高一上学期数学期末复习知识点

合集下载

高一上学期数学详细知识点

高一上学期数学详细知识点

高一上学期数学详细知识点一、代数与函数1. 数与式- 自然数、整数、有理数、实数、复数的概念及性质;- 代数式概念、相等与恒等、同类项与合并、合并与提取公因式。

2. 一次函数与二次函数- 一次函数的定义、图像、性质及其应用;- 二次函数的定义、图像、极值、性质及其应用。

3. 指数与对数函数- 指数函数的定义、图像、性质及其应用;- 对数函数的定义、图像、性质及其应用。

二、平面几何与向量1. 图形的基本概念- 点、线、面的定义及性质;- 直线、射线、线段的定义及性质;- 角的定义、角平分线、垂直角、同位角。

2. 直线与圆- 相交直线的性质、垂直与平行、角平分线; - 圆的定义、圆心角、弧、弦、切线的性质; - 切线定理及其应用。

3. 向量的基本概念- 向量的定义、模、方向及性质;- 向量的表示、共线与平行、运算法则。

三、立体几何1. 空间几何基本概念- 空间图形的种类及其特点;- 空间几何图形的投影及性质。

2. 空间直线与平面- 面的性质、平面的位置关系;- 直线与面的位置关系、直线与平面的交线; - 平面与平面的位置关系及其交线。

3. 空间向量- 空间向量的概念及运算;- 平面向量与空间向量的关系。

四、数列与数学归纳法1. 数列的概念与性质- 数列的定义及基本性质;- 等差数列与等比数列的定义与性质。

2. 数列的求和与通项公式- 数列的求和公式及其应用;- 等差数列与等比数列的通项公式及其应用。

3. 数学归纳法- 数学归纳法的原理及应用。

五、概率与统计1. 概率的基本概念- 随机试验的基本概念及其性质;- 事件、样本空间、概率的定义。

2. 概率计算- 古典概型与几何概型;- 概率计算的方法与公式。

3. 统计图表与统计量- 统计图表的绘制与分析;- 数据的统计量、均值、中位数、众数。

六、三角函数1. 弧度制及三角函数的定义- 弧度制与角度制的转换;- 正弦、余弦、正切函数的定义。

2. 三角函数的性质与图像- 三角函数的性质及其应用;- 三角函数图像的特点及变换。

高一数学期末的复习知识点有哪些

高一数学期末的复习知识点有哪些

高一数学期末的复习知识点11、单调函数对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.对于函数单调性的定义的理解,要注意以下三点:(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.(4)注意定义的两种等价形式:设x1、x2∈[a,b],那么:①在[a、b]上是增函数;在[a、b]上是减函数.②在[a、b]上是增函数.在[a、b]上是减函数.需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.5、复合函数y=f[g(x)]的单调性若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。

因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.6、证明函数的单调性的方法(1)依定义进行证明.其步骤为:①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论.(2)设函数y=f(x)在某区间内可导.如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数.高一数学期末的复习知识点21、含n个元素的有限集合其子集共有2n个,非空子集有2n—1个,非空真子集有2n—2个。

高一数学上 全部知识点

高一数学上 全部知识点

高一数学上全部知识点一、代数与函数1.整式的加减乘除、乘方化简2.一元一次方程与一元一次不等式3.二次函数的定义、性质、图像与应用4.基本初等函数与反函数5.实数与绝对值6.数列的概念与常用数列的性质7.分式的化简与分式方程的解法二、平面几何1.平面直角坐标系与向量2.多边形的定义、性质与计算3.圆的定义、性质与计算4.三角形的定义、性质与计算5.相似三角形的判定与计算6.三角函数的定义、性质与计算7.三角函数的应用三、立体几何1.立体图形的投影与展开2.平行线与平面3.多面体的定义、性质与计算4.球的定义、性质与计算5.三棱锥与四棱锥的定义、性质与计算6.正多面体与棱柱的定义、性质与计算四、概率与统计1.随机事件的概念与性质2.概率的定义、性质与计算3.频率与概率的关系4.抽样调查与统计分析5.常用的统计图表的制作与分析6.正态分布的性质与应用五、数学思想方法及数论1.数学的证明方法与思想2.方程与不等式的证明3.数论的基本概念与性质4.整除性与素数的性质5.最大公约数与最小公倍数的计算6.同余关系与模运算六、平面向量与解析几何1.平面向量的概念与运算2.平面向量的线性相关与线性无关3.空间直角坐标系与空间向量4.平面与直线的位置关系5.平面的方程与直线的方程6.平行线与垂直线的判定与性质七、导数与微分1.导数的定义与性质2.常用函数的导数与导数公式3.函数的单调性与极值4.函数图形的描绘与性质5.函数的近似计算与应用6.微分的定义与性质八、不等式与极限1.不等式的基本性质与解法2.绝对值不等式的求解3.函数不等式的解法4.极限的定义与性质5.极限的运算法则与计算6.自然对数与指数函数的极限计算九、数理统计1.随机事件与概率2.频率与概率的估计3.统计图表的绘制与分析4.总体与样本的概念与性质5.统计量的计算与应用6.抽样调查与统计分析总结:高一数学涉及了代数与函数、平面几何、立体几何、概率与统计、数学思想方法及数论、平面向量与解析几何、导数与微分、不等式与极限、数理统计等多个知识点。

高一数学上册期末复习资料

高一数学上册期末复习资料

高一数学上册期末复习资料高一数学上册期末复习资料数学是一门既抽象又具体的学科,它是一门帮助我们理解世界的语言。

高一数学上册是我们初步接触高中数学的重要一步,对于我们的学习和发展具有重要的意义。

为了帮助大家更好地复习和掌握高一数学上册的知识,我整理了一些复习资料,希望对大家有所帮助。

一、函数与方程1. 函数的概念与性质函数是数学中一个非常重要的概念,它描述了两个变量之间的关系。

在高一数学上册中,我们学习了函数的定义、定义域、值域、图像等基本概念。

同时,还学习了一次函数、二次函数、指数函数、对数函数等常见函数的性质和图像特征。

在复习过程中,我们可以通过绘制函数图像、解决函数相关的实际问题来加深对函数的理解和掌握。

2. 方程与不等式方程与不等式是数学中常见的问题解决方法。

在高一数学上册中,我们学习了一元一次方程、一元二次方程、一元一次不等式、一元二次不等式等基本类型的方程与不等式。

在复习过程中,我们可以通过解决一些实际问题,加深对方程与不等式的理解和应用能力。

二、数列与数学归纳法1. 等差数列与等比数列数列是由一系列数字按照一定规律排列而成的。

在高一数学上册中,我们学习了等差数列和等比数列的概念、通项公式、前n项和等基本知识。

在复习过程中,我们可以通过求解一些实际问题,加深对数列的理解和应用能力。

2. 数学归纳法数学归纳法是解决数学问题的一种常用方法。

在高一数学上册中,我们学习了数学归纳法的基本原理和应用技巧。

在复习过程中,我们可以通过练习一些数学归纳法相关的题目,加深对数学归纳法的理解和应用能力。

三、几何与三角函数1. 几何基本概念在高一数学上册中,我们学习了点、线、面等几何基本概念,以及相关的性质和定理。

在复习过程中,我们可以通过解决一些几何问题,加深对几何基本概念的理解和应用能力。

2. 三角函数三角函数是数学中一个重要的分支,它描述了角度与边长之间的关系。

在高一数学上册中,我们学习了正弦函数、余弦函数、正切函数等基本三角函数的概念、性质和图像特征。

高一上册数学重要知识点

高一上册数学重要知识点

高一上册数学重要知识点一、函数与方程1. 函数的定义与性质:函数的定义、定义域、值域、奇偶性等基本概念和性质。

2. 一次函数与一次方程:一次函数的定义与性质、一次方程的解法及应用。

3. 二次函数与二次方程:二次函数的定义与性质、二次方程的解法及应用。

4. 复合函数与复合方程:复合函数的概念与性质、复合方程的解法及应用。

二、概率与统计1. 随机事件与概率:随机事件的定义与性质、概率的基本运算和性质。

2. 排列与组合:排列与组合的概念、计算方法及应用。

3. 统计与抽样:统计数据的描述方式、频率分布表与直方图、抽样与样本调查的方法。

三、三角函数1. 角度与弧度:角度的概念及度量、角度转化为弧度的计算。

2. 三角函数的基本关系:正弦函数、余弦函数、正切函数的定义与性质。

3. 三角函数的图像与性质:三角函数的周期性、对称性、图像的变换及应用。

4. 三角恒等变换与解三角形:基本三角公式的推导与应用、解三角形的条件与方法。

四、数列与数学归纳法1. 数列与数列的通项公式:等差数列、等比数列的概念与性质、通项公式的推导与应用。

2. 数列的前n项和:等差数列、等比数列的前n项和公式的推导与应用。

3. 数学归纳法:数学归纳法的基本原理、证明与应用。

五、立体几何1. 空间几何基本概念:点、线、面、多面体等基本概念及性质。

2. 平行与垂直关系:平行关系的定义及性质、垂直关系的判定与性质。

3. 空间图形的计算:正方体、长方体、棱柱、棱锥等立体几何图形的计算和应用。

六、平面向量1. 向量的基本概念与运算:向量的定义、加法、减法、数量积、向量积等运算。

2. 向量的坐标与表示:向量的坐标表示、向量共线判定及数量积的几何意义。

3. 向量的垂直与夹角:向量的垂直判定、数量积与夹角的关系。

七、导数与微分1. 函数的极限与连续性:函数极限的定义与性质、连续函数的概念与判定。

2. 导数的定义与求导法则:导数的定义、基本导数法则及高阶导数。

高一上学期数学重点知识点复习

高一上学期数学重点知识点复习

高一上学期数学重点知识点复习一、函数与方程1.函数的概念与表示方法:自变量、因变量、定义域、值域、图像等。

2.函数的基本性质:奇偶性、周期性、单调性、最值等。

3.常见函数的图像特征:线性函数、二次函数、指数函数、对数函数等。

4.函数的运算:加减乘除、复合函数、反函数等。

5.一次方程与一次不等式的解法。

6.二次方程及其解的求法:配方法、因式分解、公式法等。

7.二次函数与二次方程的关系:顶点坐标、轴对称性等。

二、集合与运算1.集合的表示方法:枚举法、描述法、图示法等。

2.集合的基本运算:并集、交集、差集、补集等。

3.集合的运算规律:交换律、结合律、分配律等。

4.集合的关系:包含关系、相等关系、互不相交关系等。

5.数与集合的基本关系与运算:自然数、整数、有理数、实数等。

三、数列与数列的运算1.数列的概念:顺序数、项数、公差、通项等。

2.常见数列的性质:等差数列、等比数列、斐波那契数列等。

3.数列的运算规律:加法、减法、乘法、除法等。

四、概率与统计1.概率的基本概念:随机试验、样本空间、事件、概率等。

2.事件的运算:包含关系、互不相交关系、并事件、积事件等。

3.概率的计算:古典概率、几何概率、条件概率、独立事件等。

4.统计的概念与方法:频数、频率、分组表、频数分布图等。

五、平面几何1.点、直线、平面及其性质:共线、平行、垂直等。

2.三角形的性质:角的性质、边长关系、面积计算等。

3.四边形的性质:平行四边形、矩形、正方形、菱形等。

4.圆的性质:圆心角、弧长、周长、面积计算等。

5.三角形的相似与全等性质:比例关系、角度关系等。

六、空间几何1.空间图形的基本概念与性质:点、线、面、体等。

2.立体图形的表面积计算:长方体、正方体、棱柱、棱锥等。

3.空间图形的体积计算:长方体、正方体、棱柱、棱锥、球等。

4.空间图形的投影与剖面:平行投影、垂直投影、平面剖面等。

七、导数与微分1.导数的概念与性质:斜率、变化率、图像、导函数等。

高一数学知识点总结期末必备(3篇)

高一数学知识点总结期末必备(3篇)

高一数学知识点总结期末必备一、高中数学函数的有关概念注意:函数定义域:能使函数式有意义的实数____的函数称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的____的值组成的函数.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.2.高中数学函数值域:先考虑其定义域(1)观察法(2)配方法(3)代换法3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(____),(____∈A)中的____为横坐标,函数值y为纵坐标的点P(____,y)的函数C,叫做函数y=f(____),(____∈A)的图象.C上每一点的坐标(____,y)均满足函数关系y=f(____),反过来,以满足y=f(____)的每一组有序实数对____、y为坐标的点(____,y),均在C上.(2)画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.高中数学函数区间的概念(1)函数区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间5.映射一般地,设A、B是两个非空的函数,如果按某一个确定的对应法则f,使对于函数A中的任意一个元素____,在函数B中都有确定的元素y与之对应,那么就称对应f:AB为从函数A到函数B的一个映射。

记作“f(对应关系):A(原象)B(象)”对于映射f:A→B来说,则应满足:(1)函数A中的每一个元素,在函数B中都有象,并且象是的;(2)函数A中不同的元素,在函数B中对应的象可以是同一个;(3)不要求函数B中的每一个元素在函数A中都有原象。

6.高中数学函数之分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。

高一数学上册知识点归纳

高一数学上册知识点归纳

高一数学上册知识点归纳一、函数与方程1. 函数的概念- 定义- 函数的表示方法- 函数的图像2. 函数的性质- 单调性- 奇偶性- 周期性3. 特殊函数- 一次函数- 二次函数- 幂函数- 指数函数- 对数函数- 三角函数4. 函数的应用- 实际问题建模- 函数的最值问题5. 方程与不等式- 一元一次方程- 一元二次方程- 不等式及其解集 - 系统方程的解法二、数列与数学归纳法1. 数列的概念- 数列的定义- 常见的数列类型2. 等差数列与等比数列 - 定义与性质- 通项公式- 求和公式3. 数列的极限- 极限的概念- 极限的性质4. 数学归纳法- 原理- 证明方法三、三角函数1. 三角函数的基础- 角度与弧度- 三角函数的定义 - 三角函数的图像2. 三角函数的性质- 单调性- 奇偶性- 周期性3. 三角恒等变换- 基本恒等式- 恒等变换的应用4. 解三角形- 正弦定理- 余弦定理四、平面向量1. 向量的基本概念- 向量的定义- 向量的加法与数乘2. 向量的几何运算- 向量的减法与数量积- 向量的投影3. 向量的应用- 平面向量的坐标表示- 向量在几何问题中的应用五、立体几何1. 空间几何体- 多面体- 旋转体2. 空间直线与平面- 直线与平面的位置关系- 直线与平面的方程3. 空间向量- 空间向量的基本概念- 空间向量的基本运算4. 立体几何的应用- 体积与表面积的计算- 立体图形的构造请将以上内容复制到Word文档中,并根据实际需要进行格式设置和内容补充。

您可以调整字体、段落、列表等,以确保文档的专业性和可读性。

此大纲仅供参考,具体知识点的深入和扩展应依据实际教材和教学大纲进行。

高一上数学期末知识点

高一上数学期末知识点

高一上数学期末知识点在高一上学期的数学学习中,我们涉及了多个重要的知识点。

下面将以不同的小节来讲解这些知识点,帮助你回顾并加深对这些知识点的理解。

一、代数与函数1.一元一次方程与一元一次不等式:我们学习了如何解一元一次方程与一元一次不等式,并应用到实际问题中。

同时,我们还熟悉了解方程与解不等式的基本方法和规律。

2.平方根与复数:通过学习平方根运算,我们了解了平方根的基本性质,进而引入了复数的概念与运算。

复数为我们解决方程与函数的根提供了新的思路和工具。

3.二次函数与一元二次方程:我们深入了解了二次函数的图像、最值及其性质,并学习了如何解一元二次方程。

这些知识点在数学中具有广泛的应用,尤其在实际问题中解决最优化和最大最小值等问题时,起到了重要的作用。

二、平面几何1.向量与坐标:我们学习了向量的基本概念和运算规则,通过向量可以更方便地描述平面上的几何问题。

我们还学习了直角坐标系、平面向量的坐标表示以及向量的模、夹角等重要性质。

2.三角形与圆的性质:我们掌握了三角形内角和、外角和的计算方法,并了解了三角形的充要条件、相似三角形的性质等。

此外,圆的周长和面积也成为我们学习的重点内容之一。

3.相交线与平行线:我们学习了平行线与垂直线的性质和判定条件,以及相交线与平行线之间的关系。

这些知识点在解几何问题时,对于推理和证明过程非常有帮助。

三、概率与统计1.事件与概率:我们学习了事件的概念、概率的定义与性质,以及概率计算的方法。

通过概率的学习,我们可以更好地认识随机事件发生的规律,并应用到实际问题中进行决策和分析。

2.统计与抽样:我们了解了统计学的基本概念和统计量的计算方法,学会了通过样本数据对总体进行推断和分析。

同时,通过抽样技术的学习,我们可以更准确地估计总体参数,并进行科学的决策和预测。

3.频率与分布:我们学习了频数、频率和频率分布的计算方法,了解了数据分布的特征和规律,通过统计图表的绘制,更直观地展示和分析数据。

高一数学上期知识点归纳总结

高一数学上期知识点归纳总结

高一数学上期知识点归纳总结一、直线与平面1. 平行线和垂直线的性质- 平行线的判定条件- 垂直线的判定条件- 平行线和垂直线之间的关系2. 直线与平面的位置关系- 直线与平面的交点情况- 直线和平面的夹角- 直线和平面的垂直关系3. 平面与平面的位置关系- 平面与平面的交线- 平面与平面的夹角二、向量与立体几何1. 向量的基本概念- 向量的定义- 向量的运算法则- 向量的数量积和夹角2. 空间图形的投影- 点在直线上的投影- 点在平面上的投影- 空间直线在平面上的投影 - 空间曲线在平面上的投影3. 空间中的距离和角- 点到直线的距离- 点到平面的距离- 直线与直线的距离- 直线与平面的角度三、函数与方程1. 函数的概念与性质- 函数的定义- 函数的初等变换- 函数的增减性和奇偶性2. 一次函数与二次函数- 一次函数的图像与性质- 二次函数的图像与性质- 一次函数与二次函数方程的求解3. 指数函数与对数函数- 指数函数的图像与性质- 对数函数的图像与性质- 指数方程和对数方程的求解四、几何证明与应用1. 几何证明的基本方法- 直接证明法- 反证法- 数学归纳法2. 几何应用题- 尺规作图- 三角形的性质与判定- 圆的性质与判定3. 合理利用几何知识解决实际问题- 模型的建立与问题的分析- 利用几何知识解决实际问题的步骤总结:高一数学上期的知识点归纳了直线与平面、向量与立体几何、函数与方程以及几何证明与应用等方面的内容。

通过深入理解和掌握这些知识点,我们能够更好地应对数学学习中的各种问题和应用题。

在下一学期,我们将进一步拓展数学知识,继续提升数学能力。

高一数学知识点归纳总结上册

高一数学知识点归纳总结上册

高一数学知识点归纳总结上册一、集合论1. 集合的基本概念- 元素、空集与非空集、集合的相等、包含与不包含关系2. 集合的表示方法- 列举法、描述法、定理法3. 集合间的关系及运算- 并集、交集、差集、补集、集合的运算律4. 集合的特性- 子集关系、相等关系、空集与全集的关系二、不等式与不等式组1. 不等式的解集表示- 区间表示法、解集图2. 一元一次不等式- 不等式的性质、解不等式、解不等式组3. 一元二次不等式- 不等式的性质、解不等式、解不等式组4. 绝对值不等式- 绝对值不等式的性质、解绝对值不等式5. 有理不等式- 有理不等式的性质、解有理不等式三、函数与方程1. 函数基本概念- 自变量与因变量、定义域与值域、函数的表示方式2. 一次函数- 函数方程的形式、函数图像特征、函数性质3. 二次函数- 函数方程的形式、函数图像特征、函数性质4. 反函数与复合函数- 反函数的性质、复合函数的性质5. 一元二次方程与不等式- 解一元二次方程、解一元二次不等式四、数列与数列的应用1. 数列基本概念- 数列的定义、通项公式、前n项和2. 等差数列- 等差数列的定义、通项公式、前n项和、性质与特征3. 等比数列- 等比数列的定义、通项公式、前n项和、性质与特征4. 递推数列- 递推数列的定义、通项公式、前n项和、性质与特征五、平面向量1. 向量的基本概念- 向量的定义、向量的表示、向量的共线与相等关系2. 向量的运算- 向量的加法、数乘、线性运算、模长与单位向量3. 向量的坐标表示- 向量的坐标表示方式、向量的共线与相等关系4. 向量的数量积与投影- 向量的数量积、数量积的性质、向量的投影、向量的垂直关系六、解析几何1. 平面与空间直角坐标系- 平面直角坐标系的定义、平面上的点与坐标、空间直角坐标系的定义、空间中的点与坐标2. 二次曲线- 圆的方程与性质、椭圆的方程与性质、双曲线的方程与性质、抛物线的方程与性质3. 空间中的直线与平面- 直线的方程与性质、平面的方程与性质、直线与平面的位置关系4. 空间中的距离与角度- 点到直线的距离、点到平面的距离、直线与直线的距离、直线与平面的夹角综上所述,高一上学期的数学知识点主要涵盖了集合论、不等式与不等式组、函数与方程、数列与数列的应用、平面向量以及解析几何等内容。

高一上期数学全部知识点

高一上期数学全部知识点

高一上期数学全部知识点高一上学期数学全部知识点一、数与代数1.自然数、整数、有理数、实数、复数的概念及性质2.数轴及坐标系的应用3.整式的加减运算、乘法与因式分解4.分式的加减运算、乘法与除法5.分式方程的解法6.根式的概念及性质7.二次根式的运算8.整式根式的合并9.整式分式的运算10.整式方程的解法11.多项式的概念及运算12.一元一次方程与一元一次不等式13.一元一次方程组与其应用14.二元一次方程组与其几何应用15.二元一次方程组的解法二、函数与方程1.函数的概念及性质2.函数的表示与比较3.函数的运算与初等函数4.一次函数与一次函数方程5.一次函数与一次不等式6.二次函数与二次函数方程7.二次函数与二次不等式8.反比例函数与二次反比例函数方程9.指数函数与指数函数方程10.对数函数及其应用11.幂函数与幂函数方程12.三角函数的概念与性质13.三角函数的图像与单调性14.三角函数的周期性与奇偶性15.解三角方程三、几何1.平面几何的性质与运用2.平面图形的基本性质3.平面图形的相似关系与运用4.平面图形的全等关系与运用5.勾股定理与勾股关系6.中点定理与角平分线定理7.平行线与比例分割定理8.三角形的面积与运用9.多边形的面积与运用10.圆的性质与圆周角定理11.圆的切线定理与切线问题12.三角形的性质与运用13.四边形的性质与运用14.三角形与平行线的应用15.空间几何与立体图形的性质四、解析几何1.坐标平面与直线的位置关系2.直线的斜率与截距3.直线的方程与应用4.曲线的方程与应用5.二次曲线的方程与应用6.参数方程与应用五、数据与统计1.统计调查与数据的收集2.频数分布表与频率分布图3.图表的分析与应用4.统计指标的计算与解读5.概率的概念与计算6.事件的概念与运算7.排列与组合的计算8.事件的概率与计数原理以上为高一上学期数学的全部知识点,这些知识点涵盖了数与代数、函数与方程、几何、解析几何以及数据与统计等各个方面。

(完整word版)高一上数学期末总复习(知识点+习题含答案)

(完整word版)高一上数学期末总复习(知识点+习题含答案)
那么(x1-x2)[f(x1)-f(x2)]>0⇔ >0⇔f(x)在[a,b]上是增函数;
(x1-x2)[f(x1)-f(x2)]<0⇔ <0⇔f(x)在[a,b]上是减函数.
(2)若函数f(x)和g(x)都是减函数,则在公共定义域内,f(x)+g(x)是减函数;若函数f(x)和g(x)都是增函数,则在公共定义域内,f(x)+g(x)也是增函数;根据同增异减判断复合函数y=f[g(x)]的单调性.
判别式
Δ=b2-4ac
Δ>0
Δ=0
Δ<0
二次函数
y=ax2+bx+c(a>0)的图象
一元二次方程
ax2+bx+c=0(a>0)的根
有两相异实根
x1,x2(x1<x2)
有两相等实根
x1=x2=-
没有实数根
不等式ax2+bx+c>0(a>0)
的解集
{x|x>x2或x<x1}
{x|x∈R
且x≠- }
R
不等式ax2+bx+c<0(a>0)
“至少有一个”的否定是“没有一个”;
“全都是”的否定是“不全都是”;
3.充要条件
设集合A={x|x满足条件p},B={x|x满足条件q},则有
从逻辑观点看
从集合观点看
p是q的充分不必要条件(p⇒q,q⇒p)
AB
p是q的必要不充分条件(q⇒p,p⇒q)
BA
p是q的充要条件(p⇔q)
A=B
p是q的既不充分也不必要条件(p⇒q,q⇒p)
(7)乘方法则:a>b>0⇒an>bn(n∈N,n≥1).
(8)开方法则:a>b>0⇒ > (n∈N,n≥2).

高一上册数学所有知识点

高一上册数学所有知识点

高一上册数学所有知识点一、数与代数1. 自然数、整数、有理数、实数、复数的定义和性质2. 数轴、反比例函数、绝对值函数、分段函数的概念和图像特征3. 代数式的定义、运算及其性质4. 代数方程:一元一次方程、一元二次方程的定义、解法及其应用5. 数列与数列的通项公式6. 不等式的概念、解法及其应用二、函数与图像1. 函数的概念、定义域、值域、图像及其性质2. 基本初等函数:幂函数、指数函数、对数函数、三角函数的定义、图像及其性质3. 函数间的运算:四则运算、复合函数、反函数的概念及其性质4. 二次函数:顶点与轴、图像的平移、伸缩等变化规律5. 一次函数与线性规划三、空间与图形1. 空间坐标系:直角坐标系、球坐标系的建立与应用2. 点、线、面的定义与性质3. 四边形与平行四边形的定义、判定、性质与应用4. 直线与平面的位置关系:平行、垂直、相交、重合等性质与判断方法5. 三角形的定义、判定、性质与应用6. 角的度量与弧度制7. 圆的定义、性质与判定8. 圆锥曲线:椭圆、抛物线和双曲线的定义、图像特征与应用四、导数与微分1. 导数的定义与计算方法:函数导数、常数函数、多项式函数、三角函数的导数2. 导数的几何意义与物理意义3. 微分的定义与性质:微分形式、微分近似与误差估计4. 导数与函数图像:单调性、极值与凹凸性5. 函数的极限:数列极限、函数极限与连续性的关系五、统计与概率1. 统计数据的收集、整理与表示方法2. 统计数据的分析与应用:平均值、中位数、众数、标准差3. 概率的定义:样本空间、随机事件、事件的概率计算4. 概率的计算:加法定理、乘法定理、条件概率与贝叶斯定理的应用总结:本文对高一上册数学的所有知识点进行了整理和归纳。

分别从数与代数、函数与图像、空间与图形、导数与微分以及统计与概率五个方面进行了详细的介绍,并包括了相关概念、性质、计算方法和应用等内容。

通过学习这些数学知识点,同学们将能够更好地理解和应用数学,提高数学解题和问题解决能力。

高一数学上册全册知识点

高一数学上册全册知识点

高一数学上册全册知识点一、集合与函数1. 集合的基本概念集合的定义、元素、空集、全集、子集、包含关系、并集、交集、差集等基本概念。

2. 集合的表示与运算列举法、描述法、集合的相等、集合的运算法则,包括交、并、差等运算。

3. 函数的概念与性质函数的定义、自变量、因变量、函数图象、函数的相等、函数的值域、函数的奇偶性等性质。

4. 实数集与实数运算有理数与无理数的概念,实数集合的性质、实数运算法则等内容。

二、数列与数列的极限1. 数列的概念与表示数列的定义、数列的通项公式、数列的前n项和等基本概念。

2. 等差数列等差数列的概念、等差数列的通项公式、求等差数列的和等内容。

3. 等比数列等比数列的概念、等比数列的通项公式、求等比数列的和等内容。

4. 数列极限的概念与性质数列极限的定义、数列上极限和下极限的性质、数列极限的判定方法等内容。

三、函数的基本性质1. 函数的单调性与存在性单调函数的定义、单调递增函数和单调递减函数的判定方法,存在性定理等内容。

2. 函数的奇偶性与周期性函数的奇偶性的判断方法,函数的周期性的概念和刻画方法等内容。

3. 函数的反函数反函数的概念、反函数与原函数的关系、反函数的定义域和值域等内容。

四、三角函数与解三角形1. 三角函数的概念与性质三角函数的定义、正弦函数、余弦函数、正切函数等概念和性质。

2. 三角函数的图像与周期正弦函数、余弦函数、正切函数等的图像、周期、定义域等内容。

3. 三角函数的基本关系式正弦函数、余弦函数、正切函数等之间的基本关系式。

4. 解三角形的基本方法利用正弦定理、余弦定理、正切定理等解三角形的基本方法。

五、平面向量与解析几何1. 平面向量的概念与运算平面向量的定义、向量的模、向量的加减、数量积、向量的单位向量等内容。

2. 平面向量的数量积向量的数量积的定义、数量积的性质、数量积的几何意义等内容。

3. 平面几何中的直线与圆直线的一般式与截距式、两直线的关系、圆的方程、切线与法线等内容。

高一数学期末考试知识点总结(3篇)

高一数学期末考试知识点总结(3篇)

高一数学期末考试知识点总结集合具有某种特定性质的事物的总体。

这里的事物可以是人,物品,也可以是数学元素。

例如:1、分散的人或事物聚集到一起;使聚集:紧急~。

2、数学名词。

一组具有某种共同性质的数学元素:有理数的~。

集合是把人们的直观的或思维中的某些确定的能够区分的对象汇合在一起,使之成为一个整体(或称为单体),这一整体就是集合。

组成一集合的那些对象称为这一集合的元素(或简称为元)。

集合与集合之间的关系某些指定的对象集在一起就成为一个集合集合符号,含有有限个元素叫有限集,含有无限个元素叫无限集,空集是不含任何元素的集,记做。

空集是任何集合的子集,是任何非空集的真子集。

任何集合是它本身的子集。

子集,真子集都具有传递性。

(说明一下:如果集合A的所有元素同时都是集合B的元素,则A称作是B的子集,写作AB。

若A是B的子集,且A不等于B,则A称作是B的真子集,一般写作AB。

中学教材课本里将符号下加了一个符号,不要混淆,考试时还是要以课本为准。

所有男人的集合是所有人的集合的真子集。

)高一数学期末考试知识点总结(二)两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。

两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。

b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。

(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。

二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。

(4)二面角的面:这两个半平面叫做二面角的面。

(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。

(6)直二面角:平面角是直角的二面角叫做直二面角。

数学高一上知识点归纳总结

数学高一上知识点归纳总结

数学高一上知识点归纳总结一、集合与函数1. 集合- 集合的概念和表示方法- 集合的运算:并、交、差、补- 集合恒等式的证明2. 函数- 函数的定义与性质- 函数的表示法与常用函数- 函数的运算:复合函数、反函数- 一次函数与二次函数二、方程与不等式1. 一元二次方程- 一元二次方程的定义与解法- 一元二次方程的应用2. 不等式- 不等式的性质与图像表示- 不等式的解法与应用三、三角函数1. 角度与弧度- 角度与弧度的定义与转换- 弧度的应用:弧长与扇形面积2. 三角函数的基本关系- 正弦、余弦、正切的定义与性质 - 三角函数的图像与性质3. 三角函数的诱导公式- 三角函数的诱导公式的推导- 诱导公式的应用与证明四、数列与数列的运算1. 数列的概念与表示- 数列的定义与性质- 等差数列与等比数列的特性2. 数列的通项与求和- 数列通项的求解方法- 等差数列与等比数列的求和公式五、平面解析几何1. 直线与曲线- 直线的方程表示与性质- 圆的方程表示与性质2. 平面坐标系- 平面直角坐标系的建立与运用 - 不同坐标系之间的转换3. 线性方程组- 线性方程组的解法与应用- 线性方程组的矩阵表示六、概率统计1. 概率的基本概念- 随机事件、样本空间与概率- 概率的性质与计算方法2. 概率的应用- 概率问题的解决思路与方法- 排列与组合的计算3. 统计与抽样- 统计数据的收集与整理- 抽样调查与统计推断以上是高一上学期数学知识点的归纳总结,通过学好这些知识,可以夯实数学基础,为接下来的学习打下坚实的基础。

希望对你的学习有所帮助!。

高一数学上册期末必背知识点

高一数学上册期末必背知识点

高一数学上册期末必背知识点1.数集与数字的表示数集:自然数集、整数集、有理数集、无理数集、实数集、复数集等。

符号表示:自然数用N表示,整数用Z表示,有理数用Q表示,无理数用R-Q表示,实数用R表示,复数用C表示。

2.数的整除性与整数的性质整除性:若整数a能被整数b整除,记作b|a,a是b的倍数,b是a的约数。

整数的性质:交换律、结合律、分配律、唯一性等。

3.分式与有理数分式:表示为m/n,其中m、n为整数,n≠0。

有理数:能表示为两整数之比的数。

4.数轴数轴:由实数的全体构成的直线,可以用来表示实数的大小关系和运算。

数轴上的点与实数一一对应,可以用有理数或无理数表示。

5.一次函数与二次函数一次函数:函数的定义域为全体实数,表达式为y = kx + b,k和b为实数,且k≠0。

二次函数:函数的定义域为全体实数,表达式为y = ax^2 + bx + c,a、b、c为实数,且a≠0。

6.根式与指数根式:形如√a的数,其中a为非负实数。

根式的性质包括分解、化简、运算等。

指数:形如a^n的数,其中a为底数,n为指数。

指数的性质包括幂运算、乘幂法则等。

7.立体图形与空间几何立体图形:包括点、线、面,如球体、圆锥体、圆柱体、棱锥体、棱柱体等。

空间几何:涉及到立体图形的表面积、体积、表面积与体积的计算公式等。

8.概率与统计概率:描述事件发生可能性大小的数,通常表示为0至1之间的实数。

统计:统计数据的收集、整理、分析和解释,主要包括平均数、中位数、众数等概念和计算方法。

9.三角函数与解三角形三角函数:包括正弦函数、余弦函数、正切函数等,用于描述角度与三角比例之间的关系。

解三角形:涉及到求解三角形的边长和角度的计算,包括正弦定理、余弦定理、正切定理等。

10.向量与坐标向量:表示为有向线段,有大小和方向。

向量的性质包括加法、减法、数量积、夹角等。

坐标:通过坐标系表示点的位置,包括一维坐标、二维坐标和三维坐标等。

以上是高一数学上册期末必背的知识点,掌握了这些知识,将对接下来的学习和应用有很大的帮助。

高一数学上册知识点全归纳

高一数学上册知识点全归纳

高一数学上册知识点全归纳一、一元二次函数1. 基本概念:一元二次函数的定义、函数图像的性质。

2. 一元二次函数的标准形式与一般形式:基本公式与转化方法。

3. 一元二次函数的图像特征:顶点、对称轴、开口方向。

4. 一元二次函数的解析式:求解一元二次方程、二次函数求值。

5. 一元二次函数的性质:增减性、最值、零点与方程的关系。

二、函数的图像与性质1. 函数的基本概念:定义域、值域、单调性、奇偶性。

2. 常见函数的图像特征:常函数、线性函数、绝对值函数等。

3. 一些特殊函数的图像特征:平方函数、倒数函数、指数函数等。

4. 复合函数的图像特征:复合函数的图像与基本函数的变换。

三、平面向量1. 平面向量的基本概念与表示:向量的定义、零向量、数量、方向与模。

2. 平面向量的运算:加法、数量乘法、减法、线性组合。

3. 平面向量的共线与垂直:共线向量、垂直向量、向量的数量积的性质。

4. 平面向量的应用:平面向量在几何图形中的性质、平面向量与解析几何的应用。

四、三角函数与解三角形1. 三角函数的基本概念:正弦、余弦、正切与单位圆定义。

2. 三角函数的周期与图像:三角函数的周期性、图像的变换与性质。

3. 三角函数的性质:函数值范围、单调性、奇偶性与周期性。

4. 解三角形的基本概念:解三角形的条件、解三角形的方法。

五、立体几何1. 空间几何的基本概念:点、直线、平面、角度等。

2. 空间几何中的关系:平行与垂直、相交与平分线。

3. 空间几何中的立体图形:立体图形的分类与特点。

4. 空间几何中的体积计算:长方体、正方体、圆柱体、锥体等。

六、概率论1. 概率的基本概念:样本空间、随机事件、概率的定义与性质。

2. 概率的计算:事件的运算规则、概率的加法规则与乘法规则。

3. 条件概率与独立事件:条件概率的计算、独立事件的判定与性质。

4. 排列与组合:乘法原理、阶乘、排列、组合的计算。

以上是高一数学上册的知识点全归纳,希望对你的学习有所帮助。

高一数学上学期知识点汇总

高一数学上学期知识点汇总

高一数学上学期知识点汇总
一、集合与函数
集合与集合的关系、集合运算、集合的表示方法、空集与全集、函数的定义与性质、函数的图像与性质
二、实数与代数基础
实数的性质与分类、实数间的大小比较、绝对值与不等式、方
程与元素求解、代数式与代数方程、根与系数的关系
三、二次函数与一次函数
二次函数的概念与性质、二次函数图像与性质、一次函数的概
念与性质、一次函数图像与性质、二次函数与一次函数的应用
四、平面向量
平面向量的概念与表示、平面向量的运算与性质、平面向量的
数量积与性质、平面向量的应用
五、三角函数与解三角形
三角函数的概念与性质、三角函数的图像与性质、解三角形的基本方法、解三角形的应用
六、三角函数的图像与性质
正弦函数与余弦函数的图像与性质、正切函数与余切函数的图像与性质、反三角函数的图像与性质、三角函数的复合与反函数
七、统计与概率
统计图与统计量的表示与分析、事件与概率的概念与性质、概率计算与应用
八、立体几何
立体几何的基本概念、直线与平面的位置关系、平行线与平面的性质与判定、四面体的性质与关系、平面与立体的相交关系
九、导数与微分
导数的定义与性质、常用函数的导数、导数的应用、微分的概念与性质
十、数列与数列极限
数列的概念与性质、等差数列与等比数列的性质与求和、数列极限的定义与性质、数列极限的计算与应用
以上是高一数学上学期的知识点汇总,希望对你有所帮助。

每个知识点都是数学学习中的基础,掌握好这些知识点对于高中数学的顺利学习至关重要。

在学习过程中,需要理清概念,掌握基本性质,进行大量的练习与应用,才能真正掌握这些知识点。

希望你能够积极学习,善于思考,融会贯通,取得优秀的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与函数概念课时一:集合有关概念1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。

2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。

3.集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

例:世界上最高的山、中国古代四大美女、教室里面所有的人……(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

例:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合例:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

1)列举法:将集合中的元素一一列举出来 {a,b,c……}2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{x∈R| x-3>2} ,{x| x-3>2}①语言描述法:例:{不是直角三角形的三角形}②Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合例:{x|x2=-5}5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a A◆注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R课时二、集合间的基本关系1.“包含”关系—子集(1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集A⊆(或B⊇A)合B的子集。

记作:BA⊆有两种可能(1)A是B的一部分,;注意:B(2)A与B是同一集合。

⊆/B或B⊇/A反之: 集合A不包含于集合B,或集合B不包含集合A,记作A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠ B那就说集合A是集合B的真子集,记作AB(或BA)或若集合A⊆B,存在x∈B且x A,则称集合A是集合B的真子集。

③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

◆有n个元素的集合,含有2n个子集,2n -1个真子集,2n -1个非空子集,2n -2个非空真子集课时三、集合的运算课时四:函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.函数的三要素:定义域、值域、对应法则3、区间的概念:(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示4函数的表示方法:(1)解析法:明确函数的定义域(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

5、函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法:平移变换;伸缩变换;对称变换。

(3)函数图像变换的特点:1)函数y=f(x) 关于X轴对称y=-f(x)2)函数y=f(x) 关于Y轴对称y=f(-x)3)函数y=f(x) 关于原点对称y=-f(-x)2.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

记作“f(对应关系):A(原象)→B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。

课时五:函数的解析表达式,及函数定义域的求法1、函数解析式子的求法(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)、求函数的解析式的主要方法有:1)代入法:2)待定系数法:3)换元法:4)拼凑法:2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)课时六:1.值域 : 先考虑其定义域(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;(2)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。

(3)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。

(4)分离常数法课时七1.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A) 称为f、g的复合函数。

(4)常用的分段函数1)取整函数:2)符号函数:3)含绝对值的函数:注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。

所以函数是映射,而映射不一定的函数课时八函数的单调性(局部性质)及最值1、增减函数(1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.(2)如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2 时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种2、图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.3、函数单调区间与单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.课时九:函数的奇偶性(整体性质)(1)、偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2)、奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)、具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.(4)利用奇偶函数的四则运算以及复合函数的奇偶性1)在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;2)复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定;(3)利用定理,或借助函数的图象判定 .课时十、函数最值及性质的应用1、函数的最值○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);2、函数的奇偶性与单调性奇函数在关于原点对称的区间上有相同的单调性;偶函数在关于原点对称的区间上有相反的单调性。

3、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。

4、绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。

相关文档
最新文档