2021年全国统一高考数学试卷(文科)(新课标Ⅱ)(原卷版)

合集下载

2021年高考数学试卷含解析(新高考II)

2021年高考数学试卷含解析(新高考II)
ຫໍສະໝຸດ A. 3B. 1,6
C. 5,6
【答案】B
【解析】∁ UB = 1,5,6 ,A ∩ ∁ UB = 1,6 , 选 B
D. 1,3
(
)
3. 抛物线 y2 = 2pxp > 0 的焦点到直线 y = x + 1 的距离为 2, 则 p =
A. 1
B. 2
C. 2 2
D. 4
【答案】B
(
)
4. 北斗三号全球卫星导航系统是我国航天事业的重要成果 . 在卫星导航系统中, 地球静止同步卫星的轨
B. ω(2n + 3) = ω(n) + 1 D. ω(2n - 1) = n
【答案】ACD 【解析】令 n = a0 ⋅ 20 + a1 ⋅ 2 +⋯+ak-1 ⋅ 2k-1 + ak ∙ 2k, 则 2n = 0 ∙ 20 + a0 ⋅ 21 + a1 ⋅ 22 +⋯+ak-1 ⋅ 2k + ak ∙ 2k+1,ω(2n) = 0 + a0 + a1 +⋯+ak = ω(n),A 正确 . 下证明 : 若 n 为偶数 n ∈ N * , 则 ω(n + 1) = ω(n) + 1. 证明 : 因为 n 为偶数, 所以 n = 0 ⋅ 20 + a1 ⋅ 2 +⋯+ak-1 ⋅ 2k-1 + ak ∙ 2k, 则 n + 1 = 1 ⋅ 20 + a1 ⋅ 2 +⋯+ak-1 ⋅ 2k-1 + ak ∙ 2k, 所以 ω(n) = 0 + a1 +⋯+ak,ω(n + 1) = 1 + a1 +⋯+ak = ωn + 1. 选项 B, 取 n = 2 可排除 . 或者 ω(2n + 3) = ω2n + 1 + 1 = ω2n + 1 + 1 = ωn + 1 + 1, 不能保 证与 ω(n) + 1 恒等 .B 错误 . 选项 C,ω(8n + 5) = ω(8n + 4 + 1) = ω(8n + 4) + 1 = ω(2n + 1) + 1 = ω(2n) + 2 = ω(n) + 2;ω(4n + 3) = ω(4n + 2) + 1 = ω(2n + 1) + 1 = ω(n) + 2.C 正确 . 选项 D, ∵ 2n - 1 = 20 + 21 + 22 +⋯+2n-1, ∴ ω(2n - 1) = n. 或者, 当 n ≥ 2 时,ω(2n+1 - 1) = ω22n - 1 + 1 = ω22n - 1 + 1 = ω(2n - 1) + 1. 又 ∵ ω(3) = 2,ω(1) = 1, ∴ ω(3) = ω(1) + 1. 即对 ∀ n ∈ N * 有 ω(2n+1 - 1) = ω(2n - 1) + 1, ∴ ω(2n - 1) 为首项为 1, 公差为 1 的等差数列 . ∴ ω(2n - 1) = n.D 正确 . 故选 ACD.

2021年普通高等学校招生全国统一考试(全国新课标Ⅱ卷)数学试题(文科)答案

2021年普通高等学校招生全国统一考试(全国新课标Ⅱ卷)数学试题(文科)答案

新课标II 卷数学试卷(文科)1.【答案解析】B.解析:把-2,0,2代人202xx --=验证,只有2满足不等式,故选B.2. 【答案解析】B.解析:13(13)(1)121(124)2(1)i i i i i i i i+++===-++-+-- 3.【答案解析】C.解析:极值点必为导函数的根,而导函数的根不一定是极值点,即,q p p q ⇒⇒/ 从而p 是q 的必要但不充分的条件4. 【答案解析】A .解析:||10,|10,6|64=41=+=-=∴+⋅+⋅+∴⋅∴⋅=-=2222a b a b a 2a b b a 2a b b a b a b 考点:考查平面向量的数量积,中等题.5.【答案解析】A .解析:∵数列{}n a 是等差数列,公差等于2∴2141812,6,14a a a a a a =+=+=+ ∵248,,a a a 成等比数列∴22428111()6)214()(a a a a a a ⋅⇒=++=+ 解得122(221)n a a n n ==+-⇒⋅= ∴(1)(222)=n n nS n n ⋅=++6.【答案解析】C.解析:毛胚的体积23654Vππ⋅⋅==制成品的体积 221322434V πππ⋅⋅+⋅⋅==∴切削掉的体积与毛胚体积之比为:13454101127V V ππ-=-=,故选C. 7.【答案解析】C.解析: ∵正三棱柱的底面边长为2,D 为BC 中点∴22213AD +=∵1112,3BC CC ==∴111111123322B DC B C S C C ⋅=⋅⋅==∴11111133133AB C B DC V S AD ⋅⋅=== .故选C.8.【答案解析】D.解析:第1次循环M=2,S=5,k=1,第2次循环,M=2,S=7,k=2.第3次循环k=3>2,故输出S=7,故选D. 考点:考查算法的基本知识,简单题. 9.【答案解析】A .解析:作图即可.考点:考查二元一次不等式组的应用,中等题. 10.【答案解析】C.解析:∵23y x = ∴抛物线C 的焦点的坐标为:()3,04F所以直线AB 的方程为:330an )t (4y x ︒-= 故233)43x y y x⎧==-⎪⎨⎪⎩从而2122161689012x x x x -+=+=⇒ ∴弦长12||=3122x x AB ++= 考点:考查抛物线的几何性质,弦长计算以及分析直线和圆锥曲线位置关系的能力,难度为中等题. 11.【答案解析】D.解析:()ln f x kx x =- 1()(0)f x k x x ∴'=-> ()f x 在区间(1,)+∞上递增()f x ∴在区间(1,)+∞上恒大于等于0,11()0((1,))x k k x x f x∴'=-≥⇒≥∀∈+∞ 1k ∴≥12.【答案解析】A .解析:设N 点的坐标为,s (cos )in θθ(1)当00,1x ≠± 时∵0(,1)M x 点的坐标为 ∴OM ,MN 的斜率分别为:001s n c s ,i o 1OM MN k x k x θθ-==- ∵45OMN ∠=︒ ∴1tan 45()1MN OM MN OM MN OM MN OM k k k k k k k k -︒=±⇒=-++± 即000011sin 1()11sin cos cos ()x x x x θθθθ--±-=--+⋅* 取正号时,化简(*)式得:2000(1)sin 11()cos x x x θθ+-=++ 取负号化简(*)式得:2000(1)sin 1(1)cos x x x θθ++=+-∴2220000(1)(1))1x x x θϕ++-+=+ 222400000(1)(1)11||1x x x x x +-≥+⇒≤⇒≤+故0||<1x 且00x ≠ (2)当00x =时,取(1,0)N ,此时满足题设.(3)当01x =±时,取(0,1)N ,此时也满足题设.综上所述,011x -≤≤ ,故选A .从上面解法可以看到选择N 的几个特殊位置观察,即可以猜出答案,这样就可以简化解法.考点:考查应用斜率与倾斜角的概念,直线方程,园的方程,分析问题的能力.困难题. 13.【答案解析】1.3 解析:1.3333P =⋅= 考点:考查古典概型的概念.简单题. 14.【答案解析】1解析:因为cos sin 2sin c ()sin s o co s x x f x x ϕϕϕ-=+si s n in cos s n c (o i )s x x x ϕϕϕ==--所以最大值为1.考点:考查和差角公式,简单题. 15.【答案解析】3解析:因()f x 是偶函数,所以(1)(1)f f -= ,因()f x 关于2x =,所以(1)(2)(332)1f f f ⋅-=== .16.【答案解析】12解析:∵111n n a a +=- ,22a =∴12111112112a a a a =⇒-==⇒- .17.【答案解析】解析:(I )1,3,2,180AB BC CD DA A C ====+=︒2222cos BD BC CD B C C CD ∴⋅=+- 222cos(180-)2AD AB BD AB AD C +-=⋅︒ 22222332cos 112co 222s C C ∴+⋅⋅=⋅⋅-++ 1cos 602C C ∴=⇒=︒ 22222332cos 6077BD BD ∴+⋅⋅︒=⇒-==(II)由(I ) 得,四边形ABCD 的面积S =11sin sin 22AB AD A BC DC C ⋅+⋅⋅ 1112sin(18060)23sin 602223⋅⋅︒-︒+⋅⋅︒==考点:考查余弦定理的应用,中等题. 18.【答案解析】解析:(I)连接EF ,因为四边形ABCD 是矩形,故F 为AC 中点,又因为E 为PD 中点,故EF 是△PBD 的中位线,从而||EF PB ,故||.PB AEC 面(II)设AB=a ,因3,1AD PA == 则11113()(3)132324P ABD V AB AD PA a -⋅⋅⋅=⋅⋅== 所以32a =过A 作AG 垂直PB 于G .因为,,ABCD BC ABCD PA A C P B ⊥⊂⇒⊥面面又因为AB BC ⊥ 所以BC PAB ⊥面 ,又BC PBC ⊂面故PAB A PBC G PBC ⊥⇒⊥面面面 所以AG 为点A 到面PBC 的距离.因22223131()2PBPA AB ++=== 所以113221313PA AB PB AG PA AB AG PB ⋅⋅=⋅⇒== 故点A 到面PBC 313考点:考查空间点线面的位置关系与空间距离.中等题. 19.【答案解析】解析:(I)甲部门的得分共50个,50个数字从小到大排列起来位于中间位置的数为第25,第26个数,它们分别是:75,75,故甲部门得分的中位数是75.乙部门的得分也是50个数,它们从小到大排列起来的第25,26个数字分别是:66,68,故乙部门的中为数为6668627+=. (II)市民对甲,乙两部门的评分各有n =50个,对甲部门评分高于90分的分数有m =5个,对乙部门的评分高于90分的s =8个,故对甲部门评分高于90分的概率为5500.1m n ==,对乙部门的评分高于90的概率为8500.16n s ==. (III )观察茎叶图的形状,甲的分数在茎6,7处形成单峰,出现在这里面的数据频率为3450,其中位数为75,乙的分数在茎5,6,7处形成单峰,出现在这个单峰里面的数据频率为2950,中位数为67.因为3450>2950,75>67,这说明市民对甲部门的评价基本在75分附近,对乙部门的评价基本在67分左右.整体看市民对甲部门的评价更好.20. 【答案解析】解析:解析:(I )∵2MF x ⊥轴(不妨设M 在x 轴的上方)∴M 的坐标满足方程组222221(,)x b M c a a y bx c⎧⎪⇒⎨⎪⎩=+= ∵MN 的斜率为34 ∴2234322b a ac cb =⇒=∵222222()3a c a a c c b =-⇒-= 又∵222(1)32320c e e e e e a⇒+-⇒-=== ∴椭圆离心率为12e = .(II)∵MN 在y 轴上的截距为2,O 为12,F F 的中点∴M 的坐标为(c ,4)(不妨设M 在x轴的上方)由(I )得24b a= (*)∵1||5||MN NF = ∴11||4||MF NF = 作1NF x ⊥轴于T ,由于△1NTF ∽ △12MF F ,故有24,4M N Ny cy c x =--=- ∴321,14N M N y y c x =-=-=- ,即,3()12c N -- 把N 点的坐标代人椭圆方程得:2221419c a b +=∴2222222)111(9(9544**)4a b b a b a b +=⇒-=- 把(*)与(**)联立得:77a b ==⎧⎪⎨⎪⎩21. 【答案解析】解析:(I )32232))36((f x x f x ax x a x x =⇒'=-++-+∵切点为(0,2),切线过点(-2,0)∴切线的斜率为22100---=∴(0)1a f '==(II)由(I )知,1a =,故32()32f x x x x =-++ 记32()()(2)3(1)4g x f x kx x x k x =--=-+-+ ,∴2()36(1)x g xx k -+-'= ∴3612(1)2412k k ∆=+-=+(1)当210k∆≥≤-<即时 由16()3+30kg x x =-'=⇒26+33kx =+21k -≤< ∴1201,12x x ≤≤<< ∴1()0x x g x '≥⇔< 或2x x > 12()0x x g x x '≤⇔<<∴()g x 在区间12(),,,()x x -+∞∞ 上递增,在区间12(,)x x 上递减 ∴()g x 的极小值为322222()3(1)4g x x x k x =-+-+∵222222261()31230g x k k x x x x -+--⇒==-'=∴22222222()(2)(1)4g x x x x x k x =--+-+ 222222221(1)42(1)34(123)x k x x k x k x x -=+-+=-+-≤-<⋅- 记222(1)4(12)()2((1)33)k x x x h x h k x x -+≤=---<⇒'=--由2210(1)23k k -≤<⇒<--≤,由41222x x ≤⇒-<-≤-< ∴2(1)0()0342k x x h -≤⇒'-<-≤-∴()h x 在区间[1,2)递减2()(2)(1)03h x h k ⇒≥=--> ∴2212()g()()(00)g x h x x x g ⇒≥>>= (∵12(,)x x 是减区间)∴当21k -≤<时,方程()0g x =只有一根.(2) 当20k ∆<<-即时,有26(0))3(1g x k x x -+-=>',从而()g x 在R 上递增∴当2k<-时,方程()0g x =只有一根.综上所述,方程()0g x =在R 上只有一根,即曲线()f x 直线2y kx =-只有唯一交点. 22.【答案解析】解析:(I )∵极坐标方程为2cos ,[0,]2πρθθ=∈ ∴22cos ρρθ=∴对应的普通方程为:220()02x y x y =≥+- ,即22(01)1()x y y -+=≥ ∴对应的参数方程为[0,]sin 1cos ,x y ϕϕπϕ⎧∈=+⎨=⎩(II)设半圆的圆心为A ,则A (1,0),又由(I )知,可以设D 点坐标为(1cos n ),si ϕϕ+ ∴直线DA 的斜率tan kϕ= ∵切线与直线32y x =+垂直∴tan 33([0,])πϕϕϕπ=∈ ∴3,sin 231cos ϕϕ==+ 即D 点坐标为3(3,22) 23. 【答案解析】解析:(I )∵()||||()10af x x x a a =++-> ∴1111,2x ,(12),a a a a x f x a a a x a x x a a ⎧⎪⎪⎪+-≤≤⎨-+-<-=⎪⎪-+>⎪⎩∴()f x 在递增(,)a +∞,在递减(-1)a ∞,-,在[]1,a a -上为常数∴()f x 的最小值为()(111)2f a f a a a a a≥⋅-=+==∴()2f x ≥(II )(1)当3a ≥时,1(3)5f a a+<= ∴2510a a a ⇒<<-+<∴523a ≤<(2)当03a <<时,2(3)61510f a a a a <⇒-+-->= ∴a <或a>3a <<综上所述15(,22a ∈ 考点:考查带有绝对值的不等式的应用能力,考查函数与不等式的关系,中等题.。

2021年普通高等学校招生全国统一考试文科数学(全国II卷)(含答案)

2021年普通高等学校招生全国统一考试文科数学(全国II卷)(含答案)

2021年普通高等学校招生全国统一考试文科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={}3,x x x Z <∈,B={}1,x x x Z >∈,则A B =A. ∅B. {}3,2,2,3--C. {}2,0,2-D. {}2,2-2.41i =-()A.-4B.4C.-4iD.4i3.如图,将钢琴上的12个键依次记为1a ,2a ,…,12a .设112i j k ≤<<≤.若3k j -=且4j i -=,则称i a ,j a ,k a 为原位大三和弦;若4k j -=且3j i -=,则称i a ,j a ,k a 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为A.5B.8C.10D.154.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压,为解决困难,许多志愿者踊跃报名参加配货工作,已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05。

志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者A. 10名B. 18名C. 24名D. 32名5.已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是A. 2a b +B. 2a b +C. 2a b -D. 2a b -6.记n S 为等比数列{n a }的前n 项和.若5a -3a =12, 6a -4a =24,则nnS a =A .2n -1B . 2-2t n -C. 2-n-12D .t-n 2-17.执行右面的程序框图,若输入的k=0,a=0,则输出的k 为:A. 2B. 3C. 4D. 58. 若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为A .5 B. 25 C. 35 D. 459.设O 为坐标原点,直线x a =与双曲线C :2222x 1y a b-=(a>0,b>0)的两条渐近线分别交于D ,E 两点,若ODE ∆的面积为8,则C 的焦距的最小值为A .4B .8C .16D .3210.设函数331()f x x x =-,则()f xA.是奇函数,且在(0,+∞)单调递增B.是奇函数,且在(0,+∞)单调递减C.是偶函数,且在(0,+∞)单调递增D.是偶函数,且在(0,+∞)单调递减11.已知△ABC 是面积为4的等边三角形,且其顶点都在球O的球面上,若球O的表面积为16π,则O到平面ABC 的距离为A B .32C .1D .212.若2233x y x y ---<-,则A. ln(1)0y x -+>B. ln(1)0y x -+<C. ln ||0x y ->D. ln ||0x y -<二、填空题:本题共4小题,每小题5分,共20分。

2021年高考数学全国卷Ⅱ文科试题(全解析)

2021年高考数学全国卷Ⅱ文科试题(全解析)

2021年普通高等学校招生全国统一考试(全国卷Ⅱ)数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分 第Ⅰ卷1至2页,第Ⅱ卷3至4页。

考试结束后,将本试卷降答题卡一同交回,满分150分,考试用时120分钟注意事项:1. 答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号答题卡上填写清楚,并认真找准条形码上的准考证号,姓名、考、谁座位号填写在规定的位置贴好条形码。

2. 每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷的答案无效。

第Ⅰ卷 (选择题 共50分)选择题:本大题共10小题,每小题5分,共50分。

在,每小题给出的四个选项中, 参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A+B )=P(A)+P(B) S=4πR 2 如果事件A 、B 相互独立,那么 P (A-B )=P(A)-P(B)一、选择题(A ){}1,4 (B ){}1,5 (C ){}2,4 (D ){}2,5【解析】 C :本题考查了集合的基本运算. 属于基础知识、基本运算的考查. ∵ A={1,3}。

B={3,5},∴ {1,3,5}A B =,∴(){2,4}U C A B =故选 C .(2)不等式32x x -+<0的解集为 (A ){}23x x -<< (B ){}2x x <- (C ){}23x x x <->或 (D ){}3x x > 【解析】A :本题考查了不等式的解法∵ 302x x -<+,∴ 23x -<<,故选A(3)已知2sin 3α=,则cos(2)x α-=(A)3-B )19-(C )19(D)3 【解析】B :本题考查了二倍角公式及诱导公式,∵ SINA=2/3,∴21cos(2)cos 2(12sin )9πααα-=-=--=-(4)函数y=1+ln(x-1)(x>1)的反函数是(A )y=1x e +-1(x>0) (B) y=1x e -+1(x>0) (C) y=1x e +-1(x ∈R) (D )y=1x e -+1 (x ∈R)【解析】D :本题考查了函数的反函数及指数对数的互化,∵函数Y=1+LN (X-1)(X>1),∴11ln(1)1,1,1y x x y x e y e ---=--==+ (5)若变量x,y 满足约束条件1325x y x x y ≥-⎧⎪≥⎨⎪+≤⎩则z=2x+y 的最大值为(A )1 (B)2 (C)3 (D)4 【解析】C :本题考查了线性规划的知识。

2021年普通高等学校招生全国统一考试数学试题新高考全国Ⅱ卷含答案

2021年普通高等学校招生全国统一考试数学试题新高考全国Ⅱ卷含答案

2021年普通高等学校招生全国统一考试数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数213ii在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.设集合{1,2,3,4,5,6},{1,3,6},{2,3,4}U A B ,则U A B ∩ð()A.{3}B.{1,6}C.{5,6}D.{1,3}3.抛物线22(0)y px p 的焦点到直线1y x 的距离为,则p ()A.1B.2C.D.44.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为 ,记卫星信号覆盖地球表面的表面积为22(1cos )S r (单位:2km ),则S 占地球表面积的百分比约为()A.26%B.34%C.42%D.50%5.正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20 B.C.563D.28236.某物理量的测量结果服从正态分布 210,N,下列结论中不正确的是()A. 越小,该物理量在一次测量中在(9.9,10.1)的概率越大B. 越小,该物理量在一次测量中大于10的概率为0.5C. 越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. 越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等7.已知581log 2,log 3,2a b c ,则下列判断正确的是()A.c b aB.b a cC.a c bD.a b c8.已知函数()f x 的定义域为R ,(2)f x 为偶函数,(21)f x 为奇函数,则()A.102fB.(1)0f C.(2)0f D.(4)0f 二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列统计量中,能度量样本12,,,n x x x 的离散程度的是()A.样本12,,,n x x x 的标准差B.样本12,,,n x x x 的中位数C.样本12,,,n x x x 的极差D.样本12,,,n x x x 的平均数10.如图,在正方体中,O 为底面的中心,P 为所在棱的中点,M ,N 为正方体的顶点.则满足MN OP 的是()A .B .C .D.11.已知直线2:0l ax by r 与圆222:C x y r ,点(,)A a b ,则下列说法正确的是()A.若点A 在圆C 上,则直线l 与圆C 相切B.若点A 在圆C 内,则直线l 与圆C 相离C.若点A 在圆C 外,则直线l 与圆C 相离D.若点A 在直线l 上,则直线l 与圆C 相切12.设正整数010112222k k k k n a a a a ,其中{0,1}i a ,记01()k n a a a .则()A.(2)()n n B.(23)()1n n C.(85)(43)n n D.21nn三、填空题:本题共4小题,每小题5分,共20分.13.已知双曲线2222:1(0,0)x y C a b a b,离心率2e ,则双曲线C 的渐近线方程为_______.14.写出一个同时具有下列性质①②③的函数 :f x _______.① 1212f x x f x f x ;②当(0,)x 时,()0f x ;③()f x 是奇函数.15.已知向量0,||1,||||2,a b c a b c a b b c c a_______.16.已知函数12()1,0,0xf x e x x ,函数()f x 的图象在点11,A x f x 和点22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.记n S 是公差不为0的等差数列 n a 的前n 项和,若35244,a S a a S .(1)求数列 n a 的通项公式n a ;(2)求使n n S a 成立的n 的最小值.18.在ABC 中,角A ,B ,C 所对的边长分别为,,,1,2a b c b a c a .(1)若2sin 3sin C A ,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.19.在四棱锥Q ABCD 中,底面ABCD 是正方形,若2,3AD QD QA QC.(1)证明:平面QAD 平面ABCD ;(2)求二面角B QD A 的平面角的余弦值.20.已知椭圆C 的方程为22221(0)x y a b a b,右焦点为(2,0)F ,且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x 相切.证明:M ,N ,F 三点共线的充要条件是||3MN .21.一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i .(1)已知01230.4,0.3,0.2,0.1p p p p ,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x 的一个最小正实根,求证:当()1E X 时,1p ,当()1E X 时,1p ;(3)根据你的理解说明(2)问结论的实际含义.22.已知函数2()(1)xf x x e ax b .(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点①21,222e a b a ;②10,22a b a.参考答案一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】A 2.【答案】B 3.【答案】B 4.【答案】C 5.【答案】D 6.【答案】D7.【答案】C 8.【答案】B二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.【答案】AC 10.【答案】BC11.【答案】ABD 12.【答案】ACD三、填空题:本题共4小题,每小题5分,共20分.13.【答案】y 14.【答案】2()()f x x x R 答案不唯一.15.【答案】v 16.【答案】(0,1)四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【答案】n 的最小值为7.18.【答案】当2a 时,ABC 为钝角三角形.19.【答案】略20.【答案】(1)2213x y .(2)【答案】略21.【答案】(1)()00.410.320.2311E X .(2)【答案】略(3)当1个微生物个体繁殖下一代的期望小于等于1时,这种微生物经过多代繁殖后临近灭绝,当1个微生物个体繁殖下一代的期望大于1时,这种微生物经过多代繁殖后还有继续繁殖的可能.22.【答案】略。

2021年高考数学真题试题(新高考Ⅱ卷)(Word版+答案+解析)

2021年高考数学真题试题(新高考Ⅱ卷)(Word版+答案+解析)

2021年高考数学真题试题(新高考Ⅱ卷)(Word版+答案+解析)2021年高考数学真题试卷(新高考Ⅱ卷)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(共8题;共40分)1.复数frac{2- i}{1-3i}$$在复平面内对应的点所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.设集合 $U=\{1,2,3,4,5,6\}$,$A=\{1,3,6\}$,$B=\{2,3,4\}$,则$A∩(\complement_U B)=()$A。

$\{3\}$ B。

$\{1,6\}$ C。

$\{5,6\}$ D。

$\{1,3\}$3.抛物线 $y^2=2px(p>0)$ 的焦点到直线 $y=x+1$ 的距离为 $\sqrt{2}$,则 $p=$()A。

1 B。

2 C。

$2\sqrt{2}$ D。

44.北斗三号全球卫星导航系统是我国航天事业的重要成果。

在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为km(轨道高度是指卫星到地球表面的距离)。

将地球看作是一个球心为O,半径$r$ 为6400km的球,其上点A的纬度是指$\angle OAB$ 与赤道平面所成角的度数。

地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为 $\alpha$,记卫星信号覆盖地球表面的表面积为$S=2\pi r^2(1-\cos\alpha)$(单位:$km^2$),则 $S$ 占地球表面积的百分比约为()A。

26% B。

34% C。

42% D。

50%5.正四棱台的上底面和下底面的边长分别为2,4,侧棱长为2,则其体积为()A。

$20+12\sqrt{3}$ B。

$28\sqrt{2}$ C。

$\frac{28\sqrt{2}}{3}$ D。

$56$6.某物理量的测量结果服从正态分布 $N(10,\sigma^2)$,下列结论中不正确的是()A。

2021年高考全国II卷文科数学试题(含解析)

2021年高考全国II卷文科数学试题(含解析)

2021年全国统一高考数学试卷(文科)(全国新课标II )一、选择题1.已知集合{||3,}A x x x Z =<∈,{||1,}B x x x Z =>∈,则A B ⋂= ( )A.∅B.{3,2,2,3}--C.{2,0,2}-D.{2,2}-【答案】D【解析】{|1||3,}{2,2}A B x x x Z ⋂=<<∈=-,故选D . 2.4(1)i -= ( )A.4-B.4C.4i -D.4i【答案】A【解析】42(1)(2)4i i -=-=-,故选A .3.如图,将钢琴上的12个键依次记为1212,,...,a a a ,设112i j k ≤<<≤.若3k j -=且4j i -=,则称,,i j k a a a 为原位大三和弦;若4k j -=且3j i -=,则称,,i j k a a a 为原位小三和弦,用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为 ( )A. 5B. 8C.10D. 15【答案】C【解析】原位大三和弦:1i =,5j =,8k =;2i =,6j =,9k =;3i =,7j =,10k =;4i =,8j =,11k =;5i =,9j =,12k =共5个;原位小三和弦:1i =,4j =,8k =;2i =,5j =,9k =;3i =,6j =,10k =;4i =,7j =,11k =;5i =,8j =,12k =共5个;总计10个.4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者 ( )A.10名B.18名C.24名D.32名【答案】B【解析】积压500份订单未配货,次日产生新订单超过1600份的概率为0.05,其中1200份不需要志愿者配货,志愿者只需负责400份配货,也就是需要志愿者配货的为900份,故需要18名志愿者.5.已知单位向量a ,b 的夹角为60︒,则在下列向量中, 与b 垂直的是 ( )A.2a b +B.2a b +C.2a b -D.2a b -【答案】D【解析】21(2)2211102a b b a b b -⋅=⋅-=⨯⨯⨯-=,故选D . 6.记n S 为等比数列{}n a 的前n 项和.若5312a a -=,6424a a -=,则nnS a = ( )A.21n- B.122n--C.122n -- D.121n--【答案】 B 【解析】设等比数列{}n a 的通项公式为11n n a a q -=,根据5312a a -=,6424a a -=.解得11a =,2q =,故12n n a -=,122112nn n S -==--,可得122n n nS a -=- ,故选B .7.执行右面的程序框图,若输入0k =,0a =,则输出的k 为 ( )A.2B.3C.4D.5【答案】C【解析】当0k =,0a =运行后:1a =,1k =,再次运行后: 3a =,2k =,再次运行后: 7a =,3k =,再次运行后:15a =,4k =,此时达到输出条件,所以输出4k =,故选C .8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为 ( )【答案】B【解析】依题意,因为点(2,1)在直线230x y --=上,结合题意可设圆心坐标为(,)a a ,则222(2)(1)a a a -+-=,即2650a a -+=,所以1a =,或5a =,所以圆心坐标为(1,1)或(5,5),当圆心坐标为(1,1)时,其到直线230x y --==;当圆心坐标为(5,5)时,其到直线230x y --=5=,综上,可知B 正确. 9.设O 为坐标原点,直线x a =与双曲线22221(0,0)x y a b a b-=>>的两边渐近线分别交于D ,E 两点.若ODE ∆的面积为8,则C 的焦距的最小值为( )A.4B.8C.16D.32【答案】B【解析】双曲线2222:1x y C a b -=(0,0)a b >>的两条渐近线分别为b y x a =±,则容易得到||2DE b =,则8ODE S ab ∆==,222216c a b ab =+≥=,当且仅当a b ==立,所以min 4c =,焦距min (2)8c =.10.设函数331()f x x x=-,则()f x ( )A.是奇函数,且在(0,)+∞单调递增B.是奇函数,且在(0,)+∞单调递减C.是偶函数,且在(0,)+∞单调递增D.是偶函数,且在(0,)+∞单调递减【答案】A【解析】因为331()f x x x =-,所以()333311()()()0f x f x x x x x +-=-+--=-,所以函数()f x 是奇函数.又因为331()f x x x =-由函数31y x =(为(0,)+∞增函数)加上函数231y x =-(为(0,)+∞增函数)得到,所以函数331()f x x x =-为(0,)+∞增函数,故选A . 判断单调性时也可以这样处理:因为当(0,)x ∈+∞,243()30f x x x '=+>,所以()f x 在(0,)+∞上是单调递增的.11.已知ABC ∆的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的距离为 ( )B.32C.1D.2【答案】C【解析】2ABC S AB ∆==3AB =.设球O 的半径为R ,则2416R ππ=,解得2R =.设O 在ABC ∆内的射影为'O ,'O 是ABC ∆的重心,故2'3O A ==从而O到平面ABC 的距离1h ==,故选C . 12. 若2233x y x y ---<-,则( )A.ln(1)0y x -+>B.ln(1)0y x -+<C.ln ||0x y ->D.ln ||0x y -<【答案】A【解析】11223323232233x y x y x x y y xy x y -----<-⇒-<-⇒-<-.设1()23xx f x =-,已知()f x 是定义在R 上的增函数,故由112233xy x y -<-可得x y <,所以011y x y x ->⇒-+>,从而ln(1)0y x -+>,故选A .二、填空题 13.若2sin 3x =-,则cos 2x = . 【答案】19【解析】22281cos 212sin 12()1399x x =-=--=-=. 14.记n S 为等差数列{}n a 的前n 项和,若12a =-,262a a +=,则10S =______. 【答案】25【解析】由262a a +=,可得1152a d a d +++=,因为12a =-,可求出1d =,由数列的前n 项和公式得1010(101)21012045252S ⨯-=-⨯+⨯=-+=. 15.若x ,y 满足约束条件1121x y x y x y +≥-⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是_______.【答案】8【解析】方法一:如图当2x =,3y =时,max 8z =.方法二:联立11x y x y +=-⎧⎨-=-⎩,得(1,0)-,联立121x y x y +=-⎧⎨-=⎩,得(0,1)-,联立121x y x y -=-⎧⎨-=⎩,得(2,3),代入验证可得当2x =,3y =时,max 8z =. 16.设有下列四个命题:1:p 两两相交且不过同一点的三条直线必在同一平面内.2:p 过空间中任意三点有且仅有一个平面. 3:p 若空间两条直线不相交,则这两条直线平行. 4:p 若直线l ⊂平面α,直线m ⊥平面α,则m l ⊥.则下列命题中所有真命题的序号是 . ①14p p ∧ ②21p p ∧ ③23p p ⌝∨ ④34p p ⌝∨⌝ 【答案】①③④【解析】对于1:p 可设1l 与2l 相交,所得平面为α.若3l 与1l 相交,则交点A 必在α内,同理,3l 与2l 交点B 也在α内,故AB 直线在α内,即3l 在α内,故1p 为真命题. 对于2:p 过空间中任意三点,若三点共线,可形成无数多平面,故2p 为假命题. 对于3:p 空间中两条直线的位置关系有相交、平行、异面,故3p 为假命题. 对于4:p 若m ⊥平面α,则m 垂直于平面α内的所有直线,故m l ⊥,故4p 为真命题.综上可知:14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题,故正确的有:①③④.三、解答题17.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos ()2A π++(1)求A ;(2)b c -=,证明:ABC ∆是直角三角形. 【解析】(1)由25cos ()cos 24A A π++=可得:25sin cos 4A A +=,2214cos 4cos 10(2cos 1)0cos 2A A A A -+=⇒-=⇒=,∵(0,)A π∈,∴3A π=.(2)解法1:由b c -=可得)a b c -,又2221cos 22b c a A bc +-==,即222b c a bc +-=,∴2223()b c b c bc +--=,(2)(2)0b c b c ⇒--=,∴2b c =或2c b=(舍),∴a =,即222a c b +=,故三角形为直角三角形.解法2:因为3b c a -=,由正弦定理得1sin sin 32B C A -==,由于A B C π++=,于是1sin()sin 32C C π+-=,又因为1sin()sin sin sin 32C C C C C π+-=+-1sin sin()23C C C π=-=-,又因为(,)333C πππ-∈-,于是36C ππ-=,6C π=,所以()2B AC ππ=-+=,故三角形为直角三角形.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据,1,2(,...,0)2)(i i x y i =,其中i x 和i y 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160ii x==∑,2011200i i y ==∑,2021()80ii x x =-=∑,2021()9000i i y y =-=∑,201()()800i i i x x y y =--=∑,(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本,1,2(,...,0)2)(i i x y i =的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数:()()niix x y y r --=∑1.414≈【解析】(1) 由题意可知,1个样区这种野生动物数量的平均数12006020==,故这种野生动物数量的估计值6020012000=⨯=;(2)由参考公式得()()0.94niix x yy r --===≈∑;(3)由题意可知,各地块间植物覆盖面积差异很大,因此在调查时,先确定该地区各地块间植物覆盖面积大小并且由小到大排序,每十个分为一组,采用系统抽样的方法抽取20个地块作为样区进行样本统计.19.已知椭圆22122:1(0)x y C a b a b+=>>的右焦点F 与抛物线2C 的焦点重合,1C 的中心与2C 的顶点重合,过F 且与x 轴垂直的直线交1C 于A ,B 两点,交2C 于C 、D 两点,且4||||3CD AB =. (1)求1C 的离心率;(2)若1C 的四个顶点到2C 的准线距离之和为12,求1C 与2C 的标准方程.【解析】(1)由题意知:222242232b p a p c a b c ⎧=⋅⎪⎪⎪=⎨⎪=+⎪⎪⎩,∴ 24243b c a =⋅,∴ 2232()ac a c =-,即222320c ac a +-=,∴22320e e +-=,∴12e =或2e =-,∵01e <<,即1C 的离心率为12. (2)设1C 的四个顶点到2C 的准线距离为1d ,2d ,3d ,4d ,则:∵123422d a c d a c p d c p d c =-⎧⎪=+⎪⎪⎨==⎪⎪==⎪⎩,又∵ 123412d d d d +++=∴122a c a c c c pc -++++=⎧⎪⎨=⎪⎩ ∴6a c += ∵12c a = ∴26c c +=∴216a =,24c =,24p c == ∴212b =∴221:11612x y C +=,22:8C y x =.20.如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BB C C 是矩形,M ,N 分别为BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F (1)证明:1//AA MN ,且平面1A AMN ⊥平面11EB C F ;(2)设O 为111A B C ∆的中心,若6AO AB ==,//AO 平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.【解析】(1)证明∵M ,N 分别为BC ,11B C 的中点,底面为正三角形,∴1B N BM =,四边形1BB NM 为矩形,∴1//BB MN ,而11//AA BB ,∴1//AA MN ,可得1,,,A A M N 共面,由四边形1BB NM 为矩形,得11MN B C ⊥,由11B N NC =,得111A N B C ⊥,又1MN A N N ⋂=,得11B C ⊥面1A AMN ,11B C ⊂面11EB C F ∴面1A AMN ⊥面11EB C F ;(2)因为//AO 平面11EB C F ,AO ⊂平面1A NMA ,平面1A NMA 平面11EB C F NP =,所以//AO NP ,又因为//NO AP ,所以四边形AONP 为平行四边形,6AO NP ==,ON AP ==M 做MH 垂直于NP ,垂足为H ,因为平面11EB C F ⊥平面1A AMN ,平面11EB C F平面1A AMN NP =,MH ⊂平面1A AMN ,所以MH ⊥平面11EB C F,由PM =,6AO =,MN =,得PM MN MH PN⋅==11111()242EB C FS B C EF NP =+⋅=,由//BC 平面11EB C F,所以11111113B EB F M EBC FB C C E F V V S MH --==⋅⋅= 21.已知函数()2ln 1f x x =+,(1)若()2f x x c ≤+,求c 的取值范围; (2)设0a >,讨论函数()()()f x f a g x x a-=-的单调性.【解析】(1)()2f x x c ≤+等价于2ln 21x x c -≤-,设()2ln 2h x x x =-,22(1)'()2x h x x x-=-=, 当01x <<时,()0h x '>,所以()h x 在(0,1)上递增, 当1x >时,()0h x '<,所以()h x 在(1,)+∞递减,故max ()(1)2h x h ==-,所以12c -≥-.即1c ≥-,所以c 的取值范围是[1,)-+∞; (2)2(ln ln )()(0,,0)x a g x x x a a x a-=>≠>-,所以2222()2ln 2ln 2ln 2ln 2'()()()a x a x a x a x x g x x a x a --+--++==--,令2()2ln 2ln 2(0)a w x x a x x =--++>,则22222()'()a a x w x x x x -=-=, 令'()0w x >得0x a <<,'()0w x <得x a >,所以()w x 在(0,)a 上单调递增,在(,)a +∞上单调递减,所以,()()0w x w a ≤=,即'()0g x <,所以,()g x 在(0,)a 和(,)a +∞上单调递减.四、选做题22.已知1C ,2C 的参数方程分别为2124cos :4sin x C y θθ⎧=⎨=⎩,(θ为参数),21:1x t t C y t t ⎧=+⎪⎪⎨⎪=-⎪⎩,(t 为参数)(1)将1C ,2C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设1C ,2C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由题:1C 的普通方程为:40x y +-=,(0,0)x y ≥≥; 因为222222212:12x t t C y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,故2C 的普通方程为:224x y -=;联立1C ,2C ,22404x y x y +-=⎧⎨-=⎩解得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,所以点P 坐标为:53(,)22P ,设以设所求圆圆心为(,0)Q a ,半径为a ,故圆心(,0)Q a 到53(,)22P 的距离a =,得1710a =,所以圆Q 的圆心为17(,0)10Q ,半径为1710,圆Q 的直角坐标方程为:2221717()1010()x y -+=,即221705x y x +-=,所以所求圆的极坐标方程为:17cos 5ρθ=.23.已知函数2()|||21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【解析】当2a =时,()|4||3|f x x x =-+-,即()27,31,3427,4x x f x x x x -+<⎧⎪=≤≤⎨⎪->⎩所以()4f x ≥的解集为32x ≤或112x ≥. (2)222()|||21||(21)||(1)|f x x a x a x a x a a =-+-+≥---+=-,又()4f x ≥,所以2|(1)|4a -≥,则3a ≥或1a ≤-.。

2021年全国统一新高考数学试卷(新高考Ⅱ卷)

2021年全国统一新高考数学试卷(新高考Ⅱ卷)
在直角三角形 , , ,故 ,
故 不成立,故A错误.(或者易得 在上底面的射影为 ,故 不成立)
对于B,如图(2)所示,取 的中点为 ,连接 , ,则 , ,
由正方体 可得 平面 ,而 平面 ,
故 ,而 ,故 平面 ,
又 平面 , ,而 ,
所以 平面 ,而 平面 ,故 ,故B正确.
对于C,如图(3),连接 ,则 ,由B的判断可得 ,
【解析】: ,即 .故选:C.
8. 已知函数 的定义域为 , 为偶函数, 为奇函数,则()
A. B. C. D.
【思路分析】推导出函数 是以 为周期的周期函数,由已知条件得出 ,结合已知条件可得出结论.
【解析】:因为函数 为偶函数,则 ,可得 ,
因为函数 为奇函数,则 ,所以, ,
所以, ,即 ,
故函数 是以 为周期的周期函数,
(1)已知 ,求 ;
(2)设p表示该种微生物经过多代繁殖后临近灭绝 概率,p是关于x的方程: 的一个最小正实根,求证:当 时, ,当 时, ;
(3)根据你的理解说明(2)问结论的实际含义.
22. 已知函数 .
(1)讨论 的单调性;
(2)从下面两个条件中选一个,证明: 有一个零点
① ;
② .
2021年全国统一高考数学试卷(新高考全国Ⅱ卷)
A. 26%B. 34%C. 42%D. 50%
5. 正四棱台 上、下底面的边长分别为2,4,侧棱长为2,则其体积为()
A. B. C. D.
6. 某物理量的测量结果服从正态分布 ,下列结论中不正确的是()
A. 越小,该物理量在一次测量中在 的概率越大
B. 越小,该物理量在一次测量中大于10 概率为0.5
【解析】:对于A选项, , ,

2021年普通高等学校招生全国统一考试数学试题(新高考Ⅱ)(附答案详解)

2021年普通高等学校招生全国统一考试数学试题(新高考Ⅱ)(附答案详解)

2021年普通高等学校招生全国统一考试数学试题(新高考Ⅱ)一、单选题(本大题共8小题,共40.0分)1.(2021·全国·历年真题)复数2−i1−3i在复平面内对应的点所在的象限为()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.(2021·全国·历年真题)设集合U={1,2,3,4,5,6},A={1,3,6},B={2,3,4},则A⋂(∁U B)=()A. {3}B. {1,6}C. {5,6}D. {1,3}3.(2021·全国·历年真题)抛物线y2=2px(p>0)的焦点到直线y=x+1的距离为√2,则p=()A. 1B. 2C. 2√2D. 44.(2021·全国·历年真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为6400km的球,其上点A的纬度是指OA与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为S=2πr2(1−cosα)(单位:km2),则S占地球表面积的百分比约为()A. 26%B. 34%C. 42%D. 50%5.(2021·全国·历年真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A. 20+12√3B. 28√2C. 563D. 28√236.(2021·全国·历年真题)某物理量的测量结果服从正态分布N(10,σ2),下列结论中不正确的是()A. σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B. σ越小,该物理量在一次测量中大于10的概率为0.5C. σ越小,该物理量在一次测量中小于9.99与大于10.01的概率相等D. σ越小,该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等7.(2021·全国·历年真题)已知a=log52,b=log83,c=1,则下列判断正确的是2()A. c<b<aB. b<a<cC. a<c<bD. a<b<c8.(2021·全国·历年真题)已知函数f(x)的定义域为R,f(x+2)为偶函数,f(2x+1)为奇函数,则()A. f(−1)=0 B. f(−1)=0 C. f(2)=0 D. f(4)=02二、多选题(本大题共4小题,共20.0分)9.(2021·全国·历年真题)下列统计量中,能度量样本x1,x2,⋯,x n的离散程度的是()A. 样本x1,x2,⋯,x n的标准差B. 样本x1,x2,⋯,x n的中位数C. 样本x1,x2,⋯,x n的极差D. 样本x1,x2,⋯,x n的平均数10.(2021·全国·历年真题)如图,在正方体中,O为底面的中心,P为所在棱的中点,M,N为正方体的顶点,则满足MN⊥OP的是()A. B.C. D.11.(2021·全国·历年真题)已知直线l:ax+by−r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A. 若点A在圆C上,则直线l与圆C相切B. 若点A在圆C内,则直线l与圆C相离C. 若点A在圆C外,则直线l与圆C相离D. 若点A在直线l上,则直线l与圆C相切12.(2021·全国·历年真题)设正整数n=a0⋅20+a1⋅2+⋯+a k−1⋅2k−1+a k⋅2k,其中a i∈{0,1},记ω(n)=a0+a1+⋯+a k,则()三、单空题(本大题共4小题,共20.0分)13.(2021·全国·历年真题)已知双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,则该双曲线的渐近线方程为_______.14.(2021·全国·历年真题)写出一个同时具有下列性质①②③的函数f(x):_______.①f(x1x2)=f(x1)f(x2);②当x∈(0,+∞)时,f′(x)>0;③f′(x)是奇函数.15.(2021·全国·历年真题)已知向量a⃗+b⃗ +c⃗=0⃗,|a⃗|=1,|b⃗ |=|c⃗|=2,a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗=_______.16.(2021·全国·历年真题)已知函数f(x)=|e x−1|,x1<0,x2>0,函数f(x)的图象在点A(x1,f(x1))和点B(x2,f(x2))的两条切线互相垂直,且分别交y轴于M,N两点,则|AM||BN|取值范围是_______.四、解答题(本大题共6小题,共70.0分)17.(2021·全国·历年真题)记S n是公差不为0的等差数列{a n}的前n项和,若a3=S5,a2a4=S4.(1)求数列{a n}的通项公式a n;(2)求使S n>a n成立的n的最小值.18.(2021·全国·历年真题)在▵ABC中,角A、B、C所对的边长分别为a、b、c,b=a+1,c=a+2.(1)若2sinC=3sinA,求▵ABC的面积;(2)是否存在正整数a,使得▵ABC为钝角三角形?若存在,求出a的值;若不存在,说明理由.19.(2021·全国·历年真题)在四棱锥Q−ABCD中,底面ABCD是正方形,若AD=2,QD=QA=√5,QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B−QD−A的平面角的余弦值.20.(2021·全国·历年真题)已知椭圆C的方程为x2a2+y2b2=1(a>b>0),右焦点为F(√2,0),且离心率为√63.(2)设M,N是椭圆C上的两点,直线MN与曲线x2+y2=b2(x>0)相切.证明:M,N,F三点共线的充要条件是|MN|=√3.21.(2021·全国·历年真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X表示1个微生物个体繁殖下一代的个数,P(X=i)=p i(i=0,1,2,3).(1)已知p0=0.4,p1=0.3,p2=0.2,p3=0.1,求E(X);(2)设p表示该种微生物经过多代繁殖后临近灭绝的概率,p是关于x的方程:p0+p1x+p2x2+p3x3=x的一个最小正实根,求证:当E(X)≤1时,p=1,当E(X)>1时,p<1;(3)根据你的理解说明(2)问结论的实际含义.22.(2021·全国·历年真题)已知函数f(x)=(x−1)e x−ax2+b.(1)讨论f(x)的单调性;①12<a≤e22,b>2a;②0<a<12,b≤2a.答案和解析1.【答案】A【知识点】复数的代数表示及其几何意义【解析】【分析】本题考查了复数的除法以及代数表示及其几何意义,属于基础题.利用复数的除法可化简2−i1−3i,从而可求对应的点的位置.【解答】解:,所以该复数对应的点为(12,12 ),该点在第一象限,故选A.2.【答案】B【知识点】交、并、补集的混合运算【解析】【分析】本题考查了集合交集与补集的混合运算,属于基础题.先根据补集的定义求出∁U B={1,5,6},再由交集的定义可求A∩(∁U B).【解答】解:由题设可得∁U B={1,5,6},故A∩(∁U B)={1,6}.故选B.3.【答案】B【知识点】抛物线的性质及几何意义 【解析】 【分析】本题考查了抛物线的基础知识和点到直线的距离公式,题目较易. 首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【解答】解:抛物线的焦点坐标为(p2,0),其到直线x −y +1=0的距离为d =|p 2−0+1|√1+1=√2,解得p =2(p =−6舍去). 故选B .4.【答案】C【知识点】球的表面积和体积 【解析】 【分析】本题重在考查学生对数学知识的理解运用能力和直观想象能力,属于中档题. 由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果. 【解答】 解:如图所示,由题意可得,S 占地球表面积的百分比约为:2πr 2(1−cosα)4πr 2=1−cosα2=1−64006400+360002≈0.42=42%.故选C .5.【答案】D【知识点】棱柱、棱锥、棱台的侧面积、表面积和体积【解析】【分析】本题考查了棱台的结构特征与体积的求法,考查了数形结合思想.由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【解答】解:作出图形,连接该正四棱台上下底面的中心,如图所示,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高ℎ=√22−(2√2−√2)2=√2,下底面面积S1=16,上底面面积S2=4,所以该棱台的体积V=13ℎ(S1+S2+√S1S2)=13×√2×(16+4+√64)=283√2.故选D.6.【答案】D【知识点】正态分布的概率计算【解析】【分析】本题考查了正态分布的相关知识,属于中档题.由正态分布密度曲线的特征逐项判断即可得解.【解答】解:对于A,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A正确;对于C,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C正确;对于D,因为该物理量一次测量结果落在(9.9,10.0)的概率与落在(10.2,10.3)的概率不同,所以一次测量结果落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D错误.故选D.7.【答案】C【知识点】对数与对数运算【解析】【分析】本题考查了对数的单调性与大小比较,合理转化是关键.利用对数函数的单调性可比较a、b与c的大小关系,由此可得出结论.【解答】=log82√2<log83=b,即a<c<b.解:a=log52<log5√5=12故选C.8.【答案】B【知识点】函数的奇偶性【解析】【分析】本题是对函数奇偶性和周期性的综合考查,属于拔高题.推导出函数f(x)是以4为周期的周期函数,由已知条件得出f(1)=0,结合已知条件可得出结论.【解答】解:因为函数f(x+2)为偶函数,则f(2+x)=f(2−x),可得f(x+3)=f(1−x),因为函数f(2x+1)为奇函数,则f(1−2x)=−f(2x+1),所以,f(1−x)=−f(x+1),所以,f(x+3)=−f(x+1)=f(x−1),即f(x)=f(x+4),故函数f(x)是以4为周期的周期函数,因为函数F(x)=f(2x+1)为奇函数,则F(0)=f(1)=0,故f(−1)=−f(1)=0,其它三个选项未知.故选B.9.【答案】AC【知识点】简单随机抽样【解析】【分析】本题考查了离散程度与集中趋势的相关知识,属于基础题.判断所给的选项哪些是考查数据的离散程度,哪些是考查数据的集中趋势即可确定正确选项.【解答】解:由标准差的定义可知,标准差考查的是数据的离散程度;由中位数的定义可知,中位数考查的是数据的集中趋势;由极差的定义可知,极差考查的是数据的离散程度;由平均数的定义可知,平均数考查的是数据的集中趋势;故选AC.10.【答案】BC【知识点】简单多面体(棱柱、棱锥、棱台)及其结构特征【解析】【分析】本题考查了空间中两直线的位置关系以及垂直的判定,考查了数形结合思想和直观想象能力.根据线面垂直的判定定理可得BC的正误,平移直线MN构造所考虑的线线角后可判断AD的正误.【解答】解:设正方体的棱长为2,对于A,如图(1)所示,连接AC,易知MN//AC,且MN、AC、OP在同一平面内,由图可知直线OP与AC相交且不垂直,故MN⊥OP不成立,故A错误.对于B,如图(2)所示,取NT的中点为Q,连接PQ,OQ,则OQ⊥NT,PQ⊥MN,由正方体SBCM−NADT可得SN⊥平面NADT,而OQ⊂平面NADT,故SN⊥OQ,而SN∩NT=N,故OQ⊥平面SNTM,又MN⊂平面SNTM,所以OQ⊥MN,而OQ⋂PQ=Q,所以MN⊥平面OPQ,而PO⊂平面OPQ,故MN⊥OP,故B正确.对于C,如图(3),连接BD,则BD//MN,由B的判断可得OP⊥BD,故OP⊥MN,故C正确.对于D,如图(4),取AM′的中点G,连接PG,OG,M′N′,则MN//M′N′,PG=√2,OG=√3,PO=√5,则PO2=PG2+OG2,PG⊥OG,根据三角形的性质可知PO与PG不垂直,故PO,MN不垂直,故D错误.故选BC.11.【答案】ABD【知识点】直线与圆的位置关系及判定【解析】【分析】本题考查了直线与圆的位置关系,属于中档题.转化点与圆、点与直线的位置关系为a2+b2,r2的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【解答】解:圆心C(0,0)到直线l的距离d=r 2√a2+b2,若点A(a,b)在圆C上,则a2+b2=r2,所以d=r2√a2+b2=|r|,则直线l与圆C相切,故A正确;若点A(a,b)在圆C内,则a2+b2<r2,所以,则直线l与圆C相离,故B正确;若点A(a,b)在圆C外,则a2+b2>r2,所以,则直线l与圆C相交,故C错误;若点A(a,b)在直线l上,则a2+b2−r2=0即a2+b2=r2,所以d=2√a2+b2=|r|,直线l与圆C相切,故D正确.故选ABD.12.【答案】ACD【知识点】分组转化求和法【解析】【分析】本题重在对新定义进行考查,合理分析所给条件是关键,属于拔高题.利用ω(n)的定义可判断ACD选项的正误,利用特殊值法可判断B选项的正误.【解答】解:对于A选项,n=a0⋅20+a1⋅2+⋯+a k−1⋅2k−1+a k⋅2k,ω(n)=a0+a1+⋯+a k,则2n=a0⋅21+a1⋅22+⋯+a k−1⋅2k+a k⋅2k+1,ω(2n)=a0+a1+⋯+a k=ω(n),A选项正确;对于B选项,取n=2,2n+3=7=1⋅20+1⋅21+1⋅22,∴ω(7)=3,而2=0⋅20+1⋅21,则ω(2)=1,即ω(7)≠ω(2)+1,B选项错误;对于C选项,8n+5=a0⋅23+a1⋅24+⋯+a k⋅2k+3+5=1⋅20+1⋅22+a0⋅23+ a1⋅24+⋯+a k⋅2k+3,所以,ω(8n+5)=2+a0+a1+⋯+a k,4n+3=a0⋅22+a1⋅23+⋯+a k⋅2k+2+3=1⋅20+1⋅21+a0⋅22+a1⋅23+⋯+a k⋅2k+2,所以,ω(4n+3)=2+a0+a1+⋯+a k,因此,ω(8n+5)=ω(4n+3),C选项正确;对于D选项,2n−1=20+21+⋯+2n−1,故ω(2n−1)=n,D选项正确.故选ACD.13.【答案】y=±√3x【知识点】双曲线的性质及几何意义【解析】【分析】本题考查了双曲线离心率的应用及渐近线的求解,考查了运算求解能力,属于基础题.由双曲线离心率公式可得b2a2=3,再由渐近线方程即可得解.【解答】解:因为双曲线x2a2−y2b2=1(a>0,b>0)的离心率为2,所以e=√c2a2=√a2+b2a2=2,所以b2a2=3,x=±√3x.所以该双曲线的渐近线方程为y=±ba故答案为:y=±√3x.14.【答案】f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足)【知识点】函数的奇偶性【解析】【分析】本题是开放性问题,合理分析所给条件找出合适的函数是关键,属于中档题.根据幂函数的性质可得所求的f(x).【解答】解:取f(x)=x4,则f(x1x2)=(x1x2)4=x14x24=f(x1)f(x2),满足①,f′(x)=4x3,x>0时有f′(x)>0,满足②,f′(x)=4x3的定义域为R,又f′(−x)=−4x3=−f′(x),故f′(x)是奇函数,满足③.故答案为:f(x)=x4(答案不唯一,f(x)=x2n(n∈N∗)均满足)15.【答案】−92【知识点】向量的数量积【解析】【分析】本题考查了向量数量积的运算,合理转化是关键,属于中档题.由已知可得(a⃗+b⃗ +c⃗ )2=0,展开化简后可得结果.【解答】解:由已知可得(a⃗+b⃗ +c⃗ )2=a⃗2+b⃗ 2+c⃗2+2(a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗ )=9+2(a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗ )=0,因此,a⃗⋅b⃗ +b⃗ ⋅c⃗+c⃗⋅a⃗=−92.故答案为:−92.16.【答案】(0,1)【知识点】导数的几何意义【解析】【分析】本题考查学生利用导数研究函数的能力,考查了直线的方程和斜率以及两点距离问题,属于拔高题.结合导数的几何意义可得x1+x2=0,结合直线斜率及两点间距离公式可得|AM|=√1+e2x1⋅|x1|,|BN|=√1+e2x2⋅|x2|,化简即可得解.【解答】解:由题意,f(x)=|e x−1|={1−e x,x<0e x−1,x≥0,则f′(x)={−e x,x<0e x,x⩾0,所以点A(x1,1−e x1)和点B(x2,e x2−1),k AM=−e x1,k BN=e x2,所以−e x1⋅e x2=−1,x1+x2=0,所以AM:y−1+e x1=−e x1(x−x1),M(0,e x1x1−e x1+1),所以|AM|=√x12+(e x1x1)2=√1+e2x1⋅|x1|,同理|BN|=√1+e2x2⋅|x2|,所以|AM||BN|=√1+e2x1⋅|x1|√1+e2x2⋅|x2|=√1+e2x11+e2x2=√1+e2x11+e−2x1=e x1∈(0,1)故答案为:(0,1).17.【答案】解:(1)由等差数列的性质可得:S5=5a3,则a3=5a3,∴a3=0,设等差数列的公差为d,从而有a2a4=(a3−d)(a3+d)=−d2,S4=a1+a2+a3+a4=(a3−2d)+(a3−d)+a3+(a3+d)=−2d,从而−d2=−2d,由于公差不为零,故:d=2,数列的通项公式为:a n=a3+(n−3)d=2n−6(n∈N∗).(2)由数列的通项公式可得a1=2−6=−4,则S n=n×(−4)+n(n−1)2×2=n2−5n,则不等式S n>a n即n2−5n>2n−6,整理可得(n−1)(n−6)>0,解得n<1或n>6,又n为正整数,故n的最小值为7.【知识点】等差数列的通项公式【解析】本题考查等差数列基本量的求解,是等差数列中的一类基本问题,解决这类问题的关键在于熟练掌握等差数列的有关公式并能灵活运用.(1)由题意首先求得a3的值,然后结合题意求得数列的公差即可确定数列的通项公式;(2)首先求得前n项和的表达式,然后求解二次不等式即可确定n的最小值.18.【答案】解:(1)因为2sinC=3sinA,根据正弦定理可知2c=2(a+2)=3a,则a=4,故b=5,c=6,cosC=a2+b2−c22ab =18>0,所以C为锐角,则sinC=√1−cos2C=3√78,因此,S▵ABC=12absinC=12×4×5×3√78=15√74.(2)显然c>b>a,若▵ABC为钝角三角形,则C为钝角,由余弦定理可得cosC=a 2+b2−c22ab=a2+(a+1)2−(a+2)22a(a+1)=a2−2a−32a(a+1)<0,又a>0,则a2−2a−3<0,即(a+1)(a−3)<0,解得−1<a<3,则0<a<3,由三角形三边关系可得a+a+1>a+2,可得a>1,∵a∈Z,故a=2.【知识点】三角形面积公式、余弦定理、正弦定理【解析】本题考查了正余弦定理与同角三角函数的基本关系,考查了一元二次不等式的解法,属于中档题.(1)由正弦定理可得出2c=3a,结合已知条件求出a的值,进一步可求得b、c的值,利用余弦定理以及同角三角函数的基本关系求出sin C,再利用三角形的面积公式可求得结果;(2)分析可知,角C为钝角,由cosC<0结合三角形三边关系可求得整数a的值.19.【答案】(1)证明:取AD的中点为O,连接QO,CO.因为QA=QD,OA=OD,则QO⊥AD,而AD=2,QA=√5,故A O=DO=1,QO=√5−1=2.在正方形ABCD中,AD=CD=2,DO=1,故CO=√5,因为QC=3,故QC2=QO2+OC2,故▵QOC为直角三角形且QO⊥OC,因为OC⋂AD=O,故QO⊥平面ABCD,因为QO⊂平面QAD,故平面QAD⊥平面ABCD.(2)解:在平面ABCD内,过O作OT//CD,交BC于T,则OT⊥AD,结合(1)中的QO ⊥平面ABCD ,故可建如图所示的空间直角坐标系.则D (0,1,0),Q (0,0,2),B (2,−1,0),故BQ ⃗⃗⃗⃗⃗⃗ =(−2,1,2),BD⃗⃗⃗⃗⃗⃗ =(−2,2,0). 设平面QBD 的法向量n⃗ =(x,y,z ), 则即{−2x +y +2z =0−2x +2y =0,取x =1,则y =1,z =12, 故n⃗ =(1,1,12). 而平面QAD 的法向量为m ⃗⃗⃗ =(1,0,0),故cos ⟨m ⃗⃗⃗ ,n ⃗ ⟩=11×32=23. 又二面角B −QD −A 的平面角为锐角,故其余弦值为23.【知识点】利用空间向量求线线、线面和面面的夹角、面面垂直的判定【解析】本题考查了面面垂直的判定和运用空间向量求解二面角的问题,注意数形结合思想的运用.(1)取AD 的中点为O ,连接QO,CO ,可证QO ⊥平面ABCD ,从而得到平面QAD ⊥平面ABCD .(2)在平面ABCD 内,过O 作OT//CD ,交BC 于T ,则OT ⊥AD ,建如图所示的空间直角坐标系,求出平面QAD 、平面BQD 的法向量后可求二面角的余弦值.20.【答案】(1)解:由题意,椭圆半焦距c =√2且e =c a =√63,所以a =√3,又b 2=a 2−c 2=1,所以椭圆方程为x 23+y 2=1;(2)证明:由(1)得,曲线为x 2+y 2=1(x >0),当直线MN的斜率不存在时,直线MN:x=1,不满足M,N,F三点共线;当直线MN的斜率存在时,设M(x1,y1),N(x2,y2),必要性:若M,N,F三点共线,可设直线MN:y=k(x−√2)即kx−y−√2k=0,由直线MN与曲线x2+y2=1(x>0)相切可得√2k|√k2+1=1,解得k=±1,联立{y=±(x−√2)x23+y2=1可得4x2−6√2x+3=0,Δ>0,所以x1+x2=3√22,x1⋅x2=34,所以|MN|=√1+1⋅√(x1+x2)2−4x1⋅x2=√3,所以必要性成立;充分性:设直线MN:y=kx+b,(kb<0)即kx−y+b=0,由直线MN与曲线x2+y2=1(x>0)相切可得√k2+1=1,所以b2=k2+1,联立{y=kx+bx23+y2=1可得(1+3k2)x2+6kbx+3b2−3=0,Δ=12(3k2−b2+1)=24k2>0,所以x1+x2=−6kb1+3k2,x1⋅x2=3b2−31+3k2,所以|MN|=√1+k2⋅√(x1+x2)2−4x1⋅x2=√1+k2√(−6kb1+3k2)2−4⋅3b2−31+3k2=√1+k2⋅√24k21+3k2=√3,化简得3(k2−1)2=0,所以k=±1,所以{k=1b=−√2或{k=−1b=√2,所以直线MN:y=x−√2或y=−x+√2,所以直线MN过点F(√2,0),M,N,F三点共线,充分性成立;所以M,N,F三点共线的充要条件是|MN|=√3.【知识点】直线与椭圆的位置关系、椭圆的性质及几何意义【解析】本题考查了直线方程与椭圆方程联立及韦达定理的应用,注意运算的准确性是解题的重中之重.(1)由离心率公式可得a=√3,进而可得b2,即可得解;(2)必要性:由三点共线及直线与圆相切可得直线方程,联立直线与椭圆方程可证|MN|=√3;充分性:设直线MN:y=kx+b,(kb<0),由直线与圆相切得b2=k2+1,联立直线与椭圆方程结合弦长公式可得√1+k2⋅√24k2=√3,进而可得k=±1,即可得解.1+3k221.【答案】(1)E(X)=0×0.4+1×0.3+2×0.2+3×0.1=1.(2)设f(x)=p3x3+p2x2+(p1−1)x+p0,因为p3+p2+p1+p0=1,故f(x)=p3x3+p2x2−(p2+p0+p3)x+p0,若E(X)≤1,则p1+2p2+3p3≤1,故p2+2p3≤p0.f′(x)=3p3x2+2p2x−(p2+p0+p3),因为f′(0)=−(p2+p0+p3)<0,f′(1)=p2+2p3−p0≤0,故f′(x)有两个不同零点x1,x2,且x1<0<1≤x2,且x∈(−∞,x1)∪(x2,+∞)时,f′(x)>0;x∈(x1,x2)时,f′(x)<0;故f(x)在(−∞,x1),(x2,+∞)上为增函数,在(x1,x2)上为减函数,若x2=1,因为f(x)在(x2,+∞)为增函数且f(1)=0,而当x∈(0,x2)时,因为f(x)在(x1,x2)上为减函数,故f(x)>f(x2)=f(1)=0,故1为p0+p1x+p2x2+p3x3=x的一个最小正实根,若x2>1,因为f(1)=0且在(0,x2)上为减函数,故1为p0+p1x+p2x2+p3x3=x的一个最小正实根,综上,若E(X)≤1,则p=1.若E(X)>1,则p1+2p2+3p3>1,故p2+2p3>p0.此时f′(0)=−(p2+p0+p3)<0,f′(1)=p2+2p3−p0>0,故f′(x)有两个不同零点x3,x4,且x3<0<x4<1,且x∈(−∞,x3)⋃(x4,+∞)时,f′(x)>0;x∈(x3,x4)时,f′(x)<0;故f(x)在(−∞,x3),(x4,+∞)上为增函数,在(x3,x4)上为减函数,而f(1)=0,故f(x4)<0,又f(0)=p0>0,故f(x)在(0,x4)存在一个零点p,且p<1.所以p为p0+p1x+p2x2+p3x3=x的一个最小正实根,此时p<1,故当E(X)>1时,p<1.(3)意义:每一个该种微生物繁殖后代的平均数不超过1,则若干代后必然临近灭绝,若繁殖后代的平均数超过1,则若干代后还有继续繁殖的可能.【知识点】离散型随机变量的期望与方差、利用导数研究函数的单调性【解析】本题是对离散型随机变量和导数的综合考查,属于拔高题.(1)利用公式计算可得E(X).(2)利用导数讨论函数的单调性,结合f(1)=0及极值点的范围可得f(x)的最小正零点.(3)利用期望的意义及根的范围可得相应的理解说明.22.【答案】解:(1)由函数的解析式可得:f′(x)=x(e x−2a),当a≤0时,若x∈(−∞,0),则f′(x)<0,f(x)单调递减,若x∈(0,+∞),则f′(x)>0,f(x)单调递增;当0<a<12时,若x∈(−∞,ln(2a)),则f′(x)>0,f(x)单调递增,若x∈(ln(2a),0),则f′(x)<0,f(x)单调递减,若x∈(0,+∞),则f′(x)>0,f(x)单调递增;当a=12时,f′(x)≥0,f(x)在R上单调递增;当a>12时,若x∈(−∞,0),则f′(x)>0,f(x)单调递增,若x∈(0,ln(2a)),则f′(x)<0,f(x)单调递减,若x∈(ln(2a),+∞),则f′(x)>0,f(x)单调递增;(2)若选择条件①:由于12<a≤e22,故1<2a≤e2,则b>2a>1,f(0)=b−1>0,又f(−√ba )=(−√ba−1)e−√ba<0,由(1)可知函数在区间(−∞,0)上单调递增,故函数在区间(−∞,0)上有一个零点.f(ln(2a))=2a[ln(2a)−1]−a[ln(2a)]2+b>2a[ln(2a)−1]−a[ln(2a)]2+2a=2aln(2a)−a[ln(2a)]2=aln(2a)[2−ln(2a)],由于1<2a≤e2,故aln(2a)[2−ln(2a)]≥0,结合函数的单调性可知函数在区间(0,+∞)上没有零点.综上可得,f(x)有一个零点.若选择条件②:,故0<2a<1,则f(0)=b−1≤2a−1<0,由于0<a<12当b≥0时,e2>4,4a<2,f(2)=e2−4a+b>0,而函数在区间(0,+∞)上单调递增,故函数在区间(0,+∞)上有一个零点.当b<0时,构造函数H(x)=e x−x−1,则H′(x)=e x−1,当x∈(−∞,0)时,H′(x)<0,H(x)单调递减,当x∈(0,+∞)时,H′(x)>0,H(x)单调递增,注意到H(0)=0,故H(x)≥0恒成立,从而有:e x≥x+1,此时:f(x)=(x−1)e x−ax2+b⩾(x−1)(x+1)−ax2+b=(1−a)x2+(b−1),时,(1−a)x2+(b−1)>0,当x>√1−b1−a+1,则f(x0)>0,取x0=√1−b1−a+1)>0,即:f(0)<0,f(√1−b1−a而函数在区间(0,+∞)上单调递增,故函数在区间(0,+∞)上有一个零点.f(ln(2a))=2a[ln(2a)−1]−a[ln(2a)]2+b≤2a[ln(2a)−1]−a[ln(2a)]2+2a=2aln(2a)−a[ln(2a)]2=aln(2a)[2−ln(2a)],,0<2a<1,故aln(2a)[2−ln(2a)]<0,由于0<a<12结合函数的单调性可知函数在区间(−∞,0)上没有零点.综上可得,f(x)有一个零点.【知识点】导数中的零点问题、利用导数研究函数的单调性【解析】本题主要考查了利用导数研究函数的单调性以及零点问题,属于拔高题.(1)首先求得导函数的解析式,然后分类讨论确定函数的单调性即可;(2)由题意结合(1)中函数的单调性和函数零点存在定理即可证得题中的结论.。

2021年全国统一高考真题数学试卷(文科)(含答案及解析)

2021年全国统一高考真题数学试卷(文科)(含答案及解析)

2021年普通高等学校招生全国统一考试(全国乙卷) 数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4} 2.设43iz i =+,则z =( )A.34i --B.–34i +C.34i -D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( ) A.p q ∧ B.p q ⌝∧ C.p q ∧⌝ D.()p q ⌝∨4.函数()sincos 33x xf x =+的最小正周期和最大值分别是( ) A.3πB.3π和2C.6πD.6π和25.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.46.225coscos 1212ππ-=( ) A.12B.3C.2D.27.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.168.下列函数中最小值为4的是( )A.224y x x =++ B.4|sin ||sin |y x x =+C.222x xy -=+ D.4n ln l y x x=+9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x -- B.1()1f x -+ C.1()1f x +- D.1()1f x ++10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2π B.3π C.4π D.6π 11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为A.52212.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 二、填空题13.已知向量(2,5)a =,(,4)b λ=,若//a b ,则λ= .14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 .15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b = .16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高).18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 23.已知函数()|||3|f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围.答案及解析一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}2.设43iz i =+,则z =( ) A.34i -- B.–34i + C.34i - D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( ) A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案: A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q∧为真,选A. 4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是( )A.3πB.3π和2C.6πD.6π和2 答案: C 解析:()sin()34x f x π=+max ()f x =,2613T ππ==. 故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.4答案: C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=( ) A.12B.33 C.22 3 答案: D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D. 7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( ) A.34 B.23 C.13 D.16答案: B解析:在区间1(0,)2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是( ) A.224y x x =++ B.4|sin ||sin |y x x =+C.222x xy -=+D.4n ln l y x x=+答案: C 解析:对于A ,22224213(1)33y x x x x x =++=+++=++≥.不符合, 对于B ,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t=+,根据对勾函数min 145y =+=不符合, 对于C ,242222x x x xy -==++,令20xt =>,∴4224y t t =+≥=⨯=, 当且仅当2t =时取等,符合,对于D ,4n ln l y x x =+,令ln t x R =∈,4y t t=+. 根据对勾函数(,4][4,)y ∈-∞-+∞,不符合.9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案: B 解析:12()111x f x x x-==-+++, ()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数. 所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π 答案: D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC,12B P =,12PC =,BP =. 2221111312cos 22BC BP C P PBC BP BC +-+-∠===⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为 A.526 5D.2 答案: A 解析:方法一:由22:15x C y +=,(0,1)B 则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++≥.∴max 5||2PB =,故选A. 方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B . 因此22200||(1)PB x y =+-②将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a > 答案: D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值. 即23a b a +<,即a b <,∴2a ab <. 当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值. 即23a b a +>,a b >,2a ab <,故选D. 二、填空题13.已知向量(2,5)a =,(,4)b λ=,若//a b ,则λ= . 答案:85解析:由已知//a b 可得82455λλ⨯=⇒=. 14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 . 答案:5解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离22|38|512d -==+. 15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,60B =︒,223a c ac +=,则b = .答案:22解析: 由面积公式1sin 32S ac B ==,且60B =︒,解得4ac =, 又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b > 解得22b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).答案: ②⑤或③④ 解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,2PA PC ==5BA BC ==2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,5AC AB ==,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.4 10.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高). 答案:见解析 解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯= 221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=. (2)10.3100.3y x -=-=22120.0360.04221010s s ++=20.0076=. ∵则0.30.0920.0760.0304=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高; 没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案: 见解析 解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 答案: 见解析 解析:设{}n a 的公比为q ,则1n n a q -=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =, 故11()3n n a -=,11313(1)12313n n n S -==--. 又3n n n b =,则1231123133333n n n n nT --=+++++,两边同乘13,则234111231333333n n n n nT +-=+++++,两式相减,得23412111113333333n n n nT +=+++++-,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---, 整理得31323(1)4323423n n n nn n T +=--=-⨯⨯, 323314322()(1)04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =,求直线OQ 斜率的最大值. 答案:见解析 解析:(1)由焦点到准线的距离为p ,则2p =. 抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF =.∴222000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020001193944Q OQ Qy y k y y x y ===≤=++. ∴直线OQ 斜率的最大值为13. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 答案: 见解析 解析:(1)2()32f x x x a '=-+(i )当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii )当4120∆=->,即13a <时,()0f x '=解得,113x =,213x +=.∴()f x 在113(,)3a --∞,113()3a -+∞单调递增,在113113(33a a-+单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113(,33a a-++单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t -++=,可得322132t t at t t a t-++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 答案: 见解析 解析: (1)C 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=, 此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以k =代入直线方程并化简得40x -+=或40x +-=化为极坐标方程为5cos sin 4sin()46πρθθρθ=⇔+=或cos sin 4sin()46πρθθρθ+=⇔+=+23.已知函数()|||3|f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 答案: 见解析 解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-; 当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅; 当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥. 综上,原不等式的解集为(,4][2,)-∞-+∞. (2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。

2021年普通高等学校招生全国统一考试 数学( 新高考Ⅱ卷)试题及答案

2021年普通高等学校招生全国统一考试  数学( 新高考Ⅱ卷)试题及答案
解:
(1)取 的中点为 ,连接 .
因为 , ,则 ,
而 ,故 .
在正方形 中,因为 ,故 ,故 ,
因为 ,故 ,故 为直角三角形且 ,
因为 ,故 平面 ,
因为 平面 ,故平面 平面 .
(2)在平面 内,过 作 ,交 于 ,则 ,
结合(1)中的 平面 ,故可建如图所示的空间坐标系.
则 ,故 .
设平面 的法向量 ,
解:抛物线的焦点坐标为 ,
其到直线 的距离: ,
解得: ( 舍去).
故选:B.
4.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为 (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为 的球,其上点A的纬度是指 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为 ,记卫星信号覆盖地球表面的表面积为 (单位: ),则S占地球表面积的百分比约为()
解: ,所以该复数对应的点为 ,
该点在第一象限,
故选:A
2.设集合 ,则 ()
A. B. C. D.
答案:B
根据交集、补集的定义可求 .
解:由题设可得 ,故 ,
故选:B.
3.抛物线 的焦点到直线 的距离为 ,则 ()
A. 1B. 2C. D. 4
答案:B
首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得 的值.
对于D,如图(4),取 的中点 , 的中点 ,连接 ,
则 ,
因为 ,故 ,故 ,
所以 或其补角为异面直线 所成的角,
因为正方体的棱长为2,故 , ,
, ,故 不是直角,
故 不垂直,故D错误.

2021年全国新高考2卷数学试题(原卷版)

2021年全国新高考2卷数学试题(原卷版)

绝密★启用前 试卷类型: 2021年普通高等学校招生全国统一考试新高考Ⅱ卷数学一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 在复平面内,复数213i i--对应的点位于( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限2. 若全集{}1,2,3,4,5,6U =,集合{}1,3,6A =,{}2,3,4,B =则U A C B =( ){}(A)3 {}(B)1,6 {}(C)5,6 {}(D)1,33. 若抛物线22(0)y px p =>焦点到直线1y x =+,则p =( )(A)1 (B)2 (D)44. 卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨迹高度为36000km (轨道高度指卫星到地球表面的最短距离),把地球看成一个球心为O 半径为6400km 的球,其上点A 的纬度是指OA 与赤道所在平面所成角的度数,地球表面能直接观测到的一颗地球静止同步卫星的点的纬度的最大值记为α,该卫星信号覆盖的地球表面面积22(1cos ),S r πα=-(单位:2km ),则S 占地球表面积的百分比为( )(A)26% (B)34% (C)42% (D)50%5. 正四棱台的上、下底面边长为2,4,侧棱长为2,则四棱台的体积为( )(A)20+ 56(D)3 6. 某物理量的测量结果服从正态分布2(10,)N σ则下列结论中不正确的是( )()A σ越小,该物理量一次测量结果落在()9.9,10.1内的概率越大。

()B σ越小,该物理量一次测量结果大于10的概率为0.5。

()C σ越小,该物理量一次测量结果大于10.01的概率与小于9.99的概率相等。

()D σ越小,该物理量一次测量结果落在()9.9,10.2内的概率与落在()10,10.3内的概率相等。

7. 若581log 2,log 3,,2a b c ===则( ) ()A c b a << ()B b a c << ()C a c b << ()D a b c <<8. 设函数()f x 的定义域为R ,且()2f x +是偶函数,()21f x +为奇函数,则( )1().02A f ⎛⎫-= ⎪⎝⎭()().10B f -= ()().20C f = ()().40D f =二、选择题:本题共4小题,每小题5分,共20分。

2021年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)_2(Word最新版)

2021年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)_2(Word最新版)

2021年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)通过整理的2021年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)相关文档,希望对大家有所帮助,谢谢观看!2021年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i 2.(5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3} B.{5}C.{3,5} D.{1,2,3,4,5,7}3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4 B.3 C.2 D.05.(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.3 6.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.28.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1 B.i=i+2 C.i=i+3 D.i=i+49.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f (50)=()A.﹣50 B.0 C.2 D.50二、填空题:本题共4小题,每小题5分,共20分。

2021年全国新课标高考文科数学试题及答案

2021年全国新课标高考文科数学试题及答案

2021年全国新课标高考文科数学试题及答案数学(文)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合M={0,1,2,3,4},N={1,3,5},P=MN,则P的子集共有A.2个B.4个C.6个D.8个2.复数5i? 1?2iA.2?iB.1?2i C. ?2?i D.?1?2i3.下列函数中,既是偶函数又在(0,??)单调递增的函数是A.y?x3 B.y?|x|?1 C.y??x2?1D.y?2?|x|x2y2??1的离心率为 4.椭圆168A.1132 B. C. D. 32325.执行右面的程序框图,如果输入的N是6,那么输出的p是A.120 B. 720 C. 1440 D. 50406.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A.1123 B. C. D. 32347.已知角?的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y?2x上,则cos2?=A. ?4 5B.?3 5C.3 5D.4 58.在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为9.已知直线l过抛物线C的焦点,且与C的对称轴垂直,l与C交于A,B两点,|AB|?12,P为C的准线上一点,则?ABP的面积为 A.18 B.24x C. 36 D. 4810.在下列区间中,函数f(x)?e?4x?3的零点所在的区间为A.(?,0)14B.(0,)14C.(,)11142D.(,)132411.设函数f(x)?sin(2x?A.y?f(x)在(0,B.y?f(x)在(0,C.y?f(x)在(0,D.y?f(x)在(0,?)?cos(2x?),则44??2)单调递增,其图象关于直线x?)单调递增,其图象关于直线x?)单调递减,其图象关于直线x?)单调递减,其图象关于直线x??4对称对称对称对称?2?2?2?4?2?212.已知函数y?f(x)的周期为2,当x?[?1,1]时f(x)?x2,那么函数y?f(x)的图象与函数y?|lgx|的图象的交点共有A.10个 B.9个C.8个 D.1个本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量ka-b垂直,则k=_____________. 14.若变量x,y满足约束条件??3?2x?y?9,则z?x?2y的最小值是_________.6?x?y?9?15.?ABC中,B?120?,AC?7,AB?5,则?ABC的面积为_________.16.已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的3,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为______________. 16三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)11,公比q?.331?an(I)Sn为{an}的前n项和,证明:Sn?2已知等比数列{an}中,a1?(II)设bn?log3a1?log3a2?2?log3an,求数列{bn}的通项公式.18.(本小题满分12分)AB?2AD,PD?底面ABCD.?DAB?60?,如图,四棱锥P?ABCD中,底面ABCD为平行四边形,(I)证明:PA?BD;(II)设PD=AD=1,求棱锥D-PBC的高. 19.(本小题满分12分)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A配方的频数分布表指标值分组频数指标值分组频数[90,94) 8 [90,94) 4 [94,98) 20 [94,98) 12 [98,102) 42 B配方的频数分布表 [98,102) 42 [102,106) 32 [106,110] 10 [102,106) 22 [106,110]8 (I)分别估计用A配方,B配方生产的产品的优质品率;(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为??2,t?94?y??2,94?t?102?4,t?102? 估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.320.(本小题满分12分)在平面直角坐标系xOy中,曲线y?x2?6x?1与坐标轴的交点都在圆C上.(I)求圆C的方程;(II)若圆C与直线x?y?a?0交于A,B两点,且OA?OB,求a的值.21.(本小题满分12分)alnxb?,曲线y?f(x)在点(1,f(1))处的切线方程为x?2y?3?0. x?1xlnx(I)求a,b 的值;(II)证明:当x>0,且x?1时,f(x)?.x?1已知函数f(x)?请考生在第22、23三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy中,曲线C1的参数方程为??x?2cos?,M为C1上的动点,P点满足(?为参数)?y?2?2sin?OP?2OM,点P的轨迹为曲线C2.(I)求C2的方程;(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线??点的交点为A,与C2的异于极点的交点为B,求|AB|. 23.(本小题满分10分)选修4-5:不等式选讲设函数f(x)?|x?a|?3x,其中a?0.(I)当a=1时,求不等式f(x)?3x?2的解集.(II)若不等式?3与C1的异于极f(x)?0的解集为{x|x??1},求a的值.42021年普通高等学校招生全国统一考试文科数学试卷参考答案一、选择题(1)B (2)C (3)B (4)D (5)B (6)A(7)B (8)D (9)C (10)C (11)D (12)A二、填空题(13)1 (14)-6 (15)1534 (16)1 3三、解答题(17)解:111(1?n)1?n11n?113?3,所以S?1?an,?n.Sn?3(Ⅰ)因为an??()n1332321?3n(n?1)??(1?2???n) ??(Ⅱ)bn?log3a1?log3a2???log3an2n(n?1). 所以{bn}的通项公式为bn??2(18)解:(Ⅰ)因为?DAB?60?,AB?2AD,由余弦定理得BD?3AD从而BD2+AD2= AB2,故BD?AD又PD?底面ABCD,可得BD?PD所以BD?平面PAD. 故PA?BD(Ⅱ)如图,作DE?PB,垂足为E。

2021高考全国2卷数学文科试题及答案详解

2021高考全国2卷数学文科试题及答案详解

2021年普通高等学校招生全国统一考试数学第I 卷一、选择题:本大题共 12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的 (1)集合 A { 2,0,2},B {x|x 2 x 2 0},那么 A B=(A)( B ) 2( C ) 0 (D)2考点:交集及其运算.分析: 先解出集合B ,再求两集合的交集即可得出正确选项.解答: 解:A={- 2, 0, 2}, B={x|x2 - x - 2=0}={ - 1, 2},二 A A B={2}. 应选:B点评: 此题考查交的运算,理解好交的定义是解答的关键.(A ) 1 2i (B )1 2i (C ) 1-2i (D) 1-2i考点: 复数代数形式的乘除运算. 分析: 分子分母同乘以分母的共轭复数 1+i 化简即可.解答: 解:化简可得====- 1+2i 应选:B点评: 此题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属根底题.(3)函数f x 在x x °处导数存在,假设 p: f (x °) 0;q : x x °是f x 的极值点,贝U ()(A) p 是q 的充分必要条件(B) p 是q 的充分条件,但不是 q 的必要条件(C) p 是q 的必要条件,但不是 q 的充分条件(D)p 既不是q 的充分条件,也不是 q 的必要条件考点: 必要条件、充分条件与充要条件的判断.菁优网版权所有分析:根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.解答: 函数f (x ) =x3的导数为f (x ) =3x2,由f '( x0) =0,得x0=0,但此时函数f (x )单调递增, 无极值,充分性不成立.根据极值的定义和性质,假设x=x0是f (x )的极值点,那么f '( x0) =0成立,即必要性成立,故 p 是q 的必要条件,但不是 q 的充分条件,(2)1 3i 1 i ()(6)如图,网格纸上正方形小格的边长为 1 (表示1cm,图中粗线画出的是某零件的三视图, 该零件由一个底面半径为3cm,高为6c m 的圆柱体毛坯切削得到, 那么切削掉局部的体积与原来毛坯体积的比值为()(B)(C) 10(D)27应选:C点评:此题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决此题的关键, 比较根底.(4)设向量a, b 满足|a+b|= 10 , |a-b|= , 6,那么a • b=()(A) 1 (B) 2 (C) 3 (D) 5考点:平面向量数量积的运算.分析:将等式进行平方,相加即可得到结论.解答:J和|=伍,I;-畅=后,•••分别平方得,孑+站亦J訐晰+芒=6,两式相减得4?®?b=10- 6=4,即方?b=1, 应选:A 点评:此题主要考查向量的根本运算,利用平方进行相加是解决此题的关键,比较根底.(5)等差数列a n的公差为2,假设a2, a4, a*成等比数列,那么a n的前n项5 = ()(A) n n 1 (B) n n 1 (C) n n 1(D) n n 12 2考点:等差数列的性质.分析:由题意可得a42= (a4 - 4) (a4+8),解得a4可得a1,代入求和公式可得.解答:由题意可得a42=a2?a8,即a42= (a4 - 4) (a4+8),解得a4=8,•a1=a4 - 3X 2=2,•Sn=na1+d, =2n+x 2=n (n +1),应选:A点评:此题考查等差数列的性质和求和公式,属根底题.考点:由三视图求面积、体积•菁优网版权所有分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答:几何体是由两个圆柱组成,一个是底面半径为3高为2, —个是底面半径为2,高为4, 组合体体积是:32 n? 2+22 n? 4=34 n.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32 nX 6=54 n切削掉局部的体积与原来毛坯体积的比值为:=.应选:C.点评:此题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.(7)正三棱柱ABC A’BG的底面边长为2,侧棱长为.3 , D为BC中点,那么三棱锥A BQ。

2021年全国统一高考数学试卷(文科)(全国新课标ⅱ)

2021年全国统一高考数学试卷(文科)(全国新课标ⅱ)

全国统一高考数学试卷(文科)(全国新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{|1}A x x =>-,{|2}B x x =<,则(A B = )A .(1,)-+∞B .(,2)-∞C .(1,2)-D .∅2.设(2)z i i =+,则(z = )A .12i +B .12i -+C .12i -D .12i -- 3.已知向量(2,3)a =,(3,2)b =,则||(a b -= )AB .2C .D .504.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )A .23B .35C .25D .155.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测. 甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙 6.设()f x 为奇函数,且当0x 时,()1x f x e =-,则当0x <时,()(f x = ) A .1x e --B .1x e -+C .1x e ---D .1x e --+7.设α,β为两个平面,则//αβ的充要条件是( ) A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面8.若14x π=,234x π=是函数()sin (0)f x x ωω=>两个相邻的极值点,则(ω= )A .2B .32C .1D .129.若抛物线22(0)y px p =>的焦点是椭圆2213x y p p +=的一个焦点,则(p = )A .2B .3C .4D .810.曲线2sin cos y x x =+在点(,1)π-处的切线方程为( )A .10x y π---=B .2210x y π---=C .2210x y π+-+=D .10x y π+-+= 11.已知(0,)2πα∈,2sin2cos21αα=+,则sin (α= )A .15B C D12.设F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,以OF 为直径的圆与圆222x y a +=交于P ,Q 两点,若||||PQ OF =,则C 的离心率为( )A .2 B.3 C .2 D .5二、填空题:本题共4小题,每小题5分,共20分。

2021年高考全国Ⅱ卷文科数学试题及解答

2021年高考全国Ⅱ卷文科数学试题及解答

普通高等学校招生全国统一考试试题卷文科数学(必修+选修I)注意事项:1 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.共4页,总分150分考试时间120分钟.2 答题前,考生须将自己的姓名、准考证号、考场号、座位号填写在本试题卷指定的位置上。

3 选择题的每小题选出答案后,用2B 铅笔把答题卡上的对应题目的答案标号涂黑,如需改动,用橡皮 擦干净后,再选涂其他答案,不能答在试题卷上。

4 非选择题必须使用0.5毫米的黑色字迹的签字笔在答题卡上书写,字体工整,笔迹清楚。

5 非选择题必须按照题号顺序在答题卡上各题目的答题区域内作答,超出答题区域或在其它题的答题 区域内书写的答案无效;在草稿纸、本试题卷上答题无效。

6 考试结束后,将本试卷和答题卡一并交回。

第I 卷(选择题)本卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题意要求的。

参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B )如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k 球的表面积公式S=4πR 2其中 R 表示球的半径, 球的体积公式4πR 3V= 3,P n (k)=C n P k (1-P)n -k一.选择题1. cos3300 =其中 R 表示球的半径(A)1 (B)2- 1 (C) 2 (D) -3222.设集合U={1,2,3,4},A={1,2},B={2,4},则C U (A ∪B)=(A) {2} (B){3} (C) {1,2,4} (D) {1,4}3.函数f(x)=|sinx|的一个单调递增区间是 (A) ⎛ - π,π⎫(B) ⎛π, 3π⎫ (C) ⎛π, 3π⎫(D) ⎛ 3π,2π⎫⎪ ⎝ 4 4 ⎭⎪ ⎝ 4 4 ⎭⎪ ⎝ 2 ⎭⎪ ⎝ 2⎭4.以下四个数中的最大者是(A) (ln2)2(B) ln(ln2)(C) lnx - 2(D) ln25.不等式x + 3> 0 的解集是( )A . (-3,2)B . (2,+ ∞)C . (-∞,- 3) (2,+ ∞)D . (-∞,- 2) (3,+ ∞)6.在∆ABC 中,已知D 是AB 边上一点,若A D D B CD = 1 CA3+ λCB23,则 =12 (A)31 (B)3(C) - (D) - 23 37.已知正三棱锥的侧棱长与底面边长的2倍,则侧棱与底面所成角的余弦值等于(A) 6 (B) 4 (C) 2(D)2x 2 18.已知曲线 y = 的一条切线的斜率为 4 2,则切点的横坐标为(A)1(B) 2(C) 3(D) 49.把函数y =e x 的图象按向量a =(2,0)平移,得到y =f (x )的图象,则f (x )=(A) e x +2 (B) e x -2 (C) e x -2 (D) e x +210.5位同学报名参加两上课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有 (A)10种 (B) 20种 (C) 25种 (D) 32种11.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率为(A)1 (B)3 (C)1 (D)333222y 2 12.设F 1,F 2分别是双曲线 x -= 1的左右焦点,若点P 在双曲线上,且PF • PF = 0,则+=91 2(A) (B)2 (C) (D) 2第II 卷(非选择题)本卷共10题,共90分。

2021年高考试题(新课标II卷)文数(word答案)

2021年高考试题(新课标II卷)文数(word答案)

普通高等学校招生全国统一考试(课标II 卷)数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合2{2,0,2},{|20}A B x x x =-=--=,则A B =( )A. ∅B. {}2C. {0}D. {2}-(2)131i i +=-( )A.12i +B. 12i -+C. 12i -D. 12i --(3)函数()f x 在0x x =处导数存在,若0:()0p f x =:0:q x x =是()f x 的极值点,则A .p 是q 的充分必要条件B. p 是q 的充分条件,但不是q 的必要条件C. p 是q 的必要条件,但不是q 的充分条件D. p 既不是q 的充分条件,学科 网也不是q 的必要条件(4)设向量,a b 满足10a b +=,6a b -=,则a b ⋅=( )A. 1B. 2C. 3D. 5(5)等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( )A. (1)n n +B. (1)n n -C. (1)2n n +D. (1)2n n-A.2717B.95C.2710D.31(7)正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为(A )3 (B )32 (C )1 (D )32(8)执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =(A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线2:+3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =(A )303 (B )6 (C )12 (D )73(11)若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C )2,2⎡⎤-⎣⎦ (D )22,22⎡⎤-⎢⎥⎣⎦二、填空题:本大题共4小题,每小题5分.(13)甲,乙两名运动员各自等可能地从红、学科 网白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.(14) 函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.(15) 偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________.(16) 数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________.三、解答题:(17)(本小题满分12分)四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB .(1)求C 和BD ;(2)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的重点.(1)证明:PB //平面AEC ;(2)(19)(本小题满分12分)(1)分别估计该市的市民对甲、乙两部门评分的中位数; (2)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(20)(本小题满分12分)设12,F F 分别是椭圆C:22221(0)x y a b a b +=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求,a b .(21)(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(1)求a ;(2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请考生在第22,23,24题中任选一题做答,如多做,则按所做的第一题记分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前
2021年普通高等学校招生全国统一考试
文科数学
注意事项:
1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,在选涂其它答案标号框.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()
A. B. {–3,–2,2,3)
C. {–2,0,2}
D. {–2,2}
2.(1–i)4=()
A.–4
B. 4
C. –4i
D. 4i 3.如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k–j=3且j–i=4,则称a i,
a j,a k为原位大三和弦;若k–j=4且j–i=3,则称a i,a j,a k为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为()
A. 5
B. 8
C. 10
D. 15
4.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A. 10名
B. 18名
C. 24名
D. 32名
5.已知单位向量a ,b 的
夹角为60°,则在下列向量中,与b 垂直的是( ) A. a +2b
B. 2a +b
C. a –2b
D. 2a –b
6.记S n 为等比数列{a n }的前n 项和.若a 5–a 3=12,a 6–a 4=24,则n n S a =( )
A. 2n –1
B. 2–21–n
C. 2–2n –1
D. 21–n –1
7.执行右面的程序框图,若输入的k =0,a =0,则输出的k 为( )
A. 2
B. 3
C. 4
D. 5
8.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( ) A.
55
B.
25
5
C.
35
5
D.
45
5
9.设O 为坐标原点,直线x a =与双曲线22
22:1(0,0)
x y C a b a b
-=>>的
两条渐近线分别交于,D E 两点,若
ODE 的面积为8,则C 的焦距的最小值为( )
A. 4
B. 8
C. 16
D. 32 10.设函数3
31
()f x x x
=-
,则()f x ( ) A. 是奇函数,且在(0,+∞)单调递增 B. 是奇函数,且在(0,+∞)单调递减
C. 是偶函数,且在(0,+∞)单调递增
D. 是偶函数,且在(0,+∞)单调递减
11.已知△ABC 是面积为
93
4
的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )
A.
3
B. 32
C. 1
D.
32
12.若2233x y x y ---<-,则( ) A. ln(1)0y x -+>
B. ln(1)0y x -+<
C. ln ||0x y ->
D. ln ||0x y -<
二、填空题:本题共4小题,每小题5分,共20分.
13.若2
sin 3
x =-
,则cos2x =__________. 14.记n S 为等差数列{}n a 的前n 项和.若1262,
2a a a =-+=,则10S =__________.
15.若x ,y 满足约束条件1121,x y x y x y +≥-⎧⎪
-≥-⎨⎪-≤⎩
,,则2z x y
=+最大值是__________.
16.设有下列四个命题:
p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面.
p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .
则下述命题中所有真命题的序号是__________. ①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2
5cos ()cos 24
A A π++=
. (1)求A ; (2)若3
3
b c a -=
,证明:△ABC 是直角三角形. 18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:
公顷)和这种野生动物的数量,并计算得201
60i i x ==∑,201
1200i i y ==∑,20
21
)80i i x x =-=∑
(,20
2
1
)9000i i
y y =-=∑
(,20
1
))800i i i x y x y =--=∑((.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=1
22
11
))
))
n
i
i i
i i
n n
i i
x y
x
x y
y
y
x
=
==
--
--

∑∑
((
((,2=1.414. 19.已知椭圆C1:22221x y a b+=(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重
合.过F且与x轴重直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=4
3
|AB|.
(1)求C1的离心率;
(2)若C1的四个顶点到C2的准线距离之和为12,求C1与C2的标准方程.
20.如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.
(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;
(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π
3
,求四棱锥B–EB1C1F 的体积.
21.已知函数f(x)=2ln x+1.
(1)若f(x)≤2x+c,求c的取值范围;
(2)设a>0时,讨论函数g(x)=()()
f x f a
x a
-
-
的单调性.
(二)选考题:共10分.请考生在第22、23题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑.按所涂题号进行评分,不涂、多涂均按所答第一题评分;多答按所答第一题评分.
[选修4—4:坐标系与参数方程]
22.已知曲线C 1,C 2的参数方程分别为C 1:22
4cos 4sin x y θθ⎧=⎨=⎩,(θ为参数),C 2:1,1x t t
y t t ⎧=+⎪⎪⎨⎪=-
⎪⎩
(t 为参数). (1)将C 1,C 2的参数方程化为普通方程;
(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.
[选修4—5:不等式选讲]
23.已知函数2
()|21|f x x a x a =-+-+.
(1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围.。

相关文档
最新文档