标准电子衍射花样解析

合集下载

电子衍射花样的标定方法

电子衍射花样的标定方法

电子衍射花样的标定方法1.标准花样对照法这种方法只适用于简单立方、面心立方、体心立方和密排六方的低指数晶带轴。

因为这些晶系的低指数晶带的标准花样可以在有的书上查到,如果得到的衍射花样跟标准花样完全一致,则基本上可以确定该花样。

不过需要注意的是,通过标准花样对照法标定的花样,标定完了以后,一定要验算它的相机常数,因为标准花样给出的只是花样的比例关系,而对于有的物相,某些较高指数花样在形状上与某些低指数花样十分相似,但是由两者算出来的相机常数会相差很远。

所以即使知道该晶体的结构,在对比时仍然要小心。

2.尝试-校核法a)量出透射斑到各衍射斑的矢径的长度,利用相机常数算出与各衍射斑对应的晶面间距,确定其可能的晶面指数;b)首先确定矢径最小的衍射斑的晶面指数,然后用尝试的办法选择矢径次小的衍射斑的晶面指数,两个晶面之间夹角应该自恰;c)然后用两个矢径相加减,得到其它衍射斑的晶面指数,看它们的晶面间距和彼此之间的夹角是否自恰,如果不能自恰,则改变第二个矢径的晶面指数,直到它们全部自恰为止;d)由衍射花样中任意两个不共线的晶面叉乘,即可得出衍射花样的晶带轴指数。

尝试-校核法应该注意的问题对于立方晶系、四方晶系和正交晶系来说,它们的晶面间距可以用其指数的平方来表示,因此对于间距一定的晶面来说,其指数的正负号可以随意。

但是在标定时,只有第一个矢径是可以随意取值的,从第二个开始,就要考虑它们之间角度的自恰;同时还要考虑它们的矢量相加减以后,得到的晶面指数也要与其晶面间距自恰,同时角度也要保证自恰。

另外晶系的对称性越高,h,k,l之间互换而不会改变面间距的机会越大,选择的范围就会更大,标定时就应该更加小心。

3.查表法(比值法)-1a)选择一个由斑点构成的平行四边形,要求这个平行四边形是由最短的两个邻边组成,测量透射斑到衍射斑的最小矢径和次小矢径的长度和两个矢径之间的夹角r1, r2,θ;b)根据矢径长度的比值r2/r1 和θ角查表,在与此物相对应的表格中查找与其匹配的晶带花样;c)按表上的结果标定电子衍射花样,算出与衍射斑点对应的晶面的面间距,将其与矢径的长度相乘看它等不等于相机常数(这一步非常重要);d)由衍射花样中任意两个不共线的晶面叉乘,验算晶带轴是否正确。

电子显微镜 第三章 衍射花样分析(1)

电子显微镜 第三章 衍射花样分析(1)

4 5
6 7 8 9
200 210
211 220 300 310
4 5
6 8 9 10
220 310
222 321 400 411
8 10
12 14 16 18
311 222
400 331 420 422
11 12
16 19 20 24
9
h4k4l4
尝试-校核法确定衍射
h2k2l2
R2 O
R4 h3k3l3
R3 R1
h1k1l1
斑点的晶面指数(hkl); 测量 R 之间的夹角 (R1, R2) ;任意选定斑点 R1 指数为(h1k1l1),则R2 对应的斑点指数( h2k2 l2)由夹角公式确定
cos h1h2 k1k2 l1l2 h12 k12 l12 h22 k22 l22
六. 单晶电子衍射花样的分析
排列十分规则的斑点(平行四边形的周期重复) 大量强度不等的衍射斑点
1
1.单晶电子衍射花样的产生及其几何特征
S0
O*
2
S
r*
r*
2
r=[uvw]
(h3k3l3) (h2k2l2) (h1k1l1)
(uvw)0*
O*
hu+kv+lw=0
r3 Hale Waihona Puke O*R ( L )r *
14
A B
C
D
确定衍射斑点的晶面指数(hkl)
A {110}
{211}
{411}
C
D
B {200} E
用量角器测得R之间的夹角分别为 (RA, RB)=900, (RA, RC)=550, (RA, RD)=710, A斑N为2,{110},假定A为(1 -1 0)。 B斑点N为4,表明属于{200}晶面 族,尝试(200),代入晶面夹角 公式得f=450,不符;若选B斑点 (002), f=900,相符; RC= RA+RB,C为(1 –1 2),N=6 与实测R2比值的N一致,计算夹角 为54.740,与实测的550相符;RE= 2RB,E为(004);RD=RA+RE=(1 –1 4),计算(1 -10)与(1 -14)的 夹角为70.530,与实测相符;依此 类推。 15

TEM分析中电子衍射花样标定

TEM分析中电子衍射花样标定

TEM分析中电子衍射花样标定TEM分析中电子衍射花样的标定是指确定其中的晶格参数和晶体结构。

电子衍射是由于电子束通过晶体时,与晶体中的电子相互作用而散射产生的。

电子束通过晶体时,遇到晶体的晶面时,会发生弹性散射,产生衍射现象。

衍射光束的方向、强度和间距在电子显微镜中可以通过观察电子衍射花样来确定,进而得到晶体的晶格参数和结构信息。

在进行电子衍射花样标定之前,首先需要准备一片单晶样品。

单晶样品的制备是一个关键步骤,需要从熔融状态下使样品高度纯净的晶体生长过程中得到。

然后将单晶样品切割成薄片,通常厚度在几十纳米到一百纳米左右。

进行TEM分析时,需要将薄片放置在透明网格上,并将其放入TEM样品船中。

接下来,将TEM样品船放入TEM仪器中,并进行样品的调准和调节。

在TEM仪器中,通过侧向显示出TEM样品的像,调整样品的倾角和旋转角度,使其与电子束的传输轴垂直以及平行于透明栅中的线。

这样才能观察到电子衍射花样。

接下来是电子衍射花样的标定过程。

首先,将TEM仪器调节到电子衍射模式,并将图像显示在荧光屏上。

然后,调节TEM仪器中的操作控制器,使得样品的电子束以其中一种特定的角度来照射样品。

在进行电子衍射花样标定时,可以首先使用标准单晶样品进行实验。

标准单晶样品的晶格参数和结构已经被广泛研究和报道。

通过将标准单晶样品放入TEM仪器中,来测量其电子衍射花样,并将其与实际观察到的电子衍射花样进行对比和校准。

此外,还可以使用获得的电子衍射花样,与理论模拟的电子衍射图案进行比对。

在进行电子衍射花样的标定时,需要考虑到以下几个因素。

首先,样品的薄度和各向异性。

样品的薄度会影响电子束的穿透和样品的衍射效果。

其次,电子束的聚焦和调整,以获得清晰的电子衍射花样。

最后,还需要注意TEM仪器的标定和校准,以确保获得准确的电子衍射花样。

总结起来,TEM分析中电子衍射花样的标定是一个复杂的过程,需要准备好单晶样品,并在TEM仪器中进行样品的调准和调节。

电子衍射及衍射花样标定讲解

电子衍射及衍射花样标定讲解
成以❖入电衍射子射电束成子照像射原束多理为晶与、多轴纳晶、米X射2晶q线体为衍时射, 衍射圆锥相2似q。不同,但各衍射圆
❖ 不产生消光的晶面均有机会产 生衍射。
3.多晶体电子衍射花样
花样
➢与X射线衍射法所得花样的几何特征相似,由一系列不同 半径的同心圆环组成,是由辐照区内大量取向杂乱无章的细 小晶体颗粒产生,d值相同的同一(hkl)晶面族所产生的衍射 束,构成以入射束为轴,2θ为半顶角的圆锥面,它与照相底 板的交线即为半径为R=Lλ/d=K/d的圆环。 ➢R和1/d存在简单的正比关系 ➢对立方晶系:1/d2=(h2+k2+l2)/a2=N/a2 ➢通过R2比值确定环指数和点阵类型。
❖微束选区衍射 ----用微细的入射束直接在样品上选择 感兴趣部位获得该微区衍射像。电子束可聚焦很细, 所选微区可小于0.5m 。可用于研究微小析出相和单 个晶体缺陷等。目前已发展成为微束衍射技术。
透射电镜光路图
电子衍射花样特征
单晶
多晶
非晶
准晶(quasicrystals)
分布集合而成一半径为1/d的 园环,因3.此多,晶样体品电各子晶衍粒射花样
[001]
晶带定律:若晶面(hkl)属于晶 带轴[uvw], 则有 hu+kv+lw=0 这就是晶带定理。
已知两晶面,求其晶带轴
如果(h1k1l1)和(h2k2l2)是[uvw]晶带中的两个晶 面,则由方程组 h1u+k1v+l1w=0和h2u+k2v+l2w=0 得出 [uvw]的解是 (这应该是在立方晶体中,因为只有在 立方晶体中与某晶面指数相同的晶向才与该晶面垂 直。)
K=Rd=( )mm.nm
2.电子显微镜中的电子衍射

电子衍射图谱解析

电子衍射图谱解析

根据(010)*面上的h0l(h+l=2n+1)斑点的分布 特征,001,102,201等斑点未有消光,表明晶体 不存在n滑移面,可确定此绿辉石晶体为有序结 构P2。
由8张电子衍射图构造的 (010)*倒易面上的取向分布
23
多次电子衍射谱
晶体对电子的散射能力强,衍射束往往可视为晶体内新的入射束而产 生二次或多次Bragg反射。这种现象称为二次衍射或多次衍射效应。
8
电子衍射谱的标定
电子衍射谱的标定是确定材料显微结构的重要步骤。一般地,这 一过程应遵循如下原则:
二维倒易平面中的任意倒易矢量 g 均垂直于晶带轴[uvw]方向(电子束反方向)
[uvw]• g hkl = uh + vk + wl = 0
若已知两倒易矢量 g1,g2,则晶带轴方向为
[uvw] = g1 × g 2 = [k1h2 − h1k2 , h1l2 − l1k2 , l1 k2 − k1l2 ]
3
TEM电子衍射的特点:
电子能量高,波长短,衍射角小,因而单晶的电子衍射 斑点坐落在一个二维网格的格点上,相当于一个二维倒易点 阵平面的投影,非常直观地显示出晶体的几何特征,使晶体 几何关系的研究变得简单方便。
原子对电子散射能力强(比X射线散射强度高104倍)。 一方面,高的散射强度可以实现微小区域(几个纳
5
TEM成像原理和电子衍射的获得
物 物镜
(物镜光 阑)
一次像 中间镜
(焦平面)
衍射谱
(视场光 阑)
二次像
投影镜
三次像
电子显微图象
电子衍射花样
TEM成像过程符合Abbe成像原理
平行电子束入射到周期结构物样 时,便产生衍射现象。

电子衍射及衍射花样标定精品文档

电子衍射及衍射花样标定精品文档

4.单晶电子衍射花样标定
5)任取不在同直线上的两个斑点 (如h1k1l1和h2k2l2 ) 确定晶带轴指数[uvw]。
求晶带轴指数:逆时针法则
h2k2l2
排列按逆时针
h1k1l1
[ uvw ] R 1 R 2 h1 k1 l1 h1 k1 l1 h2 k2 l2 h2 k2 l2
17.46mm,20.06mm,28.64mm,33.48mm;对应指数 (111),(200),(220),(311); 对应面间距d分别为 0.2355nm,0.2039nm,0.1442nm,0.1230nm
K=Rd
2.电子显微镜中的电子衍射
选区电子衍射
选区衍射就是在样品上选择一个感兴趣的区域,并限制其大小,得 到该微区电子衍射图的方法。也称微区衍射。两种方法:
4 5.05
8 10.1
8
10
220 310
220 301
验证 g 110 g 211 73 1 3
11 0 1 1 0
晶带轴为 113[ ],或倒易1面 13) 为 (
21 1 2 11
此为体心立方, 数a点 0阵 .3常 88nm
11 3
4.单晶电子衍射花样标定
例2:下图为某物质的电子衍射花样 ,试指标化并求其晶 胞参数和晶带方向。
3)会聚束花样:会聚束与单晶作用产生盘、线状花样;可以 用来确定晶体试样的厚度、强度分布、取向、点群、空间
群以及晶体缺陷等。
1.电子衍射的原理
入射束
厄瓦尔德球
o
试样
1 2q 1
L1d GFra bibliotek倒易点阵
o
G 底板
R
电子衍射花样形成示意图

电子衍射及衍射花样标定资料讲解

电子衍射及衍射花样标定资料讲解
电子衍射及衍射花样标定
1.电子衍射的原理 -Bragg定律
l
θO
θ
d
θR
θ
dsinqP l/2
d
2d·sinq = l
❖ 各晶面的散射线干涉加强的条件是光程差为波长的整数倍,即 2dsinθ=nλ 即Bragg定律,是产生衍射的必要条件。
❖ 但是满足上述条件的要求,也未必一定产生衍射,这样,把满足布拉 格条件而不产生衍射的现象称为结构消光。
即 u=k1l2-l1k2,v=l1h2-h1l2,w=h1k2-k1h2
电子衍射基本公式
由图可知:
衍射花样投影距离:R=Ltan2θ

当θ很小
tan2θ≈2θ
sinθ≈θ
∴ tan2θ=2 sinθ ∴ R=L2 sinθ 由布拉格方程;2d Nhomakorabeainθ=λ
得到:Rd=Lλ=K
这就是电子衍射基本公式。
[001]
晶带定律:若晶面(hkl)属于晶 带轴[uvw], 则有 hu+kv+lw=0 这就是晶带定理。
已知两晶面,求其晶带轴
如果(h1k1l1)和(h2k2l2)是[uvw]晶带中的两个晶 面,则由方程组 h1u+k1v+l1w=0和h2u+k2v+l2w=0 得出 [uvw]的解是 (这应该是在立方晶体中,因为只有在 立方晶体中与某晶面指数相同的晶向才与该晶面垂直 。)
❖ 表达花样对称性的基本单元为平行四边形。
•平行四边形可用两边夹一角来表征。 •平行四边形的选择: •最短边原则:R1<R2<R3<R4 •锐角原则:60°≤θ≤90° •如图所示,选择平行四边形。
已知 h1k1l1 和 h2k2l2 可求 h3=h1+h2 k3=k1+k2 L3=L1+L2

电子衍射花样标定教程和电子衍射图谱解析

电子衍射花样标定教程和电子衍射图谱解析

− β1 )
2
其中
∆α = α2 − α1
∆β = β2 − β1
近似处理为: cosθ ≈ cos ∆α cos ∆β
α、β分别为双倾台记录的试样倾转角
20
一个新的Bi基超导相的结构确定
在Bi系氧化物超导体的研究中,发现一个新的物相。经EDS成分 分析,该物相为Bi4(SrLa)8Cu5O7)。下面是在电镜中绕C*轴倾转晶体获 得的一套电子衍射图谱,其倾转角分别标在每张衍射谱左下端。
Miller指数的符号应满足右手螺旋法则,该法则决定了两基本矢量与晶带 轴之间的关系。
两个基本矢量的线性组合,一定能标出属于相同Laue区的所有衍射斑点 的指数。
9
多晶电子衍射谱标定
多晶电子衍射谱由一系列同心圆环 组成,每个环对应一组晶面。
根据 d = Lλ/R,可求得各衍射环
对应的晶面间距d。 与JCPDF卡(多晶粉末衍射卡)
测角74o基本相符。取(211)为B点指
数,按矢量叠加原理,标定如图。
4 晶带轴指数
[uvw] → [110] × [2 1 1] = [1 13]
晶带轴的计算:晶面法向与晶带轴垂直【110】*【uvw】=0
13
等价晶面的指数变换
采用d值比较法标定电子衍射谱,要使用JCPDS或JCPDF数据,但对等 价晶面只列出一个面指数,而如何确定其他等价晶面,标定电子衍射谱时 尤显重要。
另外,四指数h、k、i中可任选两个作为三指数的h、k, 于是变化规则可归纳为如下两点:
从四指数中的h、k、i中可任选两个作为三指数的h、k。 三指数中的h、k位置顺序可变动,符号可一起改变;l可任意改变符号,共有24种变换可能。
如(123)晶面的等价晶面共有24个, i = −(1+ 2) = 3

电子衍射花样标定教程和电子衍射图谱解析

电子衍射花样标定教程和电子衍射图谱解析
Miller指数的符号应满足右手螺旋法则,该法则决定了两基本矢量与晶带 轴之间的关系。
两个基本矢量的线性组合,一定能标出属于相同Laue区的所有衍射斑点 的指数。
9
多晶电子衍射谱标定
多晶电子衍射谱由一系列同心圆环 组成,每个环对应一组晶面。
根据 d = Lλ/R,可求得各衍射环
对应的晶面间距d。 与JCPDF卡(多晶粉末衍射卡)
变换规则:指数位置不能改变,三指数符号可一起变;k的符号可 单独变,共 4种 变换可能。
e 三斜
d公式复杂,略。
变换规则:h、k、l只能一起改变符号,2种 变换可能。
15
f 六方
d = 1 4 ( h 2 + hk + k 2 + l 2 )
3
a2
c2
由公式可见,h、k的次序可变,h、k的符号需同时改变;l的符号可随意改变。
测角74o基本相符。取(211)为B点指
数,按矢量叠加原理,标定如图。
4 晶带轴指数
[uvw] → [110] × [2 1 1] = [1 13]
晶带轴的计算:晶面法向与晶带轴垂直【110】*【uvw】=0
13
等价晶面的指数变换
采用d值比较法标定电子衍射谱,要使用JCPDS或JCPDF数据,但对等 价晶面只列出一个面指数,而如何确定其他等价晶面,标定电子衍射谱时 尤显重要。
像平面上的像经过中间镜组,投 影镜组再作二次放大投射到荧光 屏上,称为物的三级放大。
改变中间镜电流,即改变中间镜 焦距,使中间镜物平面移到物镜 后焦面,便可在荧光屏上看到像 变换成衍射谱的过程。
6
显微像和选区电子衍射花样
TEM一大优点是可以获得对应的显微图象和选区电子衍射(SAED)图样。在 200kv的加速电压下,改变选区光阑的直径,可以得到尺寸小到0.1微米样品的 TEM像和SAED图样。

材料研究方法电子衍射花样与标定

材料研究方法电子衍射花样与标定

k2 1
l2 1
h2 2
k2 2
l2 2
算出任意两个衍射斑点的夹角。核对夹角,若符合则标定正确,否则重返设定新的晶面, 直至符合为止。
3)矢量法得其它各点。并由矢量叉乘得晶带轴指数,晶带轴与电子束的入射方向反向平行。
4)核查各过程,计算晶格常数。
四、单晶体电子衍射花样的标定
2. 未知晶体结构的花样标定
未知晶体结构时,可由N规律,初步确定其结构,再定其晶面指数。 举例2 已知相机常数K=1.700mm.nm,各直径见表,确定物相。
由N的规律确定为BCC结构,由d=Lλ/r得d,查ASTM卡片发现α-Fe最符,故为α-Fe相。
谢谢!再见!
五、多晶体的电子衍射花样
多晶体的电子衍射花样等同于多晶体的X射线衍射花样,为系列同心圆。 其花样标定相对简单,同样分以下两种情况: 1.已知晶体结构 具体步骤如下: 1)测定各同心圆直径Di,算得各半径Ri; 2)由Ri/K(K为相机常数)算得1/di; 3)对照已知晶体PDF卡片上的di值,直接确定各环的晶面指数{hkl}。 2.未知晶体结构
四、单晶体电子衍射花样的标定
6)由确定了的两个斑点指数(h1k1l1)和(h2k2l2),通过矢量合成其它点
7)定出晶带轴。
u k1l 2 k 2l1
v
l1h2
l 2h1
w h1k 2 h2k1
8)系统核查各过程,算出晶格常数。
举例1已知纯镍(fcc)简单电子 衍射花样(a=0.3523nm),花样 见图,定谱。
当晶体的点阵结构未知时,首先分析斑点的特点,确定其所属的点阵结构,然后再由前面所 介绍的8步骤标定其衍射花样。如何确定其点阵结构呢?主要从斑点的对称特点(见表6-1) 或1/d2值的递增规律(见表6-2)来确定。 花样标定的具体步骤: 1)判断是否简单电子衍射谱。如是则选择三个与中心斑点最近斑点:P1、 P2、P3,并与中心构成平行四边形,并测量三个斑点至中心的距离ri。 2)测量各衍射斑点间的夹角。 3)由rd=Lλ,将测的距离换算成面间距di。 4)由试样成分及处理工艺及其它分析手段,初步估计物相,并找出相应的卡片,与实验得到 的di对照,得出相应的{hkl}. 5)用试探法选择一套指数,使其满足矢量叠加原理。 6)由已标定好的指数,根据ASTM卡片所提供的晶系计算相应的夹角,检验计算的夹角是否 与实测的夹角相符。 7)若各斑点均已指数化,夹角关系也符合,则被鉴定的物相即为STAM卡片相,否则重新标 定指数。

电子衍射及衍射花样标定

电子衍射及衍射花样标定

q
d
q L
q
G’ r
O
G’’
立方晶体[001]晶带
晶体中,与某一晶向[uvw]平行的 所有晶面(hkl)属于同一晶带, 称为[uvw]晶带,该晶向[uvw]称 为此晶带的晶带轴. 如 [001] 晶 带 中 包 括 ( 100 ) , (010)、(110)、(210)等 晶面。
[001]
晶带定律:若晶面(hkl)属于晶 带轴[uvw], 则有 hu+kv+lw=0 这就是晶带定理。
相机常数未知、晶体结构已知时衍射花样的标定
以立方晶系为例来讨论电子衍射花样的标定 电子衍射基本公式
同一物相,同一衍射花样而言, 为常数,有 R12:R22 :R32:…Rn2=N1:N2:N3:…Nn
立方晶系点阵消光规律 R12:R22 :R32:…Rn2=N1:N2:N3:…Nn
衍射 线序 号n 1 2 3 4 简单立方 体心立方
H、K、L全奇或全偶
4.单晶电子衍射花样标定

例:下图为某物质的电子衍射花样 ,试指标化并求其晶 胞参数和晶带方向。 RA=7.1mm, RB=10.0mm, RC=12.3mm, (RARB)90o, (rArC)55o.
A
C
B 000
4.单晶电子衍射花样标定
解2:
2 2 2 1)由 RA : RB : RC N1 : N2 : N3 2 : 4 : 6
晶面间距
立方晶系的晶面间距公式为:
d
四方晶系的晶面间距公式为:
a h2 k 2 l 2
1 h2 k 2 l 2 2 2 a c
d
六方晶系的晶面间距公式为:
d
a 4 2 a (h hk k 2 ) ( ) 2 l 2 3 c

第四章 透射电镜电子衍射衍射花样标定解析

第四章 透射电镜电子衍射衍射花样标定解析

V
V
V
式中V为正点阵中单胞的体积:
V a (b c) b (c a) c (a b)
表明某一倒易基矢垂直于正点阵中和自己异名的 二基矢所成平面。
2.倒易点阵的性质
(1)根据倒易点阵中单位矢量的定义和矢量运算法则可推出:
a * b a * c b * a b * c c * a 0
R21 : R22 : R23 :1: 2:3: 4:5:6:8:9:10:11:12:13:14:16:17:
实际晶体要产生衍射,除要求满足布拉格定律外,还要满
足一定条件,如体心立方晶体要求 H+K+L为偶数;面心立 方晶体要求H、K、L为全奇数或全偶数,否则产生结构消光。
因此体心立方晶体和面心立方晶体遵循的规律如下:
342.25
Ri2/R12 {hkl}
3 {111}
8 {220}
11 {311}
20 {420}
表明为面心立方晶体。
②任取A为(111),尝试B为(220),并测得之间的夹角为900,
之间的夹角为580,由选取的A,B点所对应的晶面指数计算
夹角的余弦:cos
h1h2 k1k2 l1l2
(1)未知相机常数及晶体结构情况下指标化方法
铝单晶电子衍射花样及标定
①选取靠近中心O附近且不在一条直线上的四个斑点A、B、C、 D,分别测量它们的R值,并且找出Ri2/R12比值规律,确定点 阵类型及斑点的晶面组指数。
斑点
A
B
C
D
R(mm) 7
11.4
11.3
18.5
R2
49
129.96
182.25
计算晶面间距d如果相机常数未知可用标准样品计算出实验条件下电镜的相机常数kl然后根据衍射环的的相对强度查出pdf卡片确认与所测数据相对应的物r2r1r3r42多晶电子衍射分析的作用主要有两个

电子衍射花样标定

电子衍射花样标定

复合斑点
[011]γ
[001- ]α
022γ
1- 11γ 011 // 001
111γ
110α
000
020α
1-10α
011 // 001
111
//
110


例2. Mg2SiO4 a=4.67, b=10.2, c=5.99
K 为相机常数,单位:mm.Å
已知相机常数K,就可根据底板上测得的R值算出 衍射晶面d值,同时根据R的方位,可知道衍射晶 面的位置(R 垂直与衍射晶面)。
五. 结构消光规律
衍射束的强度I(hkl) 和结构因素F(hkl)有关,
即 I (hkl) ∝∣F (hkl)∣2
F (hkl)表示晶体中单位晶胞内所有原子的 散射波在(hkl)晶面衍射束方向上的振幅之
和。
F (hkl)=0 叫结构消光
N
F(hkl) f j exp[ 2i(hx j kyj lz j )] j 1
共轭复数公式
exp[2i(hxj kyj lz j )] =cos2 (hxj kyj lzj) i sin 2 (hxj kyj lzj)
及计算过程)。
R1=10.2mm, R2=10.2mm R3=14.4mm , R1和R2间夹角为90°
R1=10.0mm, R2=10.0mm, R3=16.8mm, R1和R2间夹角为70°
[011]γ
022γ 111γ
-111γ 000
1 1 1 1 11
0 2 20 2 2 0 -2 2
k = 2.15mm.nm
Ri di
4.3 5 8.8 2.44 8.8 2.44 10.5 2.05
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档