七年级数学解一元一次方程测试题1
七年级数学一元一次方程练习题(含答案)
七年级解一元一次方程专题训练一、解下列一元一次方程:1、2+(x+1)=42、2(2-x )+(x+1)=03、(3-x )+2(x+1)=04、0.2x-3(x+1)=255、3+x+4-6=2x+106、4x+3(x-3)=57、0.9(x-3)+0.8(2+x )=10 8、x 23x2=+-9、5(0.3x+0.6)-2(0.8-x )=0.6 10、3(2x+7)=5+2(x-4) 11、x 23x6726x +=-++ 12、2(3x+1)-2=4x13、2[2(7-21)+4x]=5 14、4x 6.04x32=++15、7{2-5[3-4(x-2)+2]-6}=116、61}1]2)62(3)5[(21{31=-+--+x x17、1x 232-x 15+=+-)( 18、1524213-+=-x x19、2233554--+=+-+x x x x20、6.12.045.03=+--x x二、一元一次方程与实际问题21、甲一班有学生84人,乙班有学生66人,如果要求甲班人数是乙班的32,应从甲班调多少人到乙班去?22、某服装商城进了一款衣服,进价为400元/件,又以某一销售价卖出,结果商城盈利25%,问这款衣服的销售价是多少元?23、一轮船往返甲、乙两城之间,从下游往上游逆水航行需14时,从上游往下游顺水航行需7时,水流速度是3.5千米/时,求轮船在静水中的速度。
24、甲、乙两人完成一件工作,甲单独做需要8小时才能完成,乙单独做只需2小时就能完成。
如果甲加先做3小时,剩下的工作两个人共同完成,问还需几小时完成?参考答案一、解下列一元一次方程:1、【答案】x=1解:2+(x+1)=42+x+1=4x+3=4x=4-3x=12、【答案】x=5解;2(2-x)+(x+1)=04-2x+x+1=0(-2+1)x+(4+1)=0-x+5=03、【答案】 x=-5解:(3-x)+2(x+1)=03-x+2x+2=0x+5=0x=-54、【答案】x =-10解:0.2x-3(x+1)=250.2x-3x-3=25-2.8x=28x =-105、【答案】x=-9解:3+x+4-6=2x+10 1+x=2x+10 x-2x=10-1 - x=9 x=-96、【答案】x=2 解:4x+3(x-3)=5 4x+3x-9=5 7x-9=57x=14 x=27、【答案】x=17109解:0.9(x-3)+0.8(2+x )=10 0.9x-2.7+1.6+0.8x=10(0.9x+0.8x )+(-2.7+1.6)=10 1.7x-1.1=10 1.7x=111 x=171118、【答案】x=2解:x 23x 2=+-x 36x 2=+-2x 8x 48x 3x x 3x -8x 36x 2=-=--=--==+-9、【答案】358x -=解:5(0.3x+0.6)-2(0.8-x )=0.61.5x+3-1.6+2x=0.6(1.5+2)x+(3-1.6)=0.6 3.5x+1.4=0.6 3.5x=0.6-1.4 3.5x=-0.8358x -=10、【答案】x= -6解:3(2x+7)=5+2(x-4)6x+21=5+2x-8 6x-2x=5-8-21 4x=-24 x= -611、【答案】34x =解:34x -2015x -14-18-126x -12x -3x 6x 1212x -14183x x 266x -726)x 3x 23x6726x ===+=+++=+++=-++)()((12、【答案】解:2(3x+1)-2=4x 6x+2-2=4x 6x-4x=0 x=013、【答案】x=821-解:2[2(7-21)+4x]=52[14-1+4x]=5 2(13+4x )=5 26+8x=5 8x=-21x=821-14、【答案】2770解;2770x 14x 4.5216x 4.516x 4.2x 324x 6.04x32==-==++=++15、【答案】35121x =解; 7{2-5[3-4(x-2)+2]-6}=17[2-5(3-4x+8+2)-6]=1 7(2-15+20x-50-6)=1 7(20x-69)=1 140x-483=1140x=48435121x =16、【答案】解:61}1]2)62(3)5[(21{31=-+--+x x 两边同时乘以3得; 211]2)62(3)5[(21=-+--+x x 两边同时乘以2得;12]2)62(3)5[(=-+--+x x去掉中括号,(x+5)-3(2-6x )+2-2=1 去小括号, x+5-6+18x=1 19x=2192x =17、【答案】27x =解:27x 288x -10183x -x 518x 3105x -6x 310-x 51x 2310x 551x 232-x 15=-=--=--=+-=-+=+--+=+-)(18、 【答案】71x -= 解:71x 17x 5104x 815104x 85x 15102x 421x 351524213-=-=+-=--+=--+=--+=-)()()(x x19、【答案】x=6解:2233554--+=+-+x x x x6(x+4)-30x+150=10(x+3)-15(x-2)6x+24-30x+150=10x+30-15x+30(6-30-10+15)x=30+30-24-150 -19x=-114x=620、【答案】x=-9.2 解:2.9276302006016)5020(1620050602016)4(50)3-x 20106.124)x 1053)-x 10106.12.045.03-==-++=-=---=+-=+-=+--x x x x x x x x (两边同时乘以((,母同时乘以左边,每个分式分子分二、一元一次方程与实际问题21、【答案】应从甲班24人到乙班去解:设应从甲班调x 人到乙班去 此时:甲班人数=84-x 乙班人数=66+x因为甲班人数是乙班的32,则有(84-x )=32(66+x )3(84-x )=2(66+x )252-3x=132+2x (-3x+2x )=132-252-5x=-120 x=24检验:甲班人数=84-24=60 乙班人数=66+24=90329060= 符合题意。
(典型题)人教版初中七年级数学上册第三章《一元一次方程》模拟测试题(有答案解析)(1)
一、选择题1.(0分)[ID :68204]某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( ) A .()182812x x -= B .()1828212x x -=⨯ C .()181412x x -=D .()2182812x x ⨯-=2.(0分)[ID :68203]下列方程变形中,正确的是( ) A .方程3221x x -=+,移项,得3212x x -=-+ B .方程()3251x x -=--,去括号,得3251x x -=-- C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 3.(0分)[ID :68193]已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( ) A .①②③④ B .①③④ C .②③④D .①②4.(0分)[ID :68167]一元一次方程的解是( ) A .B .C .D .5.(0分)[ID :68163]下列解方程中去分母正确的是( ) A .由,得B .由,得C .由,得D .由,得6.(0分)[ID :68252]下列方程变形一定正确的是( )A .由x +3=-1,得x =-1+3B .由7x =-2,得x =-74C .由12x =0,得x =2 D .由2=x -1,得x =1+27.(0分)[ID :68244]已知a=2b ,则下列选项错误的是( )A .a+c=c+2bB .a ﹣m=2b ﹣mC .2ab = D .2ab= 8.(0分)[ID :68241]若代数式4x +的值是2,则x 等于( )A .2B .2-C .6D .6-9.(0分)[ID :68234]如图,长方形ABCD 中,AB 3cm =,BC 2cm =,点P 从A 出发,以1cm /s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm /s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ △的面积为22cm 时,t 的值为( )A .2或103B .2或113C .1或103D .1或13310.(0分)[ID :68232]关于y 的方程331y k +=与350y +=的解相同,则k 的值为( ) A .-2B .34C .2D .43-11.(0分)[ID :68224]“某工厂用如图甲所示的长方形和正方形纸板做成如图乙所示的 A 、B 两种长方体形状的无盖纸盒.现 有正方形纸板 120 张,长方形纸板 360 张,刚好全部用完,问能做成多少个 A 型盒子?”则下列结论 正确的个数是( )①甲同学:设 A 型盒子个数为 x 个,根据题意可得: 4x + 3 ⋅1202x- = 360 ②乙同学:设 B 型盒中正方形纸板的个数为 m 个,根据题意可得: 3 ⋅ 2m+ 4(120 - m ) = 360③A 型盒 72 个④B 型盒中正方形纸板 48 个A .1B .2C .3D .412.(0分)[ID :68221]某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( ) A .1146x x++= B .1146x x ++= C .1146x x -+= D .111446x x +++= 13.(0分)[ID :68178]书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( ) A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 14.(0分)[ID :68176]甲、乙两个工程队,甲队人,乙队人,现在从乙队抽调人到甲队,使甲队人数为乙队人数的倍.则根据题意列出的方程是( )A .B .C .D .15.(0分)[ID :68170]下列方程中,以x =-1为解的方程是( ) A .B .7(x -1)=0C .4x -7=5x +7D .x =-3二、填空题16.(0分)[ID :68356]关于x 的方程927x kx -=+的解是自然数,则整数k 的值为________.17.(0分)[ID :68354]一件衣服进价120元,按标价的八折出售仍能赚32元,则标价是__元.18.(0分)[ID :68340]一个“数值转换机”按如图的程序计算,例如:输入的数为36,则经过一次运算即可输出结果106.若输出的结果127是经过两次运算才输出的,则输入的数是_____.19.(0分)[ID :68329]如果34x x =-+,那么3x +________4=.20.(0分)[ID :68328]如图所示,天平中放有苹果、香蕉、砝码,且两架天平都平衡,则一个苹果的质量是一个香蕉的质量的________.(填分数)21.(0分)[ID :68321]小石在解关于x 的方程225a x x -=时,误将等号前的“2x -”看作“3x -”,得出解为1x =-,则a 的值是_________,原方程的解为__________ .22.(0分)[ID :68297]某中学组织学生为“希望工程”捐款,甲、乙两班一共捐款425元,已知甲班有50人,乙班比甲班少5人,而乙班比甲班平均每人多捐1元,则乙班平均每人捐款______元.23.(0分)[ID :68284]方程3622y y y -+=,左边合并同类项后,得____________. 24.(0分)[ID :68271]用5个同样大小的小长方形恰好可以拼成如图所示的大长方形,若大长方形的周长是14,则小长方形的长是_______,宽是________.25.(0分)[ID :68273]一群学生参加夏令营活动,男生戴白色帽子,女生戴红色帽子,休息时他们坐在一起,大家发现了一个有趣的现象:每位男生看到的白色与红色的帽子一样多,而每位女生看到的白色帽子数量是红色的2倍.根据信息,这群学生共有______人.26.(0分)[ID :68262]关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.27.(0分)[ID :68259]若关于x 的方程3x m -2-m =0是一元一次方程,则m =________,方程的解为________.三、解答题28.(0分)[ID :68403]小明问小白:“你知道为什么任何无限循环小数都可以写成分数形式吗?”,看着小白一脸的茫然,小明热心地为小白讲解: (小明提出问题)利用一元一次方程将0.7⋅化成分数.(小明的解答)解:设0.7⋅=x .方程两边都乘以10,可得100.7⋅⨯=10x .由0.7⋅=0.777…,可知100.7⋅⨯=7.777…=7+0.7⋅,即7+x =10x .(请你体会将方程两边都乘以10起到的作用)可解得x 79=,即0.779⋅=.(小明的问题)将0.4⋅写成分数形式.(小白的答案)49.(正确的!) 请你仿照小明的方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.73⋅⋅;②0.432⋅.29.(0分)[ID :68380]已知关于x 的方程:2(x ﹣1)+1=x 与3(x +m )=m ﹣1有相同的解,求以y 为未知数的方程3332my m x--=的解. 30.(0分)[ID :68368]根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.D3.B4.A5.C6.D7.D8.B9.A10.C11.D12.C13.A14.A15.A二、填空题16.0或6或8【分析】先解方程得到一个含有字母k的解然后根据解是自然数解出k的值即可【详解】解:移项得9x-kx=2+7合并同类项得(9-k)x=9因为方程有解所以k≠9则系数化为1得x=又∵关于x的方17.190【分析】设标价为元根据题意列方程即可求解【详解】解:设标价为元由题意可知:解得:故答案为:190【点睛】此题主要考查列一元一次方程解应用题解题的关键是根据题意找出等量关系18.15【分析】根据题中的数值转换机计算即可求出所求【详解】解:根据题意得:3x﹣2=127解得:x=43可得3x﹣2=43解得:x=15则输入的数是15故答案为15【点睛】考核知识点:解一元一次方程理19.x【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x【详解】两边同时加x得3x+x=4故答案为:x【点睛】本题考查的是等式的性质熟知等式20.【分析】设一个苹果的重量为x一个香蕉的重量为y一个砝码的重量为z分别用含z 的代数式表示xy再求即可【详解】设一个苹果的质量为x一个香蕉的质量为y一个砝码的质量为z由题意得则即则故故答案为:【点睛】此21.-4;【分析】把x=-1代入中求出a的值再求出原方程的解即可【详解】解:根据题意得:x=-1是的解∴把x=-1代入得:解得:∴原方程为:-8-2x=5x解得:故答案为:-4;【点睛】本题考查了一元一22.5【解析】【分析】首先设乙班平均每人捐款x元则甲班平均每人捐款(x-1)元根据题意可得等量关系:甲班的捐款+乙班的捐款=425元由等量关系列出方程即可【详解】解:设乙班平均每人捐款x元由题意得:5023.y=6【解析】【分析】先合并同类项再进行化简即可【详解】合并同类项得:y=6【点睛】本题考查合并同类项熟练掌握计算法则是解题关键24.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x则长=(14-10x)=2x解得x=1即小长方形的宽为1长为2;故答25.7【解析】【分析】设其中的男生有x人根据每位男生看到白色与红色的安全帽一样多可以表示出女生有(x-1)人再根据每位女生看到白色的安全帽是红色的2倍列方程求解【详解】设男生有x人则女生有(x−1)人根26.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=27.x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M结合m的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【分析】若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,然后根据1个盒身与2个盒底配成一套列出方程即可.【详解】解:若设需要x张硬纸板制作盒身,则(28-x)张硬纸板制作盒底,由题意可得,18(28-x)=2×12x,故选:B . 【点睛】本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,找出题目中的等量关系,列出相应的方程.2.D解析:D 【分析】根据解方程的步骤逐一对选项进行分析即可. 【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误;D . 方程110.20.5x x--=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确.故选:D 【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键.3.B解析:B 【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可. 【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④. 故选:B. 【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程.4.A解析:A【解析】【分析】先移项,再合并同类项,把x的系数化为1即可;【详解】原式=;=故选A.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.5.C解析:C【解析】【分析】根据等式的性质,各个选项中的方程两边同时乘分母的最小公倍数,然后再解答.【详解】A.2x−6=3−3x;故错误;B.2(x−2)−(3x−2)=−42(x−2)−3x+2=−4;故错误;C.3(y+1)=2y−(3y−1)−6y3y+3=2y−3y+1−6y;故正确;D.12x−15=5y+20;故错误;由以上可得只有C选项正确.故选:C.【点睛】此题考查方程的解和解方程,解题关键在于掌握运算法则.6.D解析:D 【分析】根据等式的性质,可得答案. 【详解】解:由x +3=-1,得x =-1-3,所以A 选项错误; 由7x =-2,得x =-27,所以B 选项错误;由12x =0,得x =0,所以C 选项错误; 由2=x -1,得x =1+2,所以D 选项正确. 故选D . 【点睛】本题考查了等式的性质,熟记等式的性质是解题关键.7.D解析:D 【分析】根据等式的性质判断即可. 【详解】解:A 、因为a=2b ,所以a+c=c+2b ,正确; B 、因为a=2b ,所以a-m=2b-m ,正确; C 、因为a=2b ,所以2a=b ,正确; D 、因为a=2b ,当b≠0,所以ab=2,错误; 故选D . 【点睛】此题考查比例的性质,关键是根据等式的性质解答.8.B解析:B 【分析】由已知可得4x +=2,解方程可得. 【详解】由已知可得4x +=2,解得x=-2. 故选B. 【点睛】本题考核知识点:列方程,解方程. 解题关键点:根据题意列出一元一次方程.9.A解析:A【分析】首先分P 运动了3秒以内和3秒以后两种情况,分别结合速度和距离的关系列出等式,从而完成求解.【详解】四边形ABCD 是矩形AD BC 2cm ∴==,当点P 在AB 边时AB 3cm =∴此时点Q 还在点D 处,AP t = ∴APQ 12t 22S =⨯⨯=△ ∴t 2=;3秒后,点P 在BC 上∴()AQ 22t 3=-- ∴()APQ 1322t 322S ⎡⎤=⨯⨯--=⎣⎦△ ∴10t 3= ∴当APQ △的面积为22cm 时,t 的值为2或103. 故选A .【点睛】 本题考察了矩形、一元一次方程、三角形面积计算等知识;求解的关键是熟练掌握矩形、一元一次方程的性质,并运用到实际问题的求解过程中,即可得到答案.10.C解析:C【分析】分别解出两方程的解,两解相等,就得到关于k 的方程,从而可以求出k 的值.【详解】 解第一个方程得:133k y -=, 解第二个方程得:53y =-, ∴133k -=53-, 解得:k=2.故选C .【点睛】本题解决的关键是能够求解关于y 的方程,要正确理解方程解的含义.11.D解析:D【分析】根据题意可知,A 型纸盒需要4个长方形纸板,1个正方形纸板,B 型纸盒需要3个长方形纸板和2个正方形纸板,设A 型盒子个数为x 个,可得A 型纸盒需要长方形纸板的数量和B 型纸盒需要长方形纸板的数量,可列出方程对①进行判断;设B 型盒中正方形纸板的个数为m 个,可得B 型纸盒需要长方形纸板的数量和A 型纸盒需要长方形纸板的数量,可列出方程对②进行判断;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则可得A 型盒子x 个,B 型盒子y 个,根据长方形纸板360张,正方形纸板120张,可得出方程组,求出A 型纸盒和B 型纸盒的数量可对③④进行判断.【详解】设A 型盒子个数为x 个,则A 型纸盒需要长方形纸板4x 张,正方形纸板x 张,由于制作一个B 型纸盒需要两张正方形纸板,因此可得B 型纸盒的数量为1202x -个,需要长方形纸板3×1202x -张,因此可得120433602x x -+=,故①正确; 设B 型盒中正方形纸板的个数为m 个,则B 型纸盒有2m 个,需要长方形纸板3×2m 个,A 型纸盒有(120-m )个,则需长方形纸板4(120-m )个,所以可得方程3×2m +4(120-m )=120,故②正确;设做A 型盒子用了正方形纸板x 张,做B 型盒子用了正方形纸板y 张,则有,212043360x y x y +=⎧⎨+=⎩解得,7224x y =⎧⎨=⎩即,A 型纸盒有72个,B 型纸盒有24个,所以B 型盒中正方形纸板 48 个故③④正确.故选D.【点睛】本题考查了列一元一次方程和二元一次方程组的应用,解答本题时注意无盖盒子中的长方形及正方形的个数之间的关系是解答的关键.12.C解析:C【分析】首先要理解题意找出题中存在的等量关系:甲完成的工作量+乙完成的工作量=总的工作量,根据题意我们可以设总的工作量为单位“1“,根据效率×时间=工作量的等式,分别用式子表示甲乙的工作量即可列出方程.【详解】设甲一共做了x天,则乙一共做了(x−1)天.可设工程总量为1,则甲的工作效率为14,乙的工作效率为16.那么根据题意可得出方程11 46x x-+=,故选C.【点睛】此题考查由实际问题抽象出一元一次方程,解题关键在于理解题意列出方程. 13.A解析:A【分析】根据题意可以列出相应的方程,从而可以解答本题.【详解】解:由题意可得,2x-8=12(x+8)+3,故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.14.A解析:A【解析】【分析】分析本题题意,找到等量关系:32+甲队添加人数=2×(28-乙队减少人数),列出式子即可.【详解】解:列出的方程是32+x=2×(28-x).故答案为:32+x=2×(28-x),答案选A..【点睛】列方程解应用题的关键是找出题目中的相等关系.注意本题中甲增加的人数就是乙减少的人数.15.A解析:A【解析】【分析】方程的解的定义,就是能够使方程左右两边相等的未知数的值.所以把x=-1分别代入四个选项进行检验即可.【详解】解:A、把x=-1代入方程的左边= -=右边,左边=右边,所以是方程的解;B、把x=-1代入方程的左边=-14≠右边,所以不是方程的解;C、把x=-1代入方程的左边=-11≠右边,不是方程的解;D、把x=-1代入方程的左边=-≠右边,不是方程的解;故选:A.【点睛】本题关键是正确理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.二、填空题16.0或6或8【分析】先解方程得到一个含有字母k的解然后根据解是自然数解出k的值即可【详解】解:移项得9x-kx=2+7合并同类项得(9-k)x=9因为方程有解所以k≠9则系数化为1得x=又∵关于x的方解析:0或6或8【分析】先解方程,得到一个含有字母k的解,然后根据解是自然数解出k的值即可.【详解】解:移项得,9x-kx=2+7合并同类项得,(9-k)x=9,因为方程有解,所以k≠9,则系数化为1得,x=99-k,又∵关于x的方程9x-2=kx+7的解是自然数,∴k的值可以为:0、6、8.其自然数解相应为:x=1、x=3、x=9.故答案为:0或6或8.【点睛】本题考查解一元一次方程、方程的解,解答的关键是根据方程的解对整数k进行取值,注意不要漏解.17.190【分析】设标价为元根据题意列方程即可求解【详解】解:设标价为元由题意可知:解得:故答案为:190【点睛】此题主要考查列一元一次方程解应用题解题的关键是根据题意找出等量关系解析:190【分析】设标价为x元,根据题意列方程即可求解.【详解】解:设标价为x元,x-=,由题意可知:0.812032x=,解得:190故答案为:190.【点睛】此题主要考查列一元一次方程解应用题,解题的关键是根据题意找出等量关系.18.15【分析】根据题中的数值转换机计算即可求出所求【详解】解:根据题意得:3x﹣2=127解得:x=43可得3x﹣2=43解得:x=15则输入的数是15故答案为15【点睛】考核知识点:解一元一次方程理解析:15【分析】根据题中的“数值转换机”计算即可求出所求.【详解】解:根据题意得:3x﹣2=127,解得:x=43,可得3x﹣2=43,解得:x=15,则输入的数是15,故答案为15【点睛】考核知识点:解一元一次方程.理解程序意义是关键.19.x【分析】根据题意得第一个等式等号右边为-x+4第二个等式等号右边为4因为(-x+4)+x=4所以等号两边同时加x【详解】两边同时加x得3x+x=4故答案为:x【点睛】本题考查的是等式的性质熟知等式解析:x【分析】根据题意,得第一个等式等号右边为-x+4 ,第二个等式等号右边为4,因为(-x+4)+x=4 ,所以等号两边同时加x.【详解】两边同时加x,得3x+x=4,故答案为:x【点睛】本题考查的是等式的性质,熟知等式两边加或减同一个数或式子,结果仍相等是解答此题的关键.20.【分析】设一个苹果的重量为x 一个香蕉的重量为y 一个砝码的重量为z 分别用含z 的代数式表示xy 再求即可【详解】设一个苹果的质量为x 一个香蕉的质量为y 一个砝码的质量为z 由题意得则即则故故答案为:【点睛】此 解析:32【分析】设一个苹果的重量为x 、一个香蕉的重量为y 、一个砝码的重量为z ,分别用含z 的代数式表示x ,y ,再求x y 即可. 【详解】设一个苹果的质量为x ,一个香蕉的质量为y ,一个砝码的质量为z .由题意得24x z =,则2x z =,32y z x =+,即3224y z z z =+=,则43y z =, 故23423x z y z ==. 故答案为:32【点睛】此题主要考查了等式的性质,本题先通过用z 表示x ,y ,后通过求比值而求解. 21.-4;【分析】把x=-1代入中求出a 的值再求出原方程的解即可【详解】解:根据题意得:x=-1是的解∴把x=-1代入得:解得:∴原方程为:-8-2x=5x 解得:故答案为:-4;【点睛】本题考查了一元一解析:-4; 87-【分析】把x=-1代入235a x x -=中求出a 的值,再求出原方程的解即可【详解】解:根据题意,得:x=-1是235a x x -=的解,∴把x=-1代入235a x x -=得:23(1)5(1)a -⨯-=⨯-解得:4a =-∴原方程为:-8-2x=5x 解得:87x 故答案为:-4;87-【点睛】本题考查了一元一次方程,熟练掌握运算法则是解题的关键22.5【解析】【分析】首先设乙班平均每人捐款x 元则甲班平均每人捐款(x-1)元根据题意可得等量关系:甲班的捐款+乙班的捐款=425元由等量关系列出方程即可【详解】解:设乙班平均每人捐款x 元由题意得:50解析:5【解析】【分析】首先设乙班平均每人捐款x 元,则甲班平均每人捐款(x-1)元,根据题意可得等量关系:甲班的捐款+乙班的捐款=425元,由等量关系列出方程即可.【详解】解:设乙班平均每人捐款x 元,由题意得:50(x-1)+(50-5)x=425,解得:x=5,答:乙班平均每人捐款5元.【点睛】此题主要考查了一元一次方程的应用,关键是正确理解题意,表示出甲乙两班的捐款人数和人均捐款数,再根据捐款总数列出方程即可.23.y=6【解析】【分析】先合并同类项再进行化简即可【详解】合并同类项得:y=6【点睛】本题考查合并同类项熟练掌握计算法则是解题关键解析:y=6【解析】【分析】先合并同类项,再进行化简即可.【详解】3622y y y -+= 合并同类项,得:13-1+=622y ⎛⎫ ⎪⎝⎭ y=6【点睛】本题考查合并同类项,熟练掌握计算法则是解题关键.24.1【解析】【分析】观察图形找出大长方形与小长方形的关系设小长方形的宽为x 列出方程即可求出其长和宽的值【详解】解:设小长方形的宽为x 则长=(14-10x )=2x 解得x=1即小长方形的宽为1长为2;故答解析:1【解析】【分析】观察图形找出大长方形与小长方形的关系,设小长方形的宽为x ,列出方程即可求出其长和宽的值.【详解】解:设小长方形的宽为x ,则长=12(14-10x )=2x , 解得x=1,即小长方形的宽为1,长为2;故答案为:2;1.【点睛】本题考查了一元一次方程的应用,准确识图并列出方程是解题的关键.25.7【解析】【分析】设其中的男生有x 人根据每位男生看到白色与红色的安全帽一样多可以表示出女生有(x-1)人再根据每位女生看到白色的安全帽是红色的2倍列方程求解【详解】设男生有x 人则女生有(x−1)人根解析:7【解析】【分析】设其中的男生有x 人,根据每位男生看到白色与红色的安全帽一样多,可以表示出女生有(x-1)人.再根据每位女生看到白色的安全帽是红色的2倍列方程求解.【详解】设男生有x 人,则女生有(x−1)人,根据题意得x=2(x−1−1)解得x=4x−1=3.4+3=7人.故答案为:7.【点睛】此题考查一元一次方程的应用,解题关键在于列出方程.26.或或x=-3【分析】利用一元一次方程的定义判断即可【详解】解:关于的方程如果是一元一次方程(1)当即即解得:(2)当m=0时解得:(3)当2m-1=0即m=时方程为解得:x=-3故答案为x=2或x=解析:2x =或2x =-或x=-3. 【分析】利用一元一次方程的定义判断即可.【详解】 解:关于x 的方程2m 1mx m 1x 20+﹣(﹣)﹣=如果是一元一次方程,(1)当2m 11﹣=,即m 1=,即x 20﹣=解得:x 2=,(2)当m=0时,x20--=,解得:x2=-(3)当2m-1=0,即m=12时,方程为1120 22x--=解得:x=-3,故答案为x=2或x=-2或x=-3.【点睛】此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.27.x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1进而求得M结合m的值可得原方程为3x-3=0求解可得方程的解【详解】由题意得:m-2=1解得:m=3所以原方程为3x-3=0解得x=1【点解析:x=1【解析】【分析】根据一元一次方程的定义得到:m-2=1,进而求得M,结合m的值可得原方程为3x-3=0,求解可得方程的解【详解】由题意得:m-2=1,解得:m=3所以原方程为3x-3=0解得x=1【点睛】此题考查一元一次方程的知识,熟练掌握一元一次方程的定义是关键三、解答题28.①0.737399⋅⋅=,过程见解析;②0.433892900⋅=,过程见解析.【分析】①设0. 73⋅⋅=m,程两边都乘以100,转化为73+m=100m,求出其解即可.②设0.432⋅=n,程两边都乘以100,转化为43+0.2⋅=100n,求出其解即可.【详解】解:①设0.73⋅⋅=m,方程两边都乘以100,可得100×0.73⋅⋅=100m.由0.73⋅⋅=0.7373…,可知100×0.73⋅⋅=73.7373…=73+0.73⋅⋅;即73+m =100m ,可解得m 7399=,即0.737399⋅⋅=. ②设0.432⋅=n ,方程两边都乘以100,可得100×0.432⋅=100n . ∴43.2⋅=100n .∵0.229⋅=,∴4329+=100n n 389900= ∴0.433892900⋅=. 【点睛】本题考查了无限循环小数转化为分数的运用,运用一元一次方程解实际问题的运用,解答时根据等式的性质变形建立方程是解答的关键.29.214y =-. 【分析】根据方程可直接求出x 的值,代入另一个方程可求出m ,把所求m 和x 代入方程3,可得到关于y 的一元一次方程,解答即可.【详解】解:解方程2(x ﹣1)+1=x得:x =1将x =1代入3(x +m )=m ﹣1得:3(1+m )=m ﹣1解得:m =﹣2将x =1,m =﹣2代入3332my m x --= 得:3(2)2332y ----=, 解得:214y =-. 【点睛】本题考查了含分母的一次方程,属于简单题,正确求解方程是解题关键.30.(1)0.6;122.5.(2)0.9x ﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a 的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.。
七年级数学解一元一次方程同步测试题[修改版]
第一篇:七年级数学解一元一次方程同步测试题【基础过关】一、选择题1、方程=x-2的解是()A.5B.-5C.2D.-22、解方程x=,正确的是( )A.x==x=;B.x=,x=C.x=,x=;D.x=,x=3、下列变形是根据等式的性质的是()A.由2x﹣1=3得2x=4B.由x2=x得x=1C.由x2=9得x=3D.由2x﹣1=3x得5x=﹣14、下列变形错误的是()A.由x+7=5得x+7-7=5-7;B.由3x-2=2x+1得x=3C.由4-3x=4x-3得4+3=4x+3xD.由-2x=3得x=-5、已知方程①3x-1=2x+1②③④中,解为x=2的是方程()A.①、②和③;B.①、③和④C.②、③和④;D.①、②和④二、填空题1、判断:方程6x=4x+5,变形得6x+4x=5()改正:________________________________________________.2、方程3y=,两边都除以3,得y=1()改正:________________________________________________.3、某数的4倍减去3比这个数的一半大4,则这个数为__________.4、当m=__________时,方程2x+m=x+1的解为x=-4.当a=____________时,方程3x2a-2=4是一元一次方程.6、求作一个方程,使它的解为-5,这个方程为__________.三、解下列方程(1)6x=3x-12 (2)2y―=y―3(3)-2x=-3x+8(4)56=3x+32-2x(5)3x―7+6x=4x―8(6)7.9x+1.58+x=7.9x-8.42【知能升级】1、2a—3x=12是关于x的方程.在解这个方程时,粗心的小虎误将-3x看做3x,得方程的解为x=3.请你帮助小虎求出原方程的解.2、在代数式|()+6|+|0.2+2()|的括号中分别填入一个数,使代数式的值等于0.答案【基础过关】一、选择题1、A2、C3、A4、D5、D二、填空题1、错,6x-4x=52、错,y=3、24、5,6、x+5=0三、解下列方程1、x=-42、y=3、x=84、x=245、x=6、x=-10【知能升级】1、x=-32、-4,-0.1第二篇:七年级数学《解一元一次方程》教学设计第六章一元一次方程6.2 解一元一次方程(三)——去分母天水市秦州区藉口中学杨文蕴【教学目标】掌握去分母解方程的方法,体会到转化的思想。
人教版七年级数学上册《一元一次方程》练习题-带答案
人教版七年级数学上册《一元一次方程》练习题-带答案学校:___________班级:___________姓名:___________考号:___________1.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=∣∣,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及A ,B 之间的距离. (2)若点A 向右运动,速度为 10 单位长度/秒,点B 向左运动,速度为 20 单位长度/秒,点A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位长度/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 t (0t 10<<),在运动过程中①OA PB MN - 的值不变;② OA PBMN+ 的值不变,可以证明,只有一个结论是正确的,请你找出正确的结论并求值.2.已知数轴上的点 A ,B 对应的数分别是 x ,y ,且 ()21002000x y ++-=,点 P 为数轴上从原点出发的一个动点,速度为 30 单位长度/秒.(1)求点A ,B 两点在数轴上对应的数,及 A ,B 之间的距离.(2)若点 A 向右运动,速度为 10 单位长度/秒,点 B 向左运动,速度为 20 单位长度/秒,点 A ,B 和 P 三点同时开始运动,点 P 先向右运动,遇到点 B 后立即掉后向左运动,遇到点 A 再立即掉头向右运动,如此往返,当 A ,B 两点相距 30 个单位长度时,点 P 立即停止运动,求此时点 P 移动的路程为多少个单位长度?(3)若点 A ,B ,P 三个点都向右运动,点 A ,B 的速度分别为 10 单位长度/秒,20 单位/秒,点 M ,N 分别是AP ,OB 的中点,设运动的时间为 ()010t t <<,请证明在运动过程中OA PB MN + 的值不变,并求出OA PBMN+值. 3.在数轴上,点A B 、分别表示数a b 、,且6100a b ++-=,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向右运动,点M 始终为线段AP 的中点,设点P 运动的时间为x 秒.则:()1在点P 运动过程中,用含x 的式子表示点P 在数轴上所表示的数.()2当2PB AM =时,点P 在数轴上对应的数是什么?()3设点N 始终为线段BP 的中点,某同学发现,当点P 运动到点B 右侧时,线段MN 长度始终不变.请你判断该同学的说法是否正确,并加以证明.4.我们可以将任意三位数表示为abc =(其中a 、b 、c 分别表示百位上的数字,十位上的数字和个位上的数字,且0a ≠).显然,10010abc a b c =++;我们把形如xyz 和zyx 的两个三位数称为一对“姊妹数”(其中x 、y 、z 是三个连续的自然数)如:123和321是一对姊妹数,678和876是一对“姊妹数”.(1)写出任意三对“姊妹数”,并判断2331是否是一对“姊妹数”的和; (2)如果用x 表示百位数字,求证:任意一对“姊妹数”的和能被37整除. 5.已知关于x 的方程2233x x +=+的两个解是1223,3x x ==; 又已知关于x 的方程2244x x +=+的两个解是1224,4x x ==; 又已知关于x 的方程2255x x +=+的两个解是1225,5x x ==;⋯小王认真分析和研究上述方程的特征,提出了如下的猜想. 关于x 的方程22x c x c +=+的两个解是122,x c x c==;并且小王在老师的帮助下完成了严谨的证明(证明过程略).小王非常高兴,他向同学提出如下的问题. (1)关于x 的方程221111x x+=+的两个解是1x = 和2x = ;(2)已知关于x 的方程2212111x x +=+-,则x 的两个解是多少? 6.如果一个多位自然数的任意两个相邻数位上,左边数位上的数总比右边数位上数大1,那么我们把这样的自然数叫做“妙数”.例如:321,6543,98,…都是“妙数”. (1)若某个“妙数”恰好等于其个位数的153倍,则这个“妙数”为 .(2)证明:任意一个四位“妙数”减去任意一个两位“妙数”之差再加上1得到的结果一定能被11整除.(3)在某个三位“妙数”的左侧放置一个一位自然数m 作为千位上的数字,从而得到一新的四位自然数A ,且m 大于自然数A 百位上的数字,否存在一个一位自然数n ,使得自然数(9A+n )各数位上的数字全都相同?若存在请求出m 和n 的值;若不存在,请说明理由. 7.如图,已知数轴上点A 表示的数为a ,B 表示的数为b ,满足16120a b -++=.动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t 秒.(1)写出数轴上点A 表示的数是 ,点B 表示的数是 ;(2)若点P 从A 点出发向左运动,点Q 为AP 的中点,在点P 到达点B 之前,求证BA BPBQ+为定值;(3)现有动点M ,若点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,当点P 到达原点O 后M 立即以每秒2个单位长度的速度沿数轴向左运动,求:当3OP OM =时,则P 点运动时间t 的值为 .8.【阅读理解】点A 、B 在数轴上对应的数分别是a ,b ,且()2280a b ++-=.A 、B 两点的中点表示的数为2a b+;当b a >时,A 、B 两点间的距离为AB b a =-. (1)求AB 的长.(2)点C 在数轴上对应的数为x ,且x 是方程282x x +=-的解,在数轴上是否存在点P ,使图1 图2(1)a可以用含e的代数式表示为____________;(2)若42++=时,求出图2中c所表示的日期;a e i(3)在这个月的日历中,求证:e f h i+++的值能被4整除.参考答案:1.【答案】(1)点A,B 两点在数轴上对应的数分别为-100,200,A,B 之间的距离为300(2)点 P 移动的路程为270或330个单位长度 (3)②正确2OA PBMN+= 2.【答案】(1)解:()21002000x y ++-=1000x ∴+= 2000y -=解得100x =- 200y =即点A ,B 两点在数轴上对应的数分别为-100,200,A ,B 之间的距离为300; (2)解: 设点P 运动时间为x 秒时,A ,B 两点相距30个单位长度. 由题意得102030030x x +=- 102030030x x +=+ 解得:9x =,或11x = 则此时点P 移动的路程为309270⨯=,或 3011330⨯=即P 走的路程为 270 或 330;(3)解:运动t 秒后A ,P ,B 三点所表示的数为10010t -+ 30t 20020t +010t <<20010PB t ∴=- 10010OA t =- 301001020100PA t t t =+-=+ 20020OB t =+M ,N 分别是AP ,OB 的中点∴N 表示的数为10010t +,M 表示的数为2050t -15010MN t ∴=-30020OA PB t +=- 2OA PBMN+∴=. 3.【答案】(1)62x -+;(2)P 点在数轴上表示的数为2;(3)正确,MN 的长度不变,为定值84.【答案】解:(1)根据题意得:234与432,345与543,567与765均是一对姊妹数; 设这对“姊妹数”的一个三位数的十位数为b ,则个位数为(b -1),百位数为(b +1),其中位“妙数”,再将四位“妙数”减去任意一个两位“妙数”之差再加上1的结果除以11判断结果是否为整数即可;(3)设三位“妙数”的个位为z ,可知A=1000m+111z+210,继而可得9A+n=9000m+999z+1890+n=1000(9m+z+1)+800+90+n ﹣z ,由﹣8≤n﹣z≤9、1000(9m+z+1)≤1000(9×9+9+1)=91000知其百位数一定是8,且该数为5位数,若存在则该数为88888,从而得出1000(91)88000{9088m z n z ++=+-=,即9m+z=87、n ﹣z=﹣2,由m >z+2知z <m ﹣2,而z=87﹣9m <m ﹣2,解之可得m >8.9,即可得m 值,进一步即可得答案. 7.【答案】(1)解:∵16120a b -++= ∴160-=a 120b += ∴16a = 12b =-∴点A 表示的数是16,点B 表示的数是12-. 故答案为:16;-12.(2)证明:∵点A 表示的数是16,点B 表示的数是12- ∴161228AB () 12OB = 16OA =∵动点P 从点A 出发以每秒4个单位长度的速度沿数轴向左匀速运动,运动时间为t 秒 ∴4AP t = 284BP AB AP t =-=- ∵点Q 为AP 的中点 ∴114222AQ AP t t ==⨯= ∴282BQ AB AQ t =-=-在点P 到达点B 之前,即0<t <7时282845642282282BA BP t tBQ t t++--===-- ∴BA BPBQ+为定值. (3)∵点M 从点B 以每秒5个单位长度的速度沿数轴向右运动,同时点P 出发,运动时间为()1643125t t解得:2011t=当点M在原点O的右侧,点512OM t=-16OP=()1643512t t解得:5219t=当点P到达原点O时,运动时间为这时点M在原点O的右侧,22)3(82t 解得:2125t=1212 45t t+=+=②当点M在原点∴228OM t =- 24OP t = ∵3OP OM = ∴22)43(28t t解得:212t =∴1241216t t t =+=+= (秒)综上所述,当3OP OM =时,则P 点运动时间t 的值为2011秒或5219秒或325秒或16秒.故答案为:2011秒或5219秒或325秒或16秒.8.【答案】(1)解:22(8)0a b ++-=∴2,8a b =-= ∴10AB =(2)解:282x x +=-∴10x =-∴点C 表示的数为10-设点P 对应的数为y ,由题可知,点P 不可能位于点A 的左侧,所以 ①当点P 在点B 右侧∴(8)[(2)](10)y y y -+--=-- ∴16y =②当点P 在A B 、之间 ∴(8)[(2)](10)y y y -+--=-- ∴0y =综上所述,点P 对应的数为16或0(3)证明:设运动时间为t ,则点E 对应的数是t ,点M 对应的数是28t -- 点N 对应的数是85t +P 是ME 的中点又Q)解:2,=-a c=+6,e c ia42c++=614)解:1,=+f e+=++i e ee+能被4整除4(4)∴e f i+++能被410.【答案】(1)证明:设则其“添彩数”与“减压数”分别为:第 11 页 共 11 页 =110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y -6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9, 则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数 ∴N 的值为17.。
七年级数学第三单元解一元一次方程单元测试精选题目含答案
七年级数学第三单元解一元一次方程单元测试精选题目含答案姓名:__________ 班级:__________考号:__________一、选择题(共10题)1、方程4x-1=3的解是()(A)x=-1 (B)x=1 (C)x=-2 (D)x=22、已知是关于的一元一次方程,则( )A.=2 B.= C.=±3 D.=l3、某件商品连续两次9折降价销售,降价后每件商品售价为a元,则该商品每件原价为( )A.0.92aB.1.12aC.D.4、5、若x2-x-m=(x-m)(x+1)且x≠0,则m等于().A.-1 B. 0 C. 1 D. 2 6、用代数式表示“2m与5的差”为( )A.2m﹣5 B.5﹣2m C.2(m﹣5) D.2(5﹣m)7、已知,下列等式错误的是( )A. B. C. D.8、一台电视机成本价为a元,销售价比成本价增加25%.因库存积压,所以就按销售价的70%出售。
那么每台实际售价为( )A.(1+25%)(1+70%)a元 B.70%(1+25%)a元C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元9、若方程:与的解互为相反数,则a的值为()A.- B. C. D.-110、阅读:关于x方程ax=b在不同的条件下解的情况如下:(1)当a≠0时,有唯一解x=;(2)当a=0,b=0时有无数解;(3)当a=0,b≠0时无解.请你根据以上知识作答:已知关于x的方程•a= ﹣(x﹣6)无解,则a的值是()A.1B.﹣1C.±1D.a≠1二、填空题(共6题)1、用代数式表示“a与b的和”,式子为.2、孔明同学买铅笔支,每支0.4元,买练习本本,每本2元.那么他买铅笔和练习本一共花了元.3、一筐苹果总重千克,筐本身重千克,若将苹果平均分成份,则每份重______千克.4、已知关于的方程的解是,则的值是______________。
5、如图,用一根质地均匀长30厘米的直尺和一些相同棋子做实验。
人教版七年级数学上册《第五单元-一元一次方程》单元测试题-附答案
人教版七年级数学上册《第五单元一元一次方程》单元测试题-附答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.一元一次方程2x-1=7的解是()A.x=3B.x=4C.x=5D.x=62.下列变形中,正确的是()A.若5x−6=7,则5x=7−6B.若5x−3=4x+2,则5x−4x=2+3C.若−3x=5,则x=−35D.若x−13+x+12=1,则2(x−1)+3(x−1)=13.把方程2x−14=1−3−x8去分母后,正确的结果是().A.2x−1=1−(3−x)B.2(2x−1)=1−(3−x)C.2(2x−1)=8−(3−x)D.2(2x−1)=8−(3+x)4.若关于x的方程ax-4=a的解是x=-3,则a的值是()A.-2B.2C.-1D.15.要组织一场篮球联赛,每两队之间只赛一场,计划安排15场比赛,如果邀请x个球队参加比赛,根据题意,列出方程为()A.x(x−1)=15B.x(x+1)=15C.x(x−1)2=15D.x(x+1)2=156.我国元代朱世杰所著的《算学启蒙》一书中,有一道题目是“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之.”译文:跑得快的马每日走240里,跑得慢的马每日走150里,慢马先走12天,快马几天可以追上慢马?则下列回答正确的是().A.15天B.16天C.18天D.20天7.如图一个正方形先剪去宽为4的长方形,再剪去宽为5的长方形,且剪下来的两个长方形面积相等,那么原正方形的边长为()A.20B.16C.15D.138.若关于x的方程kx+26=12x−23的解为正整数,则所有符合条件的整数k的和为()A.0B.3C.−2D.−39.如图,这是一个用50个奇数排成的数阵,用三角形的框去框住四个数,并求出这四个数的和.在下列给出的选项中,可能是这四个数的和的是()A.146B.150C.198D.210二、填空题10.如果3x−2与2x+1的值相同;那么x=.11.将方程x+24=2x+36的两边同乘12,可得到3(x+2)=2(2x+3),这种变形叫,其依据是.12.一张桌子由一个桌面和四条脚组成,1立方米的木材可制成桌面50张或制作桌脚300条,现有10立方米的木材,问应如何分配木材,可以使桌面和桌脚配套?设用x立方米的木材做桌面,可列方程.13.如果x=4是方程ax=a+3的解,那么a的值为 .14.为了搞活经济,商场将一种商品A按标价的9折出售(即优惠10%)仍可得利润10%,若商品标价为33元,那么该商品的进货价为 .15.如图一个简单的数值运算程序,当输入x的值-1时,则输出的答案是5,则k的值是.16.爸爸今年的年龄是儿子年龄的13倍,6年后,儿子年龄是爸爸年龄的14,则今年爸爸岁,儿子岁.17.如图,两人沿着边长为70米的正方形,按A→B→C→D→A…的方向行走.甲从点A以65米/分的速度、乙从点B以72米/分的速度行走,甲、乙两人同时出发,当乙第一次追上甲时,将在正方形的边上.三、解答题18.解方程(1)4x+3=5x−1(2)3−2(x+1)=2(x−3)(3)x−24−2x−36=1(4)x−1−x3=x+26−119.小亮是一名七年级学生,在解方程2x−13−2x+m2=10x+16−1时,由于忽视了去分母后分式的分子要加括号,结果方程变形为4x−2−6x+3m=10x+1−6,从而求得方程错误的解为x=12,你能求出m的值吗?如果能,请求出m的值和方程正确的解.20.在大约1500年前的《孙子算经》中记载了这样一个有趣的问题:今有鸡兔同笼,上有头三十五,下有足九十四.问鸡、兔各多少.21.阅读下面的解题过程:解方程:|3x|=6.解:分两种情况:(1)当3x≥0时,原方程可化为一元一次方程3x=6,解得x=2;(2)当3x<0时,原方程可化为一元一次方程﹣3x=6,解得x=﹣2;综合(1)、(2),方程的解为x=2或x=﹣2.请仿照上面例题的解法,解方程:3|x﹣1|﹣2=10.22.某商品的进价为200元,标价为300元,打折销售后的利润率为5%,问此商品是按几折销售的?23.云南省某工厂制作一批零件,由一名工人做要80h完成,现计划由一部分工人先做2h,然后增加5名工人与他们一起做8h,完成了这项工作.假设这些工人的工作效率相同,应先安排几名工人工作?24.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分a超过150千瓦时,但不超过300千瓦时的部分0.6超过300千瓦时的部分a+0.3实施“阶梯电价”收费以后,该市居民陈先生家积极响应号召节约用电,10月用电100千瓦时,交电费50元.(1)a=.(2)陈先生家11月用电280千瓦时,应交费多少元?(3)若陈先生家12月份与11月的电费相差60元,求陈先生家12月份用电量是多少?25.在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程.(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)已知关于x的方程9x−3=kx+14有整数解,那么满足条件的所有整数k=_______.(3)若关于x的两个方程5x+343(m+1)=mn与2x−mn=−193(m+1)是同解方程,求此时符合要求的正整数m,n的值.参考答案1.【答案】B2.【答案】B3.【答案】C4.【答案】C5.【答案】C6.【答案】D7.【答案】A8.【答案】A9.【答案】D10.【答案】D11.【答案】去分母等式的基本性质(或方程的变形规则)或填:等式的两边都乘以(或都除以)同一个数(除数不能为0)所得结果仍是等式。
完整版)七年级上册数学一元一次方程测试题及答案
完整版)七年级上册数学一元一次方程测试题及答案1.在方程3x-y=2,x+2x=,x=,x2-2x-3=中一元一次方程的个数为(2)。
2.解方程x/(x-1)=2/3时,去分母正确的是(3x-3=2x-2)。
3.方程x-2=2-x的解是(x=2)。
4.下列两个方程的解相同的是(方程5x+3=6与方程2x=4)。
5.A厂库存钢材为100吨,每月用去15吨;B厂库存钢材82吨,每月用去9吨。
若经过x个月后,两厂库存钢材相等,则x是(3)。
6.某种商品的标价为120元,若以九折降价出售,相对于进货价仍获利20%,该商品的进货价为(90元)。
7.下列等式变形正确的是(如果x-3=y-3,那么x-y=0)。
8.已知:1-(3m-5)有最大值,则方程5m-4=3x+2的解是(-7/3)。
9.小山向某商人贷款1万元月利率为6‰,1年后需还给商人多少钱(元)。
10.有两支同样长的蜡烛,一支能点燃4小时,另一支能点燃3小时,一次遇到停电,同时点燃这两支蜡烛,来电后同时吹灭,发现其中的一支是另一支的一半,停电时间为(2.4)小时。
11.一列长a米的队伍以每分钟60米的速度向前行进,队尾一名同学用1分钟从队尾走到队头,这位同学走的路程是(a+60)米。
12.足球比赛的记分规则是:胜一场得3分,平一场得1分,负一场得分,若一个队打了14场比赛得17分,其中负了5场,那么这个队胜了(6)场。
13.方程为:3a + 5 = 9.14.根据题意,应该是-3x^2a-1+6=0,解得a=1/3.15.将x=2代入方程得到2a-3=7,解得a=5.16.将5a^2b^(1/22)(2m+1)^(-3/2)(m+3)^(-1)与-ab合并,得到m=-11.17.设四天的日期分别为a。
b。
c。
d,根据题意有a+b+c+d=42.由于每个月最多31天,最后一天的日期不可能超过31,因此最后一天的日期必须是11.18.设十位数为x,个位数为y,则题意转化为x=y/2且x+y=9,解得x=3,y=6,因此这个两位数是36.19.下游速度为8+2=10km/h,上游速度为8-2=6km/h。
北师大版七年级数学上册《第五章一元一次方程》测试题-附含答案
北师大版七年级数学上册《第五章一元一次方程》测试题-附含答案一、单选题1.下列方程中是一元一次方程的是()A.B.C.D.2.下列运用等式的基本性质变形错误的是()A.若则B.若则C.若则D.若则3.一项工程甲单独做要40天完成乙单独做需要50天完成甲先单独做4天然后两人合作x天完成这项工程则可列的方程是()A.B.C.D.4.一艘船从甲码头到乙码头顺流而行用了从乙码头返回甲码头逆流而行用了.已知水流的速度是设船在静水中的平均速度为根据题意列方程().A.B.C.D.5.如果方程与方程的解相同则k的值为().A.-8 B.-4 C.4 D.86.某种衬衫因换季打折出售如果按原价的六折出售那么每件赔本40元按原价的九折出售那么每件盈利20元则这种衬衫的原价是()A.160元B.180元C.200元D.220元7.一列长150米的火车以每秒15米的速度通过长600米的桥洞从列车进入桥洞口算起这列火车完全通过桥洞所需时间是()A.40秒B.60秒C.50秒D.34秒8.小华在做解方程作业时不小心将方程中的一个常数污染了看不清楚被污染的方程是y﹣=y﹣■怎么办呢?小明想了想便翻看了书后的答案此方程的解是:y=﹣6 小华很快补好了这个常数并迅速完成了作业.这个常数是()A.﹣4B.3C.﹣4D.4二、填空题9.当x= 时代数式与的值相等。
10.某工厂生产一种零件计划在20天内完成若每天多生产4个则15天完成且还多生产10个.设原计划每天生产x个根据题意可列方程为.11.甲、乙两人登一座山甲每分钟登高10米并且先出发30分钟乙每分钟登高15米两人同时登上山顶则这座山高米.12.某挍七年级330名师生外出参加社会实践活动租用50座与40座的两种客车.如果50座的客车租用了2辆那么至少需要租用辆40座的客车.13.A、B两地之间相距120千米其中一部分是上坡路其余全是下坡路小华骑电动车从A地到B地再沿原路返回去时用了5.5小时返回时用了4.5小时已知下坡路段小华的骑车速度是每小时30千米那么上坡路段小华的骑车速度为.三、解答题14.解方程(1)(2)15.若方程的解比方程的解大1 求m的值.16.整理一批图书如果由一个人单独做要用30h 现先安排一部分人用1h整理随后又增加6人和他们一起又做了2h 恰好完成整理工作.假设每个人的工作效率相同那么先安排整理的人员是多少?17.某学校实行学案式教学需印制若干份数学学案印刷厂有甲、乙两种收费方式甲种方式:收制版费元每印一份收印刷费元乙种方式:没有制版费每印一份收印刷费元若数学学案需印刷份.(1)填空:按甲种收费方式应收费元按乙种收费方式应收费元(2)若该校一年级需印份选用哪种印刷方式合算?(3)印刷多少份时甲、乙两种收费方式一样多?18.蔬菜公司采购了若干吨的某种蔬菜计划加工之后销售若单独进行粗加工需要20天才能完成若单独进行精加工需要30天才能完成已知每天单独粗加工比单独精加工多生产10吨.(1)求公司采购了多少吨这种蔬菜?(2)据统计这种蔬菜经粗加工销售每吨利润2000元经精加工后销售每吨利润涨至2500元.受季节条件限制公司必须在24天内全部加工完毕由于两种加工方式不能同时进行公司为尽可能多获利安排将部分蔬菜进行精加工后其余蔬菜进行粗加工并恰好24天完成加工的这批蔬菜若全部售出求公司共获得多少元的利润?参考答案:1.A2.C3.D4.C5.A6.C7.C8.D9.-110.20x=15(x+4)-1011.90012.613.2014.(1)解:(2)解:15.解:解方程得:则方程的解为:将代入得:解得:16.解:设先安排x人进行整理根据题意可得:解得:x=6答:先安排6人进行整理17.(1)(2)把代入甲种收费方式应收费元把代入乙种收费方式应收费元因为故答案为:甲种印刷方式合算答:若该校一年级需印份选用甲种印刷方式合算.(3)根据题意可得:解得: .答:印刷份时两种收费方式一样多.18.(1)设这家公司采购这种蔬菜共x吨根据题意得:解得:x=600答:该公司采购了600吨这种蔬菜.(2)设精加工y吨则粗加工(600-y)吨根据题意得:解得:y=240600-y=600-240=360(吨)∴240×2500+360×2000=1320000(元)答:该公司共获得1320000元的利润。
人教版数学七年级上册 第3章 一元一次方程单元测试试题(一)
一元一次方程单元测试试题(一)一.选择题1.方程4x=﹣2的解是()A.x=﹣2B.x=2C.x=﹣D.x=2.2020年初新冠疫情肆虐,社会经济受到严重影响.地摊经济是就业岗位的重要来源.小李把一件标价60元的T恤衫,按照8折销售仍可获利10元,设这件T恤的成本为x元,根据题意,下面所列的方程正确的是()A.60×0.8﹣x=10B.60×8﹣x=10C.60×0.8=x﹣10D.60×8=x﹣103.下列变形中正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣5C.方程t=,未知数系数化为1,得t=1D.方程=x化为=x4.某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母正好配套,设有x名工人生产螺钉,其他工人生产螺母,则根据题意可列方程为()A.2000x=1200(22﹣x)B.2×1200x=2000(22﹣x)C.2×2000x=1200(22﹣x)D.1200x=2000(22﹣x)5.某书店把一本新书按标价的八折出售,仍可获利10%,若该书的进价为24元,则标价为()A.30元B.31元C.32元D.33元6.如图,正方形ABCD的边长是2个单位,一只乌龟从A点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在()A.点A B.点B C.点C D.点D7.下列方程:①y=x﹣7;②2x2﹣x=6;③m﹣5=m;④=1;⑤=1,⑥6x =0,其中是一元一次方程的有()A.2个B.3个C.4个D.5个8.下列等式变形正确的是()A.若﹣2x=5,则x=B.若3(x+1)﹣2x=1,则3x+1﹣2x=1C.若5x﹣6=﹣2x﹣8,则5x+2x=8+6D.若,则2x+3(x﹣1)=69.疫情无情人有情,爱心捐款传真情.某校三个年级为疫情重灾区捐款,经统计,七年级捐款数占全校三个年级捐款总数的,八年级捐款数是全校三个年级捐款数的平均数,已知九年级捐款1964元,求其他两个年级的捐款数.若设七年级捐款数为x元,则可列方程为()A.x+x+1964=x B.x+x+1964=xC.x+x+1964=x D.x+x+1964=3x10.把1~9这9个数填入3×3方格中,使其任意一行,任意一列及两条对角线上的数之和都相等,这样便构成了一个“九宫格”.它源于我国古代的“洛書”(图①),是世界上最早的“幻方”.图②是仅可以看到部分数值的“九宫格”,则其中x的值为()A.1B.3C.4D.6二.填空题11.已知关于x的一元一次方程mx=5x﹣2的解为x=2,则m值为.12.某商贩卖出两双皮鞋,相比进价,一双盈利30%,另一双亏本10%,两双共卖出200元.商贩在这次销售中要有盈利,则亏本的那双皮鞋的进价必须低于元.13.解方程5(x﹣2)=6(﹣).有以下四个步骤,其中第①步的依据是.解:①去括号,得5x﹣10=3x﹣2.②移项,得5x﹣3x=10﹣2.③合并同类项,得2x=8.④系数化为1,得x=4.14.防控新冠肺炎疫情期间.某药店在市场抗病毒药品紧缺的情况下,将某药品提价后,使价格翻一番(即为原价的2倍),物价部门查处后,其价格降到比原价高10%.则该药品降的百分比是.15.新定义:对非负数x“四舍五入”到个位的值记为(x).即当n为非负整数时,若n﹣≤x<n+则(x)=n.如(0.46)=0,(3.67)=4.给出下列关于(x)的结论:①(1.493)=1;②(2x)=2(x);③若(x﹣1)=4,则x的取值范围是9≤x<11;④当x≥0,m为非负整数时,有(m+2020x)=m+(2020x);其中正确的结论有(填写所有正确的序号).三.解答题16.解方程:3(2x﹣1)﹣2(1﹣x)=0.17.如图,数轴上点A对应的有理数为12,点P以每秒1个单位长度的速度从点A出发,点Q以每秒2个单位长度的速度从原点O出发,且P、Q两点同时向数轴正方向运动.设运动时间为t秒.(1)填空:当t=2时,P,Q两点对应的有理数分別为,,PQ=.(2)当PQ=8时,求t的值.18.王莉骑自行车从A地到B地,陈平骑自行车从B地到A地,两人都沿同一公路匀速前进,已知两人在上午8时同时出发,到上午10时,两人还相距24km,到中午12时,两人又相距24km.求A、B两地间的路程.某车间有24名工人,每人每天平均生产螺栓12个或螺母18个,两个螺栓配三个螺母.为了使每天的产品刚好配套,应该分配多少名工人生产螺栓,多少名工人生产螺母?(2)某校举行元旦汇演,七(01)、七(02)班各需购买贺卡70张,已知贺卡的价格如下:50张以上购买贺卡数不超过30张30张以上不超过50张每张价格3元 2.5元2元(ⅰ)若七(01)班分两次购买,第一次购买24张,第二次购买46张,七(02)班一次性购买贺卡70张,则七(01)班、七(02)班购买贺卡费用各是多少元?哪个班费用更节省?省多少元?(ⅱ)若七(01)班分两次购买贺卡共70张(第二次多于第一次),共付费150元,则第一次、第二次分别购买贺卡多少张?参考答案与试题解析一.选择题1.【解答】解:方程4x=﹣2,解得:x=﹣.故选:C.2.【解答】解:设这件T恤的成本为x元,根据题意,可得:60×0.8﹣x=10.故选:A.3.【解答】解:方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,故选项A变形错误;方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,故选项B变形错误;方程t=,未知数系数化为1,得t=,故选项C变形错误;方程=x化为=x,利用了分数的基本性质,故选项D正确.故选:D.4.【解答】解:∵有x名工人生产螺钉,∴有(22﹣x)名工人生产螺母.∵每天生产螺母的总数是生产螺钉总数的2倍,∴2×1200x=2000(22﹣x).故选:B.5.【解答】解:设这本新书的标价为x元,依题意得:0.8x﹣24=24×10%,解得:x=33.故选:D.6.【解答】解:设运动x秒后,乌龟和兔子第2020次相遇,依题意,得:2x+6x=2×4×2020,解得:x=2020,∴2x=4040.又∵4040÷(2×4)=505,505为整数,∴乌龟和兔子第2020次相遇在点A.故选:A.7.【解答】解:一元一次方程有m﹣5=m,=1,6x=0,共3个,故选:B.8.【解答】解:A、若﹣2x=5,则x=﹣,错误,故本选项不符合题意;B、若3(x+1)﹣2x=1,则3x+3﹣2x=1,错误,故本选项不符合题意;C、若5x﹣6=﹣2x﹣8,则5x+2x=﹣8+6,错误,故本选项不符合题意;D、若+=1,则2x+3(x﹣1)=6,正确,故本选项符合题意;故选:D.9.【解答】解:由题意可得,七年级捐款数为x元,则三个年级的总的捐款数为:x÷=x,故八年级的捐款为:,则x++1964=x,故选:A.10.【解答】解:由题意,可得8+x=2+7,解得x=1.故选:A.二.填空题11.【解答】解:∵关于x的一元一次方程mx=5x﹣2的解为x=2,∴2m=10﹣2,解得:m=4.故答案为:4.12.【解答】解:设亏本的那双皮鞋的进价为x元,则亏本的那双皮鞋的售价为(1﹣10%)x元,盈利的那双皮鞋的售价为[200﹣(1﹣10%)x]元,盈利的那双皮鞋的进价为元,依题意,得:(1﹣10%)x﹣x+[200﹣(1﹣10%)x]﹣>0,解得:x<150.故答案为:150.13.【解答】解:第①步去括号的依据是:乘法分配律.故答案是:乘法分配律.14.【解答】解:设该药品的原价为a元,降价的百分比为x,依题意,得:2a(1﹣x)=(1+10%)a,解得:x=0.45=45%.故答案为:45%.15.【解答】解:①(1.493)=1,故①符合题意;②(2x)≠2(x),例如当x=0.3时,(2x)=1,2(x)=0,故②不符合题意;③若(x﹣1)=4,则4﹣x﹣1<4+,解得:9≤x<11,故③符合题意;④m为非负整数,故(m+2020x)=m+(2020x),故④符合题意;综上可得①③④正确.故答案为:①③④.三.解答题16.【解答】解:去括号,得6x﹣3﹣2+2x=0,移项,得6x+2x=3+2,合并同类项,得8x=5,系数化为1,得x=.17.【解答】解:(1)∵2×2=4,12+2×1=14,∴当t=2时,P,Q两点对应的有理数分别是4,14,∴PQ=14﹣4=10.故答案为:4;14;10.(2)当运动t秒时,P、Q两点对应的有理数分别为12+t,2t.①当点P在点Q右侧时:∵PQ=8,∴(12+t)﹣2t=8,解得t=4.②当点P在点Q的左侧时:∵PQ=8,∴2t﹣(12+t)=8,解得t=20.综上所述,当PQ=8时,t的值为4或20.18.【解答】解:设A、B两地间的路程为xkm,依题意,得:=,解得:x=72.答:A、B两地间的路程为72km.19.【解答】解:(1)设分配x名工人生产螺栓,则分配(24﹣x)名工人生产螺母,依题意,得:=,解得:x=12,∴24﹣x=12.答:应该分配12名工人生产螺栓,12名工人生产螺母.(2)(i)七(01)班购买贺卡费用为3×24+2.5×46=187(元),七(02)班购买贺卡费用为2×70=140(元).187>140,187﹣140=47(元)。
人教版数学七年级上册第3章一元一次方程单元测试(一)
七年级上册第3章单元测试(一)一.选择题(共10小题)1.下列方程中,是一元一次方程的是()A.2x=1B .﹣2=0C.2x﹣y=5D.x2+1=2x2.一元一次方程x+3x=8的解是()A.x=﹣1B.x=0C.x=1D.x=23.小马虎在做作业,不小心将方程2(x﹣3)﹣■=x+1中的一个常数污染了.怎么办?他翻开书后的答案,发现方程的解是x=9.请问这个被污染的常数是()A.1B.2C.3D.44.下列等式变形错误的是()A.由5x﹣7y=2,得﹣2﹣7y=5xB.由6x﹣3=x+4,得6x﹣3=4+xC.由8﹣x=x﹣5,得﹣x﹣x=﹣5﹣8D.由x+9=3x﹣1,得3x﹣1=x+95.定义运算“*”,其规则为a*b =,则方程4*x=4的解为()A.x=﹣3B.x=3C.x=2D.x=46.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x个苹果,则列出的方程是()第1页(共1页)A.3x+1=4x﹣2B.3x﹣1=4x+2C .D .7.在排成每行七天的日历表中取下一个3×3的方块(如图),若方块中所有日期之和为207,则n的值为()A.23B.21C.15D.128.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条,如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和为()A.215cm2B.250cm2C.300cm2D.320cm29.下列解方程去分母正确的是()A .由,得2x﹣1=3﹣3xB .由,得2x﹣2﹣x=﹣4C .由,得2 y﹣15=3yD .由,得3(y+1)=2 y+6第1页(共1页)10.设x、y 都是有理数,且满足方程(+)x+(+)y﹣4﹣π=0,则x﹣y的值为()A.18B.19C.20D.21二.填空题(共5小题)11.已知方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,则m =.12.六年级(1)班共有学生42人,其中男生比女生多4人,如果设这个班有男生x人,那么依题意可列方程.13.若关于x的方程3x﹣7=5x+2的解与关于y的方程4y+3a=7a﹣8的解互为倒数,则a 的值为.14.要使式子和的值不相等,则x不能取得值是.15.某书中一道方程题+1=x,⊕处印刷时被墨盖住了,查后面答案,这道题的解为x=﹣2.5,那么⊕处的数字为.三.解答题(共5小题)16.解方程(1)15﹣(7﹣5x)=2x+(5﹣3x)(2)第1页(共1页)17.设x、y是任意两个有理数,规定x与y之间的一种运算“⊕”为:x⊕y =(1)求1⊕(﹣1)的值;(2)若(m﹣2)⊕(m+3)=2,求m的值.18.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.000.90(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?第1页(共1页)(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)19.若关于x的一元一次方程ax=b(a≠0)的解恰好为a+b即x=a+b,则称该方程为“友好方程”.例如:方程2x=﹣4的解为x=﹣2,而﹣2=﹣4+2,则方程2x=﹣4为“友好方程”.(1)①﹣2x=4,②3x=﹣4.5;③x=﹣1三个方程中,为“友好方程”的是(填写序号)(2)若关于x的一元一次方程3x=b是“友好方程”,求b的值;(3)若关于x的一元一次方程﹣2x=2m+1是“友好方程”,求m的值.20.【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=.(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB.【深入研究】第1页(共1页)如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度;(4)在图2中,点P、Q分别从点O、C位置同时出发,分别以每秒2个单位长度、每秒1个单位长度的速度向右匀速运动,运动时间为t秒,点P追上点Q时,停止运动,当P、C、Q三点中某一点为其余两点所构成线段的圆周率点时,请直接写出t的值.第1页(共1页)参考答案一.选择题(共10小题)1.解:A、2x=1是一元一次方程,故此选项符合题意;B 、﹣2=0中,是分式,不是整式,不是一元一次方程,故此选项不符合题意;C、2x﹣y=5含有两个未知数,不是一元一次方程,故此选项不符合题意;D、x2+1=2x是一元二次方程,不是一元一次方程,故此选项不符合题意;故选:A.2.解:方程合并同类项得:4x=8,解得:x=2,故选:D.3.解:设被污染的数字为y.将x=9代入得:2×6﹣y=10.解得:y=2.故选:B.4.解:∵5x﹣7y=2,∴﹣2﹣7y=﹣5x,∴选项A符合题意;∵6x﹣3=x+4,第1页(共1页)∴6x﹣3=4+x,∴选项B不符合题意;∵8﹣x=x﹣5,∴﹣x﹣x=﹣5﹣8,∴选项C不符合题意;∵x+9=3x﹣1,∴3x﹣1=x+9,∴选项D不符合题意.故选:A.5.解:根据题中的新定义化简得:=4,去分母得:8+x=12,解得:x=4,故选:D.6.解:∵设共有x个苹果,∴每个小朋友分3个则剩1个时,小朋友的人数是:,若每个小朋友分4个则少2个时,小朋友的人数是:,∴,第1页(共1页)故选:C.7.解:这九个日期分别为:n﹣8,n﹣7,n﹣6,n﹣1,n,n+1,n+6,n+7,n+8,∴所有日期之和=9n,由题意可得9n=207,∴n=23,故选:A.8.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x﹣5)cm,宽是6cm,则5x=6(x﹣5),解得:x=3030×5×2=300(cm2),答:两个所剪下的长条的面积之和为300cm2.故选:C.9.解:A 、由,得2x﹣6=3﹣3x,此选项错误;B 、由,得2x﹣4﹣x=﹣4,此选项错误;C 、由,得5y﹣15=3y,此选项错误;D 、由,得3(y+1)=2y+6,此选项正确;故选:D.10.解:∵x和y 满足(+)x+(+)y﹣4﹣π=0,第1页(共1页)可变形为:,∵x和y都是有理数,则可得:,整理得:,①﹣②得:x﹣y=18,故选:A.二.填空题(共5小题)11.解:∵方程(m﹣2)x|m|﹣1+7=0是关于x的一元一次方程,∴m﹣2≠0且|m|﹣1=1,解得m=﹣2.故答案为:﹣2.12.解:设这个班有男生x人,则有女生(x﹣4)人,依题意,得:x+(x﹣4)=42.故答案为:x+(x﹣4)=42.13.解:解方程3x﹣7=5x+2得x =﹣,根据题意得,方程4y+3a=7a﹣8的解为y =﹣,所以4×(﹣)+3a=7a﹣8,解得a =.第1页(共1页)故答案为.14.解:若﹣3与﹣1的值相等,即﹣3=﹣1,去分母得:9x+3﹣63=7﹣14x﹣21,移项合并得:23x=46,解得:x=2,则x≠2时,式子﹣3与﹣1的值不相等,故答案为:215.解:把x=﹣2.5代入方程得2﹣2.5⊕+3=﹣7.5,所以⊕=5.故答案为5.三.解答题(共5小题)16.解:(1)去括号得:15﹣7+5x=2x+5﹣3x,移项合并得:6x=﹣3,解得:x =﹣;(2)去分母得:5x﹣15﹣4x+6=10,移项合并得:x=19.17.解:(1)根据题中的新定义得:原式=3×1+4×(﹣1)﹣5第1页(共1页)=3﹣4﹣5=﹣6;(2)显然m﹣2<m+3,利用题中的新定义化简已知等式得:4(m﹣2)+3(m+3)﹣5=2,去括号得:4m﹣8+3m+9﹣5=2,移项合并得:7m=6,解得:m =.18.解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11第1页(共1页)当17<y<20时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.19.解:(1)﹣2x=4的解是x=2≠﹣2+4,即方程﹣2x=4不是“友好方程”,3x=﹣4.5的解是x=﹣1.5=3+(﹣4.5),即方程3x=﹣4.5是“友好方程”,x=﹣1的解是x=﹣2≠+(﹣1),即方程x=﹣1不是“友好方程”,故答案为:②;(2)∵关于x的一元一次方程3x=b是“友好方程”,∴=3+b,解得:b=﹣4.5;(3)∵关于x的一元一次方程﹣2x=2m+1是“友好方程”,=﹣2+(2m+1),解得:m =.20.解:(1)∵AC=3,BC=πAC∴BC=3π∴AB=AC+BC=3π+3第1页(共1页)故答案为:3π+3.(2)∵BC=πAC∴当BD=AC时,有AD=πBD即点D是线段AB的圆周率点故答案为:=.(3)由题意可知,点C表示的数是π+1若点M、N均为线段OC的圆周率点,不妨设M点离O点近,且OM=x,则x+πx=π+1解得:x=1∴MN=π+1﹣1﹣1=π﹣1.(4)由题意可知,点P、C、Q所表示的数分别为:2t、π+1、π+1+t当P、C、Q三点中某一点为其余两点所构成线段的圆周率点时,有以下四种情况:①点P在点C左侧,PC=πCQ∴π+1﹣2t=πt解得:t =;②点P在点C左侧,πPC=CQ∴π(π+1﹣2t)=t解得:t =;③点P在点C、点Q之间,且πPC=PQ∴π(2t﹣π﹣1)=π+1+t﹣2t第1页(共1页)解得:t =④点P在点C、点Q之间,且PC=πPQ∴2t﹣π﹣1=π(π+1+t﹣2t)解得:t =.∴符合题意的t 的值为:、、、.第1页(共1页)。
七年级数学上册_一元一次方程测试卷及答案
一元一次方程测试卷【1 】一.填空题(每题3分,共30分)1.关于x的方程(k-1)x-3k=0是一元一次方程,则k_______.2.方程6x+5=3x的解是________.3.若x=3是方程2x-10=4a的解,则a=______.4.(1)-3x+2x=_______.(2)5m-m-8m=_______.5.一个两位数,十位数字是9,个位数比十位数字小a,则该两位数为_______.6.一个长方形周长为108cm,长比宽2倍多6cm,则长比广大_______cm.7.某服装成本为100元,订价比成本高20%,则利润为________元.8.某加工场出米率为70%的稻谷加工大米,现要加工大米1000t,设须要这种稻谷xt,则列出的方程为______.9.当m值为______时,453m的值为0.10.敌我两军相距14千米,敌军于1小时前以4千米/小时的速度逃跑,•现我军以7千米/小时的速度追击______小时后可追上敌军.二.选择题(每题3分,共30分)11.下列说法中准确的是()A.含有一个未知数的等式是一元一次方程B.未知数的次数都是1次的方程是一元一次方程C.含有一个未知数,并且未知数的次数都是一次的方程是一元一次方程D.2y-3=1是一元一次方程12.下列四组变形中,变形准确的是( )A .由5x+7=0得5x=-7B .由2x-3=0得2x-3+3=0C .由6x =2得x=13 D .由5x=7得x=3513.下列各方程中,是一元一次方程的是( )A .3x+2y=5B .y 2-6y+5=0C .13x-3=1x D .3x-2=4x-714.下列各组方程中,解雷同的方程是( )A .x=3与4x+12=0B .x+1=2与(x+1)x=2xC .7x-6=25与715x -=6 D .x=9与x+9=015.一件工作,甲单独做20小时完成,乙单独做12小时完成,现由甲独做4小时,剩下的甲.乙合做,还需几小时?设剩下部分要x 小时完成,下列方程准确的是( )44.1.120201220201244.1.1202012202012x x x x A B x x x x C D =--=+-=++=-+16.(2006,江苏泰州)若关于x 的一元一次方程2332x k x k ---=1的解为x=-1,则k 的值为( )A .27B .1C .-1311 D .017.一条公路甲队独修需24天,乙队需40天,若甲.•乙两队同时分离从两头开端修,( )天后可将全体修完.A .24B .40C .15D .1618.解方程1432x x ---=1去分母准确的是( ) A .2(x-1)-3(4x-1)=1 B .2x-1-12+x=1C .2(x-1)-3(4-x )=6D .2x-2-12-3x=619.或人从甲地到乙地,水路比公路近40千米,但乘汽船比汽车要多用3小时,•已知汽船速度为24千米/时,汽车速度为40千米/时,则水路和公路的长分离为( )A .280千米,240千米B .240千米,280千米C .200千米,240千米D .160千米,200千米20.一组学生去春游,估计共需用120元,后来又有2人介入进来,总费用降下来,•于是每人可少摊3元,设本来这组学生人数为x 人,则有方程为( )A . 120x=(x+2)xB .1202x x =+120120120120.3.322C D x x x x -==+++三.解方程(共28分)21.(1)53-6x=-72x+1;(5分) (2)y-12(y-1)=23(y-1);(5分)(3)34 [43(12x-14)-8]=32x+1;(5分) (4)0.20.110.30.2x x -+-=.(5分) 22.(8分)若关于x 的方程2x-3=1和2x k-=k-3x 有雷同的解,求k 的值.四.运用题(每题8分,共32分)23.(8分)某校八年级近期实施小班教授教养,若每间教室安插20逻辑学生,则缺乏3•间教室;若每间教室安插24逻辑学生,则空出一间教室.问这所黉舍共有教室若干间?24.(8分)如图,有9个方格,请求每个方格填入不合的数,使得每行.每列.•每条对角线上三个数的和相等,问图中的m是若干?25.(8分)已知甲数与乙数的比是1:3,甲数与丙数的比是2:5,并且甲数.乙数和丙数的和是130.求这三个数.26.(8分)某音乐厅蒲月初决议在暑假时代举行学生专场音乐会,入场券分为集团票和零售票,个中集团票占总数的23,若提前购票,则赐与不合程度的优惠,在蒲月份内,集团票每张12元,共售出集团票数的35;零售票每张16元,•共售出零售票数的一半,假如在六月份内,集团票按每张16元出售,•并筹划在六月份售出全体余票,那么零售票应按每张若干元订价才干使这两个月的票款收入持平?答案1.≠1 2.x=-53 3.-1 4.(1)-x (2)-4m 5.99-a 6.22 7.20 ••8.•0.7x=1000 9.54 10.6 11.D 12.A 13.D 14.C 15.C 16.B 17.C18.C19.B (点拨:设水路x 千米,有方程402440x x +=+3) 20.C21.(1)x=415 (2)y=7 (3)x=-29114(4)22.4103x k =-=23.设黉舍有x 间教室,依题意得方程20(x+3)=24(x-1),解得x=21(间).24.设响应的方格中数为x 1,x 2,x 3,x 4,如图,由已知得m+x 1+x 2=m+x 3+x 4=x 1+x 3+13=x 2+19+x 4,由此得2m+x 1+x 2+x 3+x 4=13+19+x 1+x 2+x 3+x 4.∴2m=13+19,即m=16.25.设甲数是x,则乙数为3x,丙数为25x.依据题意有 x+3x+25x=130.所以甲数为20,乙数为60,丙数为50.26.设总票数a 张,六月份零售标价为x 元/张,依题意,得12×35×23a+16×12×13a=16×415a+16ax∴x=19.2,故六月份零售票应按每张19.2元订价.。
数学人教版2024版七年级初一上册 5.2 解一元一次方程 课时练01测试卷含答案
第五章 一元一次方程5.2 解一元一次方程一、单选题1.在解方程123123x x -+-=时,去分母正确的是( )A .()()312231x x --+=B .()()312231x x -++=C .()()312236x x -++=D .()()312236x x --+=2.解方程21101136x x ++-=时,去分母正确的是( )A .21(101)1x x +-+=B .411016x x +-+=C .421016x x +--=D .2(21)(101)1x x +-+=3.已知关于x 的一元一次方程4231x m x +=+ 和3261x m x +=+的解相同,则m 的值为( )A .12B .1C .12-D .1-4.下列各题正确的是 ( )A .由743x x =-移项得743x x -=B .由213132x x --=+去分母得()()221133x x -=+-C .由()()221331x x ---=去括号得42391x x ---=D .由()217x x +=+去括号、移项、合并同类项得5x =5.方程43x x -=的解是( )A .34B .43C .1D .1-6.将 ()()()312351x x x ---=- 去括号得( )A .31235x x x ---=-B .31235x x x --+=-C .332655x x x ---=-D .332655x x x--+=-7.将方程 1321323x x x ++-=-去分母, 得( )A .()()213322x x x +-+=-B .()()12133263x x x+-+=-C .()()2133226x x x+-+=-D .以上都不对8.下列各方程,变形不正确的是( )A .34152x x -+-=去分母化为2(3)5(4)10x x --+=B .2(3)5(4)10x x --+=去括号为:2352010x x --+=C .2352010x x --+=移项得:2510203x x -=-+D .2510203x x -=-+合并同类项得:37x -=-二、填空题9.若式子 3x 与210x -互为相反数,则 x = .10.已知3x =是方程211x m +=的解,则m = .11.已知关于x 的方程213x -=与3102a x --=有相同的解,则a = .12.已知5x =-是方程432x x a +=+解,则a = .13.已知方程17ax -=与方程2610x +=的解相同,则a 的值为 .14.如果关于 x 的方程 ()12m x += 无解,那么 m 的取值范围是 .15.若代数式1m -值与22m -互为相反数,则m 的值是 .16.若关于x 的方程()22312x x -=-和()821k x -=+的解相同,则k 的值为 .三、解答题17.解方程:(1)2(1)25(2)x x -=-+;(2)5172124x x ++-=.18.解方程(1)37322x x+=-(2)()()320.526x x ---=-19.解方程:(1)()()2831x x +=-;(2)152124x x ---=.20.解方程:(1)377245x x -+-=-(2)12310.32x x --=-参考答案1.D2.C3.A4.D5.C6.D7.C8.B9.210.411.4312.7-13.414.1m =-15.116.113/23317.(1)解: 2(1)25(2)x x -=-+,∴222510x x -=--,∴252102x x +=-+,∴76x =-,∴67x =-;(2)解:5172124x x ++-=,∴2(51)(72)4x x +-+=,∴102724x x +--=,∴107422x x -=-+,∴34x =,∴43x =.18.(1)解:37322x x +=-移项得:32327x x +=-,合并同类项得:525x =,系数化为1得:5x =;(2)解:()()320.526x x ---=-,整理得:()()320.526x x -+-=-,∴()3.526x -=-,∴1227x -=-,解得:27x =19.(1)解:()()2831x x +=-,21633x x +=-,19x -=-,解得,19x =;(2)解:152124x x ---=,()21452x x --=-,22452x x --=-,34x -=,解得,43x =-.20.(1)解:377245x x -+-=-去分母,()()4053747x x --=-+去括号,401535428x x -+=--移项,154284035x x -+=---合并同类项,11103x -=-化系数为1,10311x =;(2)解:12310.32x x--=-去分母,()()2016323x x -=--去括号,2020669x x -=-+移项,2062069x x +=++合并同类项,2635x =化系数为1,3526x =.。
第4章 一元一次方程(压轴必刷30题3种题型专项训练)(原卷版)-2024-2025学年七年级数学上
第4章一元一次方程(压轴必刷30题3种题型专项训练)一.一元一次方程的解(共2小题)1.(2022秋•启东市校级月考)我们规定,若关于x的一元一次方程ax=b的解为x=b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上述规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程5x=m+1是差解方程,求m的值.2.(2022秋•宿城区期中)我们规定,若关于x的一元一次方程ax=b的解为b﹣a,则称该方程为“差解方程”,例如:2x=4的解为2,且2=4﹣2,则方程2x=4是差解方程.请根据上边规定解答下列问题:(1)判断3x=4.5是否是差解方程;(2)若关于x的一元一次方程6x=m+2是差解方程,求m的值.二.解一元一次方程(共3小题)3.(2021秋•高新区期末)用“*”定义一种新运算:对于任意有理数a和b,规定a*b=ab2+2ab+a.如:1*3=1×32+2×1×3+1=16(1)求2*(﹣2)的值;(2)若(其中x为有理数),试比较m,n的大小;(3)若=a+4,求a的值.4.(2022秋•工业园区校级月考)如图,小明在一张纸面上画了一条数轴,折叠纸面,使表示数﹣1的点与表示数5的点重合,请你回答以下问题:(1)表示数﹣2的点与表示数的点重合;表示数7的点与表示数的点重合.(2)若数轴上点A在点B的左侧,A,B两点之间的距离为12,且A,B两点按小明的方法折叠后重合,则点A表示的数是;点B表示的数是;(3)已知数轴上的点M分别到(2)中A,B两点的距离之和为2022,求点M表示的数是多少?5.(2021秋•溧阳市期末)阅读理解学:我们都应该知道,任何无限循环小数都应该属于有理数,那是因为所有无限循环小数都可以化成分数形式,而分数属于有理数.那么无限循环小数怎么化成分数呢?下面的学习材料会告诉我们原因和方法:问题:利用一元一次方程将0.化成分数.设0.=x.由0.=0.7777…,可知10×0.=7777…=7+0.7777…=7+0.,即10x=7+x.可解得,即0.=.(1)将0.直接写成分数形式为.(2)请仿照上述方法把下列小数化成分数,要求写出利用一元一次方程进行解答的过程.①0.;②0.1.三.一元一次方程的应用(共25小题)6.(2022秋•高新区期末)甲、乙两个旅行团同时去苏州旅游,已知乙团人数比甲团人数多4人,两团人数之和恰等于两团人数之差的18倍.(1)问甲、乙两个旅行团的人数各是多少?(2)若乙团中儿童人数恰为甲团中儿童人数的3倍少2人,某景点成人票价为每张100元,儿童票价是成人票价的六折,两旅行团在此景点所花费的门票费用相同,求甲、乙两团儿童人数各是多少?7.(2022秋•兴化市校级期末)甲、乙两班学生到集市上购买苹果,苹果的价格如表:50千克以上购买苹果数不超过30千克30千克以上但不超过50千克每千克价格3元 2.5元2元甲班分两次共购买苹果80千克(第二次多于第一次),共付出185元,乙班则一次购买苹果80千克.(1)乙班比甲班少付出多少元?(2)甲班第一次、第二次分别购买苹果多少千克?8.(2023秋•海门市校级月考)已知A、B、C三点在同一条数轴上,点A、B表示的数分别为﹣2,18,点C在原点右侧,且AC=AB.(1)A、B两点相距个单位;(2)求点C表示的数;(3)点P、Q是该数轴上的两个动点,点P从点A出发,沿数轴以每秒1个单位的速度向右运动,点Q 从点B出发,沿数轴以每秒2个单位的速度向左运动,它们同时出发,运动时间为t秒,求当t为何值时,P、Q两点到C点的距离相等?9.(2022秋•建邺区校级期末)扬子江药业集团生产的某种药品的长方体包装盒的侧面展开图如图所示.根据图中数据,如果长方体盒子的长比宽多4cm,求这种药品包装盒的体积.10.(2023秋•滨海县月考)生活与数学日一二三四五六12345678910111213141516171819202122232425262728293031(1)山姆同学在某月的日历上圈出2×2个数,如图1,正方形的方框内的四个数的和是48,那么这四个数是.(2)小丽也在上面的日历上圈出2×2个数,如图2,斜框内的四个数的和是46,则它们分别是.(3)刘莉也在日历上圈出5个数,呈十字框形,如图3,它们的和是55,则中间的数是.(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号?11.(2022秋•兴化市校级月考)结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是.②数轴上表示﹣1和﹣5的两点之间的距离是.③数轴上表示﹣3和4的两点之间的距离是.(2)归纳:一般的,数轴上表示数a和数b的两点之间的距离等于.(3)应用:①若数轴上表示数a的点位于﹣4与3之间,则|a+4|+|a﹣3|的值=.②若a表示数轴上的一个有理数,且|a﹣1|=|a+3|,则a=.③若a表示数轴上的一个有理数,|a﹣1|+|a+2|的最小值是.④若a表示数轴上的一个有理数,且|a+3|+|a﹣5|>8,则有理数a的取值范围是.(4)拓展:已知,如图2,A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为100.若当电子蚂蚁P 从A点出发,以4个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3单位/秒的速度向左运动,求经过多长时间两只电子蚂蚁在数轴上相距20个单位长度,并写出此时点P所表示的数.12.(2022秋•海安市月考)已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|+(b﹣16)2=0.(1)求此时刻快车头A与慢车头C之间相距单位长度;(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即P A+PC+PB+PD 为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.13.(2022秋•淮阴区期中)据电力部门统计,每天8:00至21:00是用电高峰期,简称“峰时”,21:00至次日8:00是用电低谷期,简称“谷时”.为了缓解供电需求紧张的矛盾,我市电力部门拟逐步统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表: 时间换表前换表后峰时(8:00﹣21:00)谷时(21:00﹣8:00)电价每度0.52元每度0.55元每度0.30元小明家对换表后最初使用的95度电进行测算,经测算比换表前使用95度电节约了5.9元,问小明家使用“峰时”电和“谷时”电分别是多少度?14.(2022秋•姜堰区期中)阅读理解:M 、N 、P 为数轴上三点,若点P 到M 的距离是点P 到N 的距离的k (k >0)倍,即满足PM =k .PN 时,则称点P 关于M 、N 的“相对关系值”为k .例如,当点M 、N 、P 表示的数分别为0、2、3时,PM =3PN ,则称点P 关于M 、N 的“相对关系值”为3;PN =MN ,则称点N 关于P 、M 的“相对关系值”为.如图,点A 、B 、C 、D 在数轴上,它们所表示的数分别为﹣1、2、6、﹣6.(1)原点O 关于A 、B 的“相对关系值“为a ,原点O 关于B 、A 的“相对关系值”为b ,则a = ,b = .(2)点E 为数轴上一动点,点E 所表示的数为x ,若x 满足|x +3|+|x ﹣2|=5,且点E 关于C 、D 的“相对关系值”为k ,则k 的取值范围是 .(3)点F 从点B 出发,以每秒1个单位的速度向左运动,设运动时间为t (t >0)秒,当经过t 秒时,C 、D 、F 三点中恰有一个点关于另外两点的“相对关系值”为2,求t 的值.15.(2022秋•苏州期中)【问题背景】落实“双减”政策后,某校开展了丰富多彩的科技活动.如图1,电子蚂蚁P 、Q 在长18分米的赛道AB 上同时相向匀速运动,电子蚂蚁P 从A 出发,速度为4分米/分钟,电子蚂蚁Q从B出发,速度为2分米/分钟,当电子蚂蚁P到达B时,电子蚂蚁P,Q停止运动.经过几分钟P,Q之间相距6分米?【问题解决】小辰同学在学习《有理数》之后,发现运用数形结合的方法建立数轴可以较快地解决上述问题:如图2,将点A与数轴的原点O重合,点B落在正半轴上.设运动的时间为t(0≤t≤4.5).(1)t分钟后点P在数轴上对应的数是;点Q对应的数是;(用含t的代数式表示)(2)我们知道,如果数轴上M,N两点分别对应数m,n,则MN=|m﹣n|.试运用该方法求经过几分钟P,Q之间相距6分米?(3)在赛道AB上有一个标记位置C,AC=6.若电子蚂蚁P与标记位置C之间的距离为a,电子蚂蚁Q与B之间的距离为b.在运动过程中,是否存在某一时刻t,使得a+b=4?若存在,请求出运动的时间;若不存在,请说明理由.16.(2022秋•海陵区校级月考)阅读理解,完成下列各题:定义:已知A、B、C为数轴上任意三点,若点C到点A的距离是它到点B的距离的3倍,则称点C是[A,B]的3倍点,例如:如图1,点C是[A,B]的3倍点,点D不是[A,B]的3倍点,但点D是[B,A]的3倍点,根据这个定义解决下面问题:(1)在图1中,点A[C,D]的3倍点(填写“是”或“不是”);[D,C]的3倍点是点(填写A或B或C或D);(2)如图2,M、N为数轴上两点,点M表示的数是﹣3,点N表示的数是5,若点E是[M,N]的3倍点,则点E表示的数是;(3)若P、Q为数轴上两点,点P在点Q的左侧,PQ=a,一动点H从点P出发,以每秒3个单位长度的速度沿数轴向右运动,设运动时间为t秒,求当t为何值时,点H恰好是P和Q两点的3倍点?(用含a的代数式表示)17.(2022秋•昆山市校级月考)如图所示,将连续的奇数1,3,5,7…排列成如下的数表,用十字形框框出5个数.探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为,这说明被十字框框中的五个奇数的和一定是正整数p(p>1)的倍数,这个正整数p是.探究规律二:落在十字框中间且位于第二列的一组奇数是15,27,39…,则这一组数可以用整式表示为12m+3 (m为正整数),同样,落在十字框中间且位于第三列的一组奇数可以表示为;(用含m的式子表示)运用规律(1)被十字框框中的五个奇数的和可能是625吗?若能,请求出这五个数,若不能,请说明理由.(2)请问(1)中的十字框中间的奇数落在第几行第几列?18.(2022秋•广陵区校级月考)从泰州乘“K”字头列车A、“T”字头列车B都可直达南京,已知A车的平均速度为80km/h,B车的平均速度为A车的1.5倍,且行完全程B车所需时间比A车少40分钟.(1)求泰州至南京的铁路里程;(2)若两车以各自的平均速度分别从泰州、南京同时相向而行,问经过多少时间两车相距40km?19.(2022秋•江都区月考)某地的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润4000元,经精加工后销售,每吨利润7000元.当地一家公司现有这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可加工16吨,如果对蔬菜进行精加工,每天可加工6吨,但每天两种方式不能同时进行.受季节等条件的限制,必须用15天时间将这批蔬菜全部销售或加工完毕.为此,公司研制了三种方案:方案一:将蔬菜全部进行粗加工;方案二:尽可能地对蔬菜进行精加工,没来得及加工的蔬菜,在市场上直接出售;方案三:将一部分蔬菜进行精加工,其余蔬菜进行粗加工,并刚好15天完成.如果你是公司经理,你会选择哪一种方案,说说理由.20.(2023秋•锡山区期中)如图,数轴上有A、B、C、D四点,点D对应的数为x,已知OA=5,OB=3,CD=2,P、Q两点同时从原点O出发,沿着数轴正方向分别以每秒钟a和b个单位长度的速度运动,且a<b.点Q到点D后立即朝数轴的负方向运动,速度不变,在点C处与点P相遇,相遇后点P也立即朝着数轴的负方向运动,且P点的速度变为2a,Q点的速度不变.(1)P、Q两点相遇时,点P前进的路程为;Q、P两点相遇前的速度比=;(用含有x的式子表示)(2)若点B为线段AD的中点,①此时,点D表示的数x=;②相遇后,当点P到达点A处时,点Q在原点O的(填“左”或“右”)侧,并求出此时点Q在数轴上所表示的数字;(3)在(2)的条件下,当点P到达点A处时,立即掉头朝数轴的正方向运动,速度变为3a,点Q的速度始终不变,这两点在点M处第二次相遇,则点M在数轴上所表示的数字为.21.(2023秋•沭阳县校级月考)探索规律:将连续的偶2,4,6,8,…,排成如图:(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五位数的和能等于2010吗?如能,写出这五位数,如不能,说明理由.22.(2021秋•姑苏区校级期末)为增强公民节水意识,合理利用水资源,某市采用“阶梯收费”,标准如下表:用水量单价不超过6m3的部分2元/m3超过6m3不超过10m3的部分4元/m3超出10m3的部分8元/m3譬如:某用户2月份用水9m3,则应缴水费:2×6+4×(9﹣6)=24(元)(1)某用户3月用水15m3应缴水费多少元?(2)已知某用户4月份缴水费20元,求该用户4月份的用水量;(3)如果该用户5、6月份共用水20m3(6月份用水量超过5月份用水量),共交水费64元,则该户居民5、6月份各用水多少立方米?23.(2021秋•惠山区期末)【探索新知】如图1,点C将线段AB分成AC和BC两部分,若BC=πAC,则称点C是线段AB的圆周率点,线段AC、BC称作互为圆周率伴侣线段.(1)若AC=3,则AB=;(2)若点D也是图1中线段AB的圆周率点(不同于C点),则AC DB;(填“=”或“≠”)【深入研究】如图2,现有一个直径为1个单位长度的圆片,将圆片上的某点与数轴上表示1的点重合,并把圆片沿数轴向右无滑动地滚动1周,该点到达点C的位置.(3)若点M、N均为线段OC的圆周率点,求线段MN的长度.(4)在图2中,若点D在射线OC上,且线段CD与图中以O、C、D中某两点为端点的线段互为圆周率伴侣线段,直接写出D点所表示的数.24.(2022秋•江都区校级月考)元旦期间,某商场打出促销广告(如下表)优惠条件一次性购物不超过200元一次性购物超过200元但不超过一次性购物超过500元500元优惠办法无优惠全部按9折优惠其中500元仍按9折优惠,超过500元部分按8折优惠小明妈妈第一次购物用了134元,第二次购物用了490元.(1)小明妈妈第一次所购物品的原价是元;(2)小明妈妈第二次所购物品的原价是多少元?(写出解答过程)(3)若小明妈妈将两次购买的物品一次性买清,可比两次购买节省多少元?25.(2022秋•梁溪区校级月考)在数轴上A点表示数a,B点表示数b,且a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)如果M、N为数轴上两个动点,点M从点A出发,速度为每秒1个单位长度;点N从点B出发,速度为点A的3倍,它们同时向左运动,点O为原点.当运动2秒时,点M、N对应的数分别是、.当运动t秒时,点M、N对应的数分别是、.(用含t的式子表示)运动多少秒时,点M、N、O中恰有一个点为另外两个点所连线段的中点?(可以直接写出答案)26.(2022秋•兴化市校级月考)如图,已知A、B分别为数轴上的两点,A点对应的数为﹣20,B点对应的数为80.(1)请直接写出AB的中点M对应的数;(2)现在有一只电子蚂蚁P从A点出发,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以3个单位/秒的速度向左运动,设两只电子蚂蚁在数轴上的C点相遇,请求出C点对应的数是多少;(3)若当电子蚂蚁P从A点出发时,以2个单位/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B 点出发,以3个单位/秒的速度向左运动,经过多长时间两只电子蚂蚁在数轴上相距25个单位长度?27.(2022秋•昆山市校级月考)在购买足球赛门票时,设购买门票张数为x(张),现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位购买门票的价格为60元(总费用=广告赞助费+门票费).方案二:若购买的门票数不超过100张,每张100元,若所购门票超过100张,则超出部分按八折计算.解答下列问题:(1)方案一中,用含x的代数式来表示总费用为.方案二中,当购买的门票数x不超过100张时,用含x的代数式来表示总费用为.当所购门票数x超过100张时,用含x 的代数式来表示总费用为.(2)甲、乙两单位分别采用方案一、方案二购买本次足球赛门票,合计700张,花去的总费用计58000元,求甲、乙两单位各购买门票多少张?28.(2021秋•江都区期中)把2100个连续的正整数1、2、3、…、2100,按如图方式排成一个数表,如图用一个正方形框在表中任意框住4个数,设左上角的数为x.(1)另外三个数用含x的式子表示出来,从小到大排列是;(2)被框住4个数的和为416时,x值为多少?(3)能否框住四个数和为324?若能,求出x值,若不能,说明理由;(4)从左到右,第1至第7列各数之和分别为a1、a2、a3、a4、a5、a6、a7,求7个数中最大的数与最小的数之差.29.(2021秋•秦淮区期中)生活与数学:(1)吉姆同学在某月的日历上圈出2×2个数,正方形的方框内的四个数的和是32,那么第一个数是;(2)玛丽也在日历上圈出2×2个数,斜框内的四个数的和是42,则它们分别是;(3)莉莉也在日历上圈出5个数,呈十字框形,它们的和是50,则中间的数是;(4)某月有5个星期日的和是75,则这个月中最后一个星期日是号;(5)若干个偶数按每行8个数排成图4:①图中方框内的9个数的和与中间的数有什么关系:;②汤姆所画的斜框内9个数的和为360,则斜框的中间一个数是;③托马斯也画了一个斜框,斜框内9个数的和为252,则斜框的中间一个数是.30.(2021秋•洪泽区校级月考)请根据图中提供的信息,回答下列问题:(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯.为了迎接新年,两家商场都在搞促销活动.甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.。
七年级数学一元一次方程测试题及答案
一元一次方程检测题一、选择题(共10小题,每小题3分,共30分)1.下列等式变形正确的是()A.如果s=12ab,那么b=2saB.如果12x=6,那么x=3C.如果x-3=y-3,那么x-y=0D.如2.则m3.4. C.6. 1.12a D.0.81a7、已知y=1是关于y 的方程2-31(m -1)=2y的解,则关于x 的方程m (x -3)-2=m 的解是( )A .1 B .6 C .34D .以上答案均不对8、一天,小明在家和学校之间行走,为了好奇,他测了一下在无风时的速度是50米/分,从家到学校用了15分钟,从原路返回用了18分钟20秒,设风的速度是x 米/分,则所列方程为( )A .)50(2.18)50(15x x -=+B .)50(2.18)50(15x x +=-9,)) 不增不减16分) 是方程,则14.当x=________时,代数式12x -与113x +-的值相等.15.5与x 的差的13比x 的2倍大1的方程是__________.16.若4a-9与3a-5互为相反数,则a 2-2a+1的值为_________.17.三个连续偶数的和为18,设最大的偶数为x,则可列方程______.18、请阅读下列材料:让我们来规定一种运算:bc ad d c b a -=,例如:243525432-=⨯-⨯=按照这种运算的规定,当x=______时,232121=-x x . 三、解答题(共7小题,共54分) 19.(7分) 解方程:1122(1)(1)x x x x ⎡⎤---=-⎢⎥; 20. 21. (8求22. (他以6钟,23. (24.(灾” (1 (2(3为25元和35元.答案 1.C 2.A3.C [点拔]2k-1=0则k=124.D[点拔]代入可得a-2-2a=10得a=-125.C6.D [点拔]设原价为x 则x ×0.9×0.9=a,得x=0.81a7.B [点拔] 把y=1代入2-31(m -1)=2y 解得m 。
人教版七年级数学《一元一次方程》计算题专项练习(含答案)
人教版七年级数学《一元一次方程》计算题专项练习学校:班级:姓名:得分:1.解方程:x﹣4=2x+3﹣x.2.解方程:2(x﹣1)﹣3(x+2)=12.3.解方程:=1﹣.4.解方程:.5.解方程:.7.解方程:2(x+8)=3(x﹣1)8.解方程:3(2x+3)=11x﹣6.9.解方程:8y﹣3(3y+2)=6.10.解方程:3﹣(5﹣2x)=x+2.11.解方程:=.12.解方程:+1=x﹣.13.解方程:3﹣(5﹣2x)=x+2.14. 解方程:.15.解方程:.16.解方程:﹣=1.17.解方程:=﹣1 18.解方程:4﹣3(2﹣x)=5x;19. 解方程:﹣2=x﹣.20.解方程:3(x+4)=5﹣2(x﹣1)21. 解方程:=1﹣.22.解方程:=﹣1.23.解方程:.24.解方程:=.25.解方程:.26.解方程:.人教版七年级数学《一元一次方程》计算题专项练习参考答案1.x﹣4=2x+3﹣x.【解答】解:去分母得,x﹣8=4x+6﹣5x,移项得,x﹣4x+5x=6+8,合并同类项得,2x=14,系数化为1得,x=7.2.解下列方程:2(x﹣1)﹣3(x+2)=12.【解答】解:去括号得,2x﹣2﹣3x﹣6=12,移项得,2x﹣3x=12+2+6,合并同类项得,﹣x=20,系数化为1得,x=﹣20.3.=1﹣.【解答】解:去分母得,2(x+3)=12﹣3(3﹣2x),去括号得,2x+6=12﹣9+6x,移项得,2x﹣6x=12﹣9﹣6,合并同类项得,﹣4x=﹣3,系数化为1得,x=.4..【解答】解:去分母得,6x﹣2(2x﹣1)=6+3(x﹣3),去括号得,6x﹣4x+2=6+3x﹣9,移项得,6x﹣4x﹣3x=6﹣9﹣2,合并同类项得,﹣x=﹣5,系数化为1得,x=5.5.解方程:.【解答】解:去分母得,(2x﹣5)﹣3(3x+1)=6,去括号得,2x﹣5﹣9x﹣3=6,移项得,2x﹣9x=6+5+3,合并同类项得,﹣7x=14,系数化为1得,x=﹣2.6.解方程:4x﹣3=2(x﹣1)【解答】解:4x﹣3=2(x﹣1)4x﹣3=2x﹣24x﹣2x=﹣2+32x=1x=7.2(x+8)=3(x﹣1)【解答】解:去括号,得2x+16=3x﹣3,移项、合并同类项,得﹣x=﹣19,化未知数的系数为1,得x=19.8.解方程:3(2x+3)=11x﹣6.【解答】解:3(2x+3)=11x﹣6,6x+9=11x﹣6,9+6=11x﹣6x,15=5x,x=3.9.解方程8y﹣3(3y+2)=6.【解答】解:8y﹣9y﹣6=6﹣y=12y=﹣1210.3﹣(5﹣2x)=x+2.【解答】解:3﹣(5﹣2x)=x+2,去括号得:3﹣5+2x=x+2,移项得:2x﹣x=2﹣3+5,解得:x=4.11.解方程:=.【解答】解:去分母,得4(x﹣2)=3(3﹣2x),去括号,得4x﹣8=9﹣6x,移项,得4x+6x=9+8,合并同类项,得10x=17,系数化为1,得x=.12.解方程:+1=x﹣.【解答】解:去分母得:2(x+1)+6=6x﹣3(x﹣1),去括号得:2x+2+6=6x﹣3x+3,移项合并得:﹣x=﹣5,解得:x=5.13.解方程:3﹣(5﹣2x)=x+2.【解答】解:去括号,得:3﹣5+2x=x+2,移项,得:2x﹣x=2﹣3+5,合并同类项得:x=4;14.解方程:.【解答】解:去分母,得:3(4﹣x)﹣2(2x+1)=6,去括号,得:12﹣3x﹣4x﹣2=6,移项,得:﹣3x﹣4x=6﹣12+2合并同类项得:﹣7x=﹣4,系数化成1得:x=.15..【解答】解:等式的两边同时乘以12,得4(x+1)=12﹣3(2x+1)…(2分)去括号、移项,得4x+6x=12﹣4﹣3…(4分)合并同类项,得10x=5…(5分)化未知数的系数为1,得…(6分)16.解方程:﹣=1.【解答】解:3(x﹣1)﹣4(x+2)=123x﹣3﹣4 x﹣8=123x﹣4 x=12+3+8x=﹣2317.解方程=﹣1【解答】解:去分母得:5(3x﹣1)=2(4x+2)﹣10移项得:15x﹣8x=4﹣10+5合并同类项得:7x=﹣1系数化为得:x=﹣.18.解方程:4﹣3(2﹣x)=5x;【解答】解:去括号得:4﹣6+3x=5x,移项、合并同类项得:﹣2x=2,系数化为1得:x=﹣1.19.解方程:﹣2=x﹣.【解答】解:去分母、去括号得:2x+2﹣12=6x﹣3x+3,移项、合并同类项得:﹣x=13,系数化为1得:x=﹣13.20.解方程:3(x+4)=5﹣2(x﹣1)【解答】解:去括号,得:3x+12=5﹣2x+2,移项,得:3x+2x=5+2﹣12,合并同类项,得:5x=﹣5,系数化为1,得:x=﹣1;21.解方程:=1﹣.【解答】解:去分母,得:3(x+2)=6﹣2(x﹣5),去括号,得:3x+6=6﹣2x+10,移项及合并,得:5x=10,系数化为1,得:x=2.22.解方程:=﹣1.【解答】解:去分母得:4(2x﹣1)=3(x+2)﹣12移项得:8x﹣3x=6﹣12+4合并得:5x=﹣2系数化为1得:x=﹣.23.解方程:.【解答】解:去分母,得4(2x﹣1)=3(3x﹣5)+24,去括号,得8x﹣4=9x﹣15+24,移项、合并同类项,得﹣x=13,系数化为1,得x=﹣13.24.解方程:=.【解答】解:=方程两边同时乘以6,得3(x+1)=2(2﹣x)﹣63x+3=4﹣2x﹣65x=﹣5x=﹣1、25.解方程:.【解答】解:去分母得,5(3x+1)﹣20=3x﹣2,去括号得,15x+5﹣20=3x﹣2,移项合并得,12x=13,系数化为1得,x=.26.解方程:.【解答】解:去分母得,2(x+1)﹣4=8+2﹣x,去括号得,2x+2﹣4=8+2﹣x,移项得,2x+x=8+2﹣2+4,合并同类项得,3x=12,系数化为1得,x=4.。
最新人教版初中数学七年级数学上册第三单元《一元一次方程》测试(含答案解析)(1)
一、选择题1.如图,是小刚在电脑中设计的一个电子跳蚤,每跳一次包括上升和下降,即由点A —B —C 为一个完整的动作.按照图中的规律,如果这个电子跳蚤落到9的位置,它需要跳的次数为 ( )A .5次B .6次C .7次D .8次2.把有理数a 代入|a +4|﹣10得到a 1,称为第一次操作,再将a 1作为a 的值代入得到a 2,称为第二次操作,…,若a =23,经过第2020次操作后得到的是( ) A .﹣7 B .﹣1 C .5 D .113.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是( )A .19B .20C .21D .224.如图,阴影部分的面积为( )A .228ab a π-B .222ab a π-C .22ab a π-D .224ab a π- 5.已知整数1234,,,a a a a ……满足下列条件:12132430,1,2,3a a a a a a a ==-+=-+=-+……,依次类推,则2019a 的值为( ) A .2018 B .2018- C .1009- D .10096.我们知道,用字母表示的代数式是具有一般意义的.请仔细分析下列赋予3a 实际意义的例子中不正确的是( )A .若葡萄的价格是3 元/kg ,则3a 表示买a kg 葡萄的金额B .若a 表示一个等边三角形的边长,则3a 表示这个等边三角形的周长C .某款运动鞋进价为a 元,若这款运动鞋盈利50%,则销售两双的销售额为3a 元D .若3和a 分别表示一个两位数中的十位数字和个位数字,则3a 表示这个两位数7.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( )A .3B .﹣3C .1D .﹣18.如图所示,直线AB 、CD 相交于点O ,“阿基米德曲线”从点O 开始生成,如果将该曲线与每条射线的交点依次标记为2,-4,6,-8,10,-12,….那么标记为“-2020”的点在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上 9.已知多项式()210m xm x +--是二次三项式,m 为常数,则m 的值为( ) A .2-B .2C .2±D .3± 10.代数式21a b-的正确解释是( ) A .a 与b 的倒数的差的平方 B .a 与b 的差的平方的倒数C .a 的平方与b 的差的倒数D .a 的平方与b 的倒数的差11.﹣(a ﹣b +c )变形后的结果是( ) A .﹣a +b +c B .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c 12.下列说法错误的是( )A .23-2x y 的系数是32- B .数字0也是单项式 C .-x π是二次单项式 D .23xy π的系数是23π 二、填空题 13.化简:226334x x x x_________. 14.22223124,4135-=-225146-=,……221012m m -=+m =_____________ 15.礼堂第一排有 a 个座位,后面每排都比第一排多 1 个座位,则第 n 排座位有________________.16.一列数a 1,a 2,a 3…满足条件a 1=12,a n =111n a --(n ≥2,且n 为整数),则a 2019=_____.17.已知|a|=-a ,b b =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.18.仅当b =______,c =______时,325x y 与23b c x y 是同类项。
第8章 一元一次不等式 华东师大版七年级数学下册测试题(一)及答案
第8章 一元一次不等式测试题(一)一、选择题(每小题3分,共30分)1. 语句“x 的18与x 的和不超过5”可以表示为( ) A.8x +x≤5 B. 8x +x≥5 C. 85x +≤5 D. 8x +x=5 2. 已知a <b ,下列不等式中正确的是( ) A.3a >3b B. a -3<b -3 C. a +3>b +3 D. -3a <-3b3. 不等式2x-6>0的解集在数轴上表示正确的是( )A B C D4. 如果关于x 的不等式 (a+2020)x >a+2020的解集为x <1,那么a 的取值范围是( ) A. a >-2020B. a <2020C. a >2020D. a <-20205. 如图1是小芳同学解不等式的过程,其中错误步骤共有( ) A. 1个B. 2个C. 3个D. 4个图16. 某次知识竞赛共有30道题,每一题答对得5分,答错或不答都扣3分,小亮得分要超过70分,他至少要答对 多少道题?如果设小亮答对了x 道题,根据题意列式得( )A. 5x -3(30+x )≥70B. 5x +3(30-x )≤70C. 5x +3(30-x )>70D. 5x -3(30-x )>707. 已知点M (5-m ,m +3)在第一象限,则下列关系式正确的是( ) A. 3<m <5B. -3<m <5C. -5<m <3D. -5<m <-38. (2019•恩施州)已知关于x 的不等式组2113320x x a x -⎧⎪⎨⎪-⎩--≤<,恰有3个整数解,则a 的取值范围为( ) A. 1<a ≤2B. 1<a <2C. 1≤a <2D. 1≤a ≤29.下面是创意机器人大观园中十种类型机器人套装的价目表:类型①②③④⑤⑥⑦⑧⑨⑩价格/元180013501200800675516360300280188“六一”儿童节期间,小明在这里看好了类型④机器人套装,爸爸说:“今天有促销活动,九折优惠呢!你可以再选1套,但两套最终不超过1200元. ”那么小明再买第二套机器人可选择价格最贵的类型是()A. ④B. ⑤C. ⑥D. ⑧10. 如图2是李强同学设计的一个计算机程序,规定从“输入一个值x”到判断“结果是否≥15”为一次运行过程. 如果程序运行两次就停止,那么x的取值范围是()A. x≥3B. 3≤x<7C. 3<x≤7D. x≤7图2二、填空题(每小题3分,共18分)11. 若(m-1)x|m|+3>0是关于x的一元一次不等式,则m的值为.12. 若4x-32的值不小于3x+5,则满足条件的x的最小整数是.13. 若关于x,y的二元一次方程组32133x y mx y-=+⎧⎨-+=⎩,的解满足x-y>0,则m的取值范围为.14. 若不等式组2x ab x-⎧⎨-⎩>,>的解集是0<x<2,则(a+b)2019=.15. 小明说不等式a>2a永远不会成立,因为如果在这个不等式两边同时除以a,就会出现1>2这样的错误结论.小明的说法(填写正确或不正确);如果正确请说明理由,不正确请举一个反例说明:.16. 小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图3中给出的信息,量筒中至少放入个小球时有水溢出.图3三、解答题(共52分)17. (每小题4分,共8分)解下列不等式(组):(1)3(x+2)-9≥-2(x-1);(2)12x+-1<x-233x+.18. (6分)放学时,小刚问小东今天数学作业是哪几题,小东回答说:“不等式组231213(1)8xxx x-⎧+≥+⎪⎨⎪--<-⎩,的正整数解就是今天数学作业的题号. ”聪明的你知道今天的数学作业是哪几题吗?19.(8分)已知关于y的方程4y+2m+1=2y+5的解是负数.(1)求m的取值范围;(2)当m取最小整数时,解关于x的不等式:x-1>1 2mx+.20. (8分)如果一元一次方程的解是一元一次不等式组的解,则称该一元一次方程为该不等式组的相伴方程.(1)在方程①3x-2=0,②2x+1=0,③x-(3x+1)=-5中,其中是不等式组25312x xx x-+-⎧⎨--+⎩>,>的相伴方程的是_____________. (填序号)(2)写出不等式组213133xx x-⎧⎨+-+⎩<,>的一个相伴方程,使得它的解是整数:.(3)若方程x=1,x=2都是关于x的不等式组22x x mx m-⎧⎨-⎩<,≤的相伴方程,求m的取值范围.21. (10分)已知x,y满足3x-4y=5.(1)用含x的式子表示y为;(2)若y满足-1<y≤2,求x的取值范围;(3)若x,y满足x+2y=a,且x>2y,求a的取值范围.22. (12分)某乡镇风力资源丰富,为了实现“低碳环保”,该乡镇决定开展风力发电,打算购买10台风力发电机组. 现有A,B两种型号机组,其中A型机组价格为12万元/台,月均发电量为2.4万kW・h;B型机组价格为10万元/台,月均发电量为2万kW・h. 经预算该乡镇用于购买风力发电机组的资金不高于105万元.(1)请你为该乡镇设计几种购买方案;(2)如果该乡镇每月用电量不低于20.4万KW・h月,为了节省资金,应选择哪种购买方案?附加题(共20分,不计入总分)1. (8分)我们知道,适合二元一次方程的一对未知数的值叫做这个二元一次方程的一个解. 同样地,适合二元一次不等式的一对未知数的值叫做这个二元一次不等式的一个解. 对于二元一次不等式2x+3y≤10,它的正整数解有()A. 4个B. 5个C. 6个D. 无数个2. (12分)阅读下列材料:我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x-0|,也就是说,|x1-x2|表示在数轴上数x1 与数x2对应的点之间的距离.例1 解方程|x|=2,因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.例2 解不等式|x-1|>2,在数轴上找出|x-1|=2的解(如图),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x-1|=2的解为x=-1或x=3,因此不等式|x-1|>2的解集为x<-1或x>3.参考阅读材料,解答下列问题:(1)方程|x+3|=5的解为;(2)解不等式:|x-2|≤3;(3)解不等式:|x-4|+|x+2|>8.第8章一元一次不等式测试题(一)一、1. A 2. B 3. A 4. D 5. C 6. D 7. B8. A9. C10. B二、11. -1 12. 713. m>1 14. 015. 不正确当a=-2时,2a=-4,-2>-4,所以a>2a 16. 10三、17. 解:(1)去括号,得3x+6-9≥-2x+2.移项,得3x+2x≥2-6+9.合并同类项,得5x≥5.系数化为1,得x≥1.(2)去分母,得3(x+1)-6<6x-2(2x+3). 去括号,得3x+3-6<6x-4x-6.移项、合并同类项,得x<-3.18. 解:231213(1)8xxx x-⎧+≥+⎪⎨⎪--<-⎩②.,①由①,得x≤2;由②,得x>-2.所以不等式组的解集为-2<x≤2,其正整数解为1,2,所以今天的数学作业是第1,2题.19. 解:(1)解方程4y+2m+1=2y+5,得y=2-m.根据题意,得2-m<0,解得m>2.(2)因为m>2时,m的最小整数解为3,所以将m=3代入x-1>12mx+,得x-1>312x+,解得x<-3.20. 解:(1)③(2)答案不唯一,如x-1=0(3)不等式组的解集为m<x≤m+2.因为x=1,x=2是不等式组的解,所以122mm+⎧⎨⎩<,≥,解得0≤m<1.21. 解:(1)354xy-=(2)根据题意,得-1<354x-≤2.解得13<x≤133.(3)解方程组3452x yx y a-=⎧⎨+=⎩,,得25535.10axay+⎧=⎪⎪⎨-⎪=⎪⎩,因为x>2y,所以255a+>2×3510a-,解得a<10.22. 解:(1)设购买A型发电机x台,则购买B型发电机(10-x)台. 根据题意,得12x+10(10-x)≤105.解得x≤2.5.因为x为非负整数,所以x的值为0,1或2.有三种购买方案:方案一:购买A型发电机0台,B型发电机10台;方案二:购买A型发电机1台,B型发电机9台;方案三:购买A型发电机2台,B型发电机8台.(2)设购买A型发电机x台,则购买B型发电机(10-x)台.根据题意,得2.4x+2(10-x)≥20.4.解得x≥1.由(1),得x≤2.5,且x为非负整数,所以x的值为1或2.当购买A型发电机1台,B型发电机9台时,所需费用为12+10×9=102(万元);当购买A型发电机2台,B型发电机8台时,所需费用为12×2+10×8=104(万元).因为102<104,所以为了节省资金,选择购买A型发电机1台,B型发电机9台这种方案.附加题1. B 提示:由2x+3y≤10,得x≤1032y-=5-32y. 因为x,y是正整数,所以5-32y>0,0<y<103,即y只能取1,2,3,当y=1时,0<x≤3.5,正整数解为11xy=⎧⎨=⎩,,21xy=⎧⎨=⎩,,31xy=⎧⎨=⎩,;当y=2时,0<x≤2,正整数解为12xy=⎧⎨=⎩,,22xy=⎧⎨=⎩,;,当y=3时,0<x≤12,无正整数解;综上,它的正整数解有5个.2. 解:(1)x=2或x=-8(2)因为在数轴上到2对应的点的距离等于3的点对应的数为-1或5,所以方程|x-2|=3的解为x=-1或x=5,所以不等式|x-2|≤3的解集为-1≤x≤5.(3)方程|x-4|+|x+2|=8的解就是在数轴上到4和-2对应的点的距离之和等于8的点对应的x的值.因为在数轴上4和-2对应点的距离为6,所以满足方程的x的对应点在4的右边或-2的左边.若x对应的点在4的右边,可得x=5;若x对应的点在-2的左边,可得x=-3,所以方程|x-4|+|x+2|=8的解是x=5或x=-3.所以不等式|x-4|+|x+2|>8的解集为x>5或x<-3.。
(压轴题)初中数学七年级数学上册第三单元《一元一次方程》测试题(包含答案解析)(1)
一、选择题1.下面用数学语言叙述代数式1a ﹣b ,其中表达正确的是( ) A .a 与b 差的倒数B .b 与a 的倒数的差C .a 的倒数与b 的差D .1除以a 与b 的差 2.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( ) A .﹣4B .﹣5C .﹣6D .﹣7 3.已知一个多项式与3x 2+9x 的和等于5x 2+4x ﹣1,则这个多项式是( ) A .2x 2﹣5x ﹣1 B .﹣2x 2+5x+1 C .8x 2﹣5x+1 D .8x 2+13x ﹣1 4.已知5a b +=,4ab =,则代数式()()35834ab a b a ab +++-的值为( ) A .36 B .40 C .44 D .465.设a 是最小的非负数,b 是最小的正整数,c ,d 分别是单项式﹣x 3y 的系数和次数,则a ,b ,c ,d 四个数的和是( )A .1B .2C .3D .46.大于1的正整数m 的三次幂可“裂变”成若干个连续奇数的和,如3235=+,337911=++,3413151719=+++,.若3m “裂变”后,其中有一个奇数是2019,则m 的值是( )A .43B .44C .45D .55 7.下列各式中,去括号正确的是( )A .2(1)21x y x y +-=+-B .2(1)22x y x y --=++C .2(1)22x y x y --=-+D .2(1)22x y x y --=--8.下列关于多项式21ab a b --的说法中,正确的是( ) A .该多项式的次数是2 B .该多项式是三次三项式C .该多项式的常数项是1D .该多项式的二次项系数是1- 9.代数式213x -的含义是( ). A .x 的2倍减去1除以3的商的差B .2倍的x 与1的差除以3的商C .x 与1的差的2倍除以3的商D .x 与1的差除以3的2倍10.在3a ,x+1,-2,3b -,0.72xy ,2π,314x -中单项式的个数有( ) A .2个B .8个C .4个D .5个 11.某养殖场2018年底的生猪出栏价格为每千克a 元,受市场影响,2019年第一季度出栏价格平均每千克上升15%,到了第二季度平均每千克比第一季度又上升了20%,则第三季度初这家养殖场的生猪出栏价格是每千克( )元A .(115%)(120%)a ++B .(115%)20%a +C .(115%)(120%)a +-D .(120%)15%a +12.已知3a b -=-,2c d +=,则()()a d b c --+的值为( ) A .﹣5 B .1 C .5D .﹣1 二、填空题 13.当k =_________________时,多项式()221325x k xy y xy +----中不含xy 项.14.单项式2335x yz -的系数是___________,次数是___________. 15.将代数式4a 2b +3ab 2﹣2b 3+a 3按a 的升幂排列的是_____.16.将下列代数式的序号填入相应的横线上.①223a b ab b ++;②2a b +;③23xy -;④0;⑤3y x -+;⑥2xy a ;⑦223x y +;⑧2x;⑨2x . (1)单项式:_______________;(2)多项式:_______________;(3)整式:_________________;(4)二项式:_______________.17.已知|a|=-a ,bb =-1,|c|=c ,化简 |a+b| + |a-c| - |b-c| = _________.18.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.19.求值:(1)()()22232223a a a a a -++-=______,其中2a =-;(2)()()222291257127a ab ba ab b -+-++=______,其中12a =,12b =-; (3)()()222222122a b ab a b ab +----=______,其中2a =-,2b =.20.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低m 元后,又降价25%,现售价为n 元,那么该电脑的原售价为______.三、解答题21.一种商品每件成本a 元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?22.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.23.将一个长方形纸片连续对折,对折的次数越多,折痕的条数也就越多,如第一次对折后,有1条折痕,第2次对折后,共有3条折痕.(1)第3次对折后共有多少条折痕?第4次对折后呢?(2)对折多少次后折痕会超过100条?(3)请找出折痕条数与对折次数的对应规律,写出对折n 次后,折痕有多少条?24.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.25.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值.26.如图,观察下列图形,可得它们是按一定规律排列的,依照此规律,解决下列问题.(1)第5个图形有_______颗五角星,第6个图形有_______颗五角星;(2)第2020个图形有_______颗五角星,第n 个图形有_______颗五角星.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b 为a 的倒数与b 的差, 故选:C .【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.2.A解析:A【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.3.A解析:A【分析】根据由题意可得被减式为5x2+4x-1,减式为3x2+9x,求出差值即是答案.【详解】由题意得:5x2+4x−1−(3x2+9x),=5x2+4x−1−3x2−9x,=2x2−5x−1.故答案选A.【点睛】本题考查了整式的加减,解题的关键是熟练的掌握整式的加减运算.4.A解析:A【分析】原式去括号整理后,将已知等式代入计算即可求出值.【详解】∵a+b=5,ab=4,∴原式=3ab+5a+8b+3a−4ab=8(a+b)−ab=40−4=36,故选A.【点睛】本题考查的是代数式的求值,熟练掌握先化简再求值是解题的关键.5.D解析:D【分析】根据题意求得a,b,c,d的值,代入求值即可.【详解】∵a是最小的非负数,b是最小的正整数,c,d分别是单项式-x3y的系数和次数,∴a=0,b=1,c=-1,d=4,∴a ,b ,c ,d 四个数的和是4,故选:D .【点睛】本题考查了有理数、整式的加减以及单项式的系数和次数,,认真掌握有理数的分类是本题的关键;注意整数、0、正数之间的区别,0既不是正数也不是负数,但是整数. 6.C解析:C【分析】观察可知,分裂成的奇数的个数与底数相同,然后求出到m 3的所有奇数的个数的表达式,再求出奇数2019的是从3开始的第1008个数,然后确定出1008所在的范围即可得解.【详解】∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m 3分裂成m 个奇数,所以,到m 3的奇数的个数为:2+3+4+…+m=()()212m m +-, ∵2n+1=2019,n=1009,∴奇数2019是从3开始的第1009个奇数,当m=44时,()()4424419892+-=, 当m=45时,()()4524511342+-=, ∴第1009个奇数是底数为45的数的立方分裂的奇数的其中一个,即m=45.故选:C .【点睛】本题是对数字变化规律的考查,观察出分裂的奇数的个数与底数相同是解题的关键,还要熟练掌握求和公式.7.C解析:C【分析】各式去括号得到结果,即可作出判断.【详解】解:2(1)22x y x y +-=+-,故A 错误;2(1)22x y x y --=-+,故B,D 错误,C 正确.故选:C .【点睛】此题考查了去括号与添括号,熟练掌握去括号法则是解本题的关键.8.B解析:B【分析】直接利用多项式的相关定义进而分析得出答案.【详解】A 、多项式21ab a b --次数是3,错误;B 、该多项式是三次三项式,正确;C 、常数项是-1,错误;D 、该多项式的二次项系数是1,错误;故选:B .【点睛】此题考查多项式,正确掌握多项式次数与系数的确定方法是解题关键.9.B解析:B【分析】代数式表示分子与分母的商,分子是2倍的x 与1的差,据此即可判断.【详解】 代数式213x -的含义是2倍的x 与1的差除以3的商. 故选:B .【点睛】 本题考查了代数式,正确理解代数式表示的意义是关键.10.C解析:C【分析】根据单项式的定义逐一判断即可.【详解】3a中,分母含未知数,是分式,不是单项式, x+1是多项式,不是单项式,-2是单项式,3b -是单项式, 0.72xy 是单项式,2π是单项式, 314x -=3144x -,是多项式,∴单项式有-2、3b -、0.72xy 、2π,共4个, 故选C.【点睛】 本题考查单项式的定义,熟练掌握定义是解题关键.11.A解析:A【分析】由题意可知:2019年第一季度出栏价格为2018年底的生猪出栏价格的(1+15%),第二季度平均价格每千克是第一季度的(1+20%),由此列出代数式即可.【详解】第三季度初这家养殖场的生猪出栏价格是每千克(1+15%)(1+20%)a 元.故选A .【点睛】此题考查列代数式,注意题目蕴含的数量关系,找准关系是解决问题的关键.12.A解析:A【分析】先把所求代数式去掉括号,再化为已知形式把已知代入求解即可.【详解】解:根据题意:(a-d )-(b+c )=(a-b )-(c+d )=-3-2=-5,故选:A .【点睛】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,得出答案.二、填空题13.3【分析】先合并同类项然后使xy 的项的系数为0即可得出答案【详解】解:=∵多项式不含xy 项∴k-3=0解得:k=3故答案为:3【点睛】本题考查了多项式的知识属于基础题解答本题的关键是掌握合并同类项的解析:3【分析】先合并同类项,然后使xy 的项的系数为0,即可得出答案.【详解】解:()221325x k xy y xy +----=()22335x k xy y +---, ∵多项式不含xy 项,∴k-3=0,解得:k=3.故答案为:3.【点睛】本题考查了多项式的知识,属于基础题,解答本题的关键是掌握合并同类项的法则. 14.六【分析】根据单项式系数次数的定义来求解单项式中数字因数叫做单项式的系数所有字母的指数和叫做这个单项式的次数【详解】的系数是次数是6故答案为六【点睛】本题考查了单项式的次数和系数确定单项式的系数和次 解析:35六 【分析】 根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数. 【详解】2335x yz -的系数是35-,次数是6, 故答案为35-,六.【点睛】本题考查了单项式的次数和系数,确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键. 15.﹣2b3+3ab2+4a2b+a3【分析】找出a 的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b 3+3ab 2+4a 2b+a 3.【分析】找出a 的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b 3+3ab 2+4a 2b+a 3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.16.③④⑨①②⑤①②③④⑤⑨②⑤【分析】根据单项式多项式整式二项式的定义即可求解【详解】(1)单项式有:③④0⑨;(2)多项式有:①②⑤;(3)整式有:①②③④0⑤⑨;(4)二项式有:②⑤;故答案为:(解析:③④⑨ ①②⑤ ①②③④⑤⑨ ②⑤【分析】根据单项式,多项式,整式,二项式的定义即可求解.【详解】(1)单项式有:③23xy -,④0,⑨2x ;(2)多项式有:①223a b ab b ++,②2a b +,⑤3y x -+; (3)整式有:①223a b ab b ++,②2a b +,③23xy -,④0,⑤3y x -+,⑨2x ; (4)二项式有:②2a b +,⑤3y x -+; 故答案为:(1)③④⑨;(2)①②⑤;(3)①②③④⑤⑨;(4)②⑤【点睛】本题考查了整式,关键是熟练掌握单项式,多项式,整式,二项式的定义.17.-2a 【分析】由已知可以判断出ab 及c 的正负进而确定出a+ba-c 与b-c 的正负利用绝对值的代数意义化简即可得到结果【详解】解:∵|a|=-a=-1|c|=c ∴∴则|a+b|+|a-c|-|b-c|解析:-2a【分析】由已知可以判断出a, b 及c 的正负,进而确定出a+b ,a-c 与b-c 的正负,利用绝对值的代数意义化简,即可得到结果.【详解】解:∵|a|=-a ,bb=-1,|c|=c∴00, 0,a b c ≤<≥, ∴000,a b a c b c +<-≤-<,,则|a+b| + |a-c| - |b-c| =-+2a b a c b c a --+-=- .故答案为: -2a.【点睛】此题考查了整式的加减, 涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.18.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.19.60【分析】先根据去括号合并同类项法则进行化简然后再代入求值即可【详解】(1)原式=当时原式=;(2)原式=当时原式=;(3)原式=【点睛】本题考查整式的化简求值掌握去括号合并同类项法则是解题的关键解析:6 0【分析】先根据去括号、合并同类项法则进行化简,然后再代入求值即可.【详解】(1)原式= 2222342268a a a a a a a --+-=-,当2a =-时,原式=()()228241620--⨯-=+=;(2)原式=222222912571272242a ab b a ab b a ab b -+---=--, 当12a =,12b =-时,原式=22111111224266222222⎛⎫⎛⎫⎛⎫⨯-⨯⨯--⨯-=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (3)原式=22222222220a b ab a b ab +-+--=.【点睛】本题考查整式的化简求值,掌握去括号、合并同类项法则是解题的关键. 20.【分析】根据题意列出代数式解答即可【详解】解:该电脑的原售价故填:【点睛】此题考查了列代数式关键是读懂题意找出题目中的数量关系列出代数式 解析:43n m + 【分析】根据题意列出代数式解答即可.【详解】 解:该电脑的原售价4125%3n m n m +=+-, 故填:43n m +. 【点睛】 此题考查了列代数式,关键是读懂题意,找出题目中的数量关系,列出代数式.三、解答题21.(1)每件售价1.22a 元;(2)每件盈利0.037a 元.【分析】(1)根据每件成本a 元,原来按成本增加22%定出价格,列出代数式,再进行整理即可; (2)用原价的85%减去成本a 元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a =1.22a (元),答:每件售价1.22a 元;(2)根据题意,得:1.22a ×85%-a =0.037a (元).答:每件盈利0.037a 元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.22.(1)5x 2-2;(2)-x +1y ;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4). 【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2;(2)-x +1y; (3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.23.(1)第3次对折后共有7条折痕,第4次对折后有15条折痕;(2)对折7次后折痕会超过100条;(3)对折n 次后,折痕有21n -条.【分析】(1)动手操作即可得出第3次、第4次对折后的折痕条数;(2)在(1)的基础上,归纳类推出一般规律,再结合67264,2128==即可得出答案;(3)由题(2)已求得.【详解】(1)动手操作可知,第3次对折后的折痕条数为7条,第4次对折后的折痕条数为15条;(2)观察可知,第1次对折后的折痕条数为1121=-条,第2次对折后的折痕条数为2321=-条,第3次对折后的折痕条数为3721=-条,第4次对折后的折痕条数为41521=-条,归纳类推得:第n 次对折后的折痕条数为21n -条,因为67264,2128==,所以对折7次后折痕会超过100条;(3)由(2)已得:对折n 次后的折痕条数为21n -条.【点睛】本题考查了有理数乘方的应用,依据题意,根据前4次对折后的结果,正确归纳类推出一般规律是解题关键.24.(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.25.12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --,当11.5,2a b==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+=⎪ ⎪⎝⎭⎝⎭.【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.26.(1)16,19;(2)6061,31n+.【分析】(1)将每一个图案分成两部分,最下面位置处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第5、6个图形中★的个数;(2)利用(1)中所得规律可得.【详解】解:(1)观察发现,第1个图形★的颗数是134+=,第2个图形★的颗数是1327+⨯=,第3个图形★的颗数是13310+⨯=,第4个图形★的颗数是13413+⨯=,所以第5个图形★的颗数是13516+⨯=,第6个图形★的颗数是13619+⨯=.故答案为:16,19.(2)由(1)知,第2020个图形★的颗数是1320206061+⨯=,第n个图形★的颗数是31n+.故答案为:6061,31n+.【点睛】本题考查了图形变化规律的问题,把★分成两部分进行考虑,并找出第n个图形★的个数的表达式是解题的关键.。
七年级数学上册第三单元《一元一次方程》-解答题专项阶段测试(答案解析)(1)
一、解答题1.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态记录一6个乒乓球,1个10克的砝码14个一次性纸杯平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码平衡请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克?解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是______克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.解析:(1)61014x+或8107x-;(2)一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.【分析】(1)根据题意即可得出答案;(2)弄清题意,找到合适的等量关系,列出方程,解方程即可.【详解】解:(1)61014x+或8107x-(2)根据题意得,610810 147x x+-=6101620 x x+=-6162010 x x-=--1030x-=-3x =.当3x =时,610631021414x +⨯+==(克). 答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克. 【点睛】本题考查了一元一次方程与实际问题,解题的关键是找到合适的等量关系,列出方程,解方程.2.江南生态食品加工厂收购了一批质量为10000kg 的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg ,求粗加工的这种山货的质量. 解析:2000kg . 【详解】解:设粗加工的该种山货质量为x kg , 根据题意,得()3200010000x x ++=, 解得2000x =.答:粗加工的该种山货质量为2000kg . 3.运用等式的性质解下列方程: (1)3x =2x -6; (2)2+x =2x +1; (3)35x -8=-25x +1. 解析:(1)x =-6;(2)x =1;(3)x =9 【分析】(1)根据等式的性质:方程两边都减2x ,可得答案;(2)根据等式的性质:方程两边都减x ,化简后方程的两边都减1,可得答案. (3)根据等式的性质:方程两边都加25x ,化简后方程的两边都加8,可得答案. 【详解】(1)两边减2x ,得3x -2x =2x -6-2x . 所以x =-6.(2)两边减x ,得2+x -x =2x +1-x . 化简,得2=x +1. 两边减1,得2-1=x +1-1 所以x =1. (3)两边加25x , 得35x -8+25x =-25x +1+25x . 化简,得x -8=1.两边加8,得x -8+8=1+8. 所以x =9. 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 4.解方程:(1)5(8)6(27)22m m m +--=-+ (2)2(3)7636x x x --+=- 解析:(1)10m =;(2)5x = 【分析】(1)直接去括号、移项、合并同类项、化系数为1即可求解; (2)直接去分母、去括号、移项、合并同类项、化系数为1即可求解. 【详解】解:(1)5(8)6(27)22m m m +--=-+5m 4012m 42m 22+-+=-+6m 60-=- m 10=(2)2(3)7636x x x --+=- ()6x 4x 336(x 7+-=--)6x 4x 1236x 7+-=-+ 11x 55= x 5=【点睛】此题主要考查解一元一次方程,解题的关键是熟练掌握解题步骤. 5.设a ,b ,c ,d 为有理数,现规定一种新的运算:a b ad bc c d=-,那么当35727x -=时,x 的值是多少?解析:x =-2【分析】根据新定义的运算得到关于x 的一元一次方程,解方程即可求解. 【详解】解:由题意得:21 - 2(5 - x )=7 即21-10+2x =7 x =-2.【点睛】本题考查了新定义,解一元一次方程,根据新定义的运算列出方程是解题关键.6.某同学在解方程21233x x a-+=-时,方程右边的﹣2没有乘以3,其它步骤正确,结果方程的解为x =1.求a 的值,并正确地解方程. 解析:a=2,x=-3 【分析】由题意可知x=1是方程2x-1=x+a-2的解,然后可求得a 的值,然后将a 的值代入方程求解即可. 【详解】解:将x =1代入2x ﹣1=x +a ﹣2得:1=1+a ﹣2. 解得:a =2,将a =2代入21233x x a-+=-得:2x ﹣1=x +2﹣6. 解得:x =﹣3. 【点睛】本题主要考查的是一元一次方程的解,明确x=1是方程2(2x-1)=3(x+a )-2的解是解题的关键.7.解方程:()()3x 7x 132x 3--=-+① ;5x 2x 3132---=②. 解析:(1)5;(2)138; 【分析】①方程去括号,移项合并,把x 系数化为1,即可求出解; ②方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【详解】①去括号得:3x−7x+7=3−2x−6, 移项合并得:−2x=−10, 解得:x=5;②去分母,去括号得:10−2x−6=6x−9, 移项合并得:8x=13,解得:x=138. 【点睛】此题考查解一元一次方程,解题关键在于掌握方程的解法.8.根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表.若2015年5月份,该市居民甲用电100千瓦时,交电费60元.(1)上表中,a=,若居民乙用电200千瓦时,交电费元.(2)若某用户某月用电量超过300千瓦时,设用电量为x千瓦时,请你用含x的代数式表示应交的电费.(3)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时时,其当月的平均电价每千瓦时不超过0.62元?解析:(1)0.6;122.5.(2)0.9x﹣82.5.(3)250千瓦.【分析】(1)根据100<150结合应交电费60元即可得出关于a的一元一次方程,解之即可得出a 值;再由150<200<300,结合应交电费=150×0.6+0.65×超出150千瓦时的部分即可求出结论;(2)根据应交电费=150×0.6+(300-150)×0.65+0.9×超出300千瓦时的部分,即可得出结论;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,分x在第二档及第三档考虑,根据总电费=均价×数量即可得出关于x的一元一次方程,解之即可得出x值,结合实际即可得出结论.【详解】(1)∵100<150,∴100a=60,∴a=0.6,若居民乙用电200千瓦时,应交电费150×0.6+(200-150)×0.65=122.5(元),故答案为0.6;122.5;(2)当x>300时,应交的电费150×0.6+(300-150)×0.65+0.9(x﹣300)=0.9x﹣82.5;(3)设该居民用电x千瓦时,其当月的平均电价每千瓦时为0.62元,当该居民用电处于第二档时,90+0.65(x﹣150)=0.62x,解得:x=250;当该居民用电处于第三档时,0.9x﹣82.5=0.62x,解得:x≈294.6<300(舍去).综上所述该居民用电不超过250千瓦时,其当月的平均电价每千瓦时不超过0.62元.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据数量关系列式计算;(2)根据数量关系列出代数式;(3)根据总电费=均价×数量列出关于x的一元一次方程.9.图1为全体奇数排成的数表,用十字框任意框出5个数,记框内中间这个数为 a(如图2).(1)请用含a的代数式表示框内的其余4个数;(2)框内的5个数之和能等于 2015,2020 吗?若不能,请说明理由;若能,请求出这5个数中最小的一个数,并写出最小的这个数在图1数表中的位置.(自上往下第几行,自左往右的第几个)解析:(1)详见解析;(2)详见解析.【分析】(1)上下相邻的数相差18,左右相邻的数相差是2,所以可用a表示;(2)根据等量关系:框内的5个数之和能等于2015,2020,分别列方程分析求解.【详解】(1)设中间的数是a,则a的上一个数为a−18,下一个数为a+18,前一个数为a−2,后一个数为a+2;(2)设中间的数是a,依题意有5a=2015,a=403,符合题意,这5个数中最小的一个数是a−18=403−18=385,2n−1=385,解得n=193,193÷9=21…4,最小的这个数在图1数表中的位置第22排第4列.5a=2020,a=404,404是偶数,不合题意舍去;即十字框中的五数之和不能等于2020,能等于2015.【点睛】本题考查一元一次方程的应用,关键是看到表格中中间位置的数和四周数的关系,最后可列出方程求解.10.小丽用的练习本可以从甲乙两家商店购买,已知两家商店的标价都是每本 2 元,甲商店的优惠条件是:购买十本以上,从第 11 本开始按标价的 70%出售;乙商店的优惠条件是:从第一本起按标价的80%出售。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学:3.2 解一元一次方程测试题(人教新课标七年级上)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分120分.Ⅰ卷(选择题)一、选择题 (共10个小题,每小题3分,共30分)1. (2008上海市)如果2x =是方程112x a +=-的根,那么a 的值是( ) A .0 B .2C .2-D .6-2. 下列各式中,一元一次方程是( ) (A )1+2t. (B )1-2x=0. (C )m 2+m=1. (D )x 4+1=3. 3.下列变形中:①由方程125x -=2去分母,得x-12=10; ②由方程29x=92两边同除以29,得x=1; ③由方程6x-4=x+4移项,得7x=0;④由方程2-5362x x -+=两边同乘以6,得12-x-5=3(x+3). 错误变形的个数是( )个.A .4B .3C .2D .14.如果方程6x+3a=22与方程3x+5=11的解相同,那么a= ( ) A. 103 B. 310 C. -103 D.- 310 5.若式子5x-7与4x+9的值相等,则x 的值等于( ). A .2 B .16 C .29 D .1696.若x=2是k(2x-1)=kx+7的解,则k 的值为( ) A .1 B .-1 C .7D .-7 7.方程5174732+-=--x x 去分母得( )A .2-5(3x-7)=-4(x+17)B .40-15x-35=-4x-68C .40-5(3x-7)=-4x+68D .40-5(3x-7)=-4(x+17)8.若方程(a+2)x=b-1的解为21+-=a b x ,则下列结论中正确的是( ) A .a>bB .a<bC .a ≠-2且b ≠1D .a ≠ -2且b 为任意实数9.方程2.0)25.0(3.003.025.0+=-+x x x 的解是( ) A .179764-=x B .179764=x C .179765-=x D .179765=x 10.小明的爸爸买回两块地毯,他告诉小明小地毯的面积正好是大地毯面积的31,且两块地毯的面积和为20平方米,小明很快便得出了两块地毯的面积为(单位:平方米)( )A .340,320B .30,10C .15,5D .12,8第Ⅱ卷(非选择题)二、填空题(共8个小题,每小题3分,共24)11. 请写出一个解为x=-4的一元一次方程: .12. 请用尝试、检验的方法解方程2x+3x =14,得x= . 13. 若x=2是方程9-2x=ax-3的解,则a= .14.要使方程ax=a 的解为1,a 必须满足的条件15.方程k x x x +=--2416的解是x=3,那么kk 12+的值等于_____________. 16.若方程b x a k =⋅-74是一元一次方程,那么k=______________.17.当x=-1时,二次三项式12++mx x 的值等于0,那么当x=1时,12++mx x =___________.18.已知三个数的比是5:7:9,若这三个数的和是252,则这三个数依次是_________.二、解答题(共66分)19.(6分) 下列方程的解答过程是否有错误?若有错误,简要说明产生错误的原因,并改正. 解方程:5.25.014.02.03-=--+x x 解:原方程可化为:25510423010-=--+x x 去分母,得 250)104(2)3010(5-=--+x x去括号、移项、合并同类项,得 42042-=x∴10=x20. (6分)解方程:70%x+(30-x)×55%=30×65% .21. (8分)解方程:511241263x x x +--=+. 22. (8分) 用整体思想解方程)32(21)23(5)23(31)32(3-+-=---x x x x 23. (9分)已知y =1是方程2-31(m -y )=2y 的解,那么关于x 的方程m (x -3)-2=m (2x -5)的解是多少?24.(9分)m 取什么整数时,关于x 的方程4x +m (x -6)=2(2-3m )的解是正整数,并求出方程的解.25、(10分)某文艺团体为“希望工程”募捐组织了一场义演,共售出1000张票,筹出票款6920元,且每张成人票8元,学生票5元.(1)问成人票与学生票各售出多少张?(2)若票价不变,仍售出1000张票,所得的票款可能是7290元吗?为什么?26、(10分)下列数阵是由偶数排列成的:第 1列 2列 3列 4列 5列第一排 2 4 6 8 10第二排 12 14 16 18 20第三排 22 24 26 28 30第四排 32 34 36 38 40… … … … … …(1)图中框内的四个数有什么关系(用式子表示): ;(2)在数阵中任意作一类似的框,如果这四个数的和为172 ,能否求出这四个数,怎样求?(3)按数从小到大的顺序,上面数阵中的第100个数在第 排、第 列.参考答案:1.C2.B3.B[点拨]方程29x=92,两边同除以29,得x=814. 4.B5.B [点拨]由题意可列方程5x-7=4x+9,解得x=16.6.C7.D8.D9.A10.C11.答案不唯一.如2x=-812. 613. 414.a≠015.653516.73 17.418. 60,84,108 [点拨]设公比为k ,则5k+7k+9k=252.19.第一步原方程可化为:25510423010-=--+x x 错误. 原因是把等式的性质与分数(分式)的性质弄错. 正确解法是:原方程可化为:5.2510423010-=--+x x , 去分母,得 25)104(2)3010(5-=--+x x去括号、移项、合并同类项,得 .19542-=x∴x=6565. 20.解:去括号,得70%x+16.5-55%x=19.5.移项,得70%x-55%x=19.5-16.5.合并同类项,得x=12.21.解:去分母,得3x-(5x+11)=6+2(2x-4).去括号,得3x-5x-11=6+4x-8移项,得3x-5x-4x=6-8+11.合并同类项,得-6x=9化系数为1,得x=32-.22.解 2332:0)32(215313)32(21)32(5)32(31)32(3:)32()23(==-=-⎪⎭⎫ ⎝⎛-++-+--=-+---=-x x x x x x x x x 合并系数得移项得原方程可化为 23.解:根据方程解的定义 ,可以把y =1代入方程2-31(m -y )=2y ,得 2-31(m -1)=2,解得m =1 再把m =1代入m (x -3)-2=m (2x -5),得x -3-2=2x -5解,得x =0.24.解:4x +mx -6m =4-6m4x +mx =4(4+m )x =4∴x =m+44 因为x 是正整数,m 为整数,∴4+m 必须满足是4的正约数,即4+m =1,2,4.当4+m =1时,m =-3,此时x =4;当4+m =2时,m =-2,此时x =2;当4+m =4时,m =0,此时x =1.25、(1)设售出的成人票为x 张,85(1000)6920,640,x x x +-==成人640张,学生360张.(2)当售出1000张票,所得的票款是7290元时,设售出的成人票为y 张,8y+5(1000-y )=7290,y=32290,因为y 不是整数,所以所得的票款不可能是7290元.26、(1)14+28=16+26,(2)设左上角的数为x ,则另外三个数为x +2、x +12、x +14,根据题意得,x +x +2+x +12+x +14=172,解得x=36,x +2=38,x +12=48,x +14=50,即这四个数分别为36、38、48、50.(3)第20排第5列.备选题一、选择题1.在下列各式中,是方程的是( )A .0310>+yB .35=17+18C .881+xD .371=x10.甲、乙二人去商店买东西,(他们所带钱数的比是7:6),甲用掉50元,乙用掉60元,则二人余下的钱数比为3:2,求二人余下的钱数分别是( )A .140元,120元B .60元,40元C .80元,80元D .90元,60元三、解答题15.浓度为18%的盐水一桶,加入50千克水后,浓度变为15%,求原有盐水多少千克?16.一个三位数,百位数比十位上的数大4,个位上的数比十位上的数大2,这个三位数恰好是后两个数字组成的两位数的21倍,求这个三位数.17.从甲地到乙地,水路比公路近40千米,上午10时一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地开往乙地,它们同时到过乙地,轮船速度为每小时24千米,汽车速度为每小时40千米,求从甲地到乙地的水路长与公路长.18.某车间要锻造直径为40毫米,高为45毫米的圆柱形零件毛坯,需截取直径30毫米的圆钢多长?16.设十位上的数为x ,则百位数字为x+4,个位数字为x+2,则100(x+4)+10x+x+2=21(10x+x+2),100x+400+11x+2=210x+21x+42,120x=360,x=3,x+4=7,x+2=5,三位数为735 17.设公路长为x 千米,则水路长为(x-40)千米3402440+=-x x ,36032005+=-x x ,5602=x ,280=x ,2404028040=-=-x . 18.设需截取直径30毫米的圆钢x 毫米,则x ⨯⎪⎭⎫ ⎝⎛⨯=⨯⎪⎭⎫ ⎝⎛⨯2223045240ππ,x ⨯=⨯21545400,x=80答:需截取直径30毫米的圆钢80毫米.。