分析右手定则,安培定则,感应电流、感应电动势方向的判定
高中物理——左右手定则区分
高中物理——左右手定则区分
一、右手螺旋定则(安培定则):用来判断通电螺线圈或通电直导线产生磁场的方向。
1、通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向。
2、通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端是通电螺线管的N极。
二、左手定则:主要用来判断力的方向,包括洛伦兹力和安培力。
1、判断安培力方向:伸开左手,使拇指与四指在同一平面内并跟四指垂直,让磁感线垂直穿入手心,四指指向电流的方向,这时拇指所指的就是通电导体所受安培力的向。
2、判断洛伦兹力方向:伸开左手,使拇指与四指在同一平面内并跟四指垂直,让磁感线垂直穿入手心,四指指向正电荷运动的方向,那么,拇指所指的方向就是正电荷所受洛伦兹力的方向.若是负电荷运动的方向,那么四指应指向其反方向。
三、右手定则:主要用来判断感应电流或者感应电动势方向。
伸开右手让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。
记忆口诀:左通力右生电(左力右电)
关键在于:清楚先那个手指,后那个手指,清晰因果。
(完整版)感应电流方向的判断楞次定律(含答案)
感应电流方向的判断 楞次定律一、基础知识(一)感应电流方向的判断1、楞次定律(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2、右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体棒切割磁感线产生感应电流.3、利用电磁感应的效果进行判断的方法:方法1:阻碍原磁通量的变化——“增反减同”.方法2:阻碍相对运动——“来拒去留”.方法3:使线圈面积有扩大或缩小的趋势——“增缩减扩”方法4:阻碍原电流的变化(自感现象)——“增反减同”.(二)利用楞次定律判断感应电流的方向1、 楞次定律中“阻碍”的含义2、 楞次定律的使用步骤n (三)“一定律三定则”的应用技巧1、应用现象及规律比较基本现象应用的定则或定律运动电荷、电流产生磁场安培定则磁场对运动电荷、电流有作用力左手定则部分导体做切割磁感线运动右手定则电磁感应闭合回路磁通量变化楞次定律2、应用技巧无论是“安培力”还是“洛伦兹力”,只要是“力”都用左手判断.“电生磁”或“磁生电”均用右手判断.二、练习1、下列各图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是 ( ) 答案 CD解析 根据楞次定律可确定感应电流的方向:以C 选项为例,当磁铁向下运动时:(1)闭合线圈原磁场的方向——向上;(2)穿过闭合线圈的磁通量的变化——增加;(3)感应电流产生的磁场方向——向下;(4)利用安培定则判断感应电流的方向——与图中箭头方向相同.线圈的上端为S 极,磁铁与线圈相互排斥.运用以上分析方法可知,C 、D 正确.2、如图所示,一根条形磁铁从左向右靠近闭合金属环的过程中,环中的感应电流(自左向右看)( )A .沿顺时针方向B .先沿顺时针方向后沿逆时针方向C .沿逆时针方向D .先沿逆时针方向后沿顺时针方向答案 C解析 条形磁铁从左向右靠近闭合金属环的过程中,向右的磁通量一直增加,根据楞次定律,环中的感应电流(自左向右看)为逆时针方向,C 对.3、如图所示,当磁场的磁感应强度B 增强时,内、外金属环上的感应电流的方向应为( )A .内环顺时针,外环逆时针B .内环逆时针,外环顺时针C .内、外环均为顺时针D .内、外环均为逆时针答案 A解析 磁场增强,则穿过回路的磁通量增大,故感应电流的磁场向外,由安培定则知感应电流对整个电路而言应沿逆时针方向;若分开讨论,则外环逆时针,内环顺时针,A 正确.4、如图所示,在直线电流附近有一根金属棒ab ,当金属棒以b 端为圆心,以ab 为半径,在过导线的平面内匀速旋转到达图中的位置时( )A .a 端聚积电子B .b 端聚积电子C .金属棒内电场强度等于零D .U a >U b 答案 BD解析 因金属棒所在区域的磁场的方向垂直于纸面向外,当金属棒转动时,由右手定则可知,a 端的电势高于b 端的电势,b 端聚积电子,B 、D 正确.5、 金属环水平固定放置,现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环( )A .始终相互吸引B .始终相互排斥C .先相互吸引,后相互排斥D .先相互排斥,后相互吸引答案 D解析 磁铁靠近圆环的过程中,穿过圆环的磁通量增加,根据楞次定律可知,感应电流的磁场阻碍穿过圆环的原磁通量的增加,与原磁场方向相反,如图甲所示,二者之间是斥力;当磁铁穿过圆环下降离开圆环时,穿过圆环的磁通量减少,根据楞次定律可知,感应电流的磁场阻碍穿过圆环的磁通量的减少,二者方向相同,如图乙所示,磁铁与圆环之间是引力.因此选项D 正确.也可直接根据楞次定律中“阻碍”的含义推论:来则拒之,去则留之分析.磁铁在圆环上方下落过程是靠近圆环.根据来则拒之,二者之间是斥力;当磁铁穿过圆环后继续下落过程是远离圆环.根据去则留之,二者之间是引力.因此选项D 正确.6、如图所示,ab 是一个可以绕垂直于纸面的轴O 转动的闭合矩形导体线圈,当滑动变阻器R 的滑片P 自左向右滑动过程中,线圈ab 将( )A .静止不动B .逆时针转动C .顺时针转动D .发生转动,但因电源的极性不明,无法确定转动的方向答案 C解析 当P 向右滑动时,电路中电阻减小,电流增大,穿过线圈ab 的磁通量增大,根据楞次定律判断,线圈ab 将顺时针转动.7、如图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H 处同时释放(各线框下落过程中不翻转),则以下说法正确的是( )A .三者同时落地B .甲、乙同时落地,丙后落地C .甲、丙同时落地,乙后落地D .乙、丙同时落地,甲后落地答案 D 解析 甲是闭合铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙不是闭合回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,所需时间相同,故D 正确.8、如图,铜质金属环从条形磁铁的正上方由静止开始下落,在下落过程中,下列判断中正确的是( )A .金属环在下落过程中机械能守恒B .金属环在下落过程中动能的增加量小于其重力势能的减少量C .金属环的机械能先减小后增大D .磁铁对桌面的压力始终大于其自身的重力答案 B解析 金属环在下落过程中,磁通量发生变化,闭合金属环中产生感应电流,金属环受到磁场力的作用,机械能不守恒,A 错误.由能量守恒知,金属环重力势能的减少量等于其动能的增加量和在金属环中产生的电能之和,B 正确.金属环下落的过程中,机械能转变为电能,机械能减少,C 错误.当金属环下落到磁铁中央位置时,金属环中的磁通量不变,其中无感应电流,和磁铁间无作用力,磁铁所受重力等于桌面对它的支持力,由牛顿第三定律,磁铁对桌面的压力等于桌面对磁铁的支持力,等于磁铁的重力,D 错误.9、如图所示,绝缘水平面上有两个离得很近的导体环a 、b .将条形磁铁沿它们的正中向下移动(不到达该平面),a 、b 将如何移动( )A .a 、b 将相互远离B .a 、b 将相互靠近C .a 、b 将不动D .无法判断答案 A解析 根据Φ=BS ,条形磁铁向下移动过程中B 增大,所以穿过每个环中的磁通量都有增大的趋势.由于S 不可改变,为阻碍磁通量增大,导体环会尽量远离条形磁铁,所以a 、b 将相互远离.10、如图所示,质量为m 的铜质小闭合线圈静置于粗糙水平桌面上.当一个竖直放置的条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、快速经过时,线圈始终保持不动.则关于线圈在此过程中受到的支持力F N 和摩擦力F f 的情况,以下判断正确的是( )A .F N 先大于mg ,后小于mgB .F N 一直大于mgC .F f 先向左,后向右D .F f 一直向左答案 AD 解析 条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、快速经过时,线圈中磁通量先增大后减小,由楞次定律中“来拒去留”关系可知A 、D 正确,B 、C 错误.11、如图所示,线圈M 和线圈N 绕在同一铁芯上.M 与电源、开关、滑动变阻器相连,P 为滑动变阻器的滑动触头,开关S 处于闭合状态,N 与电阻R 相连.下列说法正确的是( )A .当P 向右移动时,通过R 的电流为b 到a B .当P 向右移动时,通过R 的电流为a 到b C .断开S 的瞬间,通过R 的电流为b 到a D .断开S 的瞬间,通过R 的电流为a 到b答案 AD解析 本题考查楞次定律.根据右手螺旋定则可知M 线圈内磁场方向向左,当滑动变阻器的滑动触头P 向右移动时,电阻减小,M 线圈中电流增大,磁场增大,穿过N 线圈内的磁通量增大,根据楞次定律可知N 线圈中产生的感应电流通过R 的方向为b 到a ,A正确,B 错误;断开S 的瞬间,M 线圈中的电流突然减小,穿过N 线圈中的磁通量减小,根据楞次定律可知N 线圈中产生的感应电流方向为a 到b ,C 错误,D 正确.12、如图所示,圆环形导体线圈a 平放在水平桌面上,在a 的正上方固定一竖直螺线管b ,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P 向上滑动,下面说法中正确的是( )A .穿过线圈a 的磁通量变大B .线圈a 有收缩的趋势C .线圈a 中将产生俯视顺时针方向的感应电流D .线圈a 对水平桌面的压力F N 将增大答案 C解析 P 向上滑动,回路电阻增大,电流减小,磁场减弱,穿过线圈a 的磁通量变小,根据楞次定律,a 环面积应增大,A 、B 错;由于a 环中磁通量减小,根据楞次定律知a 环中感应电流应为俯视顺时针方向,C 对;由于a 环中磁通量减小,根据楞次定律,a 环有阻碍磁通量减小的趋势,可知a 环对水平桌面的压力F N 减小,D 错.13、两根相互平行的金属导轨水平放置于图10所示的匀强磁场中,在导轨上接触良好的导体棒AB 和CD 可以自由滑动.当AB 在外力F 作用下向右运动时,下说法中正确的是( )A .导体棒CD 内有电流通过,方向是D →CB .导体棒CD 内有电流通过,方向是C →D C .磁场对导体棒CD 的作用力向左D .磁场对导体棒AB 的作用力向左答案 BD解析 利用楞次定律.两个导体棒与两根金属导轨构成闭合回路,分析出磁通量增加,结合安培定则判断回路中感应电流的方向是B →A →C →D →B .以此为基础,再根据左手定则进一步判定CD 、AB 的受力方向,经过比较可得正确答案.14、如图所示,金属导轨上的导体棒ab 在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c 中将有感应电流产生且被螺线管吸引( )A .向右做匀速运动B .向左做减速运动C .向右做减速运动D .向右做加速运动答案BC解析 当导体棒向右匀速运动时产生恒定的电流,线圈中的磁通量恒定不变,无感应电流出现,A错;当导体棒向左减速运动时,由右手定则可判定回路中出现从b→a的感应电流且减小,由安培定则知螺线管中感应电流的磁场向左在减弱,由楞次定律知c中出现顺时针感应电流(从右向左看)且被螺线管吸引,B对;同理可判定C对,D错.15、如图所示装置中,cd杆原来静止.当ab杆做如下哪些运动时,cd杆将向右移动( )A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动答案 BD解析 ab匀速运动时,ab中感应电流恒定,L1中磁通量不变,穿过L2的磁通量不变,L2中无感应电流产生,cd杆保持静止,A不正确;ab向右加速运动时,L2中的磁通量向下增大,由楞次定律知L2中感应电流产生的磁场方向向上,故通过cd的电流方向向下,cd向右移动,B正确;同理可得C不正确,D正确.16、如图甲所示,等离子气流由左边连续以v0射入P1和P2两板间的匀强磁场中,ab直导线与P1、P2相连接,线圈A与直导线cd连接.线圈A内有随图乙所示的变化磁场,且磁场B的正方向规定为向左,如图甲所示.则下列说法正确的是 ( )A.0~1 s内ab、cd导线互相排斥B.1 s~2 s内ab、cd导线互相排斥C.2 s~3 s内ab、cd导线互相排斥D.3 s~4 s内ab、cd导线互相排斥答案 CD解析 由图甲左侧电路可以判断ab中电流方向由a到b;由右侧电路及图乙可以判断,0~2 s内cd中电流为由c到d,跟ab中的电流同向,因此ab、cd相互吸引,选项A、B 错误;2 s~4 s内cd中电流为由d到c,跟ab中电流反向,因此ab、cd相互排斥,选项C、D正确.17、如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动,则PQ所做的运动可能是( )A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动解析 MN向右运动,说明MN受到向右的安培力,因为ab在MN处的磁场垂直纸面向里MN中的感应电流由M→NL1中感应电流的磁场方向向上Error!;若L2中磁场方向向上减弱PQ中电流为Q→P且减小向右减速运动;若L2中磁场方向向下增强PQ中电流为P→Q且增大,向左加速运动.答案 BC18、如图所示,通电导线cd右侧有一个金属框与导线cd在同一平面内,金属棒ab放在框架上,若ab受到向左的磁场力,则cd中电流的变化情况是( )A.cd中通有由d→c方向逐渐减小的电流B.cd中通有由d→c方向逐渐增大的电流C.cd中通有由c→d方向逐渐减小的电流D.cd中通有由c→d方向逐渐增大的电流答案 BD19、如图所示,线圈由A位置开始下落,在磁场中受到的安培力如果总小于它的重力,则它在A、B、C、D四个位置(B、D位置恰好线圈有一半在磁场中)时,加速度关系为( ) A.a A>a B>a C>a DB.a A=a C>a B>a DC.a A=a C>a D>a BD.a A=a C>a B=a D答案 B解析 线圈在A、C位置时只受重力作用,加速度a A=a C=g.线圈在B、D位置时均受两个力的作用,其中安培力向上,重力向下.由于重力大于安培力,所以加速度向下,大小a=g-<g.又线圈在D点时速度大于B点速度,即F D>F B,所以Fma D<a B,因此加速度的关系为a A=a C>a B>a D,选项B正确.20、(2011·上海单科·13)如图,均匀带正电的绝缘圆环a 与金属圆环b 同心共面放置,当a 绕O 点在其所在平面内旋转时,b 中产生顺时针方的感应电流,且具有收缩趋势,由此可知,圆环a ( )A .顺时针加速旋转B .顺时针减速旋转C .逆时针加速旋转D .逆时针减速旋转解析 由楞次定律知,欲使b 中产生顺时针电流,则a 环内磁场应向里减弱或向外增强,a 环的旋转情况应该是顺时针减速或逆时针加速,由于b 环又有收缩趋势,说明a 环外部磁场向外,内部向里,故选B.答案 B 21、如图 (a)所示,两个闭合圆形线圈A 、B 的圆心重合,放在同一水平面内,线圈A 中通以如图(b)所示的交变电流,t =0时电流方向为顺时针(如图中箭头所示),在t 1~t 2时间段内,对于线圈B ,下列说法中正确的是( )A .线圈B 内有顺时针方向的电流,线圈有扩张的趋势B .线圈B 内有顺时针方向的电流,线圈有收缩的趋势C .线圈B 内有逆时针方向的电流,线圈有扩张的趋势D .线圈B 内有逆时针方向的电流,线圈有收缩的趋势答案 A解析 在t 1~t 2时间段内,A 线圈的电流为逆时针方向,产生的磁场垂直纸面向外且是增加的,由此可判定B 线圈中的电流为顺时针方向.线圈的扩张与收缩可用阻碍Φ变化的观点去判定.在t 1~t 2时间段内B 线圈内的Φ增强,根据楞次定律,只有B 线圈增大面积,才能阻碍Φ的增加,故选A.22、 (2011·海南单科·20)如图,磁场垂直于纸面,磁感应强度在竖直方向均匀分布,水平方向非均匀分布.一铜制圆环用丝线悬挂于O 点,将圆环拉至位置a 后无初速度释放,在圆环从a 摆向b 的过程中( )A .感应电流方向先逆时针后顺时针再逆时针B.感应电流方向一直是逆时针C.安培力方向始终与速度方向相反D.安培力方向始终沿水平方向答案 AD解析 圆环从位置a运动到磁场分界线前,磁通量向里增大,感应电流方向为逆时针;跨越分界线过程中,磁通量由向里最大变为向外最大,感应电流方向为顺时针;再摆到b的过程中,磁通量向外减小,感应电流方向为逆时针,A正确,B错误;由于圆环所在处的磁场,上下对称,所受安培力在竖直方向平衡,因此总的安培力方向沿水平方向,故C错误,D正确.。
知识讲解 电磁感应现象 感应电流方向的判断(基础)
物理总复习:电磁感应现象 感应电流方向的判断【考纲要求】1、知道磁通量的变化及其求解方法,理解产生感应电流、感应电动势的条件;2、理解楞次定律的基本含义与拓展形式;3、理解安培定则、左手定则、右手定则、楞次定律的异同,并能在实际问题中熟练运用。
【知识网络】【考点梳理】考点一、磁通量1、定义: 磁感应强度B 与垂直场方向的面积S 的乘积叫做穿过这个面积的磁通量,BS φ=。
如果面积S 与B 不垂直,如图所示,应以B 乘以在垂直于磁场方向上的投影面积S '。
即cos BS φθ'=。
2、磁通量的物理意义: 磁通量指穿过某一面积的磁感线条数。
3、磁通量的单位:Wb 211Wb T m =⋅。
要点诠释:(1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别,这时穿过某面的磁通量指的是不同方向穿过的磁通量的代数和。
另外,磁通量与线圈匝数无关。
磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负。
穿过某一面积的磁通量一般指合磁通量。
(2)磁通量的变化21φφφ∆=-,它可由B 、S 或两者之间的夹角的变化引起。
4、磁通量的变化要点诠释:(一)、磁通量改变的方式有以下几种(1)线圈跟磁体间发生相对运动,这种改变方式是S 不变而相当于B 变化。
(2)线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。
(3)线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。
其实质也是B 不变,而S 增大或减小。
(4)线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。
(二)、对公式BS φ=的理解在磁通量BS φ=的公式中,S 为垂直于磁感应强度B 方向上的有效面积,要正确理解 φ、B 、S 三者之间的关系。
(1)线圈的面积发生变化时磁通量是不一定发生变化的,如图(a ),当线圈面积由S 1变为S 2时,磁通量并没有变化。
试论感应电流方向的判断
试论感应电流方向的判断作者:郭赟来源:《职业·中旬》2010年第09期利用楞次定律和右手定则均可判断感应电流的方向。
右手定则进行判断虽比较直观,却有一定局限性,楞次定律本身并没有直接说明感应电流的方向如何,给出的是间接确定感应电流方向的方法。
楞次定律中涉及的物理量多,且关系复杂,如果不明确各物理量间的关系,在学习过程中极易造成思路混乱,影响对定律的理解及把握定律的实质,导致不能正确判断感应电流的方向。
下面就利用楞次定律和右手定则判断感应电流的方向谈一点粗浅的看法。
一、正确理解楞次定律楞次定律的内容是:在闭合回路中,感应电流产生的磁通总是阻碍原磁通的变化。
1.产生感应电流的条件由楞次定律的内容可知,产生感应电流的条件:只要穿过闭合回路的磁通量发生变化,闭合回路就有感应电流产生。
其条件可以归纳为两个:一个是电路本身的属性,即电路必须是闭合回路;另一个是穿过回路的磁通量发生变化。
主要体现在“变化”二字上。
2.明确“两个”磁场的概念当穿过闭合回路的磁通量发生变化时,闭合回路会产生感应电流,而感应电流与其他电流一样也会产生磁场,即感应电流的磁场,这样回路中就存在两个磁场,一个是原磁场(引起感应电流的磁场),另一个是感应电流的磁场(感应电流产生的磁场),两者不能混淆。
3.正确理解“阻碍”的含义由定律内容可看出,其核心是“阻碍”。
(1)只有深刻理解了“阻碍”的含义,才能准确把握定律的实质。
①“阻碍”不等于“阻止”。
磁通量的变化是引起感应电流的必要条件,原磁通量的变化是由外界条件变化(如电流的变化,相对位置的变化等)决定的,与感应电流无关。
原磁通量变化是条件,是主动的,感应电流是其作用的结果,是被动的。
当由于原磁通量的增加引起感应电流时,感应电流的磁场方向与原磁场方向相反,其作用仅仅使原磁通量的增加变慢,磁通量仍在增加。
当由于原磁通量的减少而引起感应电流时,感应电流的磁场方向与原磁场方向相同,其作用仅仅使原磁通量的减少变慢了,磁通量仍在减少。
80知识讲解 电磁感应现象 感应电流方向的判断(基础)
物理总复习:电磁感应现象 感应电流方向的判断【考纲要求】1、知道磁通量的变化及其求解方法,理解产生感应电流、感应电动势的条件;2、理解楞次定律的基本含义与拓展形式;3、理解安培定则、左手定则、右手定则、楞次定律的异同,并能在实际问题中熟练运用。
【知识网络】【考点梳理】考点一、磁通量1、定义: 磁感应强度B 与垂直场方向的面积S 的乘积叫做穿过这个面积的磁通量,BS φ=。
如果面积S 与B 不垂直,如图所示,应以B 乘以在垂直于磁场方向上的投影面积S '。
即cos BS φθ'=。
2、磁通量的物理意义: 磁通量指穿过某一面积的磁感线条数。
3、磁通量的单位:Wb 211Wb T m =⋅。
要点诠释:(1)磁通量是标量,当有不同方向的磁感线穿过某面时,常用正负加以区别,这时穿过某面的磁通量指的是不同方向穿过的磁通量的代数和。
另外,磁通量与线圈匝数无关。
磁通量正负的规定:任何一个面都有正、反两面,若规定磁感线从正面穿入磁通量为正,则磁感线从反面穿入时磁通量为负。
穿过某一面积的磁通量一般指合磁通量。
(2)磁通量的变化21φφφ∆=-,它可由B 、S 或两者之间的夹角的变化引起。
4、磁通量的变化要点诠释:(一)、磁通量改变的方式有以下几种(1)线圈跟磁体间发生相对运动,这种改变方式是S 不变而相当于B 变化。
(2)线圈不动,线圈所围面积也不变,但穿过线圈面积的磁感应强度是时间的函数。
(3)线圈所围面积发生变化,线圈中的一部分导体做切割磁感线运动。
其实质也是B 不变,而S 增大或减小。
(4)线圈所围面积不变,磁感应强度也不变,但二者间的夹角发生变化,如在匀强磁场中转动矩形线圈。
(二)、对公式BS φ=的理解在磁通量BS φ=的公式中,S 为垂直于磁感应强度B 方向上的有效面积,要正确理解 φ、B 、S 三者之间的关系。
(1)线圈的面积发生变化时磁通量是不一定发生变化的,如图(a ),当线圈面积由S 1变为S 2时,磁通量并没有变化。
电磁学左右手定则
博慧教育--电磁学中用手定则
左手定则:
左手定则:已知电流方向和磁感线方向,判断通电导体在磁场中受力方向。
(电动机)
伸开左手,让磁感线穿入手心(手心对准N极,手背对准S极),四指指向电流方向,那么大拇指的方向就是导体受力方向。
右手定则:
确定导体切割磁感线运动时在导体中产生的感应电流方向的定则。
(发电机)
伸开右手,使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向感应电流的方向。
安培定则,也叫右手螺旋定则,是表示电流和电流激发磁场的磁感线方向间关系的定则。
通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向;通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,使四指弯曲与电流方向一致,那么大拇指所指的那一端是通电螺线管的N极。
专题五 电路与电磁感应 (2)——2023届高考物理大单元二轮复习讲重难
【例 1】答案:D 解析:A. 外壳不能使用金属材料,若使用金属材料外壳也会发生电磁感应,形成回路,消 耗能量,故 A 错误; B. 通过楞次定律结合右手螺旋法则,知电流由 d 流出,相当于电源正极, d 点电势高于 c 点,故 B 错误; C. 在送电线圈电压不变的情况下,增加送电线圈匝数不改变送电线圈的电流和周围的磁场, 不可以提高受电线圈的电压,故 C 错误; D. 根据电磁感应原理可知,接收线圈中交变电流的频率与发射线圈中交变电流的频率相同, 故 D 正确。
(1)解决电磁感应图象问题的一般步骤 ①明确图象的种类,即是 B t 图象还是 t 图象或者是 E t 图象、 I t 图象等。 ②分析电磁感应的具体过程。 ③用右手定则或楞次定律确定方向对应关系。 ④结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等写出函数关系式.平张号 ⑤根据函数关系式,进行数学分析,如分析斜率的变化、截距等。 ⑥应用图象信息画图象、判断图象或讨论各物理量的变化。
(2) B t I t 如图 1,规定垂直纸面向里为磁场正方向,顺时针为电流正方向,根据 B t 图象画出 I t 图象,如图 2。
为方便记忆,我们设定:伸出右手,让大拇指指向磁场正方向,环绕四指,如果四指 环绕方向为线圈中电流正方向,则称为“B、I 二者满足右手”;若环绕方向为线圈中电流负 方向,则称为“B、I 二者不满足右手”。
专题五 电路与电磁感应 (2)
第十讲 电磁感应及应用
——2023届高考大单元二轮复习讲重难
一、核心思路
二、重点知识
1.“三定则、一定律”的应用 (1)安培定则:判断运动电荷、电流产生的磁场方向。 (2)左手定则:判断磁场对运动电荷、电流的作用力的方向。 (3)右手定则:判断部分导体切割磁感线产生感应电流的方向。 (4)楞次定律:判断闭合电路磁通量发生变化产生的感应电流的方向。 2.求感应电动势的两种方法 (1) E n ,用来计算感应电动势的平均值。
安培定则左右手定则
◆右手法则:
通电直导线中的安培定则(安培定则一):用右手握住通电直导线,让大拇指指向电流的方向,那么四指的指向就是磁感线的环绕方向;
通电螺线管中的安培定则(安培定则二):用右手握住通电螺线管,让四指指向电流的方向,那么大拇指所指的那一端是通电螺线管的N极。
◆右手定则:
右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内.把右手放入磁场中,若磁力线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流(感生电动势)的方向.
◆左手定则:
确定载流导线在外磁场中受力方向的定则.又称电动机定则.左手平展,大拇指与其余4指垂直,若磁力线垂直进入手心,4指指向电流方向,则大拇指所指方向为载流导线在外磁场
中受力的方向。
电磁左右手定则
右手定则(发电机法则):伸开右手,大拇指和其余四指垂直,且在同一平面内,把右手放在磁埸中,让垂直穿过掌心,(即掌心对着N极)大拇指表示导体运动方向,四指所指是感生电流方向.左手定则(电动机法则):伸开左手,大拇指和其余四指垂直,且在同一平面内,把左手放在磁埸中,让垂直穿过掌心,(即掌心对着N极)四指表示通入电流方向,则大拇指所指的是导体运动方向.右手螺旋法则(通电螺线管N,S判定):用右手握住螺线管,弯曲四指表示通以电流的方向,则大拇指所指的是通电螺线管的N极.右手安培定则(直线电流磁埸方向判定):右手握住导线,大拇指表示通以的电流方向,弯曲四指表示方向.四指指尖所指的就是该点的磁埸方向.(切线方向).左手定则:适用于电动机做握手状手心为磁场方向手指为电流方向大拇指为物体运动方向~~``右手定则:有两个1.做竖起大拇指状适用于螺线管手指为电流方向大拇指为磁场方向2.做握手状适用于发电机手心为磁场方向大拇指为物体运动方向手指为电流方向~~` 确定导体切割磁感线运动时在导体中产生的动生电动势方向的定则。
右手定则的内容是:伸开右手,使大拇指跟其余四个手指垂直并且都跟手掌在一个平面内,把右手放入磁场中,让磁感线垂直穿入手心,大拇指指向导体运动方向,则其余四指指向动生电动势的方向。
动生电动势的方向与产生的感应电流的方向相同。
右手定则确定的动生电动势的方向符合能量转化与守恒定律。
应用右手定则注意事项应用右手定则时要注意对象是一段直导线,而且速度v和磁场B都要垂直于导线,v与B也要垂直, 右手定则不能用来判断感生电动势的方向。
回你说的这些左右手定则都是矢量叉乘判定的右手法则。
分别判断两个矢量叉乘后得的第三个矢量的方向。
左手定则:左手定则(安培定则):已知电流方向和磁感线方向,判断通电导体在磁场中受力方向,如电动机。
伸开左手,让磁感线穿入手心(手心对准N极,手背对准S极), 四指指向电流方向 ,那么大拇指的方向就是导体受力方向。
什么是右手定则右手定则的计算方法
什么是右手定则右手定则的计算方法导读:我根据大家的需要整理了一份关于《什么是右手定则右手定则的计算方法》的内容,具体内容:电磁学中,右手定则判断的主要是与力无关的方向。
那么你对右手定则了解多少呢?以下是由我整理关于什么是右手定则的内容,希望大家喜欢!右手定则的简介如果是和力有关的则全依...电磁学中,右手定则判断的主要是与力无关的方向。
那么你对右手定则了解多少呢?以下是由我整理关于什么是右手定则的内容,希望大家喜欢!右手定则的简介如果是和力有关的则全依靠左手定则。
即,关于力的用左手,其他的(一般用于判断感应电流方向)用右手定则。
(这一点常常有人记混,可以发现"力"字向左撇,就用左手;而"电"字向右撇,就用右手)记忆口诀:左通力右生电。
还可以记忆为:因电而动用左手,因动而电用右手,方法简要:右手手指沿电流方向拳起,大拇指伸出,观察大拇指方向。
可以用右手的手掌和手指的方向来记忆导线切割磁感线时所产生的电流的方向,即:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从手心进入,并使拇指指向导线运动方向,这时四指所指的方向就是感应电流的方向。
这就是判定导线切割磁感线时感应电流方向的右手定则。
右手定则的操作方法右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。
把右手放入磁场中,若磁感线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流(动生电动势)的方向。
一般知道磁场、电流方向、运动方向的任意两个,让你判断第三个方向。
右手螺旋定则:(即安培定则)用右手握螺线管,让四指弯向与螺线管的电流方向相同,大拇指所指的那一端就是通电螺线管产生的磁场的N极。
直线电流的磁场的话,大拇指指向电流方向,另外四指弯曲指的方向为磁感线的方向(磁场方向或是小磁针北极所指方向或是小磁针受力方向)。
右手定则的计算方法电流元I1d 对相距12的另一电流元I2d 的作用力df12为:0 I1I2d2 × (d1 × 12)df12 = ── ───────────4 123式中d1.d2的方向都是电流的方向;12是从I1d 指向I2d 的径矢。
高中物理高考 】高考物理一轮复习学案 10 3 电磁感应定律的综合运用 有解析
【备考2022】高考物理一轮复习学案10.3 电磁感应定律的综合运用(2)右手定则的研究对象为闭合回路的一部分导体,适用于一段导线在磁场中做切割磁感线运动。
2.对电源的理解(1)在电磁感应现象中,产生感应电动势的那部分导体相当于电源,如切割磁感线的导体棒、有磁通量变化的线圈等,这种电源将其他形式的能转化为电能。
(2)判断感应电流和感应电动势的方向,都是把相当于电源的部分根据右手定则或楞次定律判定的。
实际问题中应注意外电路电流由高电势处流向低电势处,而内电路则相反。
3.导体棒在匀强磁场运动过程中的变与不变(1)外电阻的变与不变若外电路由无阻导线和定值电阻构成,导体棒运动过程中外电阻不变;若外电路由考虑电阻的导线组成,导体棒运动过程中外电阻改变。
(2)内电阻与电动势的变与不变切割磁感线的有效长度不变,则内电阻与电动势均不变。
反之,发生变化。
处理电磁感应区别安培定则、左手定则、右手定则的关键是抓住因果关系(1)因电而生磁(I→B)→安培定则(判断电流周围磁感线的方向)。
(2)因动而生电(v、B→I感)→右手定则(闭合回路的部分导体切割磁感线产生感应电流)。
(3)因电而受力(I、B→F安)→左手定则(磁场对电流有作用力)。
核心素养二对电路的理解(1)内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成。
(2)在闭合电路中,相当于“电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势。
核心素养三图像问题2.解决图像问题的一般步骤(1)明确图像的种类,即是Bt图像还是Φt图像,或者Et图像、It图像等。
(2)分析电磁感应的具体过程。
(3)用右手定则或楞次定律确定方向对应关系。
(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式。
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等。
安培定则、左手定则、右手定则对比表
安培定则、左手定则、右手定则对比表
安培定则
(又称右手螺旋定则)
左手定则
右手定则
定则的ห้องสมุดไป่ตู้用对象
电流产生磁场
磁场对电流或运动电荷施加磁场力(安培力或洛伦兹力)
一段导体在磁场中做切割磁磁感线运动,产生感应电流(或感应电动势)
定则判断的方向关系
电流I及其产生的磁场B二者的方向关系.
磁场B、电流I(或电荷q的运动方向v)及其所受磁场力F三者的方向关系.
磁场B、导体运动速度v、产生的磁感应电流I感(或感应电动势E感)三者的方向关系.
定则内容要点
(1)直线电流的磁场:大拇指指向电流I的方向,弯曲的四指指向B线的环绕方向.
(2)环形电流、通电螺线管的磁场:弯曲的四指指向电流I的环绕方向,大拇指指向环(管)内中心轴线处的磁场方向.
让B线垂直穿入手心,四指指向电流I的方向(或正电荷+q运动速度v的方向,或负电荷-q运动速度v的反方向),则大拇指指向为磁场力F的的方向.
什么是右手定则右手定则的计算方法
什么是右手定则右手定则的计算方法电磁学中,右手定则判断的主要是与力无关的方向。
那么你对右手定则了解多少呢?以下是由店铺整理关于什么是右手定则的内容,希望大家喜欢!右手定则的简介如果是和力有关的则全依靠左手定则。
即,关于力的用左手,其他的(一般用于判断感应电流方向)用右手定则。
(这一点常常有人记混,可以发现“力”字向左撇,就用左手;而“电”字向右撇,就用右手)记忆口诀:左通力右生电。
还可以记忆为:因电而动用左手,因动而电用右手,方法简要:右手手指沿电流方向拳起,大拇指伸出,观察大拇指方向。
可以用右手的手掌和手指的方向来记忆导线切割磁感线时所产生的电流的方向,即:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内;让磁感线从手心进入,并使拇指指向导线运动方向,这时四指所指的方向就是感应电流的方向。
这就是判定导线切割磁感线时感应电流方向的右手定则。
右手定则的操作方法右手平展,使大拇指与其余四指垂直,并且都跟手掌在一个平面内。
把右手放入磁场中,若磁感线垂直进入手心(当磁感线为直线时,相当于手心面向N极),大拇指指向导线运动方向,则四指所指方向为导线中感应电流(动生电动势)的方向。
一般知道磁场、电流方向、运动方向的任意两个,让你判断第三个方向。
右手螺旋定则:(即安培定则)用右手握螺线管,让四指弯向与螺线管的电流方向相同,大拇指所指的那一端就是通电螺线管产生的磁场的N极。
直线电流的磁场的话,大拇指指向电流方向,另外四指弯曲指的方向为磁感线的方向(磁场方向或是小磁针北极所指方向或是小磁针受力方向)。
右手定则的计算方法电流元I1dι 对相距γ12的另一电流元I2dι 的作用力df12为:μ0 I1I2dι2 × (dι1 × γ12)df12 = ── ───────────4π γ123式中dι1.dι2的方向都是电流的方向;γ12是从I1dι 指向I2dι 的径矢。
安培定律可分为两部分。
感应电流的方向判定完全解读
——右手定则及楞次定律应用
【复习目标】 会运用楞次定律和右手定则判断感应电流的方向. 【教学重点、难点】 楞次定律的推广含义需通过训练来达到深刻理解、熟练掌握的要求 【教学过程】
一、知识要点回顾 (一)感应电动势方向的判定 感应电流的方向就是感应电动势的方向。在内电路中,感应电动势的方向是由电源的负 极指向电源的正极,跟内电路的电流方向一致。产生感应电动势的那部分电路就是电源,感 应电流的方向就是电源内部的电流方向。所以感应电流的方向就感应电动势的方向。 (二)右手定则 1.判定方法:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁 感线从手心垂直进入,大拇指指向导体运动的方向,其余四指所指的方向就是感应电流的方 向。 2.适用范围:适用于闭合电路一部分导线切割磁感线产生感应电流的情况。 (三)楞次定律 1.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁 通量的变化。适用于由磁通量变化引起感应电流的各种情况。 2.楞次定律的推广含意:感应电流的效果总要阻碍产生感应电流的原因。 � � � 阻碍原磁通的变化 阻碍相对运动——“来拒去留”;或者致使回路面积变化——“增缩减扩” 阻碍原电流的变化(自感)
适用于定性判明感应电流所引起的机械效果。 二、重点·难点·疑点解释 (一)怎样正确理解楞次定律? 1.围绕“两个磁场”来理解楞次定律。所谓“两个磁场”是指原磁场(引起感应电流的 磁场)和感应磁场(由感应电流产生的磁场)楞次定律直接反映了两磁场之间关系,即感应
1
电流产生的磁场总要阻碍原磁场的磁通量的变化。并没有直接指明感应电流的方向,再用安 培定则进一步判断感应电流的方向 (三)楞次定律与右手定则在判定感应电流的方向问题上有无区别? 在判断由导体切割磁感线产生的感应电流时右手定则与楞次定律是等效的而右手定则比 楞次定律更方便。 楞次定律可适用于由磁通量变化割磁感线运动的情况,导线不动时不能应用,因此右手定则可以看作楞次 定律的特殊情况。 (四)如何判定感应电流的方向呢? 首先,根据题意选定规律。在应用右手定则不方便或无法应用时,选择楞次定律。其次, 当选用楞次定律之后,应按以下步骤进行: (1)明确原磁场的方向 (2)明确原磁通量是增加还是减小的 (3)根据楞次定律判定感应电流磁场的方向 (4)根据安培定则确定感应电流的方向
分析右手定则,安培定则,感应电流、感应电动势方向的判定
感应电流、感应电动势方向的判定:①是用右手定则,主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定,应用时要特别注意四指指向是电源内部电流的方向,因而也是电势升高的方向,②是楞次定律,感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(来拒去留)楞次定律:楞次定律用来判断感应电流方向:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。
(1)利用楞次定律判定感应电流方向的一般步骤是:①明确闭合回路中引起感应电流的原磁场方向;②确定原磁场穿过闭合回路中的磁通量如何变化(是增大还是减小);③根据楞次定律确定感应电流的磁场方向。
注意“阻碍”不是阻止,阻碍磁通量变指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用)(实际上磁通量还是增加);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用)(实际上磁通量还是减小)。
简称“增反减同”。
④利用安培定则(右手螺旋定则)确定感应电流方向。
(2)对楞次定律中“阻碍”的含义还可以推广为,感应电流的效果总是要阻碍产生感应电流的原因:①阻碍原磁通量的变化或原磁场的变化;②阻碍相对运动,可理解为“来拒去留”;③使线圈面积有扩大或缩小的趋势;④阻碍原电流的变化。
有时应用以上推论解题比用楞次定律本身更方便。
导体切割磁感线运动时产生感应电流,其方向用右手定则判定,内容是:伸开右手让姆指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线垂直从手心进入,拇指指向导体运动方向,其余四指的方向就是感应电流的方向。
(3)应用右手定则时应注意:①右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直。
②当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向。
③若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势。
④“因电而动”用左手定则。
安培定则如何判断磁场方向方法是什么
安培定则如何判断磁场⽅向⽅法是什么有很多的同学是⾮常想知道,安培定则如何判断磁场⽅向,⽅法是什么,⼩编整理了相关信息,希望会对⼤家有所帮助!安培定则怎么判断磁场⽅向的安培定则是⽤右⼿判断磁场⽅向的⽅法,需要⽤右⼿⼿握住导线,让伸直的拇指与电流的⽅向⼀致,四指所指的⽅向就是磁感线的环绕⽅向。
安培定则,也叫右⼿螺旋定则,是表⽰电流和电流激发磁场的磁感线⽅向间关系的定则。
通电直导线中的安培定则(安培定则⼀):⽤右⼿握住通电直导线,让⼤拇指指向电流的⽅向,那么四指指向就是磁感线的环绕⽅向;通电螺线管中的安培定则(安培定则⼆):⽤右⼿握住通电螺线管,让四指指向电流的⽅向,那么⼤拇指所指的那⼀端是通电螺线管的N极。
安培定则电流⽅向和握法怎么确定如果是通电直导线中,⼤拇指所指⽅向为电流⽅向,四指弯曲⽅向为磁场⽅向.如果是在环形电流或通电螺旋管仲,四指弯曲⽅向为电流⽅向,⼤拇指所指⽅向为磁场⽅向.另外附带⼀句,根据安培定则只能判断磁场⽅向,⼆不能判断N S极,因为,在通电螺旋管内部、条形磁铁内部,磁场⽅向是从S极指向N极.但⼀般题⽬上都会有背景,可以根据题⽬背景判断N极和S极安培定则公式电流元I1d L1对相距r12的另⼀电流元I2d L2的作⽤⼒d f12为:df12= I2d L2× [(µ0/ 4π)(I1d L1×r12/r123)]式中d L1、d L2的⽅向都是电流的⽅向;r21是从I2d L2指向I1d L1的径⽮。
电流元之间的安培⼒公式可分为两部分。
其⼀是电流元I2d L2在电流元I1d L1(即上述r21)处产⽣的磁场为d B= (µ0/ 4π)(I2d L2×r21/r213)这是毕奥-萨伐尔定律。
其⼆是电流元I1d L1在磁场d B中受到的作⽤⼒d f21为:d f=I d L×B后者即电流元在磁场中的安培⼒公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
① 明确闭合回路中引起感应电流的原磁场方向;
② 确定原磁场穿过闭合回路中的磁通量如何变化(是增大还是减小);
③ 根据次定律确定感应电流的磁场方向。注意“阻碍”不是阻止,阻碍磁通量变指:磁通量增加时,阻碍增加(感应电流的磁场和原磁场方向相反,起抵消作用)(实际上磁通量还是增加);磁通量减少时,阻碍减少(感应电流的磁场和原磁场方向一致,起补偿作用)(实际上磁通量还是减小)。简称“增反减同”。
② 当导体的运动方向与磁场方向不垂直时,拇指应指向切割磁感线的分速度方向。
③ 若形成闭合回路,四指指向感应电流方向;若未形成闭合回路,四指指向高电势。
④ “因电而动”用左手定则。“因动而电”用右手定则。(左通右感)
导体切割磁感线产生感应电流是磁通量发生变化引起感应电流的特例,所以判定电流方向的右手定则也是楞次定律的一个特例。用右手定则能判定的,一定也能用楞次定律判定,只是对导体在磁场中切割磁感线而产生感应电流方向的判定用右手定则更为简便。
导体切割磁感线运动时产生感应电流,其方向用右手定则判定,内容是:伸开右手让姆指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线垂直从手心进入,拇指指向导体运动方向,其余四指的方向就是感应电流的方向。
(3)应用右手定则时应注意:
① 右手定则仅在导体切割磁感线时使用,应用时要注意磁场方向、运动方向、感应电流方向三者互相垂直。
�
④ 利用安培定则(右手螺旋定则)确定感应电流方向。
(2)对楞次定律中“阻碍”的含义还可以推广为,感应电流的效果总是要阻碍产生感应电流的原因:
① 阻碍原磁通量的变化或原磁场的变化;
② 阻碍相对运动,可理解为“来拒去留”;
③ 使线圈面积有扩大或缩小的趋势;
④ 阻碍原电流的变化。
有时应用以上推论解题比用楞次定律本身更方便。
感应电流、感应电动势方向的判定:① 是用右手定则,主要用于闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向判定,应用时要特别注意四指指向是电源内部电流的方向,因而也是电势升高的方向,② 是楞次定律,感应电流的磁场总要阻碍引起感应电流的磁通量的变化。(来拒去留)
楞次定律:楞次定律用来判断感应电流方向:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。