第十二章全等三角形知识点归纳
人教版八年级数学上册 第十二章 全等三角形 知识点归纳
人教版八年级数学上册第十二章全等三角形知识点归纳12.1全等三角形经过平移、翻折、旋转,能够完全重合的两个图形叫做全等形。
经过平移、翻折、旋转,能够完全重合的两个三角形叫作全等三角形。
全等用符号“≌”表示,读作“全等于”。
例1、△ABC≌△DEF读作:三角形ABC全等于三角形DEF。
把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
用“≌”表示两个图形全等的时候,必须把对应的顶点写在对应的位置上。
例2、已知△ABC≌△DEF,那么就说明:①点A对应点D,点B对应点E,点C对应点F②∠A=∠D,∠B=∠E,∠C=∠F③AB=DE,AC=DF,BC=EF用“全等于”这个词表示两个图形全等的时候,顶点不一定有一一对应关系。
例3、已知△ABC全等于△DEF,那么点A不一定对应D,点A也可能对应点E或者点F 。
全等三角形的性质:①对应边相等②对应角相等③角平分线、中线、高分别对应相等④周长相等⑤面积相等12.2三角形全等的判定全等三角形的判定依据:①三边对应相等的两个三角形全等,简称“边边边”或“SSS ”。
②两边一夹角对应相等的两个三角形全等,简称“边角边”或“SAS ”。
③两角一夹边对应相等的两个三角形全等,简称“角边角”或“ASA ”。
④两角一对边对应相等的两个三角形全等,简称“角角边”或“AAS ”。
⑤一条斜边和一条直角边对应相等的两个直角三角形全等,简称“斜边直角边”或“HL ”。
温馨提示:“SSA ”和“AAA ”不能证明两个三角形全等。
全等三角形的证明格式:SSS 、SAS 、ASA 、AAS 的证明格式: HL 的证明格式:在△ABC 与△DEF 中 在Rt △ABC 与Rt △DEF 中∵{ 条件1条件2条件3∵{条件1条件2 ∴△ABC ≌△DEF (条件) ∴△ABC ≌△DEF (HL )12.3角的平分线的性质如果从一个角的顶点引出一条射线把这个角分成两个相等的角,那么这条射线叫做这个角的角平分线。
十二章《全等三角形》知识点归纳总结
第十二章《全等三角形》知识要点归纳总结一、知识网络二、基础知识梳理(一)基本概念1、全等三角形的定义全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;(3)全等三角形周长、面积相等。
3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
SSS(2)两边和它们的夹角对应相等的两个三角形全等。
SAS(3)两角和它们的夹边对应相等的两个三角形全等。
ASA(4)两角和其中一角的对边对应相等的两个三角形全等。
AAS(5)斜边和一条直角边对应相等的两个直角三角形全等。
HL4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理证明两个三角形全等,必须根据已知条件与结论,认真分析图形,准确无误的确定对应边及对应角;去分析已具有的条件和还缺少的条件,并会将其他一些条件转化为所需的条件,从而使问题得到解决。
运用定理证明三角形全等时要注意以下几点。
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
3、要善于灵活选择适当的方法判定两个三角形全等。
(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS) ②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或 ASA) ②夹等角的另一组边相等(SAS)(三)疑点、易错点1、对全等三角形书写的错误在书写全等三角形时一定要把表示对应顶点的字母写在对应的位置上。
初二数学第十二章全等三角形详细知识点及题型总结
第十二章全等三角形第一讲全等三角形性质图形全等:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即...................................平移、翻折、旋转前后的图形全等。
“全等”用.....................≅表示,读作“全等于”..........全等三角形的定义:两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如∆和全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作DEF ABC∆DEF∆。
ABC∆≅把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
........................例1.已知:如图,AB=AD,AC=AE,BC=DE,∠EAC=300,则∠DAB的大小为例2.如图,在平面上将△ABC绕B点旋转到△A’BC’的位置时,AA’∥BC,∠ABC=70°,则∠CBC’为________度.例3.如图,在△ABC中,∠A:∠B:∠C=3:5:10,又△MNC≌△ABC,则∠BCM:∠BCN等于()A.1:2 B.1:3 C.2:3 D.1:4课堂练习:∆的是( )1.根据下列条件,能画出唯一ABCA. AB=3,BC=4,CA=8B.AB=4,BC=3,∠A=300C. ∠C=600,∠B=450,AB=4D.∠C=900,AB=62.如图∠1=∠2=200,AD=AB,∠D=∠B,E在线段BC上,则∠AEC=()A.200B.700C.500D.8003.已知:如图,△ABC≌△DEF,AC∥DF,BC∥EF.则不正确的等式是()A.AC=DFB.AD=BEC.DF=EFD.BC=EF4.如图,△BCD≌△CBE,BC=6,CE=5,BE=4,则CD的长是()A.4 B.5 C.6 D.无法确定5.已知图中的两个三角形全等,则∠ 度数是()A.72°B.60°C.58°D.50°6.如图,将Rt△ABC(其中∠B=340,∠C=900)绕A点按顺时针方向旋转到△AB1 C1的位置,使得点C、A、B1在同一条直线上,那么旋转角最小等于()A.560B.680C.1240D.18007.如图,△ABE≌△ACD,∠B=50°,∠AEB=60°,则∠DAC的度数等于()A.120° B.70° C.60° D.50°8.若两个三角形的面积相等 , 则这两个三角形________全等.9.如图,△ABD≌△ACE,且∠BAD和∠CAE,∠ABD和∠ACE,∠ADB和∠AEC是对应角,则对应边_______.10.如图,△ABC≌△DBC,且∠A和∠D,∠ABC和∠DBC是对应角,其对应边:______,对应角:_________.11.如图,△ABO≌△CDO,OA=2,AB=4,BO=3,则DC= ,OC= ,OD= .12.如图,△ABC≌△DEF,A与D,B与E分别是对应顶点,∠B=320,∠A=680,AB=13cm,则∠F=______度,DE=______cm.13.已知△ABC≌△DEF,∠A=52°,∠B=67°BC=15cm则∠F=_____,FE=_____cm.14.如图,P是正△ABC内的一点,若将△PAB绕点A逆时针旋转到△P/AC,则∠PAP/的度数为________.15.将一张正方形纸片按如图的方式折叠,BC,BD为折痕,则∠CBD的大小为_________16.如图所示,,BC 的延长线交DA 于F ,交DE 于G ,,,,则的度数为17.观察图中每一个大三角形中白色三角形的排列规律,则第n 个大三角形中白色三角形有 个 .18.如图,把△ABC 绕点C 顺时针旋转350,得到△A /B /C, A /B /交AC 乎点D ,已知∠A /DC=90°,求∠A 的度数.19.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设AED ∠的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.20.如图所示,已知△ABC ≌△FED ,且BC =ED ,那么AB 与EF 平行吗?为什么?ABC ADE △≌△105ACB AED ∠=∠=15CAD ∠=30B D ∠=∠=1∠课后练习:1.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,其中正确的说法为( )A .①②③④B .①③④C .①②④D .②③④2.下列说法错误的有( )①只有两个三角形才能完全重合;②如果两个图形全等,它们的形状和大小一定都相同;③两个正方形一定是全等图形;④边数相同的图形一定能互相重合.A.4个B.3个C.2个D.1个3.已知△ABC 与△DEF 全等,∠A=∠D=90°,∠B=37°,则∠E 的度数是( )A.37°B.53°C.37°或63°D.37°或53°4.如果D 是中BC 边上一点,并且,则是( )A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形5.对于两个图形,给出下列结论:①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.其中能获得这两个图形全等的结论共有( )A.1个B.2个C.3个D.4个6.如图,△OAB 绕点O 逆时针旋转800到△OCD 的位置,已知∠AOB=450,则∠AOD ( )A.550B.450C.400D.3507.如图,△ABE ≌△ACD,AB=AC,BE=CD, ∠B=50°,∠AEC=120°,则∠DAC 的度数等于( )A.120°B.70°C.60°D.50°8.如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A. 15°B. 20°C. 25°D. 30°9.如图所示,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿AD 对折,使点C 落在点C ´的位置,则图中的一个等腰直角三角形是( ) A. △ADC B. △BDC ´ C. △ADC ´ D. 不存在6.如图,已知AB=AC ,AD=AE ,∠BAD=25°,则∠CAE=ABC △ADB ADC △≌△ABC△7.如图,△ABD≌△ACE,则AB的对应边是_______,∠BAD的对应角是______.8.已知:如图,△ABE≌△ACD,∠B=∠C,则∠AEB=_______,AE=______.9.如图:△ABC≌△DCB,AB和DC是对应边,∠A和∠D是对应角,则其它对应边是______________,对应角是____________________.10.已知:如图,△ABC≌△DEF,BC∥EF,∠A=∠D,BC=EF,则另外两组对应边是____,另外两组对应角是____.11.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=________度.12.如图所示,△ABD≌△ACE,点B和点C是对应顶点,AB=8,BD=7,AD=6,则BE的长是___13.如图,已知△ABE≌△ACF,∠E=∠F=90°,∠CMD=70°,则∠2=______度.14.如图所示,已知△ABC≌△ADE,BC的延长线交DE于F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB为15.如图,D,E分别为△ABC的AC,BC边的中点,将此三角形沿DE折叠,使点C落在AB边上的点P处.若∠CDE=480,则∠APD等于16.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=____17.如图,把大小为4×4的正方形方格图形分割成两个全等图形,例如图1.请在下图中,沿着虚线画出四种不同的分法,把4×4的正方形方格图形分割成两个全等图形.能力提高:1.长为L 的一根绳,恰好可围成两个全等三角形,则其中一个三角形的最长边x 的取值范围为( ) A.64l l x ≤< B.84l l x ≤< C.64l l x << D.84l l x << 2.已知△ABC ≌△A ′B ′C ′,△ABC 的三边为3、m 、n ,△A ′B ′C ′的三边为5、p 、q ,若△ABC 的各边都是整数,则m+n+p+q 的最大值为__________3.如图,△ABC ≌△ADE ,∠DAC=60°,∠BAE=100°,BC 、DE 相交于点F ,则∠DFB 的度数是4.下图是由全等的图形组成的,其中AB =3cm ,CD =2AB ,则AF =__________.AB C D E F5.如图,△ABE 和△ADC 是△ABC 分别沿着AB 、AC 边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠a 的度数为6.如图,矩形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,如果AD=7cm,DM=5cm, ∠DAM=39°,则AN= cm, NM= cm, ∠NAB= .7.如图所示,△ABC 绕顶点A 顺时针旋转,若∠B =40°,∠C =30°.(1)顺时针旋转多少度时,旋转后的△AB'C'的顶点C'与原三角形的顶点B 和A 在同一直线上?(原△ABC 是指开始位置)(2)再继续旋转多少度时,点C 、A 、C'在同一直线上?8.如图, 在ABCD中, 将△ABE沿BE翻折, 点A落在CD边上, 成为点F, 如果△DEF和△BCF的周长分别是8cm和22cm, 求FC的长度。
人教版八年级上册第十二章全等三角形知识点总结及复习
全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
全等三角形定义 :能够完全重合的两个三角形称为全等三角形。
(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
由此,可以得出:全等三角形的对应边相等,对应角相等。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。
(2)两角和它们的夹边对应相等的两个三角形全等。
(3)两角和其中一角的对边对应相等的两个三角形全等。
(4)两边和它们的夹角对应相等的两个三角形全等。
(5)斜边和一条直角边对应相等的两个直角三角形全等。
4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。
2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。
第十二章全等三角形知识点归纳
第十二章 全等三角形一、知识要点1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角; 2、全等三角形的判定和性质3、证题的思路:(A S A )(A A S )⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎪⎧⎪⎪⎨⎨⎪⎨⎪⎪⎪⎪⎪⎩⎩⎪⎪⎧⎨⎪⎩⎪⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边(SAS)(HL)(SSS) (AAS)(SAS)(ASA)(AAS) 4、应注意的问题(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义;(2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; (4)要正确区分判定三角形全等的结论的不同含义;(5)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等.5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 6、全等三角形问题中常见的辅助线的作法 (1)连接法(连接公共边构造三角形全等); (2)延长法(延长至相交、倍长中线)(3)截长补短法(适合于证明线段的和、差等问题)(4)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线 二、考点解密(1)常见全等的判定和性质考察1、已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°;那么DE= cm ,EC= cm ,∠C= 度;∠D= 度;CBAFE DC B A第2小题 第3小题 第4小题3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300,则∠DCB= 度; 4、如图,已知,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“SAS ”为依据,还须添加的一个条件为 ;(2)若以“ASA ”为依据,还须添加的一个条件为 ;(3)若以“AAS ”为依据,还须添加的一个条件为 ;5.已知△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm 则AB =____________,BC =____________,AC =____________.6.一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x +y =__________.7.下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
人教版八年级上册第十二章全等三角形知识点复习
A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )
2022年八年级数学上册 第十二章 全等三角形知识点归纳 (新版)新人教版
第十二章:全等三角形12.1全等三角形〔1〕、全等图形:形状、大小相同的图形能够完全重合;〔2〕、全等形:能够完全重合的两个图形叫做全等形;〔3〕、全等三角形:能够完全重合的两个三角形叫做全等三角形;〔4〕、平移、翻折、旋转前后的图形全等;〔5〕、对应顶点:全等三角形中相互重合的顶点叫做对应顶点;〔6〕、对应角:全等三角形中相互重合的角叫做对应角;〔7〕、对应边:全等三角形中相互重合的边叫做对应边;〔8〕、全等表示方法:用“ 〞表示,读作“全等于〞〔注意:记两个三角形全等时,把表示对应顶点的字母写在对应的位置上〕〔9〕、全等三角形的性质:①全等三角形的对应边相等;②全等三角形的对应角相等;12.2三角形全等的判定〔1〕假设满足一个条件或两个条件均不能保证两个三角形一定全等;〔2〕三角形全等的判定:①三边对应相等的两个三角形全等;〔“边边边〞或“SS〞S〕②两边和它们的夹角对应相等的两个三角形全等;〔“边角边〞或“SAS〞〕③两角和它们的夹边对应相等的两个三角形全等;〔“角边角〞或“ASA〞〕④两角和其中一角的对边对应相等的两个三角形全等;〔“角角边〞或“AAS〞〕⑤斜边和一条直角边对应相等的两个直角三角形全等;〔“斜边直角边〞或“HL〞〕注:①证明三角形全等:判断两个三角形全等的推理过程;②经常利用证明三角形全等来证明三角形的边或角相等;③三角形的稳定性:三角形的三边确定了,那么这个三角形的形状、大小就确定了;〔用“SSS〞解释〕12.3角的平分线的性质〔1〕、角的平分线的作法:课本第19页;〔2〕、角的平分线的性质定理:角的平分线上的点到角的两边的距离相等;〔3〕、证明一个几何中的命题,一般步骤:①明确命题中的和求证;②根据题意,画出图形,并用数学符号表示和求证;③经过分析,找出由推出求证的途径,写出证明过程;〔4〕、性质定理的逆定理:角的内部到角两边的距离相等的点在角的平分线上;〔利用三角形全等来解释〕〔5〕、三角形的三条角平分线相交于一点,该点为内心;练习题:5.△ABC≌△DEF,且∠A=100°,∠E=35°,那么∠F=〔〕A.35° B.45° C.55° D.70°【考点】全等三角形的性质.6.如图,∠ABC=∠DCB,以下所给条件不能证明△ABC≌△DCB的是〔〕A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD【考点】全等三角形的判定.7.以下条件中能判定△ABC≌△DEF的是〔〕A.AB=DE,BC=EF,∠A=∠D B.∠A=∠D,∠B=∠E,∠C=∠FC.AC=DF,∠B=∠F,AB=DE D.∠B=∠E,∠C=∠F,AC=DF【考点】全等三角形的判定.8.如图,△ABC中,AB=AC,AD=AE,∠BAE=30°,那么∠DEC等于〔〕A.7.5°B.10° C.15° D.18°【考点】等腰三角形的性质;三角形内角和定理;三角形的外角性质.9.如图,A、C、B三点在同一条直线上,△DAC和△EBC都是等边三角形,AE、BD分别与CD、CE交于点M、N,求证:①△ACE≌△DCB;②CM=CN.【考点】全等三角形的判定与性质;等边三角形的性质.10.如图,A、B、C在同一直线上,且△ABD,△BCE都是等边三角形,AE交BD于点M,CD 交BE于点N,求证:〔1〕∠BDN=∠BAM;〔2〕△BMN是等边三角形.【考点】全等三角形的判定与性质;等边三角形的判定与性质.11.:如图,△ABC是等腰直角三角形,D为AB边上的一点,∠ACB=∠DCE=90°,DC=EC.求证:∠B=∠EAC.【考点】全等三角形的判定与性质;等腰直角三角形.参考答案与试题解析5.【解答】解:∵△ABC≌△DEF,∴∠A=∠D,∵∠A=100°,∴∠D=100°,∵∠E=35°,∴∠F=180°﹣∠D﹣∠E=45°,应选B.6.【解答】解:A、可利用AAS定理判定△ABC≌△DCB,故此选项不合题意;B、可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C、利用ASA判定△ABC≌△DCB,故此选项不符合题意;D、SSA不能判定△ABC≌△DCB,故此选项符合题意;应选:D.7.【解答】解:A、根据AB=DE,BC=EF,∠A=∠D,不能判断△ABC≌△DEF,故本选项错误;B、根据∠A=∠D,∠B=∠E,∠C=∠F,不能判断△ABC≌△DEF,故本选项错误;C、根据AC=DF,∠B=∠F,AB=DE,不能判断△ABC≌△DEF,故本选项错误;D、∵在△ABC和△DEF中,∴△ABC≌△DEF〔AAS〕,故本选项正确;应选D.8.【解答】解:∵AC=AB,∴∠B=∠C,∵∠AEC=∠B+∠BAE=∠B+30°=∠AED+α,∴∠B=∠C=∠AED+α﹣30°,∵AE=AD,∴∠AED=∠ADE=∠C+α,即∠AED=∠AED+α﹣30°+α,∴2α=30°,∴α=15°,∠DEC=α=15°,应选C.9.【解答】证明:①∵△DAC和△EBC都是等边三角形,∴AC=CD,CE=BC,∠ACD=∠ECB=60°,∴∠ACE=∠DCB,在△ACE与△DCB中,,∴△ACE≌△DCB〔SAS〕,②∵△ACE≌△DCB,∴∠AEC=∠DBC,∵∠DCE+∠ACD+∠ECB=180°,∠ACD=∠ECB=60°,∴∠DCE=∠ECB=60°,∵CE=BC,∠DCE=∠ECB=60°,∠AEC=∠DBC,在△EMC与△BNC中,,∴△EMC≌△BNC〔ASA〕,∴CM=CN.10.【解答】证明:〔1〕∵等边△ABD和等边△BCE,∴AB=DB,BE=BC,∠ABD=∠EBC=60°,∴∠ABE=∠DBC=120°,在△ABE和△DBC中,,∴△ABE≌△DBC〔SAS〕∴∠BDN=∠BAM;〔2〕∵△ABE≌△DBC,∴∠AEB=∠DCB,又∵∠ABD=∠EBC=60°,∴∠MBE=180°﹣60°﹣60°=60°,即∠MBE=∠NBC=60°,在△MBE和△NBC中,,∴△MBE≌△NBC〔ASA〕,∴BM=BN,∠MBE=60°,∴△BMN为等边三角形.11.【解答】证明:∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=CB.∵∠ACB=∠DCE=90°,∴∠ACE=90°﹣∠ACD=∠DCB.在△ACE和△BCD中,,∴△ACE≌△BCD〔SAS〕.∴∠B=∠EAC〔全等三角形的对应角相等〕.。
全等三角形的知识点归纳
全等三角形的知识点归纳1.全等三角形的定义:如果两个三角形的对应的边相等,对应的角也相等,则这两个三角形是全等三角形。
2.全等三角形的符号表示:通常使用三个粗体字母表示全等三角形,例如△ABC≌△DEF,表示△ABC全等于△DEF。
3.全等三角形的性质:a.边-边-边(SSS)全等:如果两个三角形的三条边相等,则这两个三角形全等。
b.顶角-底角-顶角(ASA)全等:如果两个三角形中两个顶角和它们的夹边相等,则这两个三角形全等。
c.底边-底角-底边(SAS)全等:如果两个三角形中两条底边和它们夹的角相等,则这两个三角形全等。
d.直角-直角-斜边(RHS)全等:如果两个直角三角形的一个直角和斜边相等,则这两个直角三角形全等。
e.角-边-角(AAS)全等:如果两个三角形中两个夹角和它们的夹边相等,则这两个三角形全等。
f.边-角-边(ASA)全等:如果两个三角形中一条边和夹角相等,另一条边和夹角的夹边相等,且夹角不是直角,则这两个三角形全等。
4.全等三角形的性质推论:a.如果两个三角形是全等的,则它们对应的边和角是一一对应的。
b.全等三角形的一边等于另一个全等三角形的一边,一角等于另一个全等三角形的一角。
c.全等三角形的对应边和对应角是相等的。
d.全等三角形的对应边平行。
e.全等三角形的对应边垂直。
f.全等三角形的对应角相等。
g.如果一个角等于一个角,两边分别等于两边,那么两个三角形可能全等,也可能不全等。
5.全等三角形的判定方法:a.SSS判定法:如果两个三角形的三条边分别相等,则这两个三角形全等。
b.SAS判定法:如果两个三角形的两条边和夹角相等,则这两个三角形全等。
c.ASA判定法:如果两个三角形的两个夹角和一条边相等,则这两个三角形全等。
d.RHS判定法:如果两个直角三角形的一个直角和斜边相等,则这两个直角三角形全等。
6.全等三角形的性质应用:a.利用全等三角形的性质,可以证明两个三角形的各边之比相等。
全等三角形知识点归纳总结
海阔凭鱼跃,天高任鸟飞!1第十二章 全等三角形一、结构梳理二、知识梳理 (一)概念梳理 1.全等图形定义:两个能够完全重合的图形称为全等图形,全等图形的形状和大小都相同.例如图1中的两个图形形状相同,但大小不同,不能重合在一起,因此不是全等图形,图2中的两个图形面积相同,但形状不同,也不是全等图形.2.全等三角形这是学好全等三角形的基础.根据全等形定义:能够完全重合的两个三角形叫全等三角形.完全重合有两层含义:(1)图形的形状相同;(2)图形的大小相等.符号“≌”也形象、直观地反映了这一点.“∽”表示图形形状相同,“=”表示图形大小相等.(二)性质与判定梳理1.全等图形性质:全等多边形的对应边、对应角分别相等. 全等三角形的对应边、对应角分别相等. 2.全等三角形的判定这是学好全等三角形的关键.只给定一个条件或两个条件画三角形时,都不能保证所画出的三角形全等,只要有三个条件对应相等就可以,于是判定两个三角形全等的方法有: (1)三边对应相等的两个三角形全等,简记为:SSS ;(2)两角和它们的夹边对应相等的两个三角形全等,简记为:ASA ; (3)两角和其中一角的对边对应相等的两个三角形全等,简记为:AAS ; (4)两边和它们的夹角对应相等的两个三角形全等,简记为:SAS . 若是直角三角形,则还有斜边、直角边公理(HL )。
由此可以看出,判断三角形全等,无论用哪一条件,都要有三个元素对应相等,且其中至少要有一对应边相等. (5)注意判定三角形全等的基本思路从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边(角)去迅速准确地确定要补充的边(角),不致盲目地而能有目标地完善三角形全等的条件.从而得到判定两个三角形全等的思路有:图1 2 丰富的生活情境 全等图形概念 特征 特例 应用 全等三角形 全等三角形特征 全等三角形条件画三角形海阔凭鱼跃,天高任鸟飞!2⎪⎩⎪⎨⎧→→SSS SAS 找另一边找夹角 ⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧→→→→→SAS AAS ASA AAS 找该角的另一边找这条边上的对角找这条边上的另一角边就是角的一条边找任一角边为角的对边 ⎩⎨⎧→→AASASA 找任一边找两角的夹边 (6)学会辨认全等三角形的对应元素辨认全等三角形的对应元素最有效的方法是,先找出全等三角形的对应顶点,再确定对应角和对应边,如已知△ABC ≌EFD ,这种记法意味着A 与E 、B 与F 、C 与D 对应,则三角形的边AB 与EF 、BC 与FD 、AC 与ED 对应,对应边所夹的角就是对应角,此外,还有如下规律:(1)全等三角形的公共边是对应边,公共角是对应角,对顶角是对应角;(2)全等三角形的两个对应角所夹的边是对应边,两条对应边所夹的角是对应角.(三)基本图形梳理注意组成全等三角形的基本图形,全等图形都是由图形的平移、旋转、轴对称等图形变换而得到的,所以全等三角形的基本图形大致有以下几种:1.平移型 如图3,下面几种图形属于平移型: 它们可看成有对应边在一直线上移动所构成的,故该对应边 的相等关系一般可由同一直线上的线段和或差而得到.2.对称型 如图4,下面几种图形属于对称型:它们的特征是可沿某一直线对折,直线两旁的部分能完全重合(轴对称图形),重合的顶点就是全等三角形的对应顶点.3.旋转型 如图5,下面几种图形属于旋转型: 它们可看成是以三角形的某一顶点为中心旋转 所构成的,故一般有一对相等的角隐含在对顶角、某些角的和 或差中. 三、易混、易错点剖析1.探索两个三角形全等时,要注意两个特例(1)三边对应相等的两个三角形全等,但三角对应相等的 两个三角形不一定全等;如图6(1)中的两个三角形的每个 角都是600,但这两个三角形显然不全等;(2)两边和其中一边的对角对应相等的两个 三角形不一定全等,如图6(2),中的△ABC 和△ABD 中, 虽然有AB=AB ,AC=AD ,∠B=∠B ,但它们显然不全等.已知两边已知一边一角 已知两角图3 图4图5A BC D图6(2)图6(1)海阔凭鱼跃,天高任鸟飞!32.在判定三角形全等时,还要注意的问题 在判定三角形全等时,应做到以下几点: (1)根据已知条件与结论认真分析图形; (2)准确无误的确定每个三角形的六个元素;(3)根据已知条件,确定对应元素,即找出相等的角或边; (4)对照判定方法,看看还需什么条件两个三角形就全等; (5)想办法找出所需的条件来. 四、例题:例1.如图7(1),E 、F 分别是四边形ABCD 的边BA 、DC 延长线上的点,AB//CD ,AD//BC ,且AE=CF ,EF 交AD 于G ,交BC 于H .(1)图中的全等三角形有 对,它们分别是 ;(不添加任何辅助线)(2)请在(1)问中选出一对你认为全等的三角形进行证明. 我选择的是: .解:(1)2,△AEG ≌△CFH 和△BEH ≌△DFG . (2)如求证明:△AEG ≌△CFH .证明:在平行四边形ABCD 中,有∠BAG=∠HCD , 所以∠EAG=1800-∠BAG=1800-∠HCD=∠FCH . 又因BA ∥DC ,所以∠E=∠F .又因AE=CF ,所以△AEG ≌△CFH .点评:本题简单地考察学生对图形的识别能力以及证明能力,主要是根据全等三角形的判定条件去寻找,然后再作出证明.例2.如图8,在△ABD 和△ACE 中,有下列四个等式: ○1AB=AC ○2AD=AE ○31=∠2○4BD=CE. 请你以其中三个等式作为题设,余下的作为结论, 写出一个真命题(要求写出已知,求证及证明过程). (提示:答案不唯一).点评:本题是条件组装题,答案不唯一,它重点考查学生的创新意识和能力,四个命题进行组合,有六种情况,这六种情况中 有的是假命题,请同学们注意分辨.例3.如图9,点E 在AB 上,AC=AD ,请你添加一个条件,使图中存在全等三角形,并给予证明。
初二数学知识点总结(15篇)
初二数学知识点总结(15篇)初二数学知识点总结1第十二章全等三角形一、全等三角形1.定义:两个能完全重合的三角形叫做全等三角形。
理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。
2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。
理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。
(2)全等三角形的周长和面积相等。
(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。
3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。
注意:三角形的三条角平分线交于一点,这个点到三角形三边的距离相等。
三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角” 、“公共边”、“对顶角”(5)用截断互补法证明三角形同余。
初二数学知识点总结2轴对称1.如果一个平面图形沿着一条直线折叠,直线两边的部分可以互相重叠,那么这个图形就叫轴对称图形,这条直线就叫对称轴。
2.性质(1)成轴对称的两个图形全等;(2)如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
一次函数(一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。
第12章+全等三角形知识点总结+20223-2024学年人教版数学八年级上册+
第12章全等三角形思维导图12.1全等三角形【知识点】1.能够完全重合的两个图形叫做全等形,全等形的形状相同,大小相同2.能够完全重合的两个三角形叫做全等三角形3.把两个全等三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角4.两个三角形全等用符号“≌”表示,读作“全等于”,△ABC与△A′B′C′全等,记作△ABC△△A′B′C′.在用符号表示两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.(用语言叙述的两个全等三角形的顶点不一定是对应顶点)5.全等三角形的对应边相等,对应角相等6.寻找对应元素的规律(1)有公共边的,公共边是对应边;(2)有公共角的,公共角是对应角;(3)有对顶角的,对顶角是对应角;(4)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(5)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角;(6)在两个全等三角形中,最长边对应最长边,最短边对应最短边;最大角对应最大角,最小角对应最小角.(7)根据表达式找对应角、对应边时,可根据字母的顺序来确定对应关系.12.2全等三角形的判定【知识点】(一)全等三角形的判定1.三边对应相等的两个三角形全等,简写成“边边边”或“SSS”(三角形的稳定性)2.两边及其夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”3.两角和它们的夹边分别相等的两个三角形全等,简写成“角边角”或“ASA”4.两角分别相等且其中一组等角的对边相等的两个三角形全等,简写成“角角边”或“AAS”5.斜边和一条直角边分别相等的两个直角三角形全等,简写成“斜边、直角边”或“HL ”6.【延伸】(1)有两边及第三边上的高分别相等的两个锐角三角形全等 (2)有一条直角边及斜边上的高分别相等的两个直角三角形全等 (3)全等三角形对应边上的高相等(二)利用SSS 作一个角等于已知角如图(1)所示,已知∠AOB ,要求作一个角∠A′O′B′,使得∠A′O′B′=∠AOB作法:(1)如图(1),以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ; (2)画一条射线O′A′,以点O′为圆心,OC 长为半径画弧,交O′A′于点C′; (3)以点C′为圆心,CD 长为半径画弧,与第2步中所画的弧交于点D′; (4)过点D′画射线O′B′,则∠A′O′B′=∠AOB【题型】(一)直角三角形全等的判定 (二)作一个角等于已知角 (三)三角形全等的判定证明题 1. (2021重庆)如图,点B,F,C,E 共线,∠B=∠E ,BF=EC ,添加一个条件,不能判定△ABC△△DEF 的是( )A.AB=DEB.△A=△DC.AC=DFD.AC//FD答案:C2.(2020黑龙江齐齐哈尔)如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD△△ABC,则还需要添加的一个条件是__________.答案:AD=AC(∠D=∠C或∠ABD=∠ABC或∠DBE=∠CBE)3.(2021吉林)如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.求证:AD=AE.答案:△ACD≌△ABE(ASA)4.(2021云南)如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC=△CBD答案:△ADC≌△BCD(SSS)5.(2021陕西)如图,BD//AC,BD=BC,点E在BC上,且BE=AC.求证:∠D=∠ABC.答案:△EDB≌△ABC(SAS)6.(2021福建)如图,在△ABC中,D是边BC上的点,DE△AC,DF△AB,垂足分别为E,F,且DE=DF,CE=BF.求证:∠B=∠C.答案:△DEC ≌△DFB(SAS)7.(2020吉林)如图,在△ABC 中,AB>AC ,点D 在边AB 上,且BD=CA ,过点D 作DE//AC ,并截取DE=AB ,且点C ,E 在AB 同侧,连接BE.求证:△DEB△△ABC.答案:△DEB ≌△ABC(SAS)12.3角的平分线的性质【知识链接:11.1三角形的角平分线】1)定义:三角形的一个内角的平分线与这个角所对的边相交,这个叫的顶点和交点之间的线段叫做三角形的角平分线2)一个三角形有3条角平分线,它们都在三角形内部,且交于一点(一)角平分线的画法(依据SSS )(1)以点O 为圆心,适当长为半径画弧,交OA 于点M ,交OB 于点N(2)分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠AOB 的内部相交于点C(3)画射线OC ,射线OC 即为∠AOB 的角平分线(二)角平分线的性质1.角平分线上的点到角的两边的距离相等【延伸性质】AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别为E,F,连接EF,交AD于点G,则AD垂直平分EF2.角的内部到角的两边距离相等的点在角的平分线上3.三角形的三个角的平分线相交于一点,这点到三边的距离相等【证明三角形三条角平分线交于一点】设AD,BE交于一点O,作OG⊥BC,OH⊥AC,OI⊥AB则OG=OI=OH(角平分线上的点到这个角的两边的距离相等)因为OG=OH所以O点也在∠C的平分线上(到角的两边距离相等的点在角平分线上),即在CF 上,也就是AD,BE,CF交于一点4.三角形的两个外角的平分线也交于一点,这点到三边所在直线的距离相等5.到三角形三边所在直线距离相等的点有4个【题型】(一)运用角平分线的性质证明线段相等。
第十二章全等三角形知识点总结
∵ △ABC≌△DEF
∴ ①AB=DE
④ ∠A= ∠D
② BC=EF ③ CA=FD
⑤ ∠B=∠E
⑥ ∠C= ∠F
注意: 寻找对应元素的规律 (1)有公共边的,公共边是对应边;
(2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边是对应边,最小边是对应边;
(5)最大角是对应角,最小角是对应角;
F
∴ △ABC ≌△ DEF(SAS)
“ASA”判定方法:
几何语言: 在△ABC和△ DEF中 ∠ B =∠ E BC=EF ∠ C =∠ F ∴ △ABC ≌△ DEF(ASA)
E B
A C
D F
“AAS”判定方法:
几何语言: 在△ABC和△ DEF中 ∠ A =∠ D ∠ B =∠ E BC=EF ∴ △ABC ≌△ DEF(AAS)
4
三 角 形 两边和它们的夹角分别相等的两个三角形全等 全 简写为“边角边”或“SAS ” 等 的 两角和它们的夹边分别相等的两个三角形全等 判 简写为“角边角”或“ASA” 定 方 两角分别相等且其中一组等角的对边相等的两个三角形 法 全等。简写为“角边角”或“AAS”
斜边和一条直角边分别相等的两个直角三角形全等 简写为“斜边、直角边”或“HL”
三边对应相等的两个三角形全等 简写为:“边边边”或“SSS”
“SSS”判定方法:
几何语言: 在△ABC和△ DEF中 AB=DE BC=EF CA=FD ∴ △ABC ≌△ DEF(SSS)
E B
A C
D F
“SAS”判定方法:
A
几何语言:
B
D E
C
在△ABC和△ DEF中
全等三角形知识点梳理
第十二章全等三角形2018.9 杨1. 全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.对 应边相等。
2. 全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.对 应角相等。
证明三角形全等基本思路:严誓筝三边[555)C1J <已知两边找夹角 (曲L 找是否有虫希(HL)找这边的另一个邻角(竺引 找这个馬的另找这边曲对角(AAS)三角形全等的判定(1)三边分别相等的两个三角形全等,简写成边边边或1. 如图,AB= AD, C 吐 CD 求证:(1) △ ABC^^ ADC (2) / B =/D. 证明:⑴连接AC 在厶ABC 与△ ADC 中,•••△ ABC^A ADC(SSS)(2) ABC^A ADC 「•/ B =/ D.2. 已知在四边形 ABCD 中, AB 二CD,AD 二BC,求证 AD//BCAD 做辅助线,连接—AC ,利用SSS 证明全等,得到/ DAC h ACB 从而证明平行 BC 三角形全等的判定.(2) 两边和它们的夹角分别相等的两个三角形全等 (可以简写成“边角边”或SAS ).两边和其中一边的对角对应相等的两个三角形不一定全等1. 如图,将两个一大、一小的等腰直角三角尺拼接 (A ,B, D 三点共线,AB= CB EB= DB,Z ABO / EBD= 90° ),连接 AE, CD 试确定 AE 与 CD 的关 系,并证明你的结论.:已知一边一 估):已知两角-找两角的夹边M5A) 找夹边处的任意边(V 】找一角Lui)己知菊是宜矗.«—iftrh-L)解:结论:AE= CD, AE± CD.证明:延长AE交CD于尸,在厶ABE与厶CBD中,•••△ ABE^A CBD SA$,二AE= CD, / EAB=Z DCB•••/ DC聊/ CD* 90°, •••/ EAB^Z CD* 90 ° ,•••/AFD* 90 ° ,二AE± CD.2.在厶ABC^H A CDE中,CA=CB,CD=CE, ACB ZDCE=90 , AE与BD交与点F(1)求证:△ ACE^A BCD (2)求证:AE± BD1,利用SAS证明全等,AC=BCDC=ECBCD Z ACE2,全等得到角相等Z CAE Z DCBZ CAB+Z EAB+Z ABC=90Z DC Z EAB+Z ABC=90三角形全等的判定(3)两角和它们的夹边分别对应相等的两个三角形全等,简称角边角或ASA两个角和其中一个角的对边分别相等的两个三角形全等,简称角角边或AAS求证:三角形一边的两端点到这边的中线或中线延长线的距离相等.求证:BE* CF.如图,ADABC的中线,且CF丄AD于点F, BE丄AD,交AD的延长线于点E,证法1:••• ADABC的中线,二BD*CD.v BE!AD, CF丄AD, •••Z BED=ZCFD= 90 ° .在厶BED与厶CFD中•••△ BED^A CFD AAS , • BE* CF.证法2:VS△ ABD* AD* BE CF,且S A ABD*S A ACd(等底同高的两个三角形面积相等),• AD- BE= AD- CE •- BE* CF.三角形全等的判定⑷斜边和一条直角边分别对应相等的两个直角三角形全等,简称“斜边、直角边”或“ HL'.如图,E , F分别为线段AC上的两点,且DEL AC于点E , BF丄AC于点F,若BD交AC于点M.求证:BM* DM ME= MF.证明:••• AE= CF, • AE^ EF* CF+ EF「. AF* CE. 在Rt △ABF与Rt△ CDE中•Rt△ ABF^Rt△ CDEHD ,•BF* DE.v DEL A C BF L A C•Z DEI*Z BFI* 90° .在厶BFM与厶DEM中• △ BFM^A DEM AAS ,••• BW DM MB MF.角的平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.文字命题的证明方法:a.明确命题中的已知和求证;b.根据题意,画出图形,并用数学符号表示已知和求证;c.经过分析,找出由已知推出要证的结论的途径,写出证明过程. 方法总结:(1)角平分线的性质是证明线段相等的另一途径.(2)在已知角平分线的条件下,也可想到翻折构造全等的方法.角平分线的性质是证线段相等的常用方法之一,角平分线的性质与判定通常是交叉使用,作角的平分线或过角的平分线上一点作角两边的垂线段是常用的辅助线.1.在厶ABC中,人。
八年级数学上册“第十二章全等三角形”必背知识点
八年级数学上册“第十二章全等三角形”必背知识点一、全等三角形的基本概念1. 全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
2. 对应边和对应角:全等三角形中互相重合的边和角分别称为对应边和对应角。
3. 对应顶点:全等三角形中互相重合的顶点称为对应顶点。
二、全等三角形的性质1. 对应边相等:全等三角形的对应边相等。
2. 对应角相等:全等三角形的对应角相等。
3. 其他性质:全等三角形的周长和面积也相等;对应边上的高、中线、角平分线分别相等;对应角的三角函数值相等。
三、全等三角形的判定定理全等三角形的判定定理是本章的核心内容,主要包括以下几种:1. SSS(边边边):三边分别相等的两个三角形全等。
2. SAS(边角边):两边和它们的夹角分别相等的两个三角形全等。
3. ASA(角边角):两角和它们的夹边分别相等的两个三角形全等。
4. AAS(角角边):两个角和其中一个角的对边分别相等的两个三角形全等。
5. HL(直角三角形的斜边、直角边):在直角三角形中,斜边和一条直角边分别相等的两个直角三角形全等。
四、找全等三角形的方法1. 从结论出发:看要证明相等的两条线段 (或角)分别在哪两个可能全等的三角形中。
2. 从已知条件出发:看已知条件可以确定哪两个三角形相等。
3. 综合考虑:从条件和结论综合考虑,看它们能一同确定哪两个三角形全等。
4. 添加辅助线:若上述方法均不行,可考虑添加辅助线,构造全等三角形。
五、角平分线的性质1. 性质定理:角平分线上的点到角的两边的距离相等。
2. 逆定理:角的内部到角的两边距离相等的点在角的平分线上。
六、注意事项1. 在应用判定定理时,必须注意对应边和对应角的对应关系,不能随意搭配。
2. 证明两个三角形全等时,必须明确写出判定定理的依据,并写出完整的证明过程。
3. 注意区分全等三角形和相似三角形的判定条件,不要混淆。
通过掌握以上知识点,可以更好地理解和应用全等三角形的相关概念和性质,解决与全等三角形相关的问题。
全等三角形知识点归纳
全等三角形知识点归纳一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
二、全等三角形的性质1、全等三角形的对应边相等也就是说,如果两个三角形全等,那么它们对应的边长度是相等的。
比如,三角形 ABC 全等于三角形 DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等同样,如果两个三角形全等,它们对应的角的度数也是相等的。
比如,∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等因为全等三角形的对应边相等,所以它们的周长也必然相等。
4、全等三角形的面积相等由于全等三角形完全重合,所以它们所覆盖的面积是一样的。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如:在三角形 ABC 和三角形 DEF 中,AB = DE,BC = EF,AC = DF,那么三角形 ABC 全等于三角形 DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如:在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么三角形 ABC 全等于三角形 DEF。
3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
举例:在三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC 全等于三角形 DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
例如:在三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,那么三角形 ABC 全等于三角形 DEF。
5、 HL(斜边、直角边)对于两个直角三角形,如果它们的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
比如:在直角三角形 ABC 和直角三角形 DEF 中,∠C =∠F =90°,AB = DE,AC = DF,那么三角形 ABC 全等于三角形 DEF。
第十二章全等三角形知识点梳理
人教新课标版(2012教材)第十二章全等三角形知识点梳理一.全等三角形概念1.全等形的概念:能够完全重合的两个图形叫做全等形.2.全等形的性质:(1)形状相同.(2)大小相等.3.全等三角形的概念:能够完全重合的两个三角形叫做全等三角形.4.全等三角形的表示:(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.(2)如图,和全等,记作.通常对应顶点字母写在对应位置上.二.全等三角形的性质:1.全等三角形的对应边相等;全等三角形的对应角相等.2.全等三角形的周长、面积相等.三.全等的变换1.全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换.2.全等三角形基本图形翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素四.两个三角形全等的条件1.全等三角形的判定1——边边边公理三边对应相等的两个三角形全等,简写成“边边边”或“SSS”.“边边边”公理的实质:三角形的稳定性(用三根木条钉三角形木架).2.全等三角形的判定2——边角边公理两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”.3.全等三角形的判定3——角边角公理两角和它们的夹边对应相等的两个三角形全等.简写为“角边角”或“ASA”.4.全等三角形的判定4——角角边推论两角和其中一角的对边对应相等的两个三角形全等.简称“角角边”或“AAS”.5.直角三角形全等的判定——斜边直角边公理斜边和一条直角边对应相等的两个直角三角形全等.简写成“斜边直角边”或“HL”.判定直角三角形全等的方法:①一般三角形全等的判定方法都适用;②斜边-直角边公理五.判定三角形全等方法的选择:1.判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,所以在寻找全等的条件时,总是先寻找边相等的可能性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章 全等三角形
一、知识要点
1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。
同样我们把能够完全重合的两个三角形叫做全等三角形。
当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角; (5)有对顶角的,对顶角一定是对应角; 2、全等三角形的判定和性质
3、证题的思路:
(A S A )(A A S )⎧⎧⎪⎪
⎨⎪
⎪⎪⎩
⎪⎪⎧⎪⎪
⎧⎪⎪
⎨⎨⎪
⎨⎪⎪
⎪⎪⎪⎩⎩⎪
⎪⎧⎨⎪
⎩⎪
⎪⎩
找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边(SAS)
(HL)(SSS) (AAS)(SAS)(ASA)(AAS) 4、应注意的问题
(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义;
(2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等; (3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上; (4)要正确区分判定三角形全等的结论的不同含义;
(5)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等.
5、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等 判定:到一个角的两边距离相等的点在这个角平分线上 6、全等三角形问题中常见的辅助线的作法 (1)连接法(连接公共边构造三角形全等); (2)延长法(延长至相交、倍长中线)
(3)截长补短法(适合于证明线段的和、差等问题)
(4)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线 二、考点解密
(1)常见全等的判定和性质考察
1、已知△ABD ≌△CDB ,AB 与CD 是对应边,那么AD= ,∠A= ;
2、如图,已知△ABE ≌△DCE ,AE=2cm ,BE=1.5cm ,∠A=25°∠B=48°;那么DE= cm ,EC= cm ,∠C= 度;∠D= 度;
C
B
A
F
E D
C B A
第2小题 第3小题 第4小题
3、如图,△ABC ≌△DBC ,∠A=800,∠ABC=300
,则∠DCB= 度; 4、如图,已知,∠ABC =∠DEF ,AB =DE ,要说明△ABC ≌△DEF ,(1)若以“SAS ”为依据,还须添加的一个条件为 ;
(2)若以“ASA ”为依据,还须添加的一个条件为 ;(3)若以“AAS ”为依据,还须添加的一个条件为 ;
5.已知△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm 则AB =____________,BC =____________,AC =____________.
6.一个三角形的三边为2、5、x ,另一个三角形的三边为y 、2、6,若这两个三角形全等,则x +y =__________.
7.下列命题中正确的是( )
①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。
A .4个 B 、3个 C 、2个 D 、1个
8.对于下列各组条件,不能判定△ABC ≌△C B A '''的一组是 ( ) (A)∠A=∠A ′,∠B=∠B ′,AB=A ′B ′ (B)∠A=∠A ′,AB=A ′B ′,AC=A ′C ′ (C)∠A=∠A ′,AB=A ′B ′,BC=B ′C ′(D)AB=A ′B ′,AC=A ′C ′,BC=B ′C ′
9.尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于1
2
CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得
OCP ODP △≌△的根据是( )
A .SAS
B .ASA
C .AAS
D .
SSS
10.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结DC .(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC BE ⊥
(2)与角平分线有关的题型
1.已知△ABC 中,∠A=60°,∠ABC,∠ACB 的平分线交于点O ,则∠BOC 的度数为
2.直线表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有:( )
A.一处
B. 两处
C.三处
D.四处
第2小题 第3小题 第4小题
3.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠CAB 交BC 于点0,DE ⊥AB ,垂足为E ,且AB =6 cm ,则△DEB 的周长为_______cm 。
4.如图,ABC ∆的三边AB 、BC 、CA 的长分别为20、30、40,其三条角平分线的交点为O ,则=∆∆∆CAO BCO ABO S S S ::
3.如图,∠B=∠C=90°,M 是BC 中点,DM 平分∠ADC ,求证:AM 平分∠DAB .
图1
图2
(第10题)
E
D
F
C
B
A
C
D
C
B A
(3)常见辅助线
1.如图AB ∥CD ,∠A=∠C ,求证:AD=BC
2.已知,如图△ABC 中,AB=5,AC=3,则中线AD 的取值范围是_________.
3.如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF ,D 是中点,试比较BE+CF 与EF 的大小.
4.如图,AC ∥BD ,EA,EB 分别平分∠CAB,∠
DBA ,CD 过点E ,求证;AB =AC+BD。