浙江省温州市2019年中考数学真题试题
温州市2019年中考数学试题及答案
温州市2019年中考数学试题及答案(试卷满分150分,考试时间120分钟)一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15 B.15 C.﹣2 D.22.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×10163.(4分)某露天舞台如图所示,它的俯视图是()A.B.C.D.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()A .y=B.y=C.y=D.y=7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB.2πC.3πD.6π8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A.米B.米C.米D.米9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣210.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=.12.(5分)不等式组的解为.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于度.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为cm.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为分米.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB 交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA 上,且MP=NQ.21.(10分)如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(14分)如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.参考答案一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.A 2.B 3.B 4.A 5.D 6.A 7.C 8.B 9.D 10.C二、填空题(本题有6小题,每小题5分,共30分)11.(m+2)2.12.1<x≤9.13. 90.14. 57°15. 12+8.16. 5+5,4.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.解:(1)原式=6﹣3+1+3=7;(2)原式===.18.(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.19.解:(1)=×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为=12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.20.解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.21.解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6﹣n,m),B2(﹣n,m),函数图象的对称轴为直线,∵点B1,B2在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.22.(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.23.解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.24.解:(1)令y=0,则﹣x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC==4;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=OB=4,OE=BC=2∵∠CDN=∠NEM,∠CND=∠MNE∴△CDN∽△MEN,∴=1,∴CN=MN=1,∴EN==,∵S△ONE=EN•OF=ON•EM,∴OF==,由勾股定理得:EF===,∴tan∠EOF===,∴==,∵n=﹣m+4,∴m=6,n=1,∴Q2(6,1);(3)①∵动点P、Q同时作匀速直线运动,∴s关于t成一次函数关系,设s=kt+b,∵当点P运动到AO中点时,点Q恰好与点C重合,∴t=2时,CD=4,DQ3=2,∴s=Q3C==2,∵Q3(﹣4,6),Q2(6,1),∴t=4时,s==5,将或代入得,解得:,∴s=﹣,②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,作QH⊥x轴于点H,则PH=BH=PB,Rt△ABQ3中,AQ3=6,AB=4+8=12,∴BQ3==6,∵BQ=6﹣s=6﹣t+=7﹣t,∵cos∠QBH====,∴BH=14﹣3t,∴PB=28﹣6t,∴t+28﹣6t=12,t=;(ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:,∵Q3Q=s=t﹣,∴Q3G=t﹣1,GQ=3t﹣2,∴PH=AG=AQ3﹣Q3G=6﹣(t﹣1)=7﹣t,∴QH=QG﹣AP=3t﹣2﹣t=2t﹣2,∵∠HPQ=∠CDN,∴tan∠HPQ=tan∠CDN=,∴2t﹣2=,t=,(iii)由图形可知PQ不可能与EF平行,综上,当PQ与△OEF的一边平行时,AP的长为或.。
浙江省温州市2019年中考数学试卷
浙江省温州市2019年中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分.)1.计算:(﹣3)×5的结果是()A. ﹣15B. 15C. ﹣2D. 22.太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A. B. C. D.3.某露天舞台如图所示,它的俯视图是()A. B.C. D.4.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. B. C. D.5.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A. 20人B. 40人C. 60人D. 80人6.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表.根据表中数据,可得y关于x的函数表达式为()A. B. C. D.7.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A. 米B. 米C. 米D. 米9.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A. 有最大值﹣1,有最小值﹣2B. 有最大值0,有最小值﹣1C. 有最大值7,有最小值﹣1D. 有最大值7,有最小值﹣210.如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N.欧儿里得在《几何原本》中利用该图解释了.现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A. B. C. D.二、填空题(本大题共6小题,每小题5分,本大题共30分.)11.分解因式:=________.12.不等式组的解为________.13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有________人.14.如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧上.若∠BAC=66°,则∠EPF等于________度.15.三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为________cm.16.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为________分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为________分米.三、解答题(本大题共8小题,共80分.)17.计算:(1)(2)18.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°;(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.21.如图,在平面直角坐标系中,二次函数的图象交x轴于点A,B(点A在点B的左侧).(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围;(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n 的值.22.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=AB时,求⊙O的直径长.23.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D 在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长;(2)设点Q2为(m,n),当tan∠EOF时,求点Q2的坐标;(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.答案一、选择题(本大题共10小题,每小题4分,共40分.)1. A2. B3. B4. A5. D6. A7. C8. B9. D 10. C二、填空题(本大题共6小题,每小题5分,本大题共30分.)11. 详见解析12. 1<x≤913. 9014. 5715. 12+816. 5+5 ;4三、解答题(本大题共8小题,共80分.)17. (1)解:原式=6-3+1+3=7(2)解:原式=18. (1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F.∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF.(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵AD⊥BC,BD=CD,∴AC=AB=319. (1)解:= (9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个). 答:这一天20名工人生产零件的平均个数为13个(2)解:中位数为12个,众数为11个。
浙江温州2019中考试题数学卷(解析版)
一、(共10小题,每小题4分,满分40分,在每小题给出的四个选项中,只有一个是符合题意的,请把正确的选项填在题后的括号内)
1.计算(+5)+(﹣2)的结果是()
A.7 B.﹣7 C.3 D.﹣3
【答案】C
【解析】
试题分析:根据有理数的加法运算法则进行计算即可得解.
(+5)+(﹣2)=+(5﹣2)=3.
考点:有理数的加法
2.如图是九(1)班45名同学每周课外阅读时间的频数直方图(每组含前一个边界值,不含后一个边界值).由图可知,人数最多的一组是()
A.2~4小时 B.4~6小时 C.6~8小时 D.8~10小时
【答案】B
考点:频数(率)分布直方图
3.三本相同的书本叠成如图所示的几何体,它的主视图是()
A. B. C. D.
【答案】B
1。
2019年浙江省温州市中考数学试卷附分析答案
A. ӣ F 米
B.
米 ӣ
C. ӣ F 米
D.
米 ӣ
9.(4 分)已知二次函数 y=x2﹣4x+2,关于该函数在﹣1≤x≤3 的取值范围内,下列说法正
确的是( )
A.有最大值﹣1,有最小值﹣2 B.有最大值 0,有最小值﹣1 C.有最大值 7,有最小值﹣1 D.有最大值 7,有最小值﹣2 10.(4 分)如图,在矩形 ABCD 中,E 为 AB 中点,以 BE 为边作正方形 BEFG,边 EF 交 CD 于点 H,在边 BE 上取点 M 使 BM=BC,作 MN∥BG 交 CD 于点 L,交 FG 于点 N, 欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点 F 为圆心, FE 为半径作圆弧交线段 DH 于点 P,连结 EP,记△EPH 的面积为 S1,图中阴影部分的
17.(10 分)计算:
(1)|﹣6|t t(1t )0﹣(﹣3).
t
(2) t
t
. t
18.(8 分)如图,在△ABC 中,AD 是 BC 边上的中线,E 是 AB 边上一点,过点 C 作 CF
∥AB 交 ED 的延长线于点 F.
(1)求证:△BDE≌△CDF.
(2)当 AD⊥BC,AE=1,CF=2 时,求 AC 的长.
近视眼镜的度
200
250
400
500
1000
数 y(度)
镜片焦距 x
0.50
0.40
0.25
0.20
0.10
(米)
A.y ㌳㌳
B.y ㌳㌳
C.y ㌳㌳
【解答】解:由表格中数据可得:xy=100,
故 y 关于 x 的函数表达式为:y ㌳㌳.
2019年温州中考数学试卷(解析版)
2019年温州中考数学试卷(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共10小题)1.计算:(﹣3)×5的结果是()A.﹣15 B.15 C.﹣2 D.22.太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×10163.某露天舞台如图所示,它的俯视图是()A.B.C.D.4.在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.5.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人6.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()2002504005001000近视眼镜的度数y(度)镜片焦距x0.500.400.250.200.10(米)A.y =B.y =C.y =D.y =7.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A .πB.2πC.3πD.6π8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A .米B .米C .米D .米9.已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣210.如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A.B.C.D.二、填空题(共6小题)11.分解因式:m2+4m+4=.12.不等式组的解为.13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.14.如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于度.15.三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为cm.16.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为分米.三、解答题(共8小题)17.计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.18.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.21.如图,在平面直角坐标系中,二次函数y=﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.22.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.23.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.如图,在平面直角坐标系中,直线y=﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.2019年温州中考数学试卷(解析版)参考答案一、单选题(共10小题)1.【分析】根据正数与负数相乘的法则得(﹣3)×5=﹣15;【解答】解:(﹣3)×5=﹣15;故选:A.【知识点】有理数的乘法2.【分析】利用科学记数法的表示形式进行解答即可【解答】解:科学记数法表示:250 000 000 000 000 000=2.5×1017故选:B.【知识点】科学记数法—表示较大的数3.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:它的俯视图是:故选:B.【知识点】简单组合体的三视图4.【分析】直接利用概率公式计算可得.【解答】解:从中任意抽取1张,是“红桃”的概率为,故选:A.【知识点】概率公式5.【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【解答】解:调查总人数:40÷20%=200(人),选择黄鱼的人数:200×40%=80(人),故选:D.6.【分析】直接利用已知数据可得xy=100,进而得出答案.【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=.故选:A.【知识点】反比例函数的应用7.【分析】根据弧长公式计算.【解答】解:该扇形的弧长==3π.故选:C.【知识点】弧长的计算8.【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【解答】解:作AD⊥BC于点D,则BD=0.3=,∵cosα=,∴cosα=,解得,AB=米,故选:B.【知识点】轴对称图形、解直角三角形的应用9.【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【解答】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D.【知识点】二次函数的最值、二次函数的性质10.【分析】如图,连接ALGL,PF.利用相似三角形的性质求出a与b的关系,再求出面积比即可.【解答】解:如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2﹣b2,PH=,∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴=,∴=,整理得a=3b,∴===,故选:C.【知识点】相似三角形的判定与性质、矩形的性质、扇形面积的计算、正方形的性质、线段垂直平分线的性质、平方差公式二、填空题(共6小题)11.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:原式=(m+2)2.故答案为:(m+2)2.【知识点】因式分解-运用公式法12.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>1,由②得,x≤9,故此不等式组的解集为:1<x≤9.故答案为:1<x≤9.【知识点】解一元一次不等式组13.【分析】根据题意和直方图中的数据可以求得成绩为“优良”(80分及以上)的学生人数,本题得以解决.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),【知识点】频数(率)分布直方图14.【分析】连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.【解答】解:连接OE,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°【知识点】切线的性质15.【分析】连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,根据△COH是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x﹣x,根据勾股定理即可得出x2=2+,再根据S菱形BCOI=IO×CK=IC×BO,即可得出BO=2+2,进而得到△ABE的周长.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x﹣x,∵Rt△CIK中,(x﹣x)2+x2=22,解得x2=2+,又∵S菱形BCOI=IO×CK=IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE=BO=4+2,∴△ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.【知识点】菱形的性质16.【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【解答】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=∠COD=30°,∴QM=OP=OC•cos30°=5(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在Rt△PKE中,EK==2(分米)∴BE=10﹣2﹣2=(8﹣2)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),在Rt△FJE′中,E′J==2,∴B′E′=10﹣(2﹣2)=12﹣2,∴B′E′﹣BE=4.故答案为5+5,4.【知识点】等边三角形的性质、解直角三角形的应用三、解答题(共8小题)17.【分析】(1)直接利用绝对值的性质以及零指数幂的性质分别化简得出答案;(2)直接利用分式的加减运算法则计算得出答案.【解答】解:(1)原式=6﹣3+1+3=7;(2)原式===.【知识点】实数的运算、分式的加减法、零指数幂18.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.【知识点】全等三角形的判定与性质19.【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.【解答】解:(1)=×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为=12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.【知识点】众数、中位数、加权平均数20.【分析】(1)利用数形结合的思想构造全等三角形或等腰直角三角形解决问题即可.(2)如图3中,构造矩形即可解决问题.如图4中,构造MP=NQ=5即可.【解答】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.【知识点】作图—应用与设计作图21.【分析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;(2)根据题意写出B2,B3的坐标,再由对称轴方程列出n的方程,求得n,进而求得m的值.【解答】解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6,m),B2(6﹣n,m),B3(﹣n,m),函数图象的对称轴为直线,∵点B2,B3在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.【知识点】抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征、二次函数图象与几何变换22.【分析】(1)连接AE,由∠BAC=90°,得到CF是⊙O的直径,根据圆周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到结论;(2)设CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x﹣3x﹣3x=2x,求得BC=6+4=10,根据勾股定理得到AB==8=8x,求得x=1,在Rt△ACF中,根据勾股定理即可得到结论.【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.【知识点】平行四边形的判定与性质、圆周角定理、垂径定理、三角形的外接圆与外心23.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【知识点】一次函数的应用24.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,进而求出OE的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由=tan∠EOF和n=﹣m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH====,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN=,列方程为2t﹣2=,可得t的值.(iii)由图形可知PQ不可能与EF平行.【解答】解:(1)令y=0,则﹣x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC==4,又∵E为BC中点,∴OE=BC=2;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=OB=4,OE=BC=2∵∠CDN=∠NEM,∠CND=∠MNE∴△CDN∽△MEN,∴=1,∴CN=MN=1,∵S△ONE=EN•OF=ON•EM,∴OF==,由勾股定理得:EF===,∴tan∠EOF===,∴==,∵n=﹣m+4,∴m=6,n=1,∴Q2(6,1);(3)①∵动点P、Q同时作匀速直线运动,∴s关于t成一次函数关系,设s=kt+b,∵当点P运动到AO中点时,点Q恰好与点C重合,∴t=2时,CD=4,DQ3=2,∴s=Q3C==2,∵Q3(﹣4,6),Q2(6,1),∴t=4时,s==5,将或代入得,解得:,∴s=﹣,②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,作QH⊥x轴于点H,则PH=BH=PB,Rt△ABQ3中,AQ3=6,AB=4+8=12,∵BQ=6﹣s=6﹣t+=7﹣t,∵cos∠QBH====,∴BH=14﹣3t,∴PB=28﹣6t,∴t+28﹣6t=12,t=;(ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:,∵Q3Q=s=t﹣,∴Q3G=t﹣1,GQ=3t﹣2,∴PH=AG=AQ3﹣Q3G=6﹣(t﹣1)=7﹣t,∴QH=QG﹣AP=3t﹣2﹣t=2t﹣2,∵∠HPQ=∠CDN,∴tan∠HPQ=tan∠CDN=,∴2t﹣2=,t=,(iii)由图形可知PQ不可能与EF平行,综上,当PQ与△OEF的一边平行时,AP的长为或.【知识点】一次函数综合题。
2019年浙江省温州市中考数学试卷答案解析版
2019年浙江省温州市中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.计算:(-3)×5的结果是( )A. B. 15 C. D. 2−15−22.太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为( )A. B. C. D. 0.25×10182.5×101725×1016 2.5×10163.某露天舞台如图所示,它的俯视图是( )A. B.C.D.4.在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( )A. B. C. D. 161312235.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A. 20人B. 40人C. 60人D. 80人6.验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表,根据表中数据,可得y 关于x 的函数表达式为( )近视眼镜的度数y (度)2002504005001000镜片焦距x (米)0.500.400.250.200.10A. B. C. D. y =100xy =x100y =400xy =x4007.若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A. B. C. D. 32π2π3π6π8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( )A. 米95sin αB. 米95cos αC. 米59sin αD. 米59cos α9.已知二次函数y =x 2-4x +2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是( )A. 有最大值,有最小值B. 有最大值0,有最小值−1−2−1C. 有最大值7,有最小值D. 有最大值7,有最小值−1−210.如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD于点H ,在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N ,欧几里得在《几何原本》中利用该图解释了(a +b )(a -b )=a 2-b 2,现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则的值为( )S 1S 2A.B.C.D.22232426二、填空题(本大题共6小题,共30.0分)11.分解因式:m 2+4m +4=______.12.不等式组的解为______.{x +2>3x−12≤413.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有______人.14.如图,⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F ,点P 在优弧()上,若∠BAC =66°,则∠EPF 等于EDF ______度.15.三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB =∠AOE =90°,菱形的较短对角线长为2cm .若点C 落在AH 的延长线上,则△ABE 的周长为______cm .16.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC =OD =10分米,展开角∠COD =60°,晾衣臂OA =OB =10分米,晾衣臂支架HG =FE =6分米,且HO =FO =4分米.当∠AOC =90°时,点A 离地面的距离AM 为______分米;当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '处,则B 'E '-BE 为______分米.三、解答题(本大题共8小题,共80.0分)17.计算:(1)|-6|-+(1-)0-(-3).92(2)-.x +4x 2+3x 13x+x 218.如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB交ED 的延长线于点F .(1)求证:△BDE ≌△CDF .(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.19.车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.21.如图,在平面直角坐标系中,二次函数y =-x 2+2x +6的12图象交x 轴于点A ,B (点A 在点B 的左侧)(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围.(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 2重合.已知m >0,n >0,求m ,n 的值.22.如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结CD ,CF .(1)求证:四边形DCFG 是平行四边形.(2)当BE =4,CD =AB 时,求⊙O 的直径长.3823.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.如图,在平面直角坐标系中,直线y =-x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD 12的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当=tan ∠EOF 时,求点Q 2的坐标.n m 17(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.②当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.答案和解析1.【答案】A【解析】解:(-3)×5=-15;故选:A.根据正数与负数相乘的法则得(-3)×5=-15;本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.2.【答案】B【解析】解:科学记数法表示:250 000 000 000 000000=2.5×1017故选:B.利用科学记数法的表示形式进行解答即可本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)3.【答案】B【解析】解:它的俯视图是:故选:B.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【答案】A【解析】解:从中任意抽取1张,是“红桃”的概率为,故选:A.直接利用概率公式计算可得.本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.【答案】D【解析】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选:D.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.6.【答案】A【解析】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=.故选:A.直接利用已知数据可得xy=100,进而得出答案.此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.7.【答案】C【解析】解:该扇形的弧长==3π.故选:C.根据弧长公式计算.本题考查了弧长的计算:弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).8.【答案】B【解析】解:作AD⊥BC于点D,则BD=0.3=,∵cosα=,∴sinα=,解得,AB=米,故选:B.根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】D【解析】解:∵y=x2-4x+2=(x-2)2-2,∴在-1≤x≤3的取值范围内,当x=2时,有最小值-2,当x=-1时,有最大值为y=9-2=7.故选:D.把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.【答案】C【解析】解:如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2-b2,PH=,∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴=,∴=,整理得a=3b,∴===,故选:C.如图,连接ALGL,PF.利用相似三角形的性质求出a与b的关系,再求出面积比即可.本题源于欧几里得《几何原本》中对(a+b)(a-b)=a2-b2的探究记载.图形简单,结合了教材中平方差证明的图形进行编制.巧妙之处在于构造的三角形一边与矩形的一边等长,解题的关键是利用相似三角形的性质求出a与b的关系,进而解决问题.11.【答案】(m+2)2【解析】解:原式=(m+2)2.故答案为:(m+2)2.直接利用完全平方公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.12.【答案】1<x≤9【解析】解:,由①得,x>1,由②得,x≤9,故此不等式组的解集为:1<x≤9.故答案为:1<x≤9.分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.【答案】90【解析】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.根据题意和直方图中的数据可以求得成绩为“优良”(80分及以上)的学生人数,本题得以解决.本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.14.【答案】57【解析】解:连接OE,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.本题考查了切线的性质,圆周角定理,四边形内角和定理,熟练运用切线的性质是本题的关键.15.【答案】12+82【解析】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x-x,∵Rt△CIK中,(x-x)2+x2=22,解得x2=2+,又∵S菱形BCOI=IO×CK=IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE=BO=4+2,∴△ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,根据△COH是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x-x,根据勾股定理即可得出x2=2+,再根据S菱形=IO×CK=IC×BO,即可得出BO=2+2,进而得到△ABE的周长.BCOI本题主要考查了菱形的性质,解题时注意:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于两条对角线长的乘积的一半.16.【答案】(5+5) 43【解析】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=∠COD=30°,∴QM=OP=OC•cos30°=5(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在Rt△PKE中,EK==2(分米)∴BE=10-2-2=(8-2)(分米),在Rt △OFJ 中,OJ=OF•cos60°=2(分米),FJ=2(分米),在Rt △FJE′中,E′J==2,∴B′E′=10-(2-2)=12-2,∴B′E′-BE=4.故答案为5+5,4.如图,作OP ⊥CD 于P ,OQ ⊥AM 于Q ,FK ⊥OB 于K ,FJ ⊥OC 于J .解直角三角形求出MQ ,AQ 即可求出AM ,再分别求出BE ,B′E′即可.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.17.【答案】解:(1)原式=6-3+1+3=7;(2)原式=x +4−1x 2+3x=x +3x(x+3)=.1x 【解析】(1)直接利用绝对值的性质以及零指数幂的性质分别化简得出答案; (2)直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.18.【答案】(1)证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F ,∵AD 是BC 边上的中线,∴BD =CD ,∴△BDE ≌△CDF (AAS );(2)解:∵△BDE ≌△CDF ,∴BE =CF =2,∴AB =AE +BE =1+2=3,∵AD ⊥BC ,BD =CD ,∴AC =AB =3.【解析】(1)根据平行线的性质得到∠B=∠FCD ,∠BED=∠F ,由AD 是BC 边上的中线,得到BD=CD ,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.19.【答案】解:(1)=×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13−x 120(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为=12(个),众数为11个,12+122当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.【解析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.20.【答案】解:(1)满足条件的△EFG ,如图1,2所示.(2)满足条件的四边形MNPQ 如图所示.【解析】(1)利用数形结合的思想构造全等三角形或等腰直角三角形解决问题即可.(2)如图3中,构造矩形即可解决问题.如图4中,构造MP=NQ=5即可.本题考查作图-应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】解:(1)令y =0,则-,12x 2+2x +6=0解得,x 1=-2,x 2=6,∴A (-2,0),B (6,0),由函数图象得,当y ≥0时,-2≤x ≤6;(2)由题意得,B 1(6-n ,m ),B 2(-n ,m ),函数图象的对称轴为直线,x =−2+62=2∵点B 1,B 2在二次函数图象上且纵坐标相同,∴,6−n +(−n)2=2∴n =1,∴,m =−12×(−1)2+2×(−1)+6=72∴m ,n 的值分别为,1.72【解析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A 、B 两点的坐标,再根据函数图象不在x 轴下方的x 的取值范围得y≥0时x 的取值范围;(2)根据题意写出B 1,B 2的坐标,再由对称轴方程列出n 的方程,求得n ,进而求得m 的值.本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集,平移的性质,难度不大,关键是正确运用函数的性质解题.22.【答案】(1)证明:连接AE ,∵∠BAC =90°,∴CF 是⊙O 的直径,∵AC =EC ,∴CF ⊥AE ,∵AD 是⊙O 的直径,∴∠AED =90°,即GD ⊥AE ,∴CF ∥DG ,∵AD 是⊙O 的直径,∴∠ACD =90°,∴∠ACD +∠BAC =180°,∴AB ∥CD ,∴四边形DCFG 是平行四边形;(2)解:由CD =AB ,38设CD =3x ,AB =8x ,∴CD =FG =3x ,∵∠AOF =∠COD ,∴AF =CD =3x ,∴BG =8x -3x -3x =2x ,∵GE ∥CF ,∴,BE EC =BG GF =23∵BE =4,∴AC =CE =6,∴BC =6+4=10,∴AB ==8=8x ,102−62∴x =1,在Rt △ACF 中,AF =10,AC =6,∴CF ==3,32+625即⊙O 的直径长为3.5【解析】(1)连接AE ,由∠BAC=90°,得到CF 是⊙O 的直径,根据圆周角定理得到∠AED=90°,即GD ⊥AE ,推出CF ∥DG ,推出AB ∥CD ,于是得到结论;(2)设CD=3x ,AB=8x ,得到CD=FG=3x ,于是得到AF=CD=3x ,求得BG=8x-3x-3x=2x ,求得BC=6+4=10,根据勾股定理得到AB==8=8x ,求得x=1,在Rt △ACF 中,根据勾股定理即可得到结论.本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.23.【答案】解:(1)设成人有x 人,少年y 人,,{x +y +10=32x =y +12解得,,{x =17y =5答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10-8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a 人,少年b 人带队,则1≤a ≤17,1≤b ≤5,当10≤a ≤17时,若a =10,则费用为100×10+100×b ×0.8≤1200,得b ≤2.5,∴b 的最大值是2,此时a +b =12,费用为1160元;若a =11,则费用为100×11+100×b ×0.8≤1200,得b ≤,54∴b 的最大值是1,此时a +b =12,费用为1180元;若a ≥12,100a ≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a <10时,若a =9,则费用为100×9+100b ×0.8+100×1×0.6≤1200,得b ≤3,∴b 的最大值是3,a +b =12,费用为1200元;若a =8,则费用为100×8+100b ×0.8+100×2×0.6≤1200,得b ≤3.5,∴b 的最大值是3,a +b =11<12,不合题意,舍去;同理,当a <8时,a +b <12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【解析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用; ②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.24.【答案】解:(1)令y =0,则-x +4=0,12∴x =8,∴B (8,0),∵C (0,4),∴OC =4,OB =8,在Rt △BOC 中,BC ==4,82+425又∵E 为BC 中点,∴OE =BC =2;125(2)如图1,作EM ⊥OC 于M ,则EM ∥CD ,∵E 是BC 的中点∴M 是OC 的中点∴EM =OB =4,OE =BC =212125∵∠CDN =∠NEM ,∠CND =∠MNE ∴△CDN ∽△MEN ,∴=1,CN MN =CD EM ∴CN =MN =1,∴EN ==,12+4217∵S △ONE =EN •OF =ON •EM ,1212∴OF ==,3×417121717由勾股定理得:EF ===,OE 2−OF 2(25)2−(121717)2141717∴tan ∠EOF ===,EF OF 141712171776∴==,n m 17×7616∵n =-m +4,12∴m =6,n =1,∴Q 2(6,1);(3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,∵当点P 运动到AO 中点时,点Q 恰好与点C 重合,∴t =2时,CD =4,DQ 3=2,∴s =Q 3C ==2,22+425∵Q 3(-4,6),Q 2(6,1),∴t =4时,s ==5,(6+4)2+(6−1)25将或代入得,解得:,{t =2s =25{t =4s =55{2k +b =254k +b =55{k =325b =−5∴s =-,352t 5②(i )当PQ ∥OE 时,如图2,∠QPB =∠EOB =∠OBE ,作QH ⊥x 轴于点H ,则PH =BH =PB ,12Rt △ABQ 3中,AQ 3=6,AB =4+8=12,∴BQ 3==6,62+1225∵BQ =6-s =6-t +=7-t ,5535255352∵cos ∠QBH ====,AB BQ 3BH BQ 1265255∴BH =14-3t ,∴PB =28-6t ,∴t +28-6t =12,t =;165(ii )当PQ ∥OF 时,如图3,过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q 3QG ∽△CBO 得:Q 3G :QG :Q 3Q =1:2:,5∵Q 3Q =s =t -,3525∴Q 3G =t -1,GQ =3t -2,32第21页,共21页∴PH =AG =AQ 3-Q 3G =6-(t -1)=7-t ,3232∴QH =QG -AP =3t -2-t =2t -2,∵∠HPQ =∠CDN ,∴tan ∠HPQ =tan ∠CDN =,14∴2t -2=,t =,14(7−32t)3019(iii )由图形可知PQ 不可能与EF 平行,综上,当PQ 与△OEF 的一边平行时,AP 的长为或.1653019【解析】(1)令y=0,可得B 的坐标,利用勾股定理可得BC 的长,进而求出OE 的长;(2)如图1,作辅助线,证明△CDN ∽△MEN ,得CN=MN=1,计算EN 的长,根据面积法可得OF 的长,利用勾股定理得OF 的长,由=tan ∠EOF 和n=-m+4,可得结论;(3)①先设s 关于t 成一次函数关系,设s=kt+b ,根据当点P 运动到AO 中点时,点Q 恰好与点C 重合,得t=2时,CD=4,DQ 3=2,s=2,根据Q 3(-4,6),Q 2(6,1),可得t=4时,s=5,利用待定系数法可得s 关于t 的函数表达式;②分三种情况:(i )当PQ ∥OE 时,如图2,根据cos ∠QBH====,表示BH 的长,根据AB=12,列方程可得t 的值;(ii )当PQ ∥OF 时,如图3,根据tan ∠HPQ=tan ∠CDN=,列方程为2t-2=,可得t 的值.(iii )由图形可知PQ 不可能与EF 平行.此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.。
2019年浙江省温州市中考数学试卷及答案
浙江省温州市2019年中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)(2019•温州)计算:(﹣3)+4的结果是()2.(4分)(2019•温州)如图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是()3.(4分)(2019•温州)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()..解:从几何体的正面看可得此几何体的主视图是,4.(4分)(2019•温州)要使分式有意义,则x的取值应满足()636.(4分)(2019•温州)小明记录了一星期天的最高气温如下表,则这个星期每天的最高气8.(4分)(2019•温州)如图,已知A,B,C在⊙O上,为优弧,下列选项中与∠AOB 相等的是()9.(4分)(2019•温州)20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,..10.(4分)(2019•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()k=•AB•AB•二、填空题(共6小题,每小题5分,满分30分)11.(5分)(2019•温州)分解因式:a2+3a=a(a+3).12.(5分)(2019•温州)如图,直线AB,CD被BC所截,若AB∥CD,∠1=45°,∠2=35°,则∠3=80度.13.(5分)(2019•温州)不等式3x﹣2>4的解是x>2.14.(5分)(2019•温州)如图,在△ABC中,∠C=90°,AC=2,BC=1,则tanA的值是.)求出即可.tanA==,故答案为:.,cosA=,.15.(5分)(2019•温州)请举反例说明命题“对于任意实数x,x2+5x+5的值总是整数”是假命题,你举的反例是x=(写出一个x的值即可).时,原式+5=5,不是整数,故答案为:.16.(5分)(2019•温州)如图,在矩形ABCD中,AD=8,E是边AB上一点,且AE=AB.⊙O 经过点E,与边CD所在直线相切于点G(∠GEB为锐角),与边AB所在直线交于另一点F,且EG:EF=:2.当边AB或BC所在的直线与⊙O相切时,AB的长是12.EF=:EN=:EN=,解得:GE=AB三、解答题(共8小题,满分80分)17.(10分)(2019•温州)(1)计算:+2×(﹣5)+(﹣3)2+20190;(2)化简:(a+1)2+2(1﹣a)=2;18.(8分)(2019•温州)如图,在所给方格纸中,每个小正方形边长都是1,标号为①②③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲,图乙中的指定图形分割成三个三角形,使它们与标号为①②③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:图甲,图乙在答题卡上,分割线画成实线.19.(8分)(2019•温州)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.(1)从袋中摸出一个球是黄球的概率;(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.=,继而求得答案.∴从袋中摸出一个球是黄球的概率为:=;=,20.(10分)(2019•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.21.(10分)(2019•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.=)(.22.(8分)(2019•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.ab++ab+c aab+b ab=ab++23.(12分)(2019•温州)八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同7道题未答),具体如下表(2)最后获知ABCDE五位同学成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算,A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况,请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可)==82.5,24.(14分)(2019•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B 出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.时和当<OB=3t=,+3=,=,即=,==,t=,==,t=,=即=,②<≤或时,)+t=在范围内,<≤,<﹣),<。
2019年浙江省温州市中考数学试题(含答案解析)
2019年浙江省初中毕业生学业考试(温州卷)数学试题卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.计算:(﹣3)×5的结果是A .﹣15B .15C .﹣2D .22.太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为A .180.2510⨯ B .172.510⨯ C .162510⨯ D .162.510⨯ 3.某露天舞台如图所示,它的俯视图是4.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为 A .16 B .13 C .12 D .235.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有A .20人B .40人C .60人D .80人6.验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为A .100y x =B .100x y =C .400y x =D .400xy = 7.若扇形的圆心角为90°,半径为6,则该扇形的弧厂为 A .32π B .2π C .3π D .6π 8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为 A .95sin α米 B .95cos α米 C .59sin α米 D .59cos α米9.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣210.如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N .欧儿里得在《几何原本》中利用该图解释了22()()a b a b a b +-=-.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则12S S 的值为 ABCD二、填空题(本大题共6小题,每小题5分,本大题共30分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 11.分解因式:244m m ++= .12.不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为 .13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有 人. 14.如图,⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F ,点P 在优弧EDF 上.若∠BAC=66°,则∠EPF 等于 度.15.三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB =∠AOE =90°,菱形的较短对角线长为2cm .若点C 落在AH 的延长线上,则△ABE 的周长为 cm . 16.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两 支脚OC =OD =10分米,展开角∠COD = 60°,晾衣臂OA =OB =10分米,晾衣臂支 架HG =FE =6分米,且HO =FO =4分米. 当∠AOC =90°时,点A 离地面的距离AM 为 分米;当OB 从水平状态旋转到OB′(在CO 延长线上)时,点E 绕点F 随之旋转至OB′上的点E′处,则B′E′﹣BE 为 分米.三、解答题(本大题共8小题,共80分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)计算:(1)069(12)(3)--+---;(2)224133x x x x x+-++. 18.(本题满分8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.19.(本题满分8分)车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.(本题满分8分)如图,在7×5的方格纸ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A ,B ,C ,D 重合.(1)在图1中画一个格点△EFG ,使点E ,F ,G 分别落在边AB ,BC ,CD 上,且∠EFG =90°;(2)在图2中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且MP =NQ . 注:图1,图2在答题纸上.21.(本题满分10分)如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.22.(本题满分10分)如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结CD ,CF .(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=38AB时,求⊙O的直径长.23.(本题满分10分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(本题满分14分)如图,在平面直角坐标系中,直线142y x=-+分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO 上从点A向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长;(2)设点Q2为(m,n),当17nm=tan∠EOF时,求点Q2的坐标;(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD 交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.。
2019年浙江省温州市中考数学试卷及答案解析
2019年浙江省温州市中考数学试卷及答案解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上)1.(2019浙江省温州市,1,4分)计算:(-3)×5的结果是【】A.-15 B.15 C.-2 D.2【答案】A【解析】根据有理数乘法法则,先确定积的符号为-,然后把它们的绝对值相乘,结果为-15.【知识点】有理数的运算2.(2019浙江省温州市,1,4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为【】A.0.25×1018B.2.5×1017C.25×1016D.25×1016【答案】B【解析】250 000 000 000 000 000=2.5×100 000 000 000 000 000=2.5×1017.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【知识点】科学记数法3.(2019浙江省温州市,1,4分)某露天舞台如图所示,它的俯视图...是【】【答案】B【解析】本题考查的是画出立体图形的三视图的知识,解题的关键是准确掌握三视图的概念来求解,要画出图中几何体的俯视图,首先由俯视图的概念:几何体的俯视图是从上面看到的图形,观察得出这个几何体的俯视图是长方形中间有一个长方形,且这两个长方形具有共同的边,故选答案B.几何体的三视图:主视图是从物体正面看所得到的图形,左视图是从物体左面看所得到的图形,俯视图是从物体的上面看所得的图形.2、画三视图的口诀为:长对正,高平齐,宽相等.轮廓内看见的棱线用实线画出,看不见的棱线用虚线画出.【知识点】三视图4.(2019浙江省温州市,1,4分)在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为【】A.16B.13C.12D.23【答案】A【解析】本题考查了概率公式,根据概率的定义即可得到答案. 共6张扑克牌,其中1张“红桃”,则从中任意抽取1张,是“红桃”的概率为16.故选答案A.【知识点】概率 5.(2019浙江省温州市,1,4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有【 】 A .20人 B .40人 C .60人 D .80人 【答案】D 【解析】从统计图可知选择鲳鱼的占全体统计人数的20%,则抽取的样本容量为40÷20%=200,则根据统计图可知选择黄鱼的有200×40%=80人.故选答案D. 【知识点】统计图6.(2019浙江省温州市,1,4分)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为 【 】A .y x =B .100y =C .y x =D .400y = 【答案】A【解析】从表格中的近视眼镜的度数y (度)与镜片焦距x (米)的对应数据可以知道,它们满足xy=100,因此,y 关于x 的函数表达式为100y x=.故选答案A. 【知识点】反比例函数 7.(2019浙江省温州市,1,4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为【 】A .32π B .2π C .3π D .6π 【答案】D【解析】扇形的圆心角为90°,它的半径为6,即n=90°,r=6,根据弧长公式l=180n rπ,得6π.故选答案D. 【知识点】扇形的弧长 8.(2019浙江省温州市,1,4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为 【 】A .95sin α米 B .95cos α米 C .59sin α米 D .59cos α米【答案】B【解析】如图,过点A 作AD ⊥BC ,垂足为点D ,则BD=1.5+0.3=1.8(米).在Rt △ABD 中,∠ADB=90°,cosB=BD AB ,所以AB =cos BD α= 1.8cos α=95cos α.故选答案B.【知识点】解直角三角形9.(2019浙江省温州市,1,4分)已知二次函数y=x 2-4x+2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是 【 】 A .有最大值-1,有最小值-2 B .有最大值0,有最小值-1 C .有最大值7,有最小值-1 D .有最大值7,有最小值-2 【答案】D【解析】∵二次函数y=x 2-4x+2=(x-2)2-2,∴该函数在-1≤x ≤3的取值范围内,当x=2时,y 有最小值-2;当x=-1时,y 有最大值7.故选答案D. 【知识点】二次函数的性质10.(2019浙江省温州市,1,4分)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM=BC ,作MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解释了(a+b)(a-b)=a 2-b 2.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则12S S 的值为 【 】A.2 B.3 C.4 D.6【答案】C【解析】如图,连接ALGL ,PF .由题意:S 矩形AMLD =S 阴=a 2﹣b 2,PHD CBA∵点A ,L ,G 在同一直线上,AM ∥GN ,∴△AML ∽△GNL ,∴=,∴=,整理得a =3b ,∴===,故选:C .【知识点】平方差公式 线段垂直平分线的性质 矩形的性质 正方形的性质 扇形面积的计算 相似三角形的判定与性质二、填空题(本大题共6小题,每小题5分,本大题共30分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 11.(2019浙江省温州市,11,5分)分解因式:m 2+4m+4= . 【答案】(m+2)2 【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.【知识点】分解因式12.(2019浙江省温州市,12,5分)不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为 .【答案】1<x ≤9【解析】先确定不等式组中每个不等式的解集,然后利用口诀寻找两个不等式解集的公共部分. 解不等式x+2>3,得x >1;解不等式12x -≤4,得x ≤9.根据“大小小大中间找”确定不等式组的解集是1<x ≤9,故填:1<x ≤9.【知识点】不等式(组)的解集;不等式(组)的解集的表示方法 13.(2019浙江省温州市,13,5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有 人.【答案】90【解析】从频数直方图中读懂信息、提取信息、发现信息.知道成绩为“优良”(80分及以上)的在80~90、90~100两个小组中,其频数分别为60、30.因此,成绩为“优良”(80分及以上)的学生有90人.故填:90. 【知识点】频数分布直方图 14.(2019浙江省温州市,14,5分)如图,⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F,点P 在优弧EDF 上.若∠BAC=66°,则∠EPF 等于 度.【答案】57【解析】连接OE 、OF.∵⊙O 分别切∠BAC 的两边AB 、AC 于点E 、F ,∴OF ⊥AC 、OE ⊥AB ,∴∠BAC+∠EOF=180°,∵∠BAC=66°,∴∠EOF=114°.∵点P 在优弧EDF 上,∴∠EPF=12∠EOF=57°. 故填:57.【知识点】圆周角 切线 切线的性质 15.(2019浙江省温州市,15,5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm .若点C 落在AH 的延长线上,则△ABE 的周长为 cm .【答案】【解析】连接AC 、IC ,AC 交OI 于点M 、BO 于点N ,IC 交BO 于点P.设∠AHO=α,则∠COB=∠IOB=α,.∵点C 落在AH 的延长线上,∴A 、H 、C 三点共线.∵图中的三个菱形是形状大小相同的,∴∠CBO=∠CAO ,又∵∠BNC=∠ANO ,∴∠BCA=∠AOB=90°.∵BC ∥IO ,∴∠CMO=∠BCA=90°.∵CO=HO ,∴∠HOM=∠COM=2α,∴α+2α+α=90°,则α=22.5°,即∠BOI=22.5°,∠PIO=67.5°.作∠QIO=∠BOI=22.5°,交BO 于点Q ,则∠PIQ=45°,∴PI=PN=1,IQ=QO =,PO=1+,BO=2+2,∴+4,BE=2BO=4+4,∴△ABE 的周长为. 故填:.【知识点】菱形的性质 等腰三角形的性质 解直角三角形 方程思想 16.(2019浙江省温州市,16,5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A 离地面的距离AM 为 分米;当OB 从水平状态旋转到OB′(在CO 延长线上)时,OP FDC AQP N M点E 绕点F 随之旋转至OB′上的点E′处,则B′E′-BE 为 分米.【答案】5+53 4【解析】(1)过点O 分别作OL ⊥MD 、ON ⊥AM ,垂足分别为点L 、N ,则∠LON=90°,四边形NMLO 是矩形,∴MN=LO. ∵OC =OD=10分米,∠COD=60°,∴∠COL=30°,CL=12CD=5,OL=22-OC CL =2210-5=53.∵∠AOC=90°,∴∠AON=30°,∴AN=12AO=5,∴AM=5+53;(2)过点F 分别作FQ ⊥OB 、FP ⊥OC ,垂足分别为点Q 、N. 在Rt △OPQ 中,∠OQP=90°,∠BOD=60°,∴OQ=2,FQ=23,在Rt △EFQ 中,∠EQF=90°,FQ=23,EF=6,∴QE=26,BE=10-2-26=8-26;同理可得PE ′=26,∴B ′E ′=2+10-26=12-26,∴B′E′-BE=(12-26)-(8-26)=4. 故填:5+53 4.【知识点】含30°角直角三角形的性质 勾股定理 数学建模三、解答题(本大题共8小题,共80分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(2019浙江省温州市,17,10分)(本题满分10分)计算:(1)069(12)(3)--+---;【思路分析】依次计算有理数的绝对值、化简二次根式、非0数的0指数幂、有理数的相反数,再进行加减乘混合运算.NLMA D C OQ PE /B /BF ENLMADC O【解题过程】原式=6-3+1+3=7 【知识点】实数的运算 有理数的绝对值 化简二次根式 非0数的0指数幂 有理数的相反数(2)224133x x x x x+-++. 【思路分析】直接应用同分母分式加减法法则进行运算,再对所得结果进行约分,化成最简分式.【解题过程】原式=24-13x x x ++=233x x x ++=3(3)x x x ++=1x【知识点】分式的运算18.(2019浙江省温州市,18,8分)(本题满分8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F .(1)求证:△BDE ≌△CDF ;(2)当AD ⊥BC ,AE=1,CF=2时,求AC 的长.【思路分析】问题(1),直接应用三角形全等的判定方法“角边角”即可解决问题;问题(2),由问题(1)的结论可得CF=BE=2,BD=CD ,即可知道AD 垂直平分BC ,从而将所求AC 转化为AB 的长.【解题过程】(1) ∵ CF ∥AB ,∴∠B=∠FCD ,∠BED=∠F. ∵ AD 是BC 边上的中线,∴BD=CD ,∴△BDE ≌△CDF ;(2)∵△BDE ≌△CDF ,∴BE=CF=2,∴AB=AE+BE=1+2=3.∵ AD ⊥BC ,BD=CD ,∴AC=AB=3. 【知识点】全等三角形的判定与性质 线段垂直平分线的性质 19.(2019浙江省温州市,19,8分)(本题满分8分)车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【思路分析】问题(1),直接应用加权平均数的公式求得这组数据的平均数;问题(2),先分别求得这组数据的中位数、众数,再根据问题(1)求得的平均数,结合平均数、中位数、众数的实际意义,确定工人每天加工零件的“定额”. 【解题过程】(1)x =120(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个).答:这一天20名工人生产零件的平均个数为13个; (2)中位数为12个,众数为11个.当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,8人获奖,不利于提高大多数工人的积极性; 当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性. ∴定额为11个时,有利于提高大多数工人的积极性. 【知识点】平均数 中位数 众数 “三数”的应用20.(2019浙江省温州市,20,8分)(本题满分8分)如图,在7×5的方格纸ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A ,B ,C ,D 重合.(1)在图1中画一个格点△EFG ,使点E ,F ,G 分别落在边AB ,BC ,CD 上,且∠EFG=90°; (2)在图2中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且MP=NQ .注:图1,图2在答题纸上.【思路分析】问题(1)使得△EFG 中∠EFG=90°,可以构造与点F 共顶点的两个锐角互余,也可以分别构造以EF 、EG 为斜边的两个直角三角形是等腰直角三角形;问题(2),点M 、P 的水平宽度为7,点N ,Q 的铅直高度为5,设点M 、P 的铅直高度为x ,点N ,Q 的水平宽度为y ,则72+x 2=52+y 2,即y 2-x 2=24,(y+x)(y-x)=24.由于x 、y 都是正整数,∴当y+x=12时,y-x=2,解得x=5、y=7(此时点M ,N ,P ,Q 分别在A 、B 、C 、D 处,不符合题意);当y+x=6时,y-x=4,解得x=5、y=1,可作出符合条件的图形如图3与如图4. 【解题过程】(1)画法不唯一,如图1或如图2等;(2)画法不唯一,如图3或如图4等.图1 图2 图3 图4【知识点】格点图 尺规作图第20题图DCBA E FG A BCD G F EA BCD QP NM A B CD MNP QA B CD21.(2019浙江省温州市,21,10分)(本题满分10分)如图,在平面直角坐标系中,二次函数y=-12x 2+2x+6的图象交x 轴于点A ,B (点A 在点B 的左侧). (1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围;(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n+6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.【思路分析】问题(1),根据一元二次方程与二次函数的图像之间的关系,求得方程-12x 2+2x+6=0是两个根,即可得点A ,B 的坐标,并通过观察该函数图像位于x 轴上方部分确定y ≥0时所对应自变量x 的取值范围;问题(2),根据二次函数的轴对称性即可求得n 值,并求得对应点的坐标. 【解题过程】(1) 令y=0,则-12x 2+2x+6=0,∴x 1=-2,x 2=6,∴A(-2,0),B(6,0). 由函数图像得,当y ≥0时,x 的取值范围为-2≤x ≤6; (2) 由题意得B 2(6-n ,m),B 3(-n ,m),函数图像的对称轴为直线x=262-+=2. ∵ 点B 2、点B 3在二次函数图象上且纵坐标相同,∴6(n)2n -+-=2,∴n=1,∴ m=-12×(-1)2+2×(-1)+6=72,∴ m ,n 的值分别为72,1.【知识点】二次函数的图像与性质 一元二次方程、不等式与二次函数的图像 图形平移的性质22.(2019浙江省温州市,22,10分)(本题满分10分)如图,在△ABC 中,∠BAC=90°,点E 在BC 边上,且CA=CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结CD ,CF .(1)求证:四边形DCFG 是平行四边形;(2)当BE=4,CD=38AB 时,求⊙O 的直径长.【思路分析】问题(1),可分别证得四边形DCFG 的两边分别平行;问题(2),根据CD=38AB ,设立参数x ,可设CD=3x,AB=8x ,则CD=3x ,AF=CD=3x.进而可得BG=2x ,并借助图形中隐含的△BGE ∽△CDE 以及BE=4,即可求得BC 、AC 、AF 的长,从而应用勾股定理求得⊙O 的直径第22题图OG FE D CBACF 长.【解题过程】(1)连接AE. ∵∠BAC=90°,∴CF 是⊙O 的直径.∵ AC=EC ,∴CF ⊥AE.∵AD 为⊙O 的直径,∴∠AED=90°,即GD ⊥AE ,∴CF ∥DG. ∵ AD 为⊙O 的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB ∥CD ,∴四边形DCFG 为平行四边形;(2)由CD=38AB ,可设CD=3x,AB=8x ,∴CD=FG=3x. ∵ ∠AOF=∠COD ,∴AF=CD=3x ,∴BG=8x-3x-3x=2x. ∵ GE ∥CF ,∴△BGE ∽△CDE ,∴23BE BG EG GF ==. 又∵ BE=4,∴AC=CE=6,∴BC=6+4=10,∴,∴x=1. 在Rt △ACF 中,AF=3,AC=6,∴O 的直径长为【知识点】圆周角定理 垂径定理 平行四边形的判定方法与性质 相似三角形的判定方法与性质 勾股定理23.(2019浙江省温州市,23,10分)(本题满分10分)某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少. 【思路分析】问题(1),利用条件中隐含的相等关系式可列出方程或方程组,即可解决问题;问题(2)中的①,由于“名成人可以免费携带一名儿童”,因此所带领10名儿童只需要购买2名儿童门票,依据景区B 的门票价格即可列式求得所需门票的总费用;②根据隐含的不等关系,分情况加以讨论确定可能出现的不同方案,并求得购票费用最少的方案. 【解题过程】(1)该旅行团中成人有x 人,少年有y 人,根据题意,得:103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人有17人,少年有5人;(2)①∵成人8人可免费带8名儿童,第22题图∴所需门票的总费用为:100×8+100×0.8×5+100×0.6×(10-8)=1320(元).②设可以安排成人a人、少年b人带队,则1≤a≤17,1≤b≤5.设10≤a≤17时,(i) 当a=10时,100×10+80b≤1200,∴b≤52,∴ b最大值=2,此时 a+b=12,费用为1160元;(ii) 当a=11时,100×11+80b≤1200,∴b≤54,∴ b最大值=1,此时 a+b=12,费用为1180元;(iii) 当a≥12时,100a≥1200,即成人门票至少需要1200元,不符合题意,舍去.设1≤a<10时,(i) 当a=9时,100×9+80b+60≤1200,∴b≤3,∴ b最大值=3,此时 a+b=12,费用为1200元;(ii) 当a=8时,100×8+80b+60×2≤1200,∴b≤72,∴ b最大值=3,此时 a+b=11<12,不符合题意,舍去;(iii) 同理,当a<8时,a+b<12,不符合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人、少年2人;成人11人、少年1人;成人9人、少年3人.其中当成人10人、少年2人时购票费用最少.【知识点】不等式的应用方案决策24.(2019浙江省温州市,24,14分)(本题满分14分)如图,在平面直角坐标系中,直线142y x=-+分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A 向终点O匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长;(2)设点Q2为(m,n),当17nm=tan∠EOF时,求点Q2的坐标;(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD 交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式;②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【思路分析】问题(1),直接借助于一次函数表达式可以求得点B的坐标和中线OE的长;问题(2),先求得tan∠EOF的值,再确定m、n之间的数量关系,求得点Q2的坐标;问题(3),分情况加以讨论探求PQ与△OEF的一边平行时,满足条件的AP的长.【解题过程】(1)令y=0,则142x -+=0,∴ x=8,∴ B(8,0). ∵ C(0,4),在Rt △BOC 中,又∵ E 为BC 的中点,∴OE=12. (2)如图1,作EM ⊥OC 于点M ,则EM ∥CD ,∴ △CDN ∽△MEN ,∴4=14CN CD MN EM ==,∴CN=MN=1,∴∵ EN ·OF=ON ·EM ,∴=由勾股定理得tan ∠EOF=76,∴ n m =17×76=16. ∵ n=-12m+4,∴ m=6,n=1,∴Q 2(6,1). (3)①∵动点P 、Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s=kt+b ,将2t s =⎧⎪⎨=⎪⎩和4t s =⎧⎪⎨=⎪⎩24k b k b ⎧+=⎪⎨+=⎪⎩,解得k b ⎧=⎪⎨⎪=⎩∴②(i)当PQ ∥OE 时(如图2),∠QPB=∠EOB=∠OBE ,作QH ⊥x 轴于点H ,则PH=BH=12PB. ∵, 又∵cos ∠BH=14-3t ,∴PB=28-6t ,∴ t+28-6t=12,∴t=165;(ii)当PQ ∥OF 时(如图3),过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H ,由△Q3QG ∽△CBO 得Q 3G :QG :Q 3Q=1:2∵Q 3∴Q 3G=32t-1,QG=3t-2, ∴ PH=AG=AQ 3-Q 3G=6-(32t-1)=7-32t ,QH=QG-AP=3t-2-t=2t-2. ∵ ∠HPQ=∠CDN ,∴tan ∠HPQ=tan ∠CDN=14,∴2t-2=14(7-32t),∴ t=3019. (iii) 由图形可知PQ 不可能与EF 平行.综上所述,当PQ 与△OEF 的一边平行时,AP 的长为165或3019.【知识点】一次函数 相似三角形分类讨论。
2019年浙江省温州市中考数学试卷及答案(解析版)
浙江省温州市2019年中考试卷数 学卷Ⅰ一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置上)1.计算:(35)⨯﹣的结果是 ( )A .15-B .15C .2-D .22.太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为 A .180.2510⨯B .172.510⨯C .162510⨯D .162.510⨯ 3.某露天舞台如图所示,它的俯视图是( )第3题图ABC D 4.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( ) A .16B .13C .12D .235.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )第5题A .20人B .40人C .60人D .80人6.验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为( )A .y x=B .100y =C .y x=D .400y = 7.若扇形的圆心角为90°,半径为6,则该扇形的弧厂为( ) A .32πB .2πC .3πD .6π8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( )第8题图第10题图A .95sin α米 B .95cos α米C .59sin α米 D .59cos α米 9.已知二次函数242y x x =-+,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值1-,有最小值2-B .有最大值0,有最小值1-C .有最大值7,有最小值1-D .有最大值7,有最小值2-10.如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使=BM BC ,作MN BG ∥交CD 于点L ,交FG于点N .欧儿里得在《几何原本》中利用该图解释了22()()a b ab a b +-=-.现以点F 为圆心,FE 为半径作圆弧交线段DH于点P ,连结EP ,记EPH △的面积为1S ,图中阴影部分的面积为2S .若点A ,L ,G 在同一直线上,则12S S 的值为( )A B C D 卷Ⅱ二、填空题(本大题共6小题,每小题5分,本大题共30分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置上) 11.分解因式:244=m m ++ .12.不等式组23142x x +>⎧⎪⎨-≤⎪⎩的解为 .13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有 人.14.如图,⊙O 分别切BAC ∠的两边AB ,AC 于点E ,F ,点P 在优弧¼EDF 上.若=66BAC ∠︒,则EPF ∠等于 度.第13题图第14题图15.三个形状大小相同的菱形按如图所示方式摆放,已知90AOB AOE ∠=∠=︒,菱形的较短对角线长为2 cm .若点C 落在AH 的延长线上,则ABE △的周长为cm .16.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚10OC OD ==分米,展开角60COD ∠=︒,晾衣臂10OA OB ==分米,晾衣臂支架6HG FE ==分米,且4HO FO ==分米.当90AOC ∠=︒时,点A 离地面的距离AM 为 分米;当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '处,则B E BE ''-为 分米.图1图2第15题图第16题图三、解答题(本大题共8小题,共80分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(本题10分)计算:(1)06(1(3)----;(2)224133x x x x x+-++.18.(本题8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥AB 交ED 的延长线于点F . (1)求证:△BDE ≌△CDF ; (2)当AD ⊥BC ,AE =1,CF =2时,求AC 的长.第18题图19.(本题8分)车间有20名工人,某天他们生产的零件个数统计如下表.(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.(本题8分)如图,在7×5的方格纸ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A ,B ,C ,D 重合.(1)在图1中画一个格点EFG △,使点E ,F ,G 分别落在边AB ,BC ,CD 上,且90EFG ∠=︒;(2)在图2中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且MP NQ =. 注:图1,图2在答题纸上.图1图2第20题图21.(本题10分)如图,在平面直角坐标系中,二次函数21262y x x =-++的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出0y ≥时x 的取值范围; (2)把点B 向上平移m 个单位得点1B .若点1B 向左平移n 个单位,将与该二次函数图象上的点2B 重合;若点1B 向左平移(6)n +个单位,将与该二次函数图象上的点3B 重合.已知0m >,0n >,求m ,n 的值.第21题图22.(本题10分)如图,在ABC △中,90BAC ∠=︒,点E 在BC 边上,且CA CE =,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结CD ,CF .(1)求证:四边形DCFG 是平行四边形; (2)当4BE =,38CD AB =时,求⊙O 的直径长.第22题23.(本题10分)某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(本题14分)如图,在平面直角坐标系中,直线142y x =-+分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某点1Q 向终点2Q 匀速运动,它们同时到达终点. (1)求点B 的坐标和OE 的长; (2)设点2Q 为()m n ,,当tan 17O n m E F =∠时,求点2Q 的坐标; (3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点Q 3,当点Q 在线段23Q Q 上时,设3Q Q s =,AP t =,求s 关于t 的函数表达式.②当PQ 与OEF △的一边平行时,求所有满足条件的AP 的长.第24题图浙江省温州市2019年中考试卷数学答案解析卷Ⅰ一、选择题 1.【答案】A【解析】直接利用有理数乘法法则:(3)515-⨯=-. 【考点】有理数乘法法则 2.【答案】B【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同。
2019年浙江省温州市中考数学试卷(后附答案)
2019年浙江省温州市中考数学试卷一、选择题(本大题共10小题,共40.0分)1.计算:(-3)×5的结果是()A. B. 15 C. D. 22.太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000000 000用科学记数法表示为()A. B. C. D.3.某露天舞台如图所示,它的俯视图是()A. B.C. D.4.在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. B. C. D.5.对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A. 20人B. 40人C. 60人D. 80人6.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下y xA. B. C. D.7.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A. B. C. D.8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A. 米B. 米C. 米D. 米9.已知二次函数y=x2-4x+2,关于该函数在-1≤x≤3的取值范围内,下列说法正确的是()A. 有最大值,有最小值B. 有最大值0,有最小值C. 有最大值7,有最小值D. 有最大值7,有最小值10.如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a-b)=a2-b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A. B. C. D.二、填空题(本大题共6小题,共30.0分)11.分解因式:m2+4m+4=______.12.不等式组>的解为______.13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有______人.14.如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于______度.15.三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为______cm.16.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为______分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'-BE为______分米.三、解答题(本大题共8小题,共80.0分)17.计算:(1)|-6|-+(1-)0-(-3).(2)-.18.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.车间有20名工人,某一天他们生产的零件个数统计如下表.20()求这一天名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.21.如图,在平面直角坐标系中,二次函数y=-x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.22.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD=AB时,求⊙O的直径长.23.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.如图,在平面直角坐标系中,直线y=-x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO 上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长.(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.答案和解析1.【答案】A【解析】解:(-3)×5=-15;故选:A.根据正数与负数相乘的法则得(-3)×5=-15;本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.2.【答案】B【解析】解:科学记数法表示:250 000 000 000 000000=2.5×1017故选:B.利用科学记数法的表示形式进行解答即可本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n 为正整数.)3.【答案】B【解析】解:它的俯视图是:故选:B.找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【答案】A【解析】解:从中任意抽取1张,是“红桃”的概率为,故选:A.直接利用概率公式计算可得.本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.【答案】D【解析】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选:D.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.6.【答案】A【解析】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=.故选:A.直接利用已知数据可得xy=100,进而得出答案.此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.7.【答案】C【解析】解:该扇形的弧长==3π.故选:C.根据弧长公式计算.本题考查了弧长的计算:弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R).8.【答案】B【解析】解:作AD⊥BC于点D,则BD=0.3=,∵cosα=,∴sinα=,解得,AB=米,故选:B.根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】D【解析】解:∵y=x2-4x+2=(x-2)2-2,∴在-1≤x≤3的取值范围内,当x=2时,有最小值-2,当x=-1时,有最大值为y=9-2=7.故选:D.把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.【答案】C【解析】解:如图,连接ALGL,PF.由题意:S矩形AMLD =S阴=a2-b2,PH=,∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴=,∴=,整理得a=3b,∴===,故选:C.如图,连接ALGL,PF.利用相似三角形的性质求出a与b的关系,再求出面积比即可.本题源于欧几里得《几何原本》中对(a+b)(a-b)=a2-b2的探究记载.图形简单,结合了教材中平方差证明的图形进行编制.巧妙之处在于构造的三角形一边与矩形的一边等长,解题的关键是利用相似三角形的性质求出a与b的关系,进而解决问题.11.【答案】(m+2)2【解析】解:原式=(m+2)2.故答案为:(m+2)2.直接利用完全平方公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.12.【答案】1<x≤9【解析】解:,由①得,x>1,由②得,x≤9,故此不等式组的解集为:1<x≤9.故答案为:1<x≤9.分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.【答案】90【解析】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.根据题意和直方图中的数据可以求得成绩为“优良”(80分及以上)的学生人数,本题得以解决.本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.14.【答案】57【解析】解:连接OE,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.本题考查了切线的性质,圆周角定理,四边形内角和定理,熟练运用切线的性质是本题的关键.15.【答案】12+8【解析】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x-x,∵Rt△CIK中,(x-x)2+x2=22,解得x2=2+,=IO×CK=IC×BO,又∵S菱形BCOI∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE=BO=4+2,∴△ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,根据△COH是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x-x,根据勾股定理即可得出x2=2+,再根据S菱形=IO×CK=IC×BO,即可得出BO=2+2,进而得到△ABE的周长.BCOI本题主要考查了菱形的性质,解题时注意:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于两条对角线长的乘积的一半.16.【答案】(5+5) 4【解析】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=∠COD=30°,∴QM=OP=OC•cos30°=5(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在Rt△PKE中,EK==2(分米)∴BE=10-2-2=(8-2)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),在Rt△FJE′中,E′J==2,∴B′E′=10-(2-2)=12-2,∴B′E′-BE=4.故答案为5+5,4.如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.17.【答案】解:(1)原式=6-3+1+3=7;(2)原式===.【解析】(1)直接利用绝对值的性质以及零指数幂的性质分别化简得出答案;(2)直接利用分式的加减运算法则计算得出答案.此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.18.【答案】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.【解析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.19.【答案】解:(1)=×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为=12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.【解析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.20.【答案】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.【解析】(1)利用数形结合的思想构造全等三角形或等腰直角三角形解决问题即可.(2)如图3中,构造矩形即可解决问题.如图4中,构造MP=NQ=5即可.本题考查作图-应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.【答案】解:(1)令y=0,则-,解得,x1=-2,x2=6,∴A(-2,0),B(6,0),由函数图象得,当y≥0时,-2≤x≤6;(2)由题意得,B1(6-n,m),B2(-n,m),函数图象的对称轴为直线,∵点B1,B2在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n的值分别为,1.【解析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;(2)根据题意写出B1,B2的坐标,再由对称轴方程列出n的方程,求得n,进而求得m的值.本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集,平移的性质,难度不大,关键是正确运用函数的性质解题.22.【答案】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD=AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x-3x-3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF==3,即⊙O的直径长为3.【解析】(1)连接AE,由∠BAC=90°,得到CF是⊙O的直径,根据圆周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到结论;(2)设CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x-3x-3x=2x,求得BC=6+4=10,根据勾股定理得到AB==8=8x,求得x=1,在Rt△ACF中,根据勾股定理即可得到结论.本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.23.【答案】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10-8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【解析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.24.【答案】解:(1)令y=0,则-x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC==4,又∵E为BC中点,∴OE=BC=2;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM=OB=4,OE=BC=2∵∠CDN=∠NEM,∠CND=∠MNE∴△CDN∽△MEN,∴=1,∴CN=MN=1,∴EN==,∵S△ONE=EN•OF=ON•EM,∴OF==,由勾股定理得:EF===,∴tan∠EOF===,∴==,∵n=-m+4,∴m=6,n=1,∴Q2(6,1);(3)①∵动点P、Q同时作匀速直线运动,∴s关于t成一次函数关系,设s=kt+b,∵当点P运动到AO中点时,点Q恰好与点C重合,∴t=2时,CD=4,DQ3=2,∴s=Q3C==2,∵Q3(-4,6),Q2(6,1),∴t=4时,s==5,将或代入得,解得:,∴s=-,②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,作QH⊥x轴于点H,则PH=BH=PB,Rt△ABQ3中,AQ3=6,AB=4+8=12,∴BQ3==6,∵BQ=6-s=6-t+=7-t,∵cos∠QBH====,∴BH=14-3t,∴PB=28-6t,∴t+28-6t=12,t=;(ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:,∵Q3Q=s=t-,∴Q3G=t-1,GQ=3t-2,∴PH=AG=AQ3-Q3G=6-(t-1)=7-t,∴QH=QG-AP=3t-2-t=2t-2,∵∠HPQ=∠CDN,∴tan∠HPQ=tan∠CDN=,∴2t-2=,t=,(iii)由图形可知PQ不可能与EF平行,综上,当PQ与△OEF的一边平行时,AP的长为或.【解析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,进而求出OE的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由=tan∠EOF和n=-m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=2,根据Q3(-4,6),Q2(6,1),可得t=4时,s=5,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH====,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN=,列方程为2t-2=,可得t的值.(iii)由图形可知PQ不可能与EF平行.此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.第21页,共21页。
2019浙江温州中考数学试题含答案
2019浙江温州中考数学试题一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1. 计算:(-3)×5的结果是( )A. -15B. 15C. -2D. 22. 太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为( )A. 0.25×1018B. 2.5×1017C. 25×1016D. 2.5×10163. 某露天舞台如图所示,它的俯视图...是( )第3题图4. 在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为( )A. 16B. 13C. 12D. 235. 对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图,已知选择鲳鱼的有40人,那么选择黄鱼的有( )温州某社区居民最爱吃的鱼类情况统计图第5题图A. 20人B. 40人C. 60人D. 80人6. 验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于xA. y =100xB. y =x 100C. y =400xD. y =x4007. 若扇形的圆心角为90°,半径为6,则该扇形的弧长为( ) A. 32π B. 2π C. 3π D. 6π 8. 某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( )A. 95sin α米B. 95cos α米C.59sin α米 D. 55cos α米 第8题图9. 已知二次函数y =x 2-4x +2,关于该函数在-1≤x ≤3的取值范围内,下列说法正确的是( ) A. 有最大值-1,有最小值-2 B. 有最大值0,有最小值-1 C. 有最大值7,有最小值-1 D. 有最大值7,有最小值-210. 如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM =BC ,作MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解释了(a +b )(a -b )=a 2-b 2.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连接EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则S 1S 2的值为( )第10题图A.22 B. 23 C. 24 D. 26二、填空题(本题有6小题,每小题5分,共30分) 11. 分解因式:m 2+4m +4=________.12. 不等式组⎩⎪⎨⎪⎧x +2>3x -12≤4的解为________.13. 某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有______人.某校学生“汉字听写”大赛成绩的频数直方图第13题图14. 如图,⊙O 分别切∠BAC 的两边AB ,AC 于点E ,F ,点P 在优弧(EDF ︵)上.若∠BAC =66°,则∠EPF等于________度.第14题图15. 三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2 cm,若点C落在AH的延长线上,则△ABE的周长为________cm.第15题图16. 图①是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图②所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO =4分米.当∠AOC=90°时,点A离地面的距离AM为________分米;当OB从水平状态旋转到OB′(在CO 延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′-BE为________分米.第16题图三、解答题(本题有8小题,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (本题10分)计算:(1)|-6|-9+(1-2)0-(-3);(2)x+4x2+3x-13x+x2.18. (本题8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.第18题图19. (本题8分)车间有20名工人,某一天他们生产的零件个数统计如下表.(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20. (本题8分) 如图,在7×5的方格纸ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A ,B ,C ,D 重合.(1)在图中画一个格点△EFG ,使点E ,F ,G 分别落在边AB ,BC ,CD 上,且∠EFG =90°.(2)在图中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且MP =NQ .第20题图21. (本题10分)如图,在平面直角坐标系中,二次函数y =-12x 2+2x +6的图象交x 轴于点A ,B (点A 在点B 的左侧).(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围.(2)把点B 向上平移m 个单位得点B 1.若点B 1向左平移n 个单位,将与该二次函数图象上的点B 2重合;若点B 1向左平移(n +6)个单位,将与该二次函数图象上的点B 3重合.已知m >0,n >0,求m ,n 的值.第21题图22. (本题10分)如图,在△ABC 中,∠BAC =90°,点E 在BC 边上,且CA =CE ,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连接DE 并延长交AB 于点G ,连接CD ,CF .(1)求证:四边形DCFG 是平行四边形.(2)当BE =4,CD =38AB 时,求⊙O 的直径长.第22题图23. (本题12分)某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人. (1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩,景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24. (本题14分)如图,在平面直角坐标系中,直线y =-12x +4分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连接OE .动点P 在AO 上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点Q 1向终点Q 2匀速运动,它们同时到达终点.(1)求点B 的坐标和OE 的长.(2)设点Q 2为(m ,n ),当n m =17tan ∠EOF 时,求点Q 2的坐标.(3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.①延长AD 交直线BC 于点为Q 3,当点Q 在线段Q 2Q 3上时,设Q 3Q =s ,AP =t ,求s 关于t 的函数表达式.②当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.第24题图2019浙江温州中考数学解析1. A 【解析】原式=-3×5=-15.2. B 【解析】将一个大于10的数用科学记数法表示,其形式为a ×10n ,其中1≤a <10,n 为原数整数位数减1.则250000000000000000=2.5×1017.3. B 【解析】俯视图是一个几何体由上向下看所得到的视图.从这个几何体的上面看,可得到如选项B 所示的图形.4. A 【解析】从6张牌中随机抽取1张,共有6种等可能的情况,其中恰好抽到“红桃”的情况有1种,∴P (恰好抽到红桃)=16.5. D 【解析】∵由扇形统计图可知,选择鲳鱼的占20%,选择黄鱼的占40%,∵选择鲳鱼的有40人,∴总共调查的人数有40÷20%=200人,∴选择黄鱼的人数有200×40%=80人.6. A 【解析】根据题意,200×0.5=100,250×0.4=100,400×0.25=100,∴可猜想y 关于x 的函数表达式是反比例函数,设y =k x ,则k =xy =100,∴y 关于x 的函数表达式为y =100x.7. C 【解析】∵扇形的圆心角为90°,半径为6,∴弧长为90π·6180=3π.8. B 【解析】如解图,过点A 作AD ⊥BC 于点D ,由轴对称性质可知,BC =3+0.3×2=3.6 m ,∴BD=1.8 m ,∵cos α=BD AB ,∴AB =BD cos α= 1.8cos α=95cos α.第8题解图9. D 【解析】∵y =x 2-4x +2=(x -2)2-2,∴抛物线的对称轴为x =2,∵-1<2<3,∴当x =2时抛物线有最小值为-2,当x =-1时,抛物线有最大值,最大值为(-1-2)2-2=7.故选D.10. C 【解析】如解图,连接AG ,在△ABG 中,AB =2a ,BG =a ,∴AB ∶BG =2.∵LC ∥AB ,∴△LCG ∽△ABG ,∴LC ∶CG =AB ∶BG =2,∴(a -b )=2b ,第10题解图即a =3b ,∴S 2=a 2-b 2=8b 2,连接PF ,则PF =FE =a =3b ,在Rt △PFH 中,由勾股定理得PH =PF 2-FH 2=a 2-b 2=22b ,∴S 1=12PH ·HE =12×22b ·2b =22b 2,∴S 1S 2=22b 28b 2=24. 11. (m +2)2 【解析】由完全平方式可知m 2+4m +4=(m +2)2.12. 1<x ≤9 【解析】解不等式x +2>3得x >1,解不等式x -12≤4得x ≤9,∴不等式组的解集1<x ≤9.13. 90 【解析】由条形统计图可知,成绩为“优良”(80分及以上)的学生有60+30=90人.14. 57 【解析】如解图,连接OE ,OF ,∵AE ,AF 分别与⊙O 相切于点E ,F ,∴∠AEO =∠AFO =90°,∵四边形内角和为360°,∴∠EAF +∠EOF =180°,∵∠BAC =66°,∴∠EOF =114°,∴∠EPF =12∠EOF =57°.第14题解图15. 12+82 【解析】如解图,连接HC ,GD ,HG ,IC ,CD ,过点O 作OM ⊥CD ,设BO =OE =AO =2b ,∴AB =AE =22b .由菱形性质可知∠HOA =∠BOC ,∵∠BOA =90°,∴∠BOH +∠BOC =∠BOH +∠HOA =90°,∴∠COH =90°,∴CH =2OH =2AH ,∴AH AC =12+1.由菱形对称性可知,HG ∥CD ,∴△AHG ∽△ACD ,∴AN AM =AH AC ,即b 2b +1=12+1,解得b =2+1,∴△ABE 的周长为2AB +2BO =2×22b+4b =42×(2+1)+4×(2+1)=12+8 2.第15题解图16. 5+53;4 【解析】如解图,过点O 分别作OK ⊥AM ,OT ⊥CD ,垂足分别为K ,T ,则四边形MTOK 是矩形,∴MK =OT ,∵△OCD 中OC =OD ,∠COD =60°,∴△OCD 是等边三角形,∴∠OCD =60°,OT =OC sin ∠OCT =10sin60°=5 3.∵OK ∥MC ,∴∠KOC =∠OCT =60°,∵∠AOC =90°,∴∠AOK =30°,∴AK =12AO =5,∴AM =AK +KM =AK +OT =(5+53)分米.过点F 作FN ⊥OB 于点N ,作FR ⊥OC于点R ,∵∠FON =∠FOR =60°,OF =OF ,∠FNO =∠FRO ,∴△FON ≌△FOR ,∴ON =OR ,FN =FR ,∵FE =FE ′,∴Rt △FEN ≌Rt △FE ′R ,∴E ′R =EN ,∵BE =BO -ON -NE ,B ′E ′=BO -OE ′=BO -(RE ′-OR )=BO +OR -RE ′,∴B ′E ′-BE =(BO +OR -RE ′)-(BO -ON -NE )=2ON .∵在Rt △ONF 中,OF =4,∠FON =60°,∴ON =2,∴B ′E ′-BE =4.第16题解图17. 解:(1)原式=6-3+1+3=7;(2)原式=x +4-1x 2+3x =x +3x (x +3)=1x .18. (1)证明:∵CF ∥AB ,∴∠B =∠FCD ,∠BED =∠F .∵AD 是BC 边上的中线,∴BD =CD , 在△BDE 与△CDF 中, ⎩⎪⎨⎪⎧∠EBD =∠FCD ∠BED =∠CFD BD =CD, ∴△BDE ≌△CDF (AAS);(2)解:∵△BDE ≌△CDF ,∴BE =CF =2, ∴AB =AE +BE =1+2=3. ∵AD ⊥BC ,BD =CD , ∴AC =AB =3.19. 解:(1)x =120(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个. (2)中位数为12个,众数为11个.当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,8人获奖,不利于提高大多数工人的积极性; 当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性; ∴定额为11个时,有利于提高大多数工人的积极性. 20. 解:(1)画法不唯一,如解图①或解图②等; (2)画法不唯一,如解图③或解图④等.第20题解图21. 解:(1)令y =0,则-12x 2+2x +6=0,∴x 1=-2,x 2=6, ∴A (-2,0),B (6,0).由函数图象得,当y ≥0时,-2≤x ≤6; (2)由题意得B 2(6-n ,m ),B 3(-n ,m ),函数图象的对称轴为直线x =-2+62=2. ∵点B 2,B 3在二次函数图象上且纵坐标相同,∴6-n +(-n )2=2.∴n =1. ∴m =-12×(-1)2+2×(-1)+6=72. ∴m ,n 的值分别为72,1. 22.第22题解图(1)证明:如解图,连接AE ,∵∠BAC =90°,∴CF 为⊙O 的直径.∵AC =EC ,∴CF ⊥AE .∵AD 为⊙O 的直径,∴∠AED =90°,即GD ⊥AE ,∴CF ∥DG .∵AD 为⊙O 的直径,∴∠ACD =90°.∴∠ACD +∠BAC =180°.∴AB ∥CD .∴四边形DCFG 为平行四边形;(2)解:由CD =38AB ,可设CD =3x ,AB =8x , ∴CD =FG =3x .∵∠AOF =∠COD ,∴AF =CD =3x .∴BG =8x -3x -3x =2x .∵GE ∥CF ,∴BE EC =BG GF =23. 又∵BE =4,∴AC =CE =6.∴BC =6+4=10.∴AB =102-62=8=8x .∴x =1.在Rt △ACF 中,AF =3,AC =6,∴CF =32+62=35,即⊙O 的直径长为3 5.23. 解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得⎩⎪⎨⎪⎧x +y +10=32x =y +12,解得⎩⎪⎨⎪⎧x =17y =5.答:该旅行团中成人17人,少年5人.(2)①∵成人8人可免费带8名儿童,∴所需门票的总费用为:100×8+100×0.8×5+100×0.6×(10-8)=1320(元);②设可以安排成人a 人、少年b 人带队,则1≤a ≤17,1≤b ≤5.当10≤a ≤17时,(ⅰ)当a =10时,100×10+80b ≤1200,∴b ≤52, ∴b 最大值=2,此时a +b =12,费用为1160元;(ⅱ)当a =11时,100×11+80b ≤1200,∴b ≤54, ∴b 最大值=1,此时a +b =12,费用为1180元;(ⅲ)当a ≥12时,100a ≥1200,即成人门票至少需要1200元,不合题意,舍去.当1≤a <10时,(ⅰ)当a =9时,100×9+80b +60≤1200,∴b ≤3,∴b 最大值=3,此时a +b =12,费用为1200元;(ⅱ)当a =8时,100×8+80b +2×60≤1200,∴b ≤72, ∴b 最大值=3,此时a +b =11<12.不合题意,舍去;(ⅲ)同理,当a <8时,a +b <12,不合题意,舍去;综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.24. 解:(1)令y =0,则-12x +4=0, ∴x =8,∴B 为(8,0).∴C 为(0,4).在Rt △BOC 中,BC =82+42=4 5.又∵E 为BC 中点,∴OE =12BC =25;第24题解图①(2)如解图①,作EM ⊥OC 于点M ,DE 交y 轴于N 点,则EM ∥CD ,∴△CDN ∽△MEN ,∴CN MN =CD EM=1, ∴CN =MN =1,∴EN =12+42=17.∵EN ·OF =ON ·EM ,∴OF =3×417=121717,由勾股定理得EF =141717, ∴tan ∠EOF =EF OF =76,∴n m =17×76=16. ∵n =-12m +4,∴m =6,n =1, ∴Q 2为(6,1);(3)①∵动点P ,Q 同时作匀速直线运动,∴s 关于t 成一次函数关系,设s =kt +b ,将⎩⎨⎧t =2s =25和⎩⎨⎧t =4s =55代入得⎩⎨⎧2k +b =254k +b =55,解得⎩⎪⎨⎪⎧k =325b =-5, ∴s =325t -5;第24题解图②②(ⅰ)当PQ ∥OE 时(如解图②),∠QPB =∠EOB =∠OBE ,作QH ⊥x 轴于点H ,则PH =BH =12PB . ∵BQ =65-s =65-325t +5 =75-325t , 又∵cos ∠QBH =HB QB =255, ∴BH =14-3t ,∴PB =28-6t ,∴t +28-6t =12,∴t =165; (ⅱ)当PQ ∥OF 时(如解图③),过点Q 作QG ⊥AQ 3于点G ,过点P 作PH ⊥GQ 于点H , 由△Q 3QG ∽△CBO 得Q 3G ∶QG ∶Q 3Q =1∶2∶ 5.∵Q 3Q =s =325t -5,第24题解图③∴Q 3G =32t -1,QG =3t -2,∴PH =AG =AQ 3-Q 3G=6-(32t -1)=7-32t , QH =QG -AP =3t -2-t =2t -2.∵∠HPQ =∠CDN .∴tan ∠HPQ =tan ∠CDN =14. ∴2t -2=14(7-32t ), ∴t =3019; (ⅲ)由图形可知PQ 不可能与EF 平行.综上所述,当PQ 与△OEF 的一边平行时,AP 的长为165或3019.。
2019浙江省温州市中考数学试题(解析版)
2019年浙江省温州市中考数学试卷一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.22.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×10163.(4分)某露天舞台如图所示,它的俯视图是()A .B .C .D .4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A .B .C .D .5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A.y =B.y =C.y =D.y =7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A .πB.2πC.3πD.6π8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A .米B .米C .米D .米9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣210.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G 在同一直线上,则的值为()A .B .C .D .二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=.12.(5分)不等式组的解为.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于度.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为cm.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE为分米.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.21.(10分)如图,在平面直角坐标系中,二次函数y =﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD =AB时,求⊙O的直径长.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.(14分)如图,在平面直角坐标系中,直线y =﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.2019年浙江省温州市中考数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.(4分)计算:(﹣3)×5的结果是()A.﹣15B.15C.﹣2D.2【分析】根据正数与负数相乘的法则得(﹣3)×5=﹣15;【解答】解:(﹣3)×5=﹣15;故选:A.【点评】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.2.(4分)太阳距离银河系中心约为250 000 000 000 000 000公里,其中数据250 000 000 000 000 000用科学记数法表示为()A.0.25×1018B.2.5×1017C.25×1016D.2.5×1016【分析】利用科学记数法的表示形式进行解答即可【解答】解:科学记数法表示:250 000 000 000 000 000=2.5×1017故选:B.【点评】本题主要考查科学记数法,科学记数法是指把一个数表示成a×10的n次幂的形式(1≤a<10,n为正整数.)3.(4分)某露天舞台如图所示,它的俯视图是()A .B .C .D .【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:它的俯视图是:故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.(4分)在同一副扑克牌中抽取2张“方块”,3张”梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A .B .C .D .【分析】直接利用概率公式计算可得.【解答】解:从中任意抽取1张,是“红桃”的概率为,故选:A.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(4分)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【解答】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选:D.【点评】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.6.(4分)验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10A.y =B.y =C.y =D.y =【分析】直接利用已知数据可得xy=100,进而得出答案.【解答】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y =.故选:A.【点评】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.7.(4分)若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A .πB.2πC.3πD.6π【分析】根据弧长公式计算.【解答】解:该扇形的弧长==3π.故选:C.【点评】本题考查了弧长的计算:弧长公式:l =(弧长为l,圆心角度数为n,圆的半径为R).8.(4分)某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A .米B .米C .米D .米【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【解答】解:作AD⊥BC于点D,则BD =0.3=,∵cosα=,∴sinα=,解得,AB =米,故选:B.【点评】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.9.(4分)已知二次函数y=x2﹣4x+2,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A.有最大值﹣1,有最小值﹣2B.有最大值0,有最小值﹣1C.有最大值7,有最小值﹣1D.有最大值7,有最小值﹣2【分析】把函数解析式整理成顶点式解析式的形式,然后根据二次函数的最值问题解答.【解答】解:∵y=x2﹣4x+2=(x﹣2)2﹣2,∴在﹣1≤x≤3的取值范围内,当x=2时,有最小值﹣2,当x=﹣1时,有最大值为y=9﹣2=7.故选:D.【点评】本题考查了二次函数的最值问题,把函数解析式转化为顶点式形式是解题的关键.10.(4分)如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N,欧几里得在《几何原本》中利用该图解释了(a+b)(a﹣b)=a2﹣b2,现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G 在同一直线上,则的值为()A .B .C .D .【分析】如图,连接ALGL,PF.利用相似三角形的性质求出a与b的关系,再求出面积比即可.【解答】解:如图,连接ALGL,PF.由题意:S矩形AMLD=S阴=a2﹣b2,PH =,∵点A,L,G在同一直线上,AM∥GN,∴△AML∽△GNL,∴=,∴=,整理得a=3b,∴===,故选:C.【点评】本题源于欧几里得《几何原本》中对(a+b)(a﹣b)=a2﹣b2的探究记载.图形简单,结合了教材中平方差证明的图形进行编制.巧妙之处在于构造的三角形一边与矩形的一边等长,解题的关键是利用相似三角形的性质求出a与b的关系,进而解决问题.二、填空题(本题有6小题,每小题5分,共30分)11.(5分)分解因式:m2+4m+4=(m+2)2.【分析】直接利用完全平方公式分解因式得出答案.【解答】解:原式=(m+2)2.故答案为:(m+2)2.【点评】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.12.(5分)不等式组的解为1<x≤9.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>1,由②得,x≤9,故此不等式组的解集为:1<x≤9.故答案为:1<x≤9.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.(5分)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有90人.【分析】根据题意和直方图中的数据可以求得成绩为“优良”(80分及以上)的学生人数,本题得以解决.【解答】解:由直方图可得,成绩为“优良”(80分及以上)的学生有:60+30=90(人),故答案为:90.【点评】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.14.(5分)如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧()上,若∠BAC=66°,则∠EPF等于57度.【分析】连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.【解答】解:连接OE,OF∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57°【点评】本题考查了切线的性质,圆周角定理,四边形内角和定理,熟练运用切线的性质是本题的关键.15.(5分)三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE 的周长为12+8cm.【分析】连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,根据△COH是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO ,设CK=OK=x,则CO=IO=x,IK=x﹣x,根据勾股定理即可得出x2=2+,再根据S菱形BCOI=IO×CK=IC×BO,即可得出BO=2+2,进而得到△ABE的周长.【解答】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK =x,则CO=IO=x,IK =x﹣x,∵Rt△CIK中,(x﹣x)2+x2=22,解得x2=2+,又∵S菱形BCOI=IO×CK =IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE =BO=4+2,∴△ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.【点评】本题主要考查了菱形的性质,解题时注意:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于两条对角线长的乘积的一半.16.(5分)图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为(5+5)分米;当OB从水平状态旋转到OB'(在CO延长线上)时,点E绕点F随之旋转至OB'上的点E'处,则B'E'﹣BE 为4分米.【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【解答】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K ,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=∠COD=30°,∴QM =OP=OC•cos30°=5(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在Rt △PKE中,EK==2(分米)∴BE=10﹣2﹣2=(8﹣2)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),在Rt△FJE ′中,E′J==2,∴B′E′=10﹣(2﹣2)=12﹣2,∴B′E ′﹣BE=4.故答案为5+5,4.【点评】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题(本题有8小题,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(10分)计算:(1)|﹣6|﹣+(1﹣)0﹣(﹣3).(2)﹣.【分析】(1)直接利用绝对值的性质以及零指数幂的性质分别化简得出答案;(2)直接利用分式的加减运算法则计算得出答案.【解答】解:(1)原式=6﹣3+1+3=7;(2)原式===.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.18.(8分)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF.(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【解答】(1)证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵AD是BC边上的中线,∴BD=CD,∴△BDE≌△CDF(AAS);(2)解:∵△BDE≌△CDF,∴BE=CF=2,∴AB=AE+BE=1+2=3,∵AD⊥BC,BD=CD,∴AC=AB=3.【点评】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.19.(8分)车间有20名工人,某一天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表生产零件的个数(个)91011121315161920工人人数(人)116422211(1)求这一天20名工人生产零件的平均个数.(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.【解答】解:(1)=×(9×1+10×1+11×6+12×4+13×2+15×2+16×2+19×1+20×1)=13(个);答:这一天20名工人生产零件的平均个数为13个;(2)中位数为=12(个),众数为11个,当定额为13个时,有8人达标,6人获奖,不利于提高工人的积极性;当定额为12个时,有12人达标,6人获奖,不利于提高大多数工人的积极性;当定额为11个时,有18人达标,12人获奖,有利于提高大多数工人的积极性;∴定额为11个时,有利于提高大多数工人的积极性.【点评】此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.20.(8分)如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°.(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.【分析】(1)利用数形结合的思想构造全等三角形或等腰直角三角形解决问题即可.(2)如图3中,构造矩形即可解决问题.如图4中,构造MP=NQ=5即可.【解答】解:(1)满足条件的△EFG,如图1,2所示.(2)满足条件的四边形MNPQ如图所示.【点评】本题考查作图﹣应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.(10分)如图,在平面直角坐标系中,二次函数y =﹣x2+2x+6的图象交x轴于点A,B(点A在点B的左侧)(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围.(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B2重合.已知m>0,n>0,求m,n的值.【分析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;(2)根据题意写出B1,B2的坐标,再由对称轴方程列出n的方程,求得n,进而求得m的值.【解答】解:(1)令y=0,则﹣,解得,x1=﹣2,x2=6,∴A(﹣2,0),B(6,0),由函数图象得,当y≥0时,﹣2≤x≤6;(2)由题意得,B1(6﹣n,m),B2(﹣n,m),函数图象的对称轴为直线,∵点B1,B2在二次函数图象上且纵坐标相同,∴,∴n=1,∴,∴m,n 的值分别为,1.【点评】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集,平移的性质,难度不大,关键是正确运用函数的性质解题.22.(10分)如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形.(2)当BE=4,CD =AB时,求⊙O的直径长.【分析】(1)连接AE,由∠BAC=90°,得到CF是⊙O的直径,根据圆周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到结论;(2)设CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x﹣3x﹣3x=2x,求得BC=6+4=10,根据勾股定理得到AB ==8=8x,求得x=1,在Rt△ACF中,根据勾股定理即可得到结论.【解答】(1)证明:连接AE,∵∠BAC=90°,∴CF是⊙O的直径,∵AC=EC,∴CF⊥AE,∵AD是⊙O的直径,∴∠AED=90°,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴∠ACD+∠BAC=180°,∴AB∥CD,∴四边形DCFG是平行四边形;(2)解:由CD =AB,设CD=3x,AB=8x,∴CD=FG=3x,∵∠AOF=∠COD,∴AF=CD=3x,∴BG=8x﹣3x﹣3x=2x,∵GE∥CF,∴,∵BE=4,∴AC=CE=6,∴BC=6+4=10,∴AB ==8=8x,∴x=1,在Rt△ACF中,AF=10,AC=6,∴CF ==3,即⊙O的直径长为3.【点评】本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.23.(12分)某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【分析】(1)根据题意可以列出相应的方程组,本题得以解决;(2)①根据题意可以求得由成人8人和少年5人带队,所需门票的总费用;②利用分类讨论的方法可以求得相应的方案以及花费,再比较花费多少即可解答本题.【解答】解:(1)设成人有x人,少年y人,,解得,,答:该旅行团中成人与少年分别是17人、5人;(2)①由题意可得,由成人8人和少年5人带队,则所需门票的总费用是:100×8+5×100×0.8+(10﹣8)×100×0.6=1320(元),答:由成人8人和少年5人带队,则所需门票的总费用是1320元;②设可以安排成人a人,少年b人带队,则1≤a≤17,1≤b≤5,当10≤a≤17时,若a=10,则费用为100×10+100×b×0.8≤1200,得b≤2.5,∴b的最大值是2,此时a+b=12,费用为1160元;若a=11,则费用为100×11+100×b×0.8≤1200,得b ≤,∴b的最大值是1,此时a+b=12,费用为1180元;若a≥12,100a≥1200,即成人门票至少是1200元,不合题意,舍去;当1≤a<10时,若a=9,则费用为100×9+100b×0.8+100×1×0.6≤1200,得b≤3,∴b的最大值是3,a+b=12,费用为1200元;若a=8,则费用为100×8+100b×0.8+100×2×0.6≤1200,得b≤3.5,∴b的最大值是3,a+b=11<12,不合题意,舍去;同理,当a<8时,a+b<12,不合题意,舍去;综上所述,最多安排成人和少年12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中成人10人,少年2人时购票费用最少.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的数学思想解答.24.(14分)如图,在平面直角坐标系中,直线y =﹣x+4分别交x轴、y轴于点B,C,正方形AOCD的顶点D在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O匀速运动,同时,动点Q在直线BC上从某一点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长(2)设点Q2为(m,n),当=tan∠EOF时,求点Q2的坐标.(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长;(2)如图1,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF 的长,由=tan∠EOF和n =﹣m+4,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t =2时,CD=4,DQ3=2,s=2,根据Q3(﹣4,6),Q2(6,1),可得t=4时,s=5,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,如图2,根据cos∠QBH ====,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,如图3,根据tan∠HPQ=tan∠CDN =,列方程为2t﹣2=,可得t的值.(iii)由图形可知PQ不可能与EF平行.【解答】解:(1)令y=0,则﹣x+4=0,∴x=8,∴B(8,0),∵C(0,4),∴OC=4,OB=8,在Rt△BOC中,BC ==4;(2)如图1,作EM⊥OC于M,则EM∥CD,∵E是BC的中点∴M是OC的中点∴EM =OB=4,OE =BC=2∵∠CDN=∠NEM,∠CND=∠MNE∴△CDN∽△MEN,∴=1,∴CN=MN=1,∴EN ==,∵S△ONE =EN•OF =ON•EM,∴OF ==,由勾股定理得:EF ===,∴tan∠EOF ===,∴==,∵n =﹣m+4,∴m=6,n=1,∴Q2(6,1);(3)①∵动点P、Q同时作匀速直线运动,∴s关于t成一次函数关系,设s=kt+b,∵当点P运动到AO中点时,点Q恰好与点C重合,∴t=2时,CD=4,DQ3=2,∴s=Q3C ==2,∵Q3(﹣4,6),Q2(6,1),∴t=4时,s ==5,将或代入得,解得:,∴s =﹣,②(i)当PQ∥OE时,如图2,∠QPB=∠EOB=∠OBE,作QH⊥x轴于点H,则PH=BH =PB,Rt△ABQ3中,AQ3=6,AB=4+8=12,∴BQ3==6,∵BQ=6﹣s=6﹣t +=7﹣t,∵cos∠QBH ====,∴BH=14﹣3t,∴PB=28﹣6t,∴t+28﹣6t=12,t =;(ii)当PQ∥OF时,如图3,过点Q作QG⊥AQ3于点G,过点P作PH⊥GQ于点H,由△Q3QG∽△CBO得:Q3G:QG:Q3Q=1:2:,∵Q3Q=s =t ﹣,∴Q3G =t﹣1,GQ=3t﹣2,∴PH=AG=AQ3﹣Q3G=6﹣(t﹣1)=7﹣t,∴QH=QG﹣AP=3t﹣2﹣t=2t﹣2,∵∠HPQ=∠CDN,∴tan∠HPQ=tan∠CDN=,∴2t﹣2=,t=,(iii)由图形可知PQ不可能与EF平行,综上,当PQ与△OEF的一边平行时,AP的长为或.【点评】此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.。
2019年浙江温州中考数学试卷及答案
【导语】®⽆忧考⽹中考频道⼩编提醒参加2019中考的所有考⽣,浙江温州2019年中考将于6⽉中旬陆续开始举⾏,浙江温州中考时间具体安排考⽣可点击进⼊“”栏⽬查询,请⼴⼤考⽣提前准备好准考证及考试需要的⽤品,然后顺顺利利参加本届初中学业⽔平考试,具体如下:为⽅便考⽣及时估分,®⽆忧考⽹中考频道将在本次中考结束后陆续公布2019年浙江温州中考数学试卷及答案信息。
考⽣可点击进⼊浙江温州中考频道《、》栏⽬查看浙江温州中考数学试卷及答案信息。
中考科⽬语⽂、数学、英语、物理、化学、政治、历史、地理、⽣物、体育(各地区有所不同,具体以地区教育考试院公布为准。
)考试必读可以在中考前⼀天下午去考场看看,熟悉⼀下考场环境。
确定去考场的⽅式,是坐公共汽车、出租车还是骑⾃⾏车等;确定去考场的⾏车路线。
在校内去考场的路上,⼀旦发⽣意外,要及时求助于监考⽼师或警察。
中考所⽤的2B铅笔、0.5mm⿊⾊墨⽔签字笔、橡⽪、垫板、圆规、尺⼦以及准考证等,都应归纳在⼀起,在前⼀天晚上就准备好,放⼊⼀个透明的塑料袋或⽂件袋中。
涂答题卡的2B铅笔要提前削好(如果是⾃动笔,要防⽌买到假冒产品)。
不要⾃⼰夹带草稿纸,不要把⼿机、⼩灵通等通讯⼯具带⼊考场,如果带了的话⼀定要关机(以免对⾃⼰造成影响)。
有些地区禁⽌携带⼿机等通讯⼯具进⼊考场,否则将以作弊论处。
中考数学®⽆忧考⽹为了能让⼴⼤考⽣及时⽅便获取浙江温州中考数学试卷答案信息,特别整理了《2019浙江温州中考数学试卷及答案》发布⼊⼝供⼴⼤考⽣查阅。
数学真题/答案[解析]专题推荐参加2019中考的考⽣可直接查阅各科2019年浙江温州中考试题及答案信息!考试须知⼀、考⽣凭《准考证》(社会⼈员须持准考证及⾝份证)提前15分钟进⼊指定试室(英语科提前20分钟)对号⼊座,并将《准考证》放在桌⼦左上⾓,以便查对。
考⽣除带必要的⽂具,如2B铅笔、⿊⾊字迹的钢笔或签字笔、直尺、圆规、三⾓板、橡⽪外,禁⽌携带任何书籍、笔记、资料、报刊、草稿纸以及各种⽆线通讯⼯具(如寻呼机、移动电话)、电⼦笔记本等与考试⽆关的物品(数学科考试可带指定型号的计算器)。
2019年温州市中考数学试题(附答案)精选全文完整版
精选全文完整版2019年温州市中考数学试题(附答案) 一、选择题1.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)2.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cm B.10cm C.20cm D.40cm3.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°4.如图抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc>0;②a﹣b+c<0;③2a+b>0;④b2﹣4ac>0;正确的有()个.A .1B .2C .3D .4 5.下列运算正确的是( ) A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅=6.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°7.如果,则a 的取值范围是( )A .B .C .D .8.如图,⊙C 过原点,且与两坐标轴分别交于点A 、点B ,点A 的坐标为(0,3),M 是第三象限内OB 上一点,∠BMO=120°,则⊙C 的半径长为( )A .6B .5C .3D .329.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)10.如图,已知⊙O 的半径是2,点A 、B 、C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分面积为( )A .23π﹣23 B .13π﹣3 C .43π﹣23D .43π﹣3 11.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根12.下列各式化简后的结果为32 的是( ) A .6B .12C .18D .36二、填空题13.如图,⊙O 是△ABC 的外接圆,∠A =45°,则cos ∠OCB 的值是________.14.如图,矩形ABCD 中,AB=3,对角线AC ,BD 相交于点O ,AE 垂直平分OB 于点E ,则AD 的长为____________.15.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .16.如图,在Rt △AOB 中,OA=OB=32O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),则切线PQ 的最小值为 .17.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n个图形中有______个三角形(用含n的式子表示)18.农科院新培育出A、B两种新麦种,为了了解它们的发芽情况,在推广前做了五次发芽实验,每次随机各自取相同种子数,在相同的培育环境中分别实验,实验情况记录如下:种子数量10020050010002000A出芽种子数961654919841965发芽率0.960.830.980.980.98B出芽种子数961924869771946发芽率0.960.960.970.980.97下面有三个推断:①当实验种子数量为100时,两种种子的发芽率均为0.96,所以他们发芽的概率一样;②随着实验种子数量的增加,A种子出芽率在0.98附近摆动,显示出一定的稳定性,可以估计A种子出芽的概率是0.98;③在同样的地质环境下播种,A种子的出芽率可能会高于B种子.其中合理的是__________(只填序号).19.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.20.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3,那么tan∠DCF的值是____.三、解答题21.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长; (2)求△ADB 的面积.22.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根; (2)求证:不论a 取何实数,该方程都有两个不相等的实数根.23.某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.24.如图,BD 是△ABC 的角平分线,过点D 作DE∥BC 交AB 于点E ,DF∥AB 交BC 于点F . (1)求证:四边形BEDF 为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF 的面积.25.如图,ABC ∆是边长为4cm 的等边三角形,边AB 在射线OM 上,且6OA cm =,点D 从点O 出发,沿OM 的方向以1cm/s 的速度运动,当D 不与点A 重合时,将ACD ∆绕点C 逆时针方向旋转60°得到BCE ∆,连接DE. (1)如图1,求证:CDE ∆是等边三角形;(2)如图2,当6<t<10时,DE是否存在最小值?若存在,求出DE的最小值;若不存在,请说明理由.(3)当点D在射线OM上运动时,是否存在以D,E,B为顶点的三角形是直角三角形?若存在,求出此时t的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D . 【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.D解析:D 【解析】 【分析】根据菱形的性质得出AB=BC=CD=AD ,AO=OC ,根据三角形的中位线求出BC ,即可得出答案. 【详解】∵四边形ABCD 是菱形, ∴AB=BC=CD=AD ,AO=OC , ∵AM=BM ,∴BC=2MO=2×5cm=10cm , 即AB=BC=CD=AD=10cm , 即菱形ABCD 的周长为40cm , 故选D . 【点睛】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC 是解此题的关键.3.C解析:C 【解析】 【分析】根据平行四边形性质和折叠性质得∠BAC =∠ACD =∠B′AC =12∠1,再根据三角形内角和定理可得. 【详解】∵四边形ABCD 是平行四边形, ∴AB ∥CD , ∴∠ACD =∠BAC ,由折叠的性质得:∠BAC =∠B′AC , ∴∠BAC =∠ACD =∠B′AC =12∠1=22° ∴∠B =180°-∠2-∠BAC =180°-44°-22°=114°; 故选C . 【点睛】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质,求出∠BAC 的度数是解决问题的关键.4.B解析:B 【解析】 【分析】由图像可知a >0,对称轴x=-2ba=1,即2a +b =0,c <0,根据抛物线的对称性得x=-1时y=0,抛物线与x 轴有2个交点,故△=b 2﹣4ac >0,由此即可判断. 【详解】解:∵抛物线开口向上, ∴a >0,∵抛物线的对称轴为直线x =﹣2ba=1, ∴b =﹣2a <0,∵抛物线与y 轴的交点在x 轴下方, ∴c <0,∴abc >0,所以①正确;∵抛物线与x 轴的一个交点为(3,0),而抛物线的对称轴为直线x =1, ∴抛物线与x 轴的另一个交点为(﹣1,0), ∵x =﹣1时,y =0, ∴a ﹣b +c =0,所以②错误; ∵b =﹣2a ,∴2a +b =0,所以③错误; ∵抛物线与x 轴有2个交点, ∴△=b 2﹣4ac >0,所以④正确. 故选B . 【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.5.D解析:D【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C、a6÷a2=a4,故错误;D、a·a3=a4,正确;故选:D.【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.6.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.7.B解析:B【解析】试题分析:根据二次根式的性质1可知:,即故答案为B..考点:二次根式的性质.8.C解析:C【解析】【分析】先根据圆内接四边形的性质求出∠OAB的度数,由圆周角定理可知∠AOB=90°,故可得出∠ABO的度数,根据直角三角形的性质即可得出AB的长,进而得出结论.【详解】解:∵四边形ABMO是圆内接四边形,∠BMO=120°,∴∠BAO=60°,∵∠AOB=90°,∴AB是⊙C的直径,∴∠ABO=90°-∠BAO=90°-60°=30°,∵点A的坐标为(0,3),∴OA=3,∴AB=2OA=6,∴⊙C的半径长=3,故选:C【点睛】本题考查的是圆内接四边形的性质、圆周角定理及直角三角形的性质,熟知圆内接四边形对角互补的性质是解答此题的关键.9.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.10.C解析:C【解析】分析:连接OB和AC交于点D,根据菱形及直角三角形的性质先求出AC的长及∠AOC 的度数,然后求出菱形ABCO及扇形AOC的面积,则由S菱形ABCO﹣S扇形AOC可得答案.详解:连接OB和AC交于点D,如图所示:∵圆的半径为2,∴OB=OA=OC=2,又四边形OABC 是菱形,∴OB ⊥AC ,OD=12OB=1, 在Rt △COD 中利用勾股定理可知:22213-=,3 ∵sin ∠COD= 3CD OC = ∴∠COD=60°,∠AOC=2∠COD=120°,∴S 菱形ABCO =12B×AC=12×2×33 S 扇形AOC =2120243603ππ⨯⨯=, 则图中阴影部分面积为S 菱形ABCO ﹣S 扇形AOC =4233π- 故选C .点睛:本题考查扇形面积的计算及菱形的性质,解题关键是熟练掌握菱形的面积=12a•b (a 、b 是两条对角线的长度);扇形的面积=2360n r π,有一定的难度. 11.A解析:A【解析】【分析】先化成一般式后,在求根的判别式,即可确定根的状况.【详解】解:原方程可化为:2240x x --=,1a ,2b =-,4c =-,2(2)41(4)200∴∆=--⨯⨯-=>,∴方程由两个不相等的实数根.故选:A .【点睛】本题运用了根的判别式的知识点,把方程转化为一般式是解决问题的关键.12.C解析:C【解析】A 不能化简;BC ,故正确;D ,故错误;故选C .点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.二、填空题13.【解析】【分析】根据圆周角定理可得∠BOC=90°易求BC=OC 从而可得cos∠OCB 的值【详解】∵∠A=45°∴∠BOC=90°∵OB=OC 由勾股定理得BC=OC∴cos∠OCB=故答案为【点睛】解析:2【解析】【分析】根据圆周角定理可得∠BOC=90°,易求OC ,从而可得cos ∠OCB 的值.【详解】∵∠A =45°,∴∠BOC=90°∵OB=OC ,由勾股定理得,OC ,∴cos ∠OCB =OC BC ==.故答案为2. 【点睛】 本题考查的是圆周角定理、等腰直角三角形的判定及锐角三角函数的定义,属较简单题目题目.14.【解析】试题解析:∵四边形ABCD 是矩形∴OB=ODOA=OCAC=BD∴OA=OB∵AE 垂直平分OB∴AB=AO∴OA=AB=OB=3∴BD=2OB=6∴AD =【点睛】此题考查了矩形的性质等边三角解析:【解析】试题解析:∵四边形ABCD 是矩形,∴OB =OD ,OA =OC ,AC =BD ,∴OA=OB ,∵AE 垂直平分OB ,∴AB =AO ,∴OA =AB =OB =3,∴BD =2OB =6,∴AD =22226333BD AB -=-=.【点睛】此题考查了矩形的性质、等边三角形的判定与性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.15.110°【解析】∵a ∥b ∴∠3=∠1=70°∵∠2+∠3=180°∴∠2=110° 解析:110°【解析】∵a ∥b ,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°16.【解析】试题分析:连接OPOQ ∵PQ 是⊙O 的切线∴OQ ⊥PQ 根据勾股定理知PQ2=OP2﹣OQ2∴当PO ⊥AB 时线段PQ 最短此时∵在Rt △AOB 中OA=OB=∴AB=OA=6∴OP=AB=3∴解析:22【解析】试题分析:连接OP 、OQ ,∵PQ 是⊙O 的切线,∴OQ ⊥PQ .根据勾股定理知PQ 2=OP 2﹣OQ 2,∴当PO ⊥AB 时,线段PQ 最短.此时,∵在Rt △AOB 中,OA=OB=,∴AB=OA=6.∴OP=AB=3. ∴. 17.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3;图②中三角形的个数为5=4×2-3;图③中三角形的个数为9=4×3-3;…可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.18.②③【解析】分析:根据随机事件发生的频率与概率的关系进行分析解答即可详解:(1)由表中的数据可知当实验种子数量为100时两种种子的发芽率虽然都是96但结合后续实验数据可知此时的发芽率并不稳定故不能确解析:②③【解析】分析:根据随机事件发生的“频率”与“概率”的关系进行分析解答即可.详解:(1)由表中的数据可知,当实验种子数量为100时,两种种子的发芽率虽然都是96%,但结合后续实验数据可知,此时的发芽率并不稳定,故不能确定两种种子发芽的概率就是96%,所以①中的说法不合理;(2)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,故可以估计A种种子发芽的概率是98%,所以②中的说法是合理的;(3)由表中数据可知,随着实验次数的增加,A种种子发芽的频率逐渐稳定在98%左右,而B种种子发芽的频率稳定在97%左右,故可以估计在相同条件下,A种种子发芽率大于B种种子发芽率,所以③中的说法是合理的.故答案为:②③.点睛:理解“随机事件发生的频率与概率之间的关系”是正确解答本题的关键. 19.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【分析】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x 千米/时,则原来列车的速度为(x ﹣40)千米/时, 根据题意得:13201320304060x x -=-. 故答案为:13201320304060x x -=-. 【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系. 20.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB=CD∠D=90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF=BC∵∴∴设CD =2xCF =3x∴∴tan∠DCF=故答案为:【点解析:2. 【解析】【分析】【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC , ∵AB 2BC 3=,∴CD 2CF 3=.∴设CD =2x ,CF =3x ,∴.∴tan ∠DCF =DF CD =.故答案为:2. 【点睛】 本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.三、解答题21.(1)DE=3;(2)ADB S 15∆=.【解析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC中,由勾股定理得:AB 10===,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 22.(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=. ∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.23.(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人x 人,少年y 人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可; ②分情况讨论,分别求出在a 的不同取值范围内b 的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人x 人,少年y 人,根据题意,得103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩. 答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:()10081000.851000.6108=1320⨯+⨯⨯+⨯⨯-(元).②设可以安排成人a 人、少年b 人带队,则11715a b ,. 当1017a 时,(ⅰ)当10a =时,10010801200b ⨯+,∴52b, ∴2b =最大值,此时12a b +=,费用为1160元.(ⅱ)当11a =时,10011801200b ⨯+,∴54b, ∴1b =最大值,此时12a b +=,费用为1180元. (ⅲ)当12a 时,1001200a ,即成人门票至少需要1200元,不合题意,舍去. 当110a <时,(ⅰ)当9a =时,100980601200b ⨯++,∴3b ≤,∴3b =最大值,此时12a b +=,费用为1200元.(ⅱ)当8a =时,100880601200b ⨯++,∴72b ≤,∴3b =最大值,此时1112a b +=<,不合题意,舍去.(ⅲ)同理,当8a <时,12a b +<,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.24.(1)见解析【解析】【分析】(1)根据平行四边形的和菱形的判定证明即可;(2)根据含30°的直角三角形的性质和勾股定理以及菱形的面积解答即可.【详解】证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形BFDE 是平行四边形,∵BD 是△ABC 的角平分线,∴∠EBD=∠DBF ,∵DE ∥BC ,∴∠EDB=∠DBF ,∴∠EBD=∠EDB ,∴BE=ED ,∴平行四边形BFDE 是菱形;(2)连接EF ,交BD 于O ,∵∠BAC=90°,∠C=30°,∴∠ABC=60°,∵BD 平分∠ABC ,∴∠DBC=30°,∴BD=DC=12,∵DF ∥AB ,∴∠FDC=∠A=90°,∴4333== 在Rt △DOF 中,()222243623DF OD -=-= ∴菱形BFDE 的面积=12×EF •BD =12×12×33 【点评】 此题考查了菱形的判定和性质,熟练掌握菱形的判定和性质是解题的关键.25.(1)详见解析;(2)存在,3;(3)当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质结合△ABC 是等边三角形可得∠DCB=60°,CD=CE ,从而可得△CDE 是等边三角形;(2)由(1)可知△CDE 是等边三角形,由此可得DE=CD ,因此当CD ⊥AB 时,CD 最短,则DE 最短,结合△ABC 是等边三角形,AC=4即可求得此时DE=CD=23 (3)由题意需分0≤t <6,6<t <10和t >10三种情况讨论,①当0≤t <6时,由旋转可知,∠ABE=60°,∠BDE <60°,由此可知:此时若△DBE 是直角三角形,则∠BED=90°;②当6<t <10s 时,由性质的性质可知∠DBE=120°>90°,由此可知:此时△DBE 不可能是直角三角形;③当t >10s 时,由旋转的性质可知,∠DBE=60°,结合∠CDE=60°可得∠BDE=∠CDE+∠BDC=60°+∠BDC>60°,由此可得∠BED<60°,由此可知此时若△BDE是直角三角形,则只能是∠BDE=90°;这样结合已知条件即可分情况求出对应的t的值了.试题解析:(1)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由(1)知,△CDE是等边三角形,∴DE=CD,由垂线段最短可知,当CD⊥AB时,CD最小,此时∠ADC=90°,又∵∠ACD=60°,∴∠ACD=30°,∴ AD=12AC=2,∴ CD=22224223AC AD-=-=,∴ DE=23(cm);(3)存在,理由如下:①当0s≤t<6s时,由旋转可知,∠ABE=60°,∠BDE<60°,∴此时若△DBE是直角三角形,则∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEC=60°,∴∠CEB=∠BED-∠DEC=30°,∴∠CDA=∠CEB=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴t=2÷1=2(s);②当6s<t<10s时,由性质的性质可知∠DBE=120°>90°,∴此时△DBE不可能是直角三角形;③当t>10s时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14cm,∴t=14÷1=14(s);综上所述:当t=2s或14s时,以D、E、B为顶点的三角形是直角三角形.点睛:(1)解第2小题的关键是:抓住点D在运动过程中,△DBE是等边三角形这一点得到DE=CD,从而可知当CD⊥AB时,CD最短,则DE最短,由此即可由已知条件解得DE的最小值;(2)解第3小题的关键是:根据点D的不同位置分为三段时间,结合已知条件首先分析出在每个时间段内△BDE中哪个角能够是直角,然后再结合已知条件进行解答即可求得对应的t的值了.。
【中考真题】2019年浙江省温州市中考数学试题(解析版)word【推荐】
2019年浙江省温州市中考数学试题(解析版)2019年浙江省初中毕业生学业考试(温州卷)数学试题卷一、选择题:1.计算:(﹣3)×5的结果是()A. ﹣15B. 15C. ﹣2D. 2【答案】A【解析】【分析】根据有理数乘法法则计算即可.【详解】解:(﹣3)×5=-15,故选:A.【点睛】本题主要考查了有理数的乘法,熟练掌握运算法则是解题关键.2.太阳距离银河系中心约为250000000000000000公里,其中数据250000000000000000用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将250000000000000000用科学记数法表示为.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.某露天舞台如图所示,它的俯视图是()A. B. C. D.【答案】B【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图是:故选:B.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A. B. C. D.【答案】A【解析】【分析】直接利用概率公式计算可得.【详解】解:从中任意抽取1张,是“红桃”的概率为,故选:A.【点睛】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.对某市某社区居民最爱吃鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A. 20人B. 40人C. 60人D. 80人【答案】D【解析】【分析】扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.【详解】解:鱼类总数:40÷20%=200(人),选择黄鱼的:200×40%=80(人),故选:D.【点睛】本题考查的是扇形统计图.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;扇形统计图直接反映部分占总体的百分比大小.6.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表.根据表中数据,可得y关于x的函数表达式为A. B. C. D.【答案】A【解析】【分析】直接利用已知数据可得xy=100,进而得出答案.【详解】解:由表格中数据可得:xy=100,故y关于x的函数表达式为:.故选:A.【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.7.若扇形的圆心角为90°,半径为6,则该扇形的弧厂为()A. B. C. D.【答案】C【解析】【分析】根据弧长公式计算即可.【详解】解:该扇形的弧长=.故选:C.【点睛】本题考查了弧长的计算:弧长公式:(弧长为l,圆心角度数为n,圆的半径为R).8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB的长为()A. 米B. 米C. 米D. 米【答案】B【解析】【分析】根据题意作出合适的辅助线,然后利用锐角三角函数即可表示出AB的长.【详解】解:作AD⊥BC于点D,则BD=+0.3=,∵cosα=,∴cosα=,解得,AB=米,故选:B.【点睛】本题考查解直角三角形的应用、轴对称图形,解答本题的关键是明确题意,利用数形结合的思想解答.9.已知二次函数,关于该函数在﹣1≤x≤3的取值范围内,下列说法正确的是()A. 有最大值﹣1,有最小值﹣2B. 有最大值0,有最小值﹣1C. 有最大值7,有最小值﹣1D. 有最大值7,有最小值﹣2【答案】D【解析】【分析】把函数解析式整理成顶点式的形式,然后根据二次函数的最值问题解答.【详解】解:∵y=x2−4x+2=(x−2)2−2,∴在−1≤x≤3的取值范围内,当x=2时,有最小值−2,当x=−1时,有最大值为y=9−2=7.故选:D.【点睛】本题考查了二次函数的最值问题,把函数解析式转化为顶点式是解题的关键.10.如图,在矩形ABCD中,E为AB中点,以BE为边作正方形BEFG,边EF交CD于点H,在边BE上取点M使BM=BC,作MN∥BG交CD于点L,交FG于点N.欧儿里得在《几何原本》中利用该图解释了.现以点F为圆心,FE为半径作圆弧交线段DH于点P,连结EP,记△EPH的面积为S1,图中阴影部分的面积为S2.若点A,L,G在同一直线上,则的值为()A. B. C. D.【答案】C【解析】【分析】连接AG,由△ADL∽△GCL列出比例式,整理可得a=3b,然后分别用含b的式子表示出,即可解决问题.【详解】解:连接AG,点A,L,G在同一直线上,∴PF=a,AD=a-b,DL=a+b,CL=a-b,CG=b,∵AB∥FG,∴△ADL∽△GCL,∴,即,整理可得:a=3b,PH=,∴,,∴,故选:C.【点睛】本题主要考查了相似三角形的判定和性质以及勾股定理,作出辅助线根据相似三角形的性质得出a=3b是解题关键.二、填空题:11.分解因式:=___________.【答案】【解析】【分析】直接利用完全平方公式分解因式得出答案.详解】解:=,故答案为:.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.12.不等式组的解为_____________________.【答案】【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:,由①得,x>1,由②得,x≤9.故不等式组的解集为:.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人_____.【答案】90【解析】【分析】根据条形统计图可以得到80分及以上的学生人数.【详解】解:80分及以上的学生有:60+30=90人,故答案为:90.【点睛】此题考查了频数(率)分布直方图,以及利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能做出正确的判断并解决问题.14.如图,⊙O分别切∠BAC的两边AB,AC于点E,F,点P在优弧上.若∠BAC=66°,则∠EPF等于___________度.【答案】57【解析】【分析】连接OE,OF,由切线的性质可得OE⊥AB,OF⊥AC,由四边形内角和定理可求∠EOF=114°,即可求∠EPF的度数.【详解】解:连接OE,OF,∵⊙O分别切∠BAC的两边AB,AC于点E,F∴OE⊥AB,OF⊥AC又∵∠BAC=66°∴∠EOF=114°∵∠EOF=2∠EPF∴∠EPF=57°故答案为:57.【点睛】本题考查了切线的性质,圆周角定理,四边形内角和定理,熟练运用切线的性质是本题的关键.15.三个形状大小相同的菱形按如图所示方式摆放,已知∠AOB=∠AOE=90°,菱形的较短对角线长为2cm.若点C落在AH的延长线上,则△ABE的周长为________cm.【答案】【解析】【分析】连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,根据△COH是等腰直角三角形,即可得到∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x−x,根据勾股定理即可得出x2=2+,再根据S菱形BCOI=IO×CK=IC×BO,即可得出BO=2+2,进而得到△ABE的周长.【详解】解:如图所示,连接IC,连接CH交OI于K,则A,H,C在同一直线上,CI=2,∵三个菱形全等,∴CO=HO,∠AOH=∠BOC,又∵∠AOB=∠AOH+∠BOH=90°,∴∠COH=∠BOC+∠BOH=90°,即△COH是等腰直角三角形,∴∠HCO=∠CHO=45°=∠HOG=∠COK,∴∠CKO=90°,即CK⊥IO,设CK=OK=x,则CO=IO=x,IK=x−x,∵Rt△CIK中,(x−x)2+x2=22,解得x2=2+,又∵S菱形BCOI=IO×CK=IC×BO,∴x2=×2×BO,∴BO=2+2,∴BE=2BO=4+4,AB=AE=BO=4+2,∴△ABE的周长=4+4+2(4+2)=12+8,故答案为:12+8.【点睛】本题主要考查了菱形的性质,解题时注意:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积等于两条对角线长的乘积的一半.16.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG=FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米.【答案】(1). (2). 4【解析】【分析】如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可.【详解】解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.∵AM⊥CD,∴∠QMP=∠MPO=∠OQM=90°,∴四边形OQMP是矩形,∴QM=OP,∵OC=OD=10,∠COD=60°,∴△COD是等边三角形,∵OP⊥CD,∴∠COP=∠COD=30°,∴QM=OP=OC•cos30°=5(分米),∵∠AOC=∠QOP=90°,∴∠AOQ=∠COP=30°,∴AQ=OA=5(分米),∴AM=AQ+MQ=5+5.∵OB∥CD,∴∠BOD=∠ODC=60°在Rt△OFK中,KO=OF•cos60°=2(分米),FK=OF•sin60°=2(分米),在Rt△PKE中,EK==2(分米),∴BE=10−2−2=(8−2)(分米),在Rt△OFJ中,OJ=OF•cos60°=2(分米),FJ=2(分米),在Rt△FJE′中,E′J==2,∴B′E′=10−(2−2)=12−2,∴B′E′−BE=4.故答案为:5+5,4.【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.三、解答题:17.计算:(1);(2).【答案】(1)7;(2).【解析】【分析】(1)直接利用绝对值的性质、算术平方根的性质、零指数幂的性质分别化简得出答案;(2)直接利用分式的加减运算法则计算得出答案.【详解】解:(1)原式.(2)原式.【点睛】此题主要考查了实数运算与分式的加减运算,正确掌握相关运算法则是解题关键.18.如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.(1)求证:△BDE≌△CDF;(2)当AD⊥BC,AE=1,CF=2时,求AC的长.【答案】(1)见解析;(2).【解析】【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.【详解】解:(1)∵,∴.∵是边上的中线,∴,∴.(2)∵,∴,∴.∵,∴.【点睛】本题考查了全等三角形的判定和性质,平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.19.车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?【答案】(1)这一天20名工人生产零件的平均个数为13个;(2)定额为11个时,有利于提高大多数工人的积极性.【解析】【分析】(1)根据加权平均数的定义求解可得;(2)根据众数和中位数的定义求解,再分别从平均数、中位数和众数的角度,讨论达标人数和获奖人数情况,从而得出结论.【详解】解:(1)(个)答:这一天20名工人生产零件的平均个数为13个.(2)中位数为12个,众数为11个.当定额为13个时,有8个达标,6人获奖,不利于提高工人积极性.当定额为12个时,有12个达标,8人获奖,不利于提高大多数工人的积极性.当定额为11个时,有18个达标,12人获奖,有利于提高大多数工人的积极性.∴当定额为11个时,有利于提高大多数工人的积极性.【点睛】此题考查了平均数、众数、中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.20.如图,在7×5的方格纸ABCD中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.(1)在图中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD上,且∠EFG=90°;(2)在图中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA 上,且MP=NQ.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)利用数形结合的思想构造全等三角形或等腰直角三角形解决问题即可.(2)如图3中,构造矩形即可解决问题.如图4中,构造MP=NQ=5即可.【详解】解:(1)画法不唯一,如图1或图2等.(2)画法不唯一,如图3或图4等.【点睛】本题考查作图−应用与设计,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.21.如图,在平面直角坐标系中,二次函数的图象交x轴于点A,B(点A在点B的左侧).(1)求点A,B的坐标,并根据该函数图象写出y≥0时x的取值范围;(2)把点B向上平移m个单位得点B1.若点B1向左平移n个单位,将与该二次函数图象上的点B2重合;若点B1向左平移(n+6)个单位,将与该二次函数图象上的点B3重合.已知m>0,n>0,求m,n的值.【答案】(1),;(2)的值分别为,1.【解析】【分析】(1)把y=0代入二次函数的解析式中,求得一元二次方程的解便可得A、B两点的坐标,再根据函数图象不在x轴下方的x的取值范围得y≥0时x的取值范围;(2)根据题意写出B2,B3坐标,再由对称轴方程列出n的方程,求得n,进而求得m的值.【详解】解:(1)令,则,∴,∴.由函数图象得,当时,.(2)由题意得,函数图象的对称轴为直线.∵点在二次函数图象上且纵坐标相同,∴,∴,∴,∴的值分别为.【点睛】本题主要考查了二次函数的图象与性质,求函数与坐标轴的交点坐标,由函数图象求出不等式的解集以及平移的性质,难度不大,关键是正确运用函数的性质解题.22.如图,在△ABC中,∠BAC=90°,点E在BC边上,且CA=CE,过A,C,E三点的⊙O交AB于另一点F,作直径AD,连结DE并延长交AB于点G,连结CD,CF.(1)求证:四边形DCFG是平行四边形;(2)当BE=4,CD=AB时,求⊙O的直径长.【答案】(1)见解析;(2)的直径长为.【解析】【分析】(1)连接AE,由∠BAC=90°,得到CF是⊙O的直径,根据圆周角定理得到∠AED=90°,即GD⊥AE,推出CF∥DG,推出AB∥CD,于是得到结论;(2)设CD=3x,AB=8x,得到CD=FG=3x,于是得到AF=CD=3x,求得BG=8x−3x−3x =2x,求得BC=6+4=10,根据勾股定理得到AB=8=8x,求得x=1,在Rt△ACF中,根据勾股定理即可得到结论.【详解】解:(1)连结,∵,∴为的直径.∵,∴.∵为的直径,∴,即GD⊥AE,∴CF∥DG,∵AD是⊙O的直径,∴∠ACD=90°,∴,∴,∴四边形为平行四边形.(2)由,可设,∴.∵,∴,∴.∵,∴.又∵,∴,∴,∴,∴.在中,,∴,即的直径长为.【点睛】本题考查了三角形的外接圆与外心,平行四边形的判定和性质,勾股定理,圆周角定理,熟练掌握平行四边形的判定定理是解题的关键.23.某旅行团32人在景区A游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B游玩.景区B的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【答案】(1)该旅行团中成人17人,少年5人;(2)①1320元,②最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少.【解析】【分析】(1)设该旅行团中成人人,少年人,根据儿童10人,成人比少年多12人列出方程组求解即可;(2)①根据一名成人可以免费携带一名儿童以及少年8折,儿童6折直接列式计算即可;②分情况讨论,分别求出在a的不同取值范围内b的最大值,得到符合题意的方案,并计算出所需费用,比较即可.【详解】解:(1)设该旅行团中成人人,少年人,根据题意,得,解得.答:该旅行团中成人17人,少年5人.(2)∵①成人8人可免费带8名儿童,∴所需门票的总费用为:(元).②设可以安排成人人、少年人带队,则.当时,(ⅰ)当时,,∴,∴,此时,费用为1160元.(ⅱ)当时,,∴,∴,此时,费用为1180元.(ⅲ)当时,,即成人门票至少需要1200元,不合题意,舍去.当时,(ⅰ)当时,,∴,∴,此时,费用为1200元.(ⅱ)当时,,∴,∴,此时,不合题意,舍去.(ⅲ)同理,当时,,不合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人,少年2人;成人11人,少年1人;成人9人,少年3人;其中当成人10人,少年2人时购票费用最少. 【点睛】本题主要考查了二元一次方程组的应用,不等式的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.24.如图,在平面直角坐标系中,直线分别交x轴、y轴于点B,C,正方形AOCD的顶点D 在第二象限内,E是BC中点,OF⊥DE于点F,连结OE.动点P在AO上从点A向终点O 匀速运动,同时,动点Q在直线BC上从某点Q1向终点Q2匀速运动,它们同时到达终点.(1)求点B的坐标和OE的长;(2)设点Q2为(m,n),当tan∠EOF时,求点Q2坐标;(3)根据(2)的条件,当点P运动到AO中点时,点Q恰好与点C重合.①延长AD交直线BC于点Q3,当点Q在线段Q2Q3上时,设Q3Q=s,AP=t,求s关于t 的函数表达式.②当PQ与△OEF的一边平行时,求所有满足条件的AP的长.【答案】(1)(8,0),;(2)(6,1);(3)①,②的长为或.【解析】【分析】(1)令y=0,可得B的坐标,利用勾股定理可得BC的长,即可得到OE;(2)如图,作辅助线,证明△CDN∽△MEN,得CN=MN=1,计算EN的长,根据面积法可得OF的长,利用勾股定理得OF的长,由和,可得结论;(3)①先设s关于t成一次函数关系,设s=kt+b,根据当点P运动到AO中点时,点Q恰好与点C重合,得t=2时,CD=4,DQ3=2,s=,根据Q3(−4,6),Q2(6,1),可得t=4时,s=,利用待定系数法可得s关于t的函数表达式;②分三种情况:(i)当PQ∥OE时,根据,表示BH的长,根据AB=12,列方程可得t的值;(ii)当PQ∥OF时,根据tan∠HPQ=tan∠CDN=,列方程为2t−2=(7−t),可得t的值.(iii)由图形可知PQ不可能与EF平行.【详解】解:(1)令,则,∴,∴为.∵为,在中,.又∵为中点,∴.(2)如图,作于点,则,∴,∴,∴,∴.∵,∴,由勾股定理得,∴,∴.∵,∴,∴为.(3)①∵动点同时作匀速直线运动,∴关于成一次函数关系,设,将和代入得,解得,∴.②(ⅰ)当时,(如图),,作轴于点,则.∵,又∵,∴,∴,∴,∴.(ⅱ)当时(如图),过点作于点,过点作于点,由得.∵,∴,∴,∴.∵,∴,∴,∴.(ⅲ)由图形可知不可能与平行.综上所述,当与的一边平行时,的长为或.【点睛】此题是一次函数的综合题,主要考查了:用待定系数法求一次函数关系式,三角形相似的性质和判定,三角函数的定义,勾股定理,正方形的性质等知识,并注意运用分类讨论和数形结合的思想解决问题.浙江省温州市2019年中考语文试题(解析版)浙江省温州市2019年中考语文试题一、积累1.读下面的文字,根据拼音写出相应的同音汉字。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2019年初中学业水平考试温州卷数学试题
卷 I
一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)
1.计算:(3)5-⨯的结果是( )
.A 15- .B 15 .C 2- .D 2
2.太阳距离银河系中心约为250000000000000000公里,其中数据 250000000000000000用科学记 数法表示为( )
.A 180.2510⨯ .B 172.510⨯ .C 162510⨯ .D 162.510⨯
3.某露天舞台如图所示,它的俯视图...
是( )
4.
在同一副扑克牌中抽取2张“方块”,3张“梅花”,1张“红桃”.将这6 张牌背面朝上,从中
任意抽取1张,是“红桃”的概率为( )
.A
1
6
.B
13
.C
12
.D
23
5.
对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择
鲳鱼的有 40人,那么选择黄鱼的有( )
.A 20人
.B 40人
.C 60人
.D 80人
6.
验光师测得一组关于近视眼镜的度数 y (度)与镜片焦距x (米)的对应数据如下表. 根据表中数
据,可得y 关于x 的函数表达式为( )
.A
.B
.C
.D
.A y x
=
.B 100
y =
.C y x
= .D 400
y =
7.若扇形的圆心角为 90,半径为6,则该扇形的弧长为( )
.A
32π .B 2π .C 3π .D 6π
8.某简易房示意图如图所示,它是一个轴对称图形,则坡屋顶上弦杆AB 的长为( )
.A 9
5sin α
.B
9
5cos α
.C
5
9sin α
.D
5
9cos α
9.已知二次函数2
42y x x =-+,关于该函数在13x -≤≤的取值范围内,下列说法正确的是( )
.A 有最大值1-,有最小值2- .B 有最大值0
,有最小值1- .C 有最大值7,有最小值1
-
.D 有最大值7,有最小值2-
10.
如图,在矩形 ABCD 中,E 为AB 中点,以BE 为边作正方形
BEFG ,边EF 交CD 于点H ,
在边BE 上取点M 使 BM BC =,作 MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解
释了2
2
()()a b a b a b +-=-.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结 EP ,记△EPH 的面积为1S ,图中阴影部分的面积为2S .若点 A ,L ,G 在同一直线上,则12
S S 的值为( )
.A
2
.B
3
.C
4
.D
6
卷 II
二、填空题(本题有6小题,每小题5分,共30分) 11.分解因式:2
44m m ++= .
12.不等式组23142
x x +>⎧⎪
⎨-≤⎪⎩的解为 .
13.某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80 分及以上)的学生有 人.
14.如图,⊙O 分别切BAC ∠ 的两边 AB ,AC 于点E ,F ,点P 在优弧(BDF )上,若66BAC ∠=,则EPF ∠ 等于 度.
15. 三个形状大小相同的菱形按如图所示方式摆放,已知90AOB AOE ∠=∠=, 菱形的较短对角线长为 2cm .若点C 落在AH 的延长线上,则△ABE 的周长为 cm .
16. 图 1 是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图 2 所示,两支脚
10OC OD == 分米,展开角60COD ∠=,晾衣臂 10OA OB == 分米,晾衣臂支架 6HG FE ==分米,且4HO FO ==分米,当90AOC ∠=时,点A 离地面的距离
AM 为 分米;当OB 从水平状态旋转到OB '(在CO 延长线上)时,点E 绕点F 随之旋转至OB '上的点E '
处,则 B E BE ''-为 分米.
三、解答题(本题有8小题,满分80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(本题10分)
(1)计算:0
6(1(3)--- (2) 22
41
33x x x x x +-
++
18.(本题8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AB 边上一点,过点C 作CF ∥
AB 交ED 的延长线于点F
(1) 求证:△BDE ≌△CDF .
(2) 当AD ⊥BC ,1AE =,2CF = 时,求AC 的长.
19.(本题8分)车间有 20 名工人,某一天他们生产的零件个数统计如下表. 车间 20 名工人某一天生产的零件个数统计表
(1)求这一天 20 名工人生产零件的平均个数.
(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者, 从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?
20. (本题8分)如图,在 7×5 的方格纸 ABCD 中,请按要求画图,且所画格点三角形与格点四边形的顶点均不与点 A ,B ,C ,D 重合.
(1)在图1 中画一个格点△EFG ,使点 E ,F ,G 分别落在边 AB ,BC ,CD ,且90EFG ∠=. (2)在图2 中画一个格点四边形MNPQ ,使点M ,N ,P ,Q 分别落在边AB ,BC ,CD ,DA 上,且 .MP NQ = 注:图 1,图2 在答题纸上.
21. (本题10分)如图,在平面直角坐标系中,二次函数 2
1262
y x x =-
++的图象交x 轴于点A ,B (点A 在点B 的左侧).
(1)求点A ,B 的坐标,并根据该函数图象写出y ≥0时x 的取值范围.
(2)把点B 向上平移m 个单位得点1B .若点1B 向左平移n 个单位,将与该二次函数图象上的点2B 重合;若点1B 向左平移(6)n +个单位,将与该二次函数 图象上的点3B 重合.已知0m >,0n >,求 m ,
n 的值.
ABC 中,90BAC ∠=,点E 在BC 边上,且 CA CE =,过A ,C ,E 三点的⊙O 交AB 于另一点F ,作直径AD ,连结DE 并延长交AB 于点G ,连结 CD ,CF .
(1)求证:四边形DCFG 是平行四边形. (2)当4BE =,3
8
CD AB =时,求⊙O 的直径长.
23. (本题满分12分)某旅行团 32 人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童 10人,成人比少年多 12人.
(1)求该旅行团中成人与少年分别是多少人?
(2)因时间充裕,该团准备让成人和少年(至少各1名)带领 10 名儿童去另一景区B 游玩,景区B 的门票价格为 100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童. ①若由成人8 人和少年5 人带队,则所需门票的总费用是多少元?
②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.
24.
(本题14分)如图,在平面直角坐标系中,直线1
42
y x =-
+ 分别交x 轴、y 轴于点B ,C ,正方形AOCD 的顶点D 在第二象限内,E 是BC 中点,OF ⊥DE 于点F ,连结OE .动点P 在AO
上从点A 向终点O 匀速运动,同时,动点Q 在直线BC 上从某一点1Q 向终点2Q 匀速运动,它们同时到达终点.
(1)求点B 的坐标和OE 的长. (2)设点2Q 为(,)m n ,当
1
tan 7
n EOF m =∠ 时,求点2Q 的坐标. (3)根据(2)的条件,当点P 运动到AO 中点时,点Q 恰好与点C 重合.
①延长AD 交直线BC 于点3Q ,当点Q 在线段23Q Q 上时,设3=Q Q s ,AP t ,求s 关于t 的函数表达式亚.
②当PQ 与△OEF 的一边平行时,求所有满足条件的AP 的长.。