沈阳市2013年中考数学卷
2013年沈阳市中考数学试题及标准答案
2013年沈阳中考数学试卷考试时间:120分钟,试卷满分150分,参考公式:参考公式:抛物线2y ax bx c =++的顶点坐标是24(,)24b ac b a a--. 对称轴是直线2b x a=-,注意事项21.答题前,考生须用0. 5mm 黑色字迹的签字笔在本试题卷规定位置填写自己的姓名、准考证号; 2.考生须在答题卡上作答,不能在本试题卷上作答,答在本试题卷上无效; 3.考试结束,将本试题卷和答题卡一并交回;.4.本试题卷包括八道大题,25道小题,共6页.如缺页、印刷不清,考生须声明,否则后果自负.一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),讲196亿用科学记数法表示为( )A .81.9610⨯B .819.610⨯C .101.9610⨯D .1019.610⨯ 2.右图是一个几何体的三视图,这个几何体的名称是( )A .圆柱体B .三棱锥C .球体D .圆锥体3.下面计算一定正确的是( )A .3362b a b += B .222(3)9pq p q -=-C .3585315y y y ⋅= D .933b b b ÷=4.如果71m =-,那么m 的取值范围是( )A .01m <<B .12m <<C .23m <<D .34m << 5.下列事件中,是不可能事件的是( )A .买一张电影票,座位号是奇数B .射击运动员射击一次,命中9环.C .明天会下雨D .度量三角形的内角和,结果是360°6. 计算2311x x +-- 的结果是( ) A .11x - B .11x - C .51x - D .51x-7、在同一平面直角坐标系中,函数1y x =-与函数1y x=的图象可能是( )8.如图,ABC ∆中,AE 交BC 于点D ,C E ∠=∠,AD=4,BC=8,BD:DC=5:3,则DE 的长等于( ) A .203 B .154 C .163 D .174二、填空题(每小题4分,共32分) 9.分解因式: 2363a a ++= _________.10.一组数据2,4,x ,-1的平均数为3,则x 的值是 =_________.11.在平面直角坐标系中,点M (-3,2)关于原点的对称点的坐标是 _________. 12.若关于x 的一元二次方程240x x a +-=有两个不相等的实数根,则a 的取值方位是 _________.13.如果x=1时,代数式2234ax bx ++的值是5,那么x= -1时,代数式2234ax bx ++的值 _________.14.如图,点A 、B 、C 、D 都在⊙O 上,ABC ∠=90°,AD=3,CD=2,则⊙O 的直径的长是_________.15.有一组等式:22222222222222221233,2367,341213,452021++=++=++=++=…… 请观察它们的构成规律,用你发现的规律写出第8个等式为_________16.已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 _________ 三、解答题(第17、18小题各8分,第19小题10分.共26分)17.计算:216sin 30282-⎛⎫-︒++- ⎪⎝⎭(-2)18.一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价, 图①和图②是该公司采集数据后,绘制的两幅不完整的统计图。
2013年沈阳市中考数学模拟试题及答案201349
2013年沈阳市中考数学模拟试题考时:120分钟 满分:120分一、选择题(下列各题A 、B 、C 、D 四个选项中,有且仅有一个是正确的,每小题3 分,共24 分)1.在下列实数中无理数有( )个. ,,,2843 2.020020002……,πº,tan30°. A.2 B.3 C.4 D.52.明天数学课要学“勾股定理”,小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到 与之相关的结果个数约为12 500 000,这个数用科学记数法表示为( ).A. 1.25³105B.1.25³106C.1.25³107D.0.125³1083.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、 郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制( )种车票.A.6B.12C.15D.304.右图是一个由4个相同的正方体组成的立体图形,它的三视图是( ).5.顺次连接矩形四边中点所得的四边形一定是( )A.正方形B.矩形C.菱形D.等腰梯形6.如图,在半径为5的圆O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( ).A .3B .4C .32D .247.下列说法中:①若式子x -2有意义,则x ≥2.②已知∠α=27°,则∠α的余角是63°.③已知x=-1 是方程x 2-bx+5=0 的一个实数根,则b 的值为6.④在反比例函数xk y 2-=中,若x >0 时,y 随x 的增大而增大,则k 的取值范围是k <2.其中正确命题有( )A. 1个B. 2个C. 3个D. 4个8.如图,点P 是等边△ABC 的边上的一个作匀速运动的动点,其由点A 开始沿AB 边运动到B ,再 沿BC 边运动到C 为止,设运动时间为t ,△ACP 的面积为S ,则S 与t 的大致图象是( ).二、填空题(共8道题,每小题3 分,共24 分) 9.-20131的倒数的相反数是 . 10.分解因式x 3-6x 2+9x=__________.11.化简(x -x 1-x 2)÷(1-x1)的结果是 . 12.如图,四边形ABCD 中,∠BAD =120°,∠B =∠D =90°,在BC 、CD 上分别找一点M 、N , 使△AMN 周长最小时,则∠AMN +∠ANM 的度数是 .13.若m 为实数,且13m m -=,221m m-则= . 14.已知:在等腰梯形ABCD 中,AD ∥BC ,AC ⊥BD ,AD =3,BC =7,则梯形的面积是 .15.某电视台“中国梦”栏目的一位记者乘汽车赴360km 外的农村采访,全程的前一部分为 高速公路,后一部分为乡村公路.若汽车在高速公路和乡村公路上分别以某一速度匀速行 驶,汽车行驶的路程y (单位:km )与时间x (单位:h )之间的关系如图所示,则下列结 论正确的是 (填序号).(1)汽车在高速公路上的行驶速度为100km /h (2)乡村公路总长为90km(3)汽车在乡村公路上的行驶速度为60km /h (4)该记者在出发后5h 到达采访地16.如图,在平面直角坐标系中,△ABC 经过平移后点A 的对应点为点A ′,则平移后点B 的对应点B ′的坐标为 .三、解答题(共9道题,共72 分) 17.(5分)解不等式组⎪⎩⎪⎨⎧≥--+>+,216133332x x xx 并求出它的整数解的和.18.(7分)已知正方形ABCD 的边长为a ,两条对角线AC 、BD 相交于点O ,P 是射线AB 上任意一点,过P 点分别做直线AC 、BD 的垂线PE 、PF ,垂足为E 、F .(1)如图1,当P 点在线段AB 上时,求PE +PF 的值;(2)如图2,当P 点在线段AB 的延长线上时,求P E -PF 的值.19.(6分)黄冈市教育局为提高教师业务素质,深入扎实开展了“课内比教学”活动.在一 次数学讲课比赛中,每个参赛选手都从两个分别标有“A”、“B”内容的签中,随机抽取 一个作为自己的讲课内容,某校有三个选手参加这次讲课比赛,请你求出这三个选手中有 两个抽中内容“A”,一个抽中内容“B”的概率.20.(6分)6月5日是世界环境日,某校组织了一次环保知识竞赛,每班选25名同学参加 比赛,成绩分别为A 、B 、C 、D 四个等级,其中相应等级的得分依次记为100分、90分、 80分、70分,学校将某年级的一班和二班的成绩整理并绘制成统计图:根据以上提供的信息解答下列问题:(1)把一班竞赛成绩统计图补充完整;(2)写出下表中a、b、c的值:平均数(分)中位数(分)众数(分)一班a b90二班87.6 80 c(3)请从以下给出的三个方面中任选一个对这次竞赛成绩的结果进行分析:①从平均数和中位数方面比较一班和二班的成绩;②从平均数和众数方面比较一班和二班的成绩;③从B级以上(包括B级)的人数方面来比较一班和二班的成绩.21.(6分)某市在建设“美丽城市”过程中,进行道路改造,需要铺设一条长为1000米的管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天能多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同.甲、乙工程队每天各能铺设多少米?22.(8分)如图,AB是⊙O的直径,AC是弦,AD⊥过C点的直线于点D,且∠AOC=2∠ACD.求证:(1)CD是⊙O的切线;(2)AC2=AB·AD.23.(8分)如图,放置在水平桌面上的台灯的灯臂AB长为40cm,灯罩BC长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°. 使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE是多少cm?(结果精确到0.1cm,参考数据:3≈1.732)24.(14分)如图,抛物线()02≠++=a c bx ax y 的顶点坐标为()1,2-,并且与y 轴交于 点C ()3,0,与x 轴交于两点A,B.(1)求抛物线的表达式;(2)设抛物线的对称轴与直线BC 交于点D ,连结AC 、AD, 求△ACD 的面积;(3)点E 位直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F.问是否存 在点E ,使得以D 、E 、F 为顶点的三角形与△BCO 相似.若存在,求出点E 的坐标;若不存 在,请说明理由.25.(12分)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通 过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调 试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1 至6月,该企业向污水厂输送的污水量y 1(吨)与月份x (1≤x ≤6,且x 取整数)之间 满足的函数关系如下表:7至12月,该企业自身处理的污水量y 2(吨)与月份x (7≤x ≤12,且x 取整数)之间满足二次函数关系式为y 2=ax 2+c (a ≠0).其图象如图所示.1至6月,污水厂处理每吨污水E 60°30°A BC D的费用:z 1(元)与月份x 之间满足函数关系式:11z x 2=,该企业自身处理每吨污水的 费用:z 2(元)与月份x 之间满足函数关系式:2231z = x x 412-;7至12月,污水厂处 理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识, 分别直接写出y 1,y 2与x 之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W (元)最多,并求出这个最多费用;(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全 部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a %,同时 每吨污水处理的费用将在去年12月份的基础上增加(a ﹣30)%,为鼓励节能降耗,减轻 企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为 18 000元,请计算出a 的整数值.(参考数据:≈15.2,≈20.5,≈28.4)参考答案:1.B2.C3.D4.A5.C6.C7.B8.C9.2013 10.x(x-3)2 11.x-1 12.120°13.±133 14.25 15.(3)(4) 16.(﹣2,1) 17.这个不等式组的解集是﹣4≤x <3,它的整数解为-4,-3,-2,-1,0,1,2.∴这个不等式组的整数解的和是-4-3-2-1+0+1+2=-7. 18.解:(1)∵四边形ABCD 为正方形,∴AC ⊥BD .∵PF ⊥BD ,∴PF //AC ,同理PE //BD .∴四边形PFOE 为矩形,故PE =OF .又∵∠PBF =45°,∴PF =BF .∴PE +PF =OF +FB =OB =2cos 452a a ︒=.(2)∵四边形ABCD 为正方形,∴AC ⊥BD .∵PF ⊥BD ,∴PF //AC ,同理PE //BD .∴四边形PFOE 为矩形,故PE =OF .又∵∠PBF =45°,∴PF =BF .∴PE -PF =OF -BF = OB =2cos 452a a ︒=.19.解:设这三个选手分别为“甲”“乙”“丙”,根据题意画出树状图如图:∵从树状图可以看出,所有等可能的结果共有8种,即(A ,A ,A ),(A ,A ,B ),(A ,B ,A ),(A ,B ,B ),(B ,A ,A ),(B ,A ,B ),(B ,B ,A ),(B ,B ,B ),选手中有两个抽中内容“A ”,一个抽中内容“B ”(记着事件M )的结果共有3个,即(A ,A ,B ),(A ,B ,A ),(B ,A ,A ),∴P (M )=83.20.解:(1)一班中C 级的有25﹣6﹣12﹣5=2人。
2013年辽宁省沈阳市中考数学模拟试卷(三)
2013年辽宁省沈阳市中考数学模拟试卷(三)2013年辽宁省沈阳市中考数学模拟试卷(三)一.选择题(每小题3分,共24分)C D.2.(3分)(2012•龙岩质检)如图所示的几何体的俯视图是().C D.3.(3分)(2009•中山)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,5.(3分)(2009•崇左)不等式组的整数解共有()6.(3分)(2009•安徽)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是().C D.7.(3分)下列事件:(1)阴天会下雨(2)随机投硬币,正面朝上(3)13名同学中两人的出生月份相同(4)2012年奥运会在巴西的里约热内卢举行2二.填空题(每题4分,共32分)9.(4分)(2011•江津区)将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是_________.10.(4分)一列火车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设火车提速前的速度是x千米/时,则根据题意可列出方程为_________.11.(4分)十边形的外角和是_________°.12.(4分)(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为_________.户家庭该月用电量的平均数和中位数分别是_________(千瓦时)和_________(千瓦时).14.(4分)(2012•营口)若一个圆锥的底面半径为3cm,母线长为4cm,则这个圆锥的侧面积为_________.15.(4分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A1的位置.若OB=,,则点A1的坐标为_________.16.(4分)(2011•呼伦贝尔)用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第n个图形需_________根火柴棒.三、解答题(共9题,共94分)17.(8分)(2010•重庆)先化简,再求值:(﹣4)÷,其中x=﹣1.18.(8分)一个口袋有4个相同的小球,分别写有A、B、C、D随机抽出一个小球然后放回,再随机抽出一个小球.(1)试用列表法或树状图法中的一种,列举出两次抽出的球上字母的所有可能结果,并求两次抽出的球上字母相同的概率;(2)小明和小丽用这些小球做游戏,请你设计一种方案使二人获胜的可能性相同.19.(8分)(2009•郴州)如图,在下面的方格图中,将△ABC先向右平移四个单位得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2,请依次作出△A1B1C1和△A1B2C2.20.(10分)(2006•上海)如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.21.(10分)(2007•株洲)某渔船上的渔民在A处观测到灯塔M在北偏东60°方向处,这艘渔船以每小时28海里的速度向正东方向航行,半小时后到达B处,在B处观测到灯塔M在北偏东30°方向处.问B处与灯塔M的距离是多少海里?22.(12分)(2010•保定二模)一辆经营长途运输的货车在高速公路的A处加满油后匀速行驶,下表记录的是货车(1)请你认真分析上表中所给的数据,用你学过的一次函数、反比例函数和二次函数中的一种来表示y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达B处,求此时油箱内余油多少升?23.(12分)(2012•本溪)如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC 切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.24.(12分)(2012•黔南州)如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.(1)求EC:CF的值;(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.25.(14分)(2008•宜宾)已知:如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为)2013年辽宁省沈阳市中考数学模拟试卷(三)参考答案与试题解析一.选择题(每小题3分,共24分)C D.±±.2.(3分)(2012•龙岩质检)如图所示的几何体的俯视图是().C D.3.(3分)(2009•中山)《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,5.(3分)(2009•崇左)不等式组的整数解共有()6.(3分)(2009•安徽)已知函数y=kx+b的图象如图,则y=2kx+b的图象可能是()D..C7.(3分)下列事件:(1)阴天会下雨(2)随机投硬币,正面朝上(3)13名同学中两人的出生月份相同(4)2012年奥运会在巴西的里约热内卢举行2二.填空题(每题4分,共32分)9.(4分)(2011•江津区)将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是y=(x ﹣5)2+2或y=x2﹣10x+27.10.(4分)一列火车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设火车提速前的速度是x千米/时,则根据题意可列出方程为=1.,实际所用的时间为:.11.(4分)十边形的外角和是360°.12.(4分)(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为9:1.户家庭该月用电量的平均数和中位数分别是164(千瓦时)和160(千瓦时).(14.(4分)(2012•营口)若一个圆锥的底面半径为3cm,母线长为4cm,则这个圆锥的侧面积为12πcm2.15.(4分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A1的位置.若OB=,,则点A1的坐标为.OB=,BD=,D=,AE=÷=+1=OF=故答案为16.(4分)(2011•呼伦贝尔)用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第n个图形需(6n+6)根火柴棒.三、解答题(共9题,共94分)17.(8分)(2010•重庆)先化简,再求值:(﹣4)÷,其中x=﹣1.÷(×(18.(8分)一个口袋有4个相同的小球,分别写有A、B、C、D随机抽出一个小球然后放回,再随机抽出一个小球.(1)试用列表法或树状图法中的一种,列举出两次抽出的球上字母的所有可能结果,并求两次抽出的球上字母相同的概率;(2)小明和小丽用这些小球做游戏,请你设计一种方案使二人获胜的可能性相同.=.19.(8分)(2009•郴州)如图,在下面的方格图中,将△ABC先向右平移四个单位得到△A1B1C1,再将△A1B1C1绕点A1逆时针旋转90°得到△A1B2C2,请依次作出△A1B1C1和△A1B2C2.20.(10分)(2006•上海)如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.21.(10分)(2007•株洲)某渔船上的渔民在A处观测到灯塔M在北偏东60°方向处,这艘渔船以每小时28海里的速度向正东方向航行,半小时后到达B处,在B处观测到灯塔M在北偏东30°方向处.问B处与灯塔M的距离是多少海里?x x=14x=7BC=22.(12分)(2010•保定二模)一辆经营长途运输的货车在高速公路的A处加满油后匀速行驶,下表记录的是货车y与x之间的变化规律,说明选择这种函数的理由,并求出它的函数表达式;(不要求写出自变量的取值范围)(2)按照(1)中的变化规律,货车从A处出发行驶4.2小时到达B处,求此时油箱内余油多少升?解得23.(12分)(2012•本溪)如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC 切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.;然后根据平行线截线段成比例证得,即,由此可以求得∵∴,即,DG=,DF=24.(12分)(2012•黔南州)如图1,在边长为5的正方形ABCD中,点E、F分别是BC、DC边上的点,且AE⊥EF,BE=2.(1)求EC:CF的值;(2)延长EF交正方形外角平分线CP于点P(如图2),试判断AE与EP的大小关系,并说明理由;(3)在图2的AB边上是否存在一点M,使得四边形DMEP是平行四边形?若存在,请给予证明;若不存在,请说明理由.25.(14分)(2008•宜宾)已知:如图,抛物线y=﹣x2+bx+c与x轴、y轴分别相交于点A(﹣1,0)、B(0,3)两点,其顶点为D.(1)求该抛物线的解析式;(2)若该抛物线与x轴的另一个交点为E.求四边形ABDE的面积;(3)△AOB与△BDE是否相似?如果相似,请予以证明;如果不相似,请说明理由.(注:抛物线y=ax2+bx+c(a≠0)的顶点坐标为))由已知得:EF (1+×BE=,且菁优网 ©2010-2014 菁优网参与本试卷答题和审题的老师有:mengcl ;yingzi ;lanyan ;zhjh ;HJJ ;CJX ;zhehe ;算术;hnaylzhyk ;lf2-9;自由人;dbz1018;星期八;疯跑的蜗牛;HLing ;csiya ;mmll852;kuaile ;lanchong ;蓝月梦;sjzx ;ZJX ;gbl210;MMCH ;zjx111(排名不分先后)菁优网2014年3月16日。
辽宁省沈阳市2013年中考数学试卷(解析版)
辽宁省沈阳市2013年中考数学试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.(3分)(2013•沈阳)2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为()A.1.96×108B.19.6×108C.1.96×1010D.19.6×1010考点:科学记数法—表示较大的数分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于196亿有11位,所以可以确定n=11﹣1=10.解答:解:196亿=19 600 000 000=1.96×1010.故选C.点评:此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2.(3分)(2013•沈阳)如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答:解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.3.(3分)(2013•沈阳)下面的计算一定正确的是()C.5y3•3y5=15y8D.b9÷b3=b3A.b3+b3=2b6B.(﹣3pq)2=﹣9p2q2考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.分析:根据合并同类项的法则判断A;根据积的乘方的性质判断B;根据单项式乘单项式的法则判断C;根据同底数幂的除法判断D.解答:解:A、b3+b3=2b3,故本选项错误;B、(﹣3pq)2=9p2q2,故本选项错误;C、5y3•3y5=15y8,故本选项正确;D、b9÷b3=b6,故本选项错误.故选C.点评:本题考查了合并同类项,积的乘方,单项式乘单项式,同底数幂的除法,熟练掌握运算性质与法则是解题的关键.4.(3分)(2013•沈阳)如果m=,那么m的取值范围是()A.0<m<1B.1<m<2C.2<m<3D.3<m<4考点:估算无理数的大小分析:先估算出在2与3之间,再根据m=,即可得出m的取值范围.解答:解:∵2<3,m=,∴m的取值范围是1<m<2;故选B.点评:此题考查了估算无理数的大小,解题关键是确定无理数的整数部分,是一到基础题.5.(3分)(2013•沈阳)下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°考点:随机事件分析:不可能事件是指在一定条件下,一定不发生的事件.解答:解:A、买一张电影票,座位号是奇数,是随机事件;B、射击运动员射击一次,命中9环,是随机事件;C、明天会下雨,是随机事件;D、度量一个三角形的内角和,结果是360°,是不可能事件.故选D.点评:本题考查了不可能事件、随机事件的概念.用到的知识点为:不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(3分)(2013•沈阳)计算的结果是()A.B.C.D.考点:分式的加减法专题:计算题.分析:先通分,再根据同分母的分式相加减的法则进行计算即可.解答:解:原式=﹣==.故选B.点评:本题考查的是分式的加减法,异分母分式加减把分母不相同的几个分式化成分母相同的分式,再把分子相加减即可.7.(3分)(2013•沈阳)在同一平面直角坐标系中,函数y=x﹣1与函数的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象分析:根据反比例函数的性质可得:函数的图象在第一三象限,由一次函数与系数的关系可得函数y=x﹣1的图象在第一三四象限,进而选出答案.解答:解:函数中,k=1>0,故图象在第一三象限;函数y=x﹣1的图象在第一三四象限,故选:C.点评:此题主要考查了反比例函数与一次函数图象,关键是掌握一次函数图象与系数的关系.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.8.(3分)(2013•沈阳)如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.B.C.D.考点:相似三角形的判定与性质分析:由∠ADC=∠BDE,∠C=∠E,可得△ADC∽△BDE,然后由相似三角形的对应边成比例,即可求得答案.解答:解:∵∠ADC=∠BDE,∠C=∠E,∴△ADC∽△BDE,∴,∵AD=4,BC=8,BD:DC=5:3,∴BD=5,DC=3,∴DE==.故选B.点评:此题考查了相似三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.二、填空题(每小题4题,共32分)9.(4分)(2013•沈阳)分解因式:3a2+6a+3=3(a+1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式3,再对余下的多项式利用完全平方公式继续分解.解答:解:3a2+6a+3,=3(a2+2a+1),=3(a+1)2.故答案为:3(a+1)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(4分)(2013•沈阳)一组数据2,4,x,﹣1的平均数为3,则x的值是7.考点:算术平均数.分析:根据求平均数的公式:,列出算式,即可求出x的值.解答:解:∵数据2,4,x,﹣1的平均数为3,∴(2+4+x﹣1)÷4=3,解得:x=7;故答案为:7.点评:本题考查了平均数的求法,属于基础题,熟记求算术平均数的公式是解决本题的关键.11.(4分)(2013•沈阳)在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是(3,﹣2).考点:关于原点对称的点的坐标.专题:数形结合.分析:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.解答:解:根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).点评:本题主要考查了平面直角坐标系内两点关于原点对称横纵坐标互为相反数,难度较小.12.(4分)(2013•沈阳)若关于x的一元二次方程x2+4ax+a=0有两个不相等的实数根,则a的取值范围是a>或a<0.考点:根的判别式.分析:根据方程有两个不相等的实数根,得到根的判别式的值大于0,列出关于a的不等式,求出不等式的解集即可得到a的范围.解答:解:根据题意得:△=(4a)2﹣4a>0,即4a(4a﹣1)>0,解得:a>或a<0,则a的范围是a>或a<0.故答案为:a>或a<0点评:此题考查了根的判别式,熟练掌握根的判别式的意义是解本题的关键.13.(4分)(2013•沈阳)如果x=1时,代数式2ax3+3bx+4的值是5,那么x=﹣1时,代数式2ax3+3bx+4的值是3.考点:代数式求值分析:将x=1代入代数式2ax3+3bx+4,令其值是5求出2a+3b的值,再将x=﹣1代入代数式2ax3+3bx+4,变形后代入计算即可求出值.解答:解:∵x=1时,代数式2ax3+3bx+4=2a+3b+4=5,即2a+3b=1,∴x=﹣1时,代数式2ax3+3bx+4=﹣2a﹣3b+4=﹣(2a+3b)+4=﹣1+4=3.故答案为:3点评:此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.14.(4分)(2013•沈阳)如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=3,CD=2,则⊙O的直径的长是.考点:圆周角定理;勾股定理分析:首先连接AC,由圆的内接四边形的性质,可求得∠ADC=90°,根据直角所对的弦是直径,可证得AC是直径,然后由勾股定理求得答案.解答:解:连接AC,∵点A、B、C、D都在⊙O上,∠ABC=90°,∴∠ADC=180°﹣∠ABC=90°,∴AC是直径,∵AD=3,CD=2,∴AC==.故答案为:.点评:此题考查了圆周角定理、圆的内接四边形的性质以及勾股定理.此题比较简单,注意掌握辅助线的作法,注意数形结合思想的应用.15.(4分)(2013•沈阳)有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第8个等式为82+92+722=732.考点:规律型:数字的变化类专题:规律型.分析:观察不难发现,两个连续自然数的平方和加上它们积的平方,等于比它们的积大1的数的平方,然后写出即可.解答:解:∵12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212,…,∴第8个等式为:82+92+(8×9)2=(8×9+1)2,即82+92+722=732.故答案为:82+92+722=732.点评:本题是对数字变化规律的考查,仔细观察底数的关系是解题的关键,也是本题的难点.16.(4分)(2013•沈阳)已知等边三角形ABC的高为4,在这个三角形所在的平面内有一点P,若点P到AB的距离是1,点P到AC的距离是2,则点P到BC 的最小距离和最大距离分别是1,7.考点:等边三角形的性质;平行线之间的距离.专题:计算题.分析:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG 与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P到BC的最大距离,根据题意得到△NFG 与△MDE都为等边三角形,利用锐角三角函数定义及特殊角的三角函数值求出DB与FB的长,以及CG与CE的长,进而由DB+BC+CE求出DE的长,由BC﹣BF﹣CG求出FG的长,求出等边三角形NFG与等边三角形MDE的高,即可确定出点P到BC的最小距离和最大距离.解答:解:根据题意画出相应的图形,直线DM与直线NF都与AB的距离为1,直线NG与直线ME都与AC的距离为2,当P与N重合时,HN为P到BC的最小距离;当P与M重合时,MQ为P 到BC的最大距离,根据题意得到△NFG与△MDE都为等边三角形,∴DB=FB==,CE=CQ==,∴DE=DB+BC+CE=++=,FG=BC﹣BF﹣CG=,∴NH=FG=1,MQ=DE=7,则点P到BC的最小距离和最大距离分别是1,7.故答案为:1,7点评:此题考查了等边三角形的性质,以及平行线间的距离,作出相应的图形是解本题的关键.三、解答题(第17、18小题各8分,第19小题10分,共26分)17.(8分)(2013•沈阳)计算:.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值专题:计算题.分析:本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣6×+1+2﹣2=2.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握零指数幂、绝对值、特殊角的三角函数值、二次根式化简等考点的运算.18.(8分)(2013•沈阳)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A(不喜欢)、B(一般)、C(比较喜欢)、D(非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为200人;(2)图①中,a=35,C等级所占的圆心角的度数为126度;(3)请直接在答题卡中补全条形统计图.。
2011年至2013年沈阳中考数学试题汇总及答案(word版)
2011年沈阳招生中考数学试题试题满分150分 考试时间120分钟参考公式:抛物线2y ax bx c =++的顶点是24(,)24b ac b a a --,对称轴是直线2bx a=-. 一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题4分,共24分)1. 下列各选项中,既不是正数也不是负数的是 A .-1B .0CD .π2.左下图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是3.下列运算中,一定正确的是A .m 5-m 2=m 3B .m 10÷m 2=m 5C . m •m 2=m 3D .(2m )5=2m 54.下列各点中,在反比例函数8y x=图象上的是 A .(-1,8) B .(-2,4)C .(1,7)D .(2,4)5.下列图形是中心对称图形的是6.下列说法中,正确的是A .为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B .在连续5次的数学测试中,两名同学的平均分相同,方差较大的同学数学成绩更稳定C .某同学连续10次抛掷质量均匀的硬币,3次正面向上,因此正面向上的概率是30%D .“2012年将在我市举办全运会,这期间的每一天都是晴天”是必然事件.7.如图,矩形ABCD 中,AB <BC ,对角线AC 、BD 相交于点O ,则图中的等腰三角形有 A .2个 B .4个 C .6个 D .8个8.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米 ,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得 A .253010(180%)60x x -=+ B .253010(180%)x x -=+C .302510(180%)60x x -=+D .302510(180%)x x-=+A .BCD第2题图A .B .C 第5题图C第7题图二、填空题(每小题4分,共32分) 9.2(1)-=___________.10.不等式2-x ≤1的解集为____________.11.在平面直角坐标系中,若点M (1,3)与点N (x ,3)之间的距离是5,则x 的值是____________.12.小窦将本班学生上学方式的调查结果绘制成如图所示的统计图,若步行上学的学生有27人,则骑车上学的学生有__________人.13.如果一次函数y =4x +b 的图象经过第一、三、四象限,那么b 的取值范围是_________. 14.如图,在□ABCD 中,点E 、F 分别在边AD 、BC 上,且BE ∥DF ,若∠EBF =45°,则∠EDF 的度数是__________度.15.16.如图,正方形ABCD 中,点E 、F 分别在边BC 、CD 上,且AE =EF =F A .下列结:①△ABE ≌△ADF ;②CE =CF ;③∠AEB =75°;④BE +DF =EF ;⑤S △ABE +S △ADF =S△CEF ,其中正确的是____________________________(只填写序号).一、 解答题(第17、18小题各8分,第19小题10分,共28分)17.先化简,再求值(x +1)2-(x +2)(x -2)x ,且x 为整数. 18.沈阳地铁一号线的开通运行给沈阳市民的出行方式带来了一些变化.小王和小林准备利用课余时间,以问卷的方式对沈阳市民的出行方式进行调查.如图是沈阳地铁一号线图(部分),小王和小林分别从太原街站(用A 表示)、南市场站(用B 表示)、青年大街站(用C 表示)这三站中,随机选取一站作为调查的站点.⑴在这三站中,小王选取问卷调查的站点是太原街站的概率是多少?(请直接写出结果)⑵请你用列表法或画树状图(树形图)法,求小王选取问卷调查的站点与小林选取问卷调查的站点相邻的概率.(各站点用相应的英文字母表示)第12题图第14题图F第16题图19.如图,在△ABC 中,AB =AC ,D 为BC 边上一点,∠B =30°,∠DAB =45°.⑴求∠DAC 的度数; ⑵求证:DC =AB四、(每小题10分,共20分)20.某班数学兴趣小组收集了本市4月份30天的日最高气温的数据,经过统计分析获得了两条信息和一个统计表信息1 4月份日最高气温的中位数是15.5℃;信息2 日最高气温是17℃的天数比日最高气温是18℃的天数多4天.请根据上述信息回答下列问题:⑴4月份最高气温是13℃的有________天,16℃的有_______天,17℃的有__________天.⑵4月份最高气温的众数是________℃,极差是_________℃。
2013年辽宁省沈阳市中考真题 辽宁省沈阳市检测版
考点
抽样、统计图 2013年辽宁省沈阳市中考真题 【难易度】3
□
已掌握
考察内容:
第 3 页 /共 12 页
考点
圆的基础知识 2013年辽宁省沈阳市中考真题 【难易度】3
□
已掌握
考察内容:
考点
规律探索 2013年辽宁省沈阳市中考真题 【难易度】4
□
已掌握
考察内容:
考点
一元二次方程 2013年辽宁省沈阳市中考真题 【难易度】1
考察内容:
考点
概率基础
第 1 页 /共 12 页
2013年辽宁省沈阳市中考真题 考察内容:
【难易度】4
□
已掌握
考点
投影、视图、展开与折叠 2013年辽宁省沈阳市中考真题 【难易度】2
□
已掌握
考察内容:
考点
全等三角形 2013年辽宁省沈阳市中考真题 【难易度】4
□
已掌握
考察内容:
第 2 页 /共 12 页
考点
函数与几何的综合应用 2013年辽宁省沈阳市中考真题 【难易度】5
□
已掌握
考察内容:
考点
与圆有关的位置关系 2013年辽宁省沈阳市中考真题 【难易度】4
□
已掌握
考察内容:
第 10 页 /共 12 页
考点
整式的乘除 2013年辽宁省沈阳市中考真题 【难易度】3
□
已掌握
考察内容:
考点
科学记数法 2013年辽宁省沈阳市中考真题 【难易度】2
□
已掌握
考察内容:
第 8 页 /共 12 页
考点
相似三角形 2013年辽宁省沈阳市中考真题 【难易度】2
2013年辽宁省沈阳市中考数学模拟试卷(二)
2013年辽宁省沈阳市中考数学模拟试卷(二)2013年辽宁省沈阳市中考数学模拟试卷(二)一.选择题(每题3分,共24分) C .. C D .5.(3分)(2008•重庆)如图,在直角梯形ABCD 中,DC ∥AB ,∠A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D 出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( ). C D .6.(3分)下列事件:(1)阴天会下雨(2)随机投硬币,正面朝上(3)13名同学中两人的出生月份相同(4)2012年奥运会在巴西的里约热内卢举行7.(3分)(2012•北京)如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠BOD=76°,则∠BOM 等于( )8.(3分)(2011•西宁)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为()二.填空题(共8题,每题4分,共32分)9.(4分)(2012•本溪)已知1纳米=10﹣9米,某种微粒的直径为158纳米,用科学记数法表示该微粒的直径为_________米.10.(4分)(2012•本溪)分解因式:9ax2﹣6ax+a=_________.11.(4分)(2011•太原)如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长是_________.12.(4分)(2011•太原)如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_________(结果保留π).13.(4分)(2011•呼伦贝尔)用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第n个图形需_________根火柴棒.14.(4分)如图,一次函数y=﹣2x的图象与二次函数y=﹣x2+3x图象的对称轴交于点B.已知点P是二次函数y=﹣x2+3x图象在y轴右侧部分上的一个动点,将直线y=﹣2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为_________.15.(4分)(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为_________.16.(4分)(2011•江津区)将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是_________.三.解答题(共9小题,共94分)17.(8分)(2010•桂林)计算:4cos30°+18.(8分)(2012•本溪)如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB、BC、CA跑步(小路的宽度不计).观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B在点C的北偏西75°方向上,AC间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据:≈1.414,≈1.732)19.(12分)(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是_________.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.20.(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.求证:AM=DF+ME.21.(10分)(2012•本溪)如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC 切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.22.(10分)(2011•日照)如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.23.(12分)(2006•潍坊)为保证交通安全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.y(米)是关于汽车行驶速度x(千米/时)的函数,给出以下三个函数:①y=ax+b;②y=(k≠0);③y=ax2+bx,请选择恰当的函数来描述停止距离y(米)与汽车行驶速度x(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.24.(12分)(2012•上海)己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD 交于点G.(1)求证:BE=DF;(2)当=时,求证:四边形BEFG是平行四边形.25.(14分)(2011•上饶县模拟)如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标分别是C_________,D_________;(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.2013年辽宁省沈阳市中考数学模拟试卷(二)参考答案与试题解析一.选择题(每题3分,共24分)C..C D.5.(3分)(2008•重庆)如图,在直角梯形ABCD中,DC∥AB,∠A=90°,AB=28cm,DC=24cm,AD=4cm,点M 从点D出发,以1cm/s的速度向点C运动,点N从点B同时出发,以2cm/s的速度向点A运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形ADMN的面积y(cm2)与两动点运动的时间t(s)的函数图象大致是().C D.(y=(6.(3分)下列事件:(1)阴天会下雨(2)随机投硬币,正面朝上(3)13名同学中两人的出生月份相同(4)2012年奥运会在巴西的里约热内卢举行7.(3分)(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于()∠×8.(3分)(2011•西宁)如图,在等边△ABC中,D为BC边上一点,E为AC边上一点,且∠ADE=60°,BD=3,CE=2,则△ABC的边长为()∴二.填空题(共8题,每题4分,共32分)9.(4分)(2012•本溪)已知1纳米=10﹣9米,某种微粒的直径为158纳米,用科学记数法表示该微粒的直径为 1.58×10﹣7米.10.(4分)(2012•本溪)分解因式:9ax2﹣6ax+a=a(3x﹣1)2.11.(4分)(2011•太原)如图,已知AB=12;AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,则AE的长是.CF AE=BD==13AE=故答案为:12.(4分)(2011•太原)如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是(结果保留π).,再根据旋转的性质得到,AC=BC=故答案为13.(4分)(2011•呼伦贝尔)用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第n个图形需(6n+6)根火柴棒.14.(4分)如图,一次函数y=﹣2x的图象与二次函数y=﹣x+3x图象的对称轴交于点B.已知点P是二次函数y=﹣x2+3x图象在y轴右侧部分上的一个动点,将直线y=﹣2x沿y轴向上平移,分别交x轴、y轴于C、D两点.若以CD为直角边的△PCD与△OCD相似,则点P的坐标为(,),(2,2),(,),(,).=PD=a()(,(,,,),)15.(4分)(2012•重庆)已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为9:1.16.(4分)(2011•江津区)将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是y=(x ﹣5)2+2或y=x2﹣10x+27.三.解答题(共9小题,共94分)17.(8分)(2010•桂林)计算:4cos30°+18.(8分)(2012•本溪)如图,△ABC是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路AB、BC、CA跑步(小路的宽度不计).观测得点B在点A的南偏东30°方向上,点C在点A的南偏东60°的方向上,点B在点C的北偏西75°方向上,AC间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据:≈1.414,≈1.732)BC=200米,AD=200﹣400+200+﹣19.(12分)(2012•重庆)高中招生指标到校是我市中考招生制度改革的一项重要措施.某初级中学对该校近四年指标到校保送生人数进行了统计,制成了如下两幅不完整的统计图:(1)该校近四年保送生人数的极差是5.请将折线统计图补充完整;(2)该校2009年指标到校保送生中只有1位女同学,学校打算从中随机选出2位同学了解他们进人高中阶段的学习情况.请用列表法或画树状图的方法,求出所选两位同学恰好是1位男同学和1位女同学的概率.位女同学的概率是.20.(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.求证:AM=DF+ME.CE=CDBF=CF=BCCE=21.(10分)(2012•本溪)如图,在△ABC中,点D是AC边上一点,AD=10,DC=8.以AD为直径的⊙O与边BC 切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)过D点作DF∥BC交⊙O于点F,求线段DF的长.;然后根据平行线截线段成比例证得,即,由此可以求得∵∴,即,DG=,DF=22.(10分)(2011•日照)如图,抛物线y=ax2+bx(a>0)与双曲线y=相交于点A,B.已知点B的坐标为(﹣2,﹣2),点A在第一象限内,且tan∠AOx=4.过点A作直线AC∥x轴,交抛物线于另一点C.(1)求双曲线和抛物线的解析式;(2)计算△ABC的面积;(3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积?若存在,请你写出点D的坐标;若不存在,请你说明理由.y=,2=.∴,得:×解方程组∴(不合题意,舍去)23.(12分)(2006•潍坊)为保证交通安全,汽车驾驶员必须知道汽车刹车后的停止距离(开始刹车到车辆停止车辆行驶的距离)与汽车行驶速度(开始刹车时的速度)的关系,以便及时刹车.y(米)是关于汽车行驶速度x(千米/时)的函数,给出以下三个函数:①y=ax+b;②y=(k≠0);③y=ax2+bx,请选择恰当的函数来描述停止距离y(米)与汽车行驶速度x(千米/时)的关系,说明选择理由,并求出符合要求的函数的解析式;(2)根据你所选择的函数解析式,若汽车刹车后的停止距离为70米,求汽车行驶速度.y=(24.(12分)(2012•上海)己知:如图,在菱形ABCD中,点E、F分别在边BC、CD,∠BAF=∠DAE,AE与BD 交于点G.(1)求证:BE=DF;(2)当=时,求证:四边形BEFG是平行四边形.)利用=得到∴=∴=25.(14分)(2011•上饶县模拟)如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G.(1)点C、D的坐标分别是C(4,2),D(1,2);(2)求顶点在直线y=上且经过点C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧).平移后是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由.,然后代入直线,即可得到2)先求出顶点坐标为()先设抛物线解析式为,代入解析式得:2),代入解析式得:=2m,=2))2,则顶点坐标为(,设抛物线解析式为,把点代入得,解析式为,则可设解析式为,,代入解析式得,mm=2,解得);参与本试卷答题和审题的老师有:leikun;lanyan;mengcl;星期八;sjzx;ZJX;gsls;hbxglhl;蓝月梦;ZHAOJJ;lf2-9;自由人;dbz1018;lantin;疯跑的蜗牛;王岑;zcx;gbl210;HJJ;MMCH;sd2011;yangwy(排名不分先后)菁优网2014年3月16日。
2013-2019年辽宁省沈阳市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2019年辽宁省沈阳市中考数学试题汇编(含参考答案与解析)1、2013年辽宁省沈阳市中考数学试题及参考答案与解析 (2)2、2014年辽宁省沈阳市中考数学试题及参考答案与解析 (26)3、2015年辽宁省沈阳市中考数学试题及参考答案与解析 (49)4、2016年辽宁省沈阳市中考数学试题及参考答案与解析 (76)5、2017年辽宁省沈阳市中考数学试题及参考答案与解析 (98)6、2018年辽宁省沈阳市中考数学试题及参考答案与解析 (122)7、2019年辽宁省沈阳市中考数学试题及参考答案与解析 (146)2013年辽宁省沈阳市中考数学试题一、选择题(本大题共8小题,每小题3分,共24分)1.2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为()A.1.96×108B.19.6×108C.1.96×1010D.19.6×10102.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体3.下面的计算一定正确的是()A.b3+b3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3•3y5=15y8D.b9÷b3=b34.如果1m,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<45.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°6.计算2311x x+--的结果是()A.11x-B.11x-C.51x-D.51x-7.在同一平面直角坐标系中,函数y=x﹣1与函数1yx=的图象可能是()A.B.C.D.8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A .203B .154C .163D .174二、填空题(本大题共8小题,每小题4题,共32分)9.分解因式:3a 2+6a+3= .10.一组数据2,4,x ,﹣1的平均数为3,则x 的值是 .11.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是 .12.若关于x 的一元二次方程x 2+4ax+a=0有两个不相等的实数根,则a 的取值范围是 .13.如果x=1时,代数式2ax 3+3bx+4的值是5,那么x=﹣1时,代数式2ax 3+3bx+4的值是 .14.如图,点A 、B 、C 、D 都在⊙O 上,∠ABC=90°,AD=3,CD=2,则⊙O 的直径的长是 .15.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212…请观察它们的构成规律,用你发现的规律写出第8个等式为 .16.已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 .三、解答题(本大题共9小题,共94分)17.(8分)计算:()2016sin 302|22-⎛⎫-︒+-+- ⎪⎝⎭. 18.(8分)一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B (一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为 人;(2)图①中,a= ,C 等级所占的圆心角的度数为 度;(3)请直接在答题卡中补全条形统计图.19.(10分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若,求AD的长.20.(10分)在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为36.(卡片除了实数不同外,其余均相同)(1)从盒子中随机抽取一张卡片,请直接写出卡片上的实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数;卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数,请你用列表法或树状图(树形图)法,求出两次好抽取的卡片上的实数之差为有理数的概率.21.(10分)身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF代表建筑物,兵兵位于建筑物前点B处,风筝挂在建筑物上方的树枝点G处(点G在FE的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G与建筑物顶点D及风筝线在手中的点A在同一条直线上,点A距地面的高度AB=1.4米,风筝线与水平线夹角为37°.(1)求风筝距地面的高度GF;(2)在建筑物后面有长5米的梯子MN,梯脚M在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根米长的竹竿能否触到挂在树上的风筝?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.(10分)如图,OC平分∠MON,点A在射线OC上,以点A为圆心,半径为2的⊙A与OM 相切与点B,连接BA并延长交⊙A于点D,交ON于点E.(1)求证:ON是⊙A的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)23.(12分)某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为,其中自变量x的取值范围是;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.24.(12分)定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”.性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC中,CD是AB边上的中线,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.应用:如图②,在矩形ABCD中,AB=4,BC=6,点E在AD上,点F在BC上,AE=BF,AF与BE交于点O.(1)求证:△AOB和△AOE是“友好三角形”;(2)连接OD,若△AOE和△DOE是“友好三角形”,求四边形CDOF的面积.探究:在△ABC中,∠A=30°,AB=4,点D在线段AB上,连接CD,△ACD和△BCD是“友好三角形”,将△ACD沿CD所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的14,请直接写出△ABC 的面积.25.(14分)如图,在平面直角坐标系中,抛物线2y bx c ++经过点A (32,0)和点B (1,,与x 轴的另一个交点为C . (1)求抛物线的函数表达式;(2)点D 在对称轴的右侧,x 轴上方的抛物线上,且∠BDA=∠DAC ,求点D 的坐标;(3)在(2)的条件下,连接BD ,交抛物线对称轴于点E ,连接AE .①判断四边形OAEB 的形状,并说明理由;②点F 是OB 的中点,点M 是直线BD 的一个动点,且点M 与点B 不重合,当∠BMF=13∠MFO 时,请直接写出线段BM 的长.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为()A.1.96×108B.19.6×108C.1.96×1010D.19.6×1010【知识考点】科学记数法—表示较大的数【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于196亿有11位,所以可以确定n=11﹣1=10.【解答过程】解:196亿=19 600 000 000=1.96×1010.故选C.【总结归纳】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.2.如图所示是一个几何体的三视图,这个几何体的名称是()A.圆柱体B.三棱锥C.球体D.圆锥体【知识考点】由三视图判断几何体.【思路分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答过程】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选A.【总结归纳】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.3.下面的计算一定正确的是()A.b3+b3=2b6B.(﹣3pq)2=﹣9p2q2C.5y3•3y5=15y8D.b9÷b3=b3【知识考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据合并同类项的法则判断A;根据积的乘方的性质判断B;根据单项式乘单项式的法则判断C;根据同底数幂的除法判断D.【解答过程】解:A、b3+b3=2b3,故本选项错误;B、(﹣3pq)2=9p2q2,故本选项错误;C、5y3•3y5=15y8,故本选项正确;。
2013年沈阳中考数学试卷(含详细解析版)
一、选择题(每小题3分,共24分)1.2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为()A.1.96×108B. 19.6×108C. 1.96×1010D. 19.6×1010【答案】C2.右图是一个几何体的三视图,这个几何体的名称是()A.圆柱体 B.三棱柱C.球体D.圆锥体【答案】A3.下面的计算一定正确的是()A.b3+b3=2b6B.(-3pq)2=-9p2q2C.5y3·3y5=15y8D.b9÷b3=b3【答案】C4.如果m=7-1,那么m的取值范围是()A.0<m<1 B.1<m<2 C.2<m<3 D.3<m<4【答案】B5.下列事件中,是不可能事件的是()A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°【答案】D6.计算2x-1+31-x的结果是()A.1x-1B.11-xC.5x-1D.51-x【答案】B7.在同一平面直角坐标系中,函数y=x-1与函数y=1x的图象可能是()AB CD【答案】C8.如图,△ABC中,AE交BC于点D,∠C=∠E,AD=4,BC=8,BD:DC=5:3,则DE的长等于()A.203B.154C.163D.174【答案】B二、填空题(每小题4分,满分32分.)9.分解因式:3a2+6a+3= .【答案】3(a+1)210.一组数据2,4,x,-1的平均数为3,则x的值是.题图)【答案】711.在平面直角坐标系中,点M(-3,2)关于原点的对称点的坐标是.【答案】(3,-2)12.若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是.主视图左视图俯视图【答案】a <413.如果x=1时,代数式2ax 3+3bx+4的值是5,那么x=-1时,代数式2ax 3+3bx+4的值是.【答案】314.如图,点A 、B 、C 、D 都在⊙O 上,∠ABC=90°,AD=3,CD=2,则⊙O 的直径的长是 .【答案】13 (1415.有一组等式:12+22+22=32,22+32+62=72,32+42+122=132,42+52+202=212……请你观察它们的构成规律,用你发现的规律写出第8个等式为 . 【答案】82+92+722=73216.已知等边三角形ABC 的高为4,在这个三角形所在的平面内有一点P ,若点P 到AB 的距离是1,点P 到AC 的距离是2,则点P 到BC 的最小距离和最大距离分别是 . 【答案】1,7三、解答题(第17、18小题各8分,第19小题10分,共26分) 17.计算: (12)-2-6sin30°+(-2)0+|2-8|.【答案】22-6×21+1+22-2=2218.一家食品公司将一种新研发的食品免费送给一些人品尝,并让每个人按A (不喜欢)、B(一般)、C (比较喜欢)、D (非常喜欢)四个等级对该食品进行评价,图①和图②是该公司采集数据后,绘制的两幅不完整的统计图.请你根据以上统计图提供的信息,回答下列问题: (1)本次调查的人数为 人;(2)图①中,a = ,C 等级所占的圆心角的度数为 度; (3)请直接在答题卡中补全条形统计图. 【答案】(1)200; (2) 35,126 (3)图①C19.如图,△ABC 中,AB=BC ,BE ⊥AC 于点E ,AD ⊥BC 于点D ,,AD 与BE 交于点F ,连接CF. (1)求证:BF=2AE; (2)若CD=2,求AD 的长.【答案】(1)证明:∵AD ⊥BC, ∠BAD=45°,∴∠ABD=∠BAD=45°.∴∵AD ⊥BC, BE ⊥AC,∴∠CAD+∠ACD=90°,∠CBE +∠ACD=90°,∴∠又∵∠CDA=∠BDF=90°,∴△ADC ≌△BDF. ∴AC=BF. ∵AB=BC,BE ⊥AC,∴AE=EC 即AC=2AE, ∴BF=2AE; (2)解:∵△ADC ≌△BDF ∴DF=CD=2, ∴在Rt △CDF 中,CF=2=+22CD DF ,∵BE ⊥AC, AE=EC,∴AF=FC=2,∴AD=AF+DF=2+2.四、(每小题10分,共20分)20.在一个不透明的盒子中放有三张卡片,每张卡片上写有一个实数,分别为3,2,2+6.(1)从盒子中随机抽取一张卡片,请直接写出卡片上实数是3的概率;(2)先从盒子中随机抽取一张卡片,将卡片上的实数作为被减数; 卡片不放回,再随机抽取一张卡片,将卡片上的实数作为减数.请你用列表法或树状图(树形图)法,求出两次抽取的卡片上的实数之差为有理数的概率.【答案】(1)31(2)画树状图得:由树状图可知,共有6种可能出现的结果,每种结果出现的可能性相同,其中两次抽取的卡片上的实数之差为有理数的结果有两种,因此,两次抽取的卡片上的实数之差为有理数的概率是31=62. 21.身高1.65米的兵兵在建筑物前放风筝,风筝不小心挂在了树上.在如图所示的平面图形中,矩形CDEF 代表建筑物,兵兵位于建筑物上方的树枝点B 处,风筝挂在建筑物上方的树枝点G 处(点G 在FE 的延长线上).经测量,兵兵与建筑物的距离BC=5米,建筑物底部宽FC=7米,风筝所在点G 与建筑物顶点D 及风筝线在手中的点A 在同一条直线上,点A 距地面的高度AB=1.4米,风筝线与水平线夹角为37°. (1)求风筝距地面的高度GF ;(2)在建筑物后面有长5米的梯子MN ,梯脚M 在距墙3米处固定摆放,通过计算说明:若兵兵充分利用梯子和一根5米长的竹竿能否触到挂在树上的风筝?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【答案】(1)过点A 作AP ⊥GP 于P ,由题意得AP=BF=12,AB=PF=14,∠GAP=37°在Rt △PAG 中,tan ∠GAP=APGP,∴GP=AP·tan37°≈12×0.75=9, ∴GF=GP+PF=9+1.4=10.4.答:风筝距地面的高度为10.4米. (2)由题意可知MN=5,MF=3,∴在Rt △MNF 中,NF=4=22MF MN -, ∵10.4-5-1.65=3.75<4∴能触到挂在树上的风筝.B2+6 开始 3 2+6 2 2+63 32MFCB22.如图,OC 平分∠MON ,点A 在射线OC 上,以点A 为圆心,半径为2的⊙A 与OM 相切于点B ,连接BA 并延长交⊙A 于点D ,交ON 于点E. (1)求证:ON 是⊙A 的切线;(2)若∠MON=60°,求图中阴影部分的面积.(结果保留π)【答案】(1)证明:过点A 作AF ⊥ON 于F. ∵⊙A 与OM 相切于点B , ∴AB ⊥OM,∵OC 平分∠MON , ∴AF=AB=2, ∴ON 是⊙A 的切线;(2) ∵∠MON=60°,AB ⊥OM, ∴∠OEB=30°,∵AF ⊥ON, ∴∠FAE=60°在Rt △AEF 中,tan ∠FAE=AFFE, ∴EF=AF·tan60°=32,∴S 阴=S △AEF -S 扇形ADF =21AF·EF-36060πAF 2=32-32π 六、(本题12分)23.某市对火车站进行大规模改建,改建后火车站除原有的普通售票窗口外,新增自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y 1(张)与售票时间x (小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y 2(张)与售票时间x (小时)的函数关系满足图②中的图象. (1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为 ,其中自变量x 的取值范围是 ;(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口? (3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.【答案】(1)y=60x 2,0≤x ≤23(2)上午9点y 1=80,y 2=60. 设需要开放x 个普通售票窗口.依题意得80x+60×5≥1450, x ≥1483. ∵x 为整数,∴x 取15.答:至少需要开放15个普通售票窗口.(3)设y 1= k 1x ,把(1,80)代入得80= k 1 ∴y 1= 80x.当x=2时,y 1= 160, 上午10点,y 2= y 1=160,由(1)得当x=23时,y 2=135, ∴图②中一次函数过点(23,135)、(2,160)设一次函数表达式为y 2= k 2x+b,23k 2+b=135,2k 2+b=160, 解得:k 2=50,b=60,∴一次函数表达式为y 2= 50x+60.图②图①24.定义:我们把三角形被一边中线分成的两个三角形叫做“友好三角形”. 性质:如果两个三角形是“友好三角形”,那么这两个三角形的面积相等.理解:如图①,在△ABC 中,CD 是AB 边上的中线,那么△ACD 和△BCD 是“友好三角形”,并且S △ACD =S △BCD . 应用:如图②,在矩形ABCD 中,AB=4,BC=6,点E 在AD 上,点F 在BC 上,AE=BF ,AF 与BE 交于点O. (1) 求证:△AOB 和△AOE 是“友好三角形”;(2) 连接OD ,若△AOE 和△DOE 是“友好三角形”,求四边形CDOF 的面积. 探究:在△ABC 中,∠A=30°,AB=4, 点D 在线段AB 上,连接CD ,△ACD 和△BCD 是“友好三角形”,将△ACD 沿CD 所在直线翻折,得到△A′CD ,若△A′CD 与△ABC 重合部分的面积等于△ABC 面积的41,请直接写出△ABC 的面积.【答案】(1)证明:∵ 四边形ABCD 为矩形, ∴AD ∥BC,∴∠EAO=∠BFO,又∵∠AOE=∠FOB,AE=BF , ∴△AOE ≌△FOB , ∴EO=BO.∴△AOB 和△AOE 是“友好三角形”.(2)∵△AOE 和△DOE 是“友好三角形”, ∴S △AOE =S △DOE ,AE=ED=21AD=3. ∵△AOB 和△AOE 是“友好三角形” ∴S △AOB =S △AOE∵△AOE ≌△FOB , ∴S △AOE =S △FOB , ∴S △AOD =S △ABF ,∴S 四边形CDOF =S 矩形ABCD -2S △ABF =4×6-2×21×4×3=12. 探究:2或32.A DB BCF 图①图②25.如图,在平面直角坐标系中,抛物线y=c bx x ++5282经过点A (23,0)和点B (1,22),与x 轴的另一个交点C.(1)求抛物线的函数表达式;(2)点D 在对称轴的右侧,x 轴上方的抛物线上,且∠BDA=∠DAC ,求点D 的坐标; (3)在(2)的条件下,连接BD ,交抛物线对称轴于点E ,连接AE. ①判断四边形OAEB 的形状,并说明理由;②点F 是OB 的中点,点M 是直线BD 上的一个动点,且点M 与点B 不重合,当∠BMF=31∠MFO 时,请直接写出线段BM 的长.【答案】(1)将A (23,0)、B (1,22)代入y=c bx x ++5282得,0=+23+49×528c b ,22=++528c b ,得b=-,28c=5242. ∴y=2528x -28x+5242. (2)当∠BAD=∠DAC 时,BD ∥x 轴. ∵B (1,22),∴当y=22时,22=2528x -28x+5242, 解得:x 1=1,x 2=4 ∴D(4, 22).(3)①四边形OAEB 是平行四边形. 理由如下:抛物线的对称轴是x=25, ∴BE=25-1=23, ∵B (23,0),∴OA=BE=23,又∵BE ∥OA∴四边形OAEB 是平行四边形.②21或25.。
2013年辽宁省沈阳市中考数学试卷-答案
AD 4 故选 B. 【提示】由 ADC BDE , C E ,可得△ADC∽△BDE ,然后由相似三角形的对应边成比例,即 可求得答案. 【考点】相似三角形的判定与性质 二、填空题 9.【答案】 3(a 1)2
【解析】 3a2 6a 3 3(a2 2a 1) 3(a 1)2 ,故答案为: 3(a 1)2 .
【考点】关于原点对称的点的坐标
12.【答案】 a 1 或 a 0 4
【解析】根据题意得: (4a)2 4a 0 ,即 4a(4 a 1) 0 ,解得: a 1 或 a 0 ,则 a 的范围是 a 1 或
4
4
a 0 ,故答案为 a 1 或 a 0 . 4
【提示】先估算出 7 在 2 与 3 之间,再根据 m 7 1,即可得出 m 的取值范围.
【考点】估算无理数的大小 5.【答案】D 【解析】A.买一张电影票,座位号是奇数,是随机事件; B.射击运动员射击一次,命中 9 环,是随机事件;
1 / 11
C.明天会下雨,是随机事件; D.度量一个三角形的内角和,结果是 360°,是不可能事件.故选 D. 【提示】不可能事件是指在一定条件下,一定不发生的事件. 【考点】随机事件 6.【答案】B 【解析】解:原式 2 3 2 3 1 ,故选 B.
【提示】根据方程有两个不相等的实数根,得到根的判别式的值大于 0,列出关于 a 的不等式,求出不等式
2013年辽宁省沈阳市中考数学模拟试卷(一)
2013年辽宁省沈阳市中考数学模拟试卷(一)2013年辽宁省沈阳市中考数学模拟试卷(一)一.选择题(每小题3分,共24分)D.2.(3分)(2012•本溪)如图所示的几何体的俯视图是().C D.3.(3分)(2010•黄石)已知x<1,则化简的结果是()4.(3分)下列各点中,不在反比例函数上的是(),6.(3分)(2004•杭州)如图,在Rt△ABC中,AF是斜边上的高线,且BD=DC=FC=1,则AC的长为().C D.7.(3分)(2012•北京)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英从中随机.C D.二.填空题(每题4分,共32分)9.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=_________.10.(4分)矩形窗户上的装饰物如图所示,它是由两个直角三角形组成,则能射进阳光的部分的面积是_________(用a的代数式表示).11.(4分)十边形的外角和是_________°.12.(4分)不等式组的解集是_________.户家庭该月用电量的平均数和中位数分别是_________(千瓦时)和_________(千瓦时).14.(4分)(2012•武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_________.15.(4分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A1的位置.若OB=,,则点A1的坐标为_________.16.(4分)如图所示,正方形ABCD的边长是6cm,M、N分别为AD、BC的中点,将点C折至MN上、落在点P处,折痕BQ交MN于点E,则BE长为_________.三、解答题(共9题,共94分)17.(8分)(2010•重庆)先化简,再求值:(﹣4)÷,其中x=﹣1.18.(8分)一个口袋有4个相同的小球,分别写有A、B、C、D随机抽出一个小球然后放回,再随机抽出一个小球.(1)试用列表法或树状图法中的一种,列举出两次抽出的球上字母的所有可能结果,并求两次抽出的球上字母相同的概率;(2)小明和小丽用这些小球做游戏,请你设计一种方案使二人获胜的可能性相同.19.(10分)(2006•上海)如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.20.(10分)(2005•沈阳)如图所示,A、B为两个村庄,AB、BC、CD为公路,BD为田地,AD为河宽,且CD 与AD互相垂直.现在要从E处开始铺设通往村庄A、村庄B的一条电缆,共有如下两种铺设方案:方案一:E⇒D⇒A⇒B;方案二:E⇒C⇒B⇒A.经测量得AB=4千米,BC=10千米,CE=6千米,∠BDC=45°,∠ABD=15度.已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米.(1)求出河宽AD(结果保留根号);(2)求出公路CD的长;(3)哪种方案铺设电缆的费用低?请说明你的理由.21.(10分)某服装厂设计一款新式夏装,想尽快制作8800件投入市场,服装厂有甲,乙两个制衣车间,甲车间每天的加工量是乙的1.2倍,甲乙两车间共同完成一半后,甲车间出现故障停产,剩下由乙车间单独完成,前后共用20天完成,求甲乙两车间每天分别加工多少件?22.(10分)(2012•长沙)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.23.(12分)(2006•南平)如图每个正方形是由边长为1的小正方形组成.(2)在边长为n(n≥1)的正方形中,设红色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.24.(12分)(2009•三明)已知:矩形ABCD中AD>AB,O是对角线的交点,过O任作一直线分别交BC、AD 于点M、N(如图①).(1)求证:BM=DN;(2)如图②,四边形AMNE是由四边形CMND沿MN翻折得到的,连接CN,求证:四边形AMCN是菱形;(3)在(2)的条件下,若△CDN的面积与△CMN的面积比为1:3,求的值.25.(14分)(2009•深圳)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC 于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.2013年辽宁省沈阳市中考数学模拟试卷(一)参考答案与试题解析一.选择题(每小题3分,共24分)D.的符号是负号,﹣的相反数是2.(3分)(2012•本溪)如图所示的几何体的俯视图是().C D.3.(3分)(2010•黄石)已知x<1,则化简的结果是()4.(3分)下列各点中,不在反比例函数上的是(),、∵×=6(6.(3分)(2004•杭州)如图,在Rt△ABC中,AF是斜边上的高线,且BD=DC=FC=1,则AC的长为().C D.BC=2CE=AC=AD+CD=7.(3分)(2012•北京)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英从中随机.C D.解:从中随机抽取一份奖品,恰好取到科普读物的概率是.=8.(3分)(2012•上海)如果两圆的半径长分别为6和2,圆心距为3,那么这两个圆的位置关系是()二.填空题(每题4分,共32分)9.(4分)(2012•潍坊)分解因式:x3﹣4x2﹣12x=x(x+2)(x﹣6).10.(4分)矩形窗户上的装饰物如图所示,它是由两个直角三角形组成,则能射进阳光的部分的面积是b(用a的代数式表示).﹣(ab+﹣ab故答案为11.(4分)十边形的外角和是360°.12.(4分)不等式组的解集是x≥1.,﹣户家庭该月用电量的平均数和中位数分别是164(千瓦时)和160(千瓦时).(14.(4分)(2012•武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.BD=OD=b得a×b+4+××b,即可得到BD=OD=b∴a×b+4+××ab=,y=,k=ab=.故答案为15.(4分)如图,把矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A1的位置.若OB=,,则点A1的坐标为.OB=,BD=,D=,AE=÷=+1=OF=故答案为16.(4分)如图所示,正方形ABCD的边长是6cm,M、N分别为AD、BC的中点,将点C折至MN上、落在点P处,折痕BQ交MN于点E,则BE长为2.BN=BN=BC=∴∴,BE=2三、解答题(共9题,共94分)17.(8分)(2010•重庆)先化简,再求值:(﹣4)÷,其中x=﹣1.÷(×(18.(8分)一个口袋有4个相同的小球,分别写有A、B、C、D随机抽出一个小球然后放回,再随机抽出一个小球.(1)试用列表法或树状图法中的一种,列举出两次抽出的球上字母的所有可能结果,并求两次抽出的球上字母相同的概率;(2)小明和小丽用这些小球做游戏,请你设计一种方案使二人获胜的可能性相同.=.19.(10分)(2006•上海)如图,在梯形ABCD中,AD∥BC,AB=DC.点E、F、G分别在边AB、BC、CD上,AE=GF=GC.(1)求证:四边形AEFG是平行四边形;(2)当∠FGC=2∠EFB时,求证:四边形AEFG是矩形.20.(10分)(2005•沈阳)如图所示,A、B为两个村庄,AB、BC、CD为公路,BD为田地,AD为河宽,且CD 与AD互相垂直.现在要从E处开始铺设通往村庄A、村庄B的一条电缆,共有如下两种铺设方案:方案一:E⇒D⇒A⇒B;方案二:E⇒C⇒B⇒A.经测量得AB=4千米,BC=10千米,CE=6千米,∠BDC=45°,∠ABD=15度.已知:地下电缆的修建费为2万元/千米,水下电缆的修建费为4万元/千米.(1)求出河宽AD(结果保留根号);(2)求出公路CD的长;(3)哪种方案铺设电缆的费用低?请说明你的理由.×(千米)×32+8=4××(千米)2232+832+821.(10分)某服装厂设计一款新式夏装,想尽快制作8800件投入市场,服装厂有甲,乙两个制衣车间,甲车间每天的加工量是乙的1.2倍,甲乙两车间共同完成一半后,甲车间出现故障停产,剩下由乙车间单独完成,前后共用20天完成,求甲乙两车间每天分别加工多少件?=20=2022.(10分)(2012•长沙)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.×=423.(12分)(2006•南平)如图每个正方形是由边长为1的小正方形组成.(2)在边长为n(n≥1)的正方形中,设红色小正方形的个数为P1,白色小正方形的个数为P2,问是否存在偶数n,使P2=5P1?若存在,请写出n的值;若不存在,请说明理由.24.(12分)(2009•三明)已知:矩形ABCD中AD>AB,O是对角线的交点,过O任作一直线分别交BC、AD 于点M、N(如图①).(1)求证:BM=DN;(2)如图②,四边形AMNE是由四边形CMND沿MN翻折得到的,连接CN,求证:四边形AMCN是菱形;(3)在(2)的条件下,若△CDN的面积与△CMN的面积比为1:3,求的值.DN=MN=∴=2=CMAC===MN=2ON=2=2=2∴=225.(14分)(2009•深圳)已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,使其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1).(1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式.(2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC 于点E.①当△BDE是等腰三角形时,直接写出此时点E的坐标.②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由.三点的坐标代入得…,b=a=的坐标分别是:,,,)的最大值是,)的最大值是参与本试卷答题和审题的老师有:星期八;HJJ;lantin;zhehe;lanyan;zcx;hbxglhl;心若在;疯跑的蜗牛;HLing;ZJX;gsls;mmll852;kuaile;lanchong;CJX;wdyzwbf;nhx600;py168;蓝月梦;sd2011;gbl210;zhangCF;zhqd;zhjh(排名不分先后)菁优网2014年3月16日。
辽宁省沈阳市2013年中考数学模拟试卷(解析版)
某某省某某市2013年中考数学模拟试卷一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,满分24分)1.(3分)(2013•某某模拟)计算3×(﹣2)的结果是()A.5B.﹣5 C.6D.﹣6考点:有理数的乘法.分析:根据有理数的乘法法则:两数相乘,同号得正,异号得负,再把绝对值相乘,即可得到结果.解答:解:3×(﹣2),=﹣(3×2),=﹣6.故选D.点评:此题主要考查了有理数的乘法,牢记法则即可.2.(3分)(2013•某某模拟)某红外线遥控器发出的红外线波长为0.000 000 94m,用科学记数法表示这个数是()A.9.4×10﹣7m B.9.4×107m C.9.4×10﹣8m D.9.4×108m考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 000 94=9.4×10﹣7.故选A.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.(3分)(2013•某某模拟)下列电视台图标中,属于中心对称图形的是()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、是中心对称图形,故本选项正确.故选D.点评:本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合是解题的关键.4.(3分)(2013•某某模拟)2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31,则下列表述错误的是()A.众数是31 B.中位数是30 C.平均数是32 D.极差是5考点:极差;算术平均数;中位数;众数.分析:分别计算该组数据的众数、中位数、平均数及极差后即可作出正确的判断.解答:解:数据31出现了3次,最多,众数为31,故A不符合要求;按从小到大排序后为:30、31、31、31、33、33、35,位于中间位置的数是31,故B 符合要求;平均数为(30+31+31+31+33+33+35)÷7=32,故C不符合要求;极差为35﹣30=5,故D不符合要求.故选B.点评:本题属于基础题,考查了确定一组数据的中位数、众数、平均数及极差的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.5.(3分)(2013•某某模拟)如图所示的“h”型几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据俯视图是从上向下看得到的视图进行分析解答即可.解答:解:从上面看可得到一个矩形,中间左边有一条实心线,右边有一条虚线.故选D.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图,注意看得见的线用实线表示,看不见的线用虚线表示.6.(3分)(2013•某某模拟)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40% B.33.4% C.33.3% D.30%考点:一元一次不等式的应用.专题:压轴题.分析:缺少质量和进价,应设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,根据题意得:购进这批水果用去ay元,但在售出时,只剩下(1﹣10%)a千克,售货款为(1﹣10%)a×(1+x)y 元,根据公式×100%=利润率可列出不等式,解不等式即可.解答:解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥,经检验,x≥是原不等式的解∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选:B.点评:此题主要考查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润.注意再解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入.7.(3分)(2013•某某模拟)若A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A.y3>y1>y2B.y1>y2>y3C.y2>y1>y3D.y3>y2>y1考点:反比例函数图象上点的坐标特征.分析:根据反比例函数图象上点的特征,xy=3,所以得到x1•y1=3,x2•y2=3,x3•y3=3,再根据x1<x2<0<x3,即可判断y1、y2、y3的大小关系.解答:解:∵A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,∴x1•y1=3,x2•y2=3,x3•y3=3,∵x3>0,∴y3>0,∵x1<x2<0,∴0>y1>y2,∴y3>y1>y2.故选A.点评:此题主要考查了反比例函数图象上点的特征,凡是在反比例函数图象上的点,横纵坐标的乘积是一个定值=k.8.(3分)(2013•某某模拟)直角三角形纸片的两直角边AC与BC之比为3:4.(1)将△ABC如图1那样折叠,使点C落在AB上,折痕为BD;(2)将△ABD如图2那样折叠,使点B与点D重合,折痕为EF.则tan∠DEA的值为()A.B.C.D.考点:锐角三角函数的定义;翻折变换(折叠问题).专题:压轴题.分析:直角三角形纸片的两直角边AC与BC之比为3:4,就是已知tan∠ABC=,根据轴对称的性质,可得∠DEA=∠A,就可以求出tan∠DEA的值.解答:解:根据题意:直角三角形纸片的两直角边AC与BC之比为3:4,即tan∠ABC==;根据轴对称的性质,∠CBD=a,则由折叠可知∠CBD=∠EBD=∠EDB=a,∠ABC=2a,由外角定理可知∠AED=2a=∠ABC,∴tan∠DEA=tan∠ABC=.故选A.点评:已知折叠问题就是已知图形的全等,并且三角函数值只与角的大小有关,因而求一个角的函数值,可以转化为求与它相等的其它角的三角函数值.二、填空题(每小题4分,满分32分)9.(4分)(2013•某某模拟)分解因式:4ax2﹣a= a(2x+1)(2x﹣1).考提公因式法与公式法的综合运用.点:分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解即可求得答案.解答:解:4ax2﹣a=a(4x2﹣1)=a(2x+1)(2x﹣1).故答案为:a(2x+1)(2x﹣1).点评:本题考查了用提公因式法和公式法进行因式分解的知识.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,注意因式分解要彻底.10.(4分)(2013•某某模拟)若分式的值为0,则x的值为 2 .考点:分式的值为零的条件.分析:根据分式值为零的条件可得x﹣2=0,x2+4≠0,解可得答案.解答:解:由题意得:x﹣2=0,x2+4≠0,解得:x=2,故答案为:2.点评:此题主要考查了分式值为零的条件:是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.11.(4分)(2011•某某)若点A(2,a)关于x轴的对称点是B(b,﹣3),则ab的值是 6 .考点:关于x轴、y轴对称的点的坐标.专题:应用题.分根据关于x轴对称的点,横坐标相同,纵坐标互为相反数得出a,b的值,从而得出析:ab.解答:解:∵点A(2,a)关于x轴的对称点是B(b,﹣3),∴a=3,b=2,∴ab=6.故答案为6.点评:本题主要考查了关于x轴对称的点,横坐标相同,纵坐标互为相反数,比较简单.12.(4分)(2013•某某模拟)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a 的取值X围是a≥﹣1 .考点:根的判别式;一元一次方程的定义;一元二次方程的定义.专题:压轴题.分析:当a=0时,方程是一元一次方程,方程的根可以求出,即可作出判断;当a≠0时,方程是一元二次方程,只要有实数根,则应满足:△≥0,建立关于a的不等式,求得a的取值X围即可.解答:解:当a=0时,方程是一元一次方程,有实数根,当a≠0时,方程是一元二次方程,若关于x的方程ax2+2(a+2)x+a=0有实数解,则△=[2(a+2)]2﹣4a•a≥0,解得:a≥﹣1.故答案为:a≥﹣1.点评:此题考查了根的判别式,注意本题分a=0与a≠0两种情况讨论是解决本题的关键.并且利用了一元二次方程若有实数根则应有△≥0.13.(4分)(2013•某某模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.考点:角平分线的性质.分析:首先过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,由△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,易证得AE是∠CAH的平分线,继而求得答案.解答:解:过点E作EF⊥BD于点F,作EG⊥AC于点G,作EH⊥BA于点H,∵△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,∴EH=EF,EG=EF,∴EH=EG,∴AE是∠CAH的平分线,∵∠BAC=70°,∴∠CAH=110°,∴∠CAE=∠CAH=55°.故答案为:55°.点评:此题考查了角平分线的性质与判定.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.14.(4分)(2013•某某模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE 的度数是60 度.考点:全等三角形的判定与性质;等边三角形的性质.专题:几何图形问题.分析:根据题目已知条件可证△ABD≌△BCE,再利用全等三角形的性质及三角形外角和定理求解.解答:解:∵等边△ABC,∴∠ABD=∠C,AB=BC,在△ABD与△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ABE+∠EBC=60°,∴∠ABE+∠BAD=60°,∴∠APE=∠ABE+∠BAD=60°,∴∠APE=60°.故答案为60.点评:本题利用等边三角形的性质来为三角形全等的判定创造条件,是中考的热点.15.(4分)(2013•某某模拟)已知一圆锥的底面半径是1,母线长是4,则圆锥侧面展开图的面积是4π.考点:圆锥的计算.分析:首先求得底面周长,然后利用扇形的面积公式S=lr,即可求解.解答:解:圆锥的底面周长是:2π×1=2π,则圆锥侧面展开图的面积是:×2π×4=4π.故答案是:4π.点评:本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.16.(4分)(2013•某某模拟)用长为4cm的n根火柴可以拼成如图1所示的x个边长都为4cm的平行四边形,还可以拼成如图2所示的2y个边长都为4cm的平行四边形,那么用含x 的代数式表示y,得到.考点:规律型:图形的变化类.专题:压轴题.分析:图1中,一排有x 个边长为4cm平行四边形,图2中,每一排有y个边长为4cm平行四边形,横排线段有三排,斜线段有(y+1)段,根据图1,图2火柴根数相等,列方程求解.解答:解:依题意,由图1可知:一个平行四边形有4条边,两个平行四边形有4+3条边,∴m=1+3x,由图2可知:一组图形有7条边,两组图形有7+5条边,∴m=2+5y,得1+3x=3y+2(y+1),整理,得y=x﹣,故答案为:y=x ﹣.点评:本题是一道找规律的题目,这类题型在中考中经常出现.关键是根据图1,图2中,火柴根数相等列出方程.三、解答题(第17、18小题各8分,第19小题10分,共26分)17.(8分)(2013•某某模拟)先化简:,然后再取一个你喜爱的x的值代入求值.考点:分式的化简求值.分析:首先把每个分式的分子,分母分解因式,然后计算分式的乘法,最后进行减法运算即可化简,最后代入适当的x的值计算即可求解.解答:解:原式=•﹣=﹣=﹣,当x=1时,原式=﹣=2.点评:注意:取喜爱的数代入求值时,要特注意原式及化简过程中的每一步都有意义.如果取x=0,则原式没有意义,因此,尽管0是大家的所喜爱的数,但在本题中却是不允许的.18.(8分)(2013•某某模拟)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,△ABC与△DEF全等吗?证明你的结论.考点:全等三角形的判定.专题:探究型.分析:由平行的性质可证∠C=∠F,又已知AC=DF,BC=EF,满足SAS,即可证结论.解答:解:△ABC与△DEF全等.证明:∵AC∥DF,∴∠C=∠F.在△ABC与△DEF中,∴△ABC≌△DEF(SAS).点评:本题重点考查了三角形全等的判定定理,是一道较为简单的题目.19.(10分)(2013•某某模拟)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有50 人,抽测成绩的众数是5次;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?考点:条形统计图;用样本估计总体;扇形统计图;众数.专题:压轴题;图表型.分析:(1)用4次的人数除以所占百分比即可得到总人数,人数最多的次数即为该组数据的众数;(2)用总人数减去其他各组的人数即可得到成绩为5次的人数;(3)用总人数乘以达标率即可得到达标人数.解答:解:(1)从条形统计图和扇形统计图可知,达到4次的占总人数的20%,∴总人数为:10÷20%=50人,众数为5次;(2)如图.(3)∵被调查的50人中有36人达标,∴350名九年级男生中估计有350×=252人.点评:题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四、(每小题10分,共20分)20.(10分)(2013•某某模拟)如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(1)请你用列表或树形图求出小明胜和小飞胜的概率;(2)游戏公平吗?若不公平,请你设计一个公平的规则.考点:游戏公平性.分析:游戏是否公平,关键要看游戏双方取胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.解答:解:(1)列表法:AB1 2 341,4 2,4 3,451,5 2,5 3,56 1,6 2,6 3,67 1,7 2,7 3,7树形图法故小明胜的概率为,小飞胜的概率为.(2)∵,∴不公平,小明胜的机会大;规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相加,如果和为偶数,小明胜,否则小飞胜.或规则如下:把图A中的数字2改为奇数(比如5)然后按题目中的规则进行比赛:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(方法不唯一,正确即可.)点评:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2013•某某模拟)如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC 并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)考点:扇形面积的计算;勾股定理;圆周角定理.专题:几何综合题;压轴题.分析:(1)连接CB,AB,CE,由点C为劣弧AB上的中点,可得出CB=CA,再根据CD=CA,得△ABD为直角三角形,可得出∠A BE为直角,根据90度的圆周角所对的弦为直径,从而证出AE是⊙O的直径;(2)由(1)得△ACE为直角三角形,根据勾股定理得出CE的长,阴影部分的面积等于半圆面积减去三角形ACE的面积.解答:(1)证明:连接CB,AB,CE,∵点C为劣弧AB上的中点,∴CB=CA,又∵CD=CA,∴AC=CD=BC,∴∠ABC=∠BAC,∠DBC=∠D,∴∠ABD=90°,∴∠ABE=90°,即弧AE的度数是180°,∴AE是⊙O的直径;(2)解:∵AE是⊙O的直径,∴∠ACE=90°,∵AE=10,AC=4,∴根据勾股定理得:CE=2,∴S阴影=S半圆﹣S△ACE=12.5π﹣×4×2=12.5π﹣4.点评:本题考查了扇形面积的计算、勾股定理以及圆周角定理,是基础知识要熟练掌握.五、(本题10分)22.(10分)(2013•某某模拟)小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D 处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据≈1.41,≈1.73供选用,结果保留整数)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:压轴题.分析:先根据斜坡的坡度是i=1:2.5,EF=2,求出FD的长,再根据CE=13,CE=GF,求出GD 的长,在Rt△DBG和Rt△DAN中,根据∠GDB=45°和∠NAD=60°,分别求出BG=GD和ND的长,从而得出A N=ND•tan60°,最后再根据AM=AN﹣MN=AN﹣BG,即可得出答案.解答:解:∵斜坡的坡度是i==,EF=2,∴FD=2.5EF=2.5×2=5,∵CE=13,CE=GF,∴GD=GF+FD=CE+FD=13+5=18,在Rt△DBG中,∠GDB=45°,∴BG=GD=18,在Rt△DAN 中,∠NAD=60°,∴ND=NG+GD=CH+GD=2+18=20,AN=ND•tan60°=20×=20,∴AM=AN﹣MN=AN﹣BG=20﹣18≈17(米).答:铁塔高AC约17米.点评:此题考查了解直角三角形的应用,要掌握坡度、仰角、俯角的定义,关键是能借助仰角和俯角构造直角三角形,并解直角三角形.六、(本题12分)23.(12分)(2013•某某模拟)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x 之间的函数关系式.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为960 km;图中点C的实际意义为:当慢车行驶6h时,快车到达乙地;慢车的速度为80km/h ,快车的速度为160km/h ;(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值X围;(3)若在第一列快车与慢车相遇时,第二列车从乙地出发驶往甲地,速度与第一列快车相同,请直接写出第二列快车出发多长时间,与慢车相距200km.考点:一次函数的应用.分析:(1)x=0时两车之间的距离即为两地间的距离,根据横坐标和两车之间的距离增加变慢解答,分别利用速度=路程÷时间列式计算即可得解;(2)求出相遇的时间得到点B的坐标,再求出两车间的距离,得到点C的坐标,然后设线段BC的解析式为y=kx+b,利用待定系数法求一次函数解析式解答;(3)设第二列快车出发a小时两车相距200km,然后分相遇前与相遇后相距200km 两种情况列出方程求解即可.解答:解:(1)由图象可知,甲、乙两地间的距离是960km;图中点C的实际意义是:当慢车行驶6h时,快车到达乙地;慢车速度是:960÷12=80km/h,快车速度是:960÷6=160km/h;故答案为:960;当慢车行驶6h时,快车到达乙地;80km/h;160km/h;(2)根据题意,两车行驶960km相遇,所用时间=4h,所以,B点的坐标为(4,0),2小时两车相距2×(160+80)=480km,所以,点C的坐标为(6,480),设线段BC的解析式为y=kx+b,则,解得,所以,线段BC所表示的y与x之间的函数关系式为y=240x﹣960,自变量x的取值X 围是4≤x≤6;(3)设第二列快车出发a小时两车相距200km,分两种情况,①若是第二列快车还没追上慢车,相遇前,则4×80+80a﹣160a=200,解得a=1.5,②若是第二列快车追上慢车以后再超过慢车,则160a﹣(4×80+80a)=200,解得a=6.5,∵快车到达甲地仅需要6小时,∴a=6.5不符合题意,舍去,综上所述,第二列快车出发1.5h,与慢车相距200km.点评:本题考查了一次函数的应用,待定系数法求一次函数解析式,相遇问题,追击问题,综合性较强,(3)要注意分情况讨论并考虑快车到达甲地的时间是6h,这也是本题容易出错的地方.七、(本题12分)24.(12分)(2013•某某模拟)在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)考点:平行四边形的性质;全等三角形的判定与性质;等边三角形的判定;等腰直角三角形.专题:压轴题.分析:(1)①先判定四边形ABCD是矩形,再根据矩形的性质可得∠ABC=90°,AB∥DC,AD∥BC,然后根据平行线的性质求出∠F=∠FDC,∠BEF=∠ADF,再根据DF是∠ADC 的平分线,利用角平分线的定义得到∠ADF=∠FDC,从而得到∠F=∠BEF,然后根据等角对等边的性质即可证明;②连接BG,根据等腰直角三角形的性质可得∠F=∠BEF=45°,再根据等腰三角形三线合一的性质求出BG=FG,∠F=∠CBG=45°,然后利用“边角边”证明△AFG和△CBG 全等,根据全等三角形对应边相等可得AG=CG,再求出∠GAC+∠ACG=90°,然后求出∠AGC=90°,然后根据等腰直角三角形的定义判断即可;(2)连接BG,根据旋转的性质可得△BFG是等边三角形,再根据角平分线的定义以及平行线的性质求出AF=AD,平行四边形的对角相等求出∠ABC=∠ADC=60°,然后求出∠CBG=60°,从而得到∠AFG=∠CBG,然后利用“边角边”证明△AFG和△CBG全等,根据全等三角形对应边相等可得AG=CG,全等三角形对应角相等可得∠FAG=∠BCG,然后求出∠GAC+∠ACG=120°,再求出∠AGC=60°,然后根据等边三角形的判定方法判定即可.解答:(1)证明:①∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,∴∠ABC=90°,AB∥DC,AD∥BC,∴∠F=∠FDC,∠BEF=∠ADF,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∴∠F=∠BEF,∴BF=BE;②△AGC是等腰直角三角形.理由如下:连接BG,由①知,BF=BE,∠FBC=90°,∴∠F=∠BEF=45°,∵G是EF的中点,∴BG=FG,∠F=∠CBG=45°,∵∠FAD=90°,∴AF=AD,又∵AD=BC,∴AF=BC,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∴∠FAG=∠BCG,又∵∠FAG+∠GAC+∠ACB=90°,∴∠BCG+∠GAC+∠ACB=90°,即∠GAC+∠ACG=90°,∴∠AGC=90°,∴△AGC是等腰直角三角形;(2)连接BG,∵FB绕点F顺时针旋转60°至FG,∴△BFG是等边三角形,∴FG=BG,∠FBG=60°,又∵四边形ABCD是平行四边形,∠ADC=60°,∴∠ABC=∠ADC=60°∴∠CBG=180°﹣∠FBG﹣∠ABC=180°﹣60°﹣60°=60°,∴∠AFG=∠CBG,∵DF是∠ADC的平分线,∴∠ADF=∠FDC,∵AB∥DC,∴∠AFD=∠FDC,∴∠AFD=∠ADF,∴AF=AD,在△AFG和△CBG中,,∴△AFG≌△CBG(SAS),∴AG=CG,∠FAG=∠BCG,在△ABC中,∠GAC+∠ACG=∠ACB+∠BCG+∠GAC=∠ACB+∠BAG+∠GAC=∠ACB+∠BAC=180°﹣60°=120°,∴∠AGC=180°﹣(∠GAC+∠ACG)=180°﹣120°=60°,∴△AGC是等边三角形.点评:本题考查了平行四边形的性质,全等三角形的判定与性质,等边三角形的性质,等腰直角三角形的性质,难度较大,作辅助线构造全等三角形是解题的关键.八、(本题14分)25.(14分)(2013•某某模拟)如图,抛物线y=﹣x2﹣x+交x轴于A、B两点,交y轴于C点,顶点为D.(1)求点A、B、C的坐标;(2)把△ABC绕AB的中点M旋转180°,得四边形AEBC,求点E的坐标,并判四边形AEBC 的形状,并说明理由;(3)在直线BC上是否存在一点P,使得△PAD周长最小?若存在,请求出点P的坐标;若不存在请说明理由.考点:二次函数综合题.专题:压轴题.分析:(1)分别令x=0以及y=0求出A、B、C三点的坐标.(2)依题意得出BC∥AE,又已知A、B、C的坐标易求出点E的坐标,又因为四边形AEBC是平行四边形且∠ACB=90°可得四边形AEBC是矩形.(3)作点A关于BC的对称点A′,连接A′D与直线BC交于点P.则可得点P是使△PAD周长最小的点,然后求出直线A′D,直线BC的函数解析式联立方程求出点P 的坐标.解答:解:(1)y=﹣x2﹣x+,令x=0,得y=,令y=0,即﹣x2﹣x+=0,即x2+2x﹣3=0,∴x1=1,x2=﹣3∴A,B,C三点的坐标分别为A(﹣3,0),B(1,0),C(0,);(2)如图1,过点E作EF⊥AB于F,∵C(0,),∴EF=,∵B(1,0),∴AF=1,∴OF=OA﹣AF=3﹣1=2,∴E(﹣2,﹣),四边形AEBC是矩形.理由:四边形AEBC是平行四边形,且∠ACB=90°,(3)存在.D(﹣1,)如图2,作出点A关于BC的对称点A′,连接A′D与直线BC交于点P.则点P是使△PAD周长最小的点.∵AO=3,∴FO=3,CO=,∴A′F=2,∴求得A′(3,2)过A′、D的直线y=x+,过B、C的直线y=﹣x+,将两函数解析式联立得出:,解得:,故两直线的交点P(﹣,).点评:本题综合考查了二次函数的有关知识以及利用待定系数法求出函数解析式以及利用轴对称求线段最小值,利用轴对称得出P点位置是解题关键.。
2013年辽宁省沈阳市中考数学模拟试卷(四)
2013年辽宁省沈阳市中考数学模拟试卷(四)2013年辽宁省沈阳市中考数学模拟试卷(四)一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分).CD .4.(3分)(2013•沈阳模拟)2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31,则下列表述错误的是 5.(3分)(2013•沈阳模拟)如图所示的“h ”型几何体的俯视图是( ).CD .6.(3分)(2012•恩施州)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费7.(3分)(2011•齐齐哈尔)若A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)是反比例函数y=图象上的点,且x 1<x 28.(3分)(2005•泰安)直角三角形纸片的两直角边AC 与BC 之比为3:4. (1)将△ABC 如图1那样折叠,使点C 落在AB 上,折痕为BD ; (2)将△ABD 如图2那样折叠,使点B 与点D 重合,折痕为EF . 则tan ∠DEA 的值为( ).C D.二、填空题(每小题4分,共32分)9.(4分)(2013•沈阳模拟)分解因式:4ax2﹣a=_________.10.(4分)(2013•沈阳模拟)若分式的值为0,则x的值为_________.11.(4分)(2011•青海)若点A(2,a)关于x轴的对称点是B(b,﹣3),则ab的值是_________.12.(4分)(2012•德州)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是_________.13.(4分)(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=_________.14.(4分)(2013•沈阳模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是_________度.15.(4分)(2013•沈阳模拟)已知一圆锥的底面半径是1,母线长是4,则圆锥侧面展开图的面积是_________.16.(4分)(2013•沈阳模拟)用长为4cm的n根火柴可以拼成如图1所示的x个边长都为4cm的平行四边形,还可以拼成如图2所示的2y个边长都为4cm的平行四边形,那么用含x的代数式表示y,得到_________.三、解答题(第17、18小题各8分,第19小题10分,共26分)17.(8分)(2013•沈阳模拟)先化简:,然后再取一个你喜爱的x的值代入求值.18.(8分)(2007•盐城)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,△ABC与△DEF全等吗?证明你的结论.19.(10分)(2011•扬州)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有_________人,抽测成绩的众数是_________;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?四、(每小题10分,共20分)20.(10分)(2008•天门)如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(1)请你用列表或树形图求出小明胜和小飞胜的概率;(2)游戏公平吗?若不公平,请你设计一个公平的规则.21.(10分)(2011•深圳)如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)22.(10分)(2012•遂宁)小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B 的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据≈1.41,≈1.73供选用,结果保留整数)六、(本题12分)23.(12分)(2012•路南区一模)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为_________km;图中点C的实际意义为:_________;慢车的速度为_________,快车的速度为_________;(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.请直接写出第二列快车出发多长时间,与慢车相距200km.(4)若第三列快车也从乙地出发驶往甲地,速度与第一列快车相同.如果第三列快车不能比慢车晚到,求第三列快车比慢车最多晚出发多少小时?七、(本题12分)24.(12分)(2013•沈阳模拟)在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)八、(本题14分)25.(14分)(2013•沈阳模拟)如图,抛物线y=﹣x2﹣x+交x轴于A、B两点,交y轴于C点,顶点为D.(1)求点A、B、C的坐标;(2)把△ABC绕AB的中点M旋转180°,得四边形AEBC,求点E的坐标,并判四边形AEBC的形状,并说明理由;(3)在直线BC上是否存在一点P,使得△PAD周长最小?若存在,请求出点P的坐标;若不存在请说明理由.2013年辽宁省沈阳市中考数学模拟试卷(四)参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分).C D.4.(3分)(2013•沈阳模拟)2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31,则下列表述错误的是()5.(3分)(2013•沈阳模拟)如图所示的“h”型几何体的俯视图是().C D.6.(3分)(2012•恩施州)某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其他费元,根据公式≥是原不等式的解7.(3分)(2011•齐齐哈尔)若A(x1,y1),B(x2,y2),C(x3,y3)是反比例函数y=图象上的点,且x1<x2y=8.(3分)(2005•泰安)直角三角形纸片的两直角边AC与BC之比为3:4.(1)将△ABC如图1那样折叠,使点C落在AB上,折痕为BD;(2)将△ABD如图2那样折叠,使点B与点D重合,折痕为EF.则tan∠DEA的值为().C D.ABC=,根据轴对称的性质,可得ABC==;ABC=二、填空题(每小题4分,共32分)9.(4分)(2013•沈阳模拟)分解因式:4ax2﹣a=a(2x+1)(2x﹣1).10.(4分)(2013•沈阳模拟)若分式的值为0,则x的值为2.11.(4分)(2011•青海)若点A(2,a)关于x轴的对称点是B(b,﹣3),则ab的值是6.12.(4分)(2012•德州)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是a≥﹣1.13.(4分)(2013•沈阳模拟)如图,△ABC的外角∠ACD的平分线CE与内角∠ABC平分线BE交于点E,若∠BAC=70°,则∠CAE=55°.∠14.(4分)(2013•沈阳模拟)如图,已知等边△ABC中,BD=CE,AD与BE相交于点P,则∠APE的度数是60度.中,15.(4分)(2013•沈阳模拟)已知一圆锥的底面半径是1,母线长是4,则圆锥侧面展开图的面积是4π.S=lr则圆锥侧面展开图的面积是:16.(4分)(2013•沈阳模拟)用长为4cm的n根火柴可以拼成如图1所示的x个边长都为4cm的平行四边形,还可以拼成如图2所示的2y个边长都为4cm的平行四边形,那么用含x的代数式表示y,得到.y=x,x.三、解答题(第17、18小题各8分,第19小题10分,共26分)17.(8分)(2013•沈阳模拟)先化简:,然后再取一个你喜爱的x的值代入求值.•﹣,﹣18.(8分)(2007•盐城)如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,BC=EF,△ABC与△DEF全等吗?证明你的结论.,19.(10分)(2011•扬州)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有50人,抽测成绩的众数是5次;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?×=252四、(每小题10分,共20分)20.(10分)(2008•天门)如图,有两个可以自由转动的均匀转盘A、B,转盘A被均匀地分成3等分,每份分别标有1,2,3这三个数字;转盘B被均匀地分成4等分,每份分别标有4,5,6,7这四个数字.有人为小明,小飞设计了一个游戏,其规则如下:①同时自由转动转盘A和B;②转盘停止后,指针各指向一个数字(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止),用所指的两个数字相乘,如果积为偶数,小明胜,否则小飞胜.(1)请你用列表或树形图求出小明胜和小飞胜的概率;(2)游戏公平吗?若不公平,请你设计一个公平的规则.故小明胜的概率为,小飞胜的概率为.)∵21.(10分)(2011•深圳)如图1,已知在⊙O中,点C为劣弧AB上的中点,连接AC并延长至D,使CD=CA,连接DB并延长DB交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接EC,⊙O半径为5,AC的长为4,求阴影部分的面积之和.(结果保留π与根号)CE=2=12.5422.(10分)(2012•遂宁)小明在数学课中学习了《解直角三角形》的内容后,双休日组织教学兴趣小组的小伙伴进行实地测量.如图,他们在坡度是i=1:2.5的斜坡DE的D处,测得楼顶的移动通讯基站铁塔的顶部A和楼顶B的仰角分别是60°、45°,斜坡高EF=2米,CE=13米,CH=2米.大家根据所学知识很快计算出了铁塔高AM.亲爱的同学们,相信你也能计算出铁塔AM的高度!请你写出解答过程.(数据≈1.41,≈1.73供选用,结果保留整数)i==,×,BG=20六、(本题12分)23.(12分)(2012•路南区一模)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发.设慢车行驶的时间为x(h),两车之间的距离为y(km),图中的折线表示y与x之间的函数关系.根据题中所给信息解答以下问题:(1)甲、乙两地之间的距离为960km;图中点C的实际意义为:当慢车行驶6 h时,快车到达乙地;慢车的速度为80km/h,快车的速度为160km/h;(2)求线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围;(3)若在第一列快车与慢车相遇时,第二列快车从乙地出发驶往甲地,速度与第一列快车相同.请直接写出第二列快车出发多长时间,与慢车相距200km.(4)若第三列快车也从乙地出发驶往甲地,速度与第一列快车相同.如果第三列快车不能比慢车晚到,求第三列快车比慢车最多晚出发多少小时?t+≤相遇,所用时间)代入得,t+,七、(本题12分)24.(12分)(2013•沈阳模拟)在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F,连接AC.(1)如图1,若∠ADC=90°,G是EF的中点,连接AG、CG.①求证:BE=BF.②请判断△AGC的形状,并说明理由;(2)如图2,若∠ADC=60°,将线段FB绕点F顺时针旋转60°至FG,连接AG、CG.那么△AGC又是怎样的形状.(直接写出结论不必证明)中,中,八、(本题14分)25.(14分)(2013•沈阳模拟)如图,抛物线y=﹣x2﹣x+交x轴于A、B两点,交y轴于C点,顶点为D.(1)求点A、B、C的坐标;(2)把△ABC绕AB的中点M旋转180°,得四边形AEBC,求点E的坐标,并判四边形AEBC的形状,并说明理由;(3)在直线BC上是否存在一点P,使得△PAD周长最小?若存在,请求出点P的坐标;若不存在请说明理由.,,x=0,,EF=,)F=22y=x+,,(﹣,参与本试卷答题和审题的老师有:sd2011;zxw;117173;lantin;lanyan;自由人;星期八;zhjh;zjx111;zhqd;zcx;399462;冯延鹏;gbl210;sjzx;zhangCF;HJJ(排名不分先后)菁优网2014年3月16日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辽宁省沈阳市2013年中考数学试卷
一、选择题(下列各题的备选答案中,只有一个答案是正确的,每小题3分,共24分)1.(3分)(2013•沈阳)2013年第一季度,沈阳市公共财政预算收入完成196亿元(数据来源:4月16日《沈阳日报》),将196亿用科学记数法表示为()
A.1.96×108B.19.6×108C.1.96×1010D.19.6×1010
考
点:
科学记数法—表示较大的数
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于196亿有11位,所以可以确定n=11﹣1=10.
解
答:
解:196亿=19 600 000 000=1.96×1010.
故选C.
点
评:
此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
2.(3分)(2013•沈阳)如图所示是一个几何体的三视图,这个几何体的名称是()
A.圆柱体B.三棱锥C.球体D.圆锥体
考
点:
由三视图判断几何体.
分
析:
主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
解
答:
解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.
故选A.
点评:本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.
3.(3分)(2013•沈阳)下面的计算一定正确的是()
A.b3+b3=2b6B.(﹣3pq)2=﹣
9p2q2
C.5y3•3y5=15y8D.b9÷b3=b3
考
点:
单项式乘单项式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.
分
析:
根据合并同类项的法则判断A;
根据积的乘方的性质判断B;
根据单项式乘单项式的法则判断C;
根据同底数幂的除法判断D.
解
答:
解:A、b3+b3=2b3,故本选项错误;
B、(﹣3pq)2=9p2q2,故本选项错误;
C、5y3•3y5=15y8,故本选项正确;
D、b9÷b3=b6,故本选项错误.
故选C.
点评:本题考查了合并同类项,积的乘方,单项式乘单项式,同底数幂的除法,熟练掌握运算性质与法则是解题的关键.
4.(3分)(2013•沈阳)如果m=,那么m的取值范围是()。