第2章逻辑门电路

合集下载

数电讲义--2章

数电讲义--2章

1.0
VOL(max)0.5
输入标 准低电

0.4V
VNL
D VNH
E
V V 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
SL VOFF VON
SH
Vi (V)
输入标准
高电平
2. 输入特性
+VCC
1) 输入伏安特性
iI
R1 3kΩ
1
-1.6 mA
<50 uA vI A
31
B
T1
1.4 V
和边沿,T4放大。 VO随iOH变化不大。 当由i于Oi以OHH受↑:线时功性,R耗变4上的化压限。降制增,大i0,H过T大3 、会T4烧饱毁和T,4管V,O随所
功耗 1mW IOH 400 A
输出高电平时的扇出系数 3.6V
R2 750Ω 2T3 Vc2 1 3 R4
VO
+VCC
R 4 +5V 100Ω
抗干扰能力越强。 高电平噪声容限
VNH= VSH ¯ VON 。
VNH越大,输入为1态下
抗干扰能力越强。
Vo (V)
4.0 A B
3.5
3.0
VOH(min)2.5 2.4V
C
2.0
1.5
A(0V, 3. 6V) B(0.6V, 3.6V) C(1.3V, 2.48V) D(1.4V, 0.3V) E(3.6V, 0.3V)
• 导通(VD>VTH) • 2、二极管的开关时间
截止5V(VDR<VT+H)
0V
D VD
uo
_
VF Vi
二极管开关状态的转换需要时间:
t1 t2

第2章 逻辑门电路-习题答案

第2章 逻辑门电路-习题答案

第2章逻辑门电路2.1 题图2.1(a)画出了几种两输入端的门电路,试对应题图2.1(b)中的A、B波形画出各门的输出F1~F6的波形。

题图2.1解:2.2 求题图2.2所示电路的输出逻辑函数F1、F2。

题图2.2解:2.3 题图2.3中的电路均为TTL门电路,试写出各电路输出Y1~Y8状态。

题图2.3解: Y1=0, Y2=0, Y3=Hi-Z, Y4=0, Y5=0, Y6=0, Y7=0, Y8=0.2.4 题图2.4中各门电路为CMOS电路,试求各电路输出端Y1、Y2和Y的值。

题图2.4解: Y1=1, Y2=0, Y3=0.2.5 6个门电路及A、B波形如题图2.5所示,试写出F1~F6的逻辑函数,并对应A、B波形画出F1~F6的波形。

题图2.5解:2.6 电路及输入波形分别如题图2.6(a)和2.6(b)所示,试对应A、B、C、x1、x2、x3波形画出F端波形。

题图2.6解:2.7 TTL与非门的扇出系数N是多少?它由拉电流负载个数决定还是由灌电流负载决定?解: N≤8 N由灌电流负载个数决定.2.8 题图2.8表示三态门用于总线传输的示意图,图中三个三态门的输出接到数据传输总线,D1D2、D3D4、…、D m D n为三态门的输入端,EN1、EN2、EN n分别为各三态门的片选输入端。

试问:EN信号应如何控制,以便输入数据D1D2、D3D4、…、D m D n顺序地通过数据总线传输(画出EN1~EN n 的对应波形)。

题图2.8解:用下表表示数据传输情况2.9 某工厂生产的双互补对称反相器(4007)引出端如题图2.9所示,试分别连接成:(1)反相器;(2)三输入与非门;(3)三输入或非门。

题图2.9解: (1) 反向器(2)与非门 (3)或非门2.10 按下列函数画出NMOS 电路图。

123()()()F AB CD E H G F A B CD AB CD F A B=+++=+++=⊕解:(1)(2) (3)2.11 将两个OC门如题图2.11连接,试写出各种组合下的输出电压u o及逻辑表达式。

第02章 逻辑门电路

第02章 逻辑门电路

OC门的几种主要应用
实现线与逻辑
电路如右图所示,逻辑关系为
L L1 L2 AB CD
实现电平转换
如下图所示,可使输出高电平变为+12V
+12V
R
A& 3.4V 0.3V
12V F
0.3V
用作驱动电路
右图是用来驱动发光二极管的电路。
2.3.5 三态门
R1 4K
R2 1.6K
A
T1
T2 B
输出低电平时:NOL = IOLmax / IiLmax 输出高电平时:NOH = IOHmax / IiHmax
考虑最坏的情况,扇出系数:N = min(NL , NH)
TTL与非门的灌电流与拉电流负载
2.3.2 TTL与非门的特性及参数
平均传输延迟时间
tpd = 0.5(tpdL + tpdH ) 输出信号略滞后于输入信号. 典型值:纳秒级
Vo(V) VOH A 2.7
电压传输特性及相关参数 (1) 输出高电平 VOH
R1 4K
R2 1.6K
R4
VCC
130
A
B
B
T1
T3
T2
ቤተ መጻሕፍቲ ባይዱ
D3
F
D1
D2
R3
T4
1K
典型值VOH ≥ 3.4V
VOHmin是满足输出电流指标时, 输出高电平允许的最低值,一 般要求 VOHmin ≥ 2.7V
C
(2) 输出低电平 VOL
(5) 关门电平 VOFF
保证T4截止 输出高电平 时, 输入低电平的最大值.
VOFF ≥ 0.8V
2.3.2 TTL与非门的特性及参数

数字电子技术基础第三版第二章答案

数字电子技术基础第三版第二章答案

第二章逻辑门电路第一节重点与难点一、重点:1.TTL与非门外特性(1)电压传输特性及输入噪声容限:由电压传输特性曲线可以得出与非门的输出信号随输入信号的变化情况,同时还可以得出反映与非门抗干扰能力的参数U on、U off、U NH和U NL。

开门电平U ON是保证输出电平为最高低电平时输入高电平的最小值。

关门电平U OFF是保证输出电平为最小高电平时,所允许的输入低电平的最大值。

(2)输入特性:描述与非门对信号源的负载效应。

根据输入端电平的高低,与非门呈现出不同的负载效应,当输入端为低电平U IL时,与非门对信号源是灌电流负载,输入低电平电流I IL通常为1~1.4mA.当输入端为高电平U IH时,与非门对信号源呈现拉电流负载,输入高电平电流I IH通常小于50μA。

(3)输入负载特性:实际应用中,往往遇到在与非门输入端与地或信号源之间接入电阻的情况,电阻的取值不同,将影响相应输入端的电平取值。

当R≤关门电阻R OFF时,相应的输入端相当于输入低电平;当R≥ 开门电阻R ON时,相应的输入端相当于输入高电平。

2.其它类型的TTL门电路(1)集电极开路与非门(OC门)多个TTL与非门输出端不能直接并联使用,实现线与功能.而集电极开路与非门(OC门)输出端可以直接相连,实现线与的功能,它与普通的TTL与非门的差别在于用外接电阻代替复合管.(2)三态门TSL三态门即保持推拉式输出级的优点,又能实现线与功能。

它的输出除了具有一般与非门的两种状态外,还具有高输出阻抗的第三个状态,称为高阻态,又称禁止态.处于何种状态由使能端控制.3.CMOS逻辑门电路CMOS反相器和CMOS传输门是CMOS逻辑门电路的最基本单元电路,由此可以构成各种CMOS逻辑电路。

当CMOS反相器处于稳态时,无论输出高电平还是低电平,两管中总有一管导通,一管截止,电源仅向反相器提供nA级电流,功耗非常小。

CMOS器件门限电平U TH近似等于1/2U DD,可获得最大限度的输入端噪声容限U NH和U NL=1/2U DD。

数字电子技术基础第三版第二章答案

数字电子技术基础第三版第二章答案

第二章逻辑门电路第一节重点与难点一、重点:1.TTL与非门外特性(1)电压传输特性及输入噪声容限:由电压传输特性曲线可以得出与非门的输出信号随输入信号的变化情况,同时还可以得出反映与非门抗干扰能力的参数U on、U off、U NH和U NL。

开门电平U ON是保证输出电平为最高低电平时输入高电平的最小值。

关门电平U OFF 是保证输出电平为最小高电平时,所允许的输入低电平的最大值。

(2)输入特性:描述与非门对信号源的负载效应。

根据输入端电平的高低,与非门呈现出不同的负载效应,当输入端为低电平U IL时,与非门对信号源是灌电流负载,输入低电平电流I IL通常为1~1.4mA。

当输入端为高电平U IH时,与非门对信号源呈现拉电流负载,输入高电平电流I IH通常小于50μA。

(3)输入负载特性:实际应用中,往往遇到在与非门输入端与地或信号源之间接入电阻的情况,电阻的取值不同,将影响相应输入端的电平取值。

当R≤关门电阻R OFF时,相应的输入端相当于输入低电平;当R≥ 开门电阻R ON时,相应的输入端相当于输入高电平。

2.其它类型的TTL门电路(1)集电极开路与非门(OC门)多个TTL与非门输出端不能直接并联使用,实现线与功能。

而集电极开路与非门(OC 门)输出端可以直接相连,实现线与的功能,它与普通的TTL与非门的差别在于用外接电阻代替复合管。

(2)三态门TSL三态门即保持推拉式输出级的优点,又能实现线与功能。

它的输出除了具有一般与非门的两种状态外,还具有高输出阻抗的第三个状态,称为高阻态,又称禁止态。

处于何种状态由使能端控制。

3.CMOS逻辑门电路CMOS反相器和CMOS传输门是CMOS逻辑门电路的最基本单元电路,由此可以构成各种CMOS逻辑电路。

当CMOS反相器处于稳态时,无论输出高电平还是低电平,两管中总有一管导通,一管截止,电源仅向反相器提供nA级电流,功耗非常小。

CMOS器件门限电平U TH近似等于1/2U DD,可获得最大限度的输入端噪声容限U NH和U NL=1/2U DD。

第2章 逻辑门电路

第2章  逻辑门电路
1、二极管的开关特性 逻辑门电路:用以实现基本和常用逻辑运算的电子电 逻辑门电路: 路。简称门电路。 常用门电路有与门、或门、非门(反相器)、与非门、 或非门、与或非门和异或门等。 逻辑0、 : 逻辑 、1: 电路中用高、低电平来表示。 获得高、低电平的基本方法:利用半导体开关元件 获得高、低电平的基本方法: 的导通、截止(即开、关)两种工作状态。 + uD - 二极管符号: 正极 负极
+VCC Rb b c Rc
uo=0.3V 0.3V
b c
Rc
uo=+VCC ui=UIH
iB≥IBS 0.7V
e
e
+V C C =+5V 例: 1kR c i C Ω uo c Rb b ui β =40 i 10k Ω B e
①ui=1V时,基极电流: 时 基极电流:
第2章 逻辑门电路 章
②ui=0.3V时,因为 BE<0.5V,iB=0, 时 因为u , , 三极管工作在截止状态, 三极管工作在截止状态,ic=0。因 。 为ic=0,所以输出电压: ,所以输出电压:
回首页
第2章 逻辑门电路 章 +VCC=+5V Rc
1kΩ uo c Rb b ui β=40 i 10kΩ B NPN 型三极管截止、放大、饱和 3 种工作状态的特点 e
iC
2、三极管的开关特性
工作状态 条 件






iB=0 发射结反偏
0<iB<IBS 发射结正偏 集电结反偏 uBE>0,uBC<0 iC=βiB uCE=VCC- iCRc 可变
A
电路图 逻辑符号
Y 1 0
0 1

数字电路与数字电子技术 课后答案第二章

数字电路与数字电子技术 课后答案第二章
第二章逻辑门电路
1.有一分立元件门电路如图P2.1 ( a )所示,歌输入端控制信号如图p2.1 ( b )所示.。请对应图( b )画出输出电压 的波形。
( a )
图P2.1
解:
2.对应图P2.2所示的电路及输入信号波形画出 、 、 、 的波形。
图P2.2 ( a )
解:
F1, F2, F3, F4为图P2.2A
(b) TTL非门的输出端不能并联,应换为集电极开路门。
(c)输入端所接电阻 ,相当于”0”,使 =1,必须使 ,如取
(d)输入端所接电阻 相当于”1”,使 ,必须使 ,如取 ,相当于”0”,这时
7.电路如图P2.7 ( a ) ~ ( f )所示,已知输入信号A,B波形如图P2.7 ( g )所示,试画出各个电路输入电压波形。
(b)
可用于TTL门电路,原因同上.
13.试说明下列各种门电路中有哪些输出端可以并联使用:
(1)具有推拉式输出端的TTL门电路;
(2) TTL电路的OC门;
(3) TTL电路的三态门;
(4)普通的CMOS门;
(5)漏极开路的CMOS门;
(6) CMOS电路的三态门.
解:
(1)具有推拉式输出端的TTL门电路输出端不能并联,否则在一个门截止,一个门导通的情况下会形成低阻通路,损坏器件。
(b)
这种扩展输入端的方法不适用于TTL电路因为当扩展端C、D、E均为低电平时,三个二极管均截止,或非门的一个对应输入端通过100K 电阻接地,此时 ,将输入信号A,B封锁,电路工作不正常。
12.试分析图P2.12(a),(b)电路的逻辑功能,写出y的逻辑表达式,图中门电路均为CMOS门电路,本电路能否用于TTL门电路,并说明原因。

第2章 逻辑门电路

第2章   逻辑门电路
第二章(1) 第二章( 2
20102010-9-14
2.1.1 非门
定义:输入与输出信号状态满足“ 定义:输入与输出信号状态满足“非”逻辑关系。 逻辑关系。 逻辑符号: 逻辑符号: 非门电路: 非门波形图: 非门电路: 非门波形图:
非门工作特点: 非门工作特点: ● 当输入端A 为高电平1(+5V)时,晶体管 当输入端A 为高电平1 +5V) 导通, 端输出0.2~0.3V的电压 的电压, 导通,L 端输出0.2~0.3V的电压,属于低电平 范围; 范围; ● 当输入端为低电平0(0V)时,晶体管截止,晶体管集电 当输入端为低电平0 0V) 晶体管截止, 发射极间呈高阻状态,输出端L的电压近似等于电源电压; 极—发射极间呈高阻状态,输出端L的电压近似等于电源电压; ● 任何能够实现 L = A “非”逻辑关系的电路均称为“非门”, 逻辑关系的电路均称为“非门” 也称为反相器。式中的符号“ 表示取反, 也称为反相器。式中的符号“-”表示取反,在其逻辑符号的输出 端用一个小圆圈来表示。 端用一个小圆圈来表示。
同或门电路: 同或门电路:
逻辑符号: 逻辑符号:


双输入端同或门波形图: 双输入端同或门波形图:
当输入端A 当输入端A、B 的电平 状态互为相反时,输出端L 状态互为相反时,输出端L 一定为低电平; 一定为低电平;而当输入端 A、B 的电平状态相同时, 的电平状态相同时, 一定为高电平。 输出端 L 一定为高电平。
20102010-9-14
第二章(1) 第二章(
3
2.1.2 与门
定义:输入与输出信号状态满足“ 定义:输入与输出信号状态满足“与”逻辑关系。 逻辑关系。 与门电路: 逻辑符号: 与门波形图: 与门电路: 逻辑符号: 与门波形图:

第2章-逻辑门电路

第2章-逻辑门电路
类似74HC,可直接与TTL接口
高速,可代替74HC
高速,可代替74HCT
2.4.1.MOS反相器
2. MOS反相器
(1)电阻负载MOS电路:
如图2-37(a)所示,在这种反相器 中,输入器件是增强型MOS管,负载是线性 电阻。这种反相器在集成电路中很少采用。
(2)E/E MOS(Enhancement/Enhancement MOS) 反相器:
2.三态输出门电路(TSL门) 图227 三态门
三态输出门电路简称三态门,用 TSL(Three Sate Logic)表示,TSL电路的 主要特点是输出共有3种状态,即逻辑高电 平、逻辑低电平和高阻态。
图2-27所示为三态门电路及逻辑符号。 图中EN为三态使能端,A、B为输入逻辑变 量,Y为电路输出。
74F
速度比标准系列快近5倍, 功耗低于标准系列
2.2.1.TTL与非门的典型电路 及工作原理
1. 电路结构
电路由输入级、中间级和输出级三部 分组成。
2. 基本工作原理
(1)TTL工作在关态(截止态)
当输入信号A、B、C中少一个为低电 位(0.3V)时:
VO = VOH = VCC – VR2 – VBE3 – VD4 =5V-0.7V-0.7V =3.6V
实现了输出高电平,此时TTL工作在关 态,也称截止态。
(2)TTL工作在开态(饱和态)
输出电压Vo为
VO = VOL = VCES4 = 0.3V 实现了输出低电平,此时TTL工作在开 态,也称饱和态。
通过以上分析可知,当输入信号中至 少一个为低电位,即VI=ABC= VIL时,输出 高电平,即VO = VOH ;当输入信号全部为 高电位时,即VI=ABC= VIH时,输出低电平, 即VO = VOL。说明电路实现了与非门的逻辑 关系,即

第2章 逻辑门

第2章 逻辑门

9
2.1.2 或门
实现“ 运算的电路称为或逻辑门 简称或门 或逻辑门, 实现“或”运算的电路称为或逻辑门,简称或门 。 逻辑或运算可用开关电路中两个开关相并联 并联的例 逻辑或运算可用开关电路中两个开关相并联的例 子来说明
真 值 表
A 0 0 1 1
B 0 1 0 1
F = A+ B
0 1 1 1
16
基本逻辑运算的复合叫做复合逻辑运算。而实现 基本逻辑运算的复合叫做复合逻辑运算。 复合逻辑运算 复合逻辑运算的电路叫复合逻辑门 复合逻辑门。 复合逻辑运算的电路叫复合逻辑门。 最常用的复合逻辑门有与非门 或非门、 与非门、 最常用的复合逻辑门有与非门、或非门、与或非 异或门等 门和异或门等。
17
例2-4 : 向2输入或门输入图示的波形,求其输出波形 。 输入或门输入图示的波形, 输入或门输入图示的波形 求其输出波形F。 解:
ห้องสมุดไป่ตู้12
2.1.2 非门
实现“ 运算的电路称为非逻辑门 简称非门 非逻辑门, 实现“非”运算的电路称为非逻辑门,简称非门 。
13
“非”运算的逻辑表达式为:F 运算的逻辑表达式为: “非”运算真值表 : 非 “非”逻辑的运算规律为: 非 逻辑的运算规律为:
26
第3次课
一、教学目的 (1) 理解集电极开路逻辑门的概念 ) (2)理解三态逻辑门的概念 ) (3)掌握集电极开路逻辑门及三态逻辑门的功能与应用 ) (4)了解集成逻辑门的型号、性能参数 )了解集成逻辑门的型号、 二、教学重点、难点 教学重点、 重点:( ) 重点:(1)集电极开路逻辑门的内部构成特点及外部功能 :( (2)三态逻辑门的功能及应用 ) 难点: 逻辑门线与功能的理解 逻辑门线与功能的理解。 难点:OC逻辑门线与功能的理解。 三、教学方法:对两种逻辑门进行功能仿真演示。 教学方法:对两种逻辑门进行功能仿真演示。

数字电子技术_第2章_逻辑门

数字电子技术_第2章_逻辑门

第2章逻辑门内容提要:本章系统地介绍数字电路的基本逻辑单元—门电路,及其对应的逻辑运算与图形描述符号,并针对实际应用介绍了三态逻辑门和集电极开路输出门,最后简要介绍TTL集成门和CMOS集成门的逻辑功能、外特性和性能参数。

2.1 基本逻辑门导读:在这一节中,你将学习:⏹与、或、非三种基本逻辑运算⏹与、或、非三种基本逻辑门的逻辑功能⏹逻辑门真值表的列法⏹画各种逻辑门电路的输出波形在逻辑代数中,最基本的逻辑运算有与、或、非三种。

每种逻辑运算代表一种函数关系,这种函数关系可用逻辑符号写成逻辑表达式来描述,也可用文字来描述,还可用表格或图形的方式来描述。

最基本的逻辑关系有三种:与逻辑关系、或逻辑关系、非逻辑关系。

实现基本逻辑运算和常用复合逻辑运算的单元电路称为逻辑门电路。

例如:实现“与”运算的电路称为与逻辑门,简称与门;实现“与非”运算的电路称为与非门。

逻辑门电路是设计数字系统的最小单元。

2.1.1 与门“与”运算是一种二元运算,它定义了两个变量A和B的一种函数关系。

用语句来描述它,这就是:当且仅当变量A和B都为1时,函数F为1;或者可用另一种方式来描述数字电子技术2它,这就是:只要变量A 或B 中有一个为0,则函数F 为0。

“与”运算又称为逻辑乘运算,也叫逻辑积运算。

“与”运算的逻辑表达式为: F A B =⋅ 式中,乘号“.”表示与运算,在不至于引起混淆的前提下,乘号“.”经常被省略。

该式可读作:F 等于A 乘B ,也可读作:F 等于A 与B 。

逻辑与运算可用开关电路中两个开关相串联的例子来说明,如图2-1所示。

开关A 、B 所有可能的动作方式如表2-1a 所示,此表称为功能表。

如果用1表示开关闭合,0表示开关断开,灯亮时F =1,灯灭时F =0。

则上述功能表可表示为表2-1b 。

这种表格叫做真值表。

它将输入变量所有可能的取值组合与其对应的输出变量的值逐个列举出来。

它是描述逻辑功能的一种重要方法。

表2-1a 功能表由“与”运算关系的真值表可知“与”逻辑的运算规律为:00001100111⋅=⋅=⋅=⋅= 表2-1b “与”运算真值表图2-1 与运算电路第二章 逻辑门 3简单地记为:有0出0,全1出1。

第2章 逻辑门电路

第2章  逻辑门电路
VDD '
A
1
≥1
B1
VDD R
A&
TP
Y B
Y
TN Y
TN
VOH=VDD'- iLR
2.1.6 CMOS漏极开路门
4.OD门和OC门的应用 应用一:可以线与,简化硬件电路。
+5V
A
&
B
C
&
D
R L
L AB CD
2.1.6 CMOS漏极开路门
线与的实际应用实例——光电报警系统
光电传 1
+5V
R3kCΩ VT5
VT6
A
&
F
B
OC 门
A
&
L
B
2.2.2 LSTTL与非门
集成与非门—74LS00
74LS00是在一个封装内有四个相同的与非门。其外形 如图所示。
绝大多数 左上角Vcc
引线排列从左下角 开始,逆时针计算
14
8
正视图
VCC
&
&
缺口标记
&
&
GND
绝大多数
右下角GND
1
7
2.2.3 LSTTL门电路的电气特性
CMOS门电路几种常见系列: (1)CD4000系列:基本系列,速度较慢 (2)74HC系列:速度比CD4000系列提高近10倍 (3)74HCT系列:与LSTTL门电路兼容 (4)LVC系列:低电压系列
TTL集电极开路门 OC 门Open-Collector
A B
VD5
R1 20kΩ VD1
VD2 VD6
2.2.2 LSTTL与非门

数字电子技术基础第二章重点(最新版)

数字电子技术基础第二章重点(最新版)
EXIT
逻辑门电路
2.2 半导体二极管和三极管的开关特性
2.2.1 二极管开关特性
Vcc
利用二极管的单向导电
性,此电路相当于一个受外
R
加电压极性控制的开关。
D
uI
uo
二极管开关电路
假定:UIH=VCC ,UIL=0 当uI=UIH时,D截止,uo=VCC=UOH 当uI=UIL时,D导通,uO=0.7=UOL
在数字系统的逻辑设计中,若采用NPN晶体管 和NMOS管,电源电压是正值,一般采用正逻辑。 若采用的是PNP管和PMOS管,电源电压为负值, 则采用负逻辑比较方便。 今后除非特别说明,一律采用正逻辑。
EXIT
逻辑门电路
2.1 概述
二、获得高低电平的方法及高电平和低电平的含义
获得高、低电平的基本原理
--- 开关断开 --- 开关闭合
EXIT
逻辑门电路
2.2.2半导体三极管的开关特性 一、三极管的开关作用及其条件
iC 临界饱和线 放大区
uI=UIL
+ uBE
三怎极样管控为制什它么饱和I的能C(sMa开用t) T和作关开S ?关?Q
-

O UCE(sat)
三极管关断的条件和等效电路
当输入 uI 为低电平,使 uBE < Uth时,三极管截止。
一、电路结构
输入级主要由三极管 T1 、基极电
阻 R1 和钳位二极管D1组成。
D1 为输入钳位二极管输,出用级以抑制
V1
V输入扰导这2 入时电通不端,压,但出大输抑D1现于入制不V的二端了3工中负极负输作间极管电入V,5级性导压端当由R其V式起干通被的45输和中输构T倒扰电钳负入3V出成、V相。压在极5的3结组推D放,正时性-负2构成0拉、大与常,干.极7,。作信二扰V性上号极,干,输管对

第2章 逻辑门电路

第2章   逻辑门电路

等式两边的真值表如表1.3所示: 等式两边的真值表如表1.3所示: 1.3所示
A
0 0 1 1
B
0 1 0 1
A⋅ B
1 1 1 0
A+ B
1 1 1 0
2. 常用公式
利用上面的公理、定律、规则可以得到一些常用的公式。 利用上面的公理、定律、规则可以得到一些常用的公式。
(1)吸收律
A+A·B = A
工作原理 请自行分析
◆ 多变量的函数表达式
● ● ● ● ●
与 或 与非 或非
F=A·B·C… F=A+B+C…
F = A⋅ B ⋅C
F = A+ B +C
等等 ◆ 运算的优先级别
与或非 F = AB + CD
括号→非运算→与运算→ 括号→非运算→与运算→或运算
2.3 逻辑变量与逻辑函数
F=A+B
当输入端A 当输入端A、B 的电平 状态互为相反时,输出端L 状态互为相反时,输出端L 一定为高电平;当输入端A 一定为高电平;当输入端A、 B的电平状态相同时输出L 的电平状态相同时输出L 一定为低电平。 一定为低电平。
4. 同或门
◆ 能够实现 同或” L = A ⋅ B + A ⋅ B = A⊙B “同或”逻辑关系的 电路均称为“同或门” 由非门、 电路均称为“同或门”。由非门、与门和或门组合而成的同或门 及逻辑符号如下图所示。 及逻辑符号如下图所示。
F = A ⋅ B ⋅C ⋅ D ⋅ E
1. 要保持原式中逻辑运算的优先顺序; 保持原式中逻辑运算的优先顺序; 原式中逻辑运算的优先顺序 2. 不是一个变量上的反号应保持不变,否则就要出错。 不是一个变量上的反号应保持不变,否则就要出错。 上的反号应保持不变

第2章 逻辑门电路

第2章 逻辑门电路

R2 T3
VCC R5 IR5 T4 IL
RL
VO (V )
3
2
1
0
5 10 15 20 IL (mA)
低电平输出电流
V CC
T2
RL
VO (V )
T5
IL
3
2
R3
1
0.2
5 10 15 20 IL (mA )
例2.5.1:门电路的输入特性曲线和输出特性曲线 分别由图2.5.4、图2.5.8、图2.5.9给出。对于 图2.5.10所示的电路,要求G1的输出高电平满 足VOH≥3.2V,输出低电平满足VOL≤0.2V。
C
VEE
VEE
(b)
F2 =A+B+B+C+D=A+B+BC D
F3 =B +C +D F4 = A+B+BC+BC= AB+BC+BC
F5=A+B+BC+BC=A+BC+BC
2.7 MOS管的开关特性 2.7.1 MOS管的开关特性
结构示意图,符号:N沟道MOS管
SG D
N+
N+
P
D G
S
漏极特性和转移特性
&
VIL
nm
m'
... ...
VIL
&
&
I IL
&
2.5.6 三态门
VCC
R1
R2
T3
R5
A
T4
T1
T2
F
B
EN
D
T5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 基本逻辑门电路
⒊非门(反相器) 实现逻辑非门功能的电路,称作非门
V CC V Q 1kΩ RC A VI R1 1.5kΩ 18kΩ R2 -VEE T β=30 DQ
在本例中
VCC VCES 12 0.3 I CS 11.7mA F RC 1
VO
I BS
11.7 0.39 mA 30
R1 VI
0.3V
或:
VB R2
b e
VEE
12V
2.1 基本逻辑门电路
⒊非门(反相器) 实现逻辑非门功能的电路,称作非门
V CC V Q 1kΩ RC A VI R1 1.5kΩ 18kΩ R2 -VEE T β=30 DQ F VO
⑵当VI=3.2V时,输入 高电平,T应饱和,即
I B I BS VCC VCES RC
2.1 基本逻辑门电路
⒉或门 实现逻辑或功能的电路,称为或门。
DA DB
A B
F RC -VEE
3.9kΩ 12V
⑵VA=0V,VB=3V,此 时DB导通,将VF钳位在 2.3V,DA加反向电压截止。 因此 VF=VB-VD=2.3V≈3V 。
2.1 基本逻辑门电路
⒉或门 实现逻辑或功能的电路,称为或门。
第2章 集成逻辑门电路
我国TTL系列数字集成电路型号与国际型 号对应列入表2-1中
系列 TTL系列 国产型号 CT1000 CT2000 CT3000 CT4000 国际型号 54/74 54/74H 54/74S 54/74LS 分类名称 标准(通用系列) 高速系列 肖特基系列 低功耗肖特基系列
⒈二极管与门 实现与逻辑功能的电路,称为与门。
12V 3.9kΩ
VCC RC F
3.0V 0.3V
A
3.2V 0.3V
DA DB
⑵VA=3V,VB=0V,由于 DB优先导通,VF=0.7V,因 而DA截止,通常将DB导通, 使VF=0+0.7V=0.7V≈0V 称为箝位。
B
2.1 基本逻辑门电路
A
3.2V 0.3V
DA DB
B
A B
&
F
2.1 基本逻辑门电路
⒉或门 实现逻辑或功能的电路,称为或门。
DA DB
A B
F RC -VEE
⑴VA=VB=3V ,由于 R 接到电源-VEE(-12V)上, 故 DA 、 DB 均导通。 VF 因 此为VA-VD=2.3V ≈3V 。
3.9kΩ 12V
12V 3.9kΩ
VCC RC F
3.0V 0.3V
A
3.2V 0.3V
DA DB
⑷VA=VB=0V, VF=0.7V,此时DA、 DB均导通。 VF=0+0.7V=0.7V≈0V
B
2.1 基本逻辑门电路
⒈二极管与门 实现与逻辑功能的电路,称为与门。
12V 3.9kΩ
VCC RC F
3.0V 0.3V
输入级
⑴ TTL与非门的典型电路
输入级由多发射极 晶体管T1和电阻R1 组成,通过T1的各 个发射极实现与逻 辑功能。
多发射极晶体管 T1 的等效电路
⑴ TTL与非门的典型电路
中间级由 T2 、 R2 、 R3组成。 其主要作用是从 T2 管 的 集 电 极 c2 和 发 射 极 e2 同 时 输 出 两 个相位相反的信号, 分别驱动 T3 和 T5 管, 来保证 T4 和 T5 管有 一个导通时,另一 个就截止。
3.0V 0.3V
电位关系
输入 输出 VF(V) VF(V) VF(V) 0 0 3 3 0 3 0 3 0 0 0 3
A
3.2V 0.3V
DA DB
B
2.1 基本逻辑门电路
⒈二极管与门 实现与逻辑功能的电路,称为与门。
12V 3.9kΩ
VCC RC F
3.0V 0.3V
真值表 A 0 0 1 1 B 0 1 0 1 F 0 0 0 1
IR1
实际上
VI
3.2V
R2
12V
IR1
VEE
VBE
e
2.1 基本逻辑门电路
⒊非门(反相器) 实现逻辑非门功能的电路,称作非门
V CC V Q 1kΩ RC A VI R1 1.5kΩ 18kΩ R2 -VEE T β=30 DQ F VO
IB>IBS,三极管饱和。 输出为低电平 VO=Vces=0.3V≈0V 采用正逻辑,可列出 非门的真值表。
2.1 基本逻辑门电路
⒊非门(反相器) 实现逻辑非门功能的电路,称作非门
V CC V Q 1kΩ RC A VI R1 1.5kΩ 18kΩ R2 -VEE T β=30 DQ F VO
电位关系 VI (V) VF (V)
0 3
A 0 1
3 0
真值表 F 1 0
2.1 基本逻辑门电路
4.与非门电路
-VEE V CC V Q
0.3V 18k VB 0.277V 18k 1.5k
2.1 基本逻辑门电路
⒊非门(反相器) 实现逻辑非门功能的电路,称作非门
V CC V Q 1kΩ RC A VI R1 1.5kΩ 18kΩ R2 -VEE T β=30 DQ F VO
总的 VB=-0.646V , T截止,VO为高电平。 由于此时钳位二极 管 DQ 导 通 , 故 VO=VQ+VDQ=3.2V ≈3V。
第2章 集成逻辑门ห้องสมุดไป่ตู้路
本章主要内容 介绍基本门电路的概念 将讨论数字集成电路的几种主要类型,重点 是双极型TTL集成门电路 MOS型数字集成电路 TTL电路和MOS电路的特点比较
第2章 集成逻辑门电路
集成逻辑门电路,是把门电路的所有元器 件及连接导线制作在同一块半导体基片上 构成的。 它属于小规模集成电路(SSI),它是组成一 个较大数字系统的基本单元。
I CS
2.1 基本逻辑门电路
⒊非门(反相器) 实现逻辑非门功能的电路,称作非门
V CC V Q 1kΩ RC A VI R1 1.5kΩ 18kΩ R2 -VEE T β=30
3.2 0.7 0.7 ( 12) I B I R1 I R2 DQ 1.5 18 F 1.667 0.706 0.96mA I BS R1 VB b VO
⑴ TTL与非门的典型电路
输出级由R4、R5、 T3、T4、T5组成, T5是反相器,T3、 T4组成复合管构成 一个射随器,作为 T5管的有源负载, 并与T5组成推拉式 电路,使输出无论 是高电平或是低电 平,输出电阻都很 小,提高了带负载 能力。
⑵工作原理
设A=0 B=1 C=1 (VIL=0.3V) , 则VB1=VIL+VBE1 =0.3+0.7=1V VB2 =VC1=VCES1+VIL =0.1+0.3=0.4V 拉电流 所以:T2 、T5 截止 T3 、T4 导通 VF = 5-U BE3 F =- 1 UBE4 5-0.7-0.7 = 3.6V
DA DB
真值表 A 0 0 1 1 B 0 1 0 1 F 0 1 1 1
A B
F RC -VEE
3.9kΩ 12V
A B
≥1
F
2.1 基本逻辑门电路
⒊非门(反相器) 实现逻辑非门功能的电路,称作非门
V CC V Q 1kΩ RC A VI R1 1.5kΩ 18kΩ R2 -VEE T β=30 DQ F VO
3.9kΩ 12V
2.1 基本逻辑门电路
⒉或门 实现逻辑或功能的电路,称为或门。
DA DB
A B
F RC -VEE
(1)VA=VB=0V:VF≈0V (2) VA=0V, VB=3V: VF≈3V (3) VA=3V, VB=0V: VF≈3V (4)VA=VB=3V: VF≈3V
2.1 基本逻辑门电路
⒊非门(反相器) 实现逻辑非门功能的电路,称作非门
V CC V Q 1kΩ RC A VI R1 1.5kΩ 18kΩ R2 -VEE T β=30 DQ F VO
12V 0.3V VB 18k 12 18k 1.5k 11.354 12 0.646V
(1)VA=VB=0V VF≈0V
(2) VA=0V, VB=3V,VF≈0V (3) VA=3V, VB=0V, VF≈0V (4)VA=VB=3V VF≈3V
A
3.2V 0.3V
DA DB
B
2.1 基本逻辑门电路
⒈二极管与门 实现与逻辑功能的电路,称为与门。
12V 3.9kΩ
VCC RC F
VCC RC R1 F T R2 -V EE
R A B
2.1 基本逻辑门电路
5.或非门电路
V CC RC B A R R1 F T R2
-VEE
2.2 TTL集成逻辑门电路
⒈ TTL与非门的工 作原理 ⑴ TTL与非门的典 型电路
中间级
TTL与非门的典 型电路如图2-6所示, 它分成输入级、中 间级和输出级三个 输出级 部分。
2.1 基本逻辑门电路
⒈二极管与门 实现与逻辑功能的电路,称为与门。
12V 3.9kΩ
VCC RC F
A
3.2V 0.3V
DA DB
⑴VA=VB=3V 。由于 R 接 到 电 源 +12V 上 , 故 DA 、 DB均导通, VF= 3+0.7V=3.7V≈3V
3.0V
B
0.3V
2.1 基本逻辑门电路
相关文档
最新文档