莆田市高中物理必修3物理 全册全单元精选试卷检测题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

莆田市高中物理必修3物理 全册全单元精选试卷检测题
一、必修第3册 静电场及其应用解答题易错题培优(难)
1.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 可视为质点的带负电小球穿在水平杆上,以方向水平向右、大小等于
8
3
gR 的速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83
mg ,从A 至C 小球克服库仑力做的功为
23
mgR -,重力加速度为g .求:
(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;
(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】
(1)由动能定理求出小球第一次到达B 点时的动能.
(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.
(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】
(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:
()
02
11cos602
KB A mgR E mv --=-
代入数据解得:5
6
KB E mgR =
(2)小球第一次过A 时,由牛顿第二定律得:
22A v Qq
N k mg m R R
+-=
由题可知:8
3
N mg =
联立并代入数据解得:
2Qq
k
mg R
= 由几何关系得,OC 间的距离为:
cos303
R r R =
=︒
小球在C 点受到的库仑力大小 :
22Qq Qq
F k
k r ==⎫⎪⎝⎭

联立解得3
=
4
F mg 库 (3)从A 到C ,由动能定理得:
2
102
f A W mgR W mv ---=-电
从C 到A ,由动能定理得:
212
f A W mgR W mv +=
'-电
由题可知:W =
电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:
22A
v Qq N k mg m
R R
'-'+= 联立以上解得:
(
283
N mg -'=

根据牛顿第三定律得,小球返回A
点时,对圆弧杆的弹力大小为(
283
mg -,方向向
下.
2.(1)科学家发现,除了类似太阳系的恒星-行星系统,还存在许多双星系统,通过对它们的研究,使我们对宇宙有了较深刻的认识.双星系统是由两个星体构成,其中每个星体的线度(直径)都远
小于两星体间的距离,一般双星系统距离其它星体很远,可以当做孤立系统处理.已知某双星系统中每个星体的质量都是M 0,两者相距L ,它们正围绕两者连线的中点做匀速圆周运动,引力常量为G .
①求该双星系统中每个星体的线速度大小v ;
②如果质量分别为m 1和m 2的质点相距为r 时,它们之间的引力势能的表达式为
12
p m m E G
r
=-,求该双星系统的机械能. (2)微观世界与宏观世界往往存在奇妙的相似性.对于氢原子模型,因为原子核的质量远大于电子质量,可以忽略原子核的运动,形成类似天文学中的恒星-行星系统,记为模型Ⅰ.另一种模型认为氢原子的核外电子并非绕核旋转,而是类似天文学中的双星系统,核外电子和原子核依靠库仑力作用使它们同时绕彼此连线上某一点做匀速圆周运动,记为模型Ⅱ.假设核外电子的质量为m ,氢原子核的质量为M ,二者相距为r ,静电力常量为k ,电子和氢原子核的电荷量均为e .已知电荷量分别为+q 1和-q 2的点电荷相距为r 时,它们之间的电势能的表达式为12
p q q E k
r
=-. ①模型Ⅰ、Ⅱ中系统的能量分别用E Ⅰ、 E Ⅱ表示,请推理分析,比较E Ⅰ、 E Ⅱ的大小关系; ②模型Ⅰ、Ⅱ中电子做匀速圆周运动的线
速度分别用v Ⅰ、v Ⅱ表示,通常情况下氢原子的研究采用模型Ⅰ的方案,请从线速度的角度分析这样做的合理性.
【答案】(1
)①v =②202M G L -(2)①2
-2ke r
②模型Ⅰ的简化是合理的
【解析】
(1)① 22
002/2
M M v G L L =,解得
v =
②双星系统的动能22
00k 0012222GM GM E M v M L L =⨯==
,双星系统的引力势能20P GM E L =-,该双星系统的机械能E=E k +E p =2
02M G L - (2)①对于模型Ⅰ:22I 2mv ke r r =,此时电子的动能E k Ⅰ=2
2ke r
又因电势能2pI e E k r =-,所以E Ⅰ= E k Ⅰ+E p Ⅰ=2
-2ke r
对于模型Ⅱ:对电子有:22121mv ke r r =, 解得 22
112
mv r r ke
= 对于原子核有:22222Mv ke r r =, 解得 22
222
Mv r
r ke = 因为r 1+r 2=r ,所以有2222
1222
+mv r Mv r
r ke ke =
解得E k Ⅱ=222
1211222ke mv Mv r
+=
又因电势能2p
e E k r =-Ⅱ
,所以E Ⅱ= E k Ⅱ+E p Ⅱ=2
-2ke r
即模型Ⅰ、Ⅱ中系统的能量相等,均为2
-2ke r
②解法一:
模型Ⅰ中:对于电子绕原子核的运动有22I I 2=mv ke m v r r ω=,解得2
I 2
=
ke v m r ω 模型Ⅱ中:
对电子有:2
2II 1II 21=mv ke m v r r ω=, 解得2
II 2
1=ke v m r ω
对于原子核有:22
222
=ke Mv M v r r ω=
, 因ω1=ω2,所以mv Ⅱ=Mv
又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动,因此ω1=ω2=ω,即可视为v Ⅰ=v Ⅱ.故从线速度的角度分析模型Ⅰ的简化是合理的. ②解法二:
模型Ⅰ中:对于电子绕原子核的运动有22I 2mv ke r r =,解得I v
模型Ⅱ中:
库仑力提供向心力:2
22122=ke mr Mr r ωω== (1)
解得12=r M r m

又因为r 1+r 2=r 所以1=M r m M + 2=m
r m M
+
带入(1)式:ω=
所以:1v r ω=Ⅱ2v r ω=又因原子核的质量M 远大于电子的质量m ,所以v Ⅱ>>v ,所以可视为M 静止不动;故从线速度的角度分析模型Ⅰ的简化是合理的.
3.如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量均为Q ,其中A 带正电荷,B 带负电荷,A 、B 相距为2d 。

MN 是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球P ,质量为m 、电荷量为+q (可视为点电荷),现将小球P 从与点电荷A 等高的C 处由静止开始释放,小球P 向下运动到距C 点距离为d 的D 点时,速度为v 。

已知MN 与AB 之间的距离为d ,静电力常量为k ,重力加速度为g ,若取无限远处的电势为零,试求:
(1)在A 、B 所形成的电场中,C 的电势φC 。

(2)小球P 经过D 点时的加速度。

(3)小球P 经过与点电荷B 等高的E 点时的速度。

【答案】(1)222mv mgd q -(2)g +2
22kQq
md
(3)2v 【解析】 【详解】
(1)由等量异种电荷形成的电场特点可知,D 点的电势与无限远处电势相等,即D 点电势为零。

小球P 由C 运动到D 的过程,由动能定理得:
2
102
CD mgd q mv ϕ+=
- ① 0CD C D C ϕϕϕϕ=-=- ②
222C mv mgd q
ϕ-= ③
(2)小球P 经过D 点时受力如图:
由库仑定律得:
122
(2)F F k
d == ④
由牛顿第二定律得:
12cos 45cos 45mg F F ma +︒+︒= ⑤
解得:
a =g +
2kQq
⑥ (3)小球P 由D 运动到E 的过程,由动能定理得:
22
1122
DE B mgd q mv mv ϕ+=
- ⑦ 由等量异种电荷形成的电场特点可知:
DE CD ϕϕ= ⑧
联立①⑦⑧解得:
2B v v = ⑨
4.如图所示,固定于同一条竖直线上的A 、B 是两个带等量异种电荷的点电荷,电荷量分别为+Q 和-Q ,A 、B 相距为2d 。

MN 是竖直放置的光滑绝缘细杆,另有一个穿过细杆的带电小球p ,质量为m 、电荷量为+q (可视为点电荷,不影响电场的分布。

),现将小球p 从与点电荷A 等高的C 处由静止开始释放,小球p 向下运动到距C 点距离为d 的O 点时,速度为v 。

已知MN 与AB 之间的距离为d ,静电力常量为k ,重力加速度为g 。

求: (1)C 、O 间的电势差U CO ;
(2)O 点处的电场强度E 的大小及小球p 经过O 点时的加速度;
【答案】(1) 222mv mgd q - (2)222kQ d ; 2
22kQq
g md
+ 【解析】 【详解】
(1)小球p 由C 运动到O 的过程,由动能定理得
2
102
CO mgd qU mv +=
- 所以
222CO
m mgd U q
v -=
(2)小球p 经过O 点时受力如图
由库仑定律得
122
(2)F F d ==
它们的合力为
F =F 1cos 45°+F 2cos 45°=Eq
所以O 点处的电场强度
2
2=
2k Q
E d
由牛顿第二定律得:
mg+qE =ma
所以
2k Qq
a g =+
5.如图所示,在绝缘的水平面上,相隔2L 的,A 、B 两点固定有两个电量均为Q 的正点电荷,C 、O 、D 是AB 连线上的三个点,O 为连线的中点,CO=OD=L/2。一质量为m 、电量为q 的带电物块以初速度v 0从c 点出发沿AB 连线向B 运动,运动过程中物块受到大小恒定的阻力作用。当物块运动到O 点时,物块的动能为初动能的n 倍,到达D 点刚好速度为零,然后返回做往复运动,直至最后静止在O 点。已知静电力恒量为k,求: (1)AB 两处的点电荷在c 点产生的电场强度的大小; (2)物块在运动中受到的阻力的大小; (3)带电物块在电场中运动的总路程。
【答案】(1)
(2) (3)
【解析】 【分析】 【详解】
(1)设两个正点电荷在电场中C 点的场强分别为E 1和E 2,在
C 点的合场强为E C ;则
12()2kQ E L =
;223()2kQ
E L = 则E C =E 1-E 2 解得:E C =
2
32 9kQ
L
. (2)带电物块从C 点运动到D 点的过程中,先加速后减速.AB 连线上对称点φC =φD ,电场力对带电物块做功为零.设物块受到的阻力为f , 由动能定理有:−fL =0−1
2
mv 02 解得:2
012f mv L

(3)设带电物块从C 到O 点电场力做功为W 电,根据动能定理得:
22
0011222
L W f n mv mv 电=-⋅⋅-
解得:()201
214
W n mv -电=
设带电物块在电场中运动的总路程为S ,由动能定理有:W 电−fs =0−1
2
mv 02 解得:s=(n+0.5)L 【点睛】
本题考查了动能定理的应用,分析清楚电荷的运动过程,应用动能定理、点电荷的场强公式与场的叠加原理即可正确解题.
6. 如图所示,光滑绝缘水平面上固定着A 、B 、C 三个带电小球,它们的质量均为m ,间距均为r ,A 带电量Q A =10q ,B 带电量Q B =q ,若小球C 上加一个水平向右的恒力,欲使A 、B 、C 始终保持r 的间距运动,求:
(1)C 球的电性和电量Q C ; (2)水平力F 的大小。

【答案】(1)C 球带负电 Q C =403q (2)F=70k 2
2q r
【解析】
(1)对A 、B 、C 系统研究得:3F
a m
=
A 球受到
B 球库仑斥力F 1和
C 球库仑力F 2后,要产生水平向右加速度,故F 2必为引力,C 球带负电。

对AB 两球有
2222(2)C A B A C B A B
Q Q Q Q Q Q Q Q k
k k k r r r r m m -+= 联立可得:403
C Q q = (2)对整体和A 有 22(2)3C A B A
Q Q Q Q k k F r r
m m
-=
2
270q F k r
=
二、必修第3册 静电场中的能量解答题易错题培优(难)
7.图中所示的静电机由一个半径为R 、与环境绝缘的开口(朝上)金属球壳形的容器和一个带电液滴产生器G 组成。

质量为m 、带电量为q 的球形液滴从G 缓慢地自由掉下(所谓缓慢,意指在G 和容器口之间总是只有一滴液滴)。

液滴开始下落时相对于地面的高度为h 。

设液滴很小,容器足够大,容器在达到最高电势之前进入容器的液体尚未充满容器. 忽略G 的电荷对正在下落的液滴的影响.重力加速度大小为g 。

若容器初始电势为零,求容器可达到的最高电势max V 。

【答案】max ()
mg h R V q
-= 【解析】 【详解】
设在某一时刻球壳形容器的电量为Q 。

以液滴和容器为体系,考虑从一滴液滴从带电液滴产生器G 出口自由下落到容器口的过程。

根据能量守恒有
2122Qq Qq
mgh k
m mgR k h R R
+=++-v (1) 式中,v 为液滴在容器口的速率,k 是静电力常量。

由此得液滴的动能为
21(2)(2)2()Qq h R m mg h R k h R R
-=---v (2) 从上式可以看出,随着容器电量Q 的增加,落下的液滴在容器口的速率v 不断变小;当液
滴在容器口的速率为零时,不能进入容器,容器的电量停止增加,容器达到最高电势. 设容器的最大电量为max Q ,则有
max (2)
(2)0()Q q h R mg h R k
h R R
---=-(3)
由此得
max ()mg h R R
Q kq
-=
(4) 容器的最高电势为
max
max Q V k
R
=(5) 由(4)和(5)式得
max ()
mg h R V q
-=
(6)
8.如图所示,在xOy 直角坐标系0<x <L 的区域存在沿y 轴负方向的匀强电场,在
L ≤x ≤2.5L 的区域存在方向垂直xOy 平面向里的匀强磁场。

S 为一粒子源,可以产生带电量为q 、质量为m 的正粒子,粒子初速度可忽略。

粒子经电压为U 0的加速电场加速后沿x 轴正方向从y 轴上的M 点进入电场区域,M 点到原点的距离为L ,一段时间后该粒子从磁场左边界与x 轴的交点处进入磁场,经磁场偏转后从磁场右边界射出磁场,该粒子在磁场中运动的时间为其在磁场中做匀速圆周运动周期的四分之一,若不计粒子重力。

求: (1)0<x <L 区域内匀强电场的电场强度; (2)匀强磁场的磁感应强度大小;
(3)若仅将匀强磁场的磁感应强度增大到原来的2倍,分析计算粒子将从什么位置离开电磁场区。

【答案】(1)04U L
;0
22mU L q (3)2.5L
【解析】 【分析】 【详解】
(1)设粒子经加速电场加速后的速度为0v 则有
2001
2
qU mv =
令磁场左边界与x 轴的交点为C 点,从M 点到C 点:粒子在电场中做类平抛运动:
0L v t = 212
L at = Eq a m
=
联立可得: 04U E L =
(2)粒子从M 进入电场,经C 进入磁场,在电场和磁场中的运动轨迹如图所示。

粒子在C 点进入磁场的速度,
y v at =
22005y v v v v =+= sin 5
y v v α=
=粒子在磁场中洛伦磁力提供向心力: 2
v Bqv m r
= 根据几何关系可得:
sin sin 1.5r r L αβ+=
根据题意可得
90αβ+=︒
解得:
022mU B L q =
当磁感应强度加倍时,半径减半2
r r '=,则: sin 1.5r r L α''+<
运动轨迹如图
设:粒子从磁场左边界回到电场(F 点)时速度方向与水平方向夹角为α,则F 、C 两点的距离为;
2cos 0.52
r y L α∆=⨯= 把粒子从y 轴进入电场和由磁场左边界返回电场两段运动看做一个完整的平抛运动,前后两段运动的时间相同,由磁场返回偏转电场的过程沿y 轴方向的位移为:
2211(2)322
a t at L -= 所以到达y 轴的位置距原点
3- 2.5L y L ∆=
9.如图所示,在水平方向的匀强电场中有一表面光滑、与水平面成θ角的绝缘直杆AC ,其下端(C 端)距地面高度为h .有一质量m =0.5kg 的带电小环套在直杆上,正以某一速度 0v 沿杆匀速下滑,小环离杆后正好通过C 端的正下方P 点处.(g 取10m/s 2)
(1)若θ=45°,试判断小环的电性,并求出小环受到的电场力大小;
(2)若θ=45°,h =0.8m ,求小环在直杆上匀速运动的速度大小0v ;
(3)若保持h 不变,改变θ角(0<θ<90°)及小环的电荷量,使小环仍能匀速下滑,离杆后正好通过C 端的正下方P 点处,试推出初速度0v 与θ角间的定量关系式.
【答案】(1) 负电 5N (2)2m/s (3)02
gh v θ=
【解析】
【详解】
(1)小环沿杆匀速下滑,合力为零,小环所受的电场力水平向右,则小球带负电。

小环匀速下滑合力为零,电场力 tan 455N F mg =︒=
(2)小环离开杆后做类平抛运动,由牛顿第二定律
2mg ma =
平行于杆的方向做匀速直线运动,则有
0sin 45x v t h ==︒
垂直于杆的方向做匀加速直线运动,则有
21cos 452
y at h =
=︒ 得02m/s v = (3)有牛顿第二定律得 cos mg ma θ
= 平行于杆的方向做匀速直线运动,则有
0sin h v t θ=
垂直于杆的方向做匀加速直线运动,则有
21cos 2
h at θ=
解以上方程得 0tan 2
gh v θ=
10.如图所示,竖直面内的光滑绝缘轨道,处于竖直向下的匀强电场中.一个带负电的小球从斜轨道上的A 点由静止释放,沿轨道滑下,已知小球的质量为m ,电荷量为-q ,匀强电场的场强大小为E ,斜轨道的倾角为α,圆轨道半径为R ,斜轨道与圆轨道平滑连接,小球的重力大于所受的电场力.
(1) 求小球沿轨道滑下的加速度的大小;
(2) 若使小球通过圆轨道顶端的B 点,求A 点距圆轨道最低点的竖直高度h 1至少为多大;
(3) 若小球从距圆轨道最低点的竖直高度h 2=5R 处由静止释放,假设其能通过圆轨道顶端B 点,求从释放到B 点的过程中小球机械能的改变量.
【答案】(1)
-mg qE sin m α()(2)52
R (3)减少3qER . 【解析】
【详解】
(1)由牛顿第二定律有
(mg -qE )sin α=ma
解得 a =-mg qE sin m
α() (2)球恰能过B 点有:
mg -qE =m 2B v R ① 由动能定理,从A 点到B 点过程,则有:
2112()()02
B mg qE h R mv ---=② 由①②解得
h 1=52
R . (3)从释放到B 的过程中,因电场力做的总功为负功,电势能增加,则增加量:
ΔE =qE (h 2-2R )=qE (5R -2R )=3qER .
由能量守恒定律得机械能减少,且减少量为3qER .
答案:(1)-mg qE sin m α()(2)52
R (3)减少3qER .
11.如图,带电量为q =+2×10-3C 、质量为m =0.1kg 的小球B 静置于光滑的水平绝缘板右端,板的右侧空间有范围足够大的、方向水平向左、电场强度E =103N/C 的匀强电场.与B 球形状相同、质量为0.3kg 的绝缘不带电小球A 以初速度v 0=10m/s 向B 运动,两球发生弹性碰撞后均逆着电场的方向进入电场,在电场中两球又发生多次弹性碰撞,已知每次碰撞时间极短,小球B 的电量始终不变,取重力加速度g =10m/s 2.求:
(1)第一次碰撞后瞬间两小球的速度大小;
(2)第二次碰撞前瞬间小球B 的动能;
(3)又经过多长时间发生第三次碰撞.
【答案】(1) v A =5m/s ,v B =15m/s (2) E KB =6.25J (3)t '=1s
【解析】
【详解】
(1)第一次碰撞时,
两小球动量守恒,即3mv 0=3mv A +mv B
机械能守恒,即:222011133222
A B mv mv mv =+
解得碰后A 的速度v A =5m/s ,B 的速度v B =15m/s
(2)碰后AB 两球进入电场,竖直方向二者相对静止均做自由落体运动;
水平方向上,A 做匀速运动,
B 做匀减速直线运动,其加速度大小220m/s B qE a m
== 设经过t 时间两小球再次相碰,则有212A B B v t v t a t =-
解得:t =1s
此时,B 的水平速度为v x =v B -a B t =-5 m/s (负号表明方向向左)
竖直速度为v y =gt =10 m/s
故第二次碰前B 的动能221() 6.25J 2
kB x y E m v v =+= (2)第二次碰撞时,AB 小球水平方向上动量守恒3mv A +mv x =3mv +mv
机械能守恒,即:
22222222111113()()3()()2222
A y x y y x y m v v m v v m v v m v v ''+++=+++ 解得第二次碰后水平方向A 的速度v =0,
B 的速度v =10m/s 故第二次碰撞后A 竖直下落(B 在竖直方向上的运动与A 相同),
水平方向上, B 做匀减速直线运动,
设又经过t ' 时间两小球第三次相碰,则有2102
x B v t a t ''-
= 解得:t '=1s
【点睛】
解决本题的关键要是分析清楚两球的受力情况,判断出运动情况,知道弹性碰撞遵守两大守恒:动能守恒和动量守恒.根据位移关系研究相碰的时间.
12.将一内壁光滑的绝缘细圆管做成的圆环BDC 固定在竖直面内,圆环的圆心为O ,D 为圆环的最低点,其中∠BOC =90,圆环的半径为R ,水平虚线BC 的上方存在水平向右的范围足够大的匀强电场.圆心O 的正上方A 点有一质量为m 、带电荷量为+q 的小球(可视为质点),其直径略小于圆管内径.现将该小球无初速度释放,经过一段时间后小球刚好无碰撞地进入圆管中并继续在圆管中运动,重力加速度为g .求:
(1)A 点到O 点的距离及匀强电场的电场强度大小;
(2)小球运动到圆环的最低点D 时对圆环的作用力.
【答案】(1)mg q
(2)(3+32mg ;方向竖直向下
【解析】
【详解】
(1)小球被释放后在重力和电场力的作用下做匀加速直线运动,小球从B 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则有:
tan 45mg qE
︒=
解得: mg
q E =
因为∠BOC =90,圆环的半径为R ,故BC ,故根据几何关系有可知:
AO
(2)小球从A 点到D 点的过程中,根据动能定理得:
()
2102
D mg R Eq mv ++=- 当小球运动到圆环的最低点D 时,根据牛顿第二定律得:
2D N v F mg m R
-= 联立解得:
(
3N F mg =+
根据牛顿第三定律得小球运动到圆环的最低点D 时对圆环的压力大小为(3mg +,方向竖直向下.
答:(1)A 点到O ,匀强电场的电场强度大小mg
q E =;
(2)小球运动到圆环的最低点D 时对圆环的作用力(3mg +
三、必修第3册 电路及其应用实验题易错题培优(难)
13.多用表是由电流表改装的,现测定一个量程为0~5mA 的电流表G 的内阻r = 100.0Ω , 用它改装成如图的一个多量程多用电表,电流、电压和电阻的测量都各有两个量程(或分度值)不同的档位。

电流表的两个档位中,大量程是小量程的10倍。

(1)当转换开关S 旋到位置1或2时,是电流档,且旋到位置_______的量程较大:当转换开关S 旋到位置5或6时,是电压档,且旋到位置______的量程较大;
(2)A 、B 两表笔中,______为红表笔;
(3)图中的电源E ˊ的电动势为9.0V ,当把转换开关S 旋到位置4,在AB 之间接900Ω电阻时,表头G 刚好半偏。

己知之前己经进行了必要的、正确的操作。

则R 1=_________Ω,R 2=_________Ω。

【答案】1 6 A 10 90
【解析】
【详解】
(1)[1]电流表并联电阻可以扩大量程,并联电阻越小,分流越大,量程越大,故当转换开关S 旋到位置1时量程较大;
[2]电压表串联电阻可以扩大量程,串联电阻越大,分压越大,量程越大,故当转换开关S 旋到位置6时量程较大;
(2)[3]在测量电阻时,因为欧姆档的电路与电池连接,则将转换开关S 旋到位置3或4时,电流应从红表笔进、黑表笔出,所以A 、B 两表笔中,A 为红表笔;
(3)[4] [5]因为“之前己经进行了必要的、正确的操作”,意味着之前已经将A 、B 短接调零,即让表头满偏。

在A 、B 之间接900Ω电阻时,表头G 刚好半偏,说明当表头半偏时,改装后的欧姆表“4” 总内阻R 内=900Ω,则转换开关S 在2时,电流表2的量程为
29.0A 10mA 900
g E I R ===内 根据题给条件“电流表的两个档位中,大量程是小量程的10倍”,所以转换开关S 在1时,电流表1的量程为1100mA g I =
又表头G 满偏电流为5mA 时,电流表的内阻r = 100.0Ω,根据并联电路电流分配规律可解得121090R R =Ω=Ω,
14.某同学通过实验制作一个简易的温控装置,实验原理电路图如图11–1图所示,继电器与热敏电阻R t 、滑动变阻器R 串联接在电源E 两端,当继电器的电流超过15 mA 时,衔铁被吸合,加热器停止加热,实现温控.继电器的电阻约为20 Ω,热敏电阻的阻值R t 与温度t 的关系如下表所示
(1)提供的实验器材有:电源E1(3 V,内阻不计)、电源E2(6 V,内阻不计)、滑动变阻器R1(0~200 Ω)、滑动变阻器R2(0~500 Ω)、热敏电阻R t,继电器、电阻箱
(0~999.9 Ω)、开关S、导线若干.
为使该装置实现对30~80 ℃之间任一温度的控制,电源E应选用______(选填“E1”或“E2”),滑动变阻器R应选用______(选填“R1”或“R2”).
(2)实验发现电路不工作.某同学为排查电路故障,用多用电表测量各接点间的电压,则应将如图11–2图所示的选择开关旋至______(选填“A”、“B”、“C”或“D”).(3)合上开关S,用调节好的多用电表进行排查,在题11–1图中,若只有b、c间断路,则应发现表笔接入a、b时指针______(选填“偏转”或“不偏转”),接入a、c时指针______(选填“偏转”或“不偏转”).
(4)排除故障后,欲使衔铁在热敏电阻为50 ℃时被吸合,下列操作步骤正确顺序是
_____.(填写各步骤前的序号)
①将热敏电阻接入电路
②观察到继电器的衔铁被吸合
③断开开关,将电阻箱从电路中移除
④合上开关,调节滑动变阻器的阻值
⑤断开开关,用电阻箱替换热敏电阻,将阻值调至108.1 Ω
【答案】E2R2C不偏转偏转⑤④②③①
【解析】
(1)由表格数据知,当温度为30 ℃时,热敏电阻阻值为199.5 Ω,继电器的阻值R0=20 Ω,当电流为15 mA时,E=I(R t+R0)=3.3 V,所以电源选E2,80 ℃时,热敏电阻阻值
R t=49.1 Ω,则
E2=I(R t+R0+R),此时变阻器阻值R=330.9 Ω,所以变阻器选择R2;(2)多用电表做电压表测量电压,旋钮旋至直流电压挡C处;(3)若只有b、c间断路,表笔接入a、b时,整个
回路断路,电表指针不偏转,接入a、c时电流流经电表,故指针偏转;(4)50 ℃时,热敏电阻阻值为108.1 Ω,所以应将电阻箱阻值调至108.1 Ω,调节变阻器,使衔铁吸合,再将电阻箱换成热敏电阻,故顺序为⑤④②③①.
【名师点睛】结合表格中数据,利用欧姆定律估算电动势和电阻的数值,选择电源和滑动变阻器.明确实验的目的是实现对30~80 ℃之间任一温度的控制,其中30~80 ℃就是提示的信息,结合表格数据,可知电阻值的取值.
15.(1)在“测定金属的电阻率”的实验中,由于金属丝直径很小,不能使用普通刻度尺,应使用螺旋测微器。

螺旋测微器的精确度为_________mm,用螺旋测微器测量某金属丝直径时的刻度位置如图所示,从图中读出金属丝的直径为_________mm。

(2)如果测出金属丝接入电路的长度l、直径d和金属丝接入电路时的电流I和其两端的电压U,就可求出金属丝的电阻率。

用以上实验中直接测出的物理量来表示电阻率,其表达式为ρ=___________。

(3)在此实验中,金属丝的电阻大约为4Ω,在用伏安法测定金属丝的电阻时,除被测电阻丝外,选用了如下实验器材:
A.直流电源:电动势约4.5 V,内阻不计;
B.电流表A:量程0~0.6 A,内阻约0.125Ω;
C.电压表V:量程0~3 V,内阻约3 kΩ;
D.滑动变阻器R:最大阻值10Ω;
E.开关、导线等。

在以下可供选择的实验电路中,应该选图____(填“甲”或“乙”),选择的接法为____接法(填“内”或“外”),此接法测得的电阻值将___________(填“大于”、“小于”或“等于”)被测电阻的实际阻值。

(4)根据所选实验电路图,在实物图中完成其余的连线___________。

在闭合开关S前,滑动变阻器的滑片应置在_________(填“最左”或“最右”)端。

(5)根据所选量程,某次实验两电表的示数如图,则读数分别为_________V和_________A。

(6)若某次实验测得接入电路金属丝的长度为0.810m,算出金属丝的横截面积为0.81×10-6m2,根据伏安法测出电阻丝的电阻为4.1Ω,则这种金属材料的电阻率为__________(保留二位有效数字)。

【答案】0.01 0.640
2
4
d
lI
U
π
ρ=甲外小于
最左 2.15 0.16 1×10-6Ω·m
【解析】
【分析】
【详解】
(1)[1]螺旋测微器的精确度为0.01mm
[2]金属丝的直径为
0.5mm+0.01mm×14.0=0.640mm。

(2)[3]根据
U
R
I
=及2
1
4
l
R
d
ρ
π
=
解得
2
4
d
lI
U
π
ρ=
(3)[4] [5]因待测电阻的阻值较小,故采用电流表外接电路,即甲电路;
[6]因电压表的分流作用,使得电流表的测量值大于电阻上的实际电流,故此接法测得的电阻值将小于被测电阻的实际阻值。

(4)[7]连线如图;在闭合开关S前,滑动变阻器的阻值调节到最小,故滑片应置在最左端。

(5)[8]电压表读数为2.15V

[9]电流表读数为0.16A 。

(6)[10]根据214l
R d ρπ=可得24d R l πρ=,代入数据可知
ρ=4.1×10-6Ω·m
【点睛】
螺旋测微器示数等于固定刻度与可动刻度示数之和,对螺旋测微器读数时要注意估读;实验器材的选择、设计实验电路图是本题的难点,要掌握实验器材的选取原则及电路选择的
原则。

16.某实验小组进行电阻丝电阻率的测量,其中实验器材有;
A .直流电源(电动势约4.5V ,内阻很小可忽略)
B .0-0.5A 的电流表(内阻很小可忽略)
C .R 0=10Ω的定值电阻
D .R 0=50Ω的定值电阻
E.粗细均匀,总电阻约15Ω的待测电阻丝
F.刻度尺
G 螺旋测微器 H.开关一个,导线若干
(1)图甲是实验电路图,请规范画出其实验原理图__________;
(2)实验时,定值电阻R 0应选用________________(填器材编号);
(3)实验时,多次移动线夹所在的位置,测量其连入电路中的电阻丝的长度,记为l ,同时记下相对应的电流表的示数I ;
(4)以1I
为纵轴,以l 为横轴,得到图丙的图象,已知该图线的截距为b 、斜率为k .由此可知电源的电动势可表示为___,若测得电阻丝直径为d ,则电阻丝的电阻率可表示为ρ=____.(都用题中所给的字母符号表示)。

相关文档
最新文档