人教版初三数学轴对称知识点归纳
九年级轴对称知识点

九年级轴对称知识点轴对称是初中数学中的一个重要知识点,它涉及到图形的对称性和几何形状的特征。
通过学习轴对称知识点,我们可以更好地理解图形的性质和几何形状的变化规律。
下面将详细介绍九年级轴对称知识点。
一、轴对称的概念轴对称是指存在一个直线,使得图形关于这条直线对称,两侧是完全相同的。
这条直线叫做轴线,对称时图形的各点关于轴线对应。
轴对称是一种十分常见的对称性质,在生活和建筑中都能找到很多具有轴对称性的事物和结构。
二、图形的轴对称性质1. 基本图形的轴对称性质常见的基本图形如正方形、矩形、圆等都具有轴对称性质。
正方形和矩形的轴对称轴线可以选择在中心线上,圆的轴对称轴线可以选择为任意直径线。
2. 复合图形的轴对称性质由基本图形组合而成的复合图形也满足轴对称性质。
在判断复合图形是否轴对称时,可以逐个分析每个基本图形的轴对称性质,然后综合考虑整个复合图形是否存在对称轴线。
三、判断图形轴对称的方法1. 观察法通过观察图形的形状和结构,找出图形是否具有对称性。
如果能够找到一个轴线,使得图形关于这条轴线对称,那么该图形就是轴对称的。
2. 折叠法将图形沿着猜测的对称轴线折叠,如果折叠后两侧完全重合,那么该图形是轴对称的。
3. 尝试法在图形中任选一个点,通过猜测对称轴线将该点和对称点联系起来,然后继续寻找其他点是否也满足对称关系,直到找到所有对称点或确认没有对称点。
四、轴对称的应用轴对称性质不仅仅是一个几何概念,还在生活中得到广泛应用。
1. 设计和艺术领域轴对称的设计可以使作品更加美观和平衡,很多艺术品和建筑都运用了轴对称的概念。
2. 知识体系建构在学习其他几何形状和数学概念时,轴对称性质可以作为一个重要的基础概念,帮助我们更快地理解其他相关知识。
3. 科学研究轴对称性质也在科学研究中发挥着重要作用,例如在生物学中,通过观察生物体的轴对称性质可以研究其结构和功能。
五、总结通过对九年级轴对称知识点的学习,我们了解了轴对称的概念、图形的轴对称性质以及判断图形轴对称的方法。
中考数学知识点总结中考数学《轴对称》知识点:轴对称基本知识

中考数学知识点总结中考数学《轴对称》知识点:轴对称基本知识中考数学知识点总结|中考数学《轴对称》知识点:轴对称基本知识中学数学考试中的“轴对称”知识点:轴对称基本知识轴对称的定义:沿着直线折叠一个人物。
如果它能与另一个图形重合,则称这两个图形围绕直线对称。
这条直线叫做对称轴。
折叠后的重合点是对应点,称为对称点。
轴对称图形和轴对称图形的特征相同,且从对应点到对称轴的距离相等。
轴对称的性质:(1)与对应点相连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等;(3)关于一条直线对称的两个图形是全等图形。
轴对称的判定:如果两个图形对应点的连接线被同一条直线垂直平分,则两个图形围绕该直线对称。
这样就得到了以下性质:1.如果两个图形围绕一条直线对称,则对称轴是由任何一对对应点连接的线段的垂直平分线。
2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
3.线段垂直平分线上的点与线段的两个端点之间的距离相等。
4.对称轴是到线段两端距离相等的点的集合。
轴对称作用:可以通过对称轴的一边从而画出另一边。
通过画对称轴得到的两个图形是全等的。
扩展到轴对称的应用以及函数图像的意义。
轴对称的应用:关于平面直角坐标系的x,y对称意义如果点a和点B围绕坐标系中的直线X对称,则点a的横坐标保持不变,纵坐标为相反的数字。
相反的,如果有两点关于直线y对称,那么点a的横坐标为相反数,纵坐标不变。
关于二次函数像的对称轴公式(又称轴对称公式)设二次函数的解析式是y=ax2+bx+c那么二次函数的对称轴是一条直线x=-B/2a,顶点的横坐标是-B/2a,顶点的纵坐标是(4ac-b2)/4A在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
例如,等腰三角形通常会添加顶点角度的平分线;矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;正方形和菱形问题通常会添加对角线等。
另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,或者通过折叠将轴一侧的图形反射到另一侧,从而实现条件的相对集中。
新人教版初中数学——图形的轴对称、平移与旋转-知识点归纳及中考典型题解析

新人教版初中数学——图形的轴对称、平移与旋转知识点归纳及中考典型题解析一、轴对称图形与轴对称轴对称图形轴对称图形定义如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形,这条直线叫做对称轴如果两个图形对折后,这两个图形能够完全重合,那么我们就说这两个图形成轴对称,这条直线叫做对称轴性质对应线段相等AB=ACAB=A′B′,BC=B′C′,AC=A′C′对应角相等∠B=∠C∠A=∠A′,∠B=∠B′,∠C=∠C′对应点所连的线段被对称轴垂直平分区别(1)轴对称图形是一个具有特殊形状的图形,只对一个图形而言;(2)对称轴不一定只有一条(1)轴对称是指两个图形的位置关系,必须涉及两个图形;(2)只有一条对称轴关系(1)沿对称轴对折,两部分重合;(2)如果把轴对称图形沿对称轴分成“两个图形”,那么这“两个图形”就关于这条直线成轴对称(1)沿对称轴翻折,两个图形重合;(2)如果把两个成轴对称的图形拼在一起,看成一个整体,那么它就是一个轴对称图形1等腰三角形、矩形、菱形、正方形、圆.2.折叠的性质折叠的实质是轴对称,折叠前后的两图形全等,对应边和对应角相等.【注意】凡是在几何图形中出现“折叠”这个字眼时,第一反应即存在一组全等图形,其次找出与要求几何量相关的条件量.解决折叠问题时,首先清楚折叠和轴对称能够提供我们隐含的且可利用的条件,分析角之间、线段之间的关系,借助勾股定理建立关系式求出答案,所求问题具有不确定性时,常常采用分类讨论的数学思想方法.3.作某点关于某直线的对称点的一般步骤(1)过已知点作已知直线(对称轴)的垂线,标出垂足;(2)在这条直线另一侧从垂足除法截取与已知点到垂足的距离相等的线段,那么截点就是这点关于该直线的对称点.4.作已知图形关于某直线的对称图形的一般步骤(1)作出图形的关键点关于这条直线的对称点;(2)把这些对称点顺次连接起来,就形成了一个符合条件的对称图形.二、图形的平移1.定义在平面内,一个图形由一个位置沿某个方向移动到另一个位置,这样的图形运动叫做平移.平移不改变图形的形状和大小.2.三大要素一是平移的起点,二是平移的方向,三是平移的距离.3.性质(1)平移前后,对应线段平行且相等、对应角相等;(2)各对应点所连接的线段平行(或在同一条直线上)且相等;(3)平移前后的图形全等.4.作图步骤(1)根据题意,确定平移的方向和平移的距离;(2)找出原图形的关键点;(3)按平移方向和平移距离平移各个关键点,得到各关键点的对应点;(4)按原图形依次连接对应点,得到平移后的图形.三、图形的旋转1.定义在平面内,一个图形绕一个定点沿某个方向(顺时针或逆时针)转过一个角度,这样的图形运动叫旋转.这个定点叫做旋转中心,转过的这个角叫做旋转角.2.三大要素旋转中心、旋转方向和旋转角度.3.性质(1)对应点到旋转中心的距离相等;(2)每对对应点与旋转中心所连线段的夹角等于旋转角;(3)旋转前后的图形全等.4.作图步骤(1)根据题意,确定旋转中心、旋转方向及旋转角;(2)找出原图形的关键点;(3)连接关键点与旋转中心,按旋转方向与旋转角将它们旋转,得到各关键点的对应点;(4)按原图形依次连接对应点,得到旋转后的图形.【注意】旋转是一种全等变换,旋转改变的是图形的位置,图形的大小关系不发生改变,所以在解答有关旋转的问题时,要注意挖掘相等线段、角,因此特殊三角形性质的运用、锐角三角函数建立的边角关系起着关键的作用.四、中心对称图形与中心对称中心对称图形中心对称图形定义如果一个图形绕某一点旋转180°后能与它自身重合,我们就把这个图形叫做中心对称图形,这个点叫做它的对称中心如果一个图形绕某点旋转180°后与另一个图形重合,我们就把这两个图形叫做成中心对称性质对应点点A与点C,点B与点D点A与点A′,点B与点B′,点C与点C′对应线段AB=CD,AD=BCAB=A′B′,BC=B′C′,AC=A′C′对应角∠A=∠C∠B=∠D∠A=∠A′,∠B=∠B′,∠C=∠C′区别中心对称图形是指具有某种特性的一个图形中心对称是指两个图形的关系联系把中心对称图形的两个部分看成“两个图形”,则这“两个图形”成中心对称把成中心对称的两个图形看成一个“整体”,则“整体”成为中心对称图形平行四边形、矩形、菱形、正方形、正六边形、圆等.考向一轴对称轴对称图形与轴对称的区别与联系区别:轴对称图形是针对一个图形而言,它是指一个图形所具有的对称性质,而轴对称则是针对两个图形而言的,它描述的是两个图形的一种位置关系,轴对称图形沿对称轴对折后,其自身的一部分与另一部分重合,而成轴对称的两个图形沿对称轴对折后,一个图形与另一个图形重合.联系:把成轴对称的两个图形看成一个整体时,它就成了一个轴对称图形.典例1第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行,全国上下掀起喜迎冬奥热潮,下列四个汉字中是轴对称图形的是A.B.C.D.【答案】A【解析】A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选A.1.下列图形中不是轴对称图形的是A.B.C.D.考向二平移1.平移后,对应线段相等且平行,对应点所连的线段平行(或共线)且相等.2.平移后,对应角相等且对应角的两边分别平行或一条边共线,方向相同.3.平移不改变图形的形状和大小,只改变图形的位置,平移后新旧两图形全等.典例2下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有A.4个B.3个C.2个D.1个【答案】C【解析】①荡秋千,是旋转,不是平移;②钟摆的摆动,是旋转,不是平移;③拉抽屉时抽屉的运动,是平移;④工厂里的输送带上的物品运动,是平移;故选C.2.下列四组图形都含有两个可以重合的三角形,其中可以通过平移其中一个三角形得到另一个三角形的是A.B.C.D.3.如图,两只蚂蚁以相同的速度沿两条不同的路径,同时从A出发爬到B,则A.乙比甲先到B.甲比乙先到C.甲和乙同时到D.无法确定考向三旋转通过旋转,图形中的每一点都绕着旋转中心沿相同的方向旋转了同样大小的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等,对应线段相等,对应角相等.在旋转过程中,图形的形状与大小都没有发生变化.典例3 如图,在ABC △中,65BAC ∠=︒,以点A 为旋转中心,将ABC △绕点A 逆时针旋转,得AB C ''△,连接BB ',若BB'AC ∥,则BAC '∠的大小是A .15︒B .25︒C .35︒D .45︒【答案】A【解析】∵△ABC 绕点A 逆时针旋转到△AB ′C ′的位置, ∴AB ′=AB ,∠B ′AC ′=∠BAC =65︒, ∴∠AB ′B =∠ABB ′, ∵BB ′∥AC ,∴∠ABB ′=∠CAB =65°, ∴∠AB ′B =∠ABB ′=65°, ∴∠BAB ′=180°–2×65°=50°,∴∠BAC ′=∠B ′AC ′–∠BAB ′=65°–50°=15°, 故选A .4.五角星可以看成由一个四边形旋转若干次而生成的,则每次旋转的度数可以是A .36°B .60°C .72°D .90°5.如图将△ABC 绕点A 顺时针旋转90°得到△AED ,若点B 、D 、E 在同一条直线上,∠BAC =20°,则∠ADB的度数为A.55°B.60°C.65°D.70°考向四中心对称识别轴对称图形与中心对称图形:①识别轴对称图形:轴对称图形是一类具有特殊形状的图形,若把一个图形沿某条直线对称,直线两旁的部分能完全重合,则称该图形为轴对称图形.这条直线为它的一条对称轴.轴对称图形有一条或几条对称轴.②中心对称图形识别:看是否存在一点,把图形绕该点旋转180°后能与原图形重合.典例4下列图形中,既是中心对称图形,又是轴对称图形的是A.B.C.D.【答案】B【解析】A、不是中心对称图形,也不是轴对称图形,故此选项错误;B、是中心对称图形,又是轴对称图形,故此选项正确;C、不是中心对称图形,也不是轴对称图形,故此选项错误;D、不是中心对称图形,也不是轴对称图形,故此选项错误,故选B.6.下列图形中,△A′B′C′与△ABC成中心对称的是A.B.C.D.1.下列四个图形中,不是轴对称图形的是A.B.C.D.2.已知点A的坐标为(3,–2),则点A向右平移3个单位后的坐标为A.(0,–2)B.(6,–2)C.(3,1)D.(3,–5)3.下列说法中正确的有①旋转中心到对应点的距离相等;②对称中心是对称点所连线段的中点;③旋转后的两个图形的对应边所在直线的夹角等于旋转角;④任意一个等边三角形都是中心对称图形.A.1个B.2个C.3个D.4个4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是A.把△ABC向右平移6格B.把△ABC向右平移4格,再向上平移1格C.把△ABC绕着点A顺时针旋转90°,再向右平移6格D.把△ABC绕着点A逆时针旋转90°,再向右平移6格5.如图,已知菱形OABC的顶点O(0,0),B(–2,–2),若菱形绕点O逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D的坐标为A.(1,–1)B.(–1,–1)C.(1,1)D.(–1,1)6.在菱形ABCD中,AB=2,∠BAD=120°,点E,F分别是边AB,BC边上的动点,沿EF折叠△BEF,使点B的对应点B’始终落在边CD上,则A、E两点之间的最大距离为__________.7.将一张长方形纸条折成如图所示的形状,若∠1=110°,则∠2=__________°.8.如图所示,直线EF过平行四边形ABCD对角线的交点O,且分别交AD、BC于E、F,那么阴影部分的面积是平行四边形ABCD面积的____.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α=__________°.10.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为__________; (2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为__________; (3)画出△ABC 绕O 点顺时针方向旋转90°得到的△A 3B 3C 3,并求点C 走过的路径长.11.如图,在ABC △中,D 为BC 上任一点,DE AC ∥交AB 于点E DF AB ,∥交AC 于点F ,求证:点E F ,关于AD 的中点对称.12.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A坐标为(1,3),点B坐标为(2,1);(2)请作出△ABC关于y轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC的形状.并说明理由.13.如图,已知∠BAC=40°,把△ABC绕着点A顺时针旋转,使得点B与CA的延长线上的点D重合,连接CE.(1)△ABC旋转了多少度?(2)连接CE,试判断△AEC的形状.(3)若∠ACE=20°,求∠AEC的度数.1.下列四个图形中,可以由下图通过平移得到的是A.B.C.D.2.在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是A.(0,5)B.(5,1)C.(2,4)D.(4,2)3.如图,在平面直角坐标系中,已知点A(2,1),点B(3,–1),平移线段AB,使点A落在点A1(–2,2)处,则点B的对应点B1的坐标为A.(–1,–1)B.(1,0)C.(–1,0)D.(3,0)4.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为A.30°B.90°C.120°D.180°5.如图,在ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为A.12 B.15 C.18 D.216.如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置.已知△ABC的面积为16,阴影部分三角形的面积9.若AA′=1,则A′D等于A.2 B.3 C.4 D.3 27.如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置.若四边形AECF的面积为20,DE=2,则AE的长为A.4 B.25C.6 D.268.如图,将等边△AOB放在平面直角坐标系中,点A的坐标为(4,0),点B在第一象限,将等边△AOB 绕点O顺时针旋转180°得到△A′OB′,则点B′的坐标是__________.9.如图,在△ABC中,∠BAC=90°,AB=AC=10 cm,点D为△ABC内一点,∠BAD=15°,AD=6 cm,连接BD,将△ABD绕点A按逆时针方向旋转,使AB与AC重合,点D的对应点为点E,连接DE,DE交AC于点F,则CF的长为__________cm.10.如图,在△ABC中,AB=AC=4,将△ABC绕点A顺时针旋转30°,得到△ACD,延长AD交BC的延长线于点E,则DE的长为__________.11.如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△OAB的三个顶点O(0,0)、A(4,1)、B(4,4)均在格点上.(1)画出△OAB关于y轴对称的△OA1B1,并写出点A1的坐标;(2)画出△OAB绕原点O顺时针旋转90°后得到的△OA2B2,并写出点A2的坐标;(3)在(2)的条件下,求线段OA在旋转过程中扫过的面积(结果保留π).12.如图,在矩形ABCD中,对角线AC的中点为O,点G,H在对角线AC上,AG=CH,直线GH绕点O 逆时针旋转α角,与边AB、CD分别相交于点E、F(点E不与点A、B重合).(1)求证:四边形EHFG是平行四边形;(2)若∠α=90°,AB=9,AD=3,求AE的长.13.在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点A顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.(1)当点E恰好在AC上时,如图1,求∠ADE的大小;(2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.变式拓展1.【答案】A【解析】A.不是轴对称图形,故本选项符合题意;B.是轴对称图形,故本选项不符合题意;C.是轴对称图形,故本选项不符合题意;D.是轴对称图形,故本选项不符合题意.故选A.2.【答案】D【解析】A、可以通过轴对称得到,故此选项错误;B、可以通过旋转得到,故此选项错误;C、可以通过轴对称得到,故此选项错误;D、可通过平移得到,故此选项正确;故选D.3.【答案】C【解析】由平移的性质可知,甲、乙两只蚂蚁的行走的路程相同,且两只蚂蚁的速度相同,所以两只蚂蚁同时到达,故选C.4.【答案】C【解析】根据旋转的性质可知,每次旋转的度数可以是360°÷5=72°或72°的倍数.故选C.5.【答案】C【解析】∵将△ABC绕点A顺时针旋转90°得到△AED,∴∠BAC=∠DAE=20°,AB=AE,∠BAE=90°,∴∠BEA=45°,∵∠BDA=∠BEA+∠DAE=45°+20°,∴∠BDA=65°.故选C.6.【答案】A【解析】A、是中心对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是旋转变换图形,故本选项错误;D、是旋转变换图形,故本选项错误.1.【答案】C【解析】A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项符合题意;D、是轴对称图形,故本选项不符合题意;故选C.2.【答案】B【解析】∵将点A(3,–2)向右平移3个单位所得点的坐标为(6,–2),∴正确答案是B选项.故选B.3.【答案】C【解析】①旋转中心到对应点的距离相等,正确;②对称中心是对称点所连线段的中点,正确;③旋转后的两个图形的对应边所在直线的夹角等于旋转角,正确;④任意一个等边三角形都是中心对称图形,错误.说法正确的有3个,故选C.4.【答案】D【解析】根据图象,△ABC 绕着点A 逆时针方向90°旋转与△DEF 形状相同,向右平移6格就可以与△DEF 重合.故选D . 5.【答案】C【解析】菱形OABC 的顶点O (0,0),B (–2,–2), 得D 点坐标为(022-,022-),即(–1,–1). 每秒旋转45°,则第60秒时,得45°×60=2700°,2700°÷360°=7.5周, OD 旋转了7周半,菱形的对角线交点D 的坐标为(1,1); 故选C . 6.【答案】23-【解析】如图,作AH ⊥CD 于H .∵四边形ABCD 是菱形,∠BAD =120°, ∴AB ∥CD ,∴∠D +∠BAD =180°, ∴∠D =60°, ∵AD =AB =2,∴AH =AD ·sin60°3= ∵B ,B ′关于EF 对称, ∴BE =EB ′,当BE 的值最小时,AE 的值最大,根据垂线段最短可知,当EB ′3AH ==时,BE 的值最小, ∴AE 的最大值=23, 故答案为:23. 7.【答案】55【解析】∵1110∠=︒,纸条的两边互相平行,∴3180118011070.∠=︒-∠=︒-︒=︒根据翻折的性质,()()1121803180705522∠=⨯︒-∠=⨯︒-︒=︒.故答案为:55. 8.【答案】14【解析】根据中心对称图形的性质,得AOE COF △≌△,则阴影部分的面积等于BOC △的面积,为平行四边形ABCD 面积的14.故答案为:14. 9.【答案】22【解析】如图,∵21112∠=∠=︒(对顶角相等),∴336090211268.∠=-⨯︒-=︒︒︒ ∴'906822BAB ∠=-=︒︒︒,∴旋转角'22.BAB α∠=∠=︒故答案为:22.10.【解析】(1)若△A 1B 1C 1与△ABC 关于原点O 成中心对称,则点A 1的坐标为(2,–3).(2)将△ABC 向右平移4个单位长度得到△A 2B 2C 2,则点B 2的坐标为(3,1). (3)将△ABC 绕O 点顺时针方向旋转90°,则点C 走过的路径长=90π2180=π.11.【解析】如图,连接EF 交AD 于点O .DE AC ∥交AB 于E DF AB ,∥交AC 于F ,∴四边形AEDF 是平行四边形, ∴点E F ,关于AD 的中点对称.12.【解析】(1)如图所示:(2)如图所示:'''A B C △即为所求:C '的坐标为()55-,; (3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=, ∴ABC △是直角三角形.13.【解析】(1)∵∠BAC =40°,∴∠BAD =140°,∴△ABC 旋转了140°.(2)由旋转的性质可知AC =AE ,∴△AEC 是等腰三角形. (3)由旋转的性质可知,∠CAE =∠BAD =140°,又AC =AE , ∴∠AEC =(180°–140°)÷2=20°.1.【答案】D【解析】∵只有D 的图形的形状和大小没有变化,符合平移的性质,属于平移得到; 故选D . 2.【答案】B【解析】将点(2,1)向右平移3个单位长度,则所得的点的坐标横坐标增加3,即(5,1).故选B . 3.【答案】【解析】由点A (2,1)平移后所得的点A 1的坐标为(–2,2),可得坐标的变化规律是:左移4个单位,上移1个单位,∴点B 的对应点B 1的坐标为(–1,0).故选C . 4.【答案】C【解析】∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选C . 5.【答案】C【解析】由折叠可得,∠ACD =∠ACE =90°,∴∠BAC =90°, 又∵∠B =60°,∴∠ACB =30°,∴BC =2AB =6,∴AD =6,直通中考由折叠可得,∠E =∠D =∠B =60°,∴∠DAE =60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选C . 6.【答案】B【解析】∵S △ABC =16.S △A ′EF =9,且AD 为BC 边的中线,∴S △A ′DE =12S △A ′EF =92,S △ABD =12S △ABC =8, ∵将△ABC 沿BC 边上的中线AD 平移得到△A 'B 'C ',∴A ′E ∥AB ,∴△DA ′E ∽△DAB , 则2()A'DE ABD S A'D AD S =△△,即299()1816A'D A'D ==+,解得A ′D =3或A ′D =﹣37(舍),故选B . 7.【答案】D【解析】∵△ADE 绕点A 顺时针旋转90°到△ABF 的位置.∴四边形AECF 的面积等于正方形ABCD 的面积等于20,∴AD =DC =2,∵DE =2,∴Rt △ADE 中,AE =22AD DE +=26,故选D .8.【答案】(﹣2,﹣23) 【解析】作BH ⊥y 轴于H ,如图,∵△OAB 为等边三角形,∴OH =AH =2,∠BOA =60°,∴BH =3OH =23,∴B 点坐标为(2,23), ∵等边△AOB 绕点O 顺时针旋转180°得到△A ′OB ′, ∴点B ′的坐标是(﹣2,﹣23). 故答案为:(﹣2,﹣23). 9.【答案】10–26【解析】如图,过点A 作AG ⊥DE 于点G ,由旋转知:AD =AE ,∠DAE =90°,∠CAE =∠BAD =15°,∴∠AED =∠ADG =45°,在△AEF 中,∠AFD =∠AED +∠CAE =60°,在Rt △ADG 中,AG =DG =2AD =32, 在Rt △AFG 中,GF =3AG =6,AF =2FG =26,∴CF =AC –AF =10–26, 故答案为:10–26.10.【答案】23–2【解析】根据旋转过程可知:∠CAD =30°=∠CAB ,AC =AD =4.∴∠BCA =∠ACD =∠ADC =75°.∴∠ECD =180°–2×75°=30°.∴∠E =75°–30°=45°.过点C 作CH ⊥AE 于H 点,在Rt △ACH 中,CH =12AC =2,AH =23. ∴HD =AD –AH =4–23.在Rt △CHE 中,∵∠E =45°,∴EH =CH =2.∴DE =EH –HD =2–(4–23)=23–2.故答案为3–2.11.【解析】(1)如下图所示,点A 1的坐标是(–4,1);(2)如下图所示,点A 2的坐标是(1,–4);(3)∵点A (4,1),∴OA 221417+=∴线段OA 290(17)⨯π⨯=174π.12.【解析】(1)∵对角线AC的中点为O,∴AO=CO,且AG=CH,∴GO=HO,∵四边形ABCD是矩形,∴AD=BC,CD=AB,CD∥AB,∴∠DCA=∠CAB,且CO=AO,∠FOC=∠EOA,∴△COF≌△AOE(ASA),∴FO=EO,且GO=HO,∴四边形EHFG是平行四边形;(2)如图,连接CE,∵∠α=90°,∴EF⊥AC,且AO=CO,∴EF是AC的垂直平分线,∴AE=CE,在Rt△BCE中,CE2=BC2+BE2,∴AE2=(9–AE)2+9,∴AE=5.13.【解析】(1)如图1,∵△ABC绕点A顺时针旋转α得到△DEC,点E恰好在AC上,∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,∵CA=CD,∴∠CAD=∠CDA=12(180°–30°)=75°,∴∠ADE=90°–75°=15°;(2)如图2,∵点F是边AC中点,∴BF=12 AC,∵∠ACB=30°,∴AB=12AC,∴BF=AB,∵△ABC绕点A顺时针旋转60得到△DEC,∴∠BCE=∠ACD=60°,CB=CE,DE=AB,∴DE=BF,△ACD和△BCE为等边三角形,∴BE=CB,∵点F为△ACD的边AC的中点,∴DF⊥AC,易证得△CFD≌△ABC,∴DF=BC,∴DF=BE,而BF=DE,∴四边形BEDF是平行四边形.。
人教版数学轴对称知识点总结

人教版数学轴对称知识点总结一、轴对称的概念轴对称是反映物体在某种变换下保持某种性质的一个基本概念。
如果一个物体或图形关于某条直线(称为对称轴)进行翻折,翻折后的图形与原图形完全重合,那么这个物体或图形就称为关于这条直线的轴对称。
二、轴对称的性质1. 轴对称图形的任意一点关于对称轴都有一个对称点,两点连线垂直于对称轴。
2. 轴对称图形的两个特殊点:连接对角顶点的线段的中点就是对称轴。
3. 轴对称图形的两个特殊线段:垂直于对称轴并且平分图形面积的两个线段互相平行。
4. 轴对称图形的两个特殊角:对应角相等,对应边互为反向延长线。
5. 若两个图形关于某条直线对称,则这两个图形全等。
三、轴对称的判断判断一个图形是否具有轴对称性,一般步骤如下:1. 观察图形,看是否存在一条直线,使得图形关于这条直线翻折后与原图形完全重合;2. 如果存在这样的直线,那么这个图形就是轴对称图形;否则,就不是轴对称图形。
四、轴对称的应用轴对称在几何问题中的应用非常广泛,例如:1. 利用轴对称性质可以简化计算和证明过程。
如,求一个复杂多边形的面积时,可以先找出多边形的一条对称轴,将其分割成几个简单的三角形,然后分别求出这些三角形的面积并相加。
2. 利用轴对称性质可以解决一些几何构造问题。
如,已知一个四边形的两条对角线和一个角的大小,要求构造这个四边形。
这时,可以利用轴对称性质先构造出这个四边形的一半,然后再通过翻折得到整个四边形。
3. 利用轴对称性质可以进行图形的变换和设计。
如,可以通过改变图形的对称轴来改变图形的形状和位置,从而实现图形的变换和设计。
五、轴对称的重要性理解和掌握轴对称的概念和性质,对于提高我们的几何思维能力,解决实际问题具有重要的意义。
它不仅能帮助我们更好地理解和把握几何图形的内在规律,而且能培养我们的空间想象能力和逻辑推理能力。
同时,轴对称也是许多其他数学知识的基础,如函数图像的对称性、概率论中的对称性等。
数学轴对称的性质知识点总结和重难点精析

数学轴对称的性质知识点总结和重难点精析一、知识梳理1.轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2.轴对称的性质(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个关于某直线对称的图形在对应线段或延长线上相交时,交点在对称轴上;(4)对应线段平行(或或在同一直线上)且相等。
3.轴对称的应用:(1)解决与轴对称相关的问题,关键是找到对称轴,然后根据轴对称的性质,找到对称点或对称线段。
(2)确定两个点关于某直线对称的问题,可以以其中一点为对称点,连接对称轴,再找到另一个点的对应点即可。
二、重难点精析1.轴对称的性质是难点,需要灵活运用。
在学习的过程中,可以通过做大量的例题来加深对轴对称性质的理解。
2.解决与轴对称相关的问题时,找到对称轴是关键。
可以通过画图的方式,来找到对称轴,然后根据对称轴的性质解决问题。
3.对于两个点关于某直线对称的问题,可以通过以其中一点为对称点,连接对称轴,再找到另一个点的对应点来解决。
三、例题解析例1:已知A、B两点关于直线m对称,A、B两点间的距离为5cm,AB与直线m的交点为C,AC的长度为2.5cm。
求:(1)B点在A 点的什么位置?(2)B点到直线m的距离为多少?解:(1)因为A、B两点关于直线m对称,所以B点在A点的对称位置,且AB与直线m的交点为C,AC的长度为2.5cm。
因为A、B 两点间的距离为5cm,所以BC的长度也为2.5cm,因此B点在A点的正上方或正下方2.5cm处。
(2)因为B、A两点关于直线m对称,所以BC的长度等于AC的长度,即2.5cm。
因此B点到直线m的距离为2.5cm。
例2:在三角形ABC中,AB=AC=10cm,BC=8cm。
求三角形ABC 的面积。
解:过A点作AD垂直于BC于D点,因为AB=AC=10cm,所以BD=CD=4cm。
初三数学轴对称知识点归纳-初三数学知识点归纳

初三数学轴对称知识点归纳|初三数学知识点归纳1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段 3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形; (2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等; ②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上.注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
中考数学轴对称知识点总结

中考数学轴对称知识点总结一、轴对称的基本概念1.定义:平面上有一条直线l,如果平面上的任意一点A关于这条直线l对称的点A'仍在平面上,那么,点A和点A'就是轴对称的。
2.轴对称轴:直线l二、轴对称的性质1.对称性:图形关于对称轴对称2.对称图形的性质:对称图形的性质有对称图形的性质有点的对称性,直线的对称性和图形的对称性(1)对称图形的重要性质之一是:对称图形的对应点关于对称轴的距离相等,即在同一个垂直于对称轴的直线上。
(2)对称图形的关于对称轴对称的图形有相等的面积(3)对称图形的关于对称轴对称的图形有相等的周长(4)对称图形的对称轴上的点是对称图形的特殊点,其特点就是对称点是对称图形的重要性质之一。
(5)对称图形的两点关于对称轴的坐标值成等差数列(6)对称图形的两点关于对称轴的距离等于这两个点的距离与对称轴的距离的差的绝对值。
三、轴对称的作图1.作法一:通过纸折法:将一角落对着另一个角落折叠,如图1所示,然后用笔在折线上贴上点,最后将纸展开,在对称轴处连结这些点,就得到了折线对称的形状。
2.作法二:通过线段在对称轴的投影:将要对称的形状隔绝一个水平的或垂直的对称轴,如图2所示,然后将这个形状通过容器等物体描绘再一对对称轴的一边,然后再将这个形状在对称轴的投影到对称轴另一边,最后形状保持不变。
最终得到了线段的对称形状。
四、轴对称的应用1.轴对称在几何中的应用:轴对称在几何中被广泛应用,比如用轴对称的性质证明图形的对称性、图形的面积和周长、构造图形等。
2.轴对称在日常生活中的应用:轴对称在日常生活中有许多应用,如我们在家里摆设摆件、铺地砖、装饰墙壁等都需要用到轴对称的知识。
五、轴对称的相关知识1.轴对称的判断:如果图形关于一条直线对称,那么这条直线就是对称轴,如图中所示的三角形ABC绕着O轴对称成了三角形A'B'C'。
2.轴对称的问题:轴对称的问题通常是指图形相对于轴线的位置,或者轴线的位置相对于图形的位置。
轴对称课本知识点总结

轴对称课本知识点总结一、轴对称的概念轴对称是指一个图形围绕某条中心轴线旋转180度,旋转后的图形和原图形完全重合。
在二维几何中,轴对称是一种重要的对称形式,常见于各种图形和实物之中。
二、轴对称的性质1. 轴对称图形的两个部分互相对称,互为镜像。
2. 轴对称图形的对称中心为图形的轴心。
3. 轴对称图形每一点的对应点与对称中心的距离相等。
三、轴对称的图形1. 对称图形:直线对称图形是最简单的轴对称图形,常见的有点、线段、正多边形等。
2. 音符:音符是一个常见的轴对称图形,它围绕中心轴线旋转180度后,可以和原音符完全重合。
3. 字母、数字:如字母A、M、H等和数字0、8等都是轴对称图形。
四、轴对称的判断方法1. 观察法:观察图形围绕某一条中心轴线旋转180度后是否和原图形重合。
2. 设坐标法:设定坐标轴,通过图形的对称特点来判断是否轴对称。
3. 折叠法:将图形折叠在对称轴上,判断折叠后两部分是否完全重合。
五、轴对称的应用1. 轴对称图形的设计:在各种设计中,轴对称图形的运用可以使设计更加美观。
2. 轴对称图形的制作:通过手工制作,可以制作各种轴对称图形的手工作品。
3. 轴对称图形的应用:在建筑、工程、美术、工艺等领域都有轴对称图形的应用。
六、轴对称的作用1. 保持图形的对称美:轴对称可以使图形保持一定的对称美。
2. 方便图形的绘制:对称图形通过轴对称可以方便地进行绘制和复制。
七、轴对称的练习1. 描绘轴对称图形:通过规定的对称轴来描绘对称图形。
2. 判断轴对称图形:判断给定图形是否对称,并找出对称轴。
3. 补全轴对称图形:在已知半图形的基础上补全对称图形。
八、轴对称的拓展知识1. 轴对称的组合:两个或多个轴对称图形组合成一个新的轴对称图形。
2. 轴对称的面积计算:轴对称图形的面积计算可以通过对称轴进行分割和计算。
九、轴对称的应用案例1. 建筑设计中的轴对称图形应用:在建筑设计中,轴对称图形的应用可以使建筑更加美观大方。
中考数学-轴对称知识点总结

轴对称知识点总结1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
2、轴对称:两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。
这条直线叫做对称轴。
互相重合的点叫做对应点。
3、轴对称图形与轴对称的区别与联系:(1)区别。
轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。
(2)联系。
把轴对称图形中“对称轴两旁的部分看作两个图形”便是轴对称;把轴对称的“两个图形看作一个整体”便是轴对称图形。
4、轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴与连结“对应点的线段”垂直。
(3)对应点到对称轴的距离相等。
(4)对应点的连线互相平行。
5、线段的垂直平分线:(1)定义。
经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。
如图2,∵CA=CB ,直线m ⊥AB 于C , ∴直线m 是线段AB 的垂直平分线。
(2)性质。
线段垂直平分线上的点与线段两端点的距离相等。
如图3,∵CA=CB ,直线m ⊥AB 于C ,点P 是直线m 上的点。
∴PA=PB 。
(3)判定。
与线段两端点距离相等的点在线段的垂直平分线上。
如图3,∵PA=PB ,直线m 是线段AB 的垂直平分线,∴点P 在直线m 上 。
6、等腰三角形:(1)定义。
有两条边相等的三角形,叫做等腰三角形。
相等的两条边叫做腰。
m C A B 图1图2m C A B P 图3 顶第三条边叫做底。
②两腰的夹角叫做顶角。
③腰与底的夹角叫做底角。
说明:顶角=180°- 2底角底角=顶角顶角21-902180︒=-︒ 可见,底角只能是锐角。
(2)性质。
①等腰三角形是轴对称图形,其对称轴是“底边的垂直平分线” ,只有一条。
②等边对等角。
如图5,在△ABC 中∵AB=AC∴∠B=∠C 。
③三线合一。
(3)判定。
①有两条边相等的三角形是等腰三角形。
中考数学轴对称知识点归纳

中考数学轴对称知识点归纳
轴对称是中考数学中的一个重要知识点,它涉及到图形的对称性,是
几何学的一个基本概念。
以下是对中考数学轴对称知识点的归纳:
首先,我们需要了解轴对称的定义:如果一个图形沿着一条直线对折后,直线两旁的部分完全重合,这样的图形叫做轴对称图形,这条直
线叫做对称轴。
接下来,我们探讨轴对称的性质:
1. 对称轴是一条直线,且对称轴上的点到图形上任意一点的距离相等。
2. 轴对称图形的对称点关于对称轴是等距离的。
3. 轴对称图形的对称点连线与对称轴垂直。
在中考数学中,轴对称的应用主要体现在以下几个方面:
1. 判断图形是否为轴对称图形。
2. 确定图形的对称轴。
3. 利用轴对称性质解决几何问题,如求图形的面积、周长等。
4. 利用轴对称进行图形的变换,如图形的平移、旋转等。
在解题过程中,我们需要注意以下几点:
- 观察图形的特点,判断是否存在对称轴。
- 利用对称轴将图形划分为对称的部分,简化问题。
- 在需要求图形面积或周长时,可以利用对称性将问题转化为求对称
部分的面积或周长,再进行计算。
最后,通过练习典型的轴对称问题,可以加深对轴对称概念的理解和
应用。
例如,解决一些常见的轴对称问题,如计算对称图形的面积,
或者通过对称性简化复杂的几何图形问题。
结束语:轴对称是中考数学中一个基础而重要的概念,掌握其定义、性质和应用对于解决几何问题至关重要。
通过不断的练习和思考,可以提高解决轴对称问题的能力。
初中数学轴对称知识点总结归纳

初中数学轴对称知识点总结归纳轴对称是几何学中的一个重要概念,关于轴对称的知识在初中数学中有着广泛的应用。
下面是初中数学轴对称的知识点总结归纳。
一、轴对称的定义及性质轴对称即物体围绕条线旋转180度后仍然与原来位置重合。
1.定义:轴对称是指平面内的点、线、图形等围绕条线旋转180度后仍然与原来位置重合。
2.性质:a.旋转中心即轴对称的轴上的任意点保持不动。
b.旋转中心与轴对称的物体上的任意点之间的距离保持不变。
二、轴对称的判断判断一个图形是否轴对称的方法有以下几种:1.观察法:观察图形是否看起来关于条线对称。
2.折叠法:将图形沿着条疑似对称轴对折,观察是否能够将两部分完全重合。
3.旋转法:将图形围绕一个疑似对称轴旋转180度,观察是否与原来位置完全重合。
4.对称性质法:观察图形是否具有对称性质,例如左右对称、上下对称等。
三、轴对称的应用1.确定轴对称图形:a.线段的中点是线段轴对称的轴。
b.两个且只有两个端点在同一直线上的线段是轴对称的轴。
c.两条平行线是轴对称的轴。
d.三个且只有三个顶点都在同一直线上的三角形是轴对称的轴。
e.按顺时针方向给出的相邻边相等的凸多边形是轴对称的轴。
f.所有与自己相似的图形都是轴对称的轴。
2.轴对称图形的性质:a.轴对称图形是左右对称的,即图形的左半部分和右半部分完全一样。
b.轴对称图形的最小单位即轴上的点称为轴对称图形的旋转中心。
c.轴对称图形的每个点的两边都有另一个对称点。
d.轴对称图形上的点与旋转中心距离相等的点是该图形上的点与旋转中心的对称点。
3.构造轴对称图形:a.已知轴对称图形的一部分,可以使用对称性质构造其他部分。
b.可以将点在轴上折叠,或者将线段、角度在轴上旋转,得到图形的对称部分。
四、轴对称图形的操作1.旋转:将轴对称的物体沿着轴旋转180度,使得物体的每个点都与轴上的对称点相重合。
2.平移:将轴对称的物体沿着与轴垂直的平行线平移,使得物体与原来位置的对称关系保持不变。
人教版初中数学《轴对称》知识点总结及经典题型解法

轴对称一、轴对称:1、轴对称图形:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
这时我们就说这个图形关于这条直线对称。
2、成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就是说这两个图形关于这条直线成轴对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
3、线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线;简称中垂线。
性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
4、轴对称的性质:①关于某条直线对称的两个图形是全等形。
②如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
③两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点必在对称轴上。
5、成轴对称和轴对称图形的区别和联系:区别:①轴对称是指两个图形关于某条直线对称,而轴对称图形是一个图形关于某条直线对称。
②轴对称的对应点分别在两个图形上,而轴对称图形中的对应点都在这一个图形上。
③轴对称中的对称轴可能在两个图形的外边,而轴对称图形中的对称轴一定过这个图形。
联系:①都是沿着某一条直线翻折后两边能够完全重合。
②如果把轴对称的两个图形看成是一个整体,那么这个整体反映出的图形便是一个轴对称图形;反过来,如果把一个轴对称图形中关于对称轴的两边部分看成是两个图形,那么这两部分对应的两个图形则关于这条对称轴而成轴对称。
二、轴对称变换:由一个平面图形得到它的轴对称图形叫做轴对称变换.两个图形成轴对称或一个轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
轴对称图形上对应线段相等、对应角相等。
对称轴的画法:找到一对对应点,作出连接它们的线段的垂直平分线,就得到对称轴。
画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。
轴对称知识点总结

轴对称知识点总结轴对称是初中数学中的重要概念,在几何图形的研究和实际生活中都有广泛的应用。
下面我们来详细总结一下轴对称的相关知识点。
一、轴对称的定义如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
例如,等腰三角形是轴对称图形,底边的高所在的直线就是它的对称轴;矩形是轴对称图形,对边中点的连线所在的直线是它的对称轴。
二、轴对称图形的性质1、对称轴是任何一对对应点所连线段的垂直平分线。
2、对应线段相等,对应角相等。
3、成轴对称的两个图形全等。
三、轴对称与轴对称图形的区别与联系1、区别轴对称是指两个图形沿着某条直线对折后能够完全重合,是两个图形的位置关系。
轴对称图形是指一个图形沿着某条直线对折后直线两旁的部分能够完全重合,是一个图形自身的特性。
2、联系都有对称轴。
如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形;如果把轴对称图形沿对称轴分成两部分,那么这两部分关于这条对称轴成轴对称。
四、作轴对称图形1、作轴对称图形的对称轴如果一个图形是轴对称图形,那么连接一对对应点的线段的垂直平分线就是该图形的对称轴。
对于两个成轴对称的图形,对称轴是连接对称点的线段的垂直平分线。
2、作轴对称图形几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对应点,再连接这些对应点,就可以得到原图形的轴对称图形。
五、用坐标表示轴对称1、点(x,y)关于 x 轴对称的点的坐标为(x,y)。
2、点(x,y)关于 y 轴对称的点的坐标为(x,y)。
例如,点(2,3)关于 x 轴对称的点的坐标为(2,-3);点(-1,4)关于 y 轴对称的点的坐标为(1,4)。
六、轴对称的实际应用轴对称在实际生活中有很多应用,比如:1、建筑设计中,许多建筑都采用了轴对称的设计,使得建筑更加美观、稳定。
2、飞机、汽车等交通工具的外形设计也常常运用轴对称,以减少空气阻力,提高性能。
认识轴对称知识点总结

认识轴对称知识点总结一、轴对称的定义轴对称是指一个几何图形相对于某条轴线对称,即图形的两侧关于轴线对称。
轴对称是一种基本的几何变换,它可以帮助我们理解和研究各种几何图形的性质,解决与几何图形相关的问题。
二、轴对称的性质1. 被轴对称的图形的对称轴上的点不动,对称轴的垂线上的点互为对称点。
2. 被轴对称的图形的对称轴上任意两点的对称点都在对称轴上。
3. 被轴对称的图形上的任意一点,与其对称点关于对称轴的距离相等。
三、轴对称的应用轴对称在几何学中有着广泛的应用。
在平面几何中,我们经常通过轴对称来研究图形的性质、判断图形的对称特征、构造具有对称性的图形等。
在日常生活中,轴对称也有很多实际的应用,比如建筑设计、工艺品制作、装饰设计等。
四、轴对称的判定方法1. 通过观察图形的性质来判断是否具有轴对称性。
2. 通过观察图形的对称性来判断是否具有轴对称性。
3. 通过对称图形的性质和定理来判断是否具有轴对称性。
五、轴对称的性质及定理1. 轴对称的图形的对称轴上的点不动定理:轴对称的图形的对称轴上的点不动,即对称轴上的任意一点都是自身的对称点。
2. 轴对称的图形的对称轴是垂直的定理:如果一个图形具有轴对称性,那么图形的对称轴一定是垂直的。
3. 被轴对称的图形的对称轴上任意两点的对称点都在对称轴上定理:对任意一点A在对称轴上,A的对称点B也在对称轴上。
4. 对称中心位置可以通过对称图形的性质来判断定理:对称中心位置是轴对称的图形的重要性质之一。
5. 被轴对称的图形上的任意一点,与其对称点关于对称轴的距离相等定理:被轴对称的图形上的任意一点,与其对称点关于对称轴的距禿相等。
六、轴对称的图形1. 线段线段是具有轴对称性的图形。
2. 三角形三角形也可以是轴对称的图形。
3. 正方形和矩形正方形和矩形也是轴对称的图形。
4. 圆形圆形也具有轴对称性。
七、轴对称的构造1. 利用尺规作图的方法来构造轴对称的图形。
2. 利用计算机绘图软件来构造轴对称的图形。
轴对称知识点总结学生

轴对称知识点总结学生一、什么是轴对称轴对称又称对称轴或镜像轴,是指一个图形或者物体,分别绕着一条线或者平面旋转180度后,形状不变,看起来就好像是对折在轴上一样。
这条线或者平面叫做轴对称轴。
二、轴对称的特点1. 图形的各个部分分别相互对称2. 对称轴是存在的,可以是直线,也可以是曲线3. 对称轴可以有一个或者多个4. 轴对称的图形和另一半镜像相同三、轴对称的图形分类1. 点的轴对称:固定在对称轴上的点,和他在对称轴的对称点组成轴对称的图形。
2. 直线的轴对称:直线与它本身关于对称轴对称3. 曲线的轴对称:曲线与它本身关于对称轴对称四、轴对称图形的判定方法1. 观察法:通过眼睛观察,看有没有对称的特点2. 对折法:将图形对折,看两边是否重合3. 角度法:利用形状的特点,通过角度的计算,确定对称关系五、轴对称线的性质1. 轴对称线上的任何点,相对于轴对称线对称2. 三角形的三个角平分线相交于一点,这个点是三角形的外心,也就是外心与顶点相连的线是一条轴对称线3. 三角形的中位线长相等,中线相等4. 顶点在轴对称线上的三角形是轴对称的5. 一个平行四边形的对角线互相平分,它的对角线就是轴对称线6. 正方形的对角线相等,互相平分,对角线是轴对称线7. 矩形的对角线相等,互相平分,对角线是轴对称线六、轴对称图形的应用1. 轴对称图形是美的2. 在艺术领域,轴对称图形被广泛应用3. 在建筑设计中,轴对称图形被广泛应用4. 在日常生活中,轴对称图形随处可见七、轴对称图形的图形变换1. 轴对称图形的旋转:围绕一个点旋转,形成一个新的图形2. 轴对称图形的平移:图形在一个方向上平移,形成一个新的图形3. 轴对称图形的放射:图形在一个点固定的情况下,从这个点向外放射,形成一个新的图形4. 轴对称图形的缩放:图形按比例大小缩放,形成一个新的图形八、轴对称图形的图形组合1. 轴对称图形的组合:将两个轴对称图形进行组合,形成一个新的图形2. 轴对称图形的分解:将一个轴对称图形分解为几个小的轴对称图形总结:轴对称图形具有明显的对称性,能够展现出很好的美感,在各个领域都有广泛的应用。
轴对称知识点归纳

6.等腰梯形的性质:
①等腰梯形是轴对称图形,是两底中点的连线所在的直线。
②等腰梯形同一底上两底角相等。
③等腰梯形的对角线相等。
3.等腰梯形的判定:
3在同一底上的2个底角相等的梯形是等腰梯形。
4补充:对角线相等的梯形是等腰梯形。
二、举例:
例1:填空:
1、等腰梯形的腰长为12cm,上底长为15cm,上底与腰的夹角为120°,则下底长为cm.
轴对称与轴对称图形
一、知识点:
1.什么叫轴对称:
如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称,这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2.什么叫轴对称图形:
如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
(3)又若N为AD的中点,那么MN⊥AD一定成立.你能说明为什么吗?
例6、如图,在等腰梯形ABCD中,AD∥BC,AB=CD,E为CD中点,AE与BC的延长线交于F.
(1)判断S△ABF和ABE和S梯形ABCD有何关系,并说明理由.
(3)上述结论对一般梯形是否成立?为什么?
③到线段两端距离相等的点,在这条线段的垂直平分线上。
结论:线段的垂直平分线是到线段两端距离相等的点的集合
2.角的轴对称性:
①角是轴对称图形,对称轴是角平分线所在的直线。
②角平分线上的点到角的两边距离相等。
③到角的两边距离相等的点,在这个角的平分线上。
结论:角的平分线是到角的两边距离相等的点的集合
二、举例:
③等边三角形的判定:
3个角相等的三角形是等边三角形;
关于轴对称的知识点

关于轴对称的知识点1.轴对称的定义把一个图形沿着某一条直线翻折,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫做对称轴。
折叠后重合的点是对应点,也叫做对称点。
【轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合。
成轴对称的两个图形一定全等。
】2.轴对称图形的定义把一个图形沿着某直线折叠,如果直线两旁的部分能互相重合,那么这个图形是轴对称图形,这条直线就是对称轴。
【轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定。
】3.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的主要区别:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.。
4.轴对称的性质轴对称的性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分;成轴对称的两个图形的任何对应部分也成轴对称;成轴对称的两个图形全等。
5.线段的轴对称性①线段是轴对称图形,线段的垂直平分线是它的对称轴。
②线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等。
③线段垂直平分线的性质定理的逆定理:到线段两个端距离相等的点在线段的垂直平分线上。
【①线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。
②三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。
】6.线段的垂直平分线垂直并且平分一条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线。
7.角的轴对称性(1)角是轴对称图形,角的平分线所在的直线是它的对称轴。
(2)角平分线上的点到角两边的距离相等。
中考轴对称知识点总结

中考轴对称知识点总结一、轴对称的概念轴对称是指当平面图形的每一点关于一条直线对称时,这条直线叫做这个平面图形的轴对称轴。
在轴对称变换中,轴对称轴不动,图形上的每一个点关于这条直线对称后,它们的位置互换。
这种对称的变换叫做轴对称变换。
轴对称变换是平行移动和旋转变换的特殊情况。
二、轴对称的基本性质1. 任何点的轴对称图形也是原图形。
2. 轴对称图形和原图形相互关于轴对称。
3. 如果两个图形是轴对称的,那么,这两个图形一定在同一条轴对称轴两侧且关于这条轴对称轴对称。
三、轴对称的判断方法1. 如果一个图形的每一点关于一条直线对称,那么这个图形是关于这条直线轴对称的。
2. 通过图形的结构特点判断轴对称。
如正方形、矩形、正五边形、等腰三角形等图形均是轴对称的。
四、轴对称与轴对称图形的应用1. 轴对称常用来制作寓意深刻、图案美观的卡片、图片、图案等。
2. 在制作圆形物体或者对称形状的设计中,轴对称往往被广泛应用。
五、常见图形关于坐标轴的轴对称性质1. 镜景对称关于x轴、y轴、原点对称的图形。
2. 镜景对称关于直线y=x和y=-x的图形。
六、轴对称图形与轴对称图形的比较轴对称图形和轴对称图形都是对称图形,但两者在某些方面有一些不同。
1. 轴对称图形是相对于一个轴对称的直线对称的,而轴对称图形是相对于一个点对称的。
2. 轴对称图形是指形象把自己经过某一轴线翻折的图形,而轴对称图形是指形象把自己关于某一点翻折的图形。
七、轴对称的相关定理1. 定理1:如果一个图形是轴对称的,那么这个图形关于轴对称轴的任意两个对称点的中点是与直线相交的直线上的点。
2. 定理2:如果平行四边形的对角线互相垂直,那么这个平行四边形是轴对称的。
3. 定理3:如果多边形的每一条对角线相互垂直,那么这个多边形是轴对称的。
八、轴对称的相关定理证明1. 定理1的证明:以折叠模拟(将一张纸对折,使得一侧成为另一侧的镜像)可以证明。
将纸对折以后,对称图形的两个对称点的对称点是折痕上的对称点,而这两个对称点的中点就是这个折痕上的点。
轴对称知识点概念总结

轴对称知识点概念总结一、轴对称的概念轴对称是指平面上的任意一点到某条直线的距离等于它的对称点到同一条直线的距离。
这条直线就称为轴对称的轴线。
在轴对称的变换中,图形关于轴线对称,即通过某条直线进行对称变换后,两个图形完全重合。
轴对称变换是一种保持图形形状和大小不变的变换,即如果原图形关于轴对称,则对称后的图形大小、形状和位置都不变。
在平面几何中,轴对称是指通过一条直线,将一个图形对称折叠,并使得折叠后的两部分完全重合。
在三维空间中,轴对称是指通过一个平面,将一个立体图形对称折叠,并使得折叠后的两部分完全重合。
而对于更高维度的空间,轴对称的概念也有相应的推广。
二、轴对称的性质1. 图形经过轴对称变换后仍然保持不变,即大小、形状和位置都不变。
2. 轴对称的轴线可取任意直线,轴对称的性质不随轴线的选取而改变。
3. 轴对称是一种对称变换,它保持了图形的对称性质。
4. 轴对称变换是一种保角变换,保持了图形的内角和外角不变。
5. 如果一个图形关于一条直线轴对称,那么它关于这条直线的对称轴线的对称关系也是轴对称的。
6. 如果两个图形分别关于两条无交点的直线轴对称,那么这两个图形的对称关系也是轴对称的。
7. 如果两个图形分别关于同一条直线轴对称,那么它们之间的对称关系也是轴对称的。
轴对称的性质是轴对称变换在数学、物理和工程等领域中应用的基础,是轴对称图形和轴对称函数等概念的重要基础。
三、轴对称的应用1. 在几何学中,轴对称是通过对称折叠和对称变换等方法,研究图形的性质、构造和证明等问题的基本手段。
2. 在物理学中,轴对称是通过对称抽象和对称分析等方法,研究物理系统的对称性、守恒律和相互作用等问题的基本工具。
3. 在工程学中,轴对称是通过对称设计和对称加工等方法,研究零件的制造、组装和检测等问题的基本技术。
4. 在数学分析和代数中,轴对称是通过对称函数和对称方程等方法,研究函数的性质、解的性质和对称结构等问题的基本手段。
人教版初三数学轴对称知识点归纳

人教版初三数学轴对称知识点归纳下面是小编为了帮助同学们学习数学知识而整理的人教版初三数学轴对称知识点归纳,希望可以帮助到同学们!一、轴对称与轴对称图形:1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段3.轴对称的性质:(1)关于某条直线对称的两个图形是全等形;(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的距离相等;②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.(2)性质:①在角的平分线上的点到这个角的两边的距离相等.②到一个角的两边距离相等的点,在这个角的平分线上. 注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.6.等腰三角形的性质与判定:性质:(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;(3)等边对等角:等腰三角形的两个底角相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版初三数学轴对称知识点归纳下面是小编为了帮助同学们学习数学知识而整理的人
教版初三数学轴对称知识点归纳,希望可以帮助到同学们!
一、轴对称与轴对称图形:
1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。
2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。
注意:对称轴是直线而不是线段
3.轴对称的性质:
(1)关于某条直线对称的两个图形是全等形;
(2)如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线;
(3)两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上;
(4)如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
4.线段垂直平分线:
(1)定义:垂直平分一条线段的直线是这条线的垂直平分线。
(2)性质:①线段垂直平分线上的点到这条线段两个端点的
距离相等;
②到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
注意:根据线段垂直平分线的这一特性可以推出:三角形三边的垂直平分线交于一点,并且这一点到三个顶点的距离相等。
5.角的平分线:
(1)定义:把一个角分成两个相等的角的射线叫做角的平分线.
(2)性质:①在角的平分线上的点到这个角的两边的距离相等.
②到一个角的两边距离相等的点,在这个角的平分线上. 注意:根据角平分线的性质,三角形的三个内角的平分线交于一点,并且这一点到三条边的距离相等.
6.等腰三角形的性质与判定:
性质:
(1)对称性:等腰三角形是轴对称图形,等腰三角形底边上的中线所在的直线是它的对称轴,或底边上的高所在的直线是它的对称轴,或顶角的平分线所在的直线是它的对称轴;
(2)三线合一:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合;
(3)等边对等角:等腰三角形的两个底角相等。
说明:等腰三角形的性质除三线合一外,三角形中的主要线段之间也存在着特殊的性质,如:①等腰三角形两底角的平分线相等;②等腰三角形两腰上的中线相等;
③等腰三角形两腰上的高相等;④等腰三角形底边上的中点到两腰的距离相等。
判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。
7.等边三角形的性质与判定:
性质:(1)等边三角形的三个角都相等,并且每个角都等于60
(2)等边三角形具有等腰三角形的所有性质,并且在每条边上都有三线合一。
因此等边三角形是轴对称图形,它有三条对称轴,而等腰三角形(非等边三角形)只有一条对称轴。
判定定理:有一个角是60的等腰三角形是等边三角形。
说明:等边三角形是一种特殊的三角形,容易知道等边三角形的三条高(或三条中线、三条角平分线)都相等。
由精品小编整理的人教版初三数学轴对称知识点归纳就到这里了,希望同学们喜欢!。