第2章 .电磁场的基本规律(复习)
电磁场与电磁波第二章电磁场的基本规律讲解
• §2.1 电荷和电场 • §2.2 电流和磁场 • §2.3 真空中的麦克斯韦方程组 • §2.4 媒质的电磁性质 • §2.5 媒质中的麦克斯韦方程组 • §2.6 电磁场边值条件 • §2.7 电磁场能量和能流
§2.1 电荷与电场
1. 电荷是什么东西?
摩擦起电 与绸缎摩擦过的玻璃棒能吸引小纸屑; 与皮毛摩擦过的橡胶棒也能吸引纸屑。
例题 无穷大平行板电容器内有两层介质,极板上 的面电荷密度为±σf ,求电场和极化电荷分布。 解:根据边界条件
在导体与电介质的界面处: 介质1与导体界面
介质2与导体界面 两种介质界面
作业:P88 2.31
§2.7 电磁场的能量密度和能流密度 1. 电磁场的能量密度
电场的能量密度 磁场的能量密度 电磁场的能量密度 在非线性介质中,
当回路不随时间变化时,
2. 位移电流假设 稳恒电流产生的磁场满足规律: 非稳恒情况下, 假设:
——称为位移电流。
3. 麦克斯韦方程组
4. 洛仑兹力公式
(点电荷) (体分布电荷)
作业:P86-87 2.24, 2.27
§2.4 媒质的电磁性质
1.媒质的概念——
在电磁学中一般把材料分为导体和绝缘体。 所以电磁学中涉及的空间区域只有真空、导体 和绝缘体三种不同性质的区域。而在电场中, 绝缘体又被称为“电介质”。
库仑定律:
F12
k
q1q2 r122
e12
F21
令 k 1
4π 0
( 0 为真空电容率)
0
1 4π k
8.85421012 C2
N1 m2
8.8542 10 12 F m1
第2章--电磁场基本方程---2
B(z) 0Ia
4π
2π 0
(z2
ez a a2 )3/2
d
'
0 Ia 2
2(z2 a2 )3/ 2
可见,线电流圆环轴线上的磁感应强度只有轴向分量,这是因为
圆环上各对称点处的电流元在场点P产生的磁感应强度的径向分 量相互抵消。
在圆环的中心点上,z = 0,磁感应强度最大,即
B(0)
ez
0 I
dB (r )
0
4π
Idl (r r r3
r )
体电流产生的磁感应强度
B(r ) 0 J (r) R dV
4π V R3 面电流产生的磁感应强度
z
C Idl M
r R r y
o
x
B(r ) 0
4π
S
JS
(r ) R3
R
dS
25
电磁场
第二章 电磁场基本方程
3. 几种典型电流分布的磁感应强度
D
rˆ
q
4r 2
4
电磁场
第二章 电磁场基本方程
电通量为
S
D
ds
q
4r 2
4r 2
q
此通量仅取决于点电荷量q, 而与所取球面的半径无关。
如果在封闭面内的电荷不止一个, 则利用叠加原理知, 穿出封闭 面的电通量总和等于此面所包围的总电量
S D ds Q
--- 高斯定理的积分形式(1839
K .F .Gauss导出),
r1 R12 r2
o
x
C2
I2dl2
y
安培磁力定律
F12
0
4π
I2dl2 (I1dl1 R12 )
电磁场基本规律
t
V
dV
0
即整个空间的总电荷是守恒的。
2、积分形式反映的是电荷变化与电流流动的宏观关系,而微分形式则描述空间各点电荷变化与电流流动 的局部关系。
3、恒定(稳恒)电流的连续性方程 所谓恒定(或称为稳恒),是指所有物理量不随时间变化。 不随时间变化电流称为恒定电流(或稳恒电流)。 恒定电流空间中,电荷分布也恒定不变,即对时间的偏导数为零,则电流连续性方程为
(r
/
r
)
0
/
(r r )
/
(r r )
函数性质:
(r/Biblioteka r)dV1
V
0
(r r/点在体积V内) (r r/点不在体积V内)
函数取样特性。
V f(r)(rr/)dV 0 f(r(/r)(rr/点 在 r/点 V外 在 )V内 )
/
/
(rr)(rr) 函数对场点和源点的对称性
(2)点电荷的表示
• 库仑力是平方反比径向力,是保守力。 • 库仑定律只能直接用于静止点电荷间。但若施力电荷静止,受力电荷运动,它们间的作用仍满足库仑定律。
2.2.2、 电场强度
E (r )
电场强度是描述电场的基本物理量。 1)定义:电场强度 = 空间中一点处的单位正电荷受的力。
E(r)F/q0 q 点电荷 的场强
J
JlimI ndI n S0S dS
载流导体内每一点都有一个电流密度,构成一个矢量场,称这一矢量场为电流场。电流场的矢量线叫 做电流线。
S 流过任意面积 的电流强度I
I S J d S S J d S c o s S J d S
2)( 面)电流密度
JS
当电荷只在一个薄层内流动时,形成的电流为面电流。
宏观电磁现象的基本规律
◘ 在导电媒质中形成电流称为传导电流。 ◘ 在真空中或自由空间中的自由电荷的运动形成的电流称为
运流电流。
2-27
《电磁场与电磁波理论》
电流和电流密度
第2章宏观电磁现象的基本规律
♥ 电流强度给出了单位时间内穿过某一截面总的电量,但它 并没有给出单位时间内穿过截面任一点的电量及电荷运动 方向,故引入电流密度的概念来弥补这一不足。
第2章宏观电磁现象的基本规律
2.1.3 电极化强度
(Polarization Vector)
1. 电偶极子和电偶极矩矢量 2. 电介质的极化和电极化强度 3. 电介质中的电场
2-16
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
1. 电偶极子和电偶极矩矢量
♥ 电偶极子(dipole) —— 电介质(即绝缘体)中的 分子在电场的作用下所形成的 一对一对的等值异号的点电荷。
2-24
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
表2.1.1 几种常见的电介质的相对介电常数
◘ 在各向异性的介质(等离子体)中电位移与电场也将具有 不同方向。其介电常数和相对介电常数不再为常数,而是 所谓的“张量”。
2-25
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
2.1.5 电流密度 (Current Density)
♥ 电偶极矩矢量(dipole moment)
—— 大小等于点电荷的电量和间距的乘积, 方向由负电荷指向正电荷
(2.1.17)
2-17
《电磁场与电磁波理论》
第2章宏观电磁现象的基本规律
2. 电介质的极化和电极化强度
♥ 电介质的极化(polarize)——电介质在电场的作用下,无 极性介质的分子的正负电荷中心相对位移,形成与外电场同 方向的电偶极子;而极性介质的电偶极矩矢量的取向将趋于 与外电场方向一致。电介质的表面将出现面极化电荷,而其 内部也可能出现体极化电荷。
电磁场与电磁波期末复习知识点归纳
自由空间
0
1
36 109
F
/m
0 4 107 H / m
得自由空间中电磁波的速度
v c 3108m / s
★ 理想介质中的均匀平面波的传播特点为:
● 电场和磁场在空间相互垂直且都垂直于传播方向。E、H、en
(波的传播方向)呈右手螺旋关系,是横电磁波(TEM波);
电力线起始于正电荷,终止于负电荷。
2、 B磁场0 没有散度源。磁场是无散场。磁力线是无头无
尾的闭合。磁通连续性原理表明时变场中无磁荷存在。 3、 E 变化B的磁场是涡旋电场的旋涡源。与电荷产生的
t
无旋电场不同,涡旋电场是有旋场,其电力线是无头无尾的闭 合曲线,并与磁力线相交链。
第一章 矢量分析
标量场:梯度描述
静态场(稳态场):不随t变
场
场 矢量场:散度和旋度描述 时变场:随t变化
单位矢量:模为1的矢量
与矢量 A同方向的单位矢量:
eA
Aˆ
A A
A eAA
坐标单位矢量:与坐标轴正向同方向的单位矢量
如:ex
ey
ez或者xˆ
yˆ
zˆ
A Axex Ayey Azez
x
E
H
z
y
均匀平面波
无界理想介质中的均匀平面波
周期: T 2
频率: f 1 T 2
2 →波长
k
k 2 →波数(2内包含的波长数)
相速 v 1 k
k
注意,电磁波的相速有时可以超过光速。因此,相速不一定代表 能量传播速度。定义群速:包络波上一恒定相位点 推进的速度。
电磁场与电磁波理论部分题解
电磁场与电磁波理论部分题解第⼆章、宏观电磁现象的基本规律2.2、已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度)0(/)(0a a v ≤≤=ρρρρρ。
试求总电量Q 。
解:总电量为200200032la dz d d adv Q l a v πρ?ρρρρρπ===2.3、半径为0R 的球⾯上均匀分布着电荷,总电量为Q 。
当球以⾓速度ω绕某⼀直径(z 轴)旋转时,求其表⾯上的⾯电流密度。
解:⾯电荷密度为24R Qs πρ=⾯电流密度为02004sin sin 4sin R Q R R QR v j s s s πθωθωπθωρρ===?=2.6、两个带电量分别为0q 和02q 的点电荷相距为d ,另有⼀带电量为0q 的点电荷位于其间,为使中间的点电荷处于平衡状态,试求其位置。
当中间的点电荷带电量为0q -时,结果⼜如何?解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥⼒为21241x q F πε=实验电荷受0q 的排斥⼒为22)(41x d q F -=πε要使实验电荷保持平衡,21F F =,那么22)(41241x d q x q -=πεπε即得到d d x 585.0122=+=如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=只是这时实验电荷与0q 和02q 不是排斥⼒,⽽是吸引⼒。
2.7 边长为a 的正⽅形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。
解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥⼒为012214πq F x ε=实验电荷受0q 的排斥⼒为02214π()- 要使实验电荷保持平衡,21F F =,那么00222114π4π()q q x d x εε=-即得到d d x 585.0122=+=如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。
练习题(第二章 电磁场的基本规律)
c
d
x
B • 2.27 解: (1)由麦克斯韦方程组 E t B H 0 B ( E )dt B H (2) H H D E D 0 E D t D H k 1/ 3 t (3)将内导体视为理想导体 ,利用边界条件 1 8 J S en H ez 265.3 cos(10 t z ) a 3 1 D dS e 2 dz (4) J d id J d dS J d 2dz 0 t
E
l a
Hale Waihona Puke 40 2a 2 2 (ez ex cos 'ey sin ' )d '
2 2
l ez 'ex sin 'ey cos ' 2 8 2 0 a 2 l ( ex 2 ez ) 8 2 0 a
l ,求垂直于圆平面 2.10 一个半圆环上均匀分布线电荷 的轴线z=a处的电场强度,设半圆环的半径也为a. 解: 柱坐标系: 1 l ad ' dE z dE eR 2 p e 4 0 2a r a 1 1 eR eZ ( e ) y 2 2 er 1 (ex cos 'e y sin ' ez ) dl 2 x
• 2.31
y 媒质1 理想导体 x
1
1
1
r1 e r1 正电荷在空腔内产生的电场为 E1 3 0
单位向量 e r 1 e r 2 分别以大、小球体的球心为球面坐标 的原点。考虑到
负电荷在空腔内产生的电场为 E 2 r 2 e r2 3 0
《电磁场与电磁波》习题参考答案
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
电磁场电磁波 第二章+2.4+电介质
P= n p
p P lim
V 0
i
V
3
第二章 电磁场基本规律
分子或者原子团的电偶极矩的大小和方向与 外加电场强度的大小和方向有关,所以极化 强度P是外加电场强度的函数,其关系一般 比较复杂。但对于线性均匀介质,P与外加 电场成正比。另一方面,空间不同点处分子 或者原子团构成不同,极化强度也不同,P 还可能是空间的函数。如果外加电磁场是时 变的,极化强度P还可能是时间的函数。
2.4
媒质的电磁场
一、电介质的极化 电位移矢量
1、介质的极化
介质中分子和原子的正负电荷在外 加电场力的作用下发生小的位移,形 成定向排列的电偶极矩;或原子、分 子固有电偶极矩不规则的分布,在外 场作用下形成规则排列
1
第二章 电磁场基本规律
2
第二章 电磁场基本规律
pi = p
2、极化强度概念
极化强度矢量P,定 义为单位体积中分 子或原子团的电偶 极微分形式
jm磁化电流密度:表示单位时间通过单位垂直面积的磁化 电流 均匀磁化:M 为常数 ,M=0, jm=0,介质内部没有 磁化电流,磁化电流只分布在介质表面
25
第二章 电磁场基本规律
5、 磁介质中磁场的基本方程
1、磁介质中磁场的散度 在磁介质中,磁力线仍然是连续的。即: B dS 0 B 0
p
dV
p P
第二章 电磁场基本规律
5
(1)线性均匀介质中,极化迁出的 电荷与迁入的电荷相等,不出 现极化体电荷分布。
(2)不均匀介质或由多种不同结构 物质混合而成的介质,可出现 极化体电荷。 (3)在两种不同均匀介质交界面上 的一个很薄的层内,由于两种 物质的极化强度不同,存在极 化面电荷分布。
《电磁场与电磁波》复习纲要(含答案)
S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0
C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
电磁场理论复习考试题(含答案)
电磁场理论复习考试题(含答案)第1~2章矢量分析宏观电磁现象的基本规律1. 设:直角坐标系中,标量场zx yz xy u ++=的梯度为A,则M (1,1,1)处 A = ,=??A 0 。
2. 已知矢量场xz e xy e z y e A z y x ?4?)(?2+++= ,则在M (1,1,1)处=??A 9 。
3. 亥姆霍兹定理指出,若唯一地确定一个矢量场(场量为A),则必须同时给定该场矢量的旋度及散度。
4. 写出线性和各项同性介质中场量D、E 、B 、H 、J 所满足的方程(结构方程):。
5. 电流连续性方程的微分和积分形式分别为和。
6. 设理想导体的表面A 的电场强度为E 、磁场强度为B,则(a )E 、B皆与A 垂直。
(b )E 与A 垂直,B与A 平行。
(c )E 与A 平行,B与A 垂直。
(d )E 、B 皆与A 平行。
答案:B7. 两种不同的理想介质的交界面上,(A )1212 , E E H H == (B )1212 , n n n n E E H H == (C) 1212 , t t t t E E H H == (D) 1212 , t t n n E E H H ==答案:C8. 设自由真空区域电场强度(V/m) )sin(?0βz ωt E eE y -=,其中0E 、ω、β为常数。
则222x y z e e e ++AA ??EJ H B E D σ=μ=ε= , ,t q S d J S-=?? tJ ?ρ-=??空间位移电流密度d J(A/m 2)为:(a ))cos(?0βz ωt E ey - (b ))cos(?0βz ωt ωE e y -(c ))cos(?00βz ωt E ωey -ε (d ))cos(?0βz ωt βE e y -- 答案:C 9. 已知无限大空间的相对介电常数为4=εr ,电场强度(V/m) 2cos ?0dxeE x πρ= ,其中0ρ、d 为常数。
电磁感应定律和麦克斯韦方程组
(2) B ez B0 ,矩形回路的宽边b = 常数,但其长边因可滑动
上的可滑动导体L以匀速 v ex v 运动。
解:(1) 均匀磁场 B 随时间作简谐
(3) B ez B0 cos(t ) ,且矩形回路
y
a
o
B
x
Lห้องสมุดไป่ตู้
v
b x
变化,而回路静止,因而回路内的感应 电动势是由磁场变化产生的,故
均匀磁场中的矩形环
B in dS [ez B0 cos(t )] ez dS abB0 sin(t ) S t S t
湖南人文斜技学院 电子信息科学与技术专业 阮许平主讲
电磁场与电磁波
第 2 章
电磁场的基本规律
§7
( 2 ) 均匀磁场 B 为恒定磁场,而回路上的可滑动导体以匀速 运动,因而回路内的感应电动势全部是由导体 L 在磁场中运动产 生的,故得 或
电磁场与电磁波
第 2 章
电磁场的基本规律
§7
2.5.1 电磁感应定律
回路中就会出现感应电流和电动势,且感应电动势与磁通量的变 化有密切关系,由此总结出了著名的法拉第电磁感应定律。 1. 法拉第电磁感应定律的表述 当通过导体回路所围面积的磁通量
1881 年法拉第发现,当穿过导体回路的磁通量发生变化时,
S
时变磁场中的矩形线圈 湖南人文斜技学院
B0 ab cos(t ) cos
阮许平主讲
电子信息科学与技术专业
电磁场与电磁波
第 2 章
电磁场的基本规律
§7
en 的指向将随时间变化。线圈内的 (2)线圈绕 x 轴旋转时,
感应电动势可以用两种方法计算。
电磁场的边界条件
2.7 电磁场的边界条件
第二章 电磁场的基本规律
二、理想导体表面上的边界条件
理想导体 E、D、B、H=0
n×H1=JS n×E1=0 n•B1=0 n•D1=ρS
n×(H1-H2)=JS n×(E1-E2)=0 n•(B1-B2)=0 n•(D1-D2)=ρS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
一、边界条件的一般形式
磁场强度H的边界条件 1 2
H C
dl H1
l H2
l JS
N l
l (N n)l
n H1 h
H2 Δl
n×(H1-H2)=JS
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电场强度E的边界条件
n×(E1-E2)=0
磁感应强度B的边界条件
S B dS B1nS B2nS 0 1
n
B1
ΔS h
n•(B1-B2)=0
2
B2
2.7 电磁场的边界条件
第二章 电磁场的基本规律
电位移矢分界面两侧,电场强度的切向分 量和磁感应强度的法向分量总是连续的;若分 界面上不存在面电流和面电荷,则磁场强度的 切向分量和电位移矢量的法向分量是连续的
电磁场与电磁波(第二章)
S
s
t
dS
v
Ñl JS
g(n)
v dl )
0
对时变面电流 对恒定面电流
第二节 库仑定律 电场强度
一、库仑定律
❖库仑定律描述了真空中两个点电荷间相互作用力的规律。
v
❖库仑定律内容:如图,电荷q1 对电荷q2的作用力为:
q1
R
v F12
q1 q2
4 0 R 2
evR
q1 q2
4 0 R3
v R
rv' vO
(
1
)
v ex
(
1
)
v ey
(
1
)
v ez
(1)
R x R y R z R
v ex
uv
x
x R3
' uur
v ey
y
y R3
'
v ez
zz' R3
R R3
eR R2
第二章
❖电荷、电流 2.4
❖电场强度、矢量积分公式 2.8 2.9
作业
t 0
讨论:1)
v J
vv
式中: 为空间中电荷体密度,vv 为
正电荷流动速度。
2) I Jv(rv)gdsv Jv(rv)gn)ds
S
S
S Jv(rv) cos ds
n)
S
Jv(rv)
2、面电流密度
❖当电荷只在一v个薄层内流动时,形成的电流为面电流。 ❖面电流密度 J s 定义:
电流在曲面S上流动,在垂直于
电流方向取一线元 l ,若通过
I l
v J
线元的电流为 I ,则定义
S
谢处方《电磁场与电磁波》(第4版)课后习题-第2章 电磁场的基本规律【圣才出品】
2.4 简述
和▽×E=0 所表征的静电场特性。
答:
表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是
静电场的通量源。
1 / 37
圣才电子书
十万种考研考证电子书、题库视频学习平
台
▽×E=0 表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强 度。
答:传导电流和位移电流都可以在空间激发磁场但两者本质不同。 (1)传导电流是电荷的定向运动,而位移电流的本质是变化着的电场。 (2)传导电流只能存在于导体中,而位移电流可以存在于真空、导体、电介质中。 (3)传导电流通过导体时会产生焦耳热,而位移电流不会产生焦耳热。
2.17 写出微分形式、积分形式的麦克斯韦方程组,并简要阐述其物理意义。 答:麦克斯韦方程组: 微分形式
合线。
表明恒定磁场是有旋场,恒定电流是产生恒定磁场的旋涡源。
2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定电流分布的磁感应 强度。
答:安培环路定理:磁感应强度沿任何闭合回路的线积分,等于穿过这个环路所有电 流的代数和 μ0 倍,即
如果电流分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。
2.2 研究宏观电磁场时,常用到哪几种电荷分布模型?有哪几种电流分布模型?它们是 如何定义的?
答:常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷。 常用的电流分布模型有体电流模型,面电流模型和线电流模型。 它们是根据电荷和荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 答:点电荷的电场强度与距离 r 的二次方成反比。电偶极子的电场强度与距离 r 的三 次方成反比。
3 / 37
电磁场与电磁波期末复习考试要点
第一章矢量分析①A A Ae =②cos A B A Bθ⋅=⋅③A 在B 上的分量B AB A B A COS BA θ⋅==④e xyz x y z xyzA B e e A A AB B B⨯=⑤A B A B⨯=-⨯ ,()A B C A B A C⨯+=⨯+⨯ ,()()()A B C B C A C A B ⋅⨯=⋅⨯=⋅⨯(标量三重积),()()()A B C B A C C A B ⨯⨯=⋅-⋅⑥ 标量函数的梯度xy z u u u ux y ze e e ∂∂∂∇=++∂∂∂⑦ 求矢量的散度=y x z A xyzA A A ∂∂∂∇⋅++∂∂∂散度定理:矢量场的散度在体积V 上的体积分等于在矢量场在限定该体积的闭合曲面S 上的面积分,即VSFdV F d S ∇⋅=⋅⎰⎰,散度定理是矢量场中的体积分与闭合曲面积分之间的一个变换关系。
⑧ 给定一矢量函数和两个点,求沿某一曲线积分E dl ⋅⎰,x y CCE dl E dx E dy ⋅=+⎰⎰积分与路径无关就是保守场。
⑨ 如何判断一个矢量是否可以由一个标量函数的梯度表示或者由一个矢量函数的旋度表示?如果0A ∇⋅= 0A ∇⨯=,则既可以由一个标量函数的梯度表示,也可以由一个矢量函数的旋度表示;如果0A ∇⋅≠,则该矢量可以由一个标量函数的梯度表示;如果0A ∇⨯≠,则该矢量可以由一个矢量函数的旋度表示。
矢量的源分布为A ∇⋅ A ∇⨯.⑩ 证明()0u ∇⨯∇=和()0A ∇⋅∇⨯=证明:解 (1)对于任意闭合曲线C 为边界的任意曲面S ,由斯托克斯定理有()d d dSCCuu u l l ∂∇⨯∇=∇==∂⎰⎰⎰S l 由于曲面S 是任意的,故有()0u ∇⨯∇=(2)对于任意闭合曲面S 为边界的体积τ,由散度定理有12()d ()d ()d ()d SS S ττ∇∇⨯=∇⨯=∇⨯+∇⨯⎰⎰⎰⎰A A S A S A S 其中1S 和2S 如题1.27图所示。
电磁场的基本理论
d
ez
b a
2
0 4 0
z z2
r 2
3/ 2
S rdrd
ez
S z 4 0
b a
2
z2
0
r 2
3/ 2 rdr
ez
S z 4 0
b a
z2
2
r2
3/ 2 rdr
ez
2 S z 4 0
b a
rdr
z2 r2
3/2
ez
S z 2 0
z2
1 a2
解解::(分1)析选电坐场标的系分:布圆,柱可坐知标线系电p荷(r产,生.z)
(的2)选电电场荷具源有轴对(0称,0,性Z'。) z轴d与q线电 l荷dz重'
(合3)确,定采d用E圆的柱方坐向标,轴线外任一点的电
(将场半4)确d强平E定度 面投d与为影E计角的到算度大坐区坐小标域标轴,上d线无,E 电关只4荷,考1中可虑0 点过大Rl为dz2小轴l 坐,取标
27
2、磁场的基本量--磁感应强度
理论上可以认为是电流元 Idl1 对电流元 Idl2 的安培作用力
F12 C 2 C 1 dF12 c2 I2dl 2B1
B为回路C1中的电流在 Idl2 所在点产生的磁场,称为磁感应
强度或磁通密度
B
dB
0
I dl
S
4 C R2
eR
dF12 I2dl 2dB1
1/ 2
1
z2
b2
1/ 2
25
四、安培力定律——磁感应强度
1、安培力定理
dl1
dl2 R
C2
实验结果表明,在真空中两个
C1
电磁场与电磁波(第四版)课后答案 谢处方 第二章习题
uu uu v v (4)H = eϕ ar
u v uu v , B = µ0 H
解:(1)uu v
∇H=
1 ∂ 1 ∂ ( ρ Bρ ) = (a ρ 2 ) = 2a ≠ 0 该矢量不是磁场的矢量。 ρ ∂ρ ρ ∂ρ
uu ∂ v ∂ (2) H = (−ay ) + (ax) = 0 ∇ ∂r ∂r uu v ex u v uu v ∂ J = ∇× H = ∂x
(
)
(
(
)
)
2.9无限长线电荷通过点A(6,8,0)且平行于z轴,线电荷密度为 ρl ,试求点 P (x,y,0)处的电场强度E。 。 解:线电荷沿z轴无限长,故电场分布与z无关。设点P位于z=0的平面上,线电 荷与点P的距离矢量为
r ˆ ˆ R = x( x −6) + y( y −8) r 2 2 R = ( x−6) +( y −8)
u v 2.21下面的矢量函数中哪些可能是磁场?如果是,求其源变量 J
uu v (1)H = ρ aρ ˆ
u v uu v , B = µ0 H (圆柱坐标)
u v uu v uu uu v v uu v (2)H = ex (−ay ) + ey ax , B = µ0 H uu uu v v uu v u v uu v (3)H = ex ax − ey ay , = µ0 H B
v v ∂D 解:(1)由 ∇ × H = 得 ∂t
v v v ∂D ∂ Jd = = ∇× H = ∂t ∂x Hx v ex v ey ∂ ∂y 0 v ez ∂ v ∂H x = − ez ∂z ∂y 0
v Bb =
d
a
µ0 v v J × ρb
电动力学-复习-第二章-电磁场的基本规律
*
电场力服从叠加原理
真空中的N个点电荷 (分别位于 ) 对点电荷 (位于 )的作用力为
q
q1
q2
q3
q4
q5
q6
q7
*
2. 电场强度
空间某点的电场强度定义为置于该点的单位点电荷(又称试验电荷)受到的作用力,即
多层同心球壳
*
无限大平面电荷:如无限大的均匀带电平面、平板圆柱壳等。
(a)
(b)
*
例2.2.3 求真空中均匀带电球体的场强分布。已知球体半径为a ,电 荷密度为 0 。
解:(1)球外某点的场强
(2)求球体内一点的场强
( r ≥ a )
• 宏观分析时,电荷常是数以亿计的电子电荷e的组合,故可不考虑其量子化的事实,而认为电荷量q可任意连续取值。
2.1.1 电荷与电荷密度
*
1. 电荷体密度
单位:C/m3 (库仑/米3 )
根据电荷密度的定义,如果已知某空间区域V中的电荷体密度,则区域V中的总电量q为
电荷连续分布于体积V内,用电荷体密度来描述其分布
如果已知某空间曲线上的电荷线密度,则该曲线上的总电量q 为
单位: C/m (库仑/米)
*
对于总电量为 q 的电荷集中在很小区域 V 的情况,当不分析和计算该电荷所在的小区域中的电场,而仅需要分析和计算电场的区域又距离电荷区很远,即场点距源点的距离远大于电荷所在的源区的线度时,小体积 V 中的电荷可看作位于该区域中心、电量为 q 的点电荷。
第二章 电磁场的基本规律
*
2.1 电荷守恒定律 2.2 真空中静电场的基本规律 2.3 真空中恒定磁场的基本规律 2.4 媒质的电磁特性 2.5 电磁感应定律和位移电流 2.6 麦克斯韦方程组 2.7 电磁场的边界条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2,3章 .电磁场的基本规律(复习)知识脉络静态场见下页重点、难点一、电荷分布与电流分布在电磁理论中,电荷源模型分为体电荷、面电荷、线电荷和点电荷,电流源模型分为体电流、面电流和线电流。
关于电荷源模型与电流源模型应注意以下几点:1、 微观上看,电荷是以离散的形式存在的。
分析宏观电磁现象时,认为电荷是连续分布在空间体积内。
空间的电荷分布用电荷体密度ρ来表示,电流分布用电流体密度J 来表示。
出于理论分析的需要,引入面分布电荷、线分布电荷的概念;2、“点电荷”是电磁场中的一个重要的概念。
当一个带电体的体积很小,以至于可以忽略其体积的大小,将其看作电荷q 集中在一个体积为零的几何点上,这个电荷就称为点电荷q 。
利用δ函数,可将位于'r 处的点电荷q 的体密度()ρr 表示为()()q ρδ'=-r r r ;3、 同样,电流也有面分布电流和线电流的概念,面电流密度与面电荷密度的关系为S σ=J v ,线电流与线电荷密度的关系为l I v ρ=;在分析磁场时,也引入了点源的概念,即电流元d I l ,它是一种矢量性质的点源。
体电流和面电流的电流元分别为d τJ 和d S S J 。
二、库仑定律1、库仑定律是静电场的基本实验定律。
要注意它的适用条件:它是在无限大的均匀、线性、各向同性介质中总结出的实验定律。
2、静止点电荷之间的相互作用力称为静电力。
两个点电荷之间静电力的大小与两个电荷的电量成正比、与电荷之间距离的平方成反比,方向在两个电荷的连线上。
静电力遵从叠加原理,当有多个点电荷存在时,其中任一个点电荷受到的静电力是其他各点电荷对⎩z z其作用力的矢量叠加。
对于连续分布的电荷系统(如体、面和线电荷),静电力必须进行矢量积分。
三、电场强度电场强度是表征电场特性的基本场量,对于电场强度的概念应注意以下几点:① 电场强度是空间变量的矢量函数,它由电场本身的性质所决定,与检验电荷的大小无关。
电场强度定义中,取检验电荷00q →表示检验电荷的电量很小,使它对被检验电场分布的影响可以忽略;② 电场的存在是通过对场中的其它电荷产生作用力来表现的,电场强度反映了这种作用力的强度,即q =F E ;③ 电场强度矢量在数值上虽等于单位试验电荷所受的电场力,但电场强度不是力。
静电场求解分析一、静电场的基本方程有微分和积分两种形式,它们是分析求解静电场问题的基础。
应明确:①为什么说它们是静电场的基本方程?②方程的两种形式之间存在什么联系、有何差异?③它们在应用方面有何不同?这些问题对深刻理解和掌握静电场的基本性质,正确地分析、求解静电场问题是非常重要的。
① 静电场的基本方程静电场基本方程组完整地反映出了静电场的基本性质,是分析求解静电场问题的基础。
高斯定理d S q=⎰D S 及其微分形式ρ∇⋅=D 清楚地表示出静电场是有源场,电荷就是静电场的源;电力线发自于正电荷,终止于负电荷。
环路定理d 0C =⎰E l 及其微分形式0∇⨯=E ,则反映了静电场的无旋性,是保守场。
并且静电场基本方程组适用于任何静电场,只要是静电场,E 和D 就满足静电场基本方程。
② 基本方程的微分形式和积分形式都可以直接从电场表达式出发推导出来,并且它们之间可以互相转换,即利用散度定理和斯托克斯定理,可由微分形式推导出积分形式。
反之,也能由积分形式推导出微分形式。
③ 在不同媒质的分界面上或有面电荷分布之处,E 和D 通常是不连续的,∇⨯E 和∇⋅D 失去意义。
所以,场方程的微分形式在不同媒质的分界面上不再适用,而场方程的积分形式在这些地方依然是适用的。
④ 场方程的积分形式反映了一定区域内静电场的整体性质。
d S q =⎰D S 表明:电位移矢量D 在任一闭曲面S 上的通量只与S 内的自由电荷的总量有关,只要S 内自由电荷的总量不变,无论电荷怎样分布,D 在任一闭曲面S 上的通量都相同。
而场方程的微分形式则反映出场中每一点的特性,ρ∇=D 表明,场中任一点D 的散度等于该点的电荷体密度,而与其它地方的电荷分布无关。
⑤ 当电场分布具有某种空间对称性(如平面对称、轴对称、球对称等)时,应用高斯定理d Sq =⎰D S 求解电场强度最为简单。
但在一般情况下,由场方程的微分形式与边界条件联立构成边值问题,原则上可以求解任何电荷分布的电场。
若已知场分布,则由d S q =⎰D S 可求出闭曲面S 内的总电荷;而利用ρ∇=D 则可求出场中各点的电荷体密度。
对场分布不连续之处,由21()σ-=n D D可求出其电荷面密度。
0()()()0r E r E r ρε⎧∇=⎪⎨⎪∇⨯=⎩ 0()()0S C Q E r dS E r ε⎧=⎪⎨⎪=⎩⎰⎰二、静电场的边界条件边界条件是静电场的重点内容之一,怎样正确的理解边界条件的意义与作用,掌握并运用边界条件是难点。
什么是静电场的边界条件?为什么要讨论边界条件?静电场问题中,常常涉及到具有不同物理性质的媒质,在两种不同媒质的分量面上,场量会产生突变,基本方程的微分形式不适用于媒质分界面。
那么,在媒质分界面两侧的场量之间存在什么关系?这就是场量在媒质分界面上所满足的边界条件。
边界条件实质上是静电场基本方程在媒质分界面上的一种表现形式。
所以,在静电场中,场量不仅满足基本方程,而且也满足边界条件。
也就是说,只有满足基本方程,并且也满足边界条件的场矢量E 和D 才是静电场问题的解。
因此,在求解静电场问题中,边界条件起定解的作用。
三、电位参考点电位是静电场中的一个重要的概念。
关于电位应注意以下几点:① 电位具有明确的物理意义,它表示将正电荷从场点移动到参考点时电场力所做的功;② 明确电位参考点的作用。
电位具有相对意义,在同一个静电场中,各点的电位值与参考点的选取有关。
但场中两点之间的电位差是绝对的,与参考点的选择无关;③ 选择电位参考点的—般原则:一是电位表达式要有意义。
例如,在点电荷的电场中不能选择点电荷所在处为电位参考点,在均匀场中不能选择无穷远处为电位参考点。
否则空间中大多数地方电位将为无穷大,而失去实际意义;二是同一个问题中只能选择一个电位参考点。
④ 电荷分布在有限的区域时,通常选择无穷远处为电位参考点。
电荷不是分布在有限区域内时,则不能选择无穷远处为电位参考点,这时可根据具体情况选择电位参考点。
如:对于均匀带电的无限长细直导线的电位,可选择0r r =(00r ≠的常数)为电位参考点。
⑤ 在静电场中,有接地导体时,通常选择接地导体的电位为零。
但接地与电位参考点是两个不同的概念,不能混为一谈。
导体接地的主要含义:一是接地导体与地球同电位,且与外界条件的变化无关;二是导体接地会与大地产生电荷交换,电荷的流动方向取决于导体接地前的电位是高于大地,还是低于大地。
若接地前导体的电位高于大地,接地后将有正电荷流向大地,直到导体与大地电位相等。
因此,导体接地与否,其上的电荷分布可能完全不同。
例如,在一个导体球附近放置一个带正电的点电荷,导体球面上会出现感应电荷分布。
当导体球接地时,球面上只有负的感应电荷分布;若导体球不接地,则球面上靠近点电荷的地方有负的感应电荷分布,而离点电荷较远的地方则有正的感应电荷分布、且球面上感应电荷的总量为零。
四、恒定电场与静电场的比较恒定电场与静电场具有相似的性质,但也有所区别。
在学习恒定电场时,应对恒定电场产生的条件有清楚的认识,将恒定电场与静电场进行比较。
静电场是静止电荷产生的场,带电体充有电荷后,就不再需要外电源提供能量。
恒定电场是恒定流动的电荷所产生的电场,由于导体内的电荷流动要消耗能量,所以必须有外电源提供能量才能维持导体中的电荷作恒定流动。
恒定电场中,导电媒质内存在恒定电流,各点的电位不同。
因而,导体不再是等位体,导体表面也不是等位面,这一点与静电场是完全不同的。
导电媒质中的恒定电场(电源外)与介质中的静电场(无源区域)公式对比如下:从以上对比关系可以看出:① 表征两种场的特性的方程和边界条件具有相似的形式;② 导电媒质中的E 、ϕ、J 、I 、γ和G 分别与电介质中的E 、ϕ、D 、q 、ε和C 在各自的方程和边界条件中有相同的地位,因而它们之间是对偶量;③ 如果两种场具有相同边界条件,则它们有相同形式的解。
因而在相同边界条件下,如果已知一种场的解,只要用对偶量代换,就可得到另一种场的解,这种方法称为静电比拟法。
五、静电场能量在静电场中,表示能量的公式有几个,其中主要的是:点电荷系的静电场能量公式,连续分布电荷系的静电场能量公式 和用电场表示的能量公式。
应注意这些公式的物理含义以及它们之间的联系与差异。
按照场的观点,静电场能量存在于电场所在的区域内,也就是说场蕴含着能量。
直接反映这个观念的是电场能量密度公式,它仅由场量E 、D 来确定,而与电荷无关。
这就表明了场存在的空间中,任一体积元内都具有能量,若在场中某一体积内对能量密度积分,就得到该体积内蕴含的静电场能量;若积分遍及电场存在的全空间,就得到总的静电能量。
所以由电场的能量密度,既可计算总的静电能量,也可计算局部空间中蕴含的静电能量。
既适用于静电场,也适用于时变场,具有普遍的意义。
六、静电场解题静电场解题的主要问题包括:①由已知电荷分布求电场和电位分布;②由已知电场或电位分布求自由电荷和极化分布;③求电容、静电能量。
① 已知电荷分布求解电场分布主要有三种方法:a 、直接应用电场强度的计算公式求解。
这一方法主要用于计算一些比较简单的电荷分布在空间某些特殊位置的电场;b 、应用高斯定理求解对称分布的电场。
当电场分布具有某种空间对称性(如平面对称、轴对称、球对称等)时,应用高斯定理d Sq=⎰D S 求解电场强度最为简单。
对于某些非对称分布的场,若能将其表示为若干个对称分布的场的叠加,也能应用高斯定律求解。
当存在介质分界面时,有两种情况适宜用高斯定理求解:一种情况是在介质分界面上,电场垂直于1()()2e w D r E r = 1()()2e V W D r E r dV =⎰ 12e i i i W q ϕ=∑1()()2e V W r r dVρϕ=⎰介质分界面,即电场只有法向分量。
这时D 成对称分布,可直接应用高斯定理求解;另一种情况是在介质分界面上,电场平行于分界面,即电场只有切向分量。
根据边界条件,这时应有12E E =,但12D D ≠。
也就是说,在这种情况下E 成对称分布,而D 不是对称分布的。
应用高斯定理求解这种问题的关键在于:将12E E E ==、111D E ε=和222D E ε=代入d S q=⎰D S ;c 、由电位的梯度求电场强度。
② 求解电位分布的三种主要方法是:a 、直接应用电位的计算公式求解。
这一方法主要用于计算一些比较简单的电荷分布在空间某些特殊位置的电位;b 、由电场强度的积分求电位;c 、求解泊松方程或拉普拉斯方程的边值问题(这一解法将在第四章中讨论)。