠A+∠D=180°,所以AB∥CD,此时可根据两组对边分别平行的四边形是平行四边形知四边形ABCD是平行四边形,此选项不符合题意;故选:C.【点睛】本题主要考查平行四边形的判定,解题的关键是掌握两组对边分别平行的四边形是平行四边形、两组对边分别相等的四边形是平行四边形、一组对边平行且相等的四边形是平行四边形.9.B【解析】【分析】把点P (-1,3)与点(0,1)求出一次函数1y kx b =+与2y m =的解析式,然后利用解不等式的方法求解即可;也可以通过观察图象,比较函数值大小来确定x 的的取值范围.【详解】解法一:依据题意有点P (-1,3)与点(0,1)在一次函数1y kx b =+的图象上,∴13b x b=⎧⎨=-+⎩,解得12b k =⎧⎨=-⎩,点P (-1,3)在直线2y m =的图象上,∴m=3,∴0kx b m +->即为220x -->,解得1x <-.解法二:∵0kx b m +->,∴kx b m +>,∵1y kx b =+,2y m =,∴12y y >,即一次函数1y kx b =+的图象在直线2y m =的上面部分,观察图象,这部分图象对应的x 的取值范围是:1x <-.故选:B .【点睛】本题主要考查了一次函数与一元一次不等式,数形结合是解题关键.10.A 【解析】【分析】根据角平分线判定得出BP 平分∠DPE ,根据平行线的性质推出∠DBP =∠EBP ,即可得出答案.【详解】解:∵∠M =∠N =90°,BM =BN ,∴BP 平分∠DPE ,∴∠DPB =∠EPB ,∵DP∥BC,PE∥BD,∴∠DPB=∠PBE,∠EPB=∠DBP,∴∠DBP=∠EBC,即在一个角的内部,到角的两边距离相等的点在角的平分线上,故选:A.【点睛】本题主要考查了角平分线的判定,平行线的性质的应用,注意:角的内部到角的两边距离相等得点在角的平分线上.11.12【解析】【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】解:∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的外角,关键是明确多边形的外角和为360°.12.4【解析】【分析】利用平移的性质(平移前后两图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点;连接各组对应点的线段平行且相等)解决问题即可.【详解】解:∵D 是BC 的中点,∴BD =12BC =4(cm),由平移的性质可知,AA′∥BD ,AA′=BD ,∴AA′=4(cm),故答案为:4.【点睛】本题考查了平移的性质,解题的关键是熟练掌握平移的性质.13.11a a -+【解析】【分析】先通分,再进行分式的加减即可得到答案.【详解】解:223211a a a +---=()()()()()22131111a a a a a a ++-+-+-=()()232211a a a a +--+-=()()()2111a a a -+-=11a a -+故答案为:11a a -+.【点睛】此题考查的是分式的加减运算,掌握其运算法则是解决此题关键.14.18018032x x -=+【解析】【分析】设原参加游览的同学共x人,则原有的几名同学每人分担的车费为:180x元,出发时每名同学分担的车费为:180x2+,根据每个同学比原来少摊了3元钱车费即可得到等量关系.【详解】解:设原参加游览的同学共x人,根据题意得:1801803 x x2-=+,故答案为:1801803 x x2-=+.【点睛】本题主要考查了分式方程的应用,解题的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数.15.13【解析】【分析】过C作CE⊥AD的延长线于点E,由条件可证△AEC≌△AMC,得到AE=AM.证明△ECD≌△MBC,由全等的性质可得DE=MB,BC=CD,则问题可得解.【详解】解:如图,过C作CE⊥AD的延长线于点E,∵AC平分∠BAD,∴∠EAC=∠MAC,∵CE⊥AD,CM⊥AB,∴∠AEC=∠AMC=90°,CE=CM,在Rt△AEC和Rt△AMC中,AC=AC,CE=CM,∴Rt△AEC≌Rt△AMC(HL),∴AE=AM=4cm,∵∠ADC +∠B =180°,∠ADC +∠EDC =180°,∴∠EDC =∠MBC ,在△EDC 和△MBC 中,DEC CMB EDC MBC CE CM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△EDC ≌△MBC (AAS ),∴ED =BM ,BC =CD =2.5cm ,∴四边形ABCD 的周长为AB +AD +BC +CD =AM +BM +AE ﹣DE +2BC =2AM +2BC =8+5=13(cm ),故答案为:13.【点睛】本题考查全等三角形的判定与性质,掌握常用的判定方法是解题的关键.16.3【解析】【分析】连接CE ,过C 作CG ⊥DE 于G ,由线段垂直平分线的性质得EB =EC ,则∠EBC =∠ECB ,再证EC =CD ,则∠CED =∠CDE ,设∠EBC =∠ECB =α,则∠CDE =∠CED =∠EBC +∠ECB =2α,然后由三角形内角和定理求出α=15°,则∠CDE =∠CED =30°,设AB =EB =EC =CD =x ,则DE =BD ﹣EB =6﹣x ,最后由含30°角的直角三角形的性质和等腰三角形的性质得EG,EG =12DE =12(6﹣x ),则2x =12(6﹣x ),解方程即可.【详解】解:连接CE ,过C 作CG ⊥DE 于G,如图所示:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABC +∠BCD =180°,∴∠BCD =180°﹣45°=135°,∵EF 是BC 的垂直平分线,∴EB =EC ,∴∠EBC =∠ECB ,∵EB =AB ,∴EC =CD ,∴∠CED =∠CDE ,设∠EBC =∠ECB =α,则∠CDE =∠CED =∠EBC +∠ECB =2α,在△BCD 中,∠DBC +∠CDB =180°﹣135°=45°,即α+2α=45°,解得:α=15°,∴∠CDE =∠CED =30°,设AB =EB =EC =CD =x ,则DE =BD ﹣EB =6﹣x ,∵CG ⊥DE ,∴CG =12EC =12x ,EG ,又∵EC =DC ,CG ⊥DE ,∴EG =DG =12DE =12(6﹣x ),=12(6﹣x ),解得:x =3,即AB =3,故答案为: 3.【点睛】此题主要考查了平行四边形、直角三角形以及等腰三角形的有关性质,熟练掌握相关基础知识是解题的关键.17.(1)22(1)x -;(2)()(3)(3)x y a b a b -+-【解析】【分析】(1)先提公因式,再由完全平方公式进行因式分解,即可得到答案;(2)先整理,然后提公因式,再由平方差公式进行分解因式,即可得到答案.解:(1)2242x x -+=22(21)x x -+=22(1)x -;(2)22()9()a x yb y x -+-=22()9()a x yb x y ---=22()(9)x y a b --=()(3)(3)x y a b a b -+-.【点睛】本题考查了因式分解的方法,解题的关键是熟练掌握分解因式的方法进行解题.18.﹣3<x <1【解析】【分析】先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.【详解】解:3212125x x x x <+⎧⎪⎨++>⎪⎩①②,解不等式①得:x <1,解不等式②得:x >﹣3,在数轴上表示不等式①、②的解集,得:,∴不等式组的解集是:﹣3<x <1.【点睛】本题主要考查了解一元一次不等式组,解题的关键是要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.19.3a a+;12-.【解析】先把括号内的两项通分后利用同分母分式的加减法法则进行计算,同时把除法转化为乘法,最后约分化成最简分式,根据分式有意义的条件选择一个a 值代入求值即可.【详解】解:22723111a a aa a a ++⎛⎫-÷ ⎪-+-⎝⎭=()()()()()()()()712111113a a a a a a a a a ++--+-⋅-++=()2693a a a a +++=()()233a a a ++=3a a+当a=-3、-1、1、0时,原式没有意义,舍去,当a=-2时,原式=23122-+=--.【点睛】本题考查分式的化简求值,熟练掌握分式的基本性质及分式有意义的条件是解题关键.20.32x =-【解析】【分析】先将分式方程化为整式方程,然后解整式方程并验根即可.【详解】解:方程两边都乘以()31x +,得:()3312x x x -+=,解得:32x =-,经检验,32x =-是原方程的解.【点睛】此题考查的是解分式方程,掌握分式方程的解法是解题关键.21.(1)见解析;(2)(5,3),(3,1);(3)(﹣4,3),(﹣2,7),(0,1).【解析】【分析】(1)利用平移变换的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可.(2)利用旋转变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可.(3)根据平行四边形的判定画出图形,可得结论.【详解】解:(1)∵C (﹣1,3),C 1的坐标为(4,0)∴△ABC 向右平移了五个单位,向下平移了三个单位,∴A 1(2,2),B 1(3,-2),C 1(4,0)如图,△A 1B 1C 1即为所求.(2)如图,△A 2B 2C 2即为所求,点A 2的坐标为(5,3),点C 2的坐标为(3,1).故答案为:(5,3),(3,1).(3)分别过、、A B C 作BC AC AB 、、的平行线,分别相交于点D D D '''、、,如上图所示,∵A (﹣3,5),C (﹣1,3)∴点B 向左移动两个单位,向上移动两个单位,可得点D又∵B (﹣2,1),∴D 点坐标为(﹣4,3),同理可以求得1)(0D ',,27)(D ''﹣,满足条件的D 点坐标(﹣4,3),(﹣2,7),(0,1).故答案为:(﹣4,3),(﹣2,7),(0,1).【点睛】此题主要考查了图形的变换,涉及了平移变换、旋转变换以及平行四边形的性质,熟练掌握相关基础知识是解题的关键.22.(1)见解析;(2)8+.【解析】【分析】(1)由平行四边形的性质得OA =OC ,OB =OD .再证OE =OF ,即可得出结论;(2)由勾股定理的逆定理证明△AOF 是直角三角形,∠OAF =90°,再由勾股定理得CF =【详解】(1)证明:∵四边形ABCD 是平行四边形,∴OA =OC ,OB =OD .∵DE =12OD ,BF =12OB ,∴DE =BF ,∴OD +DE =OB +BF ,即OE =OF ,∴四边形AFCE 为平行四边形;(2)解:如图所示:由(1)得:OA =OC =12AC =3,OE =OF =12EF =5,∵AF =4,∴OA 2+AF 2=OF 2,∴△AOF是直角三角形,∠OAF=90°,∴CF∵四边形AFCE是平行四边形,∴CE=AF=4,AE=CF=∴平行四边形AFCE的周长=2(AF+CF)=8+故答案为:8+【点睛】本题主要考查了平行四边形的判定和性质、勾股定理和勾股定理逆定理的应用;熟练掌握平行四边形的判定和性质及勾股定理及逆定理是解题的关键.23.(1)60元;(2)76元【解析】【分析】(1)已知金额设出进价,表示出数量,根据数量关系列出方程;(2)在(1)的基础上,根据求出的两次进价求出两次进货数量,列出关于总利润的不等式.【详解】解:(1)设第一批T恤衫每件的进价为x元,根据题意得:480066001.55 x x⨯=-,解得x=60,经检验,x=60是原方程的解,答:第一批T恤衫的进价为60元.(2)设第二批T恤衫的售价为y元,根据题意,得。
北师大版八年级数学下册期末试卷及答案【完整版】
北师大版八年级数学下册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( )A .12B .C .12或D .以上都不对2.(2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.已知点()()121,,2,A y B y 在抛物线2(1)2y x =-++上,则下列结论正确的是( )A .122y y >>B .212y y >>C .122y y >>D .212y y >>4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 5.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差6.如果a ,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.若aba 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.关于▱ABCD 的叙述,正确的是( )A .若AB ⊥BC ,则▱ABCD 是菱形 B .若AC ⊥BD ,则▱ABCD 是正方形C .若AC=BD ,则▱ABCD 是矩形 D .若AB=AD ,则▱ABCD 是正方形9.如图,由四个全等的直角三角形拼成的图形,设CE a =,HG b =,则斜边BD 的长是( )A .+a bB .⋅a b C.222a b +D .222a b - 10.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33二、填空题(本大题共6小题,每小题3分,共18分)1.如图,数轴上点A 表示的数为a ,化简:a 244a a +-+=________.2.不等式组34012412x x +≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________. 3.计算:()()201820195-252+的结果是________.4.如图,把△ABC 绕点C 按顺时针方向旋转35°,得到△A ’B ’C ,A ’B ’交AC 于点D ,若∠A ’DC=90°,则∠A= °.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知方程组137x y a x y a-=+⎧⎨+=--⎩中x 为非正数,y 为负数. (1)求a 的取值范围;(2)在a 的取值范围中,当a 为何整数时,不等式221ax x a ++>的解集为1x <?4.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.5.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC (图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、B5、D6、C7、D8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、0324、55.5、706、6三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、-3.3、(1)a 的取值范围是﹣2<a ≤3;(2)当a 为﹣1时,不等式2ax+x >2a+1的解集为x <1.4、略.5、(1)略;(2)MB =MC .理由略;(3)MB =MC 还成立,略.6、(1)120件;(2)150元.。
北师大版八年级下册数学期末考试题及答案
北师大版八年级下册数学期末考试卷一、选择题(共12小题,每小题3分,计36分)1.若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.D.ab>b22.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交AB、AC 于D、E,△BEC的周长是14cm,BC=5cm,则AB的长是()A.14cm B.9cm C.19cm D.12cm3.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是A.m+1 B.2m C.2 D.m+24.若关于x的分式方程+=1有增根,则m的值是()A.m=0或m=3 B.m=3 C.m=0 D.m=﹣15.如果一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形6.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个C.2个D.3个7.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN 的中点,则EF长度的最大值为()A.3 B.4 C.4.5 D.58.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75°B.60°C.45°D.15°9.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.10.如图,在Rt△ABC中,∠C=90°,BD是角平分线,若CD=m,AB=2n,则△ABD的面积是()A.mn B.5mn C.7mn D.6mn11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF 的周长是()cm.A.7 B.11 C.13 D.1612.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,在共有学生人数为()A.6人B.5人C.6人或5人D.4人二.填空题(共4小题,每小题3分,计12分)13.在平面直角坐标系中,点P(2,﹣1)关于原点的对称点在第象限.14.若x是整数,且满足不等式组,则x=.15.如图,P是∠AOB的平分线上一点,PD⊥OB,垂足为D,PC∥OB交OA 于点C,若∠AOB=30°,PD=2cm,则PC=cm.16.某市为治理污水,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成这一任务.则实际每天铺设污水排放管道的长度为m.三.解答题(共8小题,满分52分)17.(6分)解不等式组:,并把解集在数轴上表示出来.18.(6分)过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求(m﹣p)n的值19.(6分)已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.20.(6分)解分式方程:.21.(6分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B(0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为.22.(6分)如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC 于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.23.(8分)如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.24.(8分)如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.参考答案一、选择题(共12小题,每小题3分,计36分)1.若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.D.ab>b2选A.2.如图,在△ABC中,AB=AC,DE是AB边的垂直平分线,分别交AB、AC 于D、E,△BEC的周长是14cm,BC=5cm,则AB的长是()A.14cm B.9cm C.19cm D.12cm解:∵DE是AB边的垂直平分线,∴AE=BE(线段垂直平分线上的点到线段两端点的距离相等),∵△BEC的周长=BE+BC+CE=AE+CE+BC=AC+BC=14cm,BC=5cm,∴AC=14﹣5=9cm,∵AB=AC,∴AB的长是9cm.故选B.3.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1 B.2m C.2 D.m+2解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.4.若关于x的分式方程+=1有增根,则m的值是()A.m=0或m=3 B.m=3 C.m=0 D.m=﹣1解:去分母得:3﹣x﹣m=x﹣4,由分式方程有增根,得到x﹣4=0,即x=4,把x=4代入整式方程得:3﹣4﹣m=0,解得:m=﹣1,故选D.5.如果一个多边形的内角和与外角和相等,那么这个多边形是()A.四边形B.五边形C.六边形D.七边形解:设多边形的边数为n,根据题意(n﹣2)•180°=360°,解得n=4.故选A.6.如图所示,在△ABC中,∠A=36°,∠C=72°,∠ABC的平分线交AC于D,则图中共有等腰三角形()A.0个B.1个C.2个D.3个解:∵在△ABC中,∠A=36°,∠C=72°∴∠ABC=180°﹣∠A﹣∠C=72°=∠C∴AB=AC,∴△ABC是等腰三角形BD平分∠ABC交AC于D,∴∠ABD=∠DBC=36°∵∠A=∠ABD=36°,∴△ABD是等腰三角形∠BDC=∠A+∠ABD=36°+36°=72°=∠C∴△BDC是等腰三角形∴共有3个等腰三角形故选D.7.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN 的中点,则EF长度的最大值为()A.3 B.4 C.4.5 D.5解:如图,连结DN,∵DE=EM,FN=FM,∴EF=DN,当点N与点B重合时,DN的值最大即EF最大,在RTABD中,∵∠A=90°,AD=3,AB=3,∴BD===6,∴EF的最大值=BD=3.故选A.8.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75°B.60°C.45°D.15°解:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△ABD经旋转后到达△ACE的位置,∴∠BAC等于旋转角,即旋转角等于60°.故选B.9.如图,已知直线y1=x+m与y2=kx﹣1相交于点P(﹣1,1),则关于x的不等式x+m<kx﹣1的解集在数轴上表示正确的是()A.B.C.D.解:当x<﹣1时,y1<y2,所以关于x的不等式x+m<kx﹣1的解集为x<﹣1,用数轴表示为:.故选D10.如图,在Rt△ABC中,∠C=90°,BD是角平分线,若CD=m,AB=2n,则△ABD的面积是()A.mn B.5mn C.7mn D.6mn解:如图,过点D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,∴DE=CD=m,∴△ABD的面积=×2n×m=mn,故选:A.11.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF 的周长是()cm.A.7 B.11 C.13 D.16解:∵将线段DC沿着CB的方向平移7cm得到线段EF,∴EF=DC=4cm,FC=7cm,∵AB=AC,BC=12cm,∴∠B=∠C,BF=5cm,∴∠B=∠BFE,∴BE=EF=4cm,∴△EBF的周长为:4+4+5=13(cm).故选C.12.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,在共有学生人数为()A.6人B.5人C.6人或5人D.4人解:设共有学生x人,0≤(3x+8)﹣5(x﹣1)<3,解得,5<x<6.5,故共有学生6人,故选A.二.填空题(共4小题,每小题3分,计12分)13.在平面直角坐标系中,点P(2,﹣1)关于原点的对称点在第二象限.解:点(2,﹣1)关于原点对称的点的坐标是(﹣2,1),故点P(2,﹣1)关于原点的对称点在第二象限.故答案为:二.14.若x是整数,且满足不等式组,则x=3.解:,解①得x>2,解②得x<,所以不等式组的解为2<x<,所以整数x的值为3.故答案为3.15.如图,P是∠AOB的平分线上一点,PD⊥OB,垂足为D,PC∥OB交OA 于点C,若∠AOB=30°,PD=2cm,则PC=4cm.解:如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,PD=2cm,∴PE=PD=2cm,∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PC=2PE=2×2=4cm.故答案为:4.16.某市为治理污水,需要铺设一段全长为3000m的污水排放管道.为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前15天完成这一任务.则实际每天铺设污水排放管道的长度为50m.解:设实际每天铺设污水排放管道的长度为xm,则计划每天铺设污水排放管道的长度为xm,根据题意得:﹣=15,解得:x=50,经检验,x=50是原分式方程的解.故答案为:50.三.解答题(共8小题,满分52分)17.解不等式组:,并把解集在数轴上表示出来.解:由①得x≥4,由②得x<1,∴原不等式组无解,18.过m边形的一个顶点有8条对角线,n边形没有对角线,p边形有p条对角线,试求(m﹣p)n的值.解:∵过m边形的一个顶点有8条对角线,∴m﹣3=8,m=11;n边形没有对角线,n=3;∵p边形有p条对角线,∴p=p(p﹣3)÷2,解得p=5,所以(m﹣p)n=(11﹣5)3=216.19.已知a+b=3,ab=2,求代数式a3b+2a2b2+ab3的值.解:a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,将a+b=3,ab=2代入得,ab(a+b)2=2×32=18.故代数式a3b+2a2b2+ab3的值是18.20.解分式方程:.解:方程的两边同乘(x+1)(x﹣1),得2(x﹣1)=x(x+1)﹣(x+1)(x﹣1),2x﹣2=x2+x﹣x2+1,2x﹣x=1+2,解得x=3.检验:把x=3代入(x+1)(x﹣1)=8≠0.∴原方程的解为:x=3.21.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(﹣4,2)、B (0,4)、C(0,2),(1)画出△ABC关于点C成中心对称的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,﹣4),画出平移后对应的△A2B2C2;(2)△A1B1C和△A2B2C2关于某一点成中心对称,则对称中心的坐标为(2,﹣1).解:(1)△A1B1C如图所示,△A2B2C2如图所示;(2)如图,对称中心为(2,﹣1).22.如图,在四边形ABCD中,∠B=90°,DE∥AB交BC于E、交AC于F,∠CDE=∠ACB=30°,BC=DE.求证:△FCD是等腰三角形.证明:∵∠B=90°,∠ACB=30°,∴∠BAC=60°∵AB∥DE,∴∠EFC=∠BAC=60°,∵∠CDE=30°,∴∠FCD=∠EFC﹣∠CDE=60°﹣30°=30°,∴∠FCD=∠FDC,∴FD=FC,即△FCD为等腰三角形.23.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM 平分∠BAD,DM平分∠ADC.求证:(1)AM⊥DM;(2)M为BC的中点.解:(1)∵AB∥CD,∴∠BAD+∠ADC=180°,∵AM平分∠BAD,DM平分∠ADC,∴2∠MAD+2∠ADM=180°,∴∠MAD+∠ADM=90°,∴∠AMD=90°,即AM⊥DM;(2)作NM⊥AD交AD于N,∵∠B=90°,AB∥CD,∴BM⊥AB,CM⊥CD,∵AM平分∠BAD,DM平分∠ADC,∴BM=MN,MN=CM,∴BM=CM,即M为BC的中点.24.如图,△ABC中,CD、BE分别是AB、AC边上的高,M、N分别是线段BC、DE的中点.(1)求证:MN⊥DE;(2)连结DM,ME,猜想∠A与∠DME之间的关系,并写出推理过程;(3)若将锐角△ABC变为钝角△ABC,如图,上述(1)(2)中的结论是否都成立?若结论成立,直接回答,不需证明;若结论不成立,说明理由.解:(1)如图,连接DM,ME,∵CD、BE分别是AB、AC边上的高,M是BC的中点,∴DM=BC,ME=BC,∴DM=ME又∵N为DE中点,∴MN⊥DE;(2)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵DM=ME=BM=MC,∴∠BMD+∠CME=(180°﹣2∠ABC)+(180°﹣2∠ACB),=360°﹣2(∠ABC+∠ACB),=360°﹣2(180°﹣∠A),=2∠A,∴∠DME=180°﹣2∠A;(3)结论(1)成立,结论(2)不成立,。
2024—2025学年最新北师大新版八年级下学期数学期末考试试卷(含答卷和参考答案)
2024—2025学年最新北师大新版八年级下学期数学期末考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、二十四节气是中国劳动人民独创的文化遗产,能反映季节的变化,指导农事活动.下面四副图片分别代表“芒种”、“白露”、“立夏”、“大雪”,其中是中心对称图形的是()A.B.C.D.2、若a>b﹣1,则下列结论一定正确的是()A.a+1<b B.a﹣1<b C.a>b D.a+1>b3、若点P(1﹣2a,a)在第二象限,那么a的取值范围是()A.B.C.D.4、将分式中的x,y的值同时扩大2倍,则分式的值()A.扩大2倍B.缩小到原来的C.保持不变D.无法确定5、下列命题中,假命题是()A.两组对边分别平行的四边形是平行四边形B.一组对边平行且另一组对边相等的四边形是平行四边形C.两组对角相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形6、如图,在Rt△ABC中,∠ACB=90°,DE垂直平分AB交BC于点D,若△ACD的周长为50cm,则AC+BC=()A.25cm B.45cm C.50cm D.55cm7、甲乙两人各自加工120个零件,甲由于个人原因没有和乙同时进行,乙先加工30分钟后,甲开始加工.甲为了追赶上乙的进度,加工的速度是乙的1.2倍,最后两人同时完成.求乙每小时加工零件多少个?设乙每小时加工x个零件,可列方程为()A.﹣=30B.﹣=30C.﹣=D.﹣=8、如图,在▱ABCD 中,点O 是BD 的中点,EF 过点O ,下列结论:①AB ∥DC ;②EO =ED ;③∠A =∠C ;④S 四边形ABOE =S 四边形CDOF ,其中正确结论的个数为( )A .1个B .2个C .3个D .4个9、如图,在Rt △ABC 中,∠C =90°,∠B =30°,BC =6,AD 平分∠CAB 交BC 于点D ,点E 为边AB 上一点,则线段DE 长度的最小值为( )A .B .C .2D .310、关于x 的不等式组整数解仅有4个,则m 的取值范围是( )A .﹣5≤m <﹣4B .﹣5<m ≤﹣4C .﹣4≤m <﹣3D .﹣4<m ≤﹣3二、填空题(每小题3分,满分18分)11、分解因式:3a 3﹣12a= .12、如果一个多边形的每一个外角都是40°,那么这个多边形的边数为 .13、如图,在△ABC 中,∠DCE =40°,AE =AC ,BC=BD ,则∠ACB 的度数为 .14、使得分式值为零的x 的值是 .15、如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2= °.16、若关于x 的方程﹣=1无解,则k 的值为 .2024—2025学年最新北师大新版八年级下学期数学期末考试试卷 第7题图 第8题图 第9题图考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、解不等式组:.18、先化简,再求值:(+1)÷,其中x=﹣3.19、已知不等式组的解集是﹣1<x<1,求(a+b)2024的值20、已知方程组的解为正数.(1)求a的取值范围;(2)化简:.21、如图,在△ABC中,CD平分∠ACB交AB于点D,E为AC上一点,且DE∥BC.(1)求证:DE=CE;(2)若∠A=90°,AD=4,BC=12,求△BCD的面积.22、某商场购进A,B两种商品,已知购进3件A商品比购进4件B商品费用多60元;购进5件A商品和2件B商品总费用为620元.(1)求A,B两种商品每件进价各为多少元?(2)该商场计划购进A,B两种商品共60件,且购进B商品的件数不少于A 商品件数的2倍.若A商品按每件150元销售,B商品按每件80元销售,为满足销售完A,B两种商品后获得的总利润不低于1770元,则购进A商品的件数最多为多少?23、如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC.(1)求证:四边形ABCD为平行四边形;(2)点E为BC边的中点,连接AE,过E作EF⊥AE交边CD于点F,连接AF.①求证:AF=AB+CF;②若AF⊥CD,CF=3,DF=4,求AE与CE的值.24、如图,在△ABC中,∠ACB=90°,AB=5,AC<BC.以AC为边向形外作等边△ACD,以BC为边向形外作等边△BCE,以AB为边向上作等边△ABF,连接DF,EF.(1)记△ACD的面积为S1,△BCE的面积为S2,求S1+S2的值(2)求证:四边形CDFE是平行四边形.(3)连接CF,若CF⊥EF,求四边形CDFE的面积.25、如图,在平面直角坐标系中,直线y=﹣x+8与x轴交于点A,与y轴交于点B,直线y=kx+b经过点B,且与x轴交于点C(﹣6,0).(1)求直线BC的表达式;(2)点E为射线BC上一点,过点E作EF∥x轴交AB于点F,且EF=7,设点E的横坐标为m.①求m的值;②在y轴上取点M,在直线BC上取点N,在平面内取点Q,使得点E,M,N,Q构成的四边形是以EN为对角线的正方形,求出此正方形的面积.2024—2025学年最新北师大新版八年级下学期数学期末考试参考答案考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、3a(a+2)(a﹣2)12、9 13、100°14、2 15、7216、2或﹣1三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、﹣<x≤4.18、,19、120、(1)﹣1<a<3;(2)3﹣a.21、(1)证明略(2)24.22、(1)A商品的进价是100元/件,B商品的进价是60元/件;(2)购进A商品的件数最多为20件.23、(1)证明略(2)①证明略②AE的长是5,CE的长是.24、(1);(2)证明略(3)四边形CDFE的面积=S=a2=.△ADC25、(1)直线BC的表达式:y=x+8(2)①m=﹣3②正方形的面积为:或450。
(整理版)北师大八年级数学下册期末测试卷(含答案)
北师大版八年级数学下册期末测试卷(含答案〕〔时间:120分钟,总分值:120分〕一、选择题〔每题3分,共30分〕1. 一种糖果,包装袋上写着:净重200克±≤≥≤x ≤205克 D.x =200克2. 分解因式x 3-x 正确的结果是〔 〕A.x(x 2-1)B.x(x-1)(x+1)C.⎪⎭⎫ ⎝⎛-x x x 122(x-1) 3. 以下四个选项中分式的分母都不等于0,对以下各分式的变形,一定正确的选项是〔 〕A.22b a b a = B.x b x a b --=a C.b m a m b a ++= D.bmam b a =4. 以下各对四边形中,一定相似的一对是〔 〕A.对应边成比例的两个四边形B.对应角相等的两个四边形C.长和宽相等比相等的两个矩形D 将一个矩形的各边的长度都增加2㎝后的矩形和原矩形.5. 如图是利用一根直立的竹竿AB 测量一棵大树的高度DF 的示意图,其中的虚线表示相互平行的太阳光线,AC 、ED 分别表示它们的影子,这样做可以测量出大树的高度,所利用的数学原理是〔 〕A.相似三角形对应中线的比等于相似比B.相似三角形面积的比等于相似比的平方C.位似三角形位似比等于各个对应顶点到位似中心的比D.相似三角形对应边成比例6. 我国于底开展的全国的1%人口抽样调查工作中,调查的样本量为1705万人,占全国总人口的1.31%,针对这次抽样调查,以下说法正确的个数是〔 〕①和人口普查相比,得到的数据准确程度差一些②从被调查的1705万人中得到的有关数据是全国人口的相应数据的一个样本③和的人口普查相比,调查的范围小,节省时间,人力,物力 A.3个 B.2个 C.1个 D.0个7. 高原地区地形起伏比拟小,山区地形起伏比拟大,在两个地区用同样的方法各选取11个地点测量它们的海拔高度将得到11个数据组成下面的图形,从图中可以看出下面的结论正确的选项是〔 〕A.山区的11个数据标准差比拟小B.高原的11个数据方差比拟小C.山区的11个数据方差比拟小D.高原的11个数据的极差比拟大8. 解分式方程可能产生增根,以下步骤中,可能产生增根的是〔 〕A.去分母 ,两边同时乘以一个含未知数的整式B.去括号C.移项,合并同类项D.检验,将所求的根代入原方程9. ° (第9题图)10. 一次函数y=kx+b 的图象如下图,从图象中可以看出,不等式kx+b>0的解集是A.x<4B.x<5C.x>4D.x>511. 填空题〔每题3分,共30分〕某中园内设计修建一个正六边形花坛,设计图的比例尺是1∶100,图上的正六 边形和实际的正六边形是相似的,它们的相似比是________,面积比是________.12. 点A(2-a,a+1)在第一象限,那么a 的取值范围是___________13. 把代数式xy 2-9x 分解因式,结果是_____________14. =+=a b a a b 时,当74_______ 15. 电视节目主持人在主持节目时,站在舞台的黄金分割点处最是自然得体,假设舞台AB长为20m ,试计算主持人大约应走到离A 点_______处.〔结果精确到0.1m ,黄金比近似等于0.618〕.16. =+=ab a a b 时,当53_______ 17. 韩日世界杯足球赛决赛阶段的64场比赛中,比分是1∶0的场次有15场之多,出现这种比分的频率是________〔用分数表示〕18. 两个相似多边形的周长比是3∶5,那么它们的面积的比是_______19. 在电学中,如果两个并联的电阻分别是R 1和R 2,那么总电阻R 和R 1、R 2的关系是:____,211111221===+R R R R R RR R 的是:表示那么用,如果____ 20. 在138-的所有大于70的正整数因数中,有两个因数的差是2,那么这两个因数的和是________三.解答题〔每题10分,共60分〕21. ⑴解方程:;1526+=+x x ⑵.251023x x x +-分解因式:22.为了鼓励居民避开顶峰用电,电力局鼓励居民安装峰谷电表,此种电表分两个时段计费:在当日8∶00到当日22∶00用电顶峰时以峰电价计费,其余时间以谷电价计费,谷电价是峰电价的一半,某居民家安装了峰谷电表后,五月份,使用“峰电〞电费占了总电费的60%,总共用电140度,求使用“峰电〞的度数。
北师大版八年级下册数学期末考试卷(参考答案)
北师大版八年级下册数学期末考试卷(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( )A .25B .35C .5D .67.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.若b>0,则一次函数y=﹣x+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a-=__________.2.计算1273-=___________.3.因式分解:a3﹣2a2b+ab2=________.4.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于________.5.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:213(2)211a a a a a +-÷+-+-,其中a =2.3.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.4.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E .(1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .5.如图,有一个直角三角形纸片,两直角边6AC =cm ,8BC = cm ,现将直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、D5、B6、C7、C8、C9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、()()33a a +-23、a (a ﹣b )2.4、8.5、186、15.三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、11a -,1.3、(1)12,32-;(2)略.4、(1)略;(2)4.5、CD 的长为3cm.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。
八年级下学期期末考试数学试卷带答案(北师大版)
八年级下学期期末考试数学试卷带答案(北师大版)(满分:120分;考试时间:120分钟)一.单选题。
(每小题4分,共40分) 1.下列图形中,其中是中心对称的是( )A. B. C. D.2.下列因式分解正确的是( )A.x 2+y 2=(x+y )2B.5a 2-20ab=m (5m -20n )C.﹣a 2+b 2=(b -a )(a+b )D.a 3-a=a (a 2-1) 3.若x >y ,下列不等式一定成立的是( )A.2x >y+2B.x -2023>y -2023C.﹣x >﹣yD.|x |>|y |4.如图,将平行四边形ABCD 沿对角线AC 折叠,使点B 落在B’处,若∠1=∠2=44°,则∠B 为( )A.124°B.114°C.104°D.66°(第4题图) (第5题图) (第7题图)5.如图,在五边形ABCDE 中,∠A+∠B+∠E=300°,DP ,CP 分别平分∠EDC ,∠BCD ,则∠P=( )A.45°B.60°C.90°D.120° 6.下列多项式中,不能用公式法因式分解的是( )A.﹣x 2+16y 2B.81(a 2-2ab+b 2)-(a+b )2C.m 2-13mn+19n 2 D.﹣a 2-b 2(第9题图)(第10题图)10.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,BD=2AD,E、F、G分别是OC,OD,AB的中点,下列结论:①BE⊥AC;②四边形BEFG是平行四边形;③△EFG≌△GBE,其中正确的个数是()A.0B.1C.2D.3二.填空题。
(每小题4分,共24分)11.若xy=2,x-y=1,则代数式2x2y-2xy2= .12.如图,在△ABC中,AD为△ABC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积是10cm2,AB=6cm,AC=4cm,则DF= cm.(第12题图)(第14题图)(第16题图)13.正多边形的一个内角等于150°,则这个正多边形的边数是.14.如图,在平行四边形ABCD 中,∠B=60°,AE ⊥BC ,AF ⊥CD ,垂足分别为E 、F ,若AB=6,CF=2,则CE= .15.按图中程序计算:规定输入一个值x 到结果是否≥17为一次程序操作,如果程序操作进行了两次才停止,则x 的取值范围是 .16.如图,等边△ABC 内有一点O ,OA=3,OB=4,OC=5,以点B 为旋转中心将OB 逆时针旋转60°得到线段O’B ,连接O’A ,下列结论:①△BO’A 可以看成是△BOC 绕点B 逆时针旋转60°得到的;②点O 到点O’的距离为5;③∠AOB=150°;④S 四边形AOBO’=6+4√2;⑤S △AOC +S △AOB =6+94√3.其中正确的结论有 .(只填序号) 三.解答题。
北师大版八年级下册数学期末试题带答案
北师大版八年级下册数学期末试卷一、单选题1.下列图形中,是轴对称图形,但不是中心对称图形的是 A .B .C .D .2.若x >y ,则下列式子中正确的是A .x ﹣2>y ﹣2B .x+2<y+2C .﹣2x >﹣2yD .22x y < 3.能判定四边形ABCD 是平行四边形的是 A .AB∥CD,AB =CD B .AB =BC,AD =CD C .AC =BD,AB =CD D .AB∥CD,AD =CB 4.等腰三角形的两边分别为7和4,则它的周长是A .15B .18C .15或18D .11 5.将2(2)(2)m a m a -+-分解因式,正确的是A .2(2)()a m n --B .(2)(1)m a m -+C .(2)(1)m a m --D .(2)(1)m a m --6.若分式211x x -+的值为0,则x 的值为A .0B .1C .﹣1D .±1 7.用反证法证明“若a∥c ,b∥c ,则a∥b”,第一步应假设A .a∥bB .a 与b 垂直C .a 与b 不一定平行D .a 与b 相交8.如图,在ABC 中,D ,E 分别是AB ,AC 边的中点,连接BE ,DE .若2BDE S =△,则BCE S的值为A .2B .4C .6D .89.如图,直线y 1=kx+2与直线y 2=mx 相交于点P(1,m),则不等式mx <kx+2的解集是A .x <0B .x <1C .0<x <1D .x >110.如图,将□ABCD 沿对角线AC 折叠,使点B 落在'B 处,若1240︒∠=∠=,则B =( )A .60︒B .100︒C .110︒D .120︒11.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF∥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:∥BE 平分∥CBF ;∥CF 平分∥DCB ;∥BC =FB ;∥PF =PC .其中正确结论的个数为( )A .1B .2C .3D .412.小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x 个/分钟,则列方程正确的是 A .1201806x x =+ B .1201806x x =- C .1201806x x =+ D .1201806x x=- 二、填空题13.不等式9﹣3x >0的非负整数解是_____. 14.若分式33x x --的值为零,则x =_______.15.若方程2111x m x x ++=--有一个增根,则m =_____. 16.若不等式组341x x x n +<-⎧⎨>⎩的解集是x >3,则n 的值是 ___.17.在平面直角坐标系中,线段AB 的端点A 的坐标为(-3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A′B′,则点A 对应点A′的坐标为____.18.如图所示,在∥ABC 中,∥C =90°,D 是CA 延长线上一点,∥BDC =15°,AD =AB =8,则BC =___.19.如图,一次函数1y kx b =+和2y mx n =+交于点A ,则kx b mx n +>+的解集为___.20.如图,在∥ABC 中,AB =AC ,AB 的垂直平分线 MN 交 AC 于 D 点.若 BD 平分∥ABC, 则∥A =________________ °.三、解答题21.分解因式:2x 2﹣12x+18.22.解不等式组()32226131x x x x -<+⎧⎨-≥--⎩. 23.解方程:2316111x x x +=+--. 24.先化简代数式22321(1)24a a a a -+-÷+-,再从-2,2,0三个数中选一个恰当的数作为a 的值代入求值.25.我们把依次连接任意四边形各边中点得到的四边形叫做中点四边形. 如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点,依次连接各边中点得到中点四边形EFGH . (1)这个中点四边形EFGH 的形状是____________; (2)证明你的结论.26.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC 的顶点均在格点上,点C 的坐标为()41-,. (1)把ABC 向上平移5个单位后得到对应的111A B C △,画出111A B C △; (2)以原点O 为对称中心,画出与111A B C △关于原点O 对称的222A B C △.27.某服装店购进一批甲、乙两种款型时尚T 恤衫,甲种款型共用了7800元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元,求甲、乙两种款型的T 恤衫各购进多少件?28.如图,在∥ABC 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若∥CMN 的周长为15cm ,求AB 的长; (2)若70MFN ∠=︒,求MCN ∠的度数.29.已知:如图,在平行四边形ABCD 中,点F 在AB 的延长线上,且BF=AB ,连接FD ,交BC 于点E . (1)说明∥DCE∥∥FBE 的理由; (2)若EC=3,求AD 的长.30.如图,在四边形ABCD 中,//AD BC ,6BC =厘米,9AD =厘米,点P ,Q 分别从点A ,C 同时出发,点P 以1厘米/秒的速度由点A 向点D 运动,点Q 以2厘米/秒的速度由点C 向点B 运动.当一点到达终点时,两点均停止运动. (1)经过几秒四边形ABQP 为平行四边形?(2)经过几秒直线PQ 将四边形ABCD 截出一个平行四边形?参考答案1.A2.A3.A4.C5.C6.B7.D8.B9.B10.D11.D12.C13.0、1、2【详解】解:9﹣3x>0,∥﹣3x>﹣9,∥x<3,∥x的非负整数解是0、1、2.故答案为0、1、2.14.-3【详解】根据题意得|x|-3=0且x-3≠0,解|x|-3=0得x=3或-3,而x-3≠0,所以x=-3.故答案为-3.15.2.【详解】解:去分母得:x+2=m+1,由分式方程有增根,得到x ﹣1=0,即x =1, 把x =1代入整式方程得:m+1=3, 解得:m =2, 故答案为:2 16.3 【详解】解:解不等式341x x +<-得:43x >, 不等式组的解集为3x >,3n ∴=.故答案为:3. 17.(1,-1) 【详解】解:将点A (-3,2)先向右平移4个单位,再向下平移3个单位, 即把A 点的横坐标加4,纵坐标减3即可,即A′的坐标为(1,-1). 故答案为:(1,-1). 18.4 【详解】 解:8AD AB ==,15ABD BDC ∴∠=∠=︒, 30BAC ABD BDC ∴∠=∠+∠=︒,在ABC ∆中,90C ∠=︒,142BC AB ∴==. 故答案为:4. 19.1x > 【详解】解:由函数图象可得:kx b mx n +>+的解集为:1x >, 故答案为:1x >. 20.36.【详解】试题分析:∥AB =AC , ∥∥C =∥ABC ,∥AB 的垂直平分线MN 交AC 于D 点. ∥∥A =∥ABD , ∥BD 平分∥ABC , ∥∥ABD =∥DBC , ∥∥C =2∥A =∥ABC , 设∥A 为x ,可得:x+x+x+2x =180°, 解得:x =36°, 故答案为36.点睛:此题考查了线段垂直平分线的性质以及等腰三角形的性质.根据垂直平分线的性质和等腰三角形的性质得出角相等,然后在一个三角形中利用内角和定理列方程即可得出答案. 21.2(x ﹣3)2. 【详解】原式=2(x 2﹣6x+9) =2(x ﹣3)2. 22.﹣1≤x <4. 【详解】解不等式3x ﹣2<2x+2,得:x <4, 解不等式6﹣x≥1﹣3(x ﹣1),得:x≥﹣1, 则不等式组的解集为﹣1≤x <4. 23.2x = 【详解】 解:2316111x x x +=+-- 两边同时乘以(x+1)(x -1)得: 3(x -1)+(x+1)=6,3x -3+x+1=6, 4x=8, x=2,检验:当x=2时,(x+1)(x -1)≠0, ∥x=2是原方程的根. 24.21a a --,2 【详解】试题分析:首先将括号里面的进行通分,然后将除法改成乘法进行分式的化简,选择a 的值时,不能使原分式没有意义,即a 不能取2和-2. 试题解析:原式=232a a +-+·2(2)(2)(1)a a a +--=21a a --当a=0时,原式=21a a --=2. 考点:分式的化简求值. 25.(1) 平行四边形;(2)见解析. 【详解】试题分析:(1)根据四边形的形状,及三角形中位线的性质可判断出四边形EFGH 是平行四边形;(2)连接AC 、利用三角形的中位线定理可得出HG=EF 、EF∥GH ,继而可判断出四边形EFGH 的形状; 试题解析:(1)平行四边形. (2)证明:连接AC ,∥E 是AB 的中点,F 是BC 的中点, ∥EF∥AC ,EF=12AC . 同理HG∥AC ,HG=12AC . ∥EF∥HG ,EF=HG .∥四边形EFGH 是平行四边形. 26.(1)见解析;(2)见解析 【详解】即111A B C △、222A B C △是所求作的三角形.27.甲种购进60件,乙种购进40件. 【详解】解:设乙种购进x 件,则甲种购进1.5x 件, 根据题意,得:78001.5x +30=6400x, 解得:x =40,经检验x =40是原分式方程的解, 1.5x =60,答:甲种购进60件,乙种购进40件.28.(1)AB 的长为15cm ;(2)MCN ∠的度数为40︒. 【详解】解:(1)∥DM ,EN 分别垂直平分AC 和BC ∥AM CM =,CN NB = ∥∥CMN 的周长为15cm ∥15CM CN MN cm ++= ∥15AM BN MN cm ++= ∥15AB cm = AB 的长为15cm(2)由(1)得AM CM==,CN NB∥A ACM∠=∠∠=∠,B BCN在MNF中,70∠=︒MFN∥110∠+∠=︒FMN FNM根据对顶角的性质可得:FMN AMD∠=∠,FNM BNE∠=∠在Rt ADM∠=︒-∠=︒-∠A AMD FMN△中,9090在Rt BNE中,9090∠=︒-∠=︒-∠B BNE FNM∥909070A B FMN FNM∠+∠=︒-∠+︒-∠=︒∥70∠+∠=︒MCA NCB在ABC中,70∠+∠=︒A B∥110∠=︒ACB∥()40∠=∠-∠+∠=︒MCN ACB MCA NCB29.(1)证明见解析(2)6【解析】(1)由四边形ABCD是平行四边形,根据平行四边形的对边平行且相等,即可得AB=DC,AB∥DC,继而可求得∥CDE=∥F,又由BF=AB,即可利用AAS,判定∥DCE∥∥FBE.(2)由(1),可得BE=EC,即可求得BC的长,又由平行四边形的对边相等,即可求得AD的长.(1)证明:∥四边形ABCD是平行四边形,∥AB=DC,AB∥DC.∥∥CDE=∥F.又∥BF=AB,∥DC=FB.在∥DCE和∥FBE中,∥∥CDE=∥F,∥CED=∥BEF,DC=FB,∥∥DCE∥∥FBE(AAS).(2)解:∥∥DCE∥∥FBE,∥EB=EC.∥EC=3,∥BC=2EB=6.∥四边形ABCD是平行四边形,∥AD=BC.∥AD=6.30.(1)2秒;(2)2秒或3秒【解析】(1)设t秒后四边形ABQP是平行四边形;根据题意得:AP=t厘米,CQ=2t厘米,由AP=BQ得出方程,解方程即可;(2)由(1)知,2秒时四边形ABQP是平行四边形,第二种情况:四边形DCQP 是平行四边形,根据题意得:AP=x厘米,CQ=2x厘米,则PD=(9-x)厘米,进而可得方程2x=9-x,再解即可.【详解】解:(1)设经过t秒四边形ABQP是平行四边形,根据题意,得AP=t厘米,CQ=2t厘米,则BQ=(6-2t)厘米,∥AD∥BC,∥当AP=BQ时,四边形ABQP是平行四边形,∥t=6-2t,解得t=2,即经过2秒四边形ABQP为平行四边形;(2)由(1)知,经过2秒四边形ABQP是平行四边形,设经过x秒直线PQ将四边形ABCD截出另一个平行四边形DCQP,根据题意,得AP=x厘米,CQ=2x厘米,则PD=(9-x)厘米,∥AD∥BC,∥当CQ=PD时,四边形DCQP是平行四边形,∥2x=9-x,解得x=3.综上,经过2秒或3秒直线PQ将四边形ABCD截出一个平行四边形.。
北师大版八年级下册数学期末考试试题附答案
北师大版八年级下册数学期末考试试卷一、单选题1.下列图形既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.已知a b <,则下列不等式中不正确的是()A .44a b<B .44a b ++<C .4a 4b--<D .44a b --<3.当3x =-,下列分式中有意义的是()A .33x x --B .33x x -+C .()()()()3232x x x x ++--D .()()()()3232x x x x -++-4.不等式12x -≥的解集在数轴上表示正确的是()A .B .C .D .5.下列等式从左到右的变形正确的是()A .11b b a a +=+B .2b ab a a=C .22b b a a=D .32b b a a=6.下列多项式中,不能用平方差公式分解的是()A .22x y -B .22x y --C .224x y -D .24x -+7.如图,在菱形ABCD 中,不一定成立的是()A .四边形ABCD 是平行四边形B .AC BD ⊥C .ABD 是等边三角形D .CAB CAD∠=∠8.炎炎夏日,甲安装队为A 小区安装60台空调,乙安装队为B 小区安装50台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x 台,根据题意,下面所列方程中正确的是A .6050x x 2=-B .6050x 2x=-C .6050x x 2=+D .6050x 2x=+9.若方程()()211120m m x m x +----=是关于x 的一元二次方程,则m 的值为()A .0B .±1C .1D .-110.若分式211x x -+的值为0,则x 的值为()A .0B .1C .﹣1D .±1二、填空题11.分解因式:2x y y -=_________.12.如图,函数y=2x 和y=ax+4的图象相交于点A(32,3),则不等式2x >ax+4的解集为___.13.已知关于x 的方程21+-x ax -1=0的解是正数,则a 的取值范围是________.14.如图,在△ABC 中,AB=AC=10cm ,DE 是AB 的中垂线,△BDC 的周长为16cm ,则BC 的长为______cm .15.已知关于x 的分式方程2233x kx x -=+--无解,则k 的值是__________.16.一个n 边形的各内角都等于120︒,则边数n 是_______.17.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF =45°,△ECF 的周长为4,则正方形ABCD 的边长为_____.三、解答题18.在边长为1个单位长度的小正方形组成的网格中,点A 、B 、C 、O 都是格点.将ABC绕点O 按逆时针方向旋转180︒得到111A B C △,请画出111A B C △.19.(1)解方程:21233x x x-=+--(2)解不等式组64325213x x x x +≥-⎧⎪+⎨--⎪⎩>20.(1)用配方法解方程:2230x x --=(2)用因式分解法解方程:()()224219210x x +--=21.化简226921432a a a a a a a -++-----22.如图,过正方形ABCD 的顶点D 作DE ∥AC 交BC 的延长线于点E.(1)判断四边形ACED 的形状,并说明理由;(2)若BD=8cm ,求线段BE 的长.23.某物流公司要将300吨物资运往港口码头,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装完.如果已确定调用5辆A 型车,那么至少还需调用B 型车多少辆?24.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路钱一少用10分钟到达.求小明走路线一时的平均速度.25.如图,已知菱形ABCD ,AB=AC ,E 、F 分别是BC 、AD 的中点,连接AE 、CF .(1)求证:四边形AECF 是矩形;(2)若AB=6,求菱形的面积.26.如图,在ABC 中,点O 是AC 边上的一个动点,过点O 作直线//BC MN ,设MN 交BCA ∠的角平分线于点E ,交BCA ∠的外角ACG ∠的平分线于点F ,连接AF .(1)求证:EO FO =;(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.(3)在(2)的条件下,ABC 满足什么条件时,四边形AECF 是正方形?并说明理由.参考答案1.D 【详解】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,A 、不是轴对称图形,是中心对称图形,故本选项错误;B 、是轴对称图形,但不是中心对称图形,故本选项错误;C 、是轴对称图形,但不是中心对称图形,故本选项错误;D 、既是轴对称图形,又是中心对称图形,故本选项正确.故选D .2.C【分析】根据不等式的性质逐个判断即可.【详解】解:A、∵a<b,∴4a<4b,故本选项不符合题意;B、∵a<b,∴a+4<b+4,故本选项不符合题意;C、∵a<b,∴-4a>-4b,故本选项符合题意;D、∵a<b,∴a-4<b-4,故本选项不符合题意;故选:C.【点睛】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.3.C【解析】【分析】根据分式有意义的条件是分母不为0对各个选项进行判断即可.【详解】解:A、当x=-3时,x-3=0,故A不符合;B、当x=-3时,x+3=0,故B不符合;C、当x=-3时,(x-3)(x-2)≠0,故C符合;D、当x=-3时,(x+3)(x-2)=0,故D不符合;故选:C.【点睛】本题主要考查了分式有意义的条件,掌握分式有意义的条件是分母不等于0是解题的关键.4.A【解析】先求出已知不等式的解集,然后表示在数轴上即可.【详解】不等式1-x≥2,解得:x≤-1,表示在数轴上,如图所示:故选:A .【点睛】此题考查解一元一次不等式,在数轴上表示不等式的解集,解题关键在于把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画).在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆圈表示.5.B 【解析】【分析】根据分式的基本性质,无论是把分式的分子和分母扩大还是缩小相同的倍数,都不要漏乘(除)分子、分母中的任何一项,且扩大(缩小)的倍数不能为0,并且分式的值不变,由此即可判定选择项.【详解】解:A 、根据分式基本性质知道11b b a a ++≠,故选项错误;B 、2b ab a a =,其中a≠0,故选项正确;C 、等式的右边是左边的平方,显然不成立,故选项错误;D 、根据分式的基本性质可得:32b b a ab=(b≠0),故选项错误;故选B .【点睛】此题主要考查了分式的基本性质,关键是熟练掌握分式的基本性质.6.B 【解析】根据平方差公式的结构特点,两平方项的符号相反,对各选项分析判断后利用排除法求解.【详解】解:A 、x 2-y 2符合平方差公式,故本选项错误;B 、-x 2与-y 2符号相同,不能运用平方差公式,故本选项正确;C 、4x 2-y 2符合平方差公式,故本选项错误;D 、-4+x 2,符合平方差公式,故本选项错误.故选:B .【点睛】本题主要考查了运用公式法分解因式,熟记平方差公式的结构特点是解本题的关键.7.C 【解析】【分析】菱形是特殊的平行四边形,故A 正确,根据菱形的性质:对角线互相平分且平分对角得B 、D 正确.【详解】因为菱形是特殊的平行四边形,对角线互相垂直平分,且每一条对角线平分一组对角.故选:C.【点睛】考查菱形的性质,熟练掌握菱形的性质定理是解题的关键.8.D 【解析】【详解】试题分析:由乙队每天安装x 台,则甲队每天安装x+2台,则根据关键描述语:“两队同时开工且恰好同时完工”,找出等量关系为:甲队所用时间=乙队所用时间,据此列出分式方程:6050x 2x=+.故选D .9.D 【解析】【分析】根据一元二次方程的定义解答,(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.所以m 2+1=2,且m-1≠0,解得m 的值只能是-1.【详解】解:∵()()211120m m x m x +----=是关于x 的一元二次方程,∴21012m m -≠⎧⎨+=⎩,解得:m=-1,故选D .【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.10.B 【解析】【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得.【详解】∵分式211x x -+的值为零,∴21010x x ⎧-=⎨+≠⎩,解得:x=1,故选B .【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.11.y (x+1)(x ﹣1).【解析】【详解】试题分析:x 2y ﹣y=y (x 2﹣1)=y (x+1)(x ﹣1),故答案为y (x+1)(x ﹣1).考点:提公因式法与公式法的综合运用;因式分解.12.x>3 2【解析】【分析】由于函数y=2x和y=ax+4的图象相交于点A(332,),观察函数图象得到当x>32时,函数y=2x的图象都在y=ax+4的图象上方,所以不等式2x>ax+4的解集为x>3 2.【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(332,),∴当x>32时,2x>ax+4,即不等式2x>ax+4的解集为x>3 2.故答案为:x>3 2.【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x轴上(或下)方部分所有的点的横坐标所构成的集合.13.a<-1且a≠-2【解析】【分析】先求得方程的解,再解x>0,求出a的取值范围.【详解】解21+-x ax-1=0得:x=-a-1,∵于x的方程21+-x ax-1=0的解是正数,∴x〉0,即-a-1>0,∴a<-1,当x-1=0时,x=1,代入得:a=-2.此为增根,∴a≠-2,综合上述可得:a<-1且a≠-2.故答案是:a<-1且a≠-2.【点睛】考查了分式方程的解,先求出分式方程的解,再求出a的取值范围.14.6【解析】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后推出△BDC的周长=AC+BC,代入数据进行计算即可得解.【详解】∵DE是AB的中垂线,∴AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC,∵△BDC的周长为16cm,AC=10cm,∴10+BC=16,解得BC=6.故答案为6.【点睛】此题考查等腰三角形的性质,线段垂直平分线上的点到线段两端点的距离相等的性质,是基础题,熟记性质是解题的关键.15.1【解析】【分析】分式方程去分母转化为整式方程,由分式方程无解得到x-3=0求出x的值,代入整式方程求出k的值即可.【详解】解:分式方程去分母得:x-2=k+2(x-3),即x=4-k,由分式方程无解得到x-3=0,即x=3,代入整式方程得:3=4-k,解得:k=1,故答案为:1.【点睛】此题考查了分式方程的解,需注意在解分式方程时要考虑分母不为0.16.6【解析】【分析】首先求出外角度数,再用360°除以外角度数可得答案.【详解】解:∵n边形的各内角都等于120°,∴每一个外角都等于180°-120°=60°,∴边数n=360°÷60°=6.故答案为:6.【点睛】此题主要考查了多边形的外角和定理,外角与相邻的内角的关系,关键是掌握各知识点的计算公式.17.2【解析】【分析】根据旋转的性质得出∠EAF′=45°,进而得出△FAE≌△EAF′,即可得出EF+EC+FC=FC+CE+EF′=FC+BC+BF′=4,得出正方形边长即可.【详解】解:将△DAF绕点A顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF=BF′,∠DAF=∠BAF′,∴∠EAF′=45°,在△FAE 和△EAF′中''AF AF FAE EAF AE AE =⎧⎪∠=∠⎨⎪=⎩,∴△FAE ≌△EAF′(SAS ),∴EF=EF′,∵△ECF 的周长为4,∴EF+EC+FC=FC+CE+EF′=FC+BC+BF′=DF+FC+BC=4,∴2BC=4,∴BC=2.故答案为:2.【点睛】此题主要考查了旋转的性质以及全等三角形的判定与性质等知识,得出△FAE ≌△EAF′是解题关键.18.见解析【解析】【分析】连接AO 并延长,然后截取OA 1=OA ,则A 1就是A 的对应点,同样可以作出B 、C 的对应点,然后顺次连接即可.【详解】解:所作图形111A B C △如图所示.【点睛】本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.19.(1)x=5;(2)45<x≤3【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【详解】解:(1)21233x x x-=+--去分母得:()2231x x -=--,去括号得:2261x x -=--,移项合并得:x=5,经检验:x=5是原方程的解,∴原方程得解是x=5;(2)64325213x x x x +≥-⎧⎪⎨+--⎪⎩①>②,解不等式①得:x≤3,解不等式②得:x >45,∴不等式组的解集为:45<x≤3.【点睛】本题考查了解分式方程和解一元一次不等式组,解题的关键是掌握相应的解法.20.(1)x 1=-1,x 2=3;(2)x 1=110,x 2=52【解析】【分析】(1)方程两边加上4,再把方程左边分解得到()214x -=,然后利用直接开平方法求解;(2)利用平方差公式进行因式分解,然后求解即可.【详解】解:(1)2230x x --=,∴2214x x -+=,∴()214x -=,∴x-1=±2,解得:x 1=-1,x 2=3;(2)()()224219210x x +--=,()()2242630x x +--=,()()426342630x x x x ++-+-+=,()()101250x x --+=,10x-1=0或-2x+5=0,解得:x 1=110,x 2=52.【点睛】本题考查了解一元二次方程—因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.也考查了配方法解一元二次方程.21.22a --【解析】【分析】先将各分子和分母因式分解,再约分,最后计算减法.【详解】解:226921432a a a a a a a -++-⋅----=()()()23212232a a a a a a a -+-⋅-+---=3122a a a a -----=22a --【点睛】本题考查了分式的混合运算,解题的关键掌握运算法则以及因式分解的运用.22.(1)四边形ACED 是平行四边形.理由如下见解析(2).【解析】【分析】(1)根据正方形的对边互相平行可得AD ∥BC ,即为AD ∥CE ,然后根据两组对边互相平行的四边形是平行四边形解答.(2)根据正方形的四条边都相等,平行四边形的对边相等可得BC=AD=CE ,再根据正方形的边长等于对角线的2倍求出BC ,然后求出BE 即可.【详解】解:(1)四边形ACED 是平行四边形.理由如下:∵四边形ABCD 是正方形,∴AD ∥BC ,即AD ∥CE.∵DE ∥AC ,∴四边形ACED 是平行四边形.(2)由(1)知,BC=AD=CE=CD ,∵BD=8cm ,∴BC=2BD=2cm ,∴.23.14.【解析】【详解】试题分析:设还需要调用B 型车x 辆,根据关系式为:5辆A 型车的装载量+x 辆B 型车的装载量≥300列不等式进行求解即可得.试题解析:设还需要调用B 型车x 辆,根据题意得:20×5+15x≥300,解得x≥1313,由于x 是车的数量,应为整数,所以x 的最小值为14,答:至少需要调用14辆B 型车.【点睛】本题考查了一元一次不等式的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式.24.50千米/小时【解析】【分析】设小明走路线一的平均速度是x 千米/小时,则小明走路线二的平均速度是x (1+80%)千米/小时,根据走路线二比走路线一少用10分钟建立方程求出其解即可.【详解】解:设小明走路线一的平均速度是x 千米/小时,则走路线二的平均速度是x (1+80%)千米/小时,由题意,得()253010180%60x x =++,解得:x=50,经检验,x=50是原方程的解.故小明走路线一的平均速度是50千米/小时.答:小明走路线一的平均速度是50千米/小时.【点睛】本题考查了列分式方程解关于行程问题的运用题运用及分式方程的解法的运用,解答时根据条件找到等量关系建立方程是关键,解分式方程要验根是不可少的步骤.25.(1)证明见解析;(2)【解析】【详解】试题分析:(1)首先证明△ABC 是等边三角形,进而得出∠AEC=90°,四边形AECF 是平行四边形,即可得出答案;(2)利用勾股定理得出AE 的长,进而求出菱形的面积.试题解析:(1)∵四边形ABCD 是菱形,∴AB=BC ,又∵AB=AC ,∴△ABC 是等边三角形,∵E 是BC 的中点,∴AE ⊥BC ,∴∠AEC=90°,∵E 、F 分别是BC 、AD 的中点,∴AF=12AD ,EC=12BC ,∵四边形ABCD 是菱形,∴AD ∥BC 且AD=BC ,∴AF ∥EC 且AF=EC ,∴四边形AECF 是平行四边形,又∵∠AEC=90°,∴四边形AECF 是矩形;(2)在Rt △ABE 中,AE==,所以,S 菱形ABCD 考点:1.菱形的性质;2..矩形的判定.26.(1)见解析;(2)当点O 运动到AC 的中点时,四边形AECF 是矩形,理由见解析;(3)ABC 满足ACB ∠为直角时,四边形AECF 是正方形,理由见解析.【解析】【分析】(1)由平行线的性质和角平分线的定义得出32∠=∠,13∠=∠,得出EO=CO ,FO=CO ,即可得出结论;(2)先证明四边形AECF 是平行四边形,再由对角线相等,即可得出结论;(3)由//BC MN ,得出AOE ACB ∠=∠,当90ACB ∠=︒时,AC EF ⊥即可.【详解】(1)证明:如图,∵//BC MN ,∴32∠=∠.又∵CF 平分ACG ∠,∴12∠=∠,∴13∠=∠,∴FO CO =,同理,EO CO =,∴EO FO =.(2)解:当点O 运动到AC 的中点时,四边形AECF 是矩形,证明如下:当点O 运动到AC 的中点时,AO CO =.又∵EO FO =,∴四边形AECF 是平行四边形,由(1)可知,FO CO =,∴AO CO EO FO ===,∴AO CO EO FO +=+,即AC EF =,∴四边形AECF 是矩形.(3)当点O 运动到AC 的中点时,且△ABC 满足∠ACB 为直角的直角三角形时,四边形AECF 是正方形.在(2)的条件下,ABC 满足ACB ∠为直角时,四边形AECF 是正方形.理由:由(2)知,当点O 运动到AC 的中点时,四边形AECF 是矩形.∵//BC MN ,∴AOE ACB ∠=∠,当90ACB ∠=︒时,90AOE ∠=︒,即AC EF ⊥,∴四边形AECF 是正方形.【点睛】本题考查了平行线的性质、等腰三角形的判定、矩形的判定、正方形的性质;熟练掌握平行线的性质和矩形、正方形的判定方法,并能进行推理论证是解决问题的关键.。
北师大版八年级下册数学期末考试试卷及答案
北师大版八年级下册数学期末考试试题一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 2.a 、b 都是实数,且a< b ,则下列不等式正确的是( )A .a+x > b+xB .1-a< 1-bC .5a < 5bD .2a >2b 3.在平面直角坐标系内,将点M (3,1)先向上平移2个单位长度,再向右平移3个单位长度,则移动后的点的坐标是( )A .(6,3)B .(6,﹣1)C .(0,3)D .(0,﹣1) 4有意义的x 的取值范围是( ) A .3x > B .3x < C .3x ≥ D .3x ≤5.若()234a m a +-+能用完全平方公式进行因式分解,则常数m 的值是( )A .1或5B .1C .-1D .7或1- 6.如图,l∥m ,等边三角形ABC 的顶点B 在直线m 上,∥1=20°,则∥2的度数为()A .60°B .45°C .40°D .30° 7.函数y kx b =+的图象如图所示,则关于x 的不等式0kx b +≥的解集是( )A .2x ≤B .2x ≥C .0x ≤D .0x ≥8.化简22a b a b a b---的结果为( ) A .-a b B .a b + C .a b a b+- D .a b a b -+ 9.如图,点P 在∥AOB 的平分线上, PC∥OA 于点C, ∥AOB=30°,点D 在边OB 上,且OD=DP=2.则线段PC 的长度为( )A .3B .2C .1D .1210.如图,边长为a ,b 的长方形,它的周长为14,面积为10,则22a b ab ab +-的值为( )A .70B .60C .130D .14011.若正多边形的一个外角是72,则该正多边形的内角和为( )A .360B .540C .720D .900 12.如图,E 是∥ABCD 的边DC 的延长线上一点,连接AE ,且AE DE =,若46E ∠=︒,则B 的度数为( )A .65︒B .66︒C .67︒D .68︒二、填空题13.如图,在∥ABC 中,EF 是∥ABC 的中位线,且EF=5,则AC 等于________.14.把多项式 x 2 + ax + b 分解因式得(x+1)(x ﹣3),则 a -b 的值是_____.15.在ABCD 中,:3:5AB BC =,它的周长是32,则BC =______.16.关于x 的分式方程21122m x x x +-=--有增根,则m =______. 三、解答题 17.解不等式组:102332x x x ->⎧⎨-<-⎩18.先化简,再求值:22131369x x x x x -⎛⎫-÷ ⎪--+⎝⎭,其中x 19.因式分解:(1)2222416a x a y -;(2)()2(21)6219x x ---+.20.如图,ABC 和BDE 是等边三角形,连接AD 、CE .求证:ABD △∥CBE △.21.如图,已知平行四边形ABCD 的对角线AC 和BD 交于点O ,且28AC BD +=,12BC =,求AOD ∆的周长.22.如图,在ABC 中,4AB =,7BC =,60B ∠=︒,将ABC 绕点A 顺时针旋转一定角度得到ADE ,当点B 的对应点D 恰好落在BC 边上时,求CD 的长.23.如图,等腰ABC 中,AB AC =,120BAC ∠=︒,AD AB ⊥交BC 于点D ,2AD =,求BC的长.24.∥ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)画出∥ABC关于原点O的中心对称图形∥A1B1C1;(2)写出中心对称图形∥A1B1C1的顶点坐标.25.已知:如图A、C是∥DEBF的对角线EF所在直线上的两点,且AE=CF.求证:四边形ABCD是平行四边形.26.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?27.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球? 28.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.参考答案1.C【详解】解:A 、不是轴对称图形,是中心对称图形,故本选项不符合题意;B 、是轴对称图形,不是中心对称图形,故本选项不符合题意;C 、既是轴对称图形,又是中心对称图形,故本选项符合题意;D 、不是轴对称图形,是中心对称图形(不考虑颜色),故本选项不符合题意;故选:C .2.C【详解】解:A .∥a <b ,∥a+x <b+x ,计算错误;B .∥a <b ,∥-a >-b ,∥1-a >1-b ,计算错误;C .∥a <b ,∥5a <5b ,计算正确;D .∥a <b ,∥22a b <,计算错误. 故答案为:C .【点睛】本题主要考查不等式的基本性质,熟练掌握不等式得基本性质是解题的关键.3.A【解析】【分析】横坐标右移加,左移减;纵坐标上移加,下移减;依此即可求解.【详解】解:3+3=6,1+2=3.故点M 平移后的坐标为(6,3).故选:A .【点睛】本题主要考查坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.4.A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件,由被开方数大于等于0,分母不等于0即可求解.【详解】解:根据二次根式的性质,被开方数x -3≥0,解得x≥3,0≠,即x -3≠0,解得x≠3x 的取值范围是3x >. 故选A .【点睛】本题主要考查了二次根式有意义的条件和分式有意义的条件.二次根式中被开方数必须是非负数,否则二次根式无意义,当二次根式在分母上时,还要考虑分母不等于零.5.D【解析】【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:∥a2+(m-3)a+4能用完全平方公式进行因式分解,∥m-3=±4,解得:m=-1或7.故选:D.【点睛】本题考查了公式法分解因式,熟练掌握完全平方公式的结构特点是解题的关键.6.C【详解】解:过C作CM∥直线l,∥∥ABC是等边三角形,∥∥ACB=60°,过C作CM∥直线l,∥直线l∥直线m,∥直线l∥直线m∥CM,∥∥ACB=60°,∥1=20°,∥∥1=∥MCB=20°,∥∥2=∥ACM=∥ACB-∥MCB=60°-20°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.7.A【详解】解:由图可知,当x≤2时,kx+b≥0.故选:A .8.B【详解】 解:22a b a b a b--- 22a b a b-=- ()()a b a b a b+-=- a b =+,故选:B .9.C【详解】解:如图,过点P 作PE∥OB 于E ,∥∥AOB=30°,点P 在∥AOB 的平分线上,∥∥AOP=∥POB=15°,∥OD=DP=2,∥∥OPD=∥POB=15°,∥∥PDE=30°, ∥PE=12PD=1,∥OP 平分∥AOB ,PC∥OA ,PE∥OB ,∥PC=PE=1,故选:C .【点睛】此题考查的是角平分线的性质和直角三角形30°所对的边等于斜边的一半的应用、等腰三角形的性质,掌握角平分线上的点到角的两边距离相等和直角三角形30°所对的边是斜边的一半是解题关键.10.B【解析】【分析】先根据长方形的周长和面积得出a+b 和ab 的值,再将22a b ab ab +-的前两项提出ab ,然后代入求出即可.【详解】解:∥边长为a ,b 的长方形,它的周长为14,面积为10,∥a+b=7,ab=10,∥()22=+a b ab ab ab a b ab +--=10710⨯-=60故选:B【点睛】本题既考查了对因式分解方法的掌握,又考查了代数式求值的方法,同时还隐含了数学整体思想和正确运算的能力.11.B【解析】【分析】先根据正多边形的外角和为360°求出边数,然后再运用多边形的内角和公式解答即可.【详解】解:多边形的边数为360°÷72°=5则多边形的内角和为:(5-2)×180°=540°.故答案为B .【点睛】本题考查了正多边形的每一个外角都相等、多边形的外角和为360°以及多边形的内角和公式,求得正多边形的边数和掌握多边形内角和公式是解答本题的关键.12.C【解析】【分析】根据平行四边形的性质得到∥B=∥D ,再由等腰三角形的性质与三角形的内角和定理求出∥D 即可得到答案.【详解】解:∥四边形ABCD 是平行四边形,∥∥B=∥D ,∥AE=DE ,∥∥D=∥DAE ,∥∥E=46°,∥E+∥D+∥DAE=180°, ∥()1=180=672D E ∠-∠ ∥∥B=67°.故选C .【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质,三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.13.10【解析】【分析】根据三角形中位线定理即可求出AC .【详解】解:在∥ABC 中,∥EF 是∥ABC 的中位线, ∥EF=12AC , ∥AC=2EF ,∥EF=5,∥AC=2×5=10,故答案为:10.【点睛】本题主要考查了三角形中位线定理,熟记三角形的中位线等于第三边的一半是解决问题的关键.14.1【解析】【分析】把因式分解后的式子展开即可得出答案.【详解】∥()()21323x x x x +-=--又()()213x x x ax b +-=++∥23a b ,=-=-∥1a b -=故答案为1.【点睛】本题考查的是因式分解,属于基础题型,解题关键是因式分解后的式子展开后与原式对应项系数相等.15.10【解析】【分析】设3,5AB x BC x ==,然后根据周长等于32列方程.【详解】解:设3,5AB x BC x ==由题意得,()23532x x += 解得2x =所以BC=10.故答案为10.【点睛】本题主要考查了运用方程解决实际问题,利用平行四边形的周长,求边长.16.5【解析】【分析】根据已知有增根,即使分式方程分母为0的根,即满足x -2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m ,最后将x 的值代入即可求得m 的值.【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=-- 通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.17.1x >【解析】【分析】分别把两个不等式的解集求出来,再借助数轴求出两个解集的公共部分,即得不等式组的解集.【详解】解不等式(1)得:1x >解不等式(2)得:1x >-两个解集在数轴上表示如下:∥不等式组的解集为:1x >【点睛】本题考查了解不等式组及利用数轴求不等式组的解集.18.4xx -,1【解析】【分析】先根据分式的混合运算法则进行化简,再把x【详解】 解:原式()213(3)33x x x x x -+-=⋅--4xx -=当x 1==.【点睛】本题考查了分式的化简求值以及分母有理化,熟练掌握运算法则是解题的关键19.(1)()()2422a x y x y -+;(2)()242x -【解析】【分析】(1)先提取公因式,再用 平方差公式分解即可;(2)先用完全平方公式分解,再提取公因式即可.【详解】解:(1)2222416a x a y -=()22246a x y -=()()2422a x y x y -+;(2)()2(21)6219x x ---+=2(213)x --=()242x -.【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解,注意:因式分解要彻底.20.见解析.【解析】【分析】由等边三角形性质得到AB=BC ,BD=BE ,∥ABC=∥DBE=60°,从而有∥ABD=∥CBE ,即可得到结论【详解】证明:∥ABC 和BDE 是等边三角形∥60ABC DBE ∠=∠=︒∥ABC DBC DBE DBC ∠-∠=∠-∠∥ABD CBE ∠=∠又∥AB BC =,BD BE =, ∴在ABD △和CBE △中AB BC ABD CBE BD BE =⎧⎪∠=∠⎨⎪=⎩∥ABD △∥CBE △()SAS【点睛】本题考查了全等三角形的判定,以及等边三角形的性质,熟练掌握全等三角形的判定定理是解题关键.21.26【分析】根据平行四边形对角线互相平分的性质,由28AC BD +=,得到14AO OD +=,再根据平行四边形对边相等得到12AD BC ==,最后算出AOD ∆的周长.【详解】解:∥四边形ABCD 是平行四边形,∥AO CO =,BO DO =,∥28AC BD +=,∥14AO OD +=,∥12AD BC ==,∥AOD ∆的周长141226AO OD AD =++=+=.【点睛】本题考查平行四边形的性质,解题的关键是熟练掌握平行四边形的性质.22.3【解析】【分析】由旋转的性质可证得ABD △是等边三角形,则可求得BD 的长,再利用线段的和差即可求得答案.【详解】解:∥将ABC 绕点A 顺时针旋转一定角度得到ADE ,∥4AD AB ==.∥60B ∠=︒,∥ABD △是等边三角形,∥4BD AD AB ===,∥743CD BC AD =-=-=.【点睛】本题考查了旋转的性质、等边三角形的判定和性质、线段的和差等,证得ABD △是等边三角形是解题的关键.23.6BC =【解析】由题意易得∥B=∥C=30°,进而可得∥CAD=∥C=30°,则有2CD AD ==,由含30°的直角三角形的性质可得BD=4,进而问题可求解.【详解】解:∥AB AC =,120BAC ∠=︒, ∥()1180302B C BAC ∠=∠=︒-∠=︒, ∥AD AB ⊥,∥90BAD ∠=︒,∥1209030CAD BAC BAD C ∠=∠-∠=︒-︒=︒=∠,∥2CD AD ==,在Rt BAD 中,30B ∠=︒,∥24BD AD ==,∥426BC BD CD =+=+=.【点睛】本题主要考查等腰三角形的性质与判定及含30°的直角三角形的性质,熟练掌握等腰三角形的性质与判定及含30°的直角三角形的性质是解题的关键.24.(1)画图见解析;(2)A 1(1,-2),B 1(3,-3),C 1(4,0)【解析】【分析】(1)依据中心对称的性质,即可得到∥ABC 关于原点O 的中心对称图形∥A 1B 1C 1; (2)根据图象可得各点坐标.【详解】解:(1)如图所示:(2)由图可知:A 1(1,-2),B 1(3,-3),C 1(4,0).【点睛】本题主要考查了作图—中心对称,掌握中心对称的性质是解决问题的关键.25.证明见解析【解析】【分析】根据平行四边形和平行线的性质,推导得DEA BFC ∠=∠,DFC BEA ∠=∠;根据全等三角形的判定和性质,证明DEA BFC △≌△、DFC BEA △≌△,得AD BC =、CD AB =,即可完成证明.【详解】证明:∥平行四边形DEBF ,∥//DE BF ,//DF BE ,∥DEF BFE ∠=∠,DFE BEF ∠=∠,∥180DEF DEA ∠+∠=︒,180BFE BFC ∠+∠=︒,180DFE DFC ∠+∠=︒,180BEF BEA ∠+∠=︒,∥DEA BFC ∠=∠,DFC BEA ∠=∠,∥平行四边形DEBF ,∥DE BF =,DF BE =,在DEA △和BFC △中,DE BF DEA BFC AE CF =⎧⎪∠=∠⎨⎪=⎩∥DEA BFC △≌△,∥AD BC =,在DFC △和BEA △中,DF BE DFC BEA AE CF =⎧⎪∠=∠⎨⎪=⎩∥DFC BEA △≌△,∥CD AB =,∥四边形ABCD 是平行四边形.【点睛】本题考查了平行四边形、平行线、全等三角形的知识;解题的关键是熟练掌握平行四边形、全等三角形的判定和性质,从而完成求解.26.甲每秒加工口罩15个,乙每秒加工口罩20个.【解析】【分析】设甲每秒加工口罩x 个,则乙每秒加工口罩35-x 个.再根据题意可列出关于x 的分式方程,求解即可.【详解】设甲每秒加工口罩x 个,则乙每秒加工口罩35-x 个. 根据题意可列方程9012035x x=-. 解得:15x =,经检验15x =是原方程的解.故甲每秒加工口罩15个,乙每秒加工口罩35-15=20个.【点睛】本题考查分式方程的实际应用.根据题意列出等量关系式是解答本题的关键.27.(1)篮球、足球各买了20个,40个;(2)最多可购买篮球32个.【解析】【分析】(1)设篮球、足球各买了x ,y 个,根据等量关系:篮球、足球共60个,篮球、足球共用4600元,列出方程组,解方程组即可得;(2)设购买了a 个篮球,根据购买篮球的总金额不超过购买足球的总金额,列出不等式进行求解即可.【详解】(1)设篮球、足球各买了x ,y 个,根据题意,得6070804600x y x y +=⎧⎨+=⎩, 解得2040x y =⎧⎨=⎩, 答:篮球、足球各买了20个,40个;(2)设购买了a 个篮球,根据题意,得()708060a a ≤-,解得32a ≤,∥最多可购买篮球32个.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系或不等关系列出方程或不等式是解题的关键.28.(1)10-t ;(2)5秒;(3)见解析【解析】【分析】(1)先证明∥APO∥∥CQO ,可得出AP=CQ=t ,则BQ 即可用t 表示;(2)由题意知AP∥BQ ,根据AP=BQ ,列出方程即可得解;(3)过点O 作直线EF∥AP ,垂足为E ,与BC 交于F ,利用三角形面积公式求出EF ,得到OE ,利用勾股定理求出AE ,再说明AP=2AE 即可.【详解】解:(1)∥四边形ABCD是平行四边形,∥OA=OC,AD∥BC,∥∥PAO=∥QCO,∥∥AOP=∥COQ,∥∥APO∥∥CQO(ASA),∥AP=CQ=t,∥BC=10,∥BQ=10-t;(2)∥AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,即t=10-t,解得:t=5,∥当t为5秒时,四边形ABQP是平行四边形;(3)过点O作直线EF∥AP,垂足为E,与BC交于F,在Rt∥ABC中,∥AB=6,BC=10,,∥AO=CO=12AC=4,∥S∥ABC=12AB AC⋅=12BC EF⋅,∥AB•AC=BC•EF,∥6×8=10×EF,∥EF=245,∥OE=125,165,当325t=时,AP=325,∥2AE=AP,即点E是AP中点,∥点O在线段AP的垂直平分线上.【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质、勾股定理,垂直平分线的判定等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.21。
(完整版)北师大版八年级下册数学期末测试卷及含答案(查漏补缺)
北师大版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,一次函数y=kx+b(k、b为常数,且k≠0)与正比例函数y=ax(a 为常数,且a≠0)相交于点P,则不等式kx+b<ax的解集是()A.x>1B.x<1C.x>2D.x<22、如图,锐角三角形ABC中,BC>AB>AC,甲、乙两人想找一点P,使得∠BPC 与∠A互补,其作法分别如下:(甲)以A为圆心,AC长为半径画弧交AB于P点,则P即为所求;(乙)作过B点且与AB垂直的直线,作过C点且与AC垂直的直线,交于P点,则P即为所求.对于甲、乙两人的作法,下列叙述何者正确?()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误,乙正确3、下列命题:(1)如果a<0,b>0,那么;(2)同角的补角相等;(3)同位角相等;(4)如果,那么;(5)有公共顶点且相等的两个角是对顶角。
其中正确的个数是()A.1B.2C.3D.44、如图,AD是正五边形ABCDE的一条对角线,则∠BAD等于()A.72°B.108°C.36°D.62°5、若不等式组的解集是x>4,则m的取值范围是()A.m>4B.m≥4C.m≤4D.m<46、已知整数x满足是不等式组,则x的算术平方根为()A.2B.±2C.D.47、下列基本图形中经过平移、旋转或轴对称变换后不能得到右图的是()A. B. C. D.8、若将分式中的x和y都扩大到原来的2倍,那么分式的值()A.扩大到原来的4倍B.扩大到原来的2倍C.不变D.缩小到原来的.9、如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4.将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E,F,则线段B′F的长为( )A. B. C. D.10、如图所示,在矩形ABCD中,AB= ,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是()A. B. C.1 D.1.511、如图,△ABC中,AB=AC=5,BC=6,M为BC的中点,MN⊥AC于N点,则MN=()A. B. C. D.12、如图,中,AC<BC,如果用尺规作图的方法在BC上确定点P,使PA+PC=BC,那么符合要求的作图痕迹是()A. B. C.D.13、如图,△ABC的顶点都在⊙O上,∠BAO=50°,则∠C的度数为()A.30°B.40°C.45°D.50°14、如图,将边长相等的正方形、正五边形、正六边形纸板,按如图方式放在桌面上,则∠a的度数是( )A.42°B.40°C.36°D.32°15、若整数使得关于的不等式组的解集为,且关于的分式方程的解为负数,则所有符合条件的整数的和为()A.0B.-3C.-5D.-8二、填空题(共10题,共计30分)16、因式分解:________ .17、若m+n=2,计算6﹣2m﹣2n=________.18、如图,在△ABC中,∠ACB=90°,∠BAC=30°,在直线BC或AC上取一点P,使得△PAB为等腰三角形,这样的点P共有________个.19、如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为________.20、如图,在矩形中,,,那么的度数为________.21、若关于的分式方程有增根,则=________ .22、在函数y=中,自变量x的取值范围是________.23、在□ABCD中,若∠A=50°,则∠D的度数为________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017—2018学年第二学期期末测试卷(八年级数学)
(教师用卷)
班级:姓名:分数:
一、填空题(30分)
1. 已知b a <,那么3-a __<__3-b (填“>”、“<”或“=”号).
2. 分解因式:=-22364y x ___(2x-6y)(2x+6y)___.
3.
4. 5. 6. 7.8.___13__
9.10. 1.2.3.x a ⎪⎩≥A.a<2B.a=2C.a>2D.a ≤2
4.分式方程1
23-=x x 的解为(C ) A.x=1B.x=2C.x=3D.x=4
5.下列条件中,能判定四边形是平行四边形的是(B )
A.一组对角相等
B.对角线互相平分
C.一组对边相等
D.对角线互相垂直
6.要使分式)
2)(1(1
-++x x x 有意义,则x 应满足(D ) A .x ≠-1B .x ≠2 C .x ≠±1D .x ≠-1且x ≠2
7.若解分式方程
441+=+-x m x x 产生增根,则(D ) A.1B.0C.-4 D.-5
8..如右图,在□ABCD 中,EF ∥AB ,GH ∥AD ,EF 与GH 交于点O ,
9.AF=610.(A )
1.2. (1.解:x=1
检验:把x=1带入2x-3≠0,所以x=1是原分式方程的解
7. 某学校准备拿出300元,买甲、乙两种书共12本,分别奖给12名学科竞赛成绩优胜者.已知甲种书每
本28元,乙种书每本22元,且购买甲种书的数量不得少于乙种书的
2
1,有哪几种符合题意的购买方案?(8分)
解:设买甲种书x 本,则乙种图书(12-x )本,根据题意列不等式组得
解得:4≤x ≤6
所以x 可以取4、5、6,有三种方案:
第一种方案:甲买4本,乙买8本;
第二种方案:甲买5本,乙买7本;
第三种方案:甲买6本,乙买6本;
五.证明题。
(14分)
1.如图,在□ABCD中,E、F分别是DC、AB上的点,且DE=BF.
求证:(1)CE=AF;
(2)四边形AFCE是平行四边形.
证明:(1) 四边形ABCD是□
∴AB=DC
DE=BF
∴
1.。