2008年甘肃省白银等九市初中毕业升学统一考试、数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
白银等九市州试题
友情提示:
抛物线2
y ax bx c =++的顶点坐标是2424b ac b a a ⎛⎫
-- ⎪⎝⎭
,.
一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有
一项是符合题目要求的,将此选项的代号填入题后的括号内. 1.化简:4=( )
A .2
B .-2
C .4
D .-4
2. 如图1,一个碗摆放在桌面上,则它的俯视图是( )
3. 2008年在北京举办的第29届奥运会的火炬传递在各方面都是创记录的:火炬境外传
递城市19个,境内传递城市和地区116个,传递距离为137万公里,火炬手的总数达到21780人.用科学记数法表示21780为( ) A .2.178×105 B .2.178×104 C .21.78×103 D .217.8×102 4. 如图2,小红和小丽在操场上做游戏,她们先在地上画出一个圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,则投一次就正好投到圆圈内是( ) A .必然事件(必然发生的事件) B .不可能事件(不可能发生的事件) C .确定事件(必然发生或不可能发生的事件)
D .不确定事件(随机事件) 5. 把不等式组110
x x +⎧⎨
-⎩≤>0,
的解集表示在数轴上,正确的为图3中的( )
A .
B .
C .
D .
图3 6. 张颖同学把自己一周的支出情况,用如图4所示的统计图来
表示.则从图中可以看出( ) A .一周支出的总金额
图 1
图
2 图4
图
8 图6 B .一周各项支出的金额
C .一周内各项支出金额占总支出的百分比
D .各项支出金额在一周中的变化情况
7. 如图5①~④是四种正多边形的瓷砖图案.其中,是轴对称图形但不是中心对称的图形为( ) A .①③ B . ①④ C .②③ D .②④
图5
8.中央电视台2套“开心辞典”栏目中,有一期的题目如图6所示,两个天平都平衡,则与2个球体相等质量的正方体的个数为( ) A .5 B .4 C .3 D .2
9. 高速公路的隧道和桥梁最多.图7是一个隧道的横截面,若它的形状是以O 为圆心的
圆的一部分,路面AB =10米,净高CD =7米,则此圆的半径OA =( )
A .5
B .7
C .
375 D .377
10.如图8,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=,则AEF ∠=( ) A .110° B .115° C .120° D .130°
二、填空题:本大题共8小题,每小题4分,共32分.把答案填在题中的横线上. 11. 若向南走2m 记作2m -,则向北走3m 记作 m . 12.点P (-2,3)关于x 轴的对称点的坐标是________.
13. 已知等腰三角形的一条腰长是5,底边长是6,则它底边上的高为 . 14. 抛物线 y=x 2+x-4与y 轴的交点坐标为 . 15. 如图9,将左边的矩形绕点B 旋转一定角度后,位置如右边的矩形,则∠ABC=___ ___ .
① ② ③ ④ 图7
图9
16. 某商店销售一批服装,每件售价150元,打8折出售后,仍可获利20元,设这种服装
的成本价为每件x 元,则x 满足的方程是 . 17. 一个函数具有下列性质:
①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .
18. 如图10(1)是一个等腰梯形,由6个这样的等腰梯形恰好可以拼出如图10(2)所示的一
个菱形.对于图10(1)中的等腰梯形,请写出它的内角的度数或腰与底边长度之间关系的一个正确结论: .
三、解答题(一):本大题共5小题,共38分.解答时,应写出必要的文字说明、证明过程
或演算步骤.
19. (6分) 化简:24
()22a a a a a a
---+.
20.(6分)请你类比一条直线和一个圆的三种位置关系,在图11①、②、③中,分别各画
出一条直线,使它与两个圆都相离、都相切、都相交,并在图11④中也画上一条直线,使它与两个圆具有不同于前面3种情况的位置关系.
21.(8分)图12是某种蜡烛在燃烧过程中高度与时间之间关系的图像,由图像解答下列问
题:
(1)此蜡烛燃烧1小时后,高度为 cm ;经过 小时燃烧完毕; (2)求这个蜡烛在燃烧过程中高度与时间之间关系的解析式.
图12
图11
(1)
(2)
图10
图13 22.(8分)如图13,在ABCD 中,点E 是CD 的中点,AE 的延长线与BC 的延长线相
交于点F .
(1)求证:△ADE ≌△FCE ;
(2)连结AC 、DF ,则四边形ACFD 是下列选项中的( ). A .梯形 B .菱形 C .正方形 D .平行四边形
23.(10分) 某校八年级320名学生在电脑培训前后各参加了一次水平相同的考试,考试成绩都以同一标准划分成“不及格”、“及格”和“优秀”三个等级.为了了解电脑培训的效果,用抽签方式得到其中32名学生培训前后两次考试成绩的等级,并绘制成如图14的统计图,试结合图形信息回答下列问题:
(1) 这32名学生培训前后考试成绩的中位数所在的等级分别是 、 ; (2)估计该校整个八年级学生中,培训后考试成绩的等级为“及格”与“优秀”的学生共有
多少名?
四、解答题(二):本大题共5小题,共50分.解答时,应写出必要的文字说明、证明过程或演算步骤. 24.(8分))图15是一盒刚打开的“兰州”牌香烟,图16(1)是它的横截面(矩形ABCD ),
已知每支香烟底面圆的直径是8mm . (1) 矩形ABCD 的长AB= mm ; (2)利用图15(2)求矩形ABCD 的宽AD .
(3≈1.73,结果精确到0.1mm )
优秀
及格
不及格
等级图
14
图15
(1)
O 1 O 2 O 3 图16
(2)
25.(10分)如图17①,在一幅矩形地毯的四周镶有宽度相同的花边. 如图17②,地毯中
央的矩形图案长6米、宽3米,整个地毯的面积是40平方分米.求花边的宽.
26.(10分)如图18,在梯形ABCD 中,AD ∥BC ,∠B=90°,AD=2,BC=5,tanC=3
4
. (1)求点D 到BC 边的距离; (2)求点B 到CD 边的距离.
27.(10分)小明和小慧玩纸牌游戏. 图19是同一副扑克中的4张扑克牌的正面,将它们
正面朝下洗匀后放在桌上,小明先从中抽出一张,小慧从剩余的3张牌中也抽出一张.
小慧说:若抽出的两张牌的数字都是偶数,你获胜;否则,我获胜. (1)请用树状图表示出两人抽牌可能出现的所有结果;
(2)若按小慧说规则进行游戏,这个游戏公平吗?请说明理由.
图19
① ②
图17
图18
28.(12分)如图20,在平面直角坐标系中,四边形OABC 是矩形,点B 的坐标为(4,3).平行于对角线AC 的直线m 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,设直线m 与矩形OABC 的两边..分别交于点M 、N ,直线m 运动的时间为t (秒). (1) 点A 的坐标是__________,点C 的坐标是__________; (2) 当t= 秒或 秒时,MN=
2
1
AC ; (3) 设△OMN 的面积为S ,求S 与t 的函数关系式;
(4) 探求(3)中得到的函数S 有没有最大值?若有,求出最大值;若没有,要说明理由.
附加题 (12分) 1.(5分)如图21,网格小正方形的边长都为1.在⊿ABC 中,试画出三边的中线(顶点与对边中点连结的线段),然后探究三条中线位置及其有关线段之间的关系,你发现了什么有趣的结论?请说明理由.
2.(7分)如图22(1),由直角三角形边角关系,可将三角形面积公式变形, 得 ABC S △=
1
2
bc·sin ∠A . ① 即 三角形的面积等于两边之长与夹角正弦之积的一半. 如图22(2),在⊿ABC 中,CD ⊥AB 于D ,∠ACD=α, ∠DCB=β. ∵ ABC ADC BDC S S S =+△△△, 由公式①,得
12AC·BC·sin(α+β)= 12AC·CD·sin α+1
2
BC·CD·sin β, 即 AC·BC·sin(α+β)= AC·CD·sin α+BC·CD·sin β. ②
你能利用直角三角形边角关系,消去②中的AC 、BC 、CD 吗?不能, 说明理由;能,写出解决过程.
图20 图21
白银等九市试题答案
一、选择题:本大题共10小题,每小题3分,共30分.
1.A 2.C 3.B 4.D 5.B 6.C 7.A 8.A 9.D 10.B 二、填空题:本大题共8小题,每小题4分,共32分.
11. 3 12.(-2,-3) 13.4 14. (0,-4) 15. 90o 16. 150×80%-x =20 17. y =-
x
1
18. 答案不唯一. 可供参考的有:①它内角的度数为60°、60°、120°、120°;②它的腰长
等于上底长;③它的上底等于下底长的一半. 三、解答题(一):本大题共5小题,共38分. 19. 本小题满分6分
解法1:原式=(a +2)-(a -2) ··································································· 4分
=4. ··············································································· 6分
解法2:原式=22
(2)(2)4
4a a a a a a a
+---⋅- ····································· 2分 =(2)(2)a a +-- ······················································· 4分 =4. ·············································································· 6分
20. 本小题满分6分
答案不唯一. 可供参考的有:
相离:
······························· 1分
相切: ······························· 3分
相交: ······························· 5分
其它:
························································ 6分
21. 本小题满分8分
解:(1)7,
15
8
. ·········································································· 4分 (2)设所求的解析式为y kx b =+, ·························································· 5分 ∵ 点(0,15)、(1,7)在图像上,
∴ 15,
7.
b k b =⎧⎨
=+⎩ ……………………………………………………………………… 6分 解得 8k =-,15b =.
∴ 所求的解析式为815y x =-+. (0≤x ≤
15
8
) …………………………… 8分 说明:只要求对8k =-、15b =,不写最后一步,或者未注明x 的取值范围,都不扣
分.
22. 本小题满分8分
证明:(1)
∵ 四边形ABCD 是平行四边形,
∴ AD ∥BF ,∴ ∠D =∠ECF . ···························································· 3分
∵ E
是CD 的中点,∴ DE = CE .
又 ∠AED =∠FEC , ··································· 4分
∴ △ADE ≌△FCE . ·································· 5分 (2) D .或填“平行四边形”. ······························ 8分 23. 本小题满分10分
解;(1)不及格,及格; ········································································ 4分 (2)抽到的考生培训后的及格与优秀率为(16+8)÷32=75%, ······················· 6分 由此,可以估计八年级320名学生培训后的及格与优秀率为75%. ················ 8分 所以,八年级320名学生培训后的及格与优秀人数为75%×320=240. ············ 10分
四、解答题(二):本大题共5小题,共50分. 24. 本小题满分8分
解:(1)56; ··························································································· 3分 (2)如图,△O 1 O 2 O 3是边长为8mm 的正三角形, 作底边O 2O 3上的高O 1 D . ······························· 4分 则 O 1D =O 1O 3·sin60°=43≈6.92. ···················· 6分 ∴ AD =2(O 1D +4)=2×10.92≈21.8(mm ). ··············· 8分 说明:(1)用勾股定理求O 1D ,参考本标准评分; (2)在如图大正三角形中求高后再求AD ,
也参考本标准评分.
25. 本小题满分10分
解:设花边的宽为x 分米, ································································ 1分 根据题意,得40)32)(62(=++x x . ·············································· 5分 解得1211
14
x x ==-,. ··························································· 8分 x 2=11
4
-
不合题意,舍去. ································································ 9分 答: 花边的宽为1米. ····························································· 10分 说明:不答不扣分. 26. 本小题满分10分
解:(1)如图①,作DE ⊥BC 于E , ·················· 1分 ∵ AD ∥BC ,∠B =90°, ∴ ∠A =90°.又∠DEB =90°,
∴ 四边形ABED 是矩形. ·································································· 2分 ∴ BE =AD =2, ∴ EC =BC -BE =3. ······················································· 3分 在Rt △DEC 中,DE = EC ·t a n C =4
33
⨯
=4. ·········································· 5分 (2)如图②,作BF ⊥CD 于F . ·························································· 6分 方法一:
在Rt △DEC 中,∵ CD =5, ································· 7分 ∴ BC =DC ,又∠C =∠C , ····································· 8分 ∴ Rt △BFC ≌Rt △DEC . ······································ 9分 ∴ BF = DE =4. ················································ 10分 方法二:
O 1
O 2
O
3
D
图①
图②
在Rt △DEC 中,∵ CD =5, ····································································· 7分
∴ sin C =
5
4
. ······················································································ 8分 在Rt △BFC 中,BF =BC ·sin C =4
55
⨯=4. ·················································· 10分
27. 本小题满分10分
解:(1) 树状图为:
共有12种可能结果. ············································································ 4分 说明:无最后一步不扣分.
(2)游戏公平. ·············································································· 6分 ∵ 两张牌的数字都是偶数有6种结果:
(6,10),(6,12),(10,6),(10,12),(12,6),(12,10).
∴ 小明获胜的概率P =
126=21
. ···························································· 8分 小慧获胜的概率也为2
1
.
∴ 游戏公平. ··············································································· 10分 28. 本小题满分12分
解:(1)(4,0),(0,3); ······································································ 2分 (2) 2,6; ·························································································· 4分 (3) 当0<t ≤4时,OM =t .
由△OMN ∽△OAC ,得OC
ON
OA OM =
, ∴ ON =
t 43,S=28
3
t . ·
······························ 6分 当4<t <8时,
如图,∵ OD =t ,∴ AD = t-4. 方法一:
由△DAM ∽△AOC ,可得AM =
)4(43-t ,∴ BM =6-t 43
. ·
······················· 7分 由△BMN ∽△BAC ,可得BN =BM 3
4
=8-t ,∴ CN =t-4. ····························· 8分
S=矩形OABC 的面积-Rt △OAM 的面积- Rt △MBN 的面积- Rt △NCO 的面积 =12-
)4(23-t -21(8-t )(6-t 4
3)-)4(23-t =t t 3832+-. ·············································································· 10分 方法二:
易知四边形ADNC 是平行四边形,∴ CN =AD =t-4,BN =8-t . ····························· 7分 由△BMN ∽△BAC ,可得BM =
BN 43=6-t 4
3,∴ AM =)4(43-t . ··············· 8分 以下同方法一.
(4) 有最大值.
方法一:
当0<t ≤4时, ∵ 抛物线S=
28
3t 的开口向上,在对称轴t=0的右边, S 随t 的增大而增大, ∴ 当t=4时,S 可取到最大值2483⨯=6; ················································ 11分 当4<t <8时,
∵ 抛物线S=t t 38
32+-的开口向下,它的顶点是(4,6),∴ S <6. 综上,当t=4时,S 有最大值6. ····························································· 12分 方法二:
∵ S=22304833488
t t t t t ⎧<⎪⎪⎨⎪-+<<⎪⎩,≤,
∴ 当0<t <8时,画出S 与t 的函数关系图像,如图所示. ························· 11分 显然,当t=4时,S 有最大值6. ·························································· 12分 说明:只有当第(3)问解答正确时,第(4)问只回答“有最大值”无其它步骤,可给1
分;否则,不给分.
附加题 (12分)
1. (1)三条中线交于一点; ·······················2分
(2)在同一条中线上,这个点到边中点的距离等
于它到顶点距离的一半. ·······················5分
2. 能消去AC 、BC 、CD ,得到sin(α+β)= sinα·cosβ+cosα·sinβ. ··························· 2分
解:给AC·BC·sin(α+β)= AC·CD·sinα+BC·CD·sinβ两边同除以AC·BC,得
sin(α+β)= CD
BC
·sinα+
CD
AC
·sinβ,····················································4分
∵CD
BC
=cosβ,
CD
AC
=cosα. ······················································6分
∴ sin(α+β)= sinα·cosβ+cosα·sinβ. ·····················································7分说明:如果上边解法没有第1个步骤的采分点,则后边三个采分点得分分别改为2分、6分、7分.
全卷说明:对于以上各解答题学生试卷中出现的不同解法,请参考本标准给分。