比较馈线自动化实现的两种方法,说明其优缺点

合集下载

配电网馈线自动化技术及其应用

配电网馈线自动化技术及其应用

配电网馈线自动化技术及其应用配电网馈线自动化技术是一种通过使用信息技术和通信技术实现自动化控制配电网馈线运行和维护的方法。

该技术包括智能终端、通信网络、控制中心等组成部分,通过测量传感器实时采集馈线状态、采用智能算法进行数据处理和控制,实现电力系统的智能自动化。

配电网馈线自动化技术的应用,可以提高配电网的安全性、可靠性、智能化程度和经济性,具有以下几个优点:一、提高供电可靠性配电网馈线自动化技术可以实现全流程自动化,包括故障检测、故障定位、故障隔离、设备告警等功能,从而提高供电可靠性,减少停电时间和停电范围。

二、提高运行效率配电网馈线自动化技术可实现对馈线的在线检测,及时发现故障,隔离故障点,同时也可以进行人工干预,实现馈线运行的高效率,减少人为因素对馈线的影响。

三、提高管理水平配电网馈线自动化技术通过对馈线的远程监测和控制,实现了配电网的智能化管理,包括实时监测、历史记录、统计分析等功能,可以进行数据可视化呈现,方便管理人员进行决策分析。

四、提高服务质量配电网馈线自动化技术能够对电网系统的故障进行快速定位,提高抢修速度,为用户提供快速可靠的服务,保证电量供应稳定,提高电网服务质量。

在馈线自动化技术的应用过程中,需要注意以下几点:一、合理设计控制逻辑在馈线自动化技术应用的过程中,需要根据电网工作原理,合理设计控制逻辑,保证实时运行的稳定性和可靠性。

二、建立稳定的通信网络配电网馈线自动化技术需要建立稳定的通信网络,保证馈线监控数据安全、可靠地传输到控制中心,确保控制中心及时接收到馈线故障信息和控制指令。

三、完善的应急预案在应用馈线自动化技术的过程中,需要建立完善的应急预案,包括故障处理流程、应急响应措施、备用电源配备等方面的计划。

预案的建立可以确保在故障发生时,能够及时、有效地进行应急响应和处置。

综上所述,配电网馈线自动化技术是提高配电网安全、可靠性、智能化和经济性的一种重要手段。

在实际应用过程中,需要注意技术设计、通信网络建设和应急预案等方面的要求,确保实时运行的稳定性和可靠性。

浅谈配电网常用的馈线自动化模式(电压型、电流型、环网方式)

浅谈配电网常用的馈线自动化模式(电压型、电流型、环网方式)

2009年全国技工教育和职业培训优秀教研成果评选活动参评论文浅谈配电网常用的馈线自动化模式浅谈配电网常用的馈线自动化模式摘要:馈线自动化(FA,Feeder Automation)是配网自动化中的一项重要功能,通过实施馈线自动化,使馈线在运行中发生故障时,能自动进行故障定位,实施故障隔离和对非故障段线路及早恢复供电,以提高供电可靠性。

该文通过叙述馈线自动化就地控制模式和远方控制模式的工作原理,并指出这两种馈线自动化模式的优点和不足,根据实际情况选择相应的方式,在实际工作中具有十分重要的现实意义。

关键词:馈线自动化;故障判断;故障隔离由于配电网络的一次接线不同,如放射形线路、环网接线、“手拉手”接线等,以及各类用户对供电可靠性的要求有所不同,因此必须通过配网自动化规划来研究、分析配网自动化方案、馈线自动化方案,进行网络优化,以及选择恰当的配电网开关设备等过程来达到上述目的。

配网自动化是电力系统现代化的必然趋势,其主要意义在于:当配网发生故障时,迅速查出故障区段,快速隔离故障区段,及时自动恢复非故障区域用户的供电,因此缩短了对用户的停电时间,减少了停电面积,提高了供电可靠性。

馈线自动化有两种实现方式:当地控制方式和远方控制方式。

当地控制方式又叫电压型实现方式,通过重合器来实现,馈线失电压时开关跳开,然后依时间延时顺序试合分段开关,最后确定故障区段再隔离故障并恢复非故障区供电。

远方控制方式,又叫电流型实现方式,通过负荷开关、FTU加主站系统来实现。

由FTU检测电流以判别故障,故障信息传送到主站,由主站确定故障区段,然后由主站系统发遥控命令控制开关动作,完成故障隔离并恢复非故障区供电。

1 馈线自动化的就地控制模式1.1 重合器与电流型分段器配合应用方案KFE型户外真空自动重合器可以与电流型分段器或时问电压型分段器相配合,无需通讯即可自动分段故障线路,最大限度缩小停电范围。

其中与分段器配合如图1所示。

图1 重合器与分段器配合应用方案电流型分段器可以记录通过的故障电流的次数,设定的最大计数次数为3次,达到设定的计数次数后,在重合器跳闸时,分段器分闸,隔离故障线路段。

馈线自动化的两种技术方案及其实施效果分析

馈线自动化的两种技术方案及其实施效果分析

障, 使线路设备保护 与变 电站保护进行有效配合 。 实施馈线 自动 化最 主要 的 目的是对 馈线进行 快速故 障定 位、 故 障隔离 、 非故 障区域快速 复电, 最大 限度地 减少故障引起 的停 电范围 , 缩短故障恢复时间 。因此, 实现馈线 自动化要遵循 以下 几个原则 : ①减少变电站出线开关跳 闸; ②提 高变 电站出线 开关重合 闸成功率 ; ③减少靠近 电源侧的开关动作次数 ; ④ 自动 隔离用户侧单相接地故 障; ⑤馈线 自动化 开关控制器 ( F r U) 应
O 引言
合 闸延 时 6 0 s 。F B 为带 时 限 保 护 ( 过流 0 . 1 5 s , 零序 0 . 6 S ) 和 二 次 重 合 闸功 能 的 主 干 线 分 段 断 路 器 。F S W1~F S W2为 电 压 时 间 型 主干 线 分 段 负 荷 开 关 , 其控制 器具有 无压 分闸 , 有 压 延 时5 S 合闸 , 闭锁 合 闸及 闭 锁 分 闸 功 能 。Z B 1为 分 支 线 分 界 断
随着 社 会 经 济 的发 展 , 重 要 电 力 用 户 日益 增 多 , 对 供 电可
靠性的要求越来越 高。馈线 自动 化 的实 施就是 为 了给广大 电 力用户提供连续 、 优质 、 可靠 的电力服务 , 是 提高供电可靠性 的
重要技术措施之一。
路器 , 若安装在 F B电源侧 , 保 护整定与 F B相 同, 若安装 在 F B 负荷侧 , 则速断保护动作时间整定为 0 s , 过流和零序保 护时 问
界负荷开关的应用有效隔离 l 『用 户侧 单 相 接 地 故 障 , 减少 r 用
态及告警信号上传至后台, 案
2 . 1 方案一( 断 路 器 +负荷 开 关 +智 能控 制 器 )

配电网馈线自动化技术分析

配电网馈线自动化技术分析

配电网馈线自动化技术分析随着电力系统的发展和智能化水平的提升,配电网馈线自动化技术逐渐成为电力行业的热点话题。

馈线自动化技术是指利用先进的电力设备、智能化系统和通信技术,对配电网中的馈线进行实时监测、分析和控制,以提高配电网的可靠性、安全性和经济性。

本文将对配电网馈线自动化技术进行深入分析,从技术原理、功能特点、应用案例等方面展开讨论。

一、技术原理配电网馈线自动化技术是基于先进的智能终端设备和通信网络构建的智能化配电系统。

其主要包括以下几个方面的技术原理:1. 智能终端设备:配电网馈线自动化系统需要利用先进的智能终端设备,如智能开关、智能保护装置、智能电能表等,实现对配电网设备状态的检测、监视、保护和控制。

这些智能终端设备具有高精度、高稳定性、快速响应等特点,能够实时采集电力系统数据,为系统的自动化运行提供可靠的数据支持。

2. 通信网络:配电网馈线自动化系统需要建立可靠的通信网络,将各个智能终端设备连接在一起,实现数据的互联互通。

通信网络可以采用有线通信、无线通信等多种技术手段,满足不同环境下的通信需求,确保系统的稳定性和可靠性。

3. 智能控制系统:配电网馈线自动化系统需要配备智能控制系统,利用先进的控制算法和逻辑判定,实现对配电网设备的自动化控制。

智能控制系统能够根据系统状态实时调整操作策略,提高系统的运行效率和安全性。

以上几个方面的技术原理共同构成了配电网馈线自动化技术的核心内容,为电力系统的智能化运行提供了重要的技术支持。

二、功能特点配电网馈线自动化技术具有以下几个主要的功能特点:1. 实时监测与控制:配电网馈线自动化技术能够实时监测配电网设备的运行状态和负荷情况,及时发现故障和异常情况,并采取相应的控制措施,保障系统的安全稳定运行。

2. 智能化分析与判断:配电网馈线自动化技术能够通过智能分析和判断技术,对电力系统的运行情况进行实时评估和分析,为系统的运行优化提供决策支持。

3. 快速故障定位与恢复:配电网馈线自动化技术能够快速定位故障点,并自动切除故障区域,实现自动化的故障恢复,缩短故障处理时间,提高系统的可靠性和供电质量。

配网自动化的复习资料

配网自动化的复习资料

配电网自动化复习资料一、判断题:1.配电管理系统(DMS)主要包括:SCADA、负荷管理(LM)、自动绘图和设备管理AM/FM、投诉电话热线(TC)等功能。

(√)2.EMS中对某一量测采样是指以某一时间间隔保存到历史数据库,以便日后查看。

时间间隔通常有1秒、5秒、1分钟、5分钟等,一旦对某一量测定义好采样间隔就不能再更改。

(×)3.为了分析事故,在一些断路器发生事故跳闸时,系统自动把事故生后一段时间的有关遥测量记录下来,这种功能称为事故追忆(×)4.SOE中记录的时间是信息发送到SCADA系统的时间。

(×)5.判断系统发生预想事故后电压是否越限和线路是否过负荷的分析称为动态安全分析。

(×)6.EMS中的PAS应用软件,一般有两种工作模式:实时模式和研究模式。

(√)7.网络结线分析时,按开关状态和网络元件状态将母线模型化为网络物理结点模型,并将有电气联系的结点集合化为岛。

(×)8.状态估计是高维线性方程的加权最小二乘解问题。

(×)9.提高负荷预测精度的主要途径是硬件要好。

(×)10.判断系统发生预想事故后系统是否失去稳定的分析称之为静态安全分析。

判断系统发生预想事故后电压是否越限和线路是否过负荷的分析称为动态安全分析。

(×)11.网络拓扑是调度自动化系统应用功能中的最基本功能。

它根据遥信信息确定地区电网的电气连接状态,并将网络的物理模型转换为数学模型。

(√)12.电力系统状态估计就是利用实时量测系统的冗余性,应用估计算法来检测与剔除坏数据。

其作用是提高数据精度及保持数据的前后一致性,为网络分析提供可信的实时潮流数据。

(√)13.电力系统状态估计是根据SCADA系统提供的实时信息,给出电网内各母线电压(幅值和相角)和功率的估计值;主要完成遥信及遥测初检、网络拓扑分析、量测系统可观测性分析、不良数据辨识、母线负荷预报模型的维护、变压器分接头估计、量测误差估计等功能。

配电网馈线自动化技术分析

配电网馈线自动化技术分析

配电网馈线自动化技术分析
配电网馈线自动化技术是一种新型的电力系统运行监控、设备控制和自动化调节技术,它是通过现代化的电力通信和自动控制技术来实现对配电网馈线的精确监控和控制,从而
实现对配电系统的智能化升级。

目前,配电网馈线自动化技术主要采用网络技术和计算机控制技术,通过大量的传感
器和智能装置对馈线系统中的设备进行实时监测,并采集电量、电压、电流、功率等关键
数据。

同时,系统还采用分布式控制和智能分析技术,通过对数据的分析和处理,实现对
配电网馈线的智能化控制和管理。

具体来讲,配电网馈线自动化技术主要包括以下方面:
1. 遥测、遥信、遥控系统
这是配电网馈线自动化技术的核心系统,它通过网络技术和计算机控制技术实现远程
监测、控制、调节和保护。

主要包括遥测设备、遥信设备、遥控设备和操作终端等。

2. 配电控制中心
配电控制中心是对配电网馈线自动化技术实现的集中控制中心,它能够实时监测、控
制和管理整个配电系统。

主要包括监测、控制、通讯、数据采集和处理等功能。

3. 智能配电网馈线自动化装置
智能配电网馈线自动化装置是一种新型的智能化管理工具,它采用人工智能、云计算、大数据等先进技术,实现对配电网馈线的自动化控制和管理。

具有电力设备自动诊断、无
缝切换、故障检测等功能。

4. 智能分析系统
智能分析系统主要是利用大数据技术和机器学习算法实现对配电网馈线数据的智能分
析和处理,通常包括配电网馈线数据采集、质量分析、性能优化等功能。

总之,配电网馈线自动化技术是电力系统智能化升级的一个重要方向,它将会对未来
的电力系统发展带来深刻的影响。

配网自动化及馈线自动化技术探讨

配网自动化及馈线自动化技术探讨

配网自动化及馈线自动化技术探讨一、引言配网自动化及馈线自动化技术是现代电力系统中的重要组成部份,它们能够提高电网的可靠性、安全性和经济性。

本文将对配网自动化及馈线自动化技术进行探讨,包括技术原理、应用场景、优势和挑战等方面。

二、技术原理1. 配网自动化技术原理配网自动化技术利用先进的传感器、通信和控制技术,实现对配电网的实时监测、故障检测和故障隔离等功能。

通过智能装置和远程通信,配网自动化系统能够实现对配电设备的远程监控和控制,提高电网的可靠性和安全性。

2. 馈线自动化技术原理馈线自动化技术是指利用智能电力电子设备和通信技术,对输电路线进行实时监测和控制。

通过采集路线参数、故障信息和负荷信息等数据,并进行实时分析和处理,馈线自动化系统能够实现对输电路线的自动故障检测、故障定位和故障隔离,提高电网的可靠性和经济性。

三、应用场景1. 配网自动化技术的应用场景配网自动化技术广泛应用于城市配电网、工业园区配电网和农村电网等场景。

通过实时监测和控制,配网自动化系统能够提高电网的供电可靠性和质量,减少停电时间和故障恢复时间,提高用户的用电质量和满意度。

2. 馈线自动化技术的应用场景馈线自动化技术主要应用于高压输电路线和重要供电路线。

通过实时监测和控制,馈线自动化系统能够提高路线的供电可靠性和经济性,减少故障损失和停电时间,提高电网的运行效率和稳定性。

四、技术优势1. 配网自动化技术的技术优势配网自动化技术具有以下技术优势:- 实时监测和控制:能够对配电设备进行实时监测和控制,提高电网的可靠性和安全性。

- 故障检测和隔离:能够快速检测和隔离故障,减少停电时间和故障恢复时间。

- 负荷管理和优化:能够实现对负荷的智能管理和优化,提高电网的经济性和能源利用率。

2. 馈线自动化技术的技术优势馈线自动化技术具有以下技术优势:- 实时监测和控制:能够对输电路线进行实时监测和控制,提高路线的可靠性和经济性。

- 故障检测和定位:能够快速检测和定位故障,减少故障损失和停电时间。

馈线自动化与其应用分析

馈线自动化与其应用分析

馈线自动化与其应用分析1. 引言馈线自动化是一种利用先进的技术和设备来提高馈线系统的效率和可靠性的方法。

通过自动化控制和监测,馈线自动化可以实现对馈线系统的远程操作和管理。

本文将对馈线自动化的概念和其应用进行分析。

2. 馈线自动化的概念馈线自动化是一种基于计算机技术和通信技术的自动化系统,通过采集和传输数据,实现对馈线系统的监测、控制和管理。

馈线自动化系统由传感器、执行器、控制器和通信设备等组成,可以实现对馈线系统各项参数的实时监测和控制。

3. 馈线自动化的优势3.1 提高效率馈线自动化可以通过自动化控制和监测,提高馈线系统的运行效率。

传感器可以实时监测馈线系统的参数,如电流、电压、功率等,控制器可以根据这些参数进行调节和优化,以提高馈线系统的效率。

3.2 提高可靠性馈线自动化可以对馈线系统进行远程监测和控制,及时发现故障并进行处理,从而提高馈线系统的可靠性。

当馈线系统出现故障时,可以通过馈线自动化系统远程调节和维修,大大减少了停电时间和人工干预的需求。

3.3 降低成本馈线自动化可以通过提高效率和可靠性减少能源浪费和运维成本。

自动化控制可以优化馈线系统的运行,减少能源消耗和损耗,同时减少人工维护的需求,从而降低了馈线系统的运营成本。

4. 馈线自动化的应用4.1 高压输电线路在高压输电线路中,馈线自动化可以实现对输电线路的实时监测和控制。

通过传感器采集线路的电流、电压等参数,并通过控制器进行分析和调节,使得输电线路的运行更加稳定和效率更高。

4.2 配电系统在配电系统中,馈线自动化可以实现对变电站和配电线路的自动化控制和监测。

通过传感器和控制器,可以实现对电压、电流、功率等参数的实时监测和调节,提高配电系统的效率和可靠性。

4.3 新能源发电系统在新能源发电系统中,如风电场和太阳能电站,馈线自动化可以实现对发电设备和电力输送系统的自动化控制和管理。

通过传感器和控制器,可以实时监测发电设备的运行状态和电力输送系统的性能,提高发电系统的效率和可靠性。

馈线自动化技术方案

馈线自动化技术方案

馈线自动化技术方案1. 引言馈线自动化技术是一种利用先进的物联网、传感器技术以及自动控制系统,实现对电力系统馈线的监测、管理和调度的技术方案。

它可以提供实时的馈线状态信息,帮助电力公司实现对馈线的远程监控和智能化运维,从而提高电力系统的可靠性和经济性。

本文将介绍馈线自动化技术的原理、应用场景以及相关的关键技术,并讨论其在电力系统中的优势和挑战。

最后,本文将给出一个具体的馈线自动化技术方案,并对其可能的改进和发展进行展望。

2. 馈线自动化技术的原理馈线自动化技术基于物联网和传感器技术,通过将各种传感器(如温度传感器、电流传感器等)安装在馈线上,实时监测馈线的参数。

这些传感器会不断地将数据传输到监控中心,监控中心通过自动控制系统对馈线进行远程监测和控制。

馈线自动化技术的核心是数据采集和数据分析。

电力公司可以通过对采集到的馈线数据进行分析,了解馈线的工作状态和负载情况,从而实现对馈线的精细化管理和调度。

同时,通过预测分析和故障诊断,可以及时发现潜在的问题并采取相应的措施,提高馈线的可靠性和运行效率。

3. 馈线自动化技术的应用场景馈线自动化技术可以应用于各种电力系统中,特别是大型电网和分布式能源系统。

以下是一些常见的应用场景:3.1 远程监控和管理通过部署传感器和自动控制系统,电力公司可以实现对馈线的远程监控和管理。

监控中心可以实时接收馈线参数,并根据预设的阈值进行报警和动作控制。

这样,运维人员可以随时了解馈线的运行情况,及时采取措施以确保电力系统的平稳运行。

3.2 负载平衡和调度馈线自动化技术可以帮助电力公司实现对馈线负载的实时监测和调度。

通过分析采集到的负载数据,可以实现对负载的均衡和优化,以提高电力系统的负载能力和效率。

此外,还可以根据实时的负载情况,进行动态的馈线调度,避免出现过载和供电不足的情况。

3.3 故障诊断和维护通过对馈线数据的分析,可以快速发现馈线的故障和异常情况,并及时采取维护措施。

馈线自动化概述

馈线自动化概述

馈线自动化概述1. 介绍馈线自动化是一种使用先进技术来实现对馈线系统的自动化控制和管理的方法。

馈线系统是指用于输送电能的电力线路,包括输电线路、变电站和配电线路等。

传统的馈线系统需要大量人力和时间进行监控和维护工作,而馈线自动化则能大大提高系统的效率和可靠性。

2. 馈线自动化的目标馈线自动化的目标包括提高馈线系统的稳定性、可靠性、安全性、经济性和自动化程度。

通过引入先进的技术和系统,可以实现对馈线系统的实时监控、快速故障检测和定位、智能决策和自动化操作等功能,从而实现对馈线系统的全面控制和优化。

3. 馈线自动化的关键技术3.1 无线通信技术无线通信技术是实现馈线自动化的基础,它可以实现各个设备之间的远程通信和数据传输。

目前常用的无线通信技术包括GSM、CDMA、LTE等。

通过无线通信技术,可以将馈线系统中的各种参数和状态信息传输到监控中心,从而实现对系统的实时监控和管理。

3.2 变电站自动化变电站是馈线系统的重要组成部分,对其实施自动化控制具有重要意义。

变电站自动化包括对变电设备的远程监控和操作,以及对变电站内部各个系统的自动化管理。

通过变电站自动化,可以提高变电站的运行效率和可靠性,减少人为操作错误,并且可以实现对变电站的远程监控和控制。

3.3 故障检测与定位技术馈线系统的故障检测与定位是保障系统正常运行的重要环节。

利用现代化的故障检测与定位技术,可以实现对馈线系统各个节点的故障快速检测和准确定位。

这些技术包括线路故障定位技术、线路受力监测技术、设备状态监测技术等。

通过这些技术,可以快速发现和处理馈线系统中的故障,提高系统的可靠性和安全性。

3.4 数据分析与决策支持技术数据分析与决策支持技术是馈线自动化的关键技术之一。

通过对大量的馈线系统数据进行分析和挖掘,可以提取出有用的信息和规律,为系统的运行和管理提供支持和决策依据。

利用这些技术,可以实现对馈线系统的智能化分析和决策,提高系统的运行效率和可靠性。

配电网馈线自动化技术分析

配电网馈线自动化技术分析

配电网馈线自动化技术分析
配电网的馈线自动化技术是指利用先进的电力信息技术和通信技术,对配电网的馈线
进行监控、管理和控制的一种技术手段。

通过实时监测和控制馈线的运行状态,提高配电
网的可靠性、经济性和安全性。

配电网馈线自动化技术主要包括两个方面的内容:馈线监控和馈线控制。

馈线监控是指利用传感器、测量仪表等设备对馈线的各项参数进行实时监测,并将监
测数据传输给监控中心,实现对馈线状态的全方位掌握。

馈线监控主要包括电流、电压、
功率因数、功率负荷等参数的监测,还可以对损耗、故障和负荷变化等情况进行监测。


测数据可以通过通信网络传输,实现对馈线状态的实时监测。

馈线控制是指通过控制设备,对馈线的运行状态进行调节和控制,以实现对馈线的智
能化管理。

馈线控制主要包括对电流、电压、功率因数等参数的调节和控制,以及对开关、断路器等设备的开闭控制。

通过对馈线的调节和控制,可以实现对馈线的负荷均衡、功率
因数的调整、故障的快速隔离和恢复等功能。

1.提高馈线的可靠性。

通过实时监测和控制,可以及时发现和隔离馈线的故障,减少
停电时间,提高供电的可靠性。

2.提高馈线的经济性。

通过对馈线的负荷均衡和功率因数的调整,可以有效减少功率
损耗,提高配电网的运行效率,降低供电成本。

4.提高调度的灵活性。

通过对馈线的智能化管理,可以实现对馈线的即时调度,根据
需求进行负荷调整,提高供电的灵活性。

馈线自动化介绍

馈线自动化介绍

馈线自动化介绍什么是馈线自动化馈线自动化是指利用计算机技术和自动化控制技术进行电力系统中馈线操作和管理的一种方法。

通过自动化技术,能够实现对馈线的远程监测、调度、控制和保护,提高电力系统的运行效率和安全性。

在传统的电力系统中,馈线操作和管理通常需要大量人力和物力投入,如人工巡视、手动开关操作等。

馈线自动化的引入可以大大减轻工作负担,提高工作效率,同时还可以降低人为操作错误的风险,提高电力系统的可靠性和可用性。

馈线自动化的主要技术应用遥测与遥信技术遥测与遥信技术是馈线自动化的基础技术。

通过安装传感器和测控设备,可以实时获取电力系统的各项参数和状态信息,如电流、电压、功率、温度等。

这些数据可以通过通信网络传输到远程监测中心,实现对馈线的远程监测和数据采集。

同时,通过遥信技术,还可以实现对开关状态、故障信号等的远程获取,从而实现对馈线的远程控制和保护。

遥控技术遥控技术是实现对馈线远程操作的重要手段。

通过遥控装置,可以远程控制电力系统中的开关、刀闸和隔离开关等设备的操作。

这样,无需人工现场操作,即可实现对馈线的远程开关操作,提高电力系统的运行效率和安全性。

自动化调度与管理技术自动化调度与管理技术是通过计算机技术实现对馈线运行状态的自动化调度和管理。

通过采集和处理遥测数据,可以实现对馈线运行状态的实时监测和分析。

在出现异常情况时,可以自动进行报警和预警,并采取相应的措施进行处理。

同时,通过自动化调度算法,可以实现对馈线电量的合理分配和调度,达到节能降耗的目的。

馈线自动化的优势提高运行效率和安全性馈线自动化可以实现对馈线的远程监测、调度和控制,提高了电力系统的运行效率和安全性。

无论是对馈线参数的实时监测,还是对开关操作和故障保护的快速响应,馈线自动化都能够大大减少人工操作的时间和风险,提高电力系统的运行效率。

降低人为操作错误风险传统的馈线操作往往需要大量的人力投入,容易出现人为操作失误的情况,给电力系统的运行安全带来隐患。

配电网馈线自动化技术分析

配电网馈线自动化技术分析

配电网馈线自动化技术分析配电网馈线自动化技术是指通过采用现代化的通信、计算机技术和自控技术,对配电网中的馈线进行智能化控制,实现对配电网的自动监测、自动调节、自动保护等功能。

馈线自动化技术可以大大提高配电网的运行效率、降低故障发生率、提升供电质量和稳定性,同时也可以提高配电系统的安全性和可靠性。

馈线自动化技术的核心是智能型馈线开关控制器。

智能型馈线开关控制器是一种集数据采集、信号处理、控制计算和通信传输于一体的装置,可以实现对馈线运行状态的监测、数据处理、控制决策和命令输出等功能。

智能型馈线开关控制器具有高可靠性、点多面广、效率高等优点,是配电网馈线自动化技术的重要组成部分。

配电网馈线自动化技术包括馈线状态监测、故障自动定位、线路重新连接、负荷均衡等多个方面。

馈线状态监测是指通过对馈线电压、电流、功率因数等参数进行在线监测,实时反映馈线运行状态,发现异常状况,及时报警。

故障自动定位是指当馈线发生故障时,自动切换到备用电源或环网电源,同时自动定位故障位置,缩短故障修复时间。

线路重新连接是指当故障得到修复后,自动恢复馈线供电,并在保证供电稳定的前提下,将其他受影响的馈线重新连接上来,提高供电可靠性与连续性。

负荷均衡则是指通过对馈线负荷进行动态平衡控制,保证馈线负荷分布均衡、合理,避免局部过载,提高馈线安全性和稳定性。

馈线自动化技术的实际应用中存在一些挑战,如技术成本高、硬件设计和编程复杂、系统集成和调试难度大等问题。

针对这些挑战,需要配电企业加大投入,提高研发和生产效率,加速馈线自动化技术的推广和应用。

同时,需要提高技术人员的专业素养和技术水平,加强人才培养和引进,为馈线自动化技术的发展提供有力的人才支持。

总之,配电网馈线自动化技术是配电网智能化升级的重要手段,是实现配电网自动化运行的必要步骤。

未来,随着科技的不断发展和应用的广泛推广,配电网馈线自动化技术将会更加成熟和完善,为配电企业提供更加安全、可靠、高效的配电服务。

配电网馈线自动化技术及其应用

配电网馈线自动化技术及其应用

配电网馈线自动化技术及其应用随着社会的不断发展和人们对电力需求的增加,配电网的可靠性和安全性越来越受到人们的关注。

而配电网馈线自动化技术的引入,为提高配电网运行的可靠性和安全性提供了有力的保障。

本文将介绍馈线自动化技术的相关概念、技术原理以及在实际应用中的优势和作用。

一、馈线自动化技术的概念馈线自动化技术是指通过先进的电力自动化装置和系统,对配电网的馈线进行检测、控制和保护,以实现对配电网运行状态的实时监测和调控。

其基本原理是利用先进的电力自动化装置和远程通信技术,对配电网的故障信息、负荷信息等进行采集和处理,从而实现对配电网的远程监控和智能化运行。

1. 智能检测:馈线自动化系统利用智能感知技术对配电网的运行状态进行实时监测和检测,能够快速准确地发现电网的故障、负荷异常等情况,为故障处理和运行调度提供准确的信息支持。

2. 远程通信:配电网馈线自动化系统通过远程通信技术,可以实现对配电网的远程监控和远程操作,无需人工现场操作,可以大大提高工作效率和安全性。

3. 智能控制:配电网馈线自动化系统可以通过智能控制装置对电网的开关、负荷等进行自动控制,实现对配电网的智能化运行和自动化调度。

1. 实时监测:配电网馈线自动化系统可以实现对配电网运行状态的实时监测和实时数据采集,为配电网的运行管理提供准确的数据支持。

3. 故障处理:配电网馈线自动化系统可以快速准确地发现和定位电网的故障信息,为故障处理提供及时的支持,快速恢复电网的供电能力。

1. 提高配电网的可靠性和安全性:配电网馈线自动化技术的引入,可以实现对配电网的智能化运行和实时监控,大大提高了配电网的可靠性和安全性。

3. 降低电网的运行成本:配电网馈线自动化技术可以实现对电网的智能化调度和控制,优化了电网的运行方式,降低了电网的运行成本。

5. 提升电网的智能化水平:配电网馈线自动化技术的引入,使得配电网的运行更加智能化,能够自动完成很多工作任务,提升了电网的智能化水平。

实现配电网馈线自动化的方式及应用

实现配电网馈线自动化的方式及应用

摘要:针对配电自动化系统分层次发展的思路,探讨了馈线自动化技术及其在配电网中的应用,介绍了一种新型的馈线自动化设备及其应用效果。

关键词:配电网;馈线自动化;FTU终端1 配网自动化的发展方向和过程配电系统及其设备的分布量大面广,配电自动化系统涉及的费用大部分为可遥控操作的开关设备的费用,以及控制系统、数据采集系统和通讯系统的费用。

就国情而言,目前还缺乏大规模实现中低压配电网络配电自动化的物质基础,但配电自动化肯定是今后的发展方向。

为了实现配电自动化应充分考虑本地区社会经济的发展水平,根据配网的实际情况及远景规划,在经济能力能够承受的范围内运作,有目的地进行城网改造,分阶段投资和分阶段实施配电自动化,并使各配电自动化子系统最终有可能构成一个健全的配电自动化大系统。

2 实现馈线自动化方式的选择长期以来,由于我国10kV线路以架空线路为主,因此在配网改造的工作中,实现10kV架空线路的馈线自动化是首要任务。

面对量大面广的10kV配电线路,如何既经济又高效地实现自动化的基本功能,是当前的主要任务。

当前国内外电网中常采用的馈线自动化系统有两种:一种是采用配电自动化开关设备相互配合的馈线自动化系统;另一种为基于馈线终端设备(FTU)的馈线自动化系统。

(1)基于馈线终端设备(FTU)的馈线自动化系统是以计算机和通信网络为基础的馈线终端设备(FTU)的馈线自动化系统。

该系统所需的主要设备为FTU、通信网络区域工作站、配电自动计算机系统。

它的主要优点集中体现在:①故障时隔离故障区域,正常时监控配网运行,可优化运行方式,实现安全经济运行;②恢复健全区域供电时,可以采取安全和最佳措施;③可以和GIS等联网,实现全局信息化。

该系统的主要缺点是结构复杂、建设费用高,同时还需要建设通信网络。

(2)基于配电自动化开关设备相互配合的馈线自动化系统关键设备为重合器和分段器。

重合器是一种自具控制及保护功能的开关设备,它能按预定的开断和重合顺序自动开断和重合操作,并在其后自动复位或闭锁。

几种馈线自动化方式

几种馈线自动化方式

1.集中控制式集中控制式的故障处理方案是基于主站、通信系统、终端设备均已建成并运行完好的情况下的一种方案,它是由主站通过通信系统来收集所有终端设备的信息,并通过网络拓扑分析,确定故障位置,最后下发命令遥控各开关,实现故障区域的隔离和恢复非故障区域的供电。

优点:非故障区域的转供有着更大的优势,准确率高,负荷调配合理。

缺点:终端数量众多易拥堵,任一环节出错即失败。

案例:假设F2处发生永久性故障,则变电站1处断路器CB1因检测到故障电流而分闸,重合不成功然后分闸闭锁。

定位:位于变电站内的子站或配电监控中间单元因检测到线路上各个FTU的状态及信息,发现只有FTU1流过故障电流而FTU2~FTU5没有。

子站或配电监控中间单元判断出故障发生在FTU1~FTU2之间。

隔离:子站或配电监控中间单元发出命令让FTU1与FTU2跳闸,实现故障隔离。

恢复:子站或配电监控中间单元发出命令让FTU3合闸,实现部分被甩掉的负荷的供电。

子站或配电监控中间单元将故障信息上传配调中心,请求合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。

配调中心启动故障处理软件,产生恢复供电方案,自动或由调度员确认。

配调中心下发遥控命令,合变电站1处断路器CB1,实现部分被甩掉的负荷的供电。

等故障线路修复后,由人工操作,遥控恢复原来的供电方式。

2.就地自动控制2.1负荷开关(分段器)主要依靠自具一定功能的开关本身来完成简单的自动化,它与电源侧前级开关配合,在线路具备其本身特有的功能特性时,在失压或无流的情况下自动分闸,达到隔离故障恢复部分供电的目的。

这种开关一般或者有“电压-时间”特性,或者有“过流脉冲计数”特性。

前者是凭借加压、失压的时间长短来控制其动作的,失压后分闸,加压后合闸或闭锁。

后者是在一段时间内,记忆前级开关开断故障电流动作次数,当达到其预先设定的记录次数后,在前级开关跳开又重合的间隙分闸,从而达到隔离故障区域的目的。

在“电压-时间”方案中,开关动作次数多,隔离故障的时间长,变电站出口开关需重合两次,转供时容易有再次故障冲击,但它的优点是控制简单。

电压型馈线自动化

电压型馈线自动化

电压型馈线自动化电压型馈线自动化的特点为:(1)采用负荷开关作为分段开关,成本比采用断路器低(约低20%)。

(2)主要靠事先设定的逻辑配合完成规定的动作程序,避免了复杂的继电保护整定配合。

(3)对不具备信道条件的配电网,有其推广价值。

主要缺点是:(1)恢复供电的时间相对较长。

(2)为了消除永久性故障,主电源线侧应重叠两次并受到短路电流的影响(与没有馈线自动化的情况相同),备用电源线侧也应重叠一次并受到短路电流的影响,这将影响线路另一侧的用户,导致不必要的短时停电。

(3)应改进现有的变电站馈线保护和重合闸装置,以适应动作逻辑,或增加重合闸。

电流型馈线自动化的优点是逻辑关系简单,可以快速隔离故障,一个区段故障不影响其他区段的供电。

其缺点是断电保护配置和整定复杂。

FA+失压开关的工作原理是判断馈线端子是否具有FA+失压开关的共同时限功能。

所谓电压型开关是当馈线失去电压时,开关自动跳下,当馈线呼叫时,开关延迟闭合。

电压型FA方案评估具有简单、易于实施、无需通信、投资低等优点。

电压型开关采用交流工作电源,无电池,开关工作可靠。

已在县级城市配电网的农村电力线路中得到应用。

电压源方案评估的缺点是开关多次重叠,停电次数增加,对系统造成影响;单相接地和断相故障无法识别;剩余电压闭锁存在死区,导致故障范围扩大;对于具有多个电源的功率环,难以实现局部网络重构;故障处理时间长,分段越多,时间越长。

电压型系统的特点目前,我国配电自动化系统的应用大致分为两类:一类是电压型系统,另一类是电流型系统。

这两种制度各有优缺点。

本文重点介绍了电压源系统在配电网中应用的基本出发点。

(1)就10kV配电网运行方式而言,我国10kV系统多为中性点不接地系统,与日本电网结构相似,更适合采用电压型设备;此外,该车型在日本拥有近30年的运营经验。

因此,将其应用于10kV架空线路配电自动化系统更为合适;(2)从电力系统运行可靠性方面来看,电压型系统的优点较为突出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2基于馈线终端设备ftu的馈线自动化系统基于重合器开关设备配合的馈线自动化系统基于ftu和通信网络的馈线自动化系统1结构简单
•目的:对馈出线路进行数据采集和监控(SCADA功能),故障时,及时准确地确定故障区段,迅速隔离故障区段并恢复健全区段供电。
•主要功能:配网馈线运行状态监测、控制、故障诊断、故障隔离、网络重构。
•有两类馈线自动化系统:
•1、采用配电自动化开关设备相互配合的馈线自动化系统
•2、基于馈线终端设备(FTU)的馈线自动化系统
基于重合器开关设备配合的馈线自动化系统
基于FTU和通信网络的馈线自动化系统
主要优点
1)结构简单。
2)建设费用低。3)不需建通信 Nhomakorabea络。4)无电源提取问题。
1)故障时隔离故障区域,正常时监控配网运行,可优化运行方式,实现安全经济运行。
1)结构复杂。
2)建设费高。
3)需通信网络。
4)存在电源提取问题。
主要设备
重合器、分段器等
FTU、通信网络、区域工作站、计算机系统。
适用范围
农网、负荷密度小的偏远地区、供电途径少于两条的电网。
城网、负荷密度大的地区、重要工业园区、供电途径多的网格状配网、供电可靠性要求高的区域。
2)适应灵活的运行方式。
3)恢复健全区域供电时,可采取安全和最佳措施。
4)可与MIS、GIS等联网,实现全局信息化。
主要缺点
1)仅故障时起作用,正常运行时无监控作用,不能优化运行方式。
2)调整运行方式后,需到现场修改定值。
3)恢复健全区域供电时,无法采取安全、最佳措施。
4)需多次重合,对设备冲击大。
相关文档
最新文档