第九章直流电机的运行4
直流电机的工作原理

直流电机的工作原理
直流电机是一种将直流电能转换为机械能的电动机。
它由一个主磁极和一个旋转的线圈组成,通过施加直流电流来产生磁场,进而驱动电机转动。
当直流电流通过主磁极时,产生的磁场会与线圈的磁场相互作用。
根据洛伦兹力原理,当线圈中的电流与磁场垂直时,会受到一个力的作用,导致线圈开始旋转。
具体来说,当线圈通电时,通过线圈的电流会产生一个磁场。
如果线圈的形状或者绕组方式是螺线形,那么产生的磁场会比较均匀。
主磁极上也有一个恒定的磁场。
当线圈与主磁极的磁场相互作用时,就会产生一个力,使得线圈开始旋转。
根据电流的方向不同,线圈可能会顺时针旋转或逆时针旋转。
为了保持电机的连续旋转,需要不断地改变线圈中电流的方向。
通常使用一个称为换向器的装置来完成这个任务。
换向器会在线圈旋转到一定角度时,改变电流的方向,使其继续受到力的作用,推动电机持续旋转。
总的来说,直流电机的工作原理是通过电流在磁场中产生的相互作用力,将电能转换为机械能,实现电机的旋转运动。
4 他励直流电动机的运行

返回
上一节
下一节
上一页
下一页
1.电枢串电阻调速
电枢回路串接电阻调速方法的特点: 优点:设备简单,调节方便; 缺点:调速范围小,电枢回路串入电阻后 电 动机的机械特性变“软”,使负载变动时 电动机产生较大的转速变化,即转速稳定性差, 而且调速效率较低。
返回
上一节
下一节
上一页
下一页
返回
上一节
下一节
上一页
下一页
恒功率调速 调速中,保持Ia=IN,若Ф↓→n↑,
P =常数。
在保持电枢电流接近或等于额定值条件
下,调速过程中电动机允许输出功率不变的
调速方法称为恒功率调速。如 改变电动机主
磁通Ф 的调速方法就属于恒功率调速方法。
返回
上一节
下一节
上一页
下一页
调速方式与负载类型配合问题
返回
上一节
下一节
上一页
下一页
4.2 他励直流电动机的调速
注意:调速与转速自然变化的区别。
“转速的自然变化”是指生产机械的负载转 矩发生变化时,电动机的电磁转矩T要相应发生 变化,电动机的转速也将随着发生变化。调速 是通过人为手段改变电机参数而实现的转速变 化。
返回
上一节
下一节
上一页
下一页
电气调速方法
返回 上一节 下一节 上一页 下一页
静差率比较
同样硬度 的特性,转速 越低,静差率 越大,越难满 足生产机械对 静差率的要求。
不同机械特性对应的静差率
返回 上一节 下一节 上一页 下一页
2.调速范围D
定义:
nmax D nmin
指额定负载时,电力拖动系统可能运行的 最高转nmax与最低转速nmin之比。其中nmax受直 流电动机转动部分机械强度与换向条件的限制, nmin受低转速时相对稳定性的限制。
电动机四象限运行

电机四象限运行1、什么是单象限和4象限?以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。
每一种状态的机械特性曲线分别在直角坐标系的四个象限。
如果装置只能满足电动机的电动运转状态,那么它就是单象限的。
如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。
单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。
2、关于控制器的象限和电机的象限:单象限:能量只能单向流动。
四象限:能量可以双向流动。
电机和变频器都有自己的象限,不要搞混了。
*电机的单象限运行,指电机电动运行。
四象限指发电运行。
*变频器的单象限运行,指能量从电网进入变频器。
四象限指能量还可以回馈电网。
可能有这种情况:a.单象限运行的变频器带四象限运行的电机。
电机发电的能量提升了母线电压,或在制动单元消耗掉。
b.单象限的直流调速换向麻烦,需要改变励磁或电枢的正负来实现反转。
四象限的直流调速有两组整流桥,输出方向相反,正转时其中一组工作,反转时另一组工作。
需要注意的主要是换向的时间问题:对于单象限的调速器,当电机需要反转时,要加时间继电器。
无论是改变励磁方向还是改变电枢方向,都必须等待一段时间,就是说不允许工作中突然换向。
因为励磁线圈和电枢线圈通的都是直流电,需要时间来释放能量,如果换向太快将会把整流桥反向击穿。
而四象限的调速器不存在此问题,因为两组整流桥方向相反,当一组停止输出时,另一组正好可以给电机释放能量。
3、关于变频器和直流调速器的互换:从理论上讲,磁场矢量控制的交流电机变频装置,完全可替代直流调速系统,当然要实现4象限运行,IGBT和整流二极管都要反并联,以实现电流的反向。
电机也要求有速度反馈,如测速发电机或者码盘等,另外还要根据负载的特性,选择电动机的恒扭矩和恒功率的调速范围。
直流电机认识实验

实验一 直流电机实验一、 实验目的1.了解实验室电源状况及具体布置。
2.认识电机机组及常用测量仪器、仪表等组件。
3.熟悉直流电机运行前的一般性检查。
4.掌握直流电动机的基本接线方法。
5.掌握直流电机起动及调速方法。
二、 实验内容1.了解实验室基本状况。
2.直流电机运行前的一般性检查。
3.直流电动机的接线。
4.直流电动机的起动、调速及转向的改变。
三、 预习要点1.直流电动机起动时应注意的问题。
2.直流电动机停机时应注意的问题。
3.使用测量仪表时应注意的问题。
4.安全操作的注意事项。
四、 原理简述电机是用来进行机电能量转换的电磁装置。
将直流电能转换为机械能的电机叫做直流电动机,将机械能转换为直流电能的电机叫做直流发电机。
直流电机由静止部分和转动部分组成。
静止部分称为定子,包括主磁极、换向极、电刷装置和机座等主要部件。
转动部分称为转子,又称电枢,它主要包括电枢铁心、电枢绕组、换向器、转轴和风扇等部件。
电动机从静止到稳定运行状态的过程,称为起动过程。
为了克服静摩擦转矩和负载转矩,缩短起动时间,提高生产效率,要求电动机有足够的起动转矩St T 。
直流电动机在起动瞬间(n =0)的电磁转矩称为起动转矩St T St I C T Φ=(Nm )式中:St I —为起动电流,即在起动瞬间的电枢电流。
要使起动转矩St T 足够大,就要求磁通Φ和起动电流St I 也足够大。
在起动开始瞬间,先将励磁绕组接上电源,并将其回路中的调节电阻全部切除或予以短路,使励磁电流尽可能大些,以保证起动时磁通为最大。
起动瞬间转速n =0,电枢电动势0=Φ=n C E e a ,流过电枢的起动电流St I 即为堵转电流I ka N k St R U I I ==由于电枢电阻a R 的数值很小,St I 的数值可能达到额定值的十多倍,这样大的电枢电流将会导致换向困难,换向器上将产生很大的火花。
同时电动机将产生过大的转矩和很高的加速度,使传动机构与生产机械受到很大的冲击力,可能损坏设备。
直流电机的磁化曲线磁化曲线主磁通与励磁磁动势

1 t
pn
Ea t 0 e d t 4Ny 60
44
Ea
4Ny
pn 60
S 2a
pN 60a
n
Cen
对制成的电机,Ce=pN/60a为一个常数,称为电动势常数
若不计饱和影响,有 其中Kf 为比例常数
Kf If
感应电动势的计算公式为
Ea Cen CeK f I f n Gaf I f
枢是转的,当S极下导线转到N极
下如果导线电流的方向不变电磁
力的方向就反了;怎么办呢?
2
• 当安装换向器以后,将直流电压加于电刷 (固定)端,直流电流经电刷流过电枢上的线圈, 则产生电磁转矩,电枢在电磁转矩的作用下就旋 转起来。
由于换向器配合电刷对 电流的换向作用,使得 线圈边只要处在N极下, 其中通过电流的方向总 是由电刷A流入的方向; 而在S极下时,总是从 电刷B流出的方向,就 使电动机能够连续地旋 转。
12.4
C 由
Ea
n
e
,得
Ea Ce n
250 12.4 2850
70.7
104WB
46
二、电磁转矩的计算
一根导体所受的平均电磁力和一根导体所受的平均转矩为:
fav Bavl ia
和
电机总电磁转矩用Te表示,为
Tav
fav
D 2
Te
B l av
Ia
2a
N
D 2
功率输出,在发电机中,指无电功率输出)。所以
直流电机的空载磁场是指励磁磁势单独建立的磁
场。
33
(一)、空载时电机内部磁场的分布情况
电动机四象限运行

电机四象限运行1、什么是单象限和4象限?以电动机的转速为纵座标轴,以转矩为横座标轴建立的直角坐标系,用来描述电动机的四种运转状态,即正向电动,回馈发电制动,反接制动,以及反向电动四种运转状态。
每一种状态的机械特性曲线分别在直角坐标系的四个象限。
如果装置只能满足电动机的电动运转状态,那么它就是单象限的。
如果装置驱动在电动状态时,能够从电动状态进入第二象限运行,也能从电动状态进入第四象限运行,那么装置是四象限的。
单象限装置只能正向电动,或反向电动,不能从电动运行进入再生发电运行。
左半部是众所周知的可逆变频器原理图,各位同行一看便知。
而右半部分电机分别处于四象限运行的转矩方向和转速方向(也是旋转方向)图。
现简单分析如下:当电机通常是处于处于第一象限运行,我们称其为正转(顺时针反向)电动状态,电动机通过变频器以不同的转速从电网吸收电能,并将其转换为机械能。
电动机的电动转矩和旋转反向一致,也是顺时针方向。
负载机械转矩和电动机电动转矩相反,当电动转矩大于负载转矩时,电动机升速,当电动转矩等于负载转矩时,电机匀速运转。
当我们电机处于某一转速运行在第一象限运行时,当变频器的给定频率突然变小,不管变频器的减速参数如何设定,只要是频率下降减速度大于电动机带负载的惯性减速速率,那么电机由电动状态变为发电状态,它将机械动能通过逆变模块的续流二极管并由制动单元控制向制动电阻放电,将机械能通过制动电阻发热耗掉,这时电机运转方向仍为正转(顺时针),而电机的电动转矩方向和第一象限相反,也就是和转动方向相反(逆时针),电动机对机械负载起制动作用,使得电机运转减速度加快。
我们称其为发电能耗制动状态,如果具有回馈制动单元的话,它可以将机械能通过回馈制动单元向电网回馈。
第三象限和第一象限过程相同,只不过电动转矩和旋转方向分别相反。
而第四象限和第二象限过程相同,也只不过是电动转矩和旋转方向分别相反。
2、关于控制器的象限和电机的象限:单象限:能量只能单向流动。
电机拖动课程标准

《电机及拖动》课程标准课程编码:适用专业:电气自动化、电气技术、生产过程计算机控制学 时:84一、课程概述(一)课程性质和作用《电机及拖动》课是工业电气自动化等专业的一门重要的专业基础课,是一门理论性和实践性都很强的重要的技术基础课,同时又具有专业课的性质,本课程的概念抽象、理论繁琐、公式和结论多,涉及的基础课程多、知识面广,是电路原理等基础课的后续课程,同时又为后续专业课的学习准备必要的基础知识,要求学生除数学外,还要掌握电学、磁学和动力学、热力学等学科知识的综合运用原理。
(二)课程基本理念1、思想上“以学生发展为中心、以学生就业为导向、以学生职业能力和素质培养为主线”,注重“知识、能力和素质三位一体”,融“教、学、做”为一体。
2、内容上突出“实际、实用、实践、实效”的教学特点。
3、教师注重精讲,突出重点,讲难点,讲思路,讲方法,注意启发学生提出问题等,使学生掌握“适度、够用”的电机理论和电力拖动的有关基础知识,打好技术知识和能力基础。
4、综合评价体系上,以“考试只是方法,知识学习和能力培养才是目的”的思想,督促学生重视知识获取和能力提高的过程,调动学生在各方面的学习自主性,在课程学习的全过程中促进学生建立积极思考,努力进取的良好学习氛围。
(三)课程标准设计思路及依据高职教育的目标是培养出能在生产一线上从事技术、管理和运行的实际应用型人才,因此在教学过程中必须将知识的支撑点溶于能力培养的过程中,始终贯穿“以学生发展为中心、以学生就业为导向、以学生职业能力和素质培养为主线”,注重培养学生动手能力、专业能力、终身学习的能力、管理能力、创新能力。
二、课程目标本课程的培养目标培养学生在电机及电力拖动方面分析和解决问题的能力,进一步培养和提高自主学习、独立研究、综合运用知识的能力和创新能力,为今后学习和工作打下坚实的基础;又培养学生良好的学习态度和学习兴趣,使学生的知识、情感、技能得到全面发展。
(1) 知识性目标通过学习,让学生牢固、灵活地掌握常用交、直流电机、变压器的基本结构和工作原理,电力拖动系统的基本理论,计算、分析问题的方法。
电机原理及拖动

(3)换向器:其作用是使电枢绕组的绕组元件中的电流 进行 方向的交换,起着电流换向作用.电枢绕组元件 的引线就焊在换向片上. 3.气隙 在极掌和电枢之间有一空气隙.气隙是电机的重要 组成部分,它的大小和形状对电机 性能有很大的影响. 4.其他部分 (1)转轴和轴承:转子必须有转轴,以便电机 和生产机械 或原动机进行联接传递转矩和功率.中小型电机 一 般采用滚动轴承,大容量电机 ,采用支架式滑动轴承. (2).通风装置:作用是冷却电机.
主磁通Φ所经磁路:两个气隙、两个电枢齿、一个电枢轭、 两个主磁极铁心和一个 主磁极轭等五段。 由磁路中的欧姆定律: wf If = ΣФRm wf —— 一个主磁极上激磁绕组的匝数; If —— 激磁绕组中的激磁电流; Rm —— 该段的磁组; Ф—— 磁通量 1 说明:当I较小时磁路的磁阻为气隙 Φ 磁阻且为常数,故If与Φ是线性的 If较大时铁心饱和,磁阻加大Φ增 加变慢If与Φ为非线性关系. 电机的饱和程度对电机的性能有很 大的影响.
2.单迭绕组元件 单迭绕组由迭绕组元件按一定规律排列联接而成.绕组元 件实际上是一个线圈,可以是多匝,也可以的单匝的. 绕组元件结构原理: N S a1b1及a2b2部分称为元件边, 用后端匝a1ma2及前端匝b1nb2 将元件边联结起来,使两元件 a1 m V a2 边中电势在元件中迭加. 端线c1d1及c2d2 称为引线,d1为 n b1 b2 元件的首端,d2为末端.元件 c1 的首端和末端分别焊接在 d1 d2 不同的换向上. a1b1称为第一元件边,右边a2b2称为第二元件边. 电机原理及拖动
2 If
0
电机原理及拖动
二、主磁极磁势产生的气隙磁密在空间的分布 气隙磁密的概念: 是指穿过气隙进入电枢表面或由电枢表面出来的磁通。 因而气隙磁密实际上是指电枢表面的磁通密度。 气隙磁密=主磁极作用产生部分+电枢磁势作用部分 主磁极磁势单独作用(电枢电流为零时): 气隙在极掌下大致 是均匀的。但在极 δ 尖以外时,主磁通所 经气隙加大,磁密减 小,并在两主磁极中 Bδ 间的几何中线上下降 为零。 τ 电机原理及拖动
电机与拖动基础考点总结

考点总结第四章e T L T —生产机械的阻转矩 n —转速(r/min)】第五章一、直流电机的励磁方式:III f I I f1图5-15直流电机的励磁方式a) 他励式 b) 并励式 b) 串励式 b) 复励式a)b)c)d)按励磁绕组的供电方式不同,直流电机分4种:○1他励直流电机 ○2并励直流电机 ○3串励直流电机 ○4复励直流电机 二、基础公式 1. 额定功率N PN P (N T 为额定输出转矩,N n 为额定转速) 直流发电机中,N P 是指输出的电功率的额定值:N N N I U P ⋅=2. 电枢电动势a E直流电机的电动势:n C E e a ⋅Φ⋅=(单位 V ) e C 为电动势常数aZn C P e 60⋅=(P n —磁极对数,Z —电枢总有效边数,a —支路对数)3. 电磁转矩e T直流电机的电磁转矩:a T e I C T ⋅Φ⋅= (单位m N ⋅) T C 为转矩常数aZn C P T ⋅⋅=π2 (P n —磁极对数,Z —电枢总有效边数,a —支路对数)4. 常数关系式由于55.9260≈=πe T C C 故 e T C C ⋅=55.9三、直流电机(一) 分类:直流电动机和直流发电机。
直流电动机:直流电能→→机械能 直流发电机:机械能→→直流电能(二) 直流电动机(考点:他励直流电动机【如下图】)I 图5-18直流电动机物理量的正方向与等效电路a) 物理量的参考正方向 b) 等效电路a)b)1. 电压方程:励磁回路:f f f I R U =电枢回路:a a a a I R E U += (特点:a a E U >) (a R ——包括电枢绕组和电刷压降的等效电阻 a E ——直流电机感应电动势)其中 ΦnC E e a =2. 转矩方程:0L e T T T +=3. 功率方程:○1输入电功率→电磁功率 输入电功率1P =励磁回路输入电功率f P +电枢回路输入电功率a P(注意:一般题目没有给出励磁信息,那么输入电功率=电枢回路输入电功率)电枢回路输入电功率a P =电磁功率em P +铜耗功率Cua p ∆ 励磁回路输入的电功率:2f f f f f I R I U P ==电枢回路输入的电功率:()Cua em 2a a a a a a a a a a a p P I R I E I I R E I U P ∆+=+=+== (2a a Cua I R p =∆——电枢回路的铜耗 a a em I E P =——电机的电磁功率)且有ωωωe a p a p a p a a π2π2606060T ΦI aZn ΦI a Z n ΦnI Z n I E ==⋅== 即ωe a a T I E =(原本基础公式为a e ΦI C T T =)而由上式可得电动机电磁转矩的另一种计算公式:n Pn P P T em em eme 55.960π2===ω 故n PT em e 55.9=(em P 的取值单位为w 才适用)nP T eme 9550=(em P 的取值单位为kW 才适用) ○2电磁功率→输出机械功率 电磁功率=机械功率=机械空载功率(损耗)+机械负载功率(输出功率)由于0L e T T T +=和ωe T P em = 故 ωωωL 0e T T T += L 0em P p P +∆=L P ——电机的机械负载功率0p ∆——电机的空载损耗,包括机械摩擦损耗m p ∆和铁心损耗Fe p ∆○3输入电功率1P →输出机械功率2P 电功率电磁功率机械功率P 1P em P 2p Cua p Fe p mec p CufCufp ∆Cuap ∆Fep ∆mp ∆图5-19直流电动机的功率图p P P p p p p P p p P P P ∑∆+=+∆+∆+∆+∆=+∆+∆=+=22add m Fe Cu em Cua Cuf a f 1式中2P ——电动机的输出功率,有P2=PL ;add p ∆——电动机的附加损耗,是未被包括在铜耗、铁耗和机械损耗之内的其他损耗; p ∑∆——电动机的总损耗,并有add 02a a 2f f add m Fe Cua Cuf p p I R I R p p p p p p ∆+∆++=∆+∆+∆+∆+∆=∑∆故电动机的效率为:p P pP P ∑∆+∑∆-==2121η4. 工作特性:5. 如何避免造成“飞车”? 答:直流电动机在使用时一定要保证励磁回路连接可靠,绝不能断开。
《电机与拖动基础(第2版)》(习题解答)

《电机与拖动基础(第2版)》(习题解答)电机与拖动基础第⼀章电机的基本原理 (1)第⼆章电⼒拖动系统的动⼒学基础 (6)第三章直流电机原理 (12)第四章直流电机拖动基础 (14)第五章变压器 (29)第六章交流电机的旋转磁场理论 (43)第七章异步电机原理 (44)第⼋章同步电机原理 (51)第九章交流电机拖动基础 (61)第⼗章电⼒拖动系统电动机的选择 (73)第⼀章电机的基本原理1-1 请说明电与磁存在哪些基本关系,并列出其基本物理规律与数学公式。
答:电与磁存在三个基本关系,分别是(1)电磁感应定律:如果在闭合磁路中磁通随时间⽽变化,那么将在线圈中感应出电动势。
感应电动势的⼤⼩与磁通的变化率成正⽐,即 tΦNe d d -= 感应电动势的⽅向由右⼿螺旋定则确定,式中的负号表⽰感应电动势试图阻⽌闭合磁路中磁通的变化。
(2)导体在磁场中的感应电动势:如果磁场固定不变,⽽让导体在磁场中运动,这时相对于导体来说,磁场仍是变化的,同样会在导体中产⽣感应电动势。
这种导体在磁场中运动产⽣的感应电动势的⼤⼩由下式给出 Blv e = ⽽感应电动势的⽅向由右⼿定则确定。
(3)载流导体在磁场中的电磁⼒:如果在固定磁场中放置⼀个通有电流的导体,则会在载流导体上产⽣⼀个电磁⼒。
载流导体受⼒的⼤⼩与导体在磁场中的位置有关,当导体与磁⼒线⽅向垂直时,所受的⼒最⼤,这时电磁⼒F 与磁通密度B 、导体长度l 以及通电电流i 成正⽐,即Bli F = 电磁⼒的⽅向可由左⼿定则确定。
1-2 通过电路与磁路的⽐较,总结两者之间哪些物理量具有相似的对应关系(如电阻与磁阻),请列表说明。
答:磁路是指在电⼯设备中,⽤磁性材料做成⼀定形状的铁⼼,铁⼼的磁导率⽐其他物质的磁导率⾼得多,铁⼼线圈中的电流所产⽣的磁通绝⼤部分将经过铁⼼闭合,这种⼈为造成的磁通闭合路径就称为磁路。
⽽电路是由⾦属导线和电⽓或电⼦部件组成的导电回路,也可以说电路是电流所流经的路径。
他励直流电动机的运行

他励直流电动机三种调速方法的性能比较
调速方法 调速方向
电枢串电阻 降电源电压
向下调
向下调
减弱磁通 向上调
δ≤50%时调速范围
一定调速范围内转速 的稳定性 负载能力 调速平滑性 设备初投资 电能损耗
~2
差 恒转矩 有级调速
少 多
10~12
好 恒转矩 无级调速
多 较少
1.2~2 3~4
与δ无关
较好
恒功率 无级调速
TL T C
保持励磁电流If的大小及方向不变, 将开关接至R, 电枢从电 网脱离经制动电阻R闭合。
参数特点:=N,U=0, 电枢回路总电阻R=Ra+R
实际上是一台他励直流发电机。轴上的机械能转化成电能, 全 部消耗于电枢回路的电阻上, 所以称为能耗制动。
他励直流电动机能耗制动过程中的功率关系
输 入 电枢回路总 电磁功率
n0
n0
D nmax nmax
nmax
n
nmin
n0 nN
n0
1
nN n0
n0
nmax
nmax
n0
nN 1 nN 1
nN
nmax
D1
0
nN nmin
nN 1
1
nN 2 nN 3
3
2
TN
T
2.调速的平滑性 平滑系数:相邻两级转速或线速度之比。
ni
ni 1
3.调速的经济性 设备的初投资、调速时电能的损耗、运行时的维修费用等
电动机的电磁功率:
O TL
PM T
T
9.55Ce
N
I
a
2
60
UN
Ce
《电机与拖动》教学大纲

《电机与拖动》教学大纲学分:4.5 总学时:81理论学时;72 实验学时:9面向专业:电气工程及其自动化大纲执笔人:郗忠梅大纲审定人:李有安一、说明1、课程的性质和目的《电机与拖动》是电气工程及其自动化专业的一门必修的专业基础课。
本课程的主要任务是使学生掌握变压器、交流电机和直流电机的基本知识、基本理论、基本计算方法和一般运行分析问题以及电力拖动系统的运行情况,为后续专业基础课和专业课的学习打好必要的基础。
电机实验是本课程的重要教学环节。
通过实验可对变压器和各类电机的工作特性,基本原理和理论计算加以验证,使学生掌握电机基本实验的原理和方法,初步掌握对电机进行一般操作的动手能力和对实验数据的分析能力,并提高实验技能和熟练程度。
2、课程教学的基本要求理论知识方面:本课程宜安排学生在学完电路、电子等有关基础课程之后的第四学期,内容上注意与以上学科的衔接,课堂教学应力求使学生理解基本概念,掌握基本内容。
实验技能方面:熟练掌握电工仪表的使用方法和各种电机线路的正确接线方法等。
3、课程教学改革总体设想:在有限的教学时间内尽可能多传授给学生有关电机学方面的理论知识。
为了与后继课程的连续性,多增加同步电机的理论知识的讲述学时数。
二、教学大纲内容(一)课程理论教学第一章绪论(2学时)第一节教材内容与课程性质第二节本课程常用的物理概念和定律本章重点、难点:1、安培环路定律2、变压器电动势。
建议教学方法:在教学方法上要力求少而精,采用启发式与形象化相结合。
思考题:1、变压器和电机的磁路常采用什么材料制成,这种材料有哪些主要材料?2、磁滞损耗和涡流损耗是什么原因引起的?它们的大小与哪些因数有关?第二章电力拖动系统动力学(2学时)第一节电力拖动系统转动方程式第二节负载的转矩特性与电力拖动系统稳定运行的条件负载的转矩特性、电力拖动系统稳定运行的条件。
本章重点、难点:电力拖动系统稳定运行条件。
建议教学方法:在教学方法上要力求少而精,采用启发式与形象化相结合。
直流电动机的优点

T=Cm Ia = Cm Ia
即:并励电动机的磁通
= 常数,转矩与电枢电流成正比。 If
I
+
+
E
M Ia
_
U
由以下公式
Rst _ Rf
U E Ia Ra
E CeΦ n T C mΦI a
求得
n
U
Ra
T
CeΦ CmCeΦ 2
令:n0
U CeΦ
。 (2) 起动、制动转矩大, 易于快速起动、停
车 应。用: (13))轧易钢于机控、制电。气机车、中大型龙门刨床、矿山竖井提升机以及起 重设备 等调速范围大的大型设备。
第一节 直流电动机的结构及分类 一、直流电动机的结
构
直流电机由定子(磁极)、转
极心
子 (电枢)和换向器等部分构成。
极掌
励磁绕组
N ···
Ia P入)
Ia
U
Ea Ra
。
第三节 直流电动机的机械特性
特点: 励磁绕组与电枢并联由图可求得
I
U E Ia Ra U
If Rf
Ia
UE Ra
I Ia If Ia
+
+
If
E M Ia U
Rst _
Rf
由上分析可知:
_
当电源电压 U 和励磁回路的电阻 Rf 一定时, 励磁电流 If 和磁通
Ra
I
2 a
0.04 2342
2190
W
励磁电路铜损PfCu
Rf
I
2 f
直流电机的工作原理

直流电机的工作原理直流电机是一种将直流电能转换为机械能的装置。
它采用的是电磁感应的原理,通过电流在磁场中产生力矩,使得电机运转。
下面将详细介绍直流电机的工作原理。
一、电枢和磁极直流电机的关键部件是电枢和磁极。
电枢由绕组和电刷组成,绕组通常采用导电性能较好的铜线绕制,而电刷则由导电材料制成。
磁极由磁场产生器、磁铁等组成,其作用是产生均匀的磁场。
二、电磁感应在直流电机中,电枢通常由一对相互独立的绕组组成,分别称为电枢绕组和励磁绕组。
当外加电源将电流引入电枢绕组时,电枢绕组中产生的磁场与励磁绕组产生的磁场叠加,形成一个整体的磁场。
三、力矩产生当直流电机接通电源后,电枢中的电流开始流动。
根据洛伦兹力的原理,当导体在磁场中运动时,会受到一个力的作用。
在直流电机中,这个力会产生一个力矩,使电枢开始旋转。
电枢的旋转会改变磁通量的大小和方向,从而产生电感应电动势。
根据霍尔定律,电感应电动势的方向与电流变化方向相反。
这个电感应电动势会阻碍电枢继续增大电流,形成一个反作用力。
当力矩与反作用力达到平衡时,电枢将保持旋转。
四、换向器的作用为了使电枢继续旋转,需要不断改变电枢绕组的电流方向。
这就需要通过一个特殊的装置——换向器来实现。
换向器可以使电流方向周期性地变换,从而改变磁场方向,使得电枢继续运转。
五、直流电机的应用直流电机广泛应用于工业、交通、家电等领域。
在工业领域,直流电机被用于驱动各种机械设备,如风机、水泵、制造机械等。
在交通领域,直流电机被应用于电动汽车、电动自行车等。
在家电领域,直流电机被用于冰箱、洗衣机、吸尘器等家电产品。
总结起来,直流电机的工作原理是通过电磁感应的方式,利用洛伦兹力产生力矩,使得电机转动。
电枢和磁极是直流电机的关键部件。
通过换向器的作用,改变电枢绕组的电流方向,实现电机的连续运转。
直流电机在各个领域都有广泛的应用,促进了社会的发展和进步。
直流电动机的运行维护与故障处理

3.电刷故障检查
电刷是直流电动机的重要部件,它不仅起电动机转动部分与固定部分之间传导电 流的作用,还将完成换向的重任。从大量的直流电动机运行、维护经验中可知,许 多电动机因电刷选用不当而造成换向不良,甚至不能正常运行。
1.3 直流电动机的故障检查
1.绕组故障检查
(1)电枢绕组匝间短路和层间击穿 (2)电枢绕组接地 (3)电枢绕组断线和并头套开焊 (4)电枢绕组线圈与换向片接错 (5)定子绕组匝间短路 (6)定子绕组接地
直流电动机的运行维护与故障处 理
7
图8.9 用对比法测试短路 图8.10 用电压降法寻找 图8.11 寻找电枢绕组接
4.绝缘电阻监视
直流电动机绕组的绝缘电阻,是确保电动机安全运行的重要因素之一。对 较重要的电动机,每班都应检查和记录绝缘电阻数值,一般允许值为 1MΩ/kV,不能低于0.5MΩ/kV。
直流电动机的运行维护与故障处
理
6
5.异常现象监视
(1)异常响声 (2)异常气味 (3)异常振动
6.定期检修
直流电动机运行一定时间后,应进行定期检查。主要是测量一些技术状态 数据,排除在运行维护中已发现的小故障,检查和记录一些可以延期解决的故 障,清理和擦净灰尘、油污,更换易损件等。
直流电动机的运行维护与故障处理
3
3.火花等级的鉴别
电刷的火花可按表8.2电刷火花等级表鉴别等级,以确定电机是否继续工作。
直流电动机的运行维护与故障处 理
4
4.中性线的测定
中性线可按下列方法之一测定。 (1)感应法 (2)正反转发电机法 (3)正反转电动机法
直流电动机四大方程调速方法和动态模型

30 π
C e。
Tl
L R
2
Tm
GD R 375 C e C m
U d0 RI d E
Te C m I d E Cen
Te T L
n0 n
2
n— 转速(r/min) U— 电枢电压(V) I— 电枢电流(A) ; ; ; R— 电枢回路总电阻() — 励磁磁通(Wb) ; ; Ke— 由电机结构决定的电动势常数。 2 直流调速方法
直流调速电源
G-M 系统工作 原理
G-M 系统特性
1.1 三种常用的可控直流电源 旋转变流机组 静止式可控整流器 直流斩波器或脉宽调制变换器 据前,调压调速是直流调速系统的主要方法,而调节电枢电压需要有专门向电动 机供电的可控直流电源。本节介绍三种常用的可控直流电源。 1.1.1 旋转变流机组(for G-M 系统) --用交流电动机和直流发电机组成机组,获得可调的直流电压 图 1-1 旋转变流机组和由它供电的直流调速系统(G-M 系统)原理图 由原动机(柴油机、交流异步或同步电动机)拖动直流发电机 G 实现变流,由 G 给需要调速的直流电动机 M 供电。 调节 G 的励磁电流 if 即可改变其输出电压 U,从而调节电动机的转速 n 。 这样的调速系统简称 G-M 系统,国际上通称 Ward-Leonard 系统。 图 1-2 G-M 系统中电动机可逆运行的机械特性 1.1.2 静止式可控整流器(for V-M 系统) ——用静止式的可控整流器获得可调的直流电压。 图 1-3 晶闸管-电动机调速系统(V-M 系统)原理图 晶闸管-电动机调速系统(简称 V-M 系统,又称静止的 Ward-Leonard 系统) ,图中 VT 是晶闸管可控整流器,通过调节触发装置 GT 的控制电压 Uc 来移动触发脉冲的相 位,即可改变整流电压 Ud ,从而实现平滑调速。 晶闸管整流装置 经济可靠性有很大提高,技术性能有较大优越性。 晶闸管可控整流器的功率放大倍数在 104 以上, 其门极电流可以直接用晶体管来控 制,不再像直流发电机那样需要较大功率的放大器。 控制作用的快速性,大大提高系统的动态性能。 变流机组是秒级,而晶闸管整流器是毫秒级 可逆 由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ea Ia Ra Rz
16
电流Ia方向与电动状态时的正方向相反。
电气与自动化工程学院
转矩T为
T CT I a
当开始制动时,磁通Φ的方向未变,电流反向,则转 矩T与电动状态相反,即T与n方向相反,为制动状态。 该制动过程中,靠系统的动能发电,将动能变成电能, 消耗在电枢电路的电阻上,因此称为能耗制动。 该制动过程中,电动机相当于发电机运行。
电动机工作于第四象限。
电气与自动化工程学院
他励直流电动机倒拉反转 运行的机械特性
26
讨论一下转速反向反接制动状态下功率传送的方向
电枢电路的电压平衡方程式
I a ( Ra RΩ ) U Ea
两边同乘以Ia
2 Ia ( Ra RΩ ) UI a Ea I a
U 和 Ia 的方向与电动状态时相同,因此 UIa 为由电网 输入的功率;Ea的方向与电动状态时相反,因此EIa为输 入的机械功率在电枢内变成的电磁功率。它们均消耗在 电阻Ra+RΩ上。 转速反向的反接制动,必须满足两个条件: (1) 负载一定为位能性负载; (2) 电枢回路必须串入大电阻。
Ra Rz T 2 CeCT
2 GD dn 电动机的运动方程式为: T TZ 375 dt
GD2 ( Ra Rz ) dn Tz ( Ra Rz ) n 2 375CeCT dt CeCT 2
TtM
当T=Tz 时,n=nz
nz
Tz ( Ra Rz ) CeCT 2
I sc I z Ia (e1t e 2t ) I z 4T 1 ta TtM
n
2 nz t n e 1 z e t nz 1 2 1 2
1 2
10
2)当 TtM 4Tta 时,α1和α2为负共 轭复数 2 j 1 j
即
Rz
UN Ra 2I N
EN 为制动瞬间的电枢电动势(正值),近似等于 额定电枢电压。
电气与自动化工程学院 20
(2)能耗制动运行——下放重物 当电动机带动位能负载,完成下放重物的过程。 在O点,T和n都为 零,此时若不使用 机械闸,则:
TL 0 n 0 Ea 0 Ia 0 T 0
机械特性曲线
t /TtM
或
n nz (1 et /TtM ) nst et /TtM
电流变化曲线
转速变化曲线
电气与自动化工程学院
5
本节课的主要内容:
(1) 电枢电路电感对起动过程的影响——了解 (2) 他励直流电动机的制动——重点、难点 能耗制动;(迅速停机、下放重物) 反接制动;
电气与自动化工程学院 7
当电动机带负载起动时,过渡过程分两阶段: 第一阶段,电枢电流从零增加到Iz之前,电动机转速为零。 电枢电路的电压方程式为 初始条件,t=0,Ia=0 式中,Ik—短路电流,Ik=U/Ra 第一阶段持续时间tz称滞后时间
Ik t z Tta ln Ik I z
U I a Ra La dI a dt
电气与自动化工程学院
RΩ不能太小,太小会 引起电枢电流过大。
25
转速反向的反接制动时机械特性 方程式为:
n n0 Ra RΩ T 2 CeCT
U Ea Ia ( Ra RΩ )
重物从C点开始下放过程, 随着电机反向加速, Ea 增大, Ia 与 T 也相应增大,直至 D 点, T=TL,电动机从D点开始以恒 定速度稳定下放重物。
23
二、反接制动
反接制动有两种情况,分别是转速反向(一般用于位 能负载)与电枢反接(一般用于反作用负载)。
(一) 转速反向的反接制动
也称为倒拉反转制动,这种制 动运行一般发生在起重机下放重物 的情况下,右图为控制电路。
制动时,电枢电压不反向,只 在电枢电路中串联一个适当的制动 电阻RΩ。
电气与自动化工程学院 24
电机及拖动基础
第九章 直流电动机的 电力拖动
上一节课的主要内容:
(1) 他励直流电动机的起动——重点 起动电阻的计算; (2) 他励直流电动机起动的过渡过程——重点、难点 Ia=f(t),n=f(t)的求取方法; 过渡过程时间的求取方法;
电气与自动化工程学院
2
起动电阻的计算方法:
图解法和解析法 n nz 2 dt Tta dt TtM Tta TtM Tta
电气与自动化工程学院
9
转速方程的解为 式中
n c1e1t c2e2t nz
1 1 4Tta 2 1 2T 2T TtM ta ta
电气与自动化工程学院 27
(二) 电枢反接的反接制动——迅速停机
为了实现迅速停车或反向,断开K1和 K2,接通 K3和 K4,即把电枢电压反接,并串入电阻RΩ。 此时的电枢电流为: U Ea U Ea Ia Ra RΩ Ra RΩ 反接制动时 Ia<0 , n>0 ,电 机处于制动状态,此时电枢被反 接,故称为反接制动。拖动系统 在电磁转矩和负载转矩的共同作 用下,电机转速迅速下降。
电气与自动化工程学院 17
(1)能耗制动过程——迅速停机 能耗制动的电路特点是:U=0,R=Ra+Rz,代入电动 机的机械特性方程式为
n U R T 2 Ce CeCT
得能耗制动机械特性方程式
Ra Rz n T 2 CeCT
可见,能耗制动时的机械特性曲线是一条过坐标原点 的直线。
第九章 直流电动机的电力拖动
9-1 他励直流电动机的机械特性
9-2 他励直流电动机的起动
9-3 他励直流电动机的制动
9-4 他励直流电动机的调速
9-5 晶闸管-直流电动机系统
9-6 他励直流电动机过渡过程的能量损耗
9-7 串励直流电动机的电力拖动
电气与自动化工程学院 12
他励直流电动机有两种运转状态: (1)电动运转状态——电动机转矩的方向与转速的方向 相同,工作点处于第一、三象限此时电网向电动机输入 电能,并变为机械能以带动负载。
电气与自动化工程学院 14
一、能耗制动
能耗制动的电路图为
电动状态
能耗制动状态
电路原理:将电枢与电源断开,串接一个制动电阻 Rz , 使电机处于发电状态,将系统的动能转化为电能消耗在电 枢回路的电阻上。
电气与自动化工程学院 15
感应电动势Ea为
Ea Cen
当开始制动时,由于惯性,转速n存在且与电动状态 相同,则感应电动势Ea亦与电动状态相同。 能耗制动时的电枢电动势平衡方程式为
在c点
U Eb I2 R2 U Ec I1 R1
将两式相除,且Eb=Ec
I1 R2 I 2 R1
I1 R1 同理,d点和e点之间存在 I 2 Ra
因此,对于两级起动,得
电气与自动化工程学院
m
I1 R2 R1 I 2 R1 Ra
Rm Ra
3
电力拖动的过渡过程一般分为两种: 机械过渡过程 、电气-机械过渡过程 电枢串固定电阻起动的过渡过程
1 1 4Tta 1 1 TtM 2Tta 2Tta
其中c1及c2——积分常数,由初始条件决定
另外,可解得电流微分方程的解
2 GD I a (c11e1t c2 2e2t ) Iz 375CT
1)当 TtM 4Tta 时,α1和α2为负 实数
重物G产生负载转矩Tz,电动机为电动状态时的接线 方法,从而产生一个使重物向上提升的转矩。
由于电枢电路内串入较大的 电阻 RΩ , Ia↓ ,起动转矩 Tst<Tz , 会使电动机反向运转, n 与 T 方向 相反,电动机处于制动状态,由 于n相反,感应电动势Ea的方向与 电动状态也相反,因此称转速反 向的反接制动,实际上是电枢电 压方向不变,感应电动势反向。 电枢电路的电压平衡方程式变为 I a ( Ra RΩ ) U (Ea ) U Ea
Ia Ik (1 et /Tta )
电气与自动化工程学院
8
第二阶段,过了tz后,电动机开始加速,机械惯性与电磁 惯性同时存在。
dI a 电枢电路的电磁过程方程式为 U I a Ra La Ea dt GD 2 dn 机械过程方程式为 T Tz 375 dt GD2 dn Ia I z ∵ T CT I a 375CT dt
由于电动机反转转速的升高,则有:
Ea Ia T T TL
稳定下放重物
电气与自动化工程学院 21
注意:在一定的转速下进行能耗制动时,电枢必须 串联电阻Rz,否则电枢电流将过大,在高速时该电流甚至 接近短路电流的数值。
分析能耗制动时的 n=f (t) 及I=f (t) 等曲线 能耗制动的机械特性为: n
电气与自动化工程学院
6
(二) 电枢电路电感对起动过程的影响
问题:电枢回路的电感来自哪儿? 在用晶闸管整流电路向直流电动机供电时,通常在 电动机电枢回路中串联电感(平波电抗器-《电力电子 技术》),这时,电感引起的电磁惯性不能忽视。 电磁时间常数为
La Tta Ra
式中, La 电枢回路总电感,包括电枢绕组电感和串联的 电感线圈;Ra为电枢电阻。 当电动机带负载起动时,机械惯性和电磁惯性同时 存在,此时的过渡过程称为电气-机械过渡过程。
电气与自动化工程学院
18
在制动瞬间, 因机械惯性, 转速来不及变化, 工作点由A平移到B点 最大转矩点 机械特性1与负 载 TL 交 点 A 为 原 始运行点
TB 反向 , 制 动开 始 , 转 速n下降
制动过程终止点