数列题型、解法总结
数列题型及解题方法
数列题型及解题方法题型1:等差数列解题方法:首先确定数列的首项和公差,然后使用递推公式an = a1 + (n-1)d,其中an表示数列的第n项,a1表示首项,d表示公差。
根据题目给出的条件,可以求得所求的项或者公式中的未知数。
题型2:等比数列解题方法:首先确定数列的首项和公比,然后使用递推公式an = a1 * r^(n-1),其中an表示数列的第n项,a1表示首项,r表示公比。
根据题目给出的条件,可以求得所求的项或者公式中的未知数。
题型3:斐波那契数列解题方法:斐波那契数列是指后一项等于前两项之和的数列,即an = an-1 + an-2。
根据题目给出的条件,可以使用递归或循环的方式计算斐波那契数列的第n项。
题型4:数列求和解题方法:对于等差数列和等比数列,可以使用求和公式直接计算数列的和。
等差数列的和用Sn = (n/2)(a1 + an)表示,等比数列的和用Sn = a1(1 - r^n)/(1 - r)表示。
根据题目给出的条件,代入公式计算即可得到所求的和。
题型5:数列拓展解题方法:有时候题目需要在基本的数列模型上进行拓展,可以根据数列的特点和题目的要求进行分析和解答。
可以使用递推公式或者递推关系式进行推导,并根据题目给出的条件计算所求的项或和。
题型6:递推关系式解题方法:有时候数列无法使用基本的递推公式进行求解,需要根据数列的特点建立递推关系式。
递推关系式是指数列的每一项与前面的若干项之间存在某种关系,通过这个关系可以递推求解数列的项或和。
根据题目给出的条件,建立递推关系式,并根据初始条件求解所求的项或和。
数列全部解题方法及对应题型归纳
数列全部解题方法及对应题型归纳数列通项公式求法 (一)转化为等差与等比1、已知数列{}n a 满足11a =,211n n a a -=+(,n N *∈2≤n ≤8),则它的通项公式n a 什么2.已知{}n a 是首项为2的数列,并且112n n n n a a a a ---=,则它的通项公式n a 是什么3.首项为2的数列,并且231n n a a -=,则它的通项公式n a 是什么4、已知数列{}n a 中,10a =,112n na a +=-,*N n ∈. 求证:11n a -??是等差数列;并求数列{}n a 的通项公式;5.已知数列{}n a 中,13a =,1222n n a a n +=-+,如果2n n ba n =-,求数列{}n a 的通项公式(二)含有n S 的递推处理方法1)知数列{a n }的前n 项和S n 满足log 2(S n +1)=n +1,求数列{a n }的通项公式.2.)若数列{}n a 的前n 项和n S 满足,2(2)8n n a S +=则,数列n a3)若数列{}n a 的前n 项和n S 满足,111,0,4n n n n a S S a a -=-≠=则,数列n a4)12323...(1)(2)n a a a na n n n +++=++ 求数列n a(三)累加与累乘(1)如果数列{}n a 中111,2nn n a a a -=-=(2)n ≥求数列n a(2)已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式(3) 12+211,2,=32n n n a a a a a +==-,求此数列的通项公式.(4)若数列{}n a 的前n 项和n S 满足,211,2n n S n a a ==则,数列n a(四)一次函数的递推形式 1. 若数列{}n a 满足1111,12n n a a a -==+(2)n ≥,数列n a2 .若数列{}n a 满足1111,22n n n a a a -==+ (2)n ≥,数列n a(五)分类讨论(1)2123(3),1,7n n a a n a a -=+≥==,求数列n a (2)122 2,(3)1,3nn a n a a a -=≥==,求数列n a(六)求周期 16 (1) 121,41nn na a a a ++==-,求数列2004a(2)如果已知数列11n n n a a a +-=-,122,6a a ==,求2010a 拓展1:有关等和与等积(1)数列{n a }满足01=a ,12n n a a ++=,求数列{a n }的通项公式(2)数列{n a }满足01=a ,12n n a a n ++=,求数列{a n }的通项公式(3).已知数列满足}{n a )(,)21(,3*11N n a a a n n n ∈=?=+,求此数列{a n }的通项公式.拓展2 综合实例分析1已知数列{a n }的前n 项和为n S ,且对任意自然数n ,总有()1,0,1n n S p a p p =-≠≠ (1)求此数列{a n }的通项公式(2)如果数列{}n b 中,11222,,n b n q a b a b =+=<,求实数p 的取值范围2已知整数列{a n }满足31223341 (3)n n n na a a a a a a a --+++=,求所有可能的n a3已知{}n a 是首项为1的正项数列,并且2211(1)0(1,2,3,)n n n n n a na a a n +++-+== ,则它的通项公式n a 是什么4已知{}n a 是首项为1的数列,并且134nn n a a a +=+,则它的通项公式n a 是什么5、数列{}n a 和{}n b 中,1,,+n n n a b a 成等差数列,n b ,1+n a ,1+n b 成等比数列,且11=a ,21=b ,设nnn b a c =,求数列{}n c 的通项公式。
数列题型及解题方法
数列题型及解题方法数列是数学中常见的概念,也是高中数学中重要的内容之一。
在数学学习中,数列题型及解题方法是学生们需要掌握的重要知识点。
本文将从数列的基本概念入手,介绍常见的数列题型及解题方法,希望能帮助学生们更好地理解和掌握数列的相关知识。
一、数列的基本概念。
数列是按照一定顺序排列的一串数,这些数之间存在着一定的规律。
数列可以分为等差数列、等比数列和其他特殊数列等多种类型。
在解题时,首先需要明确数列的类型,然后根据数列的特点和规律进行分析和计算。
二、等差数列题型及解题方法。
1. 求等差数列的通项公式。
等差数列的通项公式一般为an=a1+(n-1)d,其中an表示数列的第n项,a1为首项,d为公差,n为项数。
通过已知的首项和公差,可以利用通项公式求出数列的任意一项。
2. 求等差数列的前n项和。
等差数列的前n项和公式为Sn=n/2(a1+an),通过这个公式可以求出等差数列前n项和的数值,其中n为项数,a1为首项,an为第n项。
3. 应用等差数列解决实际问题。
在解决实际问题时,可以将问题转化为等差数列的形式,然后利用等差数列的性质进行求解。
例如,求等差数列中满足某个条件的项数,或者求解等差数列中某些项的和等问题。
三、等比数列题型及解题方法。
1. 求等比数列的通项公式。
等比数列的通项公式一般为an=a1q^(n-1),其中an表示数列的第n项,a1为首项,q为公比,n为项数。
通过已知的首项和公比,可以利用通项公式求出数列的任意一项。
2. 求等比数列的前n项和。
等比数列的前n项和公式为Sn=a1(q^n-1)/(q-1),通过这个公式可以求出等比数列前n项和的数值,其中n为项数,a1为首项,q为公比。
3. 应用等比数列解决实际问题。
同样地,可以将实际问题转化为等比数列的形式,然后利用等比数列的性质进行求解。
例如,求等比数列中满足某个条件的项数,或者求解等比数列中某些项的和等问题。
四、其他特殊数列题型及解题方法。
数列题解析常见的数学题型及解题技巧
数列题解析常见的数学题型及解题技巧数列题解析:常见的数学题型及解题技巧数学中,数列是一种按照一定规律排列的数字序列。
数列题是中学数学常见的题型之一,考察学生对数列的理解和解题能力。
本文将介绍数列题的常见题型,并提供解题技巧。
一、等差数列1. 等差数列概念等差数列是指数列中相邻两项之间的差值都相等的数列。
通常用字母a表示首项,d表示公差。
等差数列的通项公式为:an = a + (n-1)d。
2. 等差数列题型及解题技巧(1) 求前n项和:可以利用等差数列的求和公式Sn = (n/2)(2a + (n-1)d)来计算。
(2) 求项数:已知等差数列的首项和公差,求第n项可以利用通项公式an = a + (n-1)d。
(3) 求公差:已知等差数列的首项和任意两项,可以利用公式d = an - a(n-1)来计算。
二、等比数列1. 等比数列概念等比数列是指数列中相邻两项之间的比值都相等的数列。
通常用字母a表示首项,q表示公比。
等比数列的通项公式为:an = a * q^(n-1)。
2. 等比数列题型及解题技巧(1) 求前n项和:可以利用等比数列的求和公式Sn = (a(1-q^n))/(1-q)来计算。
(2) 求项数:已知等比数列的首项和公比,可以利用通项公式an = a * q^(n-1)进行转化求解。
(3) 求公比:已知等比数列的首项和任意两项,可以通过求项数的方式来计算公比。
三、递推数列递推数列是指数列中的每一项都由前一项递推而来的数列。
递推数列题型比较灵活,常见的有斐波那契数列、阶乘数列等。
解决递推数列题目的关键是找到递推关系式,将问题转化为数列的求解问题。
四、复合数列复合数列是指数列中同时具有等差和等比特征的数列。
可以通过将复合数列拆分成等差数列和等比数列两部分来解决问题。
解决复合数列题目的关键是根据题目给出的条件,分别求解等差数列和等比数列的部分,然后将结果综合起来。
五、其他常见数列题型除了上述三种常见的数列题型外,还有一些其他常见的数列题型,如费马数列、幂次数列等。
数列的19种经典题型
数列的19种经典题型一、公差不等于零的等差数列1. 前n项和:求出前n项的和Sn=a1+a2+…+an,Sn=n/2*(a1+an);2. 等比数列的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为等比数列的公比,则Sn = a1(1-q^n)/(1-q);3. 概率的前n项和:求出前n项的和Sn=a1+a2+…+an,若q为概率的公比,则Sn = a1(1-q^n)/(1-q);4. 等差数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若d为等差数列的公差,则Pn = (a1 + (n-1)*d) * (a1 + (n-2)*d) * … * a1;5. 等比数列的前n项乘积:求出前n项的乘积Pn = a1*a2*…*an,若q为等比数列的公比,则Pn = a1 *q^(n-1) * q^(n-2) * … * a1;6. 概率的前n项乘积:求出前n项的乘积Pn =a1*a2*…*an,若q为概率的公比,则Pn = a1 * q^(n-1) * q^(n-2) * … * a1;7. 等差数列的通项公式:若a1,a2,…,an为等差数列,若d为该数列的公差,则an = a1+(n-1)*d;列,若q为该数列的公比,则an = a1*q^(n-1);9. 概率的通项公式:若a1,a2,…,an为概率的序列,若q为该数列的公比,则an = a1*q^(n-1);10. 等差数列中某项的值:若a1,a2,…,an为等差数列,若d为该数列的公差,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
11. 等比数列中某项的值:若a1,a2,…,an为等比数列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
12. 概率的某项的值:若a1,a2,…,an为概率的序列,若q为该数列的公比,若知a1的值,则求出an的值,只需要把an的表达式代入即可。
高中数学数列题型及解题方法
高中数学数列题型及解题方法高中数学中,数列是一个非常重要的概念。
对于数列题型的掌握和解题方法的运用,对于学生在数学学习中起到至关重要的作用。
常见的数列题型包括等差数列、等比数列和斐波那契数列等。
下面将介绍这几种数列的定义和解题方法。
1. 等差数列:等差数列是指数列中相邻两项之差都相等的数列。
常见的解题方法有:- 求通项公式:通过已知条件求出公差d和首项a1,然后利用通项公式an=a1+(n-1)d来求解。
- 求和公式:通过已知条件求出公差d、首项a1和项数n,然后利用求和公式Sn=n/2(a1+an)来求解。
2. 等比数列:等比数列是指数列中相邻两项之比都相等的数列。
常见的解题方法有:- 求通项公式:通过已知条件求出公比r和首项a1,然后利用通项公式an=a1*r^(n-1)来求解。
- 求和公式:通过已知条件求出公比r、首项a1和项数n,然后利用求和公式Sn=a1*(1-r^n)/(1-r)来求解。
3. 斐波那契数列:斐波那契数列是指数列中每一项都是前两项之和的数列。
常见的解题方法有:- 递推公式:利用递推关系an=an-1+an-2来计算斐波那契数列的每一项。
- 通项公式:通过特征方程x^2=x+1,求出两个根φ和1-φ,然后利用通项公式an=Aφ^n+B(1-φ)^n来求解,其中A和B为常数,通过已知条件求解得出。
在解题过程中,可以根据已知条件,选择合适的方法来求解数列问题。
同时,还需要注意理解数列的性质,例如等差数列的公差为常数,等比数列的公比为常数等。
通过对不同类型数列的学习和练习,可以提高对数列问题的理解和解题能力。
高中数学数列经典题型及解析
高中数学数列经典题型及解析1. 求数列的通项公式:题目描述:已知数列的前几项为1,4,9,16,...,求该数列的通项公式。
解析:观察该数列可以发现,每一项都是前一项的平方加1,所以可以得到通项公式为an =n^2 + 1。
2. 求数列的和:题目描述:已知数列的前几项为2,5,8,11,...,求前100项的和。
解析:观察该数列可以发现,每一项都是前一项加3,所以可以得到通项公式为an = 3n - 1。
根据等差数列的求和公式,前n项的和可以表示为Sn = (n/2)(a1 + an),所以前100项的和为S100 = (100/2)(2 + a100),代入通项公式,得到S100 = (100/2)(2 + (3*100 - 1)) = 10100。
3. 求等差数列的前n项和:题目描述:已知数列的前几项为3,7,11,15,...,求前20项的和。
解析:观察该数列可以发现,每一项都是前一项加4,所以可以得到通项公式为an = 4n - 1。
根据等差数列的求和公式,前n项的和可以表示为Sn = (n/2)(a1 + an),所以前20项的和为S20 = (20/2)(3 + (4*20 - 1)) = 820。
4. 求数列的极限:题目描述:已知数列的前几项为1,1/2,1/3,1/4,...,求该数列的极限值。
解析:观察该数列可以发现,每一项都是前一项的倒数,即an = 1/n。
当n趋向于无穷大时,an趋向于0,所以该数列的极限值为0。
5. 求数列的递推关系:题目描述:已知数列的前几项为1,2,4,7,11,...,求该数列的递推关系。
解析:观察该数列可以发现,每一项都是前一项加一个递增的数,递增的数可以依次为1,2,3,4,...,所以可以得到递推关系为an = an-1 + (n-1)。
以上是高中数学中数列的经典题型及解析,希望对你有帮助!。
(完整版)数列题型及解题方法归纳总结
(完整版)数列题型及解题方法归纳总结数列是数学中一个重要的概念,也是数学中常见的题型之一。
数列题目通常会给出一定的条件和规律,要求我们找出数列的通项公式、前n项和等相关内容。
下面对数列题型及解题方法进行归纳总结。
一、数列的基本概念1. 数列的定义:数列是按照一定规律排列的一列数,用通项公式a_n表示。
2. 首项和公差:对于等差数列,首项是指数列的第一个数,公差是指相邻两项之间的差值。
通常用a1表示首项,d表示公差。
3. 首项和公比:对于等比数列,首项是指数列的第一个数,公比是指相邻两项之间的比值。
通常用a1表示首项,r表示公比。
二、等差数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公差,求第n项的值。
使用通项公式a_n = a1 + (n-1)d。
(2)已知相邻两项的值,求公差。
根据 a_(n+1) - a_n = d,解方程即可。
(3)已知首项和第n项的值,求公差。
根据 a_n = a1 + (n-1)d,解方程即可。
2. 找前n项和:(1)已知首项、公差和项数,求前n项和。
使用公式S_n= (n/2)(a1 + a_n)。
(2)已知首项、末项和项数,求公差。
由于S_n =(n/2)(a1 + a_n),可以列方程求解。
(3)已知首项、公差和前n项和,求项数。
可以列方程并解出项数。
3. 找满足条件的项数:(1)已知首项、公差和条件,求满足条件的项数。
可以列方程,并解出项数。
三、等比数列的常见题型及解题思路1. 找通项公式:(1)已知首项和公比,求第n项的值。
使用通项公式a_n = a1 * r^(n-1)。
(2)已知相邻两项的值,求公比。
根据 a_n / a_(n-1) = r,解方程即可。
(3)已知首项和第n项的值,求公比。
根据 a_n = a1 * r^(n-1),解方程即可。
2. 找前n项和:(1)已知首项、公比和项数,求前n项和。
使用公式S_n = (a1 * (1 - r^n)) / (1 - r)。
数列题型及解题方法
数列题型及解题方法数列是高中数学中的重要内容,也是考试中经常出现的题型之一。
掌握数列的相关知识和解题方法对于提高数学成绩至关重要。
本文将从常见的数列题型入手,结合解题方法进行详细介绍,希望能够帮助大家更好地理解和掌握数列的相关知识。
一、等差数列。
等差数列是指一个数列中,从第二项开始,每一项与它的前一项之差都是一个常数。
这个常数就是公差,通常用d表示。
等差数列的通项公式为,$a_n = a_1 + (n-1)d$,其中$a_n$表示第n项,$a_1$表示首项,n表示项数,d表示公差。
解题方法:1. 求和公式,等差数列的前n项和公式为$S_n =\frac{n}{2}(a_1 + a_n)$,利用这个公式可以快速求得等差数列的前n项和。
2. 求首项和公差,已知等差数列的前几项或者部分信息,可以通过列方程组求得首项和公差。
3. 求项数,已知等差数列的前几项和或者部分信息,可以通过列方程求得项数。
二、等比数列。
等比数列是指一个数列中,从第二项开始,每一项与它的前一项的比值都是一个常数。
这个常数就是公比,通常用q表示。
等比数列的通项公式为,$a_n = a_1 q^{(n-1)}$,其中$a_n$表示第n 项,$a_1$表示首项,n表示项数,q表示公比。
解题方法:1. 求和公式,等比数列的前n项和公式为$S_n =\frac{a_1(1-q^n)}{1-q}$,利用这个公式可以快速求得等比数列的前n项和。
2. 求首项和公比,已知等比数列的前几项或者部分信息,可以通过列方程组求得首项和公比。
3. 求项数,已知等比数列的前几项和或者部分信息,可以通过列方程求得项数。
三、特殊数列。
除了等差数列和等比数列之外,还有一些特殊的数列,如斐波那契数列、等差-等比数列等。
这些数列在考试中也可能会出现,需要我们对其特点和解题方法有所了解。
解题方法:1. 斐波那契数列,斐波那契数列的特点是每一项都是前两项的和,即$a_n = a_{n-1} + a_{n-2}$。
数列题型及解题方法归纳总结
数列题型及解题方法归纳总结一、等差数列等差数列是指数列中的相邻项之差都相等的数列。
下面对等差数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等差数列的首项为a,公差为d,第n项的值为an,则有公式:an = a + (n-1)d2. 求前n项和设等差数列的首项为a,公差为d,前n项和为Sn,则有公式:Sn = (n/2)(2a + (n-1)d)3. 求公差已知等差数列的首项为a,第m项与第n项的和为s,则公差d的值可以通过以下公式计算得出:d = (sm - sn)/(m - n)4. 求项数已知等差数列的首项为a,公差为d,第n项的值为an,可以通过以下公式求解项数n:n = (an - a)/d + 15. 应用题解题思路在解等差数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
二、等比数列等比数列是指数列中的相邻项之比都相等的数列。
下面对等比数列的题型及解题方法进行归纳总结。
1. 求第n项的值设等比数列的首项为a,公比为q,第n项的值为an,则有公式:an = a * q^(n-1)2. 求前n项和(当公比q不等于1时)设等比数列的首项为a,公比为q,前n项和为Sn,则有公式:Sn = a * (q^n - 1) / (q - 1)3. 求前n项和(当公比q等于1时)当公比q等于1时,等比数列的前n项和为n * a。
4. 求公比已知等比数列的首项为a,第m项与第n项的比为r,则公比q的值可以通过以下公式计算得出:q = (an / am)^(1/(n-m))5. 求项数已知等比数列的首项为a,公比为q,第n项的值为an,可以通过以下公式求解项数n:n = log(an/a) / log(q)6. 应用题解题思路在解等比数列应用题时,关键是要找到规律。
可以通过观察数列的特点,列出方程,再解方程求解。
三、斐波那契数列斐波那契数列是指数列中第一、第二项为1,后续项为前两项之和的数列。
数列常见题型及解题技巧
数列常见题型及解题技巧
数列常见题型及解题技巧
一、等差数列
1、求首项:求出首项a1可用公式:a1=Sn−n(d+a2)
2、求末项:求出末项an可用公式:an=Sn−n(d+a1)
3、求和:求出数列前n项和可用公式:Sn=n(a1+an)2
4、求通项公式:求出通项公式可用公式:an=a1+(n-1)d
5、求某项:求出第k项可用公式:ak=a1+(k-1)d
二、等比数列
1、求首项:求出首项a1可用公式:a1=Sn(qn−1)
2、求末项:求出末项an可用公式:an=a1qn−1
3、求和:求出数列前n项和可用公式:
Sn=a1(1−qn)1−q
4、求通项公式:求出通项公式可用公式:an=a1qn−1
5、求某项:求出第k项可用公式:ak=a1qk−1
三、复合数列
1、求和:求出数列前n项和可用公式:
Sn=a1+a2+…+an
2、求某项:求出第k项可用公式:ak=ak−1+ak
解题技巧:
1、利用性质转化:根据所给的条件,尝试将原数列转换成更简单的形式,如等差数列、等比数列或者复合数列。
2、利用关系性:通过对数列中一些特殊项的求出,可以确定整个数列的情况,比如求出第一项和最后一项,就可以确定数列的前n项和。
3、利用规律性:数列中的每一项都有一定的规律性,依靠这一点可以得到数列的通项公式,进而求出数列的其他项。
高中数学数列题型及解题方法
高中数学数列题型及解题方法一、基本概念在高中数学中,数列是一个数的有序集合,按照一定的规律排列。
数列中的每一个数称为该数列的项,通常用字母表示。
数列中的项的位置或顺序称为项数。
数列一般通过通项公式或递推式来表示。
通项公式直接给出数列中第n个项与n之间的关系,递推式则通过前一项得出后一项,常见的数列有等差数列和等比数列。
二、等差数列等差数列是指数列中相邻两项的差是一个常数的数列。
若一个等差数列的前n 项和可递推出通项公式,即第n项的表达式。
解题方法1.根据已知条件列出等差数列的性质2.利用通项公式或递推式解决问题3.注意区分公差和项数的不同,避免混淆三、等比数列等比数列是指数列中相邻两项的比是一个常数的数列。
等比数列也有通项公式和前n项和的性质。
解题方法1.确定数列是等比数列2.利用通项公式或递推式解决问题,计算项之间的比3.注意等比数列的比值,及时列出通项公式或递推式四、常见题型及解题方法1. 求等差数列第n项或前n项和•要求:已知等差数列的公差和首项,求第n项或前n项和•解题方法:利用通项公式或递推式计算第n项或前n项和2. 求等比数列第n项或前n项和•要求:已知等比数列的比和首项,求第n项或前n项和•解题方法:利用通项公式或递推式计算第n项或前n项和3. 求等差数列或等比数列的一些特殊性质•要求:已知等差数列或等比数列的相关条件,求解一些特殊的性质•解题方法:根据数列的性质列出条件,运用相关知识推导出需要的结果以上是高中数学数列题型及解题方法的简要介绍,希望能对学习数列有所帮助。
如果想深入了解更多数列知识,可以继续深入学习相关内容。
(完整版)数列题型及解题方法归纳总结
1知识框架111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a qa a d n a a n d n n n S a a na d a a a a m n p q --=≥=⎧⎪←⎨⎪⎩-=≥⎧⎪=+-⎪⎪-⎨=+=+⎪⎪+=++=+⎪⎩两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1)11(1)()n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+⎧⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩⎧⎨⎩⎩等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他⎪⎪⎪⎪⎪⎪⎪⎪⎪掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足112n n a a +=,而12a =,求n a =?(2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)22434)1211(211--=--+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
数列题型及解题方法归纳总结
(2)形如 的递推数列都可以用倒数法求通项。
(3)形如 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
(8)当遇到 时,分奇数项偶数项讨论,结果可能是分段形式。
(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前 和公式的推导方法).
(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:
① ;② ;
③ , ;
④ ;⑤ ;
(4)递推式为an+1=pan+qn(p,q为常数)
由上题的解法,得: ∴
(5)递推式为
思路:设 ,可以变形为: ,
想
于是{an+1-αan}是公比为β的等比数列,就转化为前面的类型。
求 。
(6)递推式为Sn与an的关系式
关系;(2)试用n表示an。
∴
∴ ∴
上式两边同乘以2n+1得2n+1an+1=2nan+2则{2nan}是公差为2的等差数列。
∴x=1ogak,y=logbk,z=logck
∴b2=ac∴a,b,c成等比数列(a,b,c均不为0)
数学5(必修)第二章:数列
一、选择题
1.数列 的通项公式 ,则该数列的前()项之和等于 。
A. B. C. D.
2.在等差数列 中,若 ,则 的值为()
A. B. C. D.
3.在等比数列 中,若 ,且 ,则 为()
数列题型及解题方法
数列题型及解题方法首先,我们来了解一下数列的基本概念。
数列是按照一定的顺序排列的一组数,其中每一个数称为数列的项。
数列通常用a1, a2, a3, ...表示,其中ai表示数列的第i项。
数列中的数按照一定的规律排列,这个规律可以是等差、等比、递推等。
在解题时,我们需要根据题目所给的条件,找出数列中的规律,从而求解问题。
接下来,我们将介绍一些常见的数列题型及解题方法。
一、等差数列。
等差数列是指数列中相邻两项的差都相等的数列。
设数列为a1, a2, a3, ...,如果满足ai+1 ai = d,其中d为常数,则称该数列为等差数列。
在解等差数列的题目时,我们可以利用等差数列的性质,求出数列中任意一项的值,或者根据题目所给条件,求出满足条件的项数。
二、等比数列。
等比数列是指数列中相邻两项的比值都相等的数列。
设数列为a1, a2, a3, ...,如果满足ai+1 / ai = q,其中q为常数,则称该数列为等比数列。
在解等比数列的题目时,我们可以利用等比数列的性质,求出数列中任意一项的值,或者根据题目所给条件,求出满足条件的项数。
三、递推数列。
递推数列是指数列中的每一项都是前面若干项的函数表达式。
在解递推数列的题目时,我们可以利用递推关系式,求出数列中任意一项的值,或者根据题目所给条件,求出满足条件的项数。
四、其他常见数列题型。
除了等差数列、等比数列、递推数列外,还有一些其他常见的数列题型,如等差-等比混合数列、特殊数列等。
在解题时,我们需要根据题目所给条件,灵活运用数列的性质,找出数列中的规律,从而求解问题。
综上所述,数列是高中数学中的一个重要概念,掌握数列的题型及解题方法对于提高数学成绩至关重要。
通过对等差数列、等比数列、递推数列等常见数列题型及解题方法的学习,相信大家对数列题目的解题能力会有所提高。
希望本文的内容能够帮助大家更好地掌握数列知识,取得更好的成绩。
数列题型及解题方法归纳总结
数列题型及解题方法归纳总结数列在数学中是一个非常重要的概念,它在各种数学问题中都有着重要的应用。
在学习数列的过程中,我们需要了解不同的数列题型及相应的解题方法,这样才能更好地掌握数列的知识,提高解题能力。
下面,我们将对数列题型及解题方法进行归纳总结,希望能对大家的学习有所帮助。
一、等差数列。
等差数列是最基本的数列之一,它的通项公式为:$a_n = a_1 + (n-1)d$。
在解等差数列的问题时,我们需要注意以下几种情况:1. 求前n项和,$S_n = \frac{n}{2}(a_1 + a_n)$;2. 求首项、公差或项数,$a_n = a_1 + (n-1)d$;3. 已知前几项求第n项,$a_n = a_m + (n-m)d$。
二、等比数列。
等比数列也是常见的数列类型,它的通项公式为:$a_n = a_1 \cdot q^{n-1}$。
解等比数列的问题时,需要注意以下几点:1. 求前n项和,$S_n = \frac{a_1(1-q^n)}{1-q}$;2. 求首项、公比或项数,$a_n = a_1 \cdot q^{n-1}$;3. 已知前几项求第n项,$a_n = a_m \cdot q^{n-m}$。
三、特殊数列。
除了等差数列和等比数列外,还有一些特殊的数列,如斐波那契数列、等差-等比数列等。
在解题时,需要根据具体情况选择合适的方法,不能生搬硬套。
四、解题方法。
在解数列题时,我们可以采用以下几种方法:1. 找规律法,观察数列的前几项,找出它们之间的规律,从而得出通项公式或前n项和的表达式;2. 递推法,根据数列的递推关系,逐步求解出数列的各项;3. 通项公式法,如果数列是等差数列或等比数列,可以直接利用其通项公式进行求解;4. 常用公式法,对于常见的数列题型,可以直接利用其前n项和的公式进行求解。
五、总结。
通过以上的归纳总结,我们可以看出,数列题型及解题方法是一个比较系统的知识体系,需要我们掌握一定的基本原理和方法。
数列题型及解题方法归纳总结
数列题型及解题方法归纳总结数列是数学中的基本概念,出现在许多数学问题和实际生活中的各种场景中。
在数列问题中,通常需要找出数列中的规律、求解数列的通项公式或特定项的值等。
本文将对数列题型及解题方法进行归纳总结。
一、等差数列等差数列是最常见的数列类型。
等差数列的特点是数列中任意两个相邻的项之间的差值都相等。
解题时常用的方法有以下几种:1. 求和公式:等差数列的前n项和公式是Sn = n/2 * (a1 + an),其中a1是首项,an是末项。
如果已知前n项和Sn,可以用Sn = n/2 * (a1 + a1+(n-1)d)来求解未知的参数a1或d。
2. 求第n项的值:对于等差数列,可以用通项公式an = a1 + (n-1)d来求解第n项的值。
其中a1是首项,d是公差。
二、等比数列等比数列是指数列中任意两个相邻的项之间的比值都相等。
解题时常用的方法有以下几种:1. 求和公式:等比数列的前n项和公式是Sn = a1 * (q^n - 1) / (q - 1),其中a1是首项,q是公比。
如果已知前n项和Sn,可以用Sn = a1* (1 - q^n) / (1 - q)来求解未知的参数a1或q。
2. 求第n项的值:对于等比数列,可以用通项公式an = a1 * q^(n-1)来求解第n项的值。
其中a1是首项,q是公比。
三、等差-等比混合数列等差-等比混合数列是指数列中既有等差又有等比的特点。
解题时常用的方法有以下几种:1. 求和公式:等差-等比混合数列的前n项和公式是Sn = S1 * (1 - q^n) / (1 - q) + a1 * (1 - q) / (1 - q) - n * d,其中Sn是前n项和,S1是等比数列的首项和,a1是等差数列的首项,q是等比数列的公比,n是项数,d是公差。
2. 求等差数列和等比数列的通项公式:对于等差-等比混合数列,可以通过观察数列的规律,将其拆分为等差数列和等比数列两个部分,然后分别求解其通项公式,最后将两个序列的对应项相加即可得到整个数列的通项公式。
(完整)数列题型及解题方法归纳总结,推荐文档
1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)
数列的19种经典题型及答案
数列的19种经典题型及答案
1.求n项和:Sn=n*(a1+an)/2
2.求公差为d的等差数列前n项和:Sn=n*(2a1+(n-1)*d)/2
3.求公比为q的等比数列的前n项和:Sn=a1*(1-q^n)/(1-q)
4.求公比为q的等比数列的通项公式:an=a1*q^(n-1)
5.求等比数列前n项和与n项均值的关系:Sn=n*a1*q^(n-1)/(1-q).(当q>1时Sn>n*a1/2,当q<1时Sn<n*a1/2)
6.求等差数列前n项和与n项均值的关系:Sn=n*(a1+an)/2(Sn>n*a1/2)
7.求等差数列的通项公式:an=a1+(n-1)*d
8.求等比数列的前n项积:Pn=a1*q^(1+2+...+(n-1))=a1*q^(n(n-1)/2)
9.求等差数列的前n项积:Pn=(a1a2)*[(an-d)-(a1-d)]/d^2
10.求公差为d的等差数列的通项公式:an=a1+(n-1)*d
11.求等差数列的第n项:an=a1+(n-1)*d
12.求n项均值:a1+an/2
13.求前n项均值:3a1+3an/4
14.求连续项和:Sn=n/2*(2a1+(n-1)*d)
15.求联立等比数列之积:Pn=a1*q^n
16.求互差等比数列之积:Pn=a1a2...an=a1q^(2+4+...+(2n-2))
17.求满足条件的等差数列最小项:a1=a+l*d
18.求满足条件的等比数列最小项:a1=a*q^k
19.求满足条件的等比数列最大项:an=a*q^(n-1-k)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列
一、
数列的概念与表示:(数列是一类特殊的函数)
1) 数列的定义:按一定次序排列的一列数叫做数列;1a ,2a ,…,n a ,…,简记作 {}n a 。
**特点:有序性,互异性(无相同元素),离散型。
2) 数列的表示(解析式表示,都非唯一的):
1. 通项公式:{}n a 的第n 项与n 的关系式,n a = ()f n 。
2. 递推公式:已知{}n a 的1a (或前几项)和n a 与1n a -(或邻近的任一项)间的关系式。
3. 求和公式:{}n a 前n 项和n S 或其他前多少项的和。
数列也有几何表示,即对应平面坐标系中的一系列的点。
二、 数列的分类:1)有穷、无穷2)递增、递减3)有界、无界4)常数列、摆动数列…… 三、 等差数列:
1) 定义:如d a a n n =--1(递推公式),则称{}n a 为等差数列,d 称为公差。
2) 通向公式(常用):n a =1a +(n-1)d 。
3) 求和公式:1()2n n n a a S +=1(1)2n n na d -=+211
()22
d n a d n =+-2An Bn =+ 4) 常用性质:
1. 当m n p q +=+时,有q p n m a a a a +=+,当2m n p +=时,有2m n p a a a +=。
2. 若{}n a 、{}n b 为等差数列,则{}{}12n n n a b a b λλλ++,都为等差数列.
3. 若{n a }是等差数列,则232,,n n n n n S S S S S -- ,…也成等差数列。
……
四、
等比数列:
1) 定义:
()()*1
2,n
n a q q n n N a -=≠≥∈0且,q 称为公比。
2) 通项公式:()1
1110,0n n
n n a a a q
q A B a q A B q
-==
=⋅⋅≠⋅≠, 3) 求和公式:()11111n n n a q a a q
S q
q
--=
=
--
4) 常用性质:若m+n=s+t (m, n, s, t ∈*N ),则n m s t a a a a ⋅=⋅.特别的,当n+m=2k
时,得2n m k a a a ⋅=。
数列习题
(习题中大L 表示省略号)
1. 等差数列{a n }共10项,123420a a a a +++=,12360n n n n a a a a ---+++=,求S n
2. 求数列 {2}n n ⋅……的前n 项和n S
3. 求和2311357(21)n n S x x x n x -=++++++
4. 求和135212482n n n S n n n n
-=
++++⋅ 5. 数列 {}n a ,11,23n a a n =-=- 数列{}n b ,114,2n n b b +==,求 {}n
n
a b 的前n 项和n S 6. 函数()31
x f x x =
+ ,数列{}n a 满足11a =,1()n n a f a +=,*
()n N ∈ ,(1)求{}n a 的通项公式 n a ;(2)设 12231n n n S a a a a a a +=⋅+⋅++⋅ ,求 n S 。
7. 设数列{}n a 前n 项和为432n n S a n =-+,求n a 及n S 。
8. 数列 {}n a 满足11a =,12n n n a a +=,求通项公式n a 。
9. 在数列{}n a 中,11121,2()n n a na a a a +==++ ,
(1) 求{}n a 通项公式,(2)令1
22
24n n n n a b a a ++=
,求{}n b 的前n 项和n S 。
10. 数列{}n a
中1110,n a a +==,令lg n a n b =, (1)求数列{}n b 的通项公式,(2)设1
21
n
k k k b T b +=-=
∑,求lim n T →∞
11. 数列{}n a 的前n 项和21n n S a n +=+,10a =, 求n a
12.
在等差数列{a n }中,15S =6,55S =9,求 S 15 。
13. 求分数数列
1111
,,,,261220
的前n 项和n
S 14.
等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;
(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭
⎬⎫
1b n 的前n 项和.
15.等差数列{a n }公差不为零,a 1=25,且a 1, a 11, a 13成等比数列. (1)求{a n } 的通项公式; (2)求a 1+a 4+a 7+……+a 3n-2 .。