郏县二中2018-2019学年高三上学期11月月考数学试卷含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
郏县二中2018-2019学年高三上学期11月月考数学试卷含答案
一、选择题
1. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n
=,若在数列{c n }
中c 8>c n (n ∈N *
,n ≠8),则实数p 的取值范围是( )
A .(11,25)
B .(12,16]
C .(12,17)
D .[16,17)
2. 定义某种运算S=a ⊗b ,运算原理如图所示,则式子+的值为(
)
A .4
B .8
C .10
D .13
3. 设x ,y ∈R ,且x+y=4,则5x +5y 的最小值是( )
A .9
B .25
C .162
D .50
4. 在△ABC 中,sinB+sin (A ﹣B )=sinC 是
sinA=的( )
A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既不充分也非必要条件
5. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A
.
B .ln (x 2+1)>ln (y 2+1)
C .x 3>y 3
D .sinx >siny
6. 已知函数f (x )=xe x ﹣mx+m ,若f (x )<0的解集为(a ,b ),其中b <0;不等式在(a ,b )中有且只有一个整数解,则实数m 的取值范围是( ) A .
B .
C .
D .
7. 已知球的半径和圆柱体的底面半径都为1且体积相同,则圆柱的高为( ) A .1
B
.
C .2
D .4
8. 已知实数x ,y
满足有不等式组
,且z=2x+y 的最大值是最小值的2倍,则实数a 的值是( )
班级_______________ 座号______ 姓名_______________ 分数_______________
___________________________________________________________________________________________________
A .2
B .
C .
D .
9. 经过点()1,1M 且在两轴上截距相等的直线是( ) A .20x y +-= B .10x y +-=
C .1x =或1y =
D .20x y +-=或0x y -=
10.已知复数z 满足(3+4i )z=25,则=( ) A .3﹣4i
B .3+4i
C .﹣3﹣4i
D .﹣3+4i
11.下列给出的几个关系中:①{}{},a b ∅⊆;②(){}{},,a b a b =;③{}{},,a b b a ⊆;
④{}0∅⊆,正确的有( )个
A.个
B.个
C.个
D.个 12.若如图程序执行的结果是10,则输入的x 的值是( )
A .0
B .10
C .﹣10
D .10或﹣10
二、填空题
13.已知曲线y=(a ﹣3)x 3+lnx 存在垂直于y 轴的切线,函数f (x )=x 3﹣ax 2﹣3x+1在[1,2]上单调递减,则a 的范围为 .
14.设O 为坐标原点,抛物线C :y 2=2px (p >0)的准线为l ,焦点为F ,过F 斜率为的直线与抛物线C
相交于A ,B 两点,直线AO 与l 相交于D ,若|AF|>|BF|,则
= .
15.已知一个动圆与圆C :(x+4)2+y 2
=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 . 16.如图,在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 、N 分别是A 1B 1和BB 1的中点,那么直线AM 和CN 所成角的余弦值为 .
17.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()ln R x
f x x a a x =+-∈,若曲线122e e 1
x x y +=+(e 为自然对数的底数)上存在点()00,x y 使得()()00f f y y =,则实数a 的取值范围为__________.
18.在区间[﹣2,3]上任取一个数a ,则函数f (x )=x 3﹣ax 2+(a+2)x 有极值的概率为 .
三、解答题
19.在平面直角坐标系xOy 中,经过点且斜率为k 的直线l 与椭圆
有两个不同的交点
P 和Q .
(Ⅰ)求k 的取值范围;
(Ⅱ)设椭圆与x 轴正半轴、y 轴正半轴的交点分别为A ,B ,是否存在常数k ,使得向量与
共线?
如果存在,求k 值;如果不存在,请说明理由.
20.
设函数()x
f x e =,()ln
g x x =.
(Ⅰ)证明:()2e g x x
≥-
; (Ⅱ)若对所有的0x ≥,都有()()f x f x ax --≥,求实数a 的取值范围.
21.如图所示,已知
+
=1(a >>0)点A (1,
)是离心率为
的椭圆C :上的一点,斜率为的直
线BD 交椭圆C 于B 、D 两点,且A 、B 、D 三点不重合.
(Ⅰ)求椭圆C 的方程; (Ⅱ)求△ABD 面积的最大值;
(Ⅲ)设直线AB 、AD 的斜率分别为k 1,k 2,试问:是否存在实数λ,使得k 1+λk 2=0成立?若存在,求出λ
的值;否则说明理由.
22.【2017-2018第一学期东台安丰中学高三第一次月考】已知函数()2
ln f x ax x =+,
()21145ln 639f x x x x =
++,()221
22
f x x ax =+,a R ∈ (1)求证:函数()f x 在点()(),e f e 处的切线恒过定点,并求出定点的坐标; (2)若()()2f x f x <在区间()1,+∞上恒成立,求a 的取值范围; (3)当2
3
a =
时,求证:在区间()0,+∞上,满足()()()12f x g x f x <<恒成立的函数()g x 有无穷多个.(记ln5 1.61,6 1.79ln ==)
23.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sinA ﹣sinC (cosB+sinB )=0.
(1)求角C 的大小; (2)若c=2,且△ABC 的面积为,求a ,b 的值.
24.设等差数列{a n}的公差为d,前n项和为S n,等比数列{b n}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{a n},{b n}的通项公式
(2)当d>1时,记c n=,求数列{c n}的前n项和T n.
郏县二中2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题
1.【答案】C
【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,
∵a n=﹣n+p,∴{a n}是递减数列,
∵b n=2n﹣5,∴{b n}是递增数列,
∵c8>c n(n≠8),∴c8是c n的最大者,
则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,
∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,
当n=7时,27﹣5<﹣7+p,∴p>11,
n=9,10,11,…时,2n﹣5>﹣n+p总成立,
当n=9时,29﹣5>﹣9+p,成立,∴p<25,
而c8=a8或c8=b8,
若a8≤b8,即23≥p﹣8,∴p≤16,
则c8=a8=p﹣8,
∴p﹣8>b7=27﹣5,∴p>12,
故12<p≤16,
若a8>b8,即p﹣8>28﹣5,∴p>16,
∴c8=b8=23,
那么c8>c9=a9,即8>p﹣9,
∴p<17,
故16<p<17,
综上,12<p<17.
故选:C.
2.【答案】C
【解析】解:模拟执行程序,可得,当a≥b时,则输出a(b+1),反之,则输出b(a+1),
∵2tan=2,lg=﹣1,
∴(2tan)⊗lg=(2tan)×(lg+1)=2×(﹣1+1)=0,
∵lne=1,()﹣1=5,
∴lne⊗()﹣1=()﹣1×(lne+1)=5×(1+1)=10,
∴+=0+10=10.
故选:C.
3.【答案】D
【解析】解:∵5x>0,5y>0,又x+y=4,
∴5x+5y≥2=2=2=50.
故选D.
【点评】本题考查基本不等式,关键在于在应用基本不等式时灵活应用指数运算的性质,属于基础题.
4.【答案】A
【解析】解:∵sinB+sin(A﹣B)=sinC=sin(A+B),
∴sinB+sinAcosB﹣cosAsinB=sinAcosB+cosAsinB,
∴sinB=2cosAsinB,
∵sinB≠0,
∴cosA=,
∴A=,
∴sinA=,
当sinA=,
∴A=或A=,
故在△ABC中,sinB+sin(A﹣B)=sinC是sinA=的充分非必要条件,
故选:A
5.【答案】C
【解析】解:∵实数x、y满足a x<a y(1>a>0),∴y<x.
对于A.取x=1,y=0,不成立,因此不正确;
对于B.取y=﹣2,x=﹣1,ln(x2+1)>ln(y2+1)不成立;
对于C.利用y=x3在R上单调递增,可得x3>y3,正确;
对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.
故选:C.
【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.
6.【答案】C
【解析】解:设g(x)=xe x,y=mx﹣m,
由题设原不等式有唯一整数解,
即g(x)=xe x在直线y=mx﹣m下方,
g′(x)=(x+1)e x,
g(x)在(﹣∞,﹣1)递减,在(﹣1,+∞)递增,
故g(x)min=g(﹣1)=﹣,y=mx﹣m恒过定点P(1,0),
结合函数图象得K PA≤m<K PB,
即≤m<,
,
故选:C.
【点评】本题考查了求函数的最值问题,考查数形结合思想,是一道中档题.7.【答案】B
【解析】解:设圆柱的高为h,则
V圆柱=π×12×h=h,V球==,
∴h=.
故选:B.
8.【答案】B
【解析】解:由约束条件作出可行域如图,
联立,得A(a,a),
联立,得B(1,1),
化目标函数z=2x+y为y=﹣2x+z,
由图可知z max=2×1+1=3,z min=2a+a=3a,
由6a=3,得a=. 故选:B .
【点评】本题考查了简单的线性规划考查了数形结合的解题思想方法,是中档题.
9. 【答案】D 【解析】
考
点:直线的方程. 10.【答案】B
解析:∵(3+4i )z=25,z==
=3﹣4i .
∴=3+4i . 故选:B .
11.【答案】C 【解析】
试题分析:由题意得,根据集合之间的关系可知:{}{},,a b b a ⊆和{}0∅⊆是正确的,故选C. 考点:集合间的关系. 12.【答案】D
【解析】解:模拟执行程序,可得程序的功能是计算并输出y=的值,
当x <0,时﹣x=10,解得:x=﹣10 当x ≥0,时x=10,解得:x=10 故选:D .
二、填空题
13.【答案】
.
【解析】解:因为y=(a ﹣3)x 3
+lnx 存在垂直于y 轴的切线,即y'=0有解,即
y'=
在x >0时有解,
所以3(a ﹣3)x 3
+1=0,即a ﹣3<0,所以此时a <3.
函数f (x )=x 3﹣ax 2
﹣3x+1在[1,2]上单调递减,则f'(x )≤0恒成立,
即f'(x )=3x 2
﹣2ax ﹣3≤0恒成立,即
,
因为函数在[1,2]上单调递增,所以函数的最大值为,
所以,所以.
综上.
故答案为:.
【点评】本题主要考查导数的基本运算和导数的应用,要求熟练掌握利用导数在研究函数的基本应用.
14.【答案】.
【解析】解:∵O为坐标原点,抛物线C:y2=2px(p>0)的准线为l,焦点为F,
过F斜率为的直线与抛物线C相交于A,B两点,
直线AO与l相交于D,
∴直线AB的方程为y=(x﹣),l的方程为x=﹣,
联立,解得A(﹣,P),B(,﹣)
∴直线OA的方程为:y=,
联立,解得D(﹣,﹣)
∴|BD|==,
∵|OF|=,∴==.
故答案为:.
【点评】本题考查两条件线段的比值的求法,是中档题,解题时要认真审题,要熟练掌握抛物线的简单性质.
15.【答案】+=1.
【解析】解:设动圆圆心为B,半径为r,圆B与圆C的切点为D,
∵圆C:(x+4)2+y2=100的圆心为C(﹣4,0),半径R=10,
∴由动圆B与圆C相内切,可得|CB|=R﹣r=10﹣|BD|,
∵圆B经过点A(4,0),
∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10,
∵|AC|=8<10,
∴点B的轨迹是以A、C为焦点的椭圆,
设方程为(a>b>0),可得2a=10,c=4,
∴a=5,b2=a2﹣c2=9,得该椭圆的方程为+=1.
故答案为:+=1.
16.【答案】.
【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角
设边长为1,则B
1
E=B1F=,EF=
∴cos∠EB1F=,
故答案为
【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.
17.【答案】
1
,
e ⎛⎤-∞
⎥⎝⎦
【解析】结合函数的解析式:1
22e e 1x x y +=+可得:()
()
122
221'1
x x x e e y e +-=+, 令y ′=0,解得:x =0,
当x >0时,y ′>0,当x <0,y ′<0,
则x ∈(-∞,0),函数单调递增,x ∈(0,+∞)时,函数y 单调递减, 则当x =0时,取最大值,最大值为e , ∴y 0的取值范围(0,e ],
结合函数的解析式:()()R lnx
f x x a a x =+-∈可得:()22ln 1'x x f x x
-+=, x ∈(0,e ),()'0f x >, 则f (x )在(0,e )单调递增, 下面证明f (y 0)=y 0.
假设f (y 0)=c >y 0,则f (f (y 0))=f (c )>f (y 0)=c >y 0,不满足f (f (y 0))=y 0. 同理假设f (y 0)=c <y 0,则不满足f (f (y 0))=y 0. 综上可得:f (y 0)=y 0.
令函数()ln x
f x x a x x =
+-=. 设()ln x g x x =,求导()2
1ln 'x
g x x -=,
当x ∈(0,e ),g ′(x )>0, g (x )在(0,e )单调递增, 当x =e 时取最大值,最大值为()1g e e
=, 当x →0时,a →-∞, ∴a 的取值范围1,e
⎛⎤-∞ ⎥⎝
⎦
.
点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.而解答本题(2)问时,关键是分离参数k ,把所求问题转化为求函数的最小值问题.
(2)若可导函数f (x )在指定的区间D 上单调递增(减),求参数范围问题,可转化为f ′(x )≥0(或f ′(x )≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到. 18.【答案】
.
【解析】解:在区间[﹣2,3]上任取一个数a , 则﹣2≤a ≤3,对应的区间长度为3﹣(﹣2)=5,
若f (x )
=x 3﹣ax 2
+(a+2)x 有极值,
则f'(x )=x 2
﹣2ax+(a+2)=0有两个不同的根, 即判别式△=4a 2
﹣4(a+2)>0,
解得a >2或a <﹣1, ∴﹣2≤a <﹣1或2<a ≤3,
则对应的区间长度为﹣1﹣(﹣2)+3﹣2=1+1=2,
∴由几何概型的概率公式可得对应的概率P=,
故答案为:
【点评】本题主要考查几何概型的概率的计算,利用函数取得极值的条件求出对应a 的取值范围是解决本题的关键.
三、解答题
19.【答案】
【解析】解:(Ⅰ)由已知条件,直线l 的方程为,
代入椭圆方程得.
整理得
①
直线l 与椭圆有两个不同的交点P 和Q ,等价于①的判别式△=,
解得或
.即k 的取值范围为
.
(Ⅱ)设P (x 1,y 1),Q (x 2,y 2),则,
由方程①,. ②
又. ③
而.
所以
与
共线等价于
,
将②③代入上式,解得.
由(Ⅰ)知
或
,
故没有符合题意的常数k .
【点评】本题主要考查直线和椭圆相交的性质,2个向量共线的条件,体现了转化的数学而思想,属于中档题.
20.【答案】
【解析】(Ⅰ)令
e e ()()2ln 2F x g x x x x =-+=-+,22
1e e ()x F x x x x
-'∴=-=
由()0e F x x '>⇒> ∴()F x 在(0,e]递减,在[e,)+∞递增,
∴ min e ()(e)ln e 20e F x F ==-+
= ∴()0F x ≥ 即e
()2g x x
≥-成立. …… 5分 (Ⅱ) 记()()()x x
h x f x f x ax e e ax -=---=--, ∴ ()0h x ≥在[0,)+∞恒成立,
()e x x
h x e a -'=+-, ∵ ()()e 00x x h x e x -''=-≥≥,
∴ ()h x '在[0,)+∞递增, 又(0)2h a '=-, …… 7分 ∴ ① 当 2a ≤时,()0h x '≥成立, 即()h x 在[0,)+∞递增, 则()(0)0h x h ≥=,即 ()()f x f x ax --≥成立; …… 9分 ② 当2a >时,∵()h x '在[0,)+∞递增,且min ()20h x a '=-<, ∴ 必存在(0,)t ∈+∞使得()0h t '=.则(0,)x t ∈时,()0h t '<,
即 (0,)x t ∈时,()(0)0h t h <=与()0h x ≥在[0,)+∞恒成立矛盾,故2a >舍去. 综上,实数a 的取值范围是2a ≤. …… 12分 21.【答案】
【解析】解:(Ⅰ)∵
,∴a=
c ,
∴b 2=c 2
∴椭圆方程为+
=1
又点A (1,)在椭圆上,
∴
=1,
∴c 2=2
∴a=2,b=
,
∴椭圆方程为
=1 …
(Ⅱ)设直线BD 方程为y=
x+b ,D (x
1,y 1),B (x 2,y 2), 与椭圆方程联立,可得4x 2
+2bx+b 2﹣4=0
△=﹣8b 2
+64>0,∴﹣2
<b <2
x 1+x 2=﹣b ,x 1x 2=
∴|BD|=
=
,
设d 为点A 到直线y=x+b 的距离,∴d=
∴△ABD 面积S=
≤
=
当且仅当b=±2时,△ABD 的面积最大,最大值为 …
(Ⅲ)当直线BD 过椭圆左顶点(﹣,0)时,k
1=
=2﹣,k 2==
﹣2
此时k 1+k 2=0,猜想λ=1时成立.
证明如下:k
1+k 2=
+=2+m
=2﹣2=0
当λ=1,k 1+k 2=0,故当且仅当λ=1时满足条件…
【点评】本题考查直线与椭圆方程的综合应用,考查存在性问题的处理方法,椭圆方程的求法,韦达定理的应
用,考查分析问题解决问题的能力.
22.【答案】(1)切线恒过定点1,22e ⎛⎫
⎪⎝⎭
.(2) a 的范围是11,22⎡⎤
-⎢⎥⎣⎦ (3) 在区间()1,+∞上,满足
()()()12f x g x f x <<恒成立函数()g x 有无穷多个
【解析】试题分析:(1)根据导数的几何意义求得切线方程为11222e y ae x e ⎛⎫⎛⎫-
=+- ⎪⎪⎝⎭⎝⎭,故过定点1,22e ⎛⎫ ⎪⎝⎭
;
试题解析:
(1)因为()12f x ax x '=+
,所以()f x 在点()(),e f e 处的切线的斜率为1
2k ae e
=+, 所以()f x 在点()(),e f e 处的切线方程为()2121y ae x e ae e ⎛
⎫=+-++ ⎪⎝
⎭,
整理得11222e y ae x e ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭,所以切线恒过定点1,22e ⎛⎫
⎪⎝⎭
.
(2)令()()()2p x f x f x =-=212ln 02a x ax x ⎛
⎫--+< ⎪⎝
⎭,对()1,x ∈+∞恒成立,
因为()()1212p x a x a x =--+'()2
2121a x ax x --+=()()()
1211*x a x x
⎡⎤---⎣⎦= 令()0p x '=,得极值点11x =,21
21
x a =-,
①当112a <<时,有211x x >=,即1
12
a <<时,在()2,x +∞上有()0p x '>,
此时()p x 在区间()2,x +∞上是增函数,并且在该区间上有()()()2,p x p x ∈+∞,不合题意;
②当1a ≥时,有211x x <=,同理可知,()p x 在区间()1,+∞上,有()()()
1,p x p ∈+∞,也不合题意; ③当1
2
a ≤
时,有210a -≤,此时在区间()1,+∞上恒有()0p x '<, 从而()p x 在区间()1,+∞上是减函数;
要使()0p x <在此区间上恒成立,只须满足()111022
p a a =--≤⇒≥-, 所以11
22
a -
≤≤. 综上可知a 的范围是11,22⎡⎤
-
⎢⎥⎣⎦
.
(利用参数分离得正确答案扣2分)
(3)当23a =
时,()21145ln 639f x x x x =++,()221423
f x x x =+ 记()()22115
ln 39
y f x f x x x =-=-,()1,x ∈+∞.
因为22565399x x y x x
='-=-,
令0y '=,得x =
所以()()21y f x f x =-在⎛ ⎝
为减函数,在⎫+∞⎪⎪⎭上为增函数,
所以当x =时,min 59
180y =
设()()()159
01180
R x f x λλ=+<<,则()()()12f x R x f x <<, 所以在区间()1,+∞上,满足()()()12f x g x f x <<恒成立函数()g x 有无穷多个
23.【答案】
【解析】(本题满分为12分)
解:(1)∵由题意得,sinA=sin (B+C ), ∴sinBcosC+sinCcosB ﹣sinCcosB ﹣sinBsinC=0,…(2分)
即sinB (cosC ﹣sinC )=0,
∵sinB ≠0, ∴tanC=
,故C=
.…(6分) (2)∵ab ×=
, ∴ab=4,①
又c=2,…(8分)
∴a 2+b 2
﹣2ab ×=4,
∴a 2+b 2=8.②
∴由①②,解得a=2,b=2.…(12分)
【点评】本题主要考查了三角形内角和定理,三角函数恒等变换的应用,三角形面积公式,余弦定理在解三角形中的综合应用,考查了转化思想,属于基础题.
24.【答案】
【解析】解:(1)设a 1=a ,由题意可得
,
解得,或,
当时,a n =2n ﹣1,b n =2n ﹣1
;
当
时,a n =(2n+79),b n =9•
;
(2)当d >1时,由(1)知a n =2n ﹣1,b n =2n ﹣1
,
∴c n =
=,
∴T n =1+3•+5•+7•+9•+…+(2n ﹣1)•,
∴T n =1•+3•+5•+7•+…+(2n ﹣3)•
+(2n ﹣1)•,
∴T n =2++++
+…+
﹣(2n ﹣1)•
=3﹣
,
∴T n =6﹣.。