人教版小学六年级数学上册知识点总结(完美排版)

合集下载

人教版六年级数学上册 知识点归纳

人教版六年级数学上册 知识点归纳

分数乘法知识点一、分数乘以整数1、分数乘以整数和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2、分数乘以整数的运算:①能约分的先约分。

让分母与整数约分了,再计算。

②用分子乘以整数的积作为分子,分母保持不变。

知识点二、分数乘以分数1、分数乘以分数和整数乘法的意义不同,分数乘以分数是求这个数的几分之几是多少。

2、分数乘以分数的运算:①能约分的先约分。

让分子与分母约分了,再计算。

②用分子相乘的积作为结果的分子,用分母相乘的积作为结果的分母。

温馨提示:如果分数乘法中含有带分数,则要把带分数化成假分数再计算。

3、分数乘以小数,关键是要把小数转为分数,再利用分数乘法的运算法则来计算。

知识点三、乘法定律1、乘法交换律:a×b=b×a2、乘法结合律:a×b×c=a×(b×c)3、乘法分配律(a+b)×c=a×c+b×c知识点四、乘法规律1、一个正数乘以一个大于1的数,积比原来大。

2、一个正数乘以一个小于1的数,积比原来小。

3、一个正数乘以一个1,积等于它本身。

4、0乘以任何数都等于0 。

知识点五、分数乘法应用题1、要求一个数的几分之几是多少,就可以用乘法。

2、找单位“1”的方法:“是”、“占”、“比”字之后的量是单位“1”;“的”字前面的量是单位“1”。

位置与方向(二)知识点一、方位角的概念1、要确定物体的位置,先要确定观测点,然后确定方位角和距离。

2、方位角是从观测点起,东南西北的一条方向线与目标方向线的夹角。

例如北偏西20°,南偏东30°都是方位角。

知识点二、画出物体位置的步骤①确定观测点。

②根据方向角,从观测点开始向该方向画一条射线。

③将观测点与目标的距离换算成图上的长度,从而确定目标的位置。

④标上距离、角度、目标的名称。

知识点三、方位角的性质1、如果甲在乙的北偏东...30°方向400m 处;则乙在甲的南偏西...30°方向400m 处2、如果甲在乙的南偏西...20°方向500m 处;则乙在甲的北偏东...20°方向500m 处总结:如果观测点交换了,则方位角的方向相反了,但角度不变,距离也不变知识点四、绘制路线图先确定第一个观测点,然后画出十字方向标,再确定下一个目的地。

人教版6年级数学上册知识汇总

人教版6年级数学上册知识汇总

人教版6年级数学上册知识汇总一、分数乘法。

1. 分数乘法的意义。

- 分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

例如:(2)/(3)×3表示3个(2)/(3)相加的和是多少。

- 一个数乘分数的意义就是求这个数的几分之几是多少。

例如:3×(2)/(3)表示3的(2)/(3)是多少。

2. 分数乘法的计算法则。

- 分数乘整数:用分数的分子和整数相乘的积作分子,分母不变。

能约分的先约分再计算比较简便。

例如:(2)/(3)×3=(2×3)/(3)=2。

- 分数乘分数:用分子相乘的积作分子,分母相乘的积作分母。

例如:(2)/(3)×(3)/(4)=(2×3)/(3×4)=(1)/(2)。

3. 分数乘法的简便运算。

- 整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

- 交换律:a× b = b× a,例如(1)/(2)×(2)/(3)=(2)/(3)×(1)/(2)。

- 结合律:(a× b)× c=a×(b× c),例如((1)/(2)×(2)/(3))×(3)/(4)=(1)/(2)×((2)/(3)×(3)/(4))。

- 分配律:(a + b)× c=a× c + b× c,例如((1)/(2)+(1)/(3))×(6)/(5)=(1)/(2)×(6)/(5)+(1)/(3)×(6)/(5)。

二、位置与方向(二)1. 确定物体位置的条件。

- 要确定物体的位置,必须知道这个物体相对于观测点的方向和距离。

例如,在描述A地相对于B地的位置时,我们要说明A地在B地的什么方向(如东偏北30°等)以及A地与B地之间的距离是多少千米等。

六年级上册数学人教版知识点

六年级上册数学人教版知识点

六年级上册数学人教版知识点
六年级上册数学人教版的主要知识点如下:
1.小数的概念和表示法:十分位、百分位、千分位等
2.小数之间的比较和排序
3.小数的加法和减法运算
4.小数与整数的混合运算
5.小数的乘法和除法运算,包括小数的乘除法运算规则和口诀
6.倍数和约数的概念和运算
7.最大公因数和最小公倍数的求法
8.分数的概念和表示法,分数的约分和通分
9.分数的加法和减法运算
10.分数与整数的混合运算
11.比例的概念和表示法
12.比例的性质和应用
13.解简单方程的方法,如加法逆元和等式的两边相等
14.图形的周长和面积的计算,包括长方形、正方形、三角形和圆的周长和面积计算公式
15.直角坐标系和坐标的概念
16.图形的位置关系,包括同位角、相交线和垂直线等
17.角度的概念和度量
18.三角形的分类和性质,包括等边三角形、等腰三角形和直角三角形等
19.相似图形的概念和判定条件
20.平面镶嵌和投影图形的解析
以上是六年级上册数学人教版的主要知识点,具体内容可以参考该教材。

新人教版六年级数学上册知识点总结

新人教版六年级数学上册知识点总结

第一单元分数乘法一、分数乘法(一)、分数乘法的计算法则:1、分数及整数相乘:分子及整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数及分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

3、为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

(二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

(三)、分数混合运算的运算顺序和整数的运算顺序相同。

(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + bc = ( a + b )×c二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。

3、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“ = ”(2)百分率前是“的”:单位“1”的量×百分率=百分率对应量(3)百分率前是“多或少”的意思:单位“1”的量×(百分率)=百分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。

强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。

(要说清谁是谁的倒数)。

2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。

(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

人教版六年级上数学知识点归纳

人教版六年级上数学知识点归纳

六年级数学(上册)知识点总结第一单元 分数乘法1、分数乘法的意义(1)分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

(2)一个数(小数、分数、整数)乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

2、分数乘法的计算法则(1)整数和分数相乘:整数和分子相乘的积作分子,分母不变。

(2)分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

(3)注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3、分数大小的比较(1)一个数(0除外)乘以一个真分数,所得的积小于它本身。

一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

一个数(0除外)乘以一个带分数,所得的积大于它本身。

(2)如果几个不为0的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

4、乘法应用题有关概念(1)乘法应用题的解题思路:已知一个数,求这个数的几分之几是多少?(2)找单位“1”的方法:从含有分数的关键句中找,注意“的”前“比”后的规则。

当句子中的单位“1”不明显时,把原来的量看做单位“1”。

(3)甲比乙多几分之几表示甲比乙多的数占乙的几分之几,甲比乙少几分之几表示甲比乙少数占乙的几分之几。

(4)在应用题中如:小湖村去年水稻的亩产量是750千克,今年水稻的亩产量是800千克,增产几分之几?题目中的“增产”是多的意思,那么谁比谁多,应该是“多比少多”,“多”的是指800千克,“少”的是指750千克,即800千克比750千克多几分之几,结合应用题的表达方式,可以补充为“今年水稻的亩产量比去年水稻的亩产量多几分之几?”(5)“增加”、“提高”、“增产”等蕴含“多”的意思,“减少”、“下降”、“裁员”等蕴含“少”的意思,“相当于”、“占”、“是”、“等于”意思相近。

(6)当关键句中的单位“1”不明显时,要把关键句补充完整,补充成“谁是谁的几分之几”或“甲比乙多几分之几”、“甲比乙少几分之几”的形式。

人教版六年级数学上册全部知识点汇总

人教版六年级数学上册全部知识点汇总

人教版六年级数学上册全部知识点汇总(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

人教版六年级上册数学的主要知识点

人教版六年级上册数学的主要知识点

人教版六年级上册数学的主要知识点涵盖了数的认识、数的运算、空间与几何、统计等内容。

一、数的认识1. 分数与小数的转化及基本概念,包括百分数、小数的换算与比较。

2. 分数的基本性质,如通分、约分等。

二、数的运算1. 整数四则运算及运算定律,如加法交换律、结合律等。

2. 分数四则运算,包括分数乘除法及运算顺序。

三、空间与几何1. 图形的基本认识,如点、线、面等。

2. 平面图形的认识,如长方形、正方形、平行四边形等的基本性质和面积计算。

3. 立体图形的认识,如长方体、正方体等的基本性质和体积计算。

四、统计1. 统计表和统计图的基本知识,如条形图、折线图等。

2. 数据的收集与整理,包括平均数、中位数等统计量的计算及其应用。

五、综合应用1. 实际问题中的数学应用,如比例尺的应用等。

2. 数学与生活的联系,如解决生活中常见的数学问题等。

具体来说,本册的数学学习过程中还包括有理数的基础知识、乘方的基础运算和运算顺序等内容的学习和掌握。

在学习过程中要能够通过解决实际问题和计算题目来检验学生对数学知识的理解和运用能力。

通过不断的学习和实践,培养学生的空间想象力、计算能力和数学逻辑思维,从而提升学生的综合素质。

六、实际问题与数学建模在六年级上册的数学学习中,学生将接触到更多实际问题与数学建模的结合。

例如,通过解决生活中的购物问题、行程问题等,学生将学习如何运用数学知识和方法去解决实际问题。

此外,学生还将学习如何利用比例、百分数等数学知识去解决实际问题,并理解数学在现实生活中的广泛应用。

七、几何图形的变换本册还将涉及几何图形的变换,如平移、旋转等。

学生将学习这些基本变换的概念和性质,并通过实践操作和思考,培养空间想象能力和几何思维。

八、解题技巧和思维能力在学习过程中,学生需要掌握一定的解题技巧和思维能力。

如:对数学题目的分析和理解能力、逻辑思维能力和创造性思维能力等。

这些能力将有助于学生更好地理解和掌握数学知识,并能够更好地解决实际问题。

人教版六年级(上册)数学知识点汇总

人教版六年级(上册)数学知识点汇总

六年级数学知识点汇总第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c<a(b≠0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数乘法混合运算1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)倒数的意义:乘积为1的两个数互为倒数。

(完整版)人教版六年级数学上册要记、背的知识点

(完整版)人教版六年级数学上册要记、背的知识点

六年级数学上册要记、背的知识点一、分数乘法(一)分数乘法的意义和计算法则1、分数乘整数的意义 112×3 表示:① 求3个112是多少? ② 求112的3倍是多少?2、分数乘整数的计算方法分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(能约分的要先约分再乘)3、一个数乘分数的意义:就是求这个数的几分之几是多少。

53×41 表示:求53的41是多少。

4、分数乘分数的的计算方法分数乘分数,用分子乘分子,分母乘分母。

(能约分的要先约分再乘) (二)求一个数的几分之几是多少的问题1、找单位“1”的方法(1)是谁的几分之几,就把谁看作单位“1”。

(2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

注意:① 找单位“1”在分率句里找,有分率的句子称为分率句。

② 分率不带单位,具体数量带有单位。

2、求一个数的几倍、几分之几是多少,用乘法计算。

15的53是多少? 15×53=93、已知单位“1”用乘法计算单位“1”×分率=分率的对应量注意:(1) 乘上什么样的分率就等于什么样的数量。

(2) 乘上谁占的分率就等于谁的数量。

(3) 是谁的几分之几,就用谁乘上几分之几。

4、已知A 比B 多(或少)几分之几,求A 的解题方法5、积与因数的大小关系大于1的数,积大于A 。

A(0除外)乘上小于1的数,积小于A 。

二、位置与方向1、确定物体的位置:(上北下南,左西右东) (1)北偏东30°就是从北向东移,夹角靠北。

(2)东偏北30°就是从东向北移,夹角靠东。

+-B ×(1 几分之几)=A2、物体位置的相对性(1)两地的位置关系是相对的,方向刚好相反,距离是一样的。

例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)南对北 东对西则学校在少年宫北偏西35°的方向上,相距250米。

人教版小学数学六年级上册知识点总结整理归纳

人教版小学数学六年级上册知识点总结整理归纳

六年级上册数学知识点 第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

作用:确定一个点的位置。

经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。

(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓ 竖排叫列 横排叫行 (从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少?2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以) 例如:53×61表示: 求53的61是多少? 9 × 61表示: 求9的61是多少?A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

注:(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)行号2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母) 注:(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

人教版小学六年级数学上册各单元知识点总结归纳整理(完整版)

人教版小学六年级数学上册各单元知识点总结归纳整理(完整版)

人教版六年级上册知识点总结六年级上册数学知识点第一单元 位置1、什么是数对?——数对:由两个数组成,中间用逗号隔开,用括号括起来。

括号里面的数由左至右为列数和行数,即“先列后行”。

作用:确定一个点的位置。

经度和纬度就是这个原理。

例:在方格图(平面直角坐标系)中用数对(3,5)表示(第三列,第五行)。

注:(1)在平面直角坐标系中X 轴上的坐标表示列,y 轴上的坐标表示行。

如:数对(3,2)表示第三列,第二行。

(2)数对(X ,5)的行号不变,表示一条横线,(5,Y )的列号不变,表示一条竖线。

(有一个数不确定,不能确定一个点)( 列 , 行 )↓ ↓竖排叫列 横排叫行(从左往右看)(从下往上看) (从前往后看)2、图形左右平移行数不变;图形上下平移列数不变。

3、两点间的距离与基准点(0,0)的选择无关,基准点不同导致数对不同,两点间但距离不变。

12 3 4 0行号一、确定物体位置的方法: 1、先找观测点;2、再定方向(看方向夹角的度数);3、最后确定距离(看比例尺)二、描绘路线图的关键是选好观测点,建立方向标,确定方向和路程。

三、位置关系的相对性:1、两地的位置具有相对性在叙述两地的位置关系时,观测点不同,叙述的方向正好相反,而度数和距离正好相等。

四、相对位置:东--西;南--北;南偏东--北偏西。

第二单元 分数乘法(一)分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

注:“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少? 或表示:53的7倍是多少? 2、一个数乘分数的意义就是求一个数的几分之几是多少。

注:“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)例如:53×61表示: 求53的61是多少?9 ×61表示: 求9的61是多少? A × 61表示: 求a 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

新人教版小学数学六年级上册知识点整理归纳

新人教版小学数学六年级上册知识点整理归纳

新人教版小学数学六年级上册知识点整理归纳六年级上册知识点整理归纳非常完美的1 六年级(上册)数学知识点归纳第一单元分数乘法(一)分数乘法意义:1、分数乘整数的意义:(与整数乘法的意义相同)就是求几个相同加数的和的简便运算。

◆“分数乘整数”指的是第二个因数必须是整数,不能是分数。

例如:53×7表示: 求7个53的和是多少?或表示:53的7倍是多少?2、一个数乘分数的意义:就是求一个数的几分之几是多少。

◆“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

第一个因数是什么都可以。

例如:53×61表示: 求53的61是多少?A× 61表示: 求A 的61是多少?(二)分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

◆为了计算简便,能约分的先约分再计算。

3、分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

(三)积与因数的关系:1、一个数(0除外)乘大于1的数,积大于这个数。

a ×b=c,当b 1时,ca.2、一个数(0除外)乘小于1的数,积小于这个数。

a ×b=c,当b 1时,ca (b ≠0).3、一个数(0除外)乘等于1的数,积等于这个数。

a ×b=c,当b =1时,c=a . ◆在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

(四)分数混合运算1、分数合运算顺序:(与整数相同),先乘、除后加、减,有括号的先算括号里面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a乘法结合律:(a ×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c(五)分数乘法应用题――用分数乘法解决问题◆已知单位“1”的量,求它的几分之几是多少,用单位“1”的量与分数相乘。

人教版小学六年级数学上册知识点总结

人教版小学六年级数学上册知识点总结

人教版小学六年级数学上册知识点总结人教版小学六年级数学上册知识要点总结一、引言人教版小学六年级数学上册的知识要点总结旨在帮助学生更好地掌握所学内容,提高学习效率,并为初中数学学习奠定基础。

本总结涉及分数乘法、位置与方向(二)、分数除法、比、圆、百分数(一)和扇形统计图等方面的知识。

二、分数乘法1.概念:分数乘法是指两个或多个分数相乘得到一个新的分数的运算。

2.性质:o交换律:a × b = b × ao结合律:a × (b × c) = (a × b) × co分配律:a × (b + c) = a × b + a × c3.解题方法:o将分数相乘,约分得到最简结果。

o整数与分数相乘,将整数化成分数再相乘。

o乘法的交换律、结合律和分配律同样适用于分数乘法。

4.应用实例:o计算面积:长方形面积 = 长×宽,其中宽为分数。

o计算路程:速度×时间 = 路程,其中速度为分数。

三、位置与方向(二)1.知识点:o相对位置:通过方向角和距离描述两个物体之间的相对位置关系。

o方向角:描述物体相对于参考点在平面上的方向。

o距离:描述两个物体之间的直线距离。

2.应用实例:在地图上标注物体位置时,需要确定其相对于已知点的方向和距离。

四、分数除法1.概念:分数除法是指将一个分数除以另一个分数得到一个新的分数的运算。

2.性质:o倒数性质:a ÷ b = a × 1/b,其中1/b是b的倒数。

o除法的交换律、结合律和分配律同样适用于分数除法。

3.解题方法:o将除法转化为乘法,约分得到最简结果。

o整数与分数相除,将整数化成分数再相除。

4.应用实例:o计算数量:总数÷部分数 = 部分数所占总数的比例。

o计算平均数:总和÷个数 = 平均数。

五、比1.概念:比是指两个数相除得到的一个数值,表示两个数之间的比例关系。

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总

人教版六年级上册数学知识点汇总
一、整数
1. 自然数、负整数和零的概念
2. 整数的比较大小
3. 整数相加、相减
4. 整数的乘法和除法
5. 整数的绝对值
6. 整数的加法和减法运算法则
7. 整数的乘法和除法运算法则
8. 整数的混合运算
二、分数
1. 分数的概念
2. 分数的比较大小
3. 分数的相加、相减
4. 分数的乘法和除法
5. 分数的化简
6. 分数的三个基本性质:相等性、倍数性、约分性
7. 分数的混合运算
三、小数
1. 小数的概念
2. 小数和分数的关系
3. 小数的读法和写法
4. 小数的比较大小
5. 小数的加法和减法
6. 小数的乘法和除法
7. 小数的化简
8. 小数的混合运算
四、数据与图形
1. 数据和调查的关系
2. 数据的整理和分类
3. 表格和柱形图的绘制和解读
4. 折线图和饼图的绘制和解读
五、数式与方程
1. 代数字母的认识和使用
2. 使用字母表示数的大小
3. 表达计算结果的数式
4. 数式的运算:加法、减法、乘法和除法
5. 解一元一次方程。

人教版六年级上册数学全册知识点归纳

人教版六年级上册数学全册知识点归纳

一、分数乘法1、一个数乘分数的意义:表示一个数的几分之几是多少。

2、整数乘分数的计算方法:整数乘分子做新的分子,分母不变。

3、分数乘分数的计算方法:分子乘分子做为新的分子,分母乘分母做为新的分母。

4、小数乘分数计算方法:把小数转化成分数,再计算;或者把分数转化成小数再计算注意:结果的分数能约分的要进行约分5、运算定律、乘法交换律:a × b = b ×a乘法结合律:(a×b)×c = a×(b×c )乘法分配律:(a + b)×c = a ×c + b×c注:有加法、乘法和小括号,先算小括号的加法,再算小括号外面的乘法。

6、长方形的面积=长×宽正方形的面积=边长×边长长方形的周长=(长+宽)×2 正方形的周长=边长×47、一个数(0除外)乘小于1的数,积小于这个数;一个数(0除外)乘等于1的数,积等于这个数;一个数(0除外)乘大于1的数,积大于这个数。

二、位置与方向(二)1、根据方向和距离确定物体位置的方法(1)确定好方向并用量角器量出被测物体的方位角度(2)明确被测物体和观测点的实际距离(3)根据方向(角度)和距离准确判断或描述被测量物体的位置。

2、描述路线图时,要先按行走路线确定每一个观测点,然后以每一个参照物为观测点,测量好到下一个目标行走的方向(角度)和距离。

3、两地的位置具有相对性,观测点不同,叙述的方向正好相反,角度和距离不变例:甲在乙的北偏东35°200米处;也可以是乙在甲的南偏西35°200米处。

4、同一个观测点,位置的描述有两种说法例:甲在乙的北偏东35°200米处,也可以是甲在乙的东偏北55°200米处三、分数除法1、乘积是1的两个数互为倒数。

2、1的倒数是1;因为0与任何数相乘都不等于1,0没有倒数。

3、分数除以整数,既可以看成把这个分数平均分成整数份;也可以看成已知两个因数的积与其中一个因数,求另一个因数是多少。

人教版六年级数学上册全册知识点汇总

人教版六年级数学上册全册知识点汇总

爱学堂-人教版六年级数学上册全册知识点汇总第一单元分数乘法一、分数乘法意义:1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

“分数乘整数”指的是第二个因数必须是整数,不能是分数。

2、一个数乘分数的意义就是求一个数的几分之几是多少。

“一个数乘分数”指的是第二个因数必须是分数,不能是整数。

(第一个因数是什么都可以)二、分数乘法计算法则:1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

(1)为了计算简便能约分的可先约分再计算。

(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。

(整数千万不能与分母相乘,计算结果必须是最简分数)。

2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。

(分子乘分子,分母乘分母)(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。

(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

三、积与因数的关系:一个数(0除外)乘大于1的数,积大于这个数。

a×b=c,当b >1时,c>a。

一个数(0除外)乘小于1的数,积小于这个数。

a×b=c,当b <1时,c=?0)。

一个数(0除外)乘等于1的数,积等于这个数。

a×b=c,当b =1时,c=a 。

在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

四、分数乘法混合运算:1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。

2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b±c)=a×b±a×c五、倒数的意义(乘积为1的两个数互为倒数)1、倒数是两个数的关系,它们互相依存,不能单独存在。

人教版6年级数学上册知识点汇总

人教版6年级数学上册知识点汇总

2023小学资料——欢迎下载(word版)人教版六年级数学上册知识点汇总第一单元分数乘法〔一〕分数乘法的意义1、分数乘整数:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数和得简便运算。

5 5 5例如:×6,表示:6 个相加是多少,还表示的6 倍是多少。

12 12 122、一个数〔小数、分数、整数〕乘分数:一个数乘分数的意义与整数乘法的意义不相同,是表示这个数的几分之几是多少。

5 5例如:6×,表示:6 的是多少。

12 122 5 2 5×,表示:的是多少。

7 12 7 12〔二〕分数乘法的计算法那么1、整数和分数相乘:整数和分子相乘的积作分子,分母不变。

2、分数和分数相乘:分子相乘的积作分子,分母相乘的积作分母。

3、注意:能约分的先约分,然后再乘,得数必须是最简分数。

当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

〔三〕分数大小的比拟:1、一个数〔0 除外〕乘以一个真分数,所得的积小于它本身。

一个数〔0 除外〕乘以一个假分数,所得的积等于或大于它本身。

一个数〔0 除外〕乘以一个带分数,所得的积大于它本身。

2、如果几个不为 0 的数与不同分数相乘的积相等,那么与大分数相乘的因数反而小,与小分数相乘的因数反而大。

〔四〕解决实际问题。

1、分数应用题一般解题步行骤。

(1)找出含有分率的关键句。

(2)找出单位"1"的量(3)根据线段图写出等量关系式:单位"1"的量×对应分率=对应量。

(4)根据条件和问题列式解答。

2、乘法应用题有关注意概念。

(1)乘法应用题的解题思路:一个数,求这个数的几分之几是多少?(2)找单位"1"的方法:从含有分数的关键句中找,注意"的"前"比"后的规那么。

当句子中的单位"1"不明显时,把原来的量看做单位"1"。

人教版小学六年级数学上册知识点总结(完美排版)

人教版小学六年级数学上册知识点总结(完美排版)

小学六年级数学上册知识点汇总第一单元:位置 1、用数对确定点的位置,第一个数表示列,第二个数表示行。

如(3,5)表示(第三列,第五行) 2、图形左、右平移: 列变,行不变 图形上、下平移: 行变,列不变第二单元 分数乘法一、分数乘法的意义: 1.分数乘整数与整数乘法的意义相同,都是求几个相同加数的和的简便运算。

例如:65×5表示求5个65的和是多少? 2、分数乘分数是求一个数的几分之几是多少。

例如:65×41表示求65的四分之一是多少。

二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。

(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

为了计算简便,能约分的要先约分,再计算。

注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。

三、乘法中比较大小时规律:一个数(0除外)乘大于1的数,积大于这个数。

一个数(0除外)乘小于1的数(0除外),积小于这个数。

一个数(0除外)乘1,积等于这个数。

四、分数混合运算的运算顺序和整数的运算顺序相同。

五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a×c + b×c六、分数乘法的解决问题(已知单位“1”的量,求单位“1”的几分之几是多少(具体量)用乘法)一个数的几分之几= 一个数×几分之几1、找单位“1”: 在分数句中分数的前面; 或 “占”、“是”、“比”的后面;2、看有没有多或少的问题;3、写数量关系式技巧:(1)“的” 相当于 “×” “占”、“是”、“比”相当于“ = ”(2)分数前是“的”: 单位“1”的量×分数=具体量(3)分数前是“多或少”的意思: 单位“1”的量×(1-分数)=具体量;单位“1”的量×(1+分数)=具体量(已知具体量求单位“1”的量,用除法)七、倒数1、倒数的意义: 乘积是1的两个数互为倒数。

人教版六年级上册数学知识点

人教版六年级上册数学知识点

人教版六年级上册数学知识点
人教版六年级上册数学主要涵盖以下知识点:
1.数的读写和数的大小比较:阿拉伯数字和读法,数的大小比较等。

2.整数的加减法:大数的加减法,整数的加减混合运算等。

3.乘法与除法的混合运算:乘法与除法的基本概念,乘除法混合运算的应用等。

4.分数的引入和认识:分数的基本概念、分数的读法和表示法等。

5.分数的加减法:同分母分数的加减法和不同分母分数的加减法等。

6.小数的认识和读法:小数的介绍,小数点的作用和读法等。

7.小数的加减和乘法:小数的加减法和乘法运算等。

8.几何图形的认识和性质:平行线和垂直线,多边形的分类和性质等。

9.图形的表示和刻画:图形的坐标、图形的表示与刻画等。

10.图形的周长和面积:等边三角形的周长和面积,矩形的周长和面积等。

以上是人教版六年级上册数学的主要知识点,具体的内容可根据教材的安排来学习。

(完整版)人教版六年级上册数学知识点汇总

(完整版)人教版六年级上册数学知识点汇总

第一单元位置1.找位置要先列后行,写位置先定第几列,再写第几行,格式为:(列,行)。

第二单元分数乘法1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。

(为了计算简便,能约分的要先约分,然后再乘。

)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。

4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。

(为了计算简便,可以先约分再乘。

)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。

乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律:( a + b )×c = a c + b c a c + b c =( a + b )×c6.乘积是1的两个数互为倒数。

7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

1的倒数是1。

0没有倒数。

真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

8.一个数(0除外)乘以一个真分数,所得的积小于它本身。

9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

10.一个数(0除外)乘以一个带分数,所得的积大于它本身。

11.分数应用题一般解题步骤。

(1)找出含有分率的关键句。

(2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面(3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学六年级数学上册知识点汇总第一单元:位置1、用数对确定点的位置第一个数表示列第二个数表示行如(35)表示(第三列第五行)2、图形左、右平移:列变行不变图形上、下平移:行变列不变第二单元分数乘法一、分数乘法的意义:1、分数乘整数与整数乘法的意义相同都是求几个相同加数的和的简便运算例如:×5表示求5个的和是多少?2、分数乘分数是求一个数的几分之几是多少例如:×表示求的四分之一是多少二、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子分母不变(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子分母相乘的积做分母为了计算简便能约分的要先约分再计算注意:当带分数进行乘法计算时要先把带分数化成假分数再进行计算分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外)分数值不变三、乘法中比较大小时规律:一个数(0除外)乘大于1的数积大于这个数一个数(0除外)乘小于1的数(0除外)积小于这个数一个数(0除外)乘1积等于这个数四、分数混合运算的运算顺序和整数的运算顺序相同五、整数乘法的交换律、结合律和分配律对于分数乘法也同样适用乘法交换律: a × b = b × a乘法结合律: ( a × b )×c = a × ( b × c )乘法分配律: ( a + b )×c = a×c + b×c六、分数乘法的解决问题(已知单位"1"的量求单位"1"的几分之几是多少(具体量)用乘法)一个数的几分之几= 一个数×几分之几1、找单位"1":在分数句中分数的前面; 或 "占"、"是"、"比"的后面;2、看有没有多或少的问题;3、写数量关系式技巧:(1)"的" 相当于 "×" "占"、"是"、"比"相当于" = "(2)分数前是"的":单位"1"的量×分数=具体量(3)分数前是"多或少"的意思:单位"1"的量×(1-分数)=具体量;单位"1"的量×(1+分数)=具体量(已知具体量求单位"1"的量用除法)七、倒数1、倒数的意义:乘积是1的两个数互为倒数1的倒数是1; 0没有倒数强调:互为倒数即倒数是两个数的关系它们互相依存倒数不能单独存在(要说清谁是谁的倒数)2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置(2)、求整数的倒数:把整数看做分母是1的分数再交换分子分母的位置(3)、求带分数的倒数:把带分数化为假分数再求倒数(4)、求小数的倒数:把小数化为分数再求倒数3、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1第三单元:分数除法一、分数除法1、分数除法的意义:分数除法是分数乘法的逆运算就是已知两个数的积与其中一个因数求另一个因数的运算除以一个数是乘这个数的倒数除以几就是乘这个数的几分之一乘法:因数×因数 = 积除法:积÷一个因数 = 另一个因数2、分数除法的计算法则:(1)、除以一个不为0的数等于乘这个数的倒数(2)、分数除法比较大小时规律:当除数大于1 商小于被除数;当除数小于1(不等于0)商大于被除数;当除数等于1商等于被除数"[ ]"叫做中括号一个算式里如果既有小括号又有中括号要先算小括号里面的再算中括号里面的二、分数除法解决问题三、比和比的应用1、两个数相除又叫做两个数的比在两个数的比中比号前面的数叫做比的前项比号后面的数叫做比的后项比的前项除以后项所得的商叫做比值比的后项不能为0.例如 15 :10 = 15÷10=3/2(比值通常用分数表示也可以用小数或整数表示)2、比可以表示两个相同量的关系即倍数关系也可以表示两个不同量的比得到一个新量例:路程÷速度=时间3、区分比和比值比:表示两个数的关系可以写成比的形式也可以用分数表示比值:相当于商是一个数可以是整数分数也可以是小数4、比和除法、分数的联系与区别:(区别)除法是一种运算分数是一个数比表示两个数的关系比的前项相当与除法中的被除数分数中的分子;比的后项相当与除法中的除数分数中的分母;比号相当于除法中的除号分数中的分数线;比值相当于除法的商分数的分数值注意:体育比赛中出现两队的分是2:0等这只是一种记分的形式不表示两个数相除的关系四、比的基本性质1、根据比、除法、分数的关系:商不变的性质:被除数和除数同时乘或除以相同的数(0除外)商不变分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外) 分数值不变比的基本性质:比的前项和后项同时乘或除以相同的数(0除外)比值不变2、比的前项和后项都是整数并且是互质数这样的比就是最简整数比根据比的基本性质把比化成最简整数比3、化简比:(2)用求比值的方法注意:最后结果要写成比的形式如: 15∶10 = 15÷10 = 3/2 = 3∶24、按比例分配:把一个数量按照一定的比来进行分配这种方法通常叫做按比例分配第五单元:百分数一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之几百分数是指的两个数的比因此也叫百分率或百分比2、百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系区别:①、意义不同:百分数只表示两个数的倍比关系不能表示具体的数量所以不能带单位;分数既可以表示具体的数又可以表示两个数的关系表示具本数时可以带单位②、百分数的分子可以是整数也可以是小数;分数的分子不能是小数只能是除0以外的自然数二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位同时在后面添上百分号2. 百分数化成小数:把小数点向左移动两位同时去掉百分号(二)百分数的和分数的互化1、百分数化成分数:先把百分数改写成分母是100的分数能约分要约成最简分数2、分数化成百分数:①用分数的基本性质把分数分母扩大或缩小成分母是100的分数再写成百分数形式②先把分数化成小数(除不尽时通常保留三位小数)再把小数化成百分数(三)常见的分数与小数、百分数之间的互化三、用百分数解决问题(一)、一般应用题1、常见的百分率的计算方法:一般来讲出勤率、成活率、合格率、正确率能达到100%出米率、出油率达不到100%完成率、增长了百分之几等可以超过100%(一般出粉率在70、80%出油率在30、40%)(二) 、折扣:1、折扣:商品按原定价格的百分之几出售叫做折扣通称"打折"几折就表示十分之几也就是百分之几十例如八折=0.8=80﹪六折五=0.65=65﹪2、成数:一成是十分之一也就是10%三成五就是十分之三点五也就是35%(三) 、纳税1、纳税:纳税是根据国家税法的有关规定按照一定的比率把集体或个人收入的一部分缴纳给国家2、纳税的意义:税收是国家财政收入的主要来源之一国家用收来的税款发展经济、科技、教育、文化和国防安全等事业缴纳的税款叫做应纳税额应纳税额与各种收入的比率叫做税率应纳税额 = 总收入×税率(四) 、利息1、存款分为活期、整存整取和零存整取等方法2、储蓄的意义:人们常常把暂时不用的钱存入银行或信用社储蓄起来这样不仅可以支援国家建设也使得个人用钱更加安全和有计划还可以增加一些收入3、存入银行的钱叫做本金取款时银行多支付的钱叫做利息利息与本金的比值叫做利率利息=本金×利率×时间注意:如要上利息税则:税后利息=利息×(1-利息税率)国债和教育存款的利息不纳税第六单元:统计一、扇形统计图的意义:用整个圆的面积表示总数用圆内各个扇形面积表示各部分数量同总数之间的关系也就是各部分数量占总数的百分比二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少2、折线统计图:不仅可以看出各种数量的多少还可以清晰看出数量的增减变化情况3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系三、扇形的面积大小:在同一个圆中扇形的大小与这个扇形的圆心角的大小有关圆心角越大扇形越大(因此扇形面积占圆面积的百分比同时也是该扇形圆心角度数占圆周角度数的百分比)第七单元:数学广角一、"鸡兔同笼"问题的特点:题目中有两个或两个以上的未知数要求根据总数量求出各未知数的单量二、"鸡兔同笼"问题的解题方法1、列表猜测法2、假设法(1) 假如都是兔(2) 假如都是鸡(3) 古人"抬脚法"3、列方程法????????1『不可能』只存在於蠢人的字典里。

相关文档
最新文档