高一期末复习

合集下载

高一英语期末考试复习提纲

高一英语期末考试复习提纲

高一英语期末考试复习提纲一、基础知识回顾A. 语法1. 时态的用法和转换2. 语态的运用3. 从句的种类及使用方式B. 词汇1. 常用词汇的掌握及运用2. 同义词和近义词的辨析3. 词组和短语的使用二、阅读理解A. 不同类型的文章阅读技巧1. 新闻报道2. 广告宣传3. 议论性文章B. 掌握阅读技巧1. 找出主旨和关键信息2. 推理和推断能力3. 理解作者态度和观点三、听力训练A. 提高听力技巧1. 听清关键词和细节信息2. 提高听力速度和准确度B. 听力复习题型1. 对话和短文理解2. 多项选择题3. 填词和填表题四、写作技巧A. 句子结构和段落连贯1. 书面表达的语言规范2. 句子结构的多样性和使用B. 作文写作技巧1. 合理组织文章结构2. 准确表达个人观点3. 使用适当的词汇和句型五、口语表达A. 提高口语交际能力1. 学习常用口语表达2. 提高流利度和准确度B. 口语练习题型1. 对话和演讲2. 给出建议和意见3. 讨论和辩论技巧六、考试技巧A. 考试前的准备1. 制定学习计划和时间安排2. 预测可能出现的题型和重点B. 考试时的应对策略1. 阅读题目注意事项2. 解答题目的技巧和步骤七、常见错误及改正A. 容易出错的语法点1. 过去式和过去分词的区别2. 代词和冠词的使用错误B. 词汇拼写和搭配错误的改正方法1. 查漏补缺常见词汇2. 练习搭配和短语的正确使用八、学习资源推荐A. 阅读材料推荐1. 经典英文小说和故事2. 英语报刊杂志和网站B. 学习工具推荐1. 词典和电子翻译工具2. 在线学习平台和网课资源通过按照以上提纲进行系统复习,相信你能对高一英语的基础知识、阅读理解、听力训练、写作技巧、口语表达、考试技巧等方面有更深入的了解。

希望你能在期末考试中取得优异的成绩!。

期末高一复习专题02 一元二次函数、不等式(教师版)

期末高一复习专题02  一元二次函数、不等式(教师版)

专题02 一元二次函数、方程和不等式考点一:不等式性质及应用1.若A =a 2+3ab ,B =4ab -b 2,则A ,B 的大小关系是( ) A .A ≤B B .A ≥B C .A <B 或A >B D .A >B 答案 B解析 ∵A -B =a 2+3ab -(4ab -b 2)=⎝⎛⎭⎫a -b 22+34b 2≥0, ∴A ≥B . 2.若110a b<<,则下列不等式成立的是( ) A .a b ab -> B .a b ab -<C .b a ab ->D .b a ab -<【解答】解:由110a b<<, 对于A 、B ,因为110a b <<,则0a <,0b <,a b >,从而0ab >,0a b ->,即0a b ab ->,则可取1a bab-=,即a b ab -=,故A 、B 错误,对于C 、D ,因为110a b <<,则0a <,0b <,从而0ab >.又110b a->,即0a bab->,则0a b ->,所以0b a ab -<<,故D 正确,C 错误. 故选:D .3.对于任意实数a ,b ,c ,则下列四个命题:①若a b >,0c ≠,则ac bc >;②若a b >,则22ac bc >; ③若22ac bc >,则a b >;④若a b >,则11a b<. 其中正确命题的个数为( ) A .3 B .2C .1D .0【答案】C【解析】a b >时,若0c <,则ac bc <,①错误;若0c,则22ac bc =,②错误;若22ac bc >,则20c >,∴a b >,③正确;a b >,若0a b >>,仍然有11a b>,④错误. 正确的只有1个.故选:C .4.已知11x y -≤+≤,13x y ≤-≤,则182yx ⎛⎫⋅ ⎪⎝⎭的取值范围是( ) A .82,2⎡⎤⎣⎦B .81,22⎡⎤⎢⎥⎣⎦C .72,2⎡⎤⎣⎦D .71,22⎡⎤⎢⎥⎣⎦【答案】C【解析】令()()()()3x y s x y t x y s t x s t y -=++-=++-则31s t s t +=⎧⎨-=-⎩,∴12s t =⎧⎨=⎩,又11x y -≤+≤,…∴①13x y ≤-≤,∴()226x y ≤-≤…②∴①+②得137x y ≤-≤.则371822,22yxx y -⎛⎫⎡⎤⋅=∈ ⎪⎣⎦⎝⎭.故选C .5.证明不等式22222a b a b ++⎛⎫≤⎪⎝⎭(,a b ∈R ). 【答案】证明见解析.【解析】证明:因为222a b ab +≥,所以22222()2a b a b ab +≥++, 所以()()2222a ba b +≥+两边同除以4,即得22222a b a b ++⎛⎫≤⎪⎝⎭,当且仅当a b =时,取等号. 考点二:利用基本不等式求最值 6.函数413313y x x x ⎛⎫⎪⎝=>-⎭+的最小值为( ) A .8 B .7 C .6 D .5【答案】D因为13x >,所以3x -1>0,所以()443311153131y x x x x =+=-++≥=--, 当且仅当43131x x -=-,即x =1时等号成立,故函数413313y x x x ⎛⎫ ⎪⎝=>-⎭+的最小值为5. 故选:D .7.设0a >,0b >,41a b +=,则11a b+的最小值为( )A .7B .9C D 3【解答】解:0a >,0b >,41a b +=,111144()(4)()552549b a b a b a b a b a b a ∴+=++=++++=, 当且仅当4b a a b =,即126a b ==时取等号,∴11a b +的最小值为9.故选:B .8.已知a ,b R +∈,且23a b ab +=,则2a b +的最小值为( ) A .3B .4C .6D .9【解答】解:a ,b R +∈,且23a b ab +=,∴213a b+=,12152522(2)()()333333a b a b a b a b b a ∴+=++=+++⨯(当且仅当a b =时取“= “),即2a b +的最小值为3.故选:A .9.函数233(1)1x x y x x ++=<-+的最大值为( )A .3B .2C .1D .-1【答案】D2233(1)(1)111x x x x y x x ++++++==++1[(1)]1(1)x x =--+++-+11≤-=-, 当且仅当1111x x +==-+,即2x =-等号成立. 故选:D.10.已知0x >,0y >,若28x y xy +=,则xy 的最小值是( )A B C .18D .14【答案】C因为0x >,0y >,由基本不等式得:2x y +≥所以8xy ≥解得:18xy ≥,当且仅当2x y =,即14x =,12y =时,等号成立故选:C11.已知0x >,0y >且141x y+=,若28x y m m +>+恒成立,则实数m 的取值范围是_________.【答案】(9,1)- 【详解】0,0x y >> ,且141x y+=,()144149y xx y x y x y x y ⎛⎫∴+=++=+++≥ ⎪⎝⎭,当且仅当4y x x y =,即36x y ==,时取等号.()min 9x y ∴+=,由28x y m m +>+ 恒成立,即()2min 89m m x y +<+=,解得:91m -<<, 故答案为:(9,1)-12.已知正数a ,b 满足21a b +=,则( ) A .ab 有最大值18 B .12a b +有最小值8 C .1b b a +有最小值4 D .22a b +有最小值15【解答】解:根据题意,依次分析选项: 对于A ,22112()248a b a b ab+⋅=⇒,当且仅当12a =,14b =时取等号,则A 正确; 对于B ,121222(2)()5459b aa b a b a b a b +=++=+++=,当且仅当13a b ==时取等号,B 错误;对于C ,12224b a bb a b a+=+++=,当且仅当13a b ==时取等号,则C 正确;对于D ,222222211(12)5415()(0)552a b b b b b b b +=-+=-+=-+<<,故最小值为15,则D 正确;故选:ACD .13.已知20a b >>,则4(2)a b a b +-的最小值为______________思路一:所求表达式为和式,故考虑构造乘积为定值以便于利用均值不等式,分母为()2b a b -,所以可将a 构造为()112222a ab b ⋅=⋅-+⎡⎤⎣⎦,从而三项使用均值不等式即可求出最小值:4181(2)3(2)2(2)2a a b b b a b b a b ⎡⎤+=-++≥⋅=⎢⎥--⎣⎦ 思路二:观察到表达式中分式的分母()2b a b -,可想到作和可以消去b ,可得()()2222b a b b a b a +-⎡⎤-≤=⎢⎥⎣⎦,从而244(2)a a b a b a +≥+-,设()24f a a a =+,可从函数角度求得最小值(利用导数),也可继续构造成乘积为定值:()24322a a f a a =++≥= 答案:314.某项研究表明:在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位:辆/时)与车流速度v (假设车辆以相同速度v 行驶,单位:米/秒)、平均车长l (单位:米)的值有关,其公式为F=76 000v v 2+18v +20l . (1)如果不限定车型,l =6.05,则最大车流量为________辆/时;(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加________辆/时. 答案 (1)1 900 (2)100解析 (1)当l =6.05时,F =76 000v v 2+18v +121=76 000v +121v +18≤76 0002v ·121v +18=1 900(辆/时).当且仅当v =121v ,即v =11时,等号成立.(2)当l =5时,F =76 000vv 2+18v +100=76 000v +100v +18≤76 0002v ·100v +18=2 000(辆/时).当且仅当v =100v ,即v =10时,等号成立.∴最大车流量为2 000(辆/时). 2 000-1 900=100(辆/时).∴最大车流量比(1)中的最大车流量增加100(辆/时). 考点三:含参数与不含参数的不等式解法15.已知集合{}2230A x x x =-+≥,302x B x x ⎧⎫-=∈≤⎨⎬+⎩⎭Z,则A B =( ) A .{}23x x -<≤ B .{}1,0,1,2,3-C .{}2,1,1,2,3--D .R【答案】B解不等式2230x x -+≥ ,()2223120,x x x x R -+=-+>∈ ,解不等式302x x -≤+ 得23x -<≤,}{1,0,1,2,3B =- ,}{1,0,1,2,3A B ∴⋂=- ; 故选:B.16.不等式()()()21350x x x ++->的解集为___________. 【答案】1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃【详解】不等式()()()()()()2135021350x x x x x x ++->⇔++-<,由数轴标根法画出图线,可得不等式的解集为1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.故答案为:1(,3),52⎛⎫-∞-- ⎪⎝⎭⋃.17.已知二次不等式220x bx c -++<的解集为1{|3x x <或1}2x >,则关于x 的不等式220cx bx -->的解集为( )A .{|23}x x <<B .{|23}x x -<<C .{|32}x x -<<D .{|32}x x -<<-【解答】解:二次不等式220x bx c -++<的解集为1{|3x x <或1}2x >, 所以二次方程220x bx c -++=的解是13和12,由根与系数的关系知,1132211322bc ⎧+=⎪⎪⎨⎪⨯=-⎪⎩,解得53b =,13c =-;所以不等式220cx bx -->化为2152033x x --->, 即2560x x ++<,解得32x -<<-;所以所求不等式的解集为{|32}x x -<<-. 故选:D .18.25.已知关于x 的不等式20ax bx c ++>解集为{}23x x -<<,则下列说法错误的是( ) A .0a < B .不等式0ax c +>的解集为{}6x x <C .0a b c ++>D .不等式20cx bx a -+<的解集为1132x x ⎧⎫<<⎨⎬⎩⎭【答案】D 【详解】由已知可得-2,3是方程20ax bx c ++=的两根,则由根与系数的关系可得23,23,b ac a ⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩且0a <,解得,6b a c a =-=-,所以A 正确;对于B ,0ax c +>化简为60x -<,解得6x <,B 正确;对于C ,660a b c a a a a ++=--=->,C 正确; 对于D ,20cx bx a -+<化简为:2610x x --<,解得1132x -<<,D 错误.故选:D.19.已知关于x 的不等式:()23130ax a x -++<.(1)当2a =-时,解此不等式; (2)当0a >时,解此不等式.【答案】(1)1{|2x x <-或}3x >(2)当13a =时,解集为∅;当103a <<时,解集为1{|3}x x a <<;当13a >时,解集为1{|3}x x a <<(1)当a =-2时,不等式-2x 2+5x +3<0整理得(2x +1)(x -3)>0,解得x <-12或x >3, 当a =-2时,原不等式解集为{x |x <-12或x >3}.(2)当a >0时,不等式ax 2-(3a +1)x +3<0整理得:(x -3)(x -1a )<0, 当a =13时,1a =3,此时不等式无解;当0<a <13时,1a >3,解得3<x <1a ;当a >13时,1a <3,解得1a <x <3;综上:当a =13时,解集为∅;当0<a <13时,解集为{x |3<x <1a };当a >13时,解集为{x |1a <x <3}.20.已知22()(3)3f x ax a x a =+--.(1)若关于x 的不等式()0f x <的解集为{|1x x >或3}x <-,求实数a 的值; (2)若关于x 的不等式()0f x x a ++<的解集中恰有2个整数,求正整数a 的值. 【解答】解:22()(3)3(3)()f x ax a x a ax x a =+--=-+,(1)若不等式()0f x <的解集为(-∞,3)(1-⋃,)+∞,则0a <,且1a -=,33a=-,解得1a =-; (2)不等式()0f x x a ++<,即22(2)20ax a x a +--<有两整数解, 所以(2)()0ax x a -+<;又a 为正整数,所以2a x a-<<, 由解集中必含0,两整数解为1-,0或0,1;当2a >时,整数解为2-,1-,0,不符合; 所以1a =或2a =.考点四:恒成立、有解与根分布问题21.函数()()20.8log 23f x x ax =-+在()1,-+∞有意义,则a 的取值范围( )A .(-B .5,⎡-⎣C .[]5,4--D .(],4-∞-【答案】B 【详解】由题意可知2230x ax -+>对任意的1x >-恒成立,令223u x ax =-+, 二次函数223u x ax =-+的图象开口向上,对称轴为直线4ax =. ①当14a≤-时,即当4a ≤-时,此时函数223u x ax =-+在()1,-+∞上单调递增, 所以,230a ++≥,解得5a ≥-,此时54a -≤≤-;②当14a>-时,即当4a >-时,则有2240a ∆=-<,解得a -<4a -<<综上所述,实数a 的取值范围是5,⎡-⎣. 故选:B.22.已知函数y =x 2+ax +3.(1)当x ∈R 时,y ≥a 恒成立,求a 的取值范围; (2)当a ∈[4,6]时,y ≥0恒成立,求x 的取值范围.解 (1)当x ∈R 时,x 2+ax +3-a ≥0恒成立,则Δ=a 2-4(3-a )≤0,即a 2+4a -12≤0, 解得-6≤a ≤2,故a 的取值范围为{a |-6≤a ≤2}.(2)将y =xa +x 2+3看作关于a 的一次函数,当a ∈[4,6]时,y ≥0恒成立,只需在a =4和a =6时y ≥0即可,即⎩⎪⎨⎪⎧x 2+4x +3≥0,x 2+6x +3≥0, 解得x ≤-3-6或x ≥-3+6,故x 的取值范围是{x |x ≤-3-6或x ≥-3+6}. 23.已知a R ∈,“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是( ) A .10a -<< B .10a -<≤C .10a -≤<D .10a -≤≤【答案】B当0a =时,221=10ax ax +--<,对x R ∀∈恒成立;当0a ≠时,若2210ax ax +-<,对x R ∀∈恒成立,则必须有20(2)4(1)0a a a <⎧⎨-⨯-<⎩,解之得10a -<<, 综上,a 的取值范围为10a -<≤.故“2210ax ax +-<对x R ∀∈恒成立”的一个充要条件是10a -<≤,故选:B24.若命题“R x ∃∈,使得不等式22(3)0mx m x m +-+<”成立,则实数m 的取值集合是( ) A .(3,1)-- B .(,1)(3,)-∞+∞C .(,0]-∞D .(3,1)(1,3)--【答案】B命题“R x ∃∈,使得不等式22(3)0mx m x m +-+<”成立, 当0m =时,不等式为30x -<,显然有解,成立;当0m <时,开口向下,必然R x ∃∈,使得不等式22(3)0mx m x m +-+<成立,; 当0m >,0∆>即222(3)40m m -->,解得29m >或21m <,所以01m <<或3m >. 综上可得1m <或3m >. 故选:B .25.已知关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,则有( ) A .4m ≤- B .3m ≥- C .30m -≤< D .40m -≤<【答案】A因为关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,所以2min (4)m x x ≤-, 令224(2)4y x x x =-=--,(]0,3x ∈,所以当2x =时,24y x x =-取得最小值4-, 所以4m ≤- 故选:A26.若关于x 的一元二次方程2240x ax -+=有两个实根,且一个实根小于1,另一个实根大于2,则实数a 的取值范围是________. 【答案】(52,+∞)【详解】设2()24f x x ax =-+,由题意2Δ4160(1)1240(2)4440a f a f a ⎧=->⎪=-+<⎨⎪=-+<⎩,解得52a >,故答案为:5(,)2+∞.27.2022年11月23日,贵州宣布最后9个深度贫困县退出贫困县序列,这不仅标志着贵州省66个贫困县实现整体脱贫,这也标志着国务院扶贫办确定的全国832个贫困县全部脱贫摘帽,全国脱贫攻坚目标任务已经完成.在脱贫攻坚过程中,某地县乡村三级干部在帮扶走访中得知某贫困户的实际情况后,为他家量身定制了脱贫计划,政府无息贷款10万元给该农户种养羊,每万元可创造利润0.15万元.若进行技术指导,养羊的投资减少了x ()0x >万元,且每万元创造的利润变为原来的()10.25x +倍.现将养羊少投资的x 万元全部投资网店,进行农产品销售,则每万元创造的利润为()0.150.875a x -万元,其中0a >. (1)若进行技术指导后养羊的利润不低于原来养羊的利润,求x 的取值范围; (2)若网店销售的利润始终不高于技术指导后养羊的利润,求a 的最大值. 【答案】(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5. 【详解】解:(1)由题意,得()()0.1510.25100.1510x x +-≥⨯,整理得260x x -≤,解得06x ≤≤,又0x >,故06x <≤. (2)由题意知网店销售的利润为()0.150.875a x x -万元,技术指导后,养羊的利润为()()0.1510.2510x x +-万元,则()()()0.150.8750.1510.2510a x x x x -≤+-恒成立,又010x <<,∴5101.58x a x≤++恒成立, 又51058x x +≥,当且仅当4x =时等号成立,∴0 6.5a <≤,即a 的最大值为6.5. 答:(1)x 的取值范围为06x <≤;(2)a 的最大值为6.5.对点练习一、单选题1.不等式21560x x +->的解集为( )A .{1x x 或1}6x <- B .116x x ⎧⎫-<<⎨⎬⎩⎭ C .{1x x 或3}x <- D .{}32x x -<<【答案】B【分析】解一元二次不等式,首先确保二次项系数为正,两边同时乘1-,再利用十字相乘法,可得答案, 【详解】法一:原不等式即为26510x x --<,即()()6110x x +-<,解得116x -<<,故原不等式的解集为116x x ⎧⎫-<<⎨⎬⎩⎭.法二:当2x =时,不等式不成立,排除A ,C ;当1x =时,不等式不成立,排除D .故选:B .2.已知正数x y ,满足 4x y +=,则xy 的最大值( )A . 2B .4C . 6D .8【答案】B【分析】直接使用基本不等式进行求解即可. 【详解】因为正数x y ,满足 4x y +=,所以有424x y xy =+≥⇒≤,当且仅当2x y ==时取等号, 故选:B3.已知二次函数2y ax bx c =++的图象如图所示,则不等式20ax bx c ++>的解集是( )A .{}21x x -<<B .{|2x x <-或1}x >C .{}21x x -≤≤D .{|2x x ≤-或1}x ≥ 【答案】A【分析】由二次函数与一元二次不等式关系,结合函数图象确定不等式解集. 【详解】由二次函数图象知:20ax bx c ++>有2<<1x -. 故选:A4.已知02x <<,则y =的最大值为( ) A .2B .4C .5D .6【答案】A【分析】由基本不等式求解即可【详解】因为02x <<,所以可得240x ->,则()22422x x y +-==,当且仅当224xx =-,即x =y =的最大值为2.故选:A .5.关于x 的不等式()210x a x a -++< 的解集中恰有1个整数,则实数a 的取值范围是( )A .(][)1,02,3-B .[)(]2,13,4--C .[)(]2130,-⋃,D .()()2134--⋃,, 【答案】C【分析】分类讨论一元二次不等式的解,根据解集中只有一个整数,即可求解.【详解】由()210x a x a -++<得()()10x x a --< ,若1a =,则不等式无解.若1a >,则不等式的解为1x a <<,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为2x =,则23a <≤.若1a <,则不等式的解为1<<a x ,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为0x =,则10a -≤<.综上,满足条件的a 的取值范围是[)(]2130,-⋃, 故选:C .6.已知关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,则下列说法正确的是( )A .0a >B .不等式20ax cx b ++>的解集为{|22x x <<C .0a b c ++<D .不等式0ax b +>的解集为{}|3x x >【答案】B【分析】根据解集形式确定选项A 错误;化不等式为2430,x x --<即可判断选项B 正确;设2()f x ax bx c =++,则(1)0f >,判断选项C 错误;解不等式可判断选项D 错误.【详解】解:因为关于x 的不等式20ax bx c ++<的解集为{|1x x <-或4}x >,所以a<0,所以选项A 错误; 由题得014,3,414a b b a c a a c a ⎧⎪<⎪⎪-+=-∴=-=-⎨⎪⎪-⨯=⎪⎩,所以20ax cx b ++>为2430,22x x x --<∴<所以选项B 正确;设2()f x ax bx c =++,则(1)0f a b c =++>,所以选项C 错误;不等式0ax b +>为30,3ax a x ->∴<,所以选项D 错误.故选:B二、多选题7.(多选)给出下列命题,其中正确的命题是( )A .a >b ⇒ac 2>bc 2B .a >|b |⇒a 2>b 2C .a >b ⇒a 3>b 3D .|a |>b ⇒a 2>b 2答案 BC解析 A 当c 2=0时不成立;B 一定成立;C 当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; D 当b <0时,不一定成立.如|2|>-3,但22<(-3)2.a b >,则222a b b >=,D 正确.故选:BD .8.对任意两个实数,a b ,定义{},,min ,,a ab a b b a b ≤⎧=⎨>⎩,若()22f x x =-,()2g x x =,下列关于函数()()(){}min ,F x f x g x =的说法正确的是( )A .函数()F x 是偶函数B .方程()0F x =有三个解C .函数()F x 在区间[1,1]-上单调递增D .函数()F x 有4个单调区间【答案】ABD【分析】结合题意作出函数()()(){}min ,F x f x g x =的图象,进而数形结合求解即可.【详解】解:根据函数()22f x x =-与()2g x x =,,画出函数()()(){}min ,F x f x g x =的图象,如图.由图象可知,函数()()(){}min ,F x f x g x =关于y 轴对称,所以A 项正确;函数()F x 的图象与x 轴有三个交点,所以方程()0F x =有三个解,所以B 项正确;函数()F x 在(,1]-∞-上单调递增,在[1,0]-上单调递减,在[0,1]上单调递增,在[1,)+∞上单调递减,所以C 项错误,D 项正确.故选:ABD三、填空题9.函数()1311y x x x =+>-的最小值是_____【答案】3+【分析】利用基本不等式可求得原函数的最小值.【详解】因为1x >,则10x ->,所以()1313331y x x =-++≥=-,当且仅当()1311x x -=-,因为1x >,即当x =.所以函数()1311y x x x =+>-的最小值是3.故答案为:3+10.已知[]0,2a ∀∈时,不等式()231102ax a x a +++-<恒成立,则x 的取值范围为__________. 【答案】()2,1--【分析】由题意构造函数关于a 的函数()f a 2312x x a x ⎛⎫=+-++ ⎪⎝⎭,则可得(0)0(2)0f f <⎧⎨<⎩,从而可求出x 的取值范围.【详解】由题意,因为当[]0,2a ∈,不等式()231102ax a x a +++-<恒成立, 可转化为关于a 的函数()f a 2312x x a x ⎛⎫=+-++ ⎪⎝⎭,则()0f a <对任意[]0,2a ∈恒成立, 则满足2(0)10(2)22310f x f x x x =+<⎧⎨=+-++<⎩,解得2<<1x --, 即x 的取值范围为()2,1--.故答案为:()2,1--四、解答题11.(1)已知一元二次不等式20x px q ++<的解集为11|23x x ⎧⎫-<<⎨⎬⎩⎭,求不等式210qx px ++>的解集; (2)若不等式2(7)0x mx m -++>在实数集R 上恒成立,求m 的范围.【答案】(1){|23}x x -<<;(2)22m -<+【分析】(1)先将不等式问题转化为方程问题求出,p q 的值,然后就可以解不等式了;(2)一元二次不等式恒成立,即考虑其判别式.【详解】(1)因为20x px q ++<的解集为11|23x x ⎧⎫-<<⎨⎬⎩⎭, 所以112x =-与213x =是方程20x px q ++=的两个实数根, 由根与系数的关系得11,3211,32p q ⎧-=-⎪⎪⎨⎛⎫⎪⨯-= ⎪⎪⎝⎭⎩解得1,61.6p q ⎧=⎪⎪⎨⎪=-⎪⎩不等式210qx px ++>, 即2111066x x -++>,整理得260x x --<,解得23x -<<.即不等式210qx px ++>的解集为{|23}x x -<<. (2)由题意可得,∆<0,即241(7)0-⨯⨯+<m m ,整理得24280m m --<,解得22m -<+12.为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.【答案】(1)最大值为16米;(2)最小值为(824+平方米.【分析】(1)设草坪的宽为x 米,长为y 米,依题意列出不等关系,求解即可;(2)表示400(26)(4)(26)(4)S x y x x=++=++,利用均值不等式,即得最小值. 【详解】(1)设草坪的宽为x 米,长为y 米,由面积均为400平方米,得400y x =. 因为矩形草坪的长比宽至少大9米,所以4009x x +,所以294000x x +-,解得2516x -. 又0x >,所以016x <.所以宽的最大值为16米.(2)记整个的绿化面积为S 平方米,由题意可得400300(26)(4)(26)(4)8248()(824S x y x x x x=++=++=+++(平方米)当且仅当x =.所以整个绿化面积的最小值为(824+平方米.。

高一期末复习重点知识

高一期末复习重点知识

我很高兴听到...... 我很抱歉听到...... 我写信是为了告诉你.....
正文: 列点: 1、首先: First/Firstly/First of all/In the first place 2、第二: Second/Secondly
Unit 3 1. come along 跟随;到达;进步;赶快
2. work out 锻炼;计算出;解决
3. make it 获得成功;准时到达
4. set an example 树立榜样
5. fall apart 破裂;破碎;崩溃
6. lose heart 丧失信心;泄气 7. give up 放弃;投降
必修一、二重点语法 一、句型结构 1.主-谓 Everybody went. 2.主-系-表 The leaves are yellow. 3. 主-谓-宾 He buys a book. 4.第四种句型:主-谓-间接宾语-直接宾语 I gave my son the book. 5.主-谓-宾-宾补 I found the project difficult. (difficult 就是宾语 project 的补足语。) 6.There be 句型 There are many children in the park. 7.主语+谓语+状语 She arrives early. 8.主语+谓语+宾语+状语 I drive my car every day. 二.定语从句 (一)定义 1.在复合句中,对某一名词或代词起修饰作用的从句叫作定语从句。 被修饰的名词或代词叫作先行词,引导定语从句的词叫作关系词。 2.关系词:关系代词(that,which,who,whom,whose)
不打扰,不惊动

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)(解析版)

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)(解析版)

2022-2023学年江苏省扬州市高一上学期期末复习数学试题(一)一、单选题1.设集合{}12A x x =<<,{}B x x a =>,若A B ⊆,则a 的范围是( ) A .2a ≥ B .1a ≤C .1a ≥D .2a ≤【答案】B【分析】结合数轴分析即可.【详解】由数轴可得,若A B ⊆,则1a ≤. 故选:B.2.命题p :x ∃∈R ,210x bx ++≤是假命题,则实数b 的值可能是( )A .74-B .32-C .2D .52【答案】B【分析】根据特称命题与全称命题的真假可知:x ∀∈R ,210x bx ++>,利用判别式小于即可求解. 【详解】因为命题p :x ∃∈R ,210x bx ++≤是假命题,所以命题:x ∀∈R ,210x bx ++>是真命题,也即对x ∀∈R ,210x bx ++>恒成立, 则有240b ∆=-<,解得:22b -<<,根据选项的值,可判断选项B 符合, 故选:B . 3.函数 21x y x =-的图象大致为( )A .B .C .D .【答案】B【分析】本题首先根据判断函数的奇偶性排除A,D ,再根据01x <<,对应0y <,排除C ,进而选出正确答案B .【详解】由函数 21x y x =-, 可得1x ≠±,故函数的定义域为()()()1111∞∞--⋃-⋃+,,,, 又 ()()()2211xxf x f x x x --===---, 所以21x y x =-是偶函数, 其图象关于y 轴对称, 因此 A,D 错误; 当 01x <<时,221001x x y x -<=<-,, 所以C 错误.故选: B4.已知322323233,,log 322a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则,,a b c 的大小关系是( ) A .a b c << B .b a c << C .c b a << D .c a b <<【答案】D【分析】构造指数函数,结合单调性分析即可.【详解】23xy ⎛⎫= ⎪⎝⎭在R 上单调递减,3222333012a ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝<=⎭<∴,, ∴01a <<;32xy ⎛⎫= ⎪⎝⎭在R 上单调递增,23033222013b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝>=⎭<∴,, ∴1b >; 223332log log 123c ==-=- ∴c a b << 故选:D5.中国共产党第二十次全国代表大会于2022年10月16日在北京召开,这次会议是我们党带领全国人民全面建设社会主义现代化国家,向第二个百年奋斗目标进军新征程的重要时刻召开的一次十分重要的代表大会,相信中国共产党一定会继续带领中国人民实现经济发展和社会进步.假设在2022年以后,我国每年的GDP (国内生产总值)比上一年平均增加8%,那么最有可能实现GDP 翻两番的目标的年份为(参考数据:lg 20.3010=,lg30.4771=)( ) A .2032 B .2035 C .2038 D .2040【答案】D【分析】由题意,建立方程,根据对数运算性质,可得答案.【详解】设2022年我国GDP (国内生产总值)为a ,在2022年以后,每年的GDP (国内生产总值)比上一年平均增加8%,则经过n 年以后的GDP (国内生产总值)为()18%na +, 由题意,经过n 年以后的GDP (国内生产总值)实现翻两番的目标,则()18%4na a +=, 所以lg 420.301020.301027lg1.083lg32lg5lg 25n ⨯⨯===-20.301020.301020.30100.6020183lg 32(1lg 2)3lg 32lg 2230.477120.301020.0333⨯⨯⨯===≈--+-⨯+⨯-=,所以到2040年GDP 基本实现翻两番的目标. 故选:D.6.将函数sin y x =的图像C 向左平移6π个单位长度得到曲线1C ,然后再使曲线1C 上各点的横坐标变为原来的13得到曲线2C ,最后再把曲线2C 上各点的纵坐标变为原来的2倍得到曲线3C ,则曲线3C 对应的函数是( )A .2sin 36y x π⎛⎫=- ⎪⎝⎭B .2sin36y x π⎛⎫=- ⎪⎝⎭C .2sin 36y x π⎛⎫=+ ⎪⎝⎭D .2sin36y x π⎛⎫=+ ⎪⎝⎭【答案】C【分析】利用图像变换方式计算即可.【详解】由题得1C :sin 6y x π⎛⎫=+ ⎪⎝⎭,所以2C :sin 36y x π⎛⎫=+ ⎪⎝⎭,得到3C :2sin 36y x π⎛⎫=+ ⎪⎝⎭故选:C7.已知0x >,0y >,且满足20x y xy +-=,则92x y+的最大值为( ) A .9 B .6 C .4 D .1【答案】D【分析】由题可得211x y+=,利用基本不等式可得29x y +≥ ,进而即得.【详解】因为20x y xy +-=,0x >,0y >,所以211x y+=,所以()212222559y x x y x x y y x y ⎛⎫+=+ ⎪⎝+++≥⎭==, 当且仅当22y xx y=,即3x y ==时等号成立, 所以912x y≤+,即92x y +的最大值为1.故选:D.8.已知22log log 1a b +=且21922m m a b+≥-恒成立,则实数m 的取值范围为( ) A .(][),13,-∞-⋃∞ B .(][),31,-∞-⋃∞ C .[]1,3- D .[]3,1-【答案】C【分析】利用对数运算可得出2ab =且a 、b 均为正数,利用基本不等式求出192a b+的最小值,可得出关于实数m 的不等式,解之即可.【详解】因为()222log log log 1a b ab +==,则2ab =且a 、b 均为正数,由基本不等式可得1932a b +≥,当且仅当2192ab a b =⎧⎪⎨=⎪⎩时,即当136a b ⎧=⎪⎨⎪=⎩时,等号成立, 所以,192a b+的最小值为3,所以,223m m -≤,即2230m m -≤-,解得13m -≤≤. 故选:C.二、多选题9.函数()y f x =图像关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学据此推出以下结论,其中正确的是( )A .函数()y f x =的图像关于点(,)P a b 成中心对称的图形的充要条件是()y f x a b =+-为奇函数B .函数32()3f x x x =-的图像的对称中心为1,2C .函数()y f x =的图像关于x a =成轴对称的充要条件是函数()y f x a =-是偶函数D .函数32()|32|g x x x =-+的图像关于直线1x =对称 【答案】ABD【分析】根据函数奇偶性的定义,以及函数对称性的概念对选项进行逐一判断,即可得到结果. 【详解】对于A ,函数()y f x =的图像关于点(,)P a b 成中心对称的图形,则有()()2f a x f a x b ++-=函数()y f x a b =+-为奇函数,则有()()0f x a b f x a b -+-++-=, 即有()()2f a x f a x b ++-=所以函数(=)y f x 的图像关于点(,)P a b 成中心对称的图形的充要条件是 为()y f x a b =+-为奇函数,A 正确;对于B,32()3f x x x =-,则323(1)2(1)3(1)23f x x x x x ++=+-++=-因为33y x x =-为奇函数,结合A 选项可知函数32()=-3f x x x 关于点(1,2)-对称,B 正确; 对于C ,函数()y f x =的图像关于x a =成轴对称的充要条件是()()f a x f a x =-+, 即函数()y f x a =+是偶函数,因此C 不正确; 对于D ,32()|-3+2|g x x x =,则323(1)|(1)3(1)2||3|g x x x x x +=+-++=-, 则33(1)|3||3|(1)g x x x x x g x -+=-+=-=+, 所以32()|-3+2|g x x x =关于=1x 对称,D 正确 故选:ABD.10.下列结论中正确的是( )A .若一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,则a b +的值是14-B .若集合*1N lg 2A x x ⎧⎫=∈≤⎨⎬⎩⎭∣,{}142x B x-=>∣,则集合A B ⋂的子集个数为4 C .函数()21f x x x =++的最小值为1 D .函数()21xf x =-与函数()f x 【答案】AB【分析】对于A :12-和13为方程220ax bx ++=的两根且0a <,即可得到方程组,解得即可判断A ;根据对数函数、指数函数的性质求出集合A 、B ,从而求出集合A B ⋂,即可判断B ;当1x <-时()0f x <,即可判断C ;求出两函数的定义域,化简函数解析式,即可判断D.【详解】解:对于A :因为一元二次不等式220ax bx ++>的解集是11,23⎛⎫- ⎪⎝⎭,所以12-和13为方程220ax bx ++=的两根且0a <,所以112311223b a a⎧-+=-⎪⎪⎨⎪-⨯=⎪⎩,解得122a b =-⎧⎨=-⎩,所以14a b +=-,故A 正确;对于B:{{}**1N lg N 1,2,32A x x x x ⎧⎫=∈≤=∈<≤=⎨⎬⎩⎭∣∣0,{}{}12234222|2x x B x x x x --⎧⎫=>=>=>⎨⎬⎩⎭∣∣, 所以{}2,3A B ⋂=,即A B ⋂中含有2个元素,则A B ⋂的子集有224=个,故B 正确; 对于C :()21f x x x =++,当1x <-时10x +<,()0f x <,故C 错误; 对于D :()21,02112,0x xxx f x x ⎧-≥=-=⎨-<⎩, 令()2210x -≥,解得x ∈R,所以函数()f x =R ,函数()21xf x =-的定义域为R ,虽然两函数的定义域相同,但是解析式不相同,故不是同一函数,即D 错误; 故选:AB11.已知函数()()0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭.当()()122f x f x =时,12min 2x x π-=,012f π⎛⎫-= ⎪⎝⎭,则下列结论正确的是( ) A .6x π=是函数()f x 的一个零点B .函数()f x 的最小正周期为2π C .函数()1y f x =+的图象的一个对称中心为,03π⎛-⎫⎪⎝⎭D .()f x 的图象向右平移2π个单位长度可以得到函数2y x =的图象 【答案】AB【分析】根据三角函数的图象与性质,求得函数的解析式())6f x x π=-,再结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,函数()()f x x ωϕ+,可得()()min max f x f x == 因为()()122f x f x =,可得()()122f x f x =, 又由12min 2x x π-=,所以函数()f x 的最小正周期为2T π=,所以24Tπω==,所以()()4f x x ϕ+,又因为012f π⎛⎫-= ⎪⎝⎭()]012πϕ⨯-+=,即cos()13πϕ-+=,由2πϕ<,所以6πϕ=-,即())6f x x π=-,对于A 中,当6x π=时,可得()cos()062f ππ==,所以6x π=是函数()f x 的一个零点,所以A 正确;又由函数的最小正周期为2T π=,所以B 正确;由()1)16y f x x π=+=-+,所以对称中心的纵坐标为1,所以C 不正确;将函数())6f x x π=-的图象向右平移2π个单位长度,可得())]2))2666f x x x x πππππ=--=---,所以D 不正确. 故选:AB.12.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.54-=-,[]2.12=,已知函数()2e 11e 2x x f x =-+,()()g x f x =⎡⎤⎣⎦,则下列叙述正确的是( ) A .()g x 是偶函数B .()f x 在R 上是增函数C .()f x 的值域是1,2⎛⎫-+∞ ⎪⎝⎭D .()g x 的值域是{}1,0,1-【答案】BD【分析】依题意可得()2321e xf x =-+,再根据指数函数的性质判断函数的单调性与值域,距离判断B 、D ,再根据高斯函数的定义求出()g x 的解析式,即可判断A 、D.【详解】解:因为()()22e 2e 111321e 21e 21e 21122e2x x x x x x f x =-=-=--=-+-++++,定义域为R , 因为1e x y =+在定义域上单调递增,且e 11x y =+>,又2y x=-在()1,+∞上单调递增,所以()2321e xf x =-+在定义域R 上单调递增,故B 正确; 因为1e 1x +>,所以1011e x<<+,所以1101e x -<-<+,则2201e x -<-<+, 则1323221e 2x -<-<+,即()13,22f x ⎛⎫∈- ⎪⎝⎭,故C 错误;令()0f x =,即32021e x -=+,解得ln3x =-,所以当ln3x <-时()1,02f x ⎛⎫∈- ⎪⎝⎭,令()1f x =,即32121ex-=+,解得ln3x =, 所以当ln3ln3x -<<时()()0,1f x ∈,当ln 3x >时()31,2f x ⎛⎫∈ ⎪⎝⎭,所以()()1,ln 30,ln 3ln 31,ln 3x g x f x x x ≥⎧⎪⎡⎤==-≤<⎨⎣⎦⎪-<-⎩, 所以()g x 的值域是{}1,0,1-,故D 正确;显然()()55g g ≠-,即()g x 不是偶函数,故A 错误; 故选:BD三、填空题13.函数223,0()2ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,方程()f x k =有3个实数解,则k 的取值范围为___________.【答案】(4,3]--【分析】根据给定条件将方程()f x k =的实数解问题转化为函数()y f x =的图象与直线y k =的交点问题,再利用数形结合思想即可作答.【详解】方程()f x k =有3个实数解,等价于函数()y f x =的图象与直线y k =有3个公共点, 因当0x ≤时,()f x 在(,1]-∞-上单调递减,在[1,0]-上单调递增,(1)4,(0)3f f -=-=-, 当0x >时,()f x 单调递增,()f x 取一切实数,在同一坐标系内作出函数()y f x =的图象及直线y k =,如图:由图象可知,当43k -<≤-时,函数()y f x =的图象及直线y k =有3个公共点,方程()f x k =有3个解,所以k 的取值范围为(4,3]--. 故答案为:(4,3]--14.已知()1sin 503α︒-=,且27090α-︒<<-︒,则()sin 40α︒+=______【答案】##【分析】由4090(50)αα︒+=︒-︒-,应用诱导公式,结合已知角的范围及正弦值求cos(50)α︒-,即可得解.【详解】由题设,()sin 40sin[90(50)]cos(50)ααα︒+=︒-︒-=︒-,又27090α-︒<<-︒,即14050320α︒<︒-<︒,且()1sin 503α︒-=,所以14050180α︒<︒-<︒,故cos(50)3α︒-=-. 故答案为:3-15.关于x 不等式0ax b +<的解集为{}3x x >,则关于x 的不等式2045ax bx x +≥--的解集为______.【答案】()[)13,5-∞-,【分析】根据不等式的解集,可得方程的根与参数a 与零的大小关系,利用分式不等式的解法,结合穿根法,可得答案.【详解】由题意,可得方程0ax b +=的解为3x =,且a<0,由不等式2045ax bx x +≥--,等价于()()22450450ax b x x x x ⎧+--≥⎪⎨--≠⎪⎩,整理可得()()()()()510510ax b x x x x ⎧---+≤⎪⎨-+≠⎪⎩,解得()[),13,5-∞-,故答案为:()[)13,5-∞-,.16.已知函数f (x )=221122x a x x x -≥⎧⎪⎨-<⎪⎩(),(), 满足对任意实数12x x ≠,都有1212f x f x x x -<-()()0 成立,则实数a 的取值范围是( ) 【答案】138a ≤【分析】根据分段函数的单调性可得()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩ ,解不等式组即可. 【详解】根据题意可知,函数为减函数,所以()22012212a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩,解得138a ≤.故答案为:138a ≤【点睛】本题考查了由分段函数的单调性求参数值,考查了基本知识掌握的情况,属于基础题.四、解答题17.在①A B B ⋃=;②“x A ∈“是“x B ∈”的充分不必要条件;③A B ⋂=∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.问题:已知集合{}{}121,13A x a x a B x x =-≤≤+=-≤≤. (1)当2a =时,求A B ⋃;()RAB(2)若_______,求实数a 的取值范围.【答案】(1){}15A B x x ⋃=-≤≤,{}35R A B x x ⋂=<≤ (2)答案见解析【分析】(1)代入2a =,然后根据交、并、补集进行计算.(2)选①,可知A B ⊆,分A =∅,A ≠∅计算;选②可知A B ,分A =∅,A ≠∅计算即可;选③,分A =∅,A ≠∅计算.【详解】(1)当2a =时,集合{}{}15,13A x x B x x =≤≤=-≤≤, 所以{}15A B x x ⋃=-≤≤;{}35R A B x x ⋂=<≤ (2)若选择①A B B ⋃=,则A B ⊆, 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ⊆,{|13}B x x =-≤≤,所以12111213a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得01a ≤≤,所以实数a 的取值范围是)([],10,1-∞-⋃.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 当A =∅时,121a a ->+解得2a <- 当A ≠∅时,又A B ,{|13}B x x =-≤≤,12111213a a a a -≤+⎧⎪-≥-⎨⎪+<⎩或12111213a a a a -≤+⎧⎪->-⎨⎪+≤⎩解得01a ≤≤, 所以实数a 的取值范围是)([],10,1-∞-⋃. 若选择③,A B ⋂=∅,当A =∅时,121a a ->+解得2a <- 当A ≠∅又A B ⋂=∅则12113211a a a a -≤+⎧⎨->+<-⎩或解得2a <-所以实数a 的取值范围是()(),24,-∞-+∞.18.计算下列各式的值: (1)1222301322( 2.5)3483-⎛⎫⎛⎫⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)7log 2log lg25lg47++ 【答案】(1)12; (2)112.【分析】(1)根据指数幂的运算求解;(2)根据对数的定义及运算求解. 【详解】(1)12232231222301322( 2.5)34833331222-⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=--+⎢⎥⎢⎥ ⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎛⎫---+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎦ 2339199112242442--+-+⎛⎫=== ⎪⎝⎭. (2)7log 2log lg25lg47++()31111log 27lg 2542322222=+⨯+=⨯++=.19.已知函数()()sin 0,06f x A x A πωω⎛⎫=+>> ⎪⎝⎭同时满足下列两个条件中的两个:①函数()f x 的最大值为2;②函数()f x 图像的相邻两条对称轴之间的距离为2π. (1)求出()f x 的解析式;(2)求方程()10f x +=在区间[],ππ-上所有解的和.【答案】(1)()2sin 26f x x π⎛⎫=+ ⎪⎝⎭;(2)23π.【分析】(1)由条件可得2A =,最小正周期T π=,由公式可得2ω=,得出答案.(2)由()10f x +=,即得到1sin 262x π⎛⎫+=- ⎪⎝⎭,解出满足条件的所有x 值,从而得到答案.【详解】(1)由函数()f x 的最大值为2,则2A = 由函数()f x 图像的相邻两条对称轴之间的距离为2π,则最小正周期T π=,由2T ππω==,可得2ω= 所以()2sin 26f x x π⎛⎫=+ ⎪⎝⎭.(2)因为()10f x +=,所以1sin 262x π⎛⎫+=- ⎪⎝⎭,所以()2266x k k πππ+=-+∈Z 或()72266x k k πππ+=+∈Z , 解得()6x k k ππ=-+∈Z 或()2x k k ππ=+∈Z .又因为[],x ππ∈-,所以x 的取值为6π-,56π,2π-,2π, 故方程()10f x +=在区间[],ππ-上所有解得和为23π. 20.某工厂生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()103C x x x =+(万元).当年产量不小于80千件时,10000()511450C x x x=+-(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完. (1)写出年利润()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?【答案】(1)2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)100千件【分析】(1)根据题意,分080x <<,80x ≥两种情况,分别求出函数解析式,即可求出结果; (2)根据(1)中结果,根据二次函数性质,以及基本不等式,分别求出最值即可,属于常考题型. 【详解】解(1)因为每件商品售价为0.05万元,则x 千件商品销售额为0.051000x ⨯万元,依题意得:当080x <<时,2211()(0.051000)102004020033⎛⎫=⨯-+-=-+- ⎪⎝⎭L x x x x x x .当80x ≥时,10000()(0.051000)511450200L x x x x ⎛⎫=⨯-+-- ⎪⎝⎭ 100001250⎛⎫=-+ ⎪⎝⎭x x所以2140200,0803()100001250,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(60)10003L x x =--+.此时,当60x =时,()L x 取得最大值(60)1000L =万元.当80x ≥时,10000()125012502L x x x ⎛⎫=-+≤- ⎪⎝⎭12502001050=-=.此时10000x x=,即100x =时,()L x 取得最大值1050万元. 由于10001050<,答:当年产量为100千件时,该厂在这一商品生产中所获利润最大, 最大利润为1050万元【点睛】本题主要考查分段函数模型的应用,二次函数求最值,以及根据基本不等式求最值的问题,属于常考题型.21.已知函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数. (1)求a 的值,判断1()()()F x f x f x =+的奇偶性,并加以证明; (2)解不等式 log (1)log (2)a a x x +<-.【答案】(1)3a =,是偶函数,证明见解析;(2)1|12x x ⎧⎫-<<⎨⎬⎩⎭.【解析】(1)根据2221,0,1a a a a --=>≠,求出a 即可; (2)根据对数函数的单调性解不等式,注意考虑真数恒为正数. 【详解】(1)函数2()(22)x f x a a a =-- (a >0,a ≠1)是指数函数, 所以2221,0,1a a a a --=>≠,解得:3a =, 所以()3x f x =, 1()()33()x x F x f x f x -=+=+,定义域为R ,是偶函数,证明如下: ()33()x x F x F x --=+=所以,1()()()F x f x f x =+是定义在R 上的偶函数; (2)解不等式 log (1)log (2)a a x x +<-,即解不等式 33log (1)log (2)x x +<- 所以012x x <+<-,解得112x -<< 即不等式的解集为1|12x x ⎧⎫-<<⎨⎬⎩⎭【点睛】此题考查根据指数函数定义辨析求解参数的值和函数奇偶性的判断,利用对数函数的单调性解对数型不等式,注意考虑真数为正数.22.已知函数2()2x x b cf x b ⋅-=+,1()log a x g x x b -=+(0a >且1a ≠),()g x 的定义域关于原点对称,(0)0f =.(1)求b 的值,判断函数()g x 的奇偶性并说明理由; (2)求函数()f x 的值域;(3)若关于x 的方程2[()](1)()20m f x m f x ---=有解,求实数m 的取值范围. 【答案】(1)1b =,()g x 为奇函数 (2)()1,1-(3)(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭【分析】(1)根据()g x 的定义域关于原点对称可得1b =,再求解可得()()0g x g x -+=判断即可; (2)根据指数函数的范围逐步分析即可;(3)参变分离,令()()21,3t f x =-∈,将题意转换为求()()222tm t t =---在()1,3t ∈上的值域,再根据基本不等式,结合分式函数的范围求解即可. 【详解】(1)由题意,1()log ax g x x b-=+的定义域10x x b ->+,即()()10x x b -+>的解集关于原点对称,根据二次函数的性质可得1x =与x b =-关于原点对称,故1b =. 此时1()log 1ax g x x -=+,定义域关于原点对称,11()log log 11a a x x g x x x --+-==-+-,因为1111()()log log log log 101111aa a a x x x x g x g x x x x x -+-+⎛⎫-+=+=⨯== ⎪+-+-⎝⎭. 故()()g x g x -=-,()g x 为奇函数.(2)由(1)2()21x x c f x -=+,又(0)0f =,故002121c -=+,解得1c =,故212()12121x x x f x -==-++,因为211x +>,故20221x<<+,故211121x -<-<+,即()f x 的值域为()1,1- (3)由(2)()f x 的值域为()1,1-,故关于x 的方程2[()](1)()20m f x m f x ---=有解,即()()()22f x m f x f x -=-在()()()1,00,1f x ∈-⋃上有解.令()()()21,22,3t f x =-∈⋃,即求()()212223tm t t t t==---+-在()()1,22,3t ∈⋃上的值域即可.因为2333t t +-≥=,当且仅当t =时取等号,且21301+-=,223333+-=,故)2233,00,3t t ⎛⎫⎡+-∈⋃ ⎪⎣⎝⎭,故13,223m t t∞∞⎛⎛⎫=∈-⋃+ ⎪ ⎝⎭⎝+-,即m的值域为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭,即实数m 的取值范围为(3,3,2⎛⎫-∞--+∞ ⎪⎝⎭.。

高一物理期末复习1(第一,二章)

高一物理期末复习1(第一,二章)

练习
5. 一辆汽车刹车前速度为90km/h,刹
车获得的加速度大小为10m/s2,求:
(1)汽车刹车开始后10s内滑行的距离
x0;
(2)从开始刹车到汽车位移为30m时
所经历的时间t; (3)汽车静止前1s内滑行的距离 x 。 1 刹车陷阱!
V-t图 象 v/(m· s-1)
2v0
4 3 1 2
在V-t图象中: (1)图线的斜率表示 加速度
速度大、速度变化大、速度变化快:
初速度 /m·s-1 A、滑雪运 动员下坡 B、公共汽 车出站 C、某舰艇 出航 2 0 0 300 0 末速度 /m·s-1 11 6 20 300 12 经过时间 /s 3 3 20 10 0.6
速度的变 化量
v
9 6
平均每1s速 度的增加量
v / t
3 m/s2
练习
10.物体由静止开始做直线运动,先匀加
速运动了4s,又匀速运动了10s,最后匀减
速运动了6s后停下,它总共前进了1500m,
求它在整个过程中的最大速度多大?
练习
11.一物体自距地面高H处自由落下,
当速度达到着地速度一半时,它下落
的高度是( )
A. H/2 C. 2H/3 B. 3H/4 D. H/4
A.火车站售票厅悬挂的是列车时刻表 B.打点计时器是一种测量长度的仪器
C.出租汽车按位移的大小收费
D.“万米”赛跑,指的是位移为一万

练习
5、关于位移和路程的说法中正确的是: ( )
A.位移的大小和路程的大小总是相等的,只不
过位移是矢量,而路程是标量
B.位移是描述直线运动的,路程是描述曲线运 动的 C.位移取决于始末位置,路程取决于实际运动 的路线

高一语文必修一期末备考知识点复习

高一语文必修一期末备考知识点复习

高一语文必修一期末备考知识点复习(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的教育资料,如幼儿教案、音乐教案、语文教案、知识梳理、英语教案、物理教案、化学教案、政治教案、历史教案、其他范文等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of educational materials for everyone, such as preschool lesson plans, music lesson plans, Chinese lesson plans, knowledge review, English lesson plans, physics lesson plans, chemistry lesson plans, political lesson plans, history lesson plans, and other sample texts. If you want to learn about different data formats and writing methods, please stay tuned!高一语文必修一期末备考知识点复习一. 通假字1.《烛之武退秦师》夫晋,何厌之有厌,通“餍”,满足。

2024年高一语文期末知识点总结

2024年高一语文期末知识点总结

2024年高一语文期末知识点总结语文是一门重要的学科,它不仅仅是一门学科,更是一种文化的体现和传承。

通过学习语文,我们可以研究文化,提高表达能力,培养人文素养。

为了帮助大家更好地复习语文期末考试,接下来我将对____年高一语文期末考试的知识点进行总结。

1.文言文知识点文言文是语言文化的重要组成部分,掌握文言文知识点对于学习语文是非常重要的。

(1) 文言文基本语法:了解文言文的词序、成句、修辞等基本规律。

(2) 文言文阅读:掌握文言文的阅读技巧,理解古代文化。

(3) 文言文作文:学习文言文的写作技巧,培养文言文的写作能力。

2.现代文知识点现代文是我们日常生活中使用的语言,掌握现代文的知识点对于提高我们的表达能力非常重要。

(1) 修辞手法:了解修辞手法的种类和运用,提高写作的表达能力。

(2) 文章阅读:通过阅读现代文文章,了解不同类型的文章结构和写作技巧。

(3) 写作技巧:掌握论述的方法和写作的逻辑思维,提高写作的能力。

3.古代诗词知识点古代诗词是中华文化的瑰宝,学习古代诗词的知识点对于提高我们的文学素养非常重要。

(1) 古代诗词基本知识:了解古代诗词的基本形式、格律和韵律。

(2) 古代诗词阅读:通过阅读古代诗词,理解作者的意境和修养。

(3) 古代诗词鉴赏:学习古代诗词的鉴赏方法,提高欣赏古代诗词的能力。

4.修辞手法知识点修辞手法是语言运用的技巧,掌握修辞手法对于提高我们的表达能力和写作技巧非常重要。

(1) 比喻:了解比喻的种类和运用,提高写作的形象感染力。

(2) 拟人:学习拟人的方法和技巧,提高描述事物的生动性。

(3) 夸张:了解夸张的表达方式,提高表达的效果和感染力。

5.文学常识知识点文学常识是学习语文的基础,了解文学常识对于理解文学作品和提高文学素养非常重要。

(1) 文学流派:了解不同文学流派的特点和代表作品,提高对文学作品的理解和鉴赏。

(2) 文学史:了解中国文学的发展历程和不同时期的代表作品,提高对文学史的了解和理解。

人教版高中语文高一上册期末复习——修辞方法强化训练(解析版)

人教版高中语文高一上册期末复习——修辞方法强化训练(解析版)

人教版高中语文高一上册期末复习——修辞方法强化训练一.选择题(共20小题)1.(2023春•浙江月考)下列对句子运用的修辞手法判断不正确的一项是()A.人生如梦,一尊还酹江月。

(比喻)B.安能摧眉折腰事权贵,使我不得开心颜?(反问)C.千岩万转路不定,迷花倚石忽已暝。

(夸张)D.无边落木萧萧下,不尽长江滚滚来。

(借代)【考点】修辞方法.【答案】D【分析】本题考查学生对修辞手法使用的辨析能力。

答题时要读懂题干涉及的句子,判断修辞手法的运用。

【解答】D.“借代”错误。

应为对偶,“不尽”对“无边”,“长江”对“落木”,“滚滚来”对“萧萧下”。

故选D。

【点评】修辞手法包括:比喻、拟人、夸张、双关、用典、设问、反问、借代、对偶、通感、顶真、呼告、对比等。

2.(2023•玉环市校级开学)下面选项中,修辞赏析正确的一项是()A.现在的故乡仿佛商场里的橱窗里的模特身上的时装,看起来也美,但不在活物身上。

(该句运用了比喻的手法,将“现在的故乡模样”比作“橱窗里模特身上的时装”,生动地写出了现在故乡的繁华。

)B.那年冬天,我去贝加尔湖旅游,零下四十度,呼出的气瞬间凝成一团白雾,湖畔只有冷风,只我一人。

(该句运用了夸张的手法,一个“瞬间”将寒冷的程度加以突出强调,表达了对贝加尔湖天气的抱怨。

)C.麦子的香味和栀子花香不同,婉约而不张狂,提示着人们该收割了。

(该句运用了拟人的手法,说麦香“婉约而不张狂”,是将麦粒香味拟人化,生动形象,富有情趣,突出了麦香的淡雅。

)D.秋风阵阵地吹,折扇形的黄叶落得满地都是。

风把地上的黄叶吹起来,我们拍手叫道:“一群黄蝴蝶飞起来了!”(该句运用了暗喻的手法,把黄叶比作“黄蝴蝶”,生动形象地写出了黄叶在空中飞舞的特点。

)【考点】修辞方法.【答案】C【分析】本题考查正确理解和使用修辞方法。

能力等级:B。

正确理解修辞手法主要是对各种修辞手法的辨识,使用修辞手法主要是在表达中运用常见的几种修辞手法。

高一选修一历史期末复习题

高一选修一历史期末复习题

高一选修一历史期末复习题历史是一门研究人类社会过去发展的学科,它不仅能够让我们了解过去,更能启发我们思考未来。

在高一选修一的历史学习中,我们接触了丰富的历史知识,以下是一些期末复习题,帮助同学们巩固所学内容。

一、选择题1. 秦始皇统一六国后,实行了哪一项重要的政治制度?A. 分封制B. 郡县制C. 世袭制D. 禅让制2. 下列哪一位不是中国历史上的女皇帝?A. 武则天B. 慈禧太后C. 吕后D. 萧太后3. 以下哪个事件标志着中国近代史的开始?A. 鸦片战争B. 辛亥革命C. 五四运动D. 抗日战争二、填空题1. 唐朝是中国历史上一个强盛的朝代,其开国皇帝是_________。

2. 明朝时期,中国对外贸易的一个重要港口是_________。

3. 中国封建社会中,科举制度开始于_________朝代。

三、简答题1. 简述辛亥革命的历史意义。

2. 描述一下明朝时期海禁政策的主要内容及其影响。

四、论述题1. 论述中国封建社会中“重农抑商”政策的产生背景及其对后世的影响。

2. 分析清朝晚期闭关锁国政策对中国近代化进程的影响。

五、材料分析题阅读以下材料,回答问题:材料一:《史记·秦始皇本纪》记载:“始皇二十六年,天下一统,分天下以为三十六郡。

”材料二:《资治通鉴》记载:“隋文帝开皇三年,废郡,置州。

”问题:根据材料一和材料二,分析中国古代地方行政制度的演变。

参考答案一、选择题1. B. 郡县制2. B. 慈禧太后3. A. 鸦片战争二、填空题1. 李渊2. 泉州3. 隋朝三、简答题1. 辛亥革命是中国历史上第一次成功的资产阶级民主革命,它结束了中国两千多年的封建君主专制制度,建立了亚洲第一个民主共和国,为中国的现代化进程开辟了道路。

2. 明朝海禁政策限制了民间的海上贸易,加强了对海上贸易的控制,这在一定程度上保护了国内的经济安全,但也限制了中国与外界的交流,影响了中国的经济和文化发展。

四、论述题1. “重农抑商”政策源于中国古代农业社会的经济基础,它强调农业的重要性,限制商业的发展。

高一化学上册期末复习知识点

高一化学上册期末复习知识点

高一化学上册期末复习知识点1.高一化学上册期末复习知识点篇一特殊试剂的存放和取用10例1.Na、K:隔绝空气;防氧化,保存在煤油中(或液态烷烃中),(Li用石蜡密封保存)。

用镊子取,玻片上切,滤纸吸煤油,剩余部分随即放人煤油中。

2.白磷:保存在水中,防氧化,放冷暗处。

镊子取,立即放入水中用长柄小刀切取,滤纸吸干水分。

3.液Br2:有毒易挥发,盛于磨口的细口瓶中,并用水封。

瓶盖严密。

4.I2:易升华,且具有强烈刺激性气味,应保存在用蜡封好的瓶中,放置低温处。

5.浓HNO3,AgNO3:见光易分解,应保存在棕色瓶中,放在低温避光处。

6.固体烧碱:易潮解,应用易于密封的干燥大口瓶保存。

瓶口用橡胶塞塞严或用塑料盖盖紧。

7.NH3·H2O:易挥发,应密封放低温处。

8.C6H6、、C6H5—CH3、CH3CH2OH、CH3CH2OCH2CH3:易挥发、易燃,密封存放低温处,并远离火源。

9.Fe2+盐溶液、H2SO3及其盐溶液、氢硫酸及其盐溶液:因易被空气氧化,不宜长期放置,应现用现配。

10.卤水、石灰水、银氨溶液、Cu(OH)2悬浊液等,都要随配随用,不能长时间放置。

2.高一化学上册期末复习知识点篇二1、硫酸根离子的检验:bacl2+na2so4=baso4↓+2nacl2、碳酸根离子的检验:cacl2+na2co3=caco3↓+2nacl3、碳酸钠与盐酸反应:na2co3+2hcl=2nacl+h2o+co2↑4、木炭还原氧化铜:2cuo+c高温2cu+co2↑5、铁片与硫酸铜溶液反应:fe+cuso4=feso4+cu6、氯化钙与碳酸钠溶液反应:cacl2+na2co3=caco3↓+2n acl7、钠在空气中燃烧:2na+o2△na2o2钠与氧气反应:4na+o2=2na2o8、过氧化钠与水反应:2na2o2+2h2o=4naoh+o2↑9、过氧化钠与二氧化碳反应:2na2o2+2co2=2na2co3+o210、钠与水反应:2na+2h2o=2naoh+h2↑11、铁与水蒸气反应:3fe+4h2o(g)=f3o4+4h2↑12、铝与氢氧化钠溶液反应:2al+2naoh+2h2o=2naalo2+3h2↑13、氧化钙与水反应:cao+h2o=ca(oh)214、氧化铁与盐酸反应:fe2o3+6hcl=2fecl3+3h2o15、氧化铝与盐酸反应:al2o3+6hcl=2alcl3+3h2o3.高一化学上册期末复习知识点篇三物质的量的单位摩尔1、物质的量(n)是表示含有一定数目粒子的集体的物理量。

高一地理期末复习总计划6篇

高一地理期末复习总计划6篇

高一地理期末复习总计划6篇第1篇示例:高一地理是学生们接触地理学科的第一年,对于地理知识的掌握程度和学习方法的建立非常重要。

为了帮助学生们更好地复习地理知识,我们制定了一份高一地理期末复习总计划,并希望能够通过这份计划帮助学生们有条理地复习地理知识,提高复习效率,取得更好的成绩。

一、总体复习思路1. 理清知识框架:在复习地理知识时,首先要理清各个知识点之间的关系,建立一个完整的地理知识框架。

可以将地理知识按照各个章节和主题进行分类整理,明确每个知识点的核心概念和要点。

2. 制定复习计划:根据考试时间和自己的复习情况,制定一个详细的复习计划。

可以将地理知识按照时间和重要性分配到每个复习阶段,确保每个知识点都能够得到充分的复习。

3. 多种复习方法:复习地理知识可以采用多种方式,包括阅读教材、做习题、观看视频、参加讲座等。

不同的复习方法可以帮助学生们更好地理解和掌握地理知识,提高记忆和理解能力。

二、主要复习内容1. 自然地理:包括地球形状结构、地球运动规律、自然地理环境和资源等内容。

学生们需要掌握地球的基本知识,了解地球自然环境及其变化规律。

2. 人文地理:包括人口地理、城市地理、经济地理等内容。

学生们需要了解人类活动对地球环境的影响,以及不同地区的经济社会发展情况。

3. 地理技术:包括地图制图、地理信息系统、卫星遥感等内容。

学生们需要了解地理技术的原理和应用,掌握地图阅读和制作技能。

三、复习方法建议1. 阅读教材:首先要认真阅读地理教材,掌握每一个知识点的概念和要点。

可以在阅读过程中做好笔记,便于后续复习和总结。

2. 做习题:可以选择一些高质量的地理习题进行练习,巩固地理知识和提高解题能力。

可以通过做题的方式检验自己的学习效果,找到薄弱环节并及时进行弥补。

3. 参加讲座:可以参加一些地理知识讲座或培训班,听取专家的讲解和分享,了解一些地理领域的最新发展和研究成果。

四、复习注意事项1. 合理安排时间:在复习地理知识时,合理安排好时间,不能贪多嚼不烂。

高一下期末复习50题

高一下期末复习50题

27.(2022 春·重庆沙坪坝·高一重庆南开中学校考期末)三棱锥 P ABC 中, BC 平面
PAB, AC AP , PA 2 , BC 2 3 , AB 4 ,则该三棱锥的外接球的表面积为
___________.
28.(2023
春·重庆渝中·高一重庆巴蜀中学校考期中)已知点
A
2,1
A.0.55
B.0.65
C.0.7
D.0.75
8.(2022 春·重庆沙坪坝·高一重庆市第七中学校校考期末)数据 0,1,3,4,5,6,8,
9 的第 60 百分位数为( )
A.6
B.5.5
C.5
D.4
9.(2022 春·重庆沙坪坝·高一重庆市第七中学校校考期末)如图所示,在平面四边形 ABCD 中, AD CD , AC BC , B=60 , AD CD 3 .现将 ACD 沿 AC 折起,
A.直线 A1M 与直线 BN 是相交直线
B.直线 DM 与直线 CN 是异面直线
C.直线 AN 与直线 A1M 是相交直线
D.直线 MN 与直线 BD1 没有公共点
19.(2022 春·重庆沙坪坝·高一重庆市第七中学校校考期末)已知向量 a 1,1 ,
r
b 3, ,则下列叙述正确的是( )
高一下期末复习 50 题
一、单选题
1.(2023
春·重庆铜梁·高一铜梁中学校校考期中)如图,在
ABC
中,AD
1 4
AB
,点
F
是 BC 的中点,设 AB a , AC b ,则 DF ( )
A.
1
a
3
b
42
B.
1
a
1

高一第二学期期末复习资料-家长打印版(共48页)

高一第二学期期末复习资料-家长打印版(共48页)
6
18. 已知在 ABC 中,角 A ,B ,C 的对边分别为 a ,b ,c ,且 b sin A 3a cos B 3c .
(1)求角 A 的大小; (2)若 a 4 , D 为 BC 的中点, ABC 的面积为 3 3 ,求 AD 的长.
2
12
必修二 第 7 章 复数 期末考试复习
概念
3
5
题型五: 平面向量的应用
13. O 是△ABC 所在平面内的一定点,P 是△ABC 所在平面内的一动点,若(―P→B -―P→C )·(―O→B ―→ ―→ ―→ ―→ ―→
+ OC )=( PC - PA )·( OA + OC )=0,则 O 为△ABC 的( )
A.内心
B.外心
C.重心
D.垂心
2.(多选)下列命题中正确的是( )
A.向量 a 与 b 不共线,则 a 与 b 都是非零向量 ―→ ―→ ―→
B.已知 A,B,C 是平面内任意三点,则 AB + BC + CA =0 ―→ ―→ ―→ ―→ ―→
C.若 O 为△ABC 所在平面内任一点,且满足( OB - OC )·( OB + OC -2 OA )=0,则
ABC 的面积.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
10
15.在△ABC 中,角 A,B,C 的对边分别为 a,b,c,且(2a﹣c)(a2﹣b2+c2)=2abccosC. (1)求角 B 的大小; (2)若 sin A 3 cos C 1 ,求 b 的值.
2a
16.如图,在 ABC 中, B 60 , AB 8 , AD 7 ,点 D 在 BC 上,且 cos ADC 1 . 7
,且 a + b = 5,

高一期末复习计划(合集15篇)

高一期末复习计划(合集15篇)

高一期末复习计划(合集15篇)高一期末复习计划1临近期末,为了快速、有效地进行复习,让学生建立完整的知识体系、知识更系统化,在期末阶段根据学校教育教学精神做到有计划地进行复习,同时根据化学学科特点和学生的实际情况,制定了期末阶段复习计划——复习策略重点“落实课本、夯实基础及时做好知识的查缺补漏”。

另外,加强集体备课,发挥集体智慧,借助同伴力量紧密团结协作,分工明确,保质保量落实教学内容,具体复习情况如下:一、教学手段根据复习课时间紧、内容多的特点,必须多媒体辅助教学进行专题性复习二、对学生复习方法指导指导学生化学复习有三个“落实”:①要落实“课本”——多看书,特别是看目录,边看边想要点,回顾知识,温故而知新,会有收获的。

②要落实“笔记”——平时的笔记都是教师经验的总结,是课本中没有的,注意归纳总结,知道学生“复习”,对知识的系统化复习会很有帮助。

③要落实“错题回顾”——典型题、错题分析对学生帮助强化基础知识和运用能力三、时间、教学内容具体安排时间教学内容备注6月23日 ~ 27日有机化合物重点①“甲烷、乙烯、乙醇、乙酸”典型反应;有机物的鉴别和除杂②几种物质的典型空间结构概念:同分异构体体系物;③有机反应类型7月30日~ 4日元素周期表重点①元素与表位置关系②元素周期律③化学键7日~ 11日化学反应与能量重点①原电池②化学反应速率③化学能与热能的转化典型题回顾、错题分析高一期末复习计划2一、复习内容必修3《文化生活》和必修4《生活与哲学》二、复习目标:1、帮助学生理顺基本知识结构和重要知识点。

2、使学生熟练掌握基础知识和基本概念。

3、能根据所学知识分析和解决具体的问题。

4、提高学生的审题能力和解题能力。

三、复习时间安排5月15日——6月8日系统复习必修4《生活与哲学》;6月9日——6月20日复习必修3《文化生活》四、复习方法和措施:1、将《生活与哲学40个原理和方法论》和《文化生活全书知识点归纳》印发给学生2、《生活与哲学》比较难学,复习的时候时间放的稍长一些,每一课大概需要四课时复习,即引导学生构建知识结构用一课时;学生理解记忆用一课时;每课一练用一课时;讲评练习用一课时。

高一期末复习资料推荐与评价

高一期末复习资料推荐与评价

高一期末复习资料推荐与评价随着高一期末考试的临近,许多同学开始积极寻找适合自己的复习资料,以提高学习效果。

本文将介绍几份备受好评的高一期末复习资料,并对它们进行评价,帮助同学们选择适合自己的学习材料。

一、《高中英语复习指南》《高中英语复习指南》是针对高一学生的一套全面复习资料。

它包含了各个知识点、语法重点、常见考点的详细解析和归类,为考生提供了系统、全面的复习指导。

同时,书中还附有大量的练习题和答案,帮助学生巩固所学知识。

该资料突出了解析的详细程度,让同学们可以更好地理解知识点,并且能够帮助学生在考试中管理好时间。

二、《高一数学复习指南》《高一数学复习指南》是针对高中一年级学生的数学复习资料。

它涵盖了高一数学的各个章节内容,并提供了大量的例题和习题,帮助学生巩固知识。

该资料的特点是题型的多样性和练习题的难度分层,不仅有基础题和例题,还有拓展题和综合题,使得学生可以逐步提高解题能力。

此外,该资料还提供了数学思维导图和解题思路的讲解,方便学生理清思路,快速解题。

三、《高一物理复习手册》《高一物理复习手册》是一本以高中一年级物理为基础的复习资料。

它包括了物理知识的概念、公式、定律等方面的总结,以及相关的解题方法和技巧。

这本资料主要侧重于概念的理解和解题方法的讲解,对于强化学生对物理知识的理解和提升解题能力非常有帮助。

此外,书中还有大量的实例分析和习题,供学生进行练习和巩固。

四、《高一化学考点精讲》《高一化学考点精讲》是高一学生化学复习的一本重要资料。

该书以高一化学知识点为中心,对重要的考点进行了深入讲解,包括概念的理解和基本的解题方法。

这本资料的特点是提供了大量的实验案例和知识点的应用,帮助学生将理论知识与实际应用结合起来,增强学习的实际效果。

同时,书中还提供了丰富的习题和答案,供学生进行巩固和练习。

以上是几份备受好评的高一期末复习资料。

这些资料在各自的学科领域内都拥有详细的知识点解析和丰富的练习题,能够帮助学生系统地复习知识,提高学习效果。

期末复习高一上学期物理必修第一册

期末复习高一上学期物理必修第一册

必修一·期末复习模拟测试1.关于匀速直线运动,下列说法中正确的是 ( ) A .瞬时速度不变的运动,一定是匀速直线运动 B .速率不变的运动,一定是匀速直线运动C .相同时间内平均速度相同的运动,一定是匀速直线运动D .瞬时速度的方向始终不变的运动,一定是匀速直线运动 2.下列关于摩擦力的说法中,错误的是( )A .两物体间有摩擦力,一定有弹力,且摩擦力的方向和它们的弹力方向垂直B .滑动摩擦力的方向可以与物体的运动方向相同,也可以相反C .在两个运动的物体之间可以存在静摩擦力,且静摩擦力的方向可以与运动方向成任意角度D .两物体间的摩擦力大小和它们间的压力一定成正比3.很多智能手机都有加速度传感器可以测量手机自身的加速度。

某同学打开加速度传感器,用手水平托着手机。

手迅速向下运动,让手机脱离手掌而自由下落一会,然后接住手机,手机屏幕上记录一段加速度随时间变化的图像,取竖直向上为正方向,将其图像简化为如图所示,下列说法正确的是( )A .1t 时刻,手机加速度大小可能大于gB .1t 到2t 时间内,手机一直处于完全失重状态C .1t 时刻,手机处于完全失重状态D .2t 时刻,手机的运动方向为竖直向上 4.下列描述时间的是( ) A .百米赛的运动员11秒末达到终点 B .第8个1秒末物体速度为零 C .百米赛运动员的成绩是11秒D .3秒初物体开始运动5.一个物体在水平面上以恒定加速度运动,它的位移与时间的关系式为2243x t t =-,则它的速度为零的时刻是( )A .第2s 末B .第4s 末C .第6s 末D .第8s 末6.一物体做自由落体运动.从下落开始计时,重力加速度g 取10m/s 2.则物体在第3s 内的位移为( )A .25mB .125mC .45mD .80m7.如图所示,用轻绳系住一质量为m 的匀质大球,大球和墙壁之间放置一质量为2m 的匀质小球,各接触面均光滑。

高一上册期末复习资料

高一上册期末复习资料

高一上册期末复习资料在高一的学习中,期末考试是一个重要的环节。

为了取得好的成绩,合理的安排时间,掌握一定的复习方法是必要的。

在这篇文章中,我将分享一些高一上册各科的复习资料和方法,帮助同学们更好地备考。

语文语文作为高中通识基础课程,是一个很重要的科目。

在备考中,阅读理解是需要我们特别关注的一个方向。

可以多找一些历年的高考真题和中考真题进行练习,这样不仅可以了解常见的考点和题型,还可以提高阅读速度和思维能力。

同时,还需要掌握作文的写作方法和常用的写作技巧。

可以多看一些范文,了解常见的作文结构和语言表达方法,这样有助于我们提高写作能力。

数学数学是一个需要不断练习的学科。

在复习中,需要先将基础知识进行深入的学习和巩固。

在掌握了基本知识的基础上,需要注重解题方法和思维能力的培养。

可以多练习各种难度级别的题目,针对不同的难度设置不同的解题思路和方法,这样对于考试中的各种问题可以有较好的解决和应对能力。

英语英语是一个需要长期积累的科目。

在学习中,需要不断进行听说读写练习。

可以多听英语广播,看一些英文原版的书籍和影视作品,进行听写和跟读练习。

同时,还需要掌握各种语法知识和英语词汇量的积累。

可以通过阅读和背诵英语单词,将单词分类整理,形成自己的记忆方法,这样可以更加轻松地进行复习。

物理物理作为一门理科学科,对于学生的思维能力是有很大的提高作用的。

在复习中,需要针对性地进行加强对于物理概念和物理定律的理解和掌握。

可以多看一些物理公式和相关的理论知识的书籍,通过解题可以理解和掌握各种物理定律的应用。

另外,学生可以将物理内容与实际生活进行结合,比如看电视节目,解析科学现象,这样使学习更加具有实际的意义。

化学化学是一个让人既爱又怕的学科。

在复习中,需要加强对于基础知识的掌握和对于实验的理解和应用。

可以通过多看一些化学反应方程式,理解其反应原理,掌握各种实验的操作过程和结论。

特别需要注意的是,化学是一门让人容易遗忘的学科,需要不断地进行复习和练习,才能达到较好的成绩。

高一物理必修一期末复习知识点

高一物理必修一期末复习知识点

高一物理必修一期末复习知识点1.高一物理必修一期末复习知识点篇一一、质点1、定义:用来代替物体而具有质量的点。

2、实际物体看作质点的条件:当物体的大小和形状相对于所要研究的问题可以忽略不计时,物体可看作质点。

二、描述质点运动的物理量1、时间:时间在时间轴上对应为一线段,时刻在时间轴上对应于一点。

与时间对应的物理量为过程量,与时刻对应的物理量为状态量。

2、位移:用来描述物体位置变化的物理量,是矢量,用由初位置指向末位置的有向线段表示。

路程是标量,它是物体实际运动轨迹的长度。

只有当物体作单方向直线运动时,物体位移的大小才与路程相等。

3、速度:用来描述物体位置变化快慢的物理量,是矢量。

(1)平均速度:运动物体的位移与时间的比值,方向和位移的方向相同。

(2)瞬时速度:运动物体在时刻或位置的速度。

瞬时速度的大小叫做速率。

(3)速度的测量(实验)①原理:当所取的时间间隔越短,物体的平均速度v越接近特定点的瞬时速度v。

然而时间间隔取得过小,造成两点距离过小则测量误差增大,所以应根据实际情况选取两个测量点。

②仪器:电磁式打点计时器(使用4∽6V低压交流电,纸带受到的阻力较大)或者电火花计时器(使用220V交流电,纸带受到的阻力较小)。

若使用50Hz的交流电,打点的时间间隔为0.02s。

还可以利用光电门或闪光照相来测量。

4、加速度(1)意义:用来描述物体速度变化快慢的物理量,是矢量。

(2)定义:其方向与Δv的方向相同或与物体受到的合力方向相同。

2.高一物理必修一期末复习知识点篇二滑动摩擦力1.两个相互接触的物体有相对滑动时,物体之间存在的摩擦叫做滑动摩擦。

2.在滑动摩擦中,物体间产生的阻碍物体相对滑动的作用力,叫做滑动摩擦力。

3.滑动摩擦力f的大小跟正压力N(G)成正比。

即:f=N4.称为动摩擦因数,与相接触的物体材料和接触面的粗糙程度有关。

5.滑动摩擦力的方向总是与物体相对滑动的方向相反,与其接触面相切。

6.条件:直接接触、相互挤压(弹力),相对运动/趋势。

高一地理必修一期末知识点复习

高一地理必修一期末知识点复习

高一地理必修一期末知识点复习(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一地理必修一期末知识点复习本店铺为各位同学整理了《高一地理必修一期末知识点复习》,希望对你的学习有所帮助!1.高一地理必修一期末知识点复习篇一地球的内部圈层地球内部的结构的研究:由于地球内部的知识主要来自对地震波的研究。

2022-2023高一上期末复习重难点函数的应用(二)(解析版)

2022-2023高一上期末复习重难点函数的应用(二)(解析版)

2022-2023高一上期末复习重难点函数的应用(二)一、单选题1.关于用二分法求方程的近似解,下列说法正确的是( )A .用二分法求方程的近似解一定可以得到()0f x =在[],a b 内的所有根B .用二分法求方程的近似解有可能得到()0f x =在[],a b 内的重根C .用二分法求方程的近似解有可能得出()0f x =在[],a b 内没有根D .用二分法求方程的近似解有可能得到()0f x =在[],a b 内的精确解 【答案】D【分析】根据二分法求近似解的定义,可得答案.【解析】利用二分法求方程()0f x =在[],a b 内的近似解,即在区间[],a b 内肯定有根存在,而对于重根无法求解出来,且所得的近似解可能是[],a b 内的精确解. 故选:D.2.函数f (x )=x 2﹣4x +4的零点是( ) A .(0,2) B .(2,0)C .2D .4【答案】C【分析】由函数零点的定义列出方程x 2﹣4x +4=0,求出方程的根是函数的零点. 【解析】由f (x )=x 2﹣4x +4=0得,x =2, 所以函数f (x )=x 2﹣4x +4的零点是2, 故选:C .3.若函数()f x 在区间[]1,1-上的图像是连续不断的曲线,且()f x 在()1,1-内有一个零点,则()()11f f -⋅的值( ) A .大于零 B .小于零C .等于零D .不能确定【答案】D【分析】由题意,分类讨论()()1,1f f -不同情况下的正负,从而得出不同的结论.【解析】因为()f x 在区间[]1,1-上的图像是连续不断的曲线,且()f x 在()1,1-内有一个零点,若()()10,10-<>f f (或()()10,10-><f f ),此时()()110f f -⋅<;若()10f -=(或()10f =),此时()()110-⋅=f f ;若()()10,10->>f f (或()()10,10-<<f f ),此时()()110f f -⋅>,所以()()11f f -⋅的值不能确定. 故选:D4.函数()()ln 1f x x x=+-的零点所在的大致区间是( )A .()0,1B .()1,2C .()2,3D .()3,4【答案】B【分析】计算区间端点处函数值,根据零点存在定理确定.【解析】()()21ln 11ln 2201f =+-=-<,()()2ln 21ln 31022f =+-=->由()21201f x x x'=+>+,则()f x 在()0,∞+上单调递增. 所以函数()()2ln 1f x x x=+-的零点所在的大致区间是()1,2故选:B5.函数()22xf x x =+的零点所在的区间为( )A .0,1B .1,0C .1,2D .()2,3【答案】B【分析】根据函数解析式,判断()1f -、()0f 等函数值的符号,由零点存在性定理即可确定零点所在的区间.【解析】()3102f -=-<,()010f =>,且函数为增函数,由函数零点存在定理,()f x 的零点所在的区间是1,0.故选:B.6.已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( )A .()1,0-B .[]1,0-C .(0,1)D .[]0,1【答案】C【分析】作出f (x )图像,判断y =m 与y =f (x )图像有3个交点时m 的范围即可.【解析】∵()()g x f x m =-有3个零点, ∴()()0g x f x m =-=有三个实根,即直线y m =与()y f x =的图像有三个交点. 作出()y f x =图像,由图可知,实数m 的取值范围是(0,1). 故选:C.R (2,2)-内的零点个数至少为( )A .1B .2C .3D .4【答案】C【分析】根据奇函数()f x 的定义域为R 可得(0)0f =,由(2)(1)0f f -=≠和奇函数的性质可得(2)(1)0f f <、(2)(1)0f f --<,利用零点的存在性定理即可得出结果.【解析】奇函数()f x 的定义域为R ,其图象为一条连续不断的曲线, 得(0)0f =,由(2)(1)0f f -=≠得(2)(1)0f f -=≠, 所以(2)(1)0f f <,故函数在(12),之间至少存在一个零点,由奇函数的性质可知函数在(21)--,之间至少存在一个零点, 所以函数在(22)-,之间至少存在3个零点. 故选:C8.已知定义在R 上的函数()f x 的图像连续不断,若存在常数R λ∈,使得()()0f x f x λλ++=对于任意的实数x 恒成立,则称()f x 是“回旋函数”.若函数()f x 是“回旋函数”,且2λ=,则()f x 在[]0,2022上( ) A .至多有2022个零点 B .至多有1011个零点 C .至少有2022个零点 D .至少有1011个零点 【答案】D【分析】根据已知可得:()()2200f f +=,当()00f ≠时利用零点存在定理,可以判定区间()0,2内至少有一个零点,进而判定()2,4,()4,6,…,()2020,2022上均至少有一个零点,得到()f x 在[]0,2022上至少有1011个零点.可以构造“回旋函数”,使之恰好有1011个零点;当()00f =时,可以得到()()()0220220f f f ==⋅⋅⋅==,此时()f x 在[]0,2022上至少有1012个零点.从而排除BC,判定D 正确;举特例函数()0f x =,或者构造函数()(1),022(2),222()x x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,可以排除A .【解析】因为()()220f x f x ++=对任意的实数x 恒成立,令0x =,得()()2200f f +=.若()00f ≠,则()2f 与()0f 异号,即()()200f f ⋅<,由零点存在定理得()f x 在()0,2上至少存在一个零点.由于()()220f k f k ++=,得到()20()f k k Z ≠∈,进而()()()220f k f k f k +=-<⎡⎤⎣⎦,所以()f x 在区间()2,4,()4,6,…,()2020,2022内均至少有一个零点,所以()f x 在[]0,2022上至少有1011个零点.构造函数()1,022(2),222()x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,满足()()220f x f x ++=对任意的实数x 恒成立,是“回旋函数”,在[]0,2022上恰好有1011个零点.若()00f =,则()()()()()024620220f f f f f ====⋅⋅⋅==,此时()f x 在[]0,2022上至少有1012个零点. 综上所述,()f x 在[]0,2022上至少有1011个零点,且可能有1011个零点,故C 错误,D 正确; 可能零点各数个数至少1012,大于1011,故B 错误;对于A,[解法一]取函数()0f x =,满足()()220f x f x ++=,但()f x 在[]0,2022上处处是零点,故A 错误.[解法二] 构造函数()(1),022(2),222()x x x f x f x k x k k Z -≤<⎧=⎨--≤<+∈⎩,满足()()220f x f x ++=对任意的实数x 恒成立,是“回旋函数”,在[]0,2022上恰好有2023个零点,故A 错误. 故选:D .9.对于函数()f x ,若()00f x x =,则称0x 为函数()f x 的“不动点”;若()()00f f x x =,则称0x 为函数()f x 的“稳定点”.如果函数()()2R f x x a a =+∈的“稳定点”恰是它的“不动点”,那么实数a 的取值范围是( )A .14⎛⎤-∞ ⎥⎝⎦,B .34∞⎛⎫-+ ⎪⎝⎭, C .3144⎛⎤- ⎥⎝⎦,D .3144⎡⎤-⎢⎥⎣⎦,【答案】D【分析】函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以()f x x =有解,但方程组()()()121221f x x x x f x x ⎧=⎪≠⎨=⎪⎩无解,然后利用判别式即得. 【解析】因为函数的“不动点”一定是“稳定点”,而函数的“稳定点”恰是它的“不动点”,即不存在非“不动点”的“稳定点”,所以()f x x =有解,但方程组()()()121221f x x x x f x x ⎧=⎪≠⎨=⎪⎩无解, 由()f x x =,得20x x a -+=有解,所以140a -≥,解得14a ≤. 由()()1221f x x f x x ⎧=⎪⎨=⎪⎩,,得212221x a x x a x ⎧+=⎨+=⎩,,两式相减,得()()121221x x x x x x -+=-,因为12x x ≠,所以211x x =--,消去2x ,得21110x x a +++=,因为方程21110x x a +++=无解或仅有两个相等的实根,所以()1410a -+≤,解得34a ≥-,故a 的取值范围是3144⎡⎤-⎢⎥⎣⎦,.故选:D.10.已知()313log f x x x =-时,当0a b c <<<时,满足()()()0f a f b f c ⋅⋅<,则关于以下两个结论正确的判断是( )①函数()y f x =只有一个零点;②函数()y f x =的零点必定在区间(a ,b )内. A .①②均对 B .①对,②错 C .①错,②对 D .①②均错 【答案】B【分析】由题可得函数在()0,∞+上为增函数,且()10f >,103f ⎛⎫< ⎪⎝⎭,再结合零点存在定理及符号法则即可判断.【解析】因为13y x =和13log y x=-均为区间()0,∞+上的严格增函数,因此函数1313log y x x =-也是区间()0,∞+上的严格增函数,且()10f >,103f ⎛⎫< ⎪⎝⎭.所以()y f x =只有一个零点,①对.因为()()()0f a f b f c ⋅⋅<, 所以()()(),,f a f b f c 的符号为两正一负或者全负,又因为0a b c <<<, 所以必有()0f a <,()0f b <,()0f c <或者()0f a <,()0f b >,()0f c >.当()0f a <,()0f b <,()0f c <时,零点在区间(),c +∞内;当()0f a <,()0f b >,()0f c >时,零点在区间(a ,b )内,所以②错. 故选:B .11.函数()21,25,2xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,若函数()()()g x f x t t R =-∈有3个不同的零点a ,b ,c ,则222a b c ++的取值范围是( ) A .[)16,32 B .[)16,34C .(]18,32D .()18,34【答案】D【分析】作出函数()y f x =的图象和直线y t =,它们的交点的横坐标即为()g x 的零点,利用图象得出,,a b c 的性质、范围,从而可求得结论.【解析】作出函数()y f x =的图象和直线y t =,它们的交点的横坐标即为()g x 的零点,如图,则1221a b -=-,45c <<,222a b +=,2(16,32)c∈,所以1822234a b c <++<. 故选:D .【点睛】关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.12.已知函数()2log ,01,0x x f x x x ⎧>⎪=⎨+≤⎪⎩若()()()()1234f x f x f x f x ===(1234,,,x x x x 互不相等),则1234x x x x +++的取值范围是( )A .1,02⎛⎫- ⎪⎝⎭B .1,02⎡⎤-⎢⎥⎣⎦C .10,2⎡⎫⎪⎢⎣⎭D .10,2⎛⎤⎥⎝⎦【答案】D【分析】先画函数图象,再进行数形结合得到122x x +=-和2324log log x x =,结合对勾函数单调性解得441x x +的范围,即得结果. 【解析】作出函数()y f x =的图象,如图所示:设1234x x x x <<<,则()12212x x +=⨯-=-.因为2324log log x x =,所以2324log log x x -=, 所以()2324234log log log 0x x x x +==,所以341x x =,即341x x=.当2log 1x =时,解得12x =或2x =,所以412x <≤.设34441t x x x x =+=+, 因为函数1y x x =+在()1,+∞上单调递增,所以441111212x x +<+≤+,即34522x x <+≤, 所以1234102x x x x <+++≤. 故选:D.二、多选题13.用二分法求函数()()ln 11f x x x =++-在区间[]0,1上的零点,要求精确到0.01时,所需二分区间的次数可以为( ) A .5 B .6C .7D .8【答案】CD【分析】由原来区间的长度等于1 ,每经过一次操作,区间长度变为原来的一半,经过n 此操作后,区间长度变为12n,由10.012n ≤即可求解. 【解析】由题意,知区间[]0,1的长度等于1,每经过一次操作,区间长度变为原来的一半, 经过n 此操作后,区间长度变为12n, 用二分法求函数()()ln 11f x x x =++-在区间()0,1上近似解,要求精确到0.01, ∴10.012n≤,解得7n ≥, 故选:CD .A .已知方程8x e x =-的解在()(),1k k k Z +∈内,则1k =B .函数()223f x x x =--的零点是()1,0-,()3,0C .函数3x y =,3log y x =的图像关于y x =对称D .用二分法求方程3380x x +-=在()1,2x ∈内的近似解的过程中得到()10f <,()1.50f >,()1.250f <,则方程的根落在区间()1.25,1.5上 【答案】ACD【解析】由函数零点的概念判断选项B ,由函数零点存在性定理判断选项AD ,由函数3x y =与函数3log y x =互为反函数判断选项C.【解析】对于选项A ,令()=8xf x e x +-,因为()f x 在R 上是增函数,且()()2170,260f e f e =-<=->,所以方程8x e x =-的解在()1,2,所以1k =,故A 正确;对于选项B ,令2230x x --=得=1x -或3x =,故函数()f x 的零点为1-和3,故B 错误; 对于选项C ,函数3x y =与函数3log y x =互为反函数,所以它们的图像关于y x =对称,故C 正确; 对于选项D ,由于()()()()1.2550,1 1.250f f f f ⋅<⋅>,所以由零点存在性定理可得方程的根落在区间()1.25,1.5上,故D 正确.故选:ACD15.(多选)已知函数f x 在区间[],a b 上的图象是一条连续不断的曲线,若0f a f b ⋅<,则在区间[],a b 上( )A .方程()0f x =没有实数根B .方程()0f x =至多有一个实数根C .若函数()f x 单调,则()0f x =必有唯一的实数根D .若函数()f x 不单调,则()0f x =至少有一个实数根【答案】CD【分析】根据零点存在定理可得答案.【解析】由函数零点存在定理,知函数()f x 在区间[],a b 上至少有一个零点, 所以若函数()f x 不单调,则()0f x =至少有一个实数根,若函数()f x 单调,则函数()f x 有唯一的零点,即()0f x =必有唯一的实数根, 故选:CD .16.已知函数()223,02ln ,0x x x f x x x ⎧+-≤=⎨-+>⎩,令()()h x f x k =-,则下列说法正确的是( )A .函数()f x 的单调递增区间为()0,+∞B .当(]43k ,∈--时,()h x 有3个零点C .当2k =-时,()h x 的所有零点之和为-1D .当(),4k ∈-∞-时,()h x 有1个零点 【答案】BD【分析】画出()f x 的图象,然后逐一判断即可. 【解析】()f x 的图象如下:由图象可知,()f x 的增区间为()()1,0,0,-+∞,故A 错误当(]43k ,∈--时,()y f x =与y k =有3个交点,即()h x 有3个零点,故B 正确; 当2k =-时,由2232x x +-=-可得12x =-±,由2ln 2x -+=-可得1x = 所以()h x 的所有零点之和为1212--+=-,故C 错误;当(),4k ∈-∞-时,()y f x =与y k =有1个交点,即()h x 有1个零点,故D 正确; 故选:BD三、填空题17.函数223,(0)y ax ax a =++≠的一个零点为1,则其另一个零点为______. 【答案】3-【分析】由函数零点解出a 的值后再计算另一个零点,或利用韦达定理计算即可. 【解析】解法一:因为函数223,(0)y ax ax a =++≠的一个零点为1, 将(1,0)代入得230a a ++=,解得1a =-. 所以223y x x =--+.令2x 2x 30--+=,解得11x =,23x =-, 所以函数的另一个零点为3-.解法二:由函数223,(0)y ax ax a =++≠的一个零点为1,可得方程2230,(0)ax ax a ++=≠的一个根为1,根据根与系数的关系可得1222ax x a+=-=-,所以另一个根为3-.故函数的另一个零点为3-. 故答案为:3-.R ③当12,(0,)x x ∈+∞且12x x ≠,1212()()0f x f x x x ->-;④()f x 恰有两个零点,请写出函数()f x 的一个解析式________【答案】2()1f x x =- (答案不唯一)【分析】由题意可得函数()f x 是偶函数,且在(0,)+∞上为增函数,函数图象与x 轴只有2个交点,由此可得函数解析式【解析】因为x ∀∈R ,()()f x f x =-,所以()f x 是偶函数,因为当12,(0,)x x ∈+∞且12x x ≠,1212()()0f x f x x x ->-, 所以()f x 在(0,)+∞上为增函数, 因为()f x 恰有两个零点,所以()f x 图象与x 轴只有2个交点,所以函数()f x 的一个解析式可以为2()1f x x =-, 故答案为:2()1f x x =- (答案不唯一) 19.已知()f x 是定义域为()(),00,∞-+∞的奇函数,函数()()g x f x x=+,()11f =-,当210x x >>时,()()12111222x x f x x x x f x x ->-恒成立.现有下列四个结论:①()g x 在()0,∞+上单调递增;②()g x 的图象与x 轴有2个交点;③()()1326f f +-<;④不等式()0g x >的解集为()()1,00,1-.___________【答案】②③【分析】根据给定条件,探讨函数()g x 的性质,再逐一分析各个命题即可判断作答. 【解析】因当210x x >>时,()()12111222x x f x x x x f x x ->-恒成立,则()()122111f x f x x x ->-恒成立, 即()()121211f x f x x x +>+恒成立,因此()()12g x g x >恒成立,则()g x 在()0,∞+上单调递减, 而()f x 是()(),00,∞-+∞上的奇函数,1y x=是()(),00,∞-+∞上的奇函数,则()g x 是()(),00,∞-+∞上的奇函数,因此函数()g x 是()(),00,∞-+∞上的奇函数,且在()0,∞+上单调递减,命题①不正确;因()11f =-,即()()11101g f =+=,()10g -=,显然()g x 在(),0∞-上单调递减,于是得()g x 的图象与x 轴有2个交点,命题②正确;显然()()32g g <,即()()113232f f +<+,则()()1326f f -<,因此()()1326f f +-<,命题③正确;因奇函数()g x 在(),0∞-,()0,∞+上单调递减,且()1(1)0g g -==,则当()0,1x ∈时,()0g x >,当(),1x ∈-∞-时,()0g x >,不等式()0g x >的解集为()(),10,1-∞-⋃,命题④不正确. 故答案为:②③20.中国古代近似计算方法源远流长,早在八世纪,我国著名数学家、天文学家张隧(法号:一行)为编制《大衍历》发明了一种近似计算的方法——二次插值算法(又称一行算法,牛顿也创造了此算法,但是比我国张隧晚了上千年):对于函数()y f x =在()123123,,x x x x x x <<处的函数值分别为()11y f x =,()22y f x =,()33y f x =,则在区间[]13,x x 上()f x 可以用二次函数()()()()111212f x y k x x k x x x x =+-+--来近似代替,其中21121y y k x x -=-,3232y y k x x -=-,1231k k k x x -=-.若令10x =,22x π=,3x π=,请依据上述算法,估算2sin 5π的近似值是_______. 【答案】2425##0.96【分析】根据题意先求出123,,y y y ,进而求出12,,k k k ,然后求得()f x ,最后求得2sin 5π的近似值. 【解析】函数()sin y f x x ==在10x =,22x π=,3x π=处的函数值分别为()100y f ==,212y f π⎛⎫== ⎪⎝⎭,()30y f π==,故211212y y k x x π-==-,32322y y k x x π-==--,122314k k k x x π-==--, 故()22224442f x x x x x x πππππ⎛⎫=--=-+ ⎪⎝⎭, 即2244sin x x x ππ≈-+,所以2224242sin 555πππππ⎛⎫≈-⨯+⨯= ⎪⎝⎭2425. 故答案为:2425.四、解答题21.已知函数()()()ln 3ln 3f x x x =++-.(1)证明:函数()f x 是偶函数;(2)求函数()f x 的零点. 【答案】(1)证明见解析; (2)22-和22【分析】(1)先证明函数()f x 的定义域关于原点对称,再证明()()f x f x -=即可;(2)利用对数运算对函数()f x 的解析式进行化简,求解方程()0f x =即可得到函数()f x 的零点. (1)证明:由3030x x +>⎧⎨->⎩,解得33x -<<,∴函数的定义域为{}33x x -<<,且定义域关于原点对称, 又∵()()()()ln 3ln 3f x x x f x -=-++=,∴()f x 是偶函数. (2)解:()()()()2ln 3ln 3ln 9f x x x x =-++=-,令()()2ln 90f x x =-=,∴291x -=,解得22x =±. ∴函数()f x 的零点为22-和22.22.已知函数3f x a =-(0a >且1a ≠),若函数y f x =的图象过点(2,24).(1)求a 的值及函数()y f x =的零点;(2)求()6f x ≥的解集. 【答案】(1)3,零点是0(2)[1,+∞)【分析】(1)代值求出函数的表达式,再根据零点的定义求解即可; (2)解不等式即可求出解集.【解析】(1)因为函数f (x )=ax +1﹣3(a >0且a ≠1),图象过点(2,24), 所以24=a 2+1﹣3,a 3=27,a =3.函数f (x )=3x +1﹣3=0,得x +1=1,x =0. 所以函数的零点是0.(2)由f (x )≥6得3x +1﹣3≥6,即3x +1≥32, 所以x ≥1.则f (x )≥6的解集为[1,+∞).23.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格P (元)与时间t (天)的函数关系是()()20025,,452530,,t t t N P t t N ⎧+<<∈⎪=⎨≤≤∈⎪⎩日销售量Q (件)与时间t (天)的函数关系是()40030,Q t t t =-+<≤∈N . (1)设该商品的日销售额为y 元,请写出y 与t 的函数关系式(商品的日销售额=该商品每件的销售价格×日销售量);(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大.【答案】(1)()()220800025,,1800452530,.t t t t N y t t t N ⎧-++<<∈⎪=⎨-≤≤∈⎪⎩(2)日销售额的最大值为900元,且11月10日销售额最大.【分析】(1)根据题目条件中给出的公式,直接计算,可得答案; (2)根据二次函数的性质,结合取值范围,可得答案. (1)由题意知()()()()()2040025,,45402530,,t t t t N y P Q t t t N ⎧+-<<∈⎪=⋅=⎨⨯-≤≤∈⎪⎩即()()220800025,,1800452530,.t t t t N y t t t N ⎧-++<<∈⎪=⎨-≤≤∈⎪⎩(2)当025t <<,t ∈N 时,()222080010900y t t t =-++=--+, 所以当10t =时,max 900y =;当2530t ≤≤,t ∈N 时,180045y t =-,所以当25t =时,max 675y =. 因为900675>,所以日销售额的最大值为900元,且11月10日销售额最大.24.已知函数f x 是定义在R 上的偶函数,且当0x ≤时,f x x mx =+,函数f x 在轴左侧的图象如图所示.(1)求函数()f x 的解析式;(2)若关于x 的方程()0f x a -=有4个不相等的实数根,求实数a 的取值范围.【答案】(1)()222,02,0x x x f x x x x ⎧+≤=⎨->⎩ (2)()1,0-【分析】(1)利用()20f -=可求0x ≤时()f x 的解析式,当0x >时,利用奇偶性()()=f x f x -可求得0x >时的()f x 的解析式,由此可得结果;(2)作出()f x 图象,将问题转化为()f x 与y a =有4个交点,数形结合可得结果. (1)由图象知:()20f -=,即420m -=,解得:2m =,∴当0x ≤时,()22f x x x =+;当0x >时,0x -<,()()2222f x x x x x ∴-=--=-,()f x 为R 上的偶函数,∴当0x >时,()()22f x f x x x =-=-;综上所述:()222,02,0x x x f x x x x ⎧+≤=⎨->⎩;(2)()f x 为偶函数,f x 图象关于y 轴对称,可得()f x 图象如下图所示,()0f x a -=有4个不相等的实数根,等价于()f x 与y a =有4个不同的交点, 由图象可知:10a -<<,即实数a 的取值范围为()1,0-. 25.已知函数()()20f x ax bx c a =++>,且()12a f =-.(1)求证:函数()f x 有两个不同的零点;(2)设1x ,2x 是函数()f x 的两个不同的零点,求12x x -的取值范围.【答案】(1)证明见解析 (2))2,⎡+∞⎣【分析】(1)根据()12a f =-可得32ac b =--,再代入证明判别式大于0即可;(2)根据韦达定理化简可得21222b x x a ⎛⎫-=++ ⎪⎝⎭,进而求得范围即可.(1)∵()12a f abc =++=-,∴32ac b =--.∴()232a f x ax bx b =+--.对于方程()0f x =,()222223464222a b a b b a ab a b a ⎛⎫∆=---=++=++ ⎪⎝⎭,∴0∆>恒成立.又0a >,∴函数()f x 有两个不同的零点. (2)由1x ,2x 是函数()f x 的两个不同的零点,得1x ,2x 是方程()0f x =的两个根.∴12b x x a+=-,1232b x x a =--.∴()2221212123442222b b b x x x x x x a a a ⎛⎫⎛⎫⎛⎫-=+-=----=++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴12x x -的取值范围是)2,⎡+∞⎣.26.已知函数33f x a =+⋅为偶函数.(1)求实数a 的值;(2)设函数()()33x g x f x x -=+--的零点为0x ,求证:()0529210f x <<.【答案】(1)1a = (2)证明见解析【分析】(1)由()()f x f x -=可得答案;(2)求出()g x ,利用函数()g x 在R 上单调性得3030log 2log 2.51x <<<<. 再利用单调性定义判断出()f x 在()0,+∞上单调递增,利用单调性可得答案. (1)由()()f x f x -=,得3333x x x x a a --+⋅=+⋅,()223131-=⋅-x xa ,所以1a =,此时()33-=+x x f x ,x R ∈时,()()33--=+=x xf x f x ,()f x 为偶函数,所以1a =; (2) 由(1)得()33x x f x -=+,所以()333333xx x x g x x x --=++--=+-,因为函数()g x 在R 上单调递增,且()3log 2g 32log 230=+-<,()3log 2.5g 332.5log 2.53log 30.50=+->-=,所以3030log 2log 2.51x <<<<,又对任意120x x <<,()()1211221212123333333333x x x x x x x x x x f x f x ----=+--=--⋅()12121331033x x x x⎛⎫=--< ⎪⋅⎝⎭,所以()()12f x f x <,即()f x 在()0,+∞上单调递增, 所以()()()303log 2log 2.5f f x f <<, 即()0529210f x <<. 27.给出下面两个条件:①函数()的图象与直线只有一个交点;②函数()的两个零点的差的绝对值为2.在这两个条件中选择一个,将下面问题补充完整,使函数()f x 的解析式确定.已知二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,且______.(1)求()f x 的解析式;(2)若对任意1,279x ⎡⎤∈⎢⎥⎣⎦,()32log 0f x m +≤恒成立,求实数m 的取值范围;(3)若函数()()()213232x xg x t f =--⨯-有且仅有一个零点,求实数t 的取值范围.【答案】(1)选①()22f x x x =-,选②()22f x x x =-(2)(],16-∞-(3)311,22⎧⎫+⎪⎪⎛⎫-+∞⎨⎬ ⎪⎝⎭⎪⎪⎩⎭【分析】(1)利用已知条件求出a 、b 的值,可得出()22f x x x c =-+.选①,由题意可得出()11f =-,可得出c 的值,即可得出函数()f x 的解析式; 选②,由根与系数的关系求出c 的值,即可得出函数()f x 的解析式;(2)3log h x =,[]2,3h ∈-,由参变量分离法可得出()min 2m f h ≤-⎡⎤⎣⎦,结合二次函数的基本性质可求得实数m 的取值范围;(3)令30x n =>,所以关于n 的方程()()21220t f n n ---=有且仅有一个正实根,对实数t 的取值进行分类讨论,结合二次函数的零点分布可得出关于实数n 的不等式组,综合可解得实数t 的取值范围. (1)解:因为二次函数()2f x ax bx c =++满足()()121f x f x x +-=-,()()()()22111221f x f x a x b x c ax bx c ax a b x +-=++++---=++=-,所以221a a b =⎧⎨+=-⎩,解得12a b =⎧⎨=-⎩,所以()22f x x x c =-+.选①,因为函数()f x 的图象与直线1y =-只有一个交点,所以()1121f c =-+=-,解得0c ,所以()f x 的解析式为()22f x x x =-.选②,设1x 、2x 是函数()f x 的两个零点,则122x x -=,且440c ∆=->,可得1c <, 由根与系数的关系可知122x x +=,12x x c =, 所以()21212124442x x x x x x c -=+-=-=,解得0c ,所以()f x 的解析式为()22f x x x =-.(2)解:由()32log 0f x m +≤,得()32log m f x ≤-,当1,279x ⎡⎤∈⎢⎥⎣⎦时,[]3log 2,3x ∈-,令3log h x =,则[]2,3h ∈-,所以对任意1,279x ⎡⎤∈⎢⎥⎣⎦,()32log 0f x m +≤恒成立,等价于()2m f h ≤-在[]2,3h ∈-上恒成立,所以()()min 22216m f h f ≤-=--=-⎡⎤⎣⎦,所以实数m 的取值范围为(],16-∞-. (3)解:因为函数()()()213232x xg x t f =--⨯-有且仅有一个零点,令30x n =>,所以关于n 的方程()()21220t f n n ---=有且仅有一个正实根,因为()22f x x x =-,所以()221420t n tn ---=有且仅有一个正实根,当210t -=,即12t =时,方程可化为220n --=,解得1n =-,不符合题意; 当210t ->,即12t >时,函数()22142y t x tx =---的图象是开口向上的抛物线,且恒过点()0,2-,所以方程()221420t n tn ---=恒有一个正实根;当210t -<,即12t时,要使得()221420t n tn ---=有且仅有一个正实根, ()21682102021t t tt ⎧=+-=⎪⎨>⎪-⎩,解得312t +=-. 综上,实数t 的取值范围为311,22⎧⎫+⎪⎪⎛⎫-+∞⎨⎬ ⎪⎝⎭⎪⎪⎩⎭.28.已知函数10f x ax bx a =++≠的图象关于直线x =1对称,且函数2y f x x =+为偶函数,函数()12x g x =-.(1)求函数()f x 的表达式;(2)求证:方程()()0f x g x +=在区间[]0,1上有唯一实数根; (3)若存在实数m ,使得()()f m g n =,求实数n 的取值范围. 【答案】(1)()()21f x x =- (2)证明见解析 (3)(],0-∞【分析】(1)根据二次函数的对称轴以及奇偶性即可求解,a b ,进而可求解析式, (2)根据函数的单调性以及零点存在性定理即可判断, (3)将条件转化为函数值域,即可求解. (1)∵()21f x ax bx =++的图象关于直线x =1对称,∴122bb a a-=⇒=-. 又()()2221y f x x ax b x =+=+++为偶函数,∴=2b -,=1a .∴()()22211f x x x x =-+=-. (2)设()()()()2112x h x f x g x x =+=-+-,∵()010h =>,()110h =-<,∴()()0?10h h <. 又()()21f x x =-,()12xg x =-在区间[]0,1上均单调递减,∴()h x 在区间[]0,1上单调递减,∴()h x 在区间[]0,1上存在唯一零点. ∴方程()()0f x g x +=在区间[]0,1上有唯一实数根. (3)由题可知()()210f x x =-≥,()121xg x =-<,若存在实数m ,使得()()f m g n =,则()[)0,1g n ∈, 即120n -≥,解得0n ≤.∴n 的取值范围是(],0-∞. 29.若函数()y f x =同时满足:①函数在整个定义域是严格增函数或严格减函数;②存在区间[],a b ,使得函数在区间[],a b 上的值域为22,a b ⎡⎤⎣⎦,则称函数()f x 是该定义域上的“闭函数”.(1)判断()2f x x =-是不是R 上的“闭函数”?若是,求出区间[],a b ;若不是,说明理由; (2)若()()211f x x t x =-≥是“闭函数”,求实数t 的取值范围;(3)若()()2222f x x kx k =-+≤在1,33⎡⎤⎢⎥⎣⎦上的最小值()g k 是“闭函数”,求a 、b 满足的条件.【答案】(1)不是,理由见解析;(2)3,14⎛⎤ ⎥⎝⎦;(3)222a b +=且11733a b ≤<≤. 【分析】(1)利用“闭函数”的定义判断函数()2f x x =-是否满足①②,由此可得出结论;(2)分析可知函数()21h m m m t =-+-在[)0,m ∈+∞有两个零点,利用二次函数的零点分布可得出关于实数t 的不等式组,由此可解得实数t 的取值范围;(3)利用二次函数的基本性质求得()21921,93312,23kk g k k k ⎧-<⎪⎪=⎨⎪-≤≤⎪⎩,然后分13a b <≤、123a b <≤≤、123a b ≤<≤三种情况讨论,分析函数()g k 的单调性,结合“闭函数”的定义可得出关于a 、b 的等式,由此可得出a 、b 满足的条件.【解析】(1)函数()2f x x =-为R 上的增函数,若函数()2f x x =-为“闭函数”,则存在a 、()b a b <,使得函数()f x 在[],a b 上的值域为22,a b ⎡⎤⎣⎦,则()()2222f a a a f b b b⎧=-=⎪⎨=-=⎪⎩,则关于x 的方程220x x -+=至少有两个不等的实根, 因为180∆=-<,故方程220x x -+=无实根,因此,函数()f x 不是“闭函数”; (2)因为函数()21f x x t =-+为[)1,+∞上的增函数, 若函数()21f x x t =-+为[)1,+∞上的“闭函数”,则存在a 、[)()1,b a b ∈+∞<,使得函数()f x 在[],a b 上的值域为22,a b ⎡⎤⎣⎦,则()()222211f a a t a f b b t b⎧=-+=⎪⎨=-+=⎪⎩,所以,关于x 的方程221x t x -+=在[)1,+∞上有两个不等的实根,令210m x =-≥,设()21h m m m t =-+-,则函数()h m 在[)0,m ∈+∞有两个零点,所以,()()1410010t h t ⎧∆=-->⎪⎨=-≥⎪⎩,解得314t <≤,因此,实数t 的取值范围是3,14⎛⎤⎥⎝⎦;(3)因为()()222f x x k k =-+-.当13k <时,函数()f x 在1,33⎡⎤⎢⎥⎣⎦上单调递增,则()1192393k g k f ⎛⎫==- ⎪⎝⎭;当123k ≤≤时,()()22g k f k k ==-.综上所述,()21921,93312,23kk g k k k ⎧-<⎪⎪=⎨⎪-≤≤⎪⎩. 所以,函数()g k 在1,3⎛⎫-∞ ⎪⎝⎭上为减函数,在1,23⎡⎤⎢⎥⎣⎦上也为减函数.①当13a b <≤时,则()()221929319293a g a b b g b a⎧=-=⎪⎪⎨⎪=-=⎪⎩,上述两式作差得()()()23a b a b a b -=-+,因为a b <,故23a b +=,因为13a b <<,则23a b +<,矛盾;②当123a b <≤≤时,则有222192932ab b a⎧-=⎪⎨⎪-=⎩,消去2b 可得29610a a -+=,解得13a =,不合乎题意;③当123a b ≤<≤时,则()()222222g a a b g b b a⎧=-=⎪⎨=-=⎪⎩,可得222a b +=.因此,a 、b 满足的条件为222a b +=且11733a b ≤<≤. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (1)根据对称轴与区间的位置关系进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析;(3)将分类讨论的结果整合得到最终结果.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一地理必修1期末复习
第一章:行星地球
第一节:宇宙中的地球
1、天体类型包括哪些?
2、天体系统(相互吸引、相互绕转)按级别可分为哪些类?
3、八大行星从里到外的排列顺序?地球位于哪两个行星之间?小行星带位
于哪两个行星之间?
4、八大行星的运动特征?☆
5、按质量和体积,八大行星可以分为哪三类?
6、地球存在生命的条件是哪四点?☆
第二节:太阳对地球的影响
1、太阳大气的成分(氢和氦),太阳辐射的概念?
2、太阳辐射对地球的影响?
3、太阳大气的分层(光球、色球、日冕),及每个层的特点?
4、黑子和耀斑的比较?
5、太阳活动对地球的影响?(四点)☆
第三节
1、地球自转的方向、周期、速度?
2、地球公转的方向、周期、速度?(记得“左倾左冬,右倾右冬”)
3、太阳直射点的移动(春分、夏至、秋分、冬至)及周期(一个回归年)?
看上课画的那幅移动图☆
4、晨昏线的判读(看画的那八幅图)
5、地方时、区时的计算☆
地方时:经度相差1度,地方时相差四分钟,经度每隔15度,时间相差1小时。

区时:相邻区时相差1小时。

6、日界线:国际日期变更线180度和0时界限☆
0时界限向东(西)至180度为新(旧)的日期范围
7、地转偏向力的方向(北半球,南半球和赤道)及应用
8、昼夜长短的变化情况(夏至、冬至和春秋分)☆
9、全球正午太阳高度的变化情况(夏至、冬至和春秋分)及太阳高度角的计
算公式H=☆
10、四季和五带的划分(如果热带或者黄赤交角的范围变大或变小,那么温带
或寒带的变化情况怎样?)
第四节
1、横波和纵波的比较?☆
2、地球内部两个界面(古登堡和莫霍界面)波速发生什么样的变化?
3、地球内部圈层结构(P22 图1.26)☆
4、地球外部圈层(即生物圈、大气圈、水圈和岩石圈的位置)
第二章:地球上的大气
1、大气的受热过程?(太阳暖地面、地面暖大气、大气还地面)☆
2、热力环流过程(P30 图2.3)☆
3、风的形成和三个力之间的关系(水平气压梯度力、地转偏向力、摩擦力),注:近地面的风三个力都有,风向与等压线有一定夹角,高空的风没有摩擦力,与等压面平行
第二节:气压带和风带
1、地球上的气压带和风带的形成(P34 图2.10)及气压带的移动☆
2、北半球冬夏气压中心的分布(P37 图2.13和2.14结合我给大家抄的那张
表格)
3、全球11种气候的分布、成因和特点(发的那张纸)☆
第三节:常见的天气系统
1、冷锋、暖锋和准静止锋的比较☆
2、气旋与反气旋的比较
第四节:全球气候变化
1、气候变化的影响(看我抄给大家的为准)
2、应对气候变化的措施(看我抄给大家的为准)
第三章:地球上的水
1、河流的补给来源
2、水循环的类型(三类)和环节☆
3、水循环的意义
4、寒流和暖流的比较☆
5、P57 图3.5世界表层洋流的分布☆
6、洋流对地理环境的影响?5点☆
7、我国水资源的特点
8、水资源与人类社会(三句话)
9、当前水资源的利用现状(分别从质量和数量上来讲,存在资源性缺水和水质性缺水)
10、开源和节流的措施☆
第四章:地表形态的塑造
1、内力作用的表现(12个字)
2、地壳运动的分类
3、外力作用的表现?(风化、侵蚀、搬运、堆积的形式及每种对应的地貌)☆
4、内外力作用的影响(内力:高低不平,外力:趋向平缓)
5、背斜、向斜的比较☆
6、全球六大板块的位置
7、断块山形成的地貌(水平、垂直)
8、火山的地貌(熔岩高原、火山),火山的分类,火山的利弊
9、山地地区的交通运输方式、布局原则、延伸方向。

10、河流侵蚀类型(溯源侵蚀,下蚀,侧蚀)☆
11、河谷发育的两个时期☆
12、河流的堆积地貌(三类)☆
13、三大岩石圈的物质循环(我给大家抄的)☆
第五章:自然地理环境的整体性和差异性
1、地理要素相互作用产生的两种新功能
2、自然地理环境具有统一演化的过程,牵一发而动全身
3、陆地地带性分异规律(三类)☆
4、非地带性分异规律☆
注:以上题目全部要背诵,☆为重点内容。

相关文档
最新文档