换元法求值域
值域_求值域的方法大全及习题加详解
求值域方法函数值域的求法方法有好多,主要是题目不同,或者说稍微有一个数字出现问题,对我们来说,解题的思路可能就会出现非常大的区别.这里我主要弄几个出来,大家一起看一下吧. 函数的值域取决于定义域和对应法则,求函数的值域要注意优先考虑定义域常用求值域方法(1)、直接观察法:利用已有的基本函数的值域观察直接得出所求函数的值域 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。
例1、求函数1,[1,2]y x x =∈的值域。
(★★)例2、求函数x 3y -=的值域。
(★★) 答案:值域是:]3,[-∞ 【同步练习1】函数221xy+=的值域. (★★)解:}210{≤<y y(2)、配方法:二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的X 围;配方法是求二次函数值域最基本的方法之一。
例1、求函数225,y x x x R =-+∈的值域。
(★★)例2、求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
(★★★) 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈ 由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]例3、求()()22log 26log 62log 222222-+=++=x x x y 。
(★★★★)(配方法、换元法)解:………所以当41=x 时,y 有最小值-2。
故所求函数值域为[-2,+∞)。
例4、设02x ≤≤,求函数1()4321xx f x +=-+的值域.解:12()4321(23)8xx x f x +=-+=--,02x ∵≤≤,24x 1∴≤≤.∴当23x =时,函数取得最小值8-;当21x =时,函数取得最大值4-,∴函数的值域为[84]--,. 评注:配方法往往需结合函数图象求值域. 例5、求函数13432-+-=x x y 的值域。
求函数值域的几种常见方法
求函数值域的几种常见方法(总5页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March求函数值域的几种常见方法河北涿州中学高二数学组------李瑞英初等函数的值域是由函数的定义域和对应法则两个因素确定的,常常一个问题要覆盖多个知识点,涉及多种数学方法,渗透多种数学思想,因此它是高中阶段的一个难点。
现对高中阶段常用的方法总结如下:方法一:配方法 一般适用于二次函数类型的函数例1.求函数[]4,1,0!6)(2∈+-=x x x x f 的值域 解析:[][]5,1)(4,1,1)3()(2∈∴∈+-=x f x x x f方法二:换元法:适用于含根式、分式、三角函数类型的函数,且在还原过程中需注意还原后t 的取值范围例2.求函数x x y 21--=的值域 解析:令x t 21-=则2t 1x 02-=≥且t 1)1(212++-=∴t y 即]21,(-∞∈y 方法三:分离常数法:适用于分式类型的函数,且在解题过程中注意变量的范围例3.求函数521+-=x xy 的值域 解析:由题意可知函数的定义域为⎭⎬⎫⎩⎨⎧-≠25/x x 104721521++-=+-=x x x y⎪⎭⎫ ⎝⎛+∞-⋃⎪⎭⎫ ⎝⎛-∞-∈∴,2121,y方法四:单调性法:主要适用于能够判断单调性的复合函数、和函数。
例4.(1)求函数42221+-⎪⎭⎫ ⎝⎛=x x y 的值域(2)求函数x x y 21--=的值域解析:(1)令422+-=x x t 则3)1(2+-=x t 3≥∴t 而ty ⎪⎭⎫ ⎝⎛=21是减函数]81,0(∈y (2)由题意可知函数的定义域为]21,(-∞ x x g x x f 21)(,)(--== 在定义域内都是单调增函数)()(x g x f y +=∴在定义域内也是单调增函数∈∴y ]21,(-∞方法五;反解法(利用反函数的原理)例5.求函数2211x x y +-=的值域 解析:由题意可知函数的定义域为R02≥∴x 而函数2211x x y +-=可化为y y x +-=112 011≥+-∴y y 即]1,1(-∈y 方法六:不等式法:柯西不等式、基本不等式、绝对值不等式,在适用中注意适用范围例6.(1) 求函数1log log 33-+=x x y (x>1)的值域 (2) 求函数x x y 21015-+-=的值域(3)求函数12-++=x x y 的值域解析:(1) 令x 3log t =则 t>0 111211=-⋅≥-+=∴t t t t y 当且仅当t t 1=即t=1时等号成立 ),1[+∞∈∴y(2) 由函数知其定义域为[1,5],且y>0 36427)5()1()2(552152222=⨯=-+-⨯+≤-⨯+-⨯=x x x x y(3)),3[3121212+∞∈∴=-++≥-++=-++=y x x x x x x y 方法七:判别式法:一般转化为含参数y 的一元二次函数,注意二次项的系数 例七.求函数1122+-+=x x x y 的值域 解析:由函数可知定义域为R函数1122+-+=x x x y 可化为01)1(2=-+--y yx x y (*)有解 当y-1=0即y=1时,(*)式可化为-x=0即x=0,满足题意当1y ,01≠≠-即y 时0)1y (4)y (22≥---=∆ 解得232≤≤y 1y 232≠≤≤∴且y 综上:函数的值域为]2,32[方法八:平方法:注意定义域例8.求函数x x y -++=21的值域解析:由题意可知函数的定义域为[-1,2]函数x x y -++=21可化为[][]6,3y 6,349)21(23)2)(1(3222∈∈∴+--+=-++=即y x x x y方法九:导数法:适用于次数比较高的整式函数例9.求函数)51(,2249)(23≤≤++-=x x x x x f 的值域 解析:令24183)(2'+-=x x x f =0得4,2==x x方法十:构造法:构造距离、构造斜率,需数形结合求得例10.求函数102422++++=x x x y 的值域 解析:2222)30()1()20()0(-+++-+-=x x y的距离和到点轴上的点可看作函数C(-1,3)B(0,2),)0,x (A x y ∴作B(0,2)关于x 轴的对称点D(0,-2)则线段CD 的长度就是y 的最小值且26=CD 所以函数的值域为),26[+∞练习:1、求函数[]2,2,33-∈-=x x x y 的值域 2、求函数3221++-=x x y 的值域3、求函数122+--=x x x x y 的值域 4、求函数12222+---=x x x x y 的值域 5、求函数x xy cos 2sin --=的值域6、求函数)1(112->+++=x x x x y 的值域7、求函数122+=x xy 的值域 8、求函数x x y 2+=的值域9、求函数[]3,0,924421∈+⋅-=-x y x x 的值域 10.求函数45cos 3sin 2-+=x x y 的值域 11.求函数()176log 22+-=x x y 的值域总结:求初等函数的值域问题是一个综合性的问题,要想用单一的方法求函数的值域是不可能,但也不是杂乱无章的,只要我们灵活的掌握数学基础知识、思想和方法,并根据所给解析式的特征,结合定义域灵活的选择方法,并力求一题多解方可达到举一反三的效果。
函数值域的常见求法8大题型(解析版)
函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。
在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。
满分技巧一、求函数值域的常见方法1.直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2.逐层法:求f 1(f 2⋯f n (x ))型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3.配方法:配方法是二次型函数值域的基本方法,即形如“y =ax x +bx +c (a ≠0)”或“y =a [f (x )]2+bf (x )+c (a ≠0)”的函数均可用配方法求值域;4.换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y =ax +b cx +d或y =cx +dax +b 的结构,可用“cx +d =t ”换元;(2)y =ax +b ±cx +d (a ,b ,c ,d 均为常数,a ≠0,c ≠0),可用“cx +d =t ”换元;(3)y =bx ±a 2-x 2型的函数,可用“x =a cos θ(θ∈[0,π])”或“x =a sin θθ∈-π2,π2”换元;5.分离常数法:形如y =ax +b cx +d (ac ≠0)的函数,应用分离常数法求值域,即y =ax +b cx +d=ac +bc -adc 2x +d c ,然后求值域;6.基本不等式法:形如y =ax +bx(ab >0)的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a +b ≥2ab 求函数的值域(或最值)时,应满足三个条件:①a >0,b >0;②a +b (或ab )为定值;③取等号的条件为a =b ,三个条件缺一不可;7.函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如y =ax +b -cx +d (ac <0)的函数可用函数单调性求值域;(2)形如y =ax +bx的函数,当ab >0时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解;公众号:高中数学最新试题当ab <0时,y =ax +bx在(-∞,0)和(0,+∞)上为单调函数,可直接利用单调性求解。
用换元法求函数值域
1用换元法求函数值域【自我诊断】1. 函数f (x )=1 x +1+1的值域为_________. 【答案】(0,1].2.函数f (x )=2x -3+4x -13的值域为_________.【答案】[72,+∞). 【解析】方法一、2x -3,4x -13在定义域[134,+∞)上都是增函数,所以f (x )≥f (2).方法二、f (x )的定义域是[134,+∞),令4x -13=t ,x ∈[134,+∞),则x =14(t 2+13),t ∈[0,+∞),则y =2×14(t 2+13)-3+t =12(t +1)2+3,在t ∈[0,+∞)单调递增, y ∈[72,+∞),所以函数f (x )=2x -3+4x -13的值域为[72,+∞). 3.函数f (x )=2x -3-4x -13的值域为_________.【答案】[3,+∞).【解析】f (x )的定义域是[134,+∞),令4x -13=t ,x ∈[134,+∞),则x =14(t 2+13),t ∈[0,+∞),则y =2×14(t 2+13)-3-t =12(t -1)2+3,在[0,1]单调递减,在[1,+∞)单调递增, y ∈[3,+∞),所以函数f (x )=2x -3-4x -13的值域为[3,+∞).4.函数y =e x3+e x的值域为___________. 【答案】(0,1).【解析】f (x )的定义域是R ,令3+e x =t ,x ∈R ,则e x =t -3,t ∈(3,+∞),则y =t -3t =1-3t , 由t ∈(3,+∞),得3t ∈(0,1),-3t ∈(-1,0),1-3t∈(0,1). 函数y =e x3+e x的值域为(0,1). 5. 函数y =ln e x3+e x的值域为___________. 【答案】(-∞,0).6.函数y =(x 2-2x -1)2+3x 2-6x -13的值域是___________.2 【答案】[-494,+∞). 【解析】令t =x 2-2x -1=(x -1)2-2,x ∈R ,则t ∈[-2,+∞),y =t 2+3t -10=(t +32)2-494,t ∈[-2,+∞),在[-2,-32]单调减,在[-32,+∞)单调增,当t =-32,y =-494. 函数y =(x 2-2x -1)2+3x 2-6x -13的值域是[-494,+∞).【跟踪训练】1.(1)y =x +x -1的值域是________;(2)y =x -x -1的值域是________.【答案】(1)[1,+∞);(2)[34,+∞).2.函数y =2e x3+e x 的值域为___________.【答案】(0,2).。
换元法求函数值域
换 元 法 求 函 数 值 域某些函数能够利用代数或三角代换将其化成值域简单确立的另一函数,进而求得原函数的值域, 其题型特点是函数分析式含有根式或三角函数公式模型。
形如 y ax bcxd (a 、 b 、 c 、 d 均为常数,且 a ≠0) ,能够令 t = cx d (t0), 则有 t 2cx d ∴ xt 2 d∴ y a t 2 db t ; 进而就把原函数化cc成了对于 t 的二次函数,求出这个函数值域就是原函数的值域, 值得一提的是要 注意参数 t 的取值范围。
换元法是数学方法中几种最主要方法之一, 在求函数的 值域中相同发挥侧重要的作用。
例 1、求函数 y 3x 1 3x 的值域。
剖析:函数 y3x1 3x 形如 y axbcx d (a 、b 、c 、 d 均为常数,且 a ≠0) ,所以,能够考虑用换元法。
解:令 t13x(t0) ,则 t 21 3x1 t 2∴ x3∴原函数可化为 y31t 2 t = t 2 t 1= (t 1)2 5324∴ 其函数图像如图 1 所示 ∴当 t1时,即 x1 时245y 获得最大值 y max = , 无最小值。
∴函数 y 3x 1 3x 的值域为( -∞,5] 。
4例 2、求函数 y 4x 12x 3 的值域。
解:[换元法]令 t 2x 3t 2 3(t 0) ,则 x2∴原函数可化为 yt 23 1 t 2t 2t1 )2 39425 2(t84∵t 0∴当 t0时,即 x 3时, y 获得最小值y min =5,无最大值。
2∴函数 y4x12x 3的值域为 [ 5,+∞)。
例 3、求函数 y x1x2的值域。
[4]剖析:函数y x1x2的定义域为 [-1, 1] ,我们注意到 1 sin t 1 (t),所以,对于定义域为[-1,1]的函数,我们能够考虑用22x sin t (2t) 进行三角换元。
2解:函数y x1x2的定义域为 [-1 ,1] ,设 x sin t (t) ,22则原函数 y x1x2可化为y sin t cost = 2 sin(t)4∵t∴t324442看图像(图 2)可知2sin(t)124∴ 1 2 sin(t) 2 ∴1y24即原函数的值域为 [-1 ,2] 。
复合函数求值域方法总结
复合函数的值域【学习目标】1.掌握复合函数求值域的几种常见方法.【学习重难点】1.熟练应用换元法求值域.【知识精讲】1.复合函数设y 是u 的函数()y f u =,u 是x 的函数()u x ϕ=,如果()x ϕ的值全部或部分在()f u 的定义域内,则y 通过u 成为x 的函数,记作()()y f x ϕ= ,称为由函数()y f u =与()u x ϕ=复合而成的复合函数。
如y ()2sin 1y x =-;()tan 31y x =+等都是复合函数。
2.换元法求值域 换元的常用方法有:(1)局部换元:又称整体换元;是指在已知或未知中,某个代数式几次出现,我们用一个字母或一个符号来代替它从而简化问题.(2)三角换元:应用于去根号,或变换为三角形式易求,或表达式中有明显三角含义时进行换元,比如说:平方关系221x y +=,则可令cos ,sin x y αα==. 3.分离常数求值域(1)有界函数值域:(分离常数) ①识别出有界函数; ②反解出有界函数;③利用有界函数求原函数值域. (2)对勾函数图像求值域:①分离常数后形成对勾函数或分离常数后换元形成对勾函数; ②先确定定义域,然后根据对勾函数图像确定值域。
x)()0,.+∞)(2,abab +∞,b a ⎛⎫-∞- ⎪ ⎪⎝⎭和奇偶性:奇函数,其图像关于原点中心对称渐近线:对勾函数共有两条渐近线,分别为0x =和y ax =.【经典例题】例1. 函数()22log 4y x x =-的值域为( ) A .[)0,+∞ B .(],2-∞C .(]0,2D .(],0-∞【答案】B 【解析】∵()22log 4y x x =-, ∴240x x ->,∴04x <<, 令24t x x =-,∴2log y t =,∴原函数的值域转化为函数2log y t =的值域, 24t x x =-,且04x <<,易求得04t <≤, ∴2log 2t ≤,∴2log y t =的值域为:(],2-∞, 故选:B .【变式】 求函数()()()[]()1322,2x x f x x -+=∈-的值域.【答案】116,32⎡⎤⎢⎥⎣⎦【解析】[]2,2x ∈-时()()13x x -+的范围是[]4,5-, 则()f x 的值域是116,32⎡⎤⎢⎥⎣⎦.例2.求函数y【答案】[]0,3 【解析】∵ (]245,9x x -++∈-∞, ∴开根号得到[]0,3 所以函数值域为:[]0,3.【变式】求函数y =【答案】⎝⎦【解析】令()()221311124g x x x x x x ⎛⎫=--=-+=-+ ⎪⎝⎭,∴ ()g x 的值域为:3,4⎡⎫+∞⎪⎢⎣⎭,由()()1f xg x =得,()max 14334f x ==,∴函数()()1f x x =的值域为:40,⎛⎤ ⎥⎦. 综上y=⎛ ⎝⎦.例3. 函数y x =( ) A .[)0,+∞ B .(],1-∞C .5,4⎛⎤-∞ ⎥⎝⎦D .[]0,1【答案】C【解析】令t =0t ≥, ∴21t x =-, ∴21x t =-,∴21y t t =-+,其中0t ≥,∴21524y t ⎛⎫=--+ ⎪⎝⎭,易得所求函数的值域:5,4⎛⎤-∞ ⎥⎝⎦,故选:C .【变式】函数4y x =+ ( )A .[)0,+∞B .1,2⎛⎤-∞ ⎥⎝⎦C .17,8⎛⎤-∞ ⎥⎝⎦D .10,2⎡⎤⎢⎥⎣⎦【答案】C【解析】令t =,其中0t ≥,∴212t x =-,∴212t x -=,∴()221y t t =-+, ∴222y t t =-++, ∴178y ≤,∴值域为17,8⎛⎤-∞ ⎥⎝⎦, 故选:C .例5. 求函数求函数()3423x x f x =⋅-+,[]1,2x ∈-的值域【答案】13,474⎡⎤⎢⎥⎣⎦【解析】令[]2,1,2x t x =∈-,则1,42t ⎡⎤∈⎢⎥⎣⎦,得2133,,42y t t t ⎡⎤=-+∈⎢⎥⎣⎦.因为函数233y t t =-+的对称轴为16t =,所以函数在1,42⎡⎤⎢⎥⎣⎦上单调递增,故函数()f x 的值域为13,474⎡⎤⎢⎥⎣⎦.例6. 求函数22121242y x x x x x ⎛⎫=+---≤- ⎪⎝⎭的值域. 【答案】[)2,+∞【解析】()22212112426y f x x x x x x x x x ⎛⎫⎛⎫==+---=+-+- ⎪ ⎪⎝⎭⎝⎭令1t x x=+,12x ≤-,(],2t ∴∈-∞-()()2262f t t t t ∴=--≤-()[)2,f t ∴∈+∞ 即函数的值域是[)2,+∞.【变式】已知函数()()()22,0x x y e a e a a R a -=-+-∈≠ ,求y 的最小值.【答案】当2a ≥时,()2min 2y f a a ==- ; 当2a <且0a ≠时,()()2min 221y f a ==-【解析】()()22222x x x x y e e a e e a --=+-++- ,令x x t e e -=+,则()22222f t t at a =-+-.2x x t e e -=+≥,()()222f t t a a ∴=-+-的定义域为[)2,+∞,抛物线的对称轴方程是t a =,∴ 当2a ≥时,()2min 2y f a a ==- ;当2a <且0a ≠时,()()2min 221y f a ==-.例7.求函数()2222x y x R x =∈+的值域.【答案】[)0,2【解析】由题意2222x y x =+,可得222yx y =-,又因为20x ≥ ∴2202yx y=≥-,解得02y ≤< 因此函数的值域为[)0,2.【变式】已知函数[]()20,12xx e y x e =∈+,求函数的值域.【答案】22,32e e ⎡⎤⎢⎥+⎣⎦【解析】24222x x x e y e e ==-++ []0,1x ∈]时1x e e ≤≤ 设x e t =,则422y t =-+随t 的增大而增大 所以y 的值域为22,32e e ⎡⎤⎢⎥+⎣⎦.例8. 已知函数2328log 1mx x ny x ++=+的定义域为R ,值域为[]0,2,求,m n 的值.【答案】5m n ==【解析】函数2328l o g 1m x x ny x ++=+的定义域为R ,值域为[]0,2⇔函数2281m x x n y x ++=+的定义域为R , 值域为 22[1,9](1)8y x mx x n ⇔=+=++使方程 ,即2()8()0m y x x n y -++-=有实数解的y 的取值范围为[]()()1,96440m y n y ⇔∆=---≥ 的解集为[]1,9()2y 160m n y mn ⇔-++-≤的解集为[]1,9105169m n m n mn +=⎧⇔⇔==⎨-=⎩. 【变式】 已知函数()21ax bf x x +=+的值域为[]1,4-,求,a b 的值 【答案】4a =,3b =或4a =-,3b = 【解析】21ax by x +=+等价于()20x y ax y b -+-= 这个关于x 的方程有实数解则判别式0∆≥ ∴()240a y y b --≥22440y by a --≤值域[]1,4-即不等式的解集是14y -≤≤∴1-和4是对应的方程22440y by a --=的根∴ 4144b-+=,2144a -⨯=-23,16b a ==,∴4a =,3b =或4a =-,3b =.例9. 设函数()2,1,1x x f x x x ⎧≥⎪=⎨<⎪⎩,()g x 是二次函数,若复合函数()f g x ⎡⎤⎣⎦的值域是[)0,+∞,求函数()g x 的值域【答案】[)0,+∞【解析】函数()f x 的图像如下,由于()g x 是二次函数,它的值域只有两种形式[),k +∞和(],k -∞,其中k 为二次函数顶点的纵坐标,数形结合可知,只有当()g x 的值域为[)0,+∞时,()f g x ⎡⎤⎣⎦的值域为[)0,+∞.【变式】设函数()22,0,0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩,解不等式()()2f f x ≤【答案】2x ≤【解析】()()f f x 是()f x 的二次迭代,记()u f x =,则()2f u ≤,如下左图,由()2f u ≤数形结合可得2u ≥-,即()2f x ≥-;如下右图,由()2f x ≥-可得2x ≤.【课后练习】1.函数y 的值域为 .2.求函数2462x x y ++=的值域.3.求函数()22231x y x R x -=∈+的值域.【课后练习答案】1.【答案】[]0,2【解答】令24x x t -=,则必有0t ≥,根据二次函数的值域求法,新变元t 的范围是[]0,4, 根据二次根式函数的性质,原函数的值域为[]0,2.2.【答案】[4,)+∞【解析】令246u x x =++,则2.u y =因为()2245222u x x x =++=++≥,所以222 4.u y =≥=即函数2462xx y ++=的值域为[4,)+∞.3.【答案】[)3,2- 【解析】()222222152352111x x y x x x +--===-+++ 平方项恒非负,20x ≥ 211x +≥ ∴25051x <≤+ ∴25501x -≤-<+ ∴253221x -≤-<+ 函数的值域为[)3,2-.。
换元法求函数值域
换 元 法 求 函 数 值 域某些函数可以利用代数或三角代换将其化成值域容易确定的另一函数,从而求得原函数的 值域,其题型特征是函数解析式含有根式或三角函数公式模型。
形如y ax b . cx d (a 、b 、c 、 d 均为常数,且0),可以令t 二Jex d (t 0),则有t 2 cx d值域就是原函数的值域,值得一提的是要注意参数 t 的取值范围。
换元法是数学方法中几种 最主要方法之一,在求函数的值域中同样发挥着重要的作用。
例1、求函数y 3x ,1 3x 的值域。
1 t 2…x3••• t 0 .•.当t 0时,即x -时,y 取得最小值y min =5,无最大值。
2•函数y 4x 1 ,2x 3的值域为[5,+^)0t 2 d a cb t ;从而就把原函数化成了关于 t 的二次函数,求出这个函数分析:函数y 3x - 1 3x 形如y 此,可以考虑用换元法。
ax b . cx d (a 、b 、c 、d 均为常数,且a ^0),因解:令 t J 3x(t0),则 t 2 13x•原函数可化为y .••其函数图像如图 •当 t 1时,2y 取得最大值ymax3 上 t = t 231所示 丄时45,无最小值。
41= (t•••函数y 3x 、、1 3x 的值域为(-x , 5] 例2、求函数y 4x 1. 2x 3的值域。
2- ,,/ 戶d-i 心亞砧M\ 1 /! a-*7 \解:[换元法]令t t 23 .2x 3 (t 0),则 x -32•原函数可化为y 4— 1 t 店 t 5 2(t24)239 8例3、求函数y x 、.厂X2的值域。
⑷ 分析:函数y x .1 x2的定义域为[-1,1],我们注意到1 sint 1( t ),因此,对于定义域为[-1,1]的函数,我们可以考虑用x sint( t )进行三2 2 2 2角换元。
解:函数y x.1x2的定义域为[-1,1],设x sint(t-),22x2可化为y si nt cost — 2 s in (t )则原函数y x、1••• 一t -二-t — 3 4t 二t2 2 4 4 42看图像(图2)可知—sin(t -) 12 41 』2 sin(t —) ■■■..■ 21 y J24即原函数的值域为[-1 , 、2]。
换元法求值域(人教A版)(含答案)
换元法求值域(人教A版)一、单选题(共10道,每道10分)
1.函数的值域是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:换元法求值域
2.函数的值域是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:换元法求值域
3.函数的值域是( )
A. B.
C. D.
答案:D
解题思路:
试题难度:三颗星知识点:换元法求值域
4.函数的值域是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:换元法求值域
5.函数的值域是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:换元法求值域
6.函数的值域是( )
A. B.
C. D.
答案:A
解题思路:
试题难度:三颗星知识点:换元法求值域
7.函数的值域是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:换元法求值域
8.函数的值域是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:换元法求值域
9.若函数的定义域是,则函数的值域是( )
A. B.
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:复合函数
10.若函数的定义域是,则函数的值域是( )
A. B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:换元法求值域。
求函数值域常见的五种方法
求函数值域常见的五种方法求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考.一、 判别式法思路:将函数式整理成一元二次方程的形式,借用判别式求值域.例1 求函数的4312--=x x y 值域. 解:原式整理成01432=---y yx yx , )4()41()1(∞+⋃-⋃--∞∈,,,x ,且0≠y ,∴0)14(492≥++=∆y y y .解得0≥y 或254-≤y . 当 254-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]254--+∞⋃∞,(. 二、 配方法例2 求函数x x y 21-+=的值域. 解:由已知得2121)21(21+-+--=x x y 1)121(212+---=x∴所求函数的值域是]1-,(∞. 三、 单调性法思路:利用函数的图象和性质求解.例3 当)0,21(-∈x 时,求函数)1lg()1lg(x x y -++=的值域.解:由已知得)1lg(2x y -=, ∵)0,21(-∈x ,∴)41,0(2∈x . 又2x -在)0,21(-∈x 上递增, ∴)1,43(12∈-x . 又u y lg =在)1,43(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,43(lg . 四、 反函数法例4 求函数xx y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得011≥+-=y y x , ∴1≥y 或1-<y .∴函数的值域为),1[)1,(+∞⋃--∞.五、 换元法例5 求函数x x y --=1的值域。
解:令x t -=1,则)0(12≥-=t t x ,那么45)21(2++-=t y . ∵1≥t 时,y 在),0[+∞上递减, ∴当t ≥0时,]1,(-∞∈y .∴原函数的值域是]1,(-∞.。
函数值域的求法典例精讲
函数值域的求法典例精讲1、换元法:例1:函数()2f x x =-的值域是()A.[)0,+∞ B.17,8⎡⎫+∞⎪⎢⎣⎭C.5,4⎡⎫+∞⎪⎢⎣⎭D.15,8⎡⎫+∞⎪⎢⎣⎭思路:解析式中只含一个根式,所以可将其视为一个整体换元,从而将解析式转为二次函数,求得值域即可。
解:()f x 的定义域为[)1,+∞令t =0t ∴≥,则21x t =+()2211521248y t t t ⎛⎫∴=+-=-+⎪⎝⎭[)0,t ∈+∞ ()f x ∴的值域为15,8⎡⎫+∞⎪⎢⎣⎭例2(1)函数113x y -=的值域为()A.()0,+∞ B.()()0,11,+∞ C.{}|1x x ≠ D.()1,+∞(2)函数()[]1428,2,2xx f x x +=--∈-的值域为__________(3)函数1ln 1x x e y e +=-的值域为__________思路:(1)本题可视为()3f x y =的形式,所以可将指数进行换元,从而转化为指数函数值域问题:令11t x =-,则()(),00,t ∈-∞+∞ ,所以可得()()30,11,ty =∈+∞ (2)如前文所说,()()214282228xx x x f x +=--=-⋅-,将2x视为一个整体令2x t =,则可将其转化为二次函数求得值域解:()()214282228xx xx f x +=--=-⋅-令2xt =[]2,2x ∈- 1,44t ⎡⎤∴∈⎢⎥⎣⎦()222819y t t t =--=--()f x ∴的值域为[]9,0-(3)所求函数为()ln f x ⎡⎤⎣⎦的形式,所以求得11x x e e +-的范围,再取对数即可。
对11x x e e +-进行变形可得:12111x x xe e e +=+--,从而将1x e -视为一个整体,即可转为反比例函数,从而求得范围解:定义域:()100,xe x ->⇒∈+∞12111x x xe e e +=+-- 令1xt e =-()0,t ∴∈+∞()211,t ∴+∈+∞()1ln 0,1x x e y e +∴=∈+∞-答案:(1)B(2)[]9,0-(3)()0,+∞例3:已知函数()[]23log ,1,4f x x x =+∈,则()()()22g x f x f x =-⎡⎤⎣⎦的值域为()A.[]18,2-- B.[]11,6-- C.[]18,6- D.[]11,2--思路:依题意可知()()()22222223log 3log log 4log 6g x x x x x =+-+=---,所以可将2log x 视为一个整体换元,从而将问题转化为求二次函数值域,但本题要注意的是()g x 的定义域,由已知()f x 的定义域为[]1,4,则()()()22g x f xf x =-⎡⎤⎣⎦的定义域为:21414x x ⎧≤≤⎨≤≤⎩,解得:[]1,2x ∈,而不是[]1,4解:()()22223log 3log g x x x =+-+()222232log log 6log 9x x x ⎡⎤=+-++⎣⎦()222log 4log 6x x =---()f x 的定义域为[]1,4,且()()()22g x f x f x =-⎡⎤⎣⎦21414x x ⎧≤≤∴⎨≤≤⎩,解得:[]1,2x ∈令2log t x =,则[]0,1t ∈()224622y t t t ∴=---=-+-[]11,6y ∴∈--,即()g x 的值域为[]11,6--答案:B 2、数形结合例4:(1)设函数()y f x =定义域为R ,对给定正数M ,定义函数()()()(),,M f x f x M f x M f x M≤⎧⎪=⎨>⎪⎩则称函数()M f x 为()f x 的“孪生函数”,若给定函数()22,20,121,0x x x f x M x ⎧--≤≤⎪==⎨->⎪⎩,则()M y f x =的值域为()A.[]2,1- B.[]1,2- C.(],2-∞ D.(],1-∞-(2)定义{}min ,,a b c 为,,a b c 中的最小值,设(){}2min 23,1,53f x x x x =++-,则()f x 的最大值是__________思路:(1)根据“孪生函数”定义不难发现其图像特点,即以y M =为分界线,()f x 图像在y M =下方的图像不变,在M 上方的图像则变为y M =,通过作图即可得到()M f x 的值域为[]2,1-(2)本题若利用{}min ,,a b c 的定义将()f x 转为分段函数,则需要对三个式子两两比较,比较繁琐,故考虑进行数形结合,将三个解析式的图像作在同一坐标系下,则()f x为三段函数图像中靠下的部分,从而通过数形结合可得()f x 的最大值点为21y x =+与53y x =-在第一象限的交点,即211253x y x y y x=⎧=+⎧⇒⎨⎨==-⎩⎩,所以()max 2f x =答案:(1)A(2)2例5:已知函数()()()()222222,228f x x a x a g x x a x a =-++=-+--+,设()()(){}()()(){}12max ,,min ,H x f x g x H x f x g x ==,(其中{}max ,p q 表示,p q 中的较大值,{}min ,p q 表示,p q 中的较小值)记()1H x 的值域为A ,()2H x 的值域为B ,则A B = ______________思路:由()()12,H x H x 的定义可想到其图像特点,即若将()(),f x g x 的图像作在同一坐标系中,那么()1H x 为()(),f x g x 图像中位于上方的部分,而()2H x 为()(),f x g x 图像中位于下方的部分。
求值域的方法
求值域的方法如何求函数的值域一、配方法将函数配方成顶点式的格式,再根据函数的定义域,求得函数的值域。
二、常数分离这一般是对于分数形式的函数来说的,将分子上的函数尽量配成与分母相同的形式,进行常数分离,求得值域。
三、逆求法对于y=某x的形式,可用逆求法,表示为x=某y,此时可看y的限制范围,就是原式的值域了。
四、换元法对于函数的某一部分,较复杂或生疏,可用换元法,将函数转变成我们熟悉的形式,从而求解。
五、单调性可先求出函数的单调性(注意先求定义域),根据单调性在定义域上求出函数的值域。
六、基本不等式根据我们学过的基本不等式,可将函数转换成可运用基本不等式的形式,以此来求值域。
七、数形结合可根据函数给出的式子,画出函数的图形,在图形上找出对应点求出值域。
八、求导法求出函数的导数,观察函数的定义域,将端点值与极值比较,求出最大值与最小值,就可得到值域了。
函数的值域是什么函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。
f:A→B中,值域是集合B的子集。
如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。
常见函数值域:y=kx+b (k≠0)的值域为Ry=k/x 的值域为(-∞,0)∪(0,+∞)y=√x的值域为x≥0y=ax^2+bx+c 当a>0时,值域为 [4ac-b^2/4a,+∞) ;当a<0时,值域为(-∞,4ac-b^2/4a]y=a^x 的值域为 (0,+∞)y=lgx的值域为R。
换元法求值域
换元法是一种常用的函数求值域的方法,通过引入一个新的变量代替原函数中的表达式,从而将问题转化为容易求解的形式。
这种方法在处理一些复杂的函数时非常有效。
首先,我们需要理解换元法的思想。
换元法本质上是一种代数变形技巧,通过将原函数表达式中的变量替换为另一个变量,可以简化函数的表达式,从而更容易找到函数的值域。
在换元过程中,需要保证新旧变量之间存在明确的对应关系,并且新变量的取值范围应该在新函数的定义范围内。
接下来,我将通过一个具体的例子来说明如何使用换元法求值域。
假设我们要求函数f(x) = 3x^2 - 2x + 4的值域。
方法一:引入新变量t将原函数表达式中的x替换为t,得到f(t) = 3t^2 - 2t + 4。
此时,我们需要找到一个合适的t 的取值范围,使得f(t)的值在范围内变动。
显然,当t的取值在原函数的定义域内时,f(t)的值也在定义域内。
因此,我们可以通过解二次方程来找到t的取值范围。
解二次方程得到t的取值范围为[1/6, +∞),此时f(t)的值域为[7/3, +∞)。
方法二:利用基本不等式求值域我们还可以利用基本不等式来求值域。
由于f(x) = 3x^2 - 2x + 4是一个开口向上的二次函数,其对称轴为x = 1/3,因此当x > 1/3时,f(x)单调递增;当x < 1/3时,f(x)单调递减。
因此,我们可以得到f(x)的值域为[f(1/3), +∞)。
由于f(1/3) = 7/3,因此f(x)的值域为[7/3, +∞)。
通过以上两种方法,我们可以得到函数f(x) = 3x^2 - 2x + 4的值域为[7/3, +∞)。
通过换元法,我们可以将一些复杂的函数问题转化为易于求解的形式,从而得到函数的值域。
这种方法的关键在于选择合适的变量和变形技巧,以便将原函数转化为易于求解的形式。
同时,还需要注意新旧变量之间的关系和取值范围,以确保求解的正确性。
除了上述例子中的二次函数外,换元法在处理其他类型的函数时也具有广泛的应用。
高一数学《函数的值域》的求法
高一数学《函数的值域》的求法函数的值域是函数的三要素之一,它是函数这部分内容中一个重要的知识点。
本文介绍高一数学中求函数值域的几种常见方法:1.直接法:从自变量$x$的范围出发,推出$y$的取值范围;2.二次函数法:利用换元法,将函数转化为二次函数求值域(或最值);3.反函数法:将求函数的值域转化为求它反函数的定义域;4.判别式法:使用方程思想,依据二次方程有实根,求出$y$的取值范围;5.单调性法:利用函数的单调性求值域;6.图象法:当一个函数图象可作时,通过图象可求其值域(或最值)。
例如,对于函数$y=x^2-2x-3$,我们可以通过以下几种方法求其值域:1.直接法:当$x=-1$时,$y=0$;当$x=0$时,$y=-3$;当$x=1$时,$y=-4$。
因此,所求值域为$\{0,-3,-4\}$。
2.二次函数法:将函数转化为$y=(x-1)^2-4$,然后求出最值。
当$y=-3$时,$y_{\max}=12$;当$x=1$时,$y_{\min}=-4$。
因此,所求值域为$[-4,12]$。
3.反函数法:将函数转化为$y=(x-1)^2-4\geq -4$。
因此,所求值域为$[-4,+\infty)$。
4.判别式法:将函数转化为$y=-x^2+2x+3$,然后求出判别式的取值范围。
由于判别式为$4-4\times (-1)\times 3=16>0$,因此$y$的取值范围为$(-\infty,-4]\cup [1,+\infty)$。
5.单调性法:当$x1$时,函数单调递增。
因此,所求值域为$[-4,+\infty)$。
6.图象法:函数$y=x^2-2x-3$的图象是一个开口向上的抛物线,顶点坐标为$(1,-4)$。
因此,所求值域为$[-4,+\infty)$。
除了以上这些方法,我们还可以通过改变$x$的范围来求函数的值域。
例如,将$x\in R$改为$x\in [-3,2]$或$x\in [-3,+\infty)$等。
求函数值域的几种常见方法详解
求函数值域的几种常见方法1.直接法:利用常见函数的值域来求。
一次函数y=ax+b(a ≠0)的定义域为R,值域为R; 反比例函数)0(≠=k xky 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R,当a>0时,值域为{a y y 4|2≥};当a<0时,值域为{ay y 4|2}、 例1.求下列函数的值域① y=3x+2 (-1≤x ≤1) ②x x f -+=42)( ③1+=x xy 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域就是[-1,5] ②∵),0[4+∞∈-x ∴),2[)(+∞∈x f即函数x x f -+=42)(的值域就是 { y| y ≥2}③1111111+-=+-+=+=x x x x x y ∵011≠+x ∴1≠y 即函数的值域就是 { y| y ∈R 且y ≠1}(此法亦称分离常数法)(思考:如何使用口算法?) 2.二次函数在给定区间上的值域(最值)。
例2. 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②]4,3[,142∈+-=x x x y ; ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ; 解:①∵抛物线的开口向上,对称轴2x =,函数的定义域R, ∴x=2时,y min =-3 ,∴函数的值域就是{y|y ≥-3 }、②∵抛物线的开口向上,对称轴2x =∉ [3,4],此时142+-=x x y 在[3,4]Z∴当x=3时,min y =-2 当x=4时,m ax y =1 ∴值域为[-2,1]、③∵抛物线的开口向上,对称轴2x =∉ [0,1], 此时142+-=x x y 在[0,1] ]∴当x=0时,m ax y =1 当x =1时,min y =-2 ∴值域为[-2,1]、④∵抛物线的开口向上,对称轴2x =∈ [0,5],∴当x=2时,m in y =-3 当 x=5时,m ax y =6(思考:为什么这里直接就说当 x=5时,m ax y =6,而不去考虑x=0对应的函数值情况?答:因为观察图像可知x=5离对称轴较远,其函数值比x=0对应的函数值大)∴值域为[-3,6]、注:对于二次函数)0()(2≠++=a c bx ax x f , ⑴若定义域为R 时, ①当a>0时,则当a bx 2-=时,其最小值ab ac y 442min -=; ②当a<0时,则当a b x 2-=时,其最大值ab ac y 442max -=、 ⑵若定义域为x ∈ [a,b],则应首先判定其对称轴abx 2-=就是否属于区间[a,b]、 ①若2b a -∈[a,b],则()2bf a -就是函数的最小值(a>0)时或最大值(a<0)时,再比较)(),(b f a f 的大小决定函数的最大(小)值、②若2ba-∉[a,b],则[a,b]就是在)(x f 的单调区间内,只需比较)(),(b f a f 的大小即可决定函数的最大(小)值、注:①若给定区间不就是闭区间,则可能得不到最大(小)值;②当顶点横坐标就是字母时,则应根据其对应区间特别就是区间两端点的位置关系进行讨论、 3.有解判别法:有解判别法一般用于分式函数,其分子或分母只能为二次式,并且分子、分母,没有公因式,解题中要注意二次项系数就是否为0的讨论例3.求函数y=1122+++-x x x x 值域解:原式可化为1)1(22+-=++x x x x y , 整理得2(1)(1)10y x y x y -+++-=, 若y=1,即2x=0,则x=0; 若y ≠1,由题∆≥0, 即0)14(-)1(22≥+y-y , 解得331≤≤y 且 y ≠1、 综上:值域{y|331≤≤y }、 例4.求函数66522-++-=x x x x y 的值域(注意此题分子、分母有公因式,怎么求解呢?)解:把已知函数化为(2)(3)361(2)(3)33x x x y x x x x ---===--+++ (x ≠2且 x ≠-3) 由此可得 y ≠1∵ x=2时 51-=y ∴ 51-≠y ∴函数66522-++-=x x x x y 的值域为 { y| y ≠1且 y ≠51-}说明:此法就是利用方程思想来处理函数问题,一般称有解判别法、一般用于分式函数,其分子或分母只能为二次式并且分子、分母,没有公因式、解题中要注意二次项系数就是否为0的讨论、 4.换元法例5.求函数x x y -+=142的值域解:设 x t -=1 则 t ≥0 x=1-2t代入得 t t t f y 4)1(2)(2+-⋅==2242t t =-++开口向下,对称轴1t =[0,)∈+∞ ∴1t =时,max (1)4y f == ∴值域为(,4]-∞ 5.分段函数例6.求函数y=|x+1|+|x-2|的值域、解:将函数化为分段函数形式:21(2)3(12)21(1)x x y x x x ⎧-≥⎪=-≤<⎨⎪-+<-⎩,画出它的图象(下图),由图象可知,函数的值域就是{y|y ≥3}、说明:以上就是求函数值域常用的一些方法(观察法、配方法、判别式法、图象法、换元法等),随着知识的不断学习与经验的不断积累,还有如不等式法、三角代换法等、有的题可以用多种方法求解,有的题用某种方法求解比较简捷,同学们要通过不断实践,熟悉与掌握各种解法,并在解题中尽量采用简捷解法、 ★练习:1、34252+-=x x y答案:值域就是{05}y y <≤、 2、求函数的值域①x x y -+=2;②y x =+答案:值域就是(-∞,49]、 答案:值域就是{2}y y ≥- 小结:求函数值域的基本方法(直接法、换元法、判别式法);二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法、。
三角换元法求值域
三角换元法求值域一、引言三角换元法是高中数学中的一个重要概念,其在解决函数的值域问题时有着重要的应用。
本文将详细介绍三角换元法的概念、原理和具体步骤,并通过实例演示如何利用三角换元法求出函数的值域。
二、三角换元法概述1. 三角函数与反三角函数在介绍三角换元法之前,需要先了解一些基本的三角函数和反三角函数。
常见的三角函数有正弦函数、余弦函数和正切函数,它们分别表示为sin(x)、cos(x)和tan(x)。
而对于反三角函数,常见的有arcsin(x)、arccos(x)和arctan(x),它们分别表示为sin^-1(x)、cos^-1(x)和tan^-1(x)。
2. 什么是三角换元法在高中数学中,我们经常需要求出一个函数的值域。
而对于某些比较复杂或者不好求解的函数,我们可以通过使用一些特殊的方法来简化计算。
其中,就包括了三角换元法。
三角换元法是一种利用基本三角公式将含有根式或分式等形式比较复杂的代数式转化成含有简单三角函数(如sinx、cosx、tanx等)的形式,从而便于求解的方法。
通过三角换元法,我们可以将函数转化为一个简单的三角函数,然后根据该三角函数的性质来确定其值域。
三、三角换元法原理1. 基本三角公式在使用三角换元法时,需要掌握一些基本的三角公式。
常见的基本三角公式有:(1)sin^2(x) + cos^2(x) = 1(2)1 + tan^2(x) = sec^2(x)(3)1 + cot^2(x) = csc^2(x)这些基本公式是进行三角换元法时不可或缺的工具。
2. 代数式转化为三角函数在使用三角换元法时,我们需要将一个含有根式或分式等形式比较复杂的代数式转化为含有简单三角函数(如sinx、cosx、tanx等)的形式。
具体来说,我们可以利用基本三角公式将代数式中的某些部分转化为sinx、cosx或者tanx等形式。
例如:(1)√(a² - x²),可以转化为a sinθ或者a cosθ;(2)√(a² + x²),可以转化为a tanθ或者a cotθ;(3)(a² - x²)/(a² + x²),可以转化为sin²θ或者cos²θ等。
求解函数值域的三种典型方法
Җ㊀山东㊀马建国㊀㊀求解函数值域是函数学习的一个关键环节,正确求解值域对函数的运用和计算都十分重要,如果值域的求解错误,运用过程可能会受到阻碍.因此,在教学中应注重函数值域求解方法的选择,化繁为简,提高解题效率.本文从求解函数值域的三种典型方法着手进行研究.1㊀换元法换元法是指将函数中某个式子看成一个整体,用一个变量去替换它,从而将问题进行简化.在运用换元法求函数值域的过程中,通常是将复杂的复合函数进行换元,然后根据新函数的定义域对函数值域进行求解.例1㊀已知函数y=x2+x2-1,求解该函数的值域.分析㊀观察可知函数中存在根式,因此可以采用换元法,在本题中可以将x2-1整体换为t(tȡ0),将原函数转化为用t表示的函数,再根据tȡ0的条件得出原函数的值域.解㊀令x2-1=t,则x2=t2+1,所以y=t2+t+1.又因为tȡ0,所以y=t2+t+1=(t+12)2+34ȡ1,则函数y=x2+x2-1的值域是[1,+ɕ).例2㊀已知函数y=2x-x-1,求解该函数的值域.分析㊀观察可知函数中存在根式,因此可以采用换元法,在本题中可以将x-1整体换为t(tȡ0),将原函数转化为用t表示的函数,再根据tȡ0的条件,得出原函数的值域.解㊀因为x-1=t,x=t2+1,所以y=2(t2+1)-t=2(t-14)2+158.又因为tȡ0,所以yȡ158,则函数y=2x+x-1的值域是[158,+ɕ).2㊀判别式法判别式法是在一元二次方程中,判断方程有没有根以及有几个根的方法.当b2-4a c<0时,方程无实根;当b2-4a c=0时,方程有两个相等的实根;当b2-4a c>0时,方程有两个不相等的实根.在利用判别式法求值域的过程中,首先要构造出一个一元二次方程(将y看作常数),利用判别式Δȡ0,求得函数的值域.例3㊀已知函数y=2x1+x2,求解该函数的值域.分析㊀通过观察可知目标函数是分母为一元二次函数的分式函数,因此先将函数变形为一元二次方程,即y x2-2x+y=0,然后根据y=0和yʂ0的情况进行分析,同时利用判别式法对一元二次方程的根进行判断,从而可以得出函数的值域.解㊀因为y=2x1+x2,所以y(1+x2)=2x,即y x2-2x+y=0.当y=0时,-2x=0,则x=0.当yʂ0时,根据Δ=4-4y2ȡ0,得-1ɤyɤ1.综上所述,函数y=2x1+x2的值域是[-1,1].例4㊀已知函数y=3x2+3x+1x2+x+1,求解该函数的值域.分析㊀已知函数是分子㊁分母均为一元二次函数的分式函数,可以利用判别式法进行值域求解,先将函数变形为一元二次方程,即(y-3)x2+(y-3)x+y-1,再根据y-3=0和y-3ʂ0的情况分析,从而得出函数的值域.解㊀因为y=3x2+3x+1x2+x+1,所以(y-3)x2+(y-3)x+y-1=0.当y-3=0时,y=3,3-1=0不存在.当y-3ʂ0时,则Δ=(y-3)2-4(y-3)(y-1)ȡ0,13ɤy<3.综上所述,y=3x2+3x+1x2+x+1的值域是[13,3).3㊀分类讨论法分类讨论法指的是在求解一类问题时,有时会遇到多种情况,无法用同一种方法去解决,需要分类进行讨论,最后再归纳总结得出最终结论.求解函数值域4的分类讨论法通常是用在分段函数求值域或者是含绝对值函数求值域,其主要思路是分别根据定义域分类进行值域求解,最终再汇总结果.例5㊀已知函数y =|x +1|+|x -2|,求解该函数的值域.分析㊀通过观察可知函数带有绝对值符号,首先考虑去绝对值符号,从而发现分段区间函数的表达式不同,因此考虑分类讨论法,将函数的定义域求出后,分别代入函数式,就可以得出原函数的值域.解㊀该函数的定义域可分为x ɤ-1,-1<x ɤ2,x >2.在定义域内的函数表达式为y =-2x +1,x ɤ-1,3,-1<x ɤ2,2x -1,x >2.ìîíïïïï当x ɤ-1时,y =-2x +1ȡ3;当-1<x ɤ2时,y =3;当x >2时,y =2x -1>3.综上所述,函数y =|x +1|+|x -2|的值域是[3,+ɕ).例6㊀已知函数y =x 2-4x +3,0<x <5,x 2+4x +3,-3ɤx ɤ0,{求解该函数的值域.分析㊀观察已知函数,分段区间内函数的表达式不同,因此考虑分类讨论法,求得x 的取值范围,再代入函数式,就可以得出函数值域.解㊀令x 1=2,则y 1=-1,令x 2=-2,则y 2=-1.当0<x <5时,x 2-4x +3的值域为[-1,8);当-3ɤx ɤ0时,x 2+4x +3的值域为[-1,3].综上所述,y=x 2-4x +3,0<x <5,x 2+4x +3,-3ɤx ɤ0{的值域为[-1,8).换元法㊁判别式法㊁分类讨论法是函数求值域中典型的三种方法,使用这三种方法时,应注意换元后表达式的等价变形㊁判别式的正确使用㊁分段函数的定义域划分等.这三种方法是值域求解的重要方法,应该要求学生要对方法熟练掌握㊁融会贯通.(作者单位:山东临沂高新区高级中学)Җ㊀湖南㊀蒋迎芳㊀㊀高考对集合问题的考查多与函数㊁不等式进行交会,问题难度不大,只要准确理解集合的关系及运算即可. 集合 是高中生学习的第一个数学知识,为什么把它放在第一章?因为集合是学习其他模块的基础,与其他知识具有紧密的联系.下面谈一谈笔者的几点感悟,供读者参考.1㊀集合的关系和运算丰富了其他问题的求解视角1)集合之间的关系包括子集㊁真子集㊁相等.2)集合之间的运算包括交㊁并㊁补.集合的关系和运算可应用到其他知识的学习或问题的求解中.例如,集合的关系和运算与充分㊁必要条件之间的关系:若A 是B 的子集,即A ⊆B ,则A 是B 的充分条件;若A =B ,则A 与B 互为充要条件;若A ɘB =∅,则A ,B 之间既不是充分条件,也不是必要条件.再如,集合的关系和运算与概率之间的关系:若A ,B 为互斥事件,则A ɘB =∅;若A ,B 为对立事件,则A ɘB =∅,且B =∁U A ;事件A ,B 至少有一个发生,记为A ɣB ,称为A,B 的和事件;事件A ,B同时发生,记为A ɘB ,称为A ,B 的积事件.例1㊀某高校数学学院举行2020届毕业典礼,主席台上有并排的六个座位,出席典礼的甲㊁乙㊁丙等六位院系的教师可随意就座,则甲㊁乙两位教师的座位均不与丙相邻的概率为.设U ={六位教师任意就座的所有情况},A ={甲㊁丙两位教师的座位相邻的情况},B ={乙㊁丙两位教师的座位相邻的情况},则A ɘB ={全集U 中甲㊁乙两位教师的座位与丙相邻的情况},A ɣB ={全集U 中甲或乙两位教师的座位与丙相邻的情况},A ɣB ={全集U 中甲㊁乙两位教师的座位均不与丙相邻的情况}.本题即求P (A ɣB ),而P (A ɣB )=1-P (A ɣB ),故只需求P (A ɣB ).因为P (A ɣB )=P (A )+P (B )-P (A ɘB ),而5。
求值域的方法有哪些
求值域的方法有哪些
配方法、常数分离、逆求法、换元法、拆分法、单调性法、数形结合法、判别式法。
1、值域的综合性极强,真正能把函数值域学好的人很少,把值域学好了,你的函数将会达到一个很高的水准!所以,务必要重视值域,对于二次函数y=ax+bx+c(a≠0)来说,只要知道开口方向和对称轴,就可以知道它的单调性;单调性知道了,值域也就出来了。
2、若fx的解析式是整式,则其定义域为R,若fx的解析式是分式,则其定义域是使分母不为0的实数的集合,若fx的解析式是偶次根式或可化为偶次根式,则其定义域是使根号内的式子大于或等于0的实数的集合,若fx的解析式是指数式,若fx指数为负指数或0指数,则其底数不为,若fx指数含变量,则其底数应为大于0且不等于1,若fx的解析式是对数式,则真数应大于,若fx底数含未知数,则底数大于且不等于。
3、在解决函数问题时,要注意定义域优先的原则,要注意函数的定义域不能是空集,一切函数的问题都要在其定义域内研究和解决,例如求函数的单调区间,求函数的值域或最值等都应应先求函数的定义
域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 4
x2
x
3 4
(
x
2)2 3
1 3
,而由
y2
x
x2 4
0得
x [0, 4] ; 所 以
u x2 y2 值域为[0,16].
四、换元法
换元法是求函数值域的重要方法,其目的是通过换元把复杂的函数化为常见、简单的函 数.
(一)一般换元
1.形如 y a[ f (x)]2 bf (x) c(a 0) 或可化为此形的
于是 r2
1
2
3 2
sin 2
[72 , 2] ,所以
f
(x,
y)
x2
y2
r2
[
2 7
, 2].
5.形如 y ax b k cx2 dx e 及其变式的
686
典型例题:求函数 y 2x 1 2 x2 2x 3 的值域.
解 : 函 数 化 为 y 2x 1 2
4 (x 1)2
,设
设 f (x) t 化为二次函数的条件值域,然后再求.
典型例题:若 f (x) 1 log2 x(1 x 4) ,求函数 g(x) f (x2 ) [ f (x)]2 的值域.
解:变形为
g(x)
log
2 2
x
4 log2
x
2
;因为
f
(x)
的定义域为[1, 4] ,则
f
(x2 )
的定义
域为[2, 1] [1, 2] ,[ f (x)]2 的定义域为[1, 4] ,所以 g(x) 的定义域为[1, 2] .设 log2 x t ,
1.若
x,
y
R
,且
x
y
1,求函数 t
4 x
9 y
的值域.
解:设 x
cos2 , y
sin2 ,
R
,得 t
4 cos2
9 sin2
4 sec2
9 csc2
13 4 tan2 9 cot2 25 .即 t [25, )
典型例题
2.若 a, b
R
,且 0
x
1,求函数 t
a2 x
有最小值 2 ;所以函数值域为[2, 2 17 ] .
687
x 1 2sin
,
[
2
,
2
]
,则
x 2sin 1 ,所以 y 4sin 3 4 cos 4
2
sin(
4
)
3
,由于
[
2
,
2
]
,
得
4
[
4
,
3 4
]
,则
y
[1,
4
2 3] .
(四)其他换元
典型例题:若
a, b,
c
为非负数,求函数
t
b
a
c
b 2c
a
a
c 2b
的值域.
解:设
b c x 2c a a 2b
y z
解之得
a b c
2x 2
2x y 4
2x y 4
y z z
z
,
则
t
2x y 2x
z
2x y 4y
z
2x y z 4z
3 2
y 2x
z 2x
x 2y
z 4y
x 2z
y 4z
1,当且仅当
x2 y2 z2 即 b c, a 0 时取等号.
(五)多次换元
典型例题:求函数 f (x) 4 x2 2x x2 2x 4 的值域.
684
g(x) 2t2 t(0 t
5) 5
,此时
g
(x)
[0,
1] 8
.当
f
(x) (0,
1] 时,t 4
(0,
1] 2
,f
(x)
t2
,
函数化为
g(x)
2t 2
t(0
t
1) 2
,此时
g(x)
[0,1]
.综上可知函数的值域为 [0,1]
.
(二)平均值换元
一般来说在条件为对称式,其他方法不易做出时可以考虑用平均值换元法.
则函数化为 g(x) t2 4t 2(0 t 1) ,由图像知所求函数的值域为[2, 7] .
2.形如 y ax b cx d 或可条件值域,然后再求.
典型例题 1.求函数 f (x) x 1 2x 的值域.
解:设
1 2x
t
,则 t
典型例题:若 x, y R 且 x y 1,求 u x4 y4 的值域.
解:设
x
1 2
t
、y
1 2
t
,t
R
,化为 u
x4
y4
(12
t)4
(12
t)4
2t 4
3t 2
1 8
,
所以
u
[
1 8
,
)
.
(三)三角换元
题目中如果出现“ m2 x2 ”、“ x2 y2 1”、“ x2 y2 r2 ”、“ x, y R ,且 x y 1”、 “ a, b R ,且 0 x 1”、“ 2x2 3xy 2 y2 1 ”、“1 x2 y2 2 ”等等特征式时就可
解:设
x
cos ,
y
sin
,
R
,得
t
1
1 2
sin
2
[ 12
,
23 ]
.
典型例题
2.若
x2 a2
y2 b2
1, a,b
0 ,求函数
f
(x,
y)
xy
的值域.
解:设
x
a cos ,
y
b sin ,
R
,则
f
(x,
y)
1 2
ab sin
2
[
1 2
ab,
1 2
ab] .
3.含有 x y 1及其变式的
典型例题
解:设 x2 2x t ,则 t [0, ) ,得 y 4t 4 t2 ,则 t [0, 2] ;再设 t 2sin ,
[0,
2
]
,得
y
8 sin
2 cos
2
17
sin(
)
,其中
tan
1 4
,于是
(0,
4
)
,
则
[ ,
2
] ,故当
2
时函数有最大值
2
17 ,当 即 0 时函数
b2 1 x
的值域.
解:设
x
cos2 ,
R
,得 t
a2 cos2
b2 sin2
a2 sec2
b2
csc2
a2 b2 a2 tan2 b2 cot2 ( a b ) 2 .即 t [(a b)2 , )
4.含有 a2 x2 y2 b2 及其变式的
典型例题 1.若1 x2 y2 2 ,求函数 f (x, y) x2 xy y2 的值域.
1 x2 cos sin
2
sin(
4
)
,当
[0,
]
时,
y [1, 2] .
注意:还可以设
x
sin
,
[
2
,
2
]
等.而设
x
sin
,
R
不妥,原因是开方后含
有“ ”号.
2.含有 x2
y2
r
2
或
x2 a2
y2 b2
1及其变式的
685
典型例题 1.若 x, y R ,且 x2 y2 1,求函数 t 1 xy 的值域.
解:设 x r cos, y r sin, R,1 r
2
,则
f
(x,
y)
r 2 (1
1 2
sin
2
)
[
1 2
, 3] .
典型例题 2.若 2x2 3xy 2 y2 1 ,求函数 f (x, y) x2 y2 的值域.
解:设 x r cos , y r sin , R ,则 2r2 3r2 sin cos 1,
0,
x
1
t 2
2
,函数化为
y
1 2
t
2
t
1 (t 2
0) ,由图象
可知函数值域为 y (,1] .
典型例题
2.若
f
(x) [
1 5
,
1 ] ,求函数 4
g(x)
2
f
(x)
f (x) 的值域.
解:设
f (x)
t ,当
f
( x) [
1 5
, 0]
时
,
t
[0,
5 5
]
,
f (x) t2 , 函 数 化 为
以考虑利用“ sin2 cos2 1 ”进行三角换元法,转化成三角函数的值域问题.其思维过
程体现的是转化思想.
1.含有 m2 x2 及其变式的
典型例题:求函数 y x 1 x2 的值域.
解:函数定义域为 x [1,1] ,为了开方后不含绝对值符号,换元时要讲究技巧,设
x cos , [0, ] .得 y x