函数求值域方法之值域换元法
求函数值域的十种常用方法
•
7、最具挑战性的挑战莫过于提升自我 。。20 20年12 月下午 3时12 分20.12. 1215:1 2December 12, 2020
•
8、业余生活要有意义,不要越轨。20 20年12 月12日 星期六 3时12 分31秒1 5:12:31 12 December 2020
•
9、一个人即使已登上顶峰,也仍要自 强不息 。下午 3时12 分31秒 下午3时 12分15 :12:312 0.12.12
logo
求函数值域的十 种常用方法
一:定义域法
二:函数单调性法
三:反函数法
四:换元法
五:分离常数法
六:判别式法
七:三角换元法
九:数形结合法
十导数法:
•
1、有时候读书是一种巧妙地避开思考 的方法 。20.1 2.1220. 12.12Sa turday, Dec者明。胜人者有力 ,自胜 者强。 20.12.1 220.12. 1215:1 2:3115: 12:31D ecembe r 12, 2020
•
6、意志坚强的人能把世界放在手中像 泥块一 样任意 揉捏。 2020年 12月12 日星期 六下午 3时12 分31秒1 5:12:31 20.12.1 2
•
2、阅读一切好书如同和过去最杰出的 人谈话 。15:1 2:3115: 12:3115 :1212/ 12/2020 3:12:31 PM
•
3、越是没有本领的就越加自命不凡。 20.12.1 215:12: 3115:1 2Dec-20 12-Dec-20
•
4、越是无能的人,越喜欢挑剔别人的 错儿。 15:12:3 115:12: 3115:1 2Saturday, December 12, 2020
7换元法求函数值域
, 的定义域为 ,且 , ,解得 ,令 ,则 , , ,即 的值域为 。
⑷换元也是将函数拆为两个函数复合的过程。在高中阶段,与指对数,三角函数相关的常见的复合函数分为两种:
① :此类问题通常以指对,三角作为主要结构,在求值域时可先确定 的范围,再求出函数的范围;
② :此类函数的解析式会充斥的大量括号里的项,所以可利用换元将解析式转为 的形式,然后求值域即可。当然要注意有些解析式中的项不是直接给出,而是可作转化:例如 可转化为 ,从而可确定研究对象为 。
【例4】函数 的值域为
【答案】
【解析】法一:令 ,则 ,得 ,当 时, ,故函数 的值域为 。
法二:令 ,故 ,故函数 的值域为 。
【例5】函数 的值域为__________
【答案】
【思路】 ,将 视为一个整体令 ,则可将其转化为二次函数求得值域.
【解析】 ,令 , ,
, 的值域为 。
【例6】函数 的值域为__________
⑵换元的作用有两个:
①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的;
②化归:可将不熟悉的函数转化为会求值域的函数进行处理;
⑶换元的过程本质上是对研究对象进行重新选择的过程,在有些函数解析式中明显每一项都是与 的某个表达式有关,那么自然将这个表达式视为研究对象。
【答案】
【分析】所求函数为 的形式,所以求得 的范围,再取对数即可。对 进行变形可得: ,从而将 视为一个整体,即可转为反比例函数,从而求得范围。
【解析】令 ,可得函数 的定义域为 , ,令 , , , 。
【例7】已知函数 ,则 的值域为()
【答案】
高中数学:求函数值域的方法十三种
高中数学:求函数值域的十三种方法
一、观察法(☆
)二、配方法(☆)
三、分离常数法(☆)
四、反函数法(☆)
五、判别式法(☆)
六、换元法(☆☆☆)
七、函数有界性
八、函数单调性法(☆)九、图像法(数型结合法)(☆)十、基本不等式法十一、利用向量不等式十二、一一映射法十三、多种方法综合运用一、观察法:从自变量x 的范围出发,推出()y
f x 的取值范围。
【例1】求函数1y
x 的值域。
【解析】∵0x ,∴
11x ,∴函数1y x 的值域为[1,)。
【例2】求函数x 1
y
的值域。
【解析】∵0x
∴0x 1显然函数的值域是:),0()0,(【例3】已知函数
112x y ,2,1,0,1x ,求函数的值域。
【解析】因为2,1,0,1x ,而331f f ,02
0f f ,11f 所以:3,0,1y 注意:求函数的值域时,不能忽视定义域,如果该题的定义域为R x ,则函数的值域为
1|y y 。
二.配方法:配方法式求“二次函数类”值域的基本方法。
形如2()()()F x af x bf x c 的函数的值域问题,均可使用配方法。
【例1】求函数225,[1,2]y x x x 的值域。
【解析】将函数配方得:∵
由二次函数的性质可知:当x=1 ∈[-1,2]时,,当时,
故函数的值域是:[4,8] 【变式】已知,求函数的最值。
高中数学复习专题-函数值域的求法
学习必备 欢迎下载专题四、函数及其性质(二)函数值域的求法1.求函数值域的数学思想:( 1)利用函数单调性求函数值域:( 2)利用函数图像求函数值域;注意: 求函数值域时要先关注函数定义域,时刻体现“定义域优先” 原则。
2.求函数值域的方法: 观察法、判别式法、双勾函数法、换元法、平方法、分离常数法、数形结合法、单调性法、构造法。
( 1)观察法:适合于常见的基本函数。
例 1.已知函数 f (x)e x1,g( x)x 24x3 ,若 a 、bR ,且存在有f (a)g(b) ,则b 的取值范围为()A. [22, 22]B. (22, 22)C.[1,3]D.(1,3)kx bdx 2exf的分式函数, 适用条件须函( 2)判别式法:适合于形如y或 yax2bx cax 2 bx c数的定义域应为 R ,即 ax 2bx c0 ,所以b 2 4ac0 。
例 2. 求函数 y2x 2 x3x 2的值域。
x 1( 3)双勾函数法:适合于高中阶段所有的分式函数,比判别式法具有更广泛的应用。
2例 3. 求函数 y2x11x7(0 x 1) 的值域。
x 3( 4)换元法:适合于含有根式的函数。
例 4.求函数 y2x 4 1 x 的值域。
( 5)平方法:适合于平方变形后具有简化效果的函数。
例 5.求函数 yx 3 5 x 的值域。
学习必备欢迎下载( 6)数形结合法:利用数形结合的方法,根据函数图像求得函数值域。
例 6.(2014 湖北 )已知函数 f( x)是定义在 R 上的奇函数,当 x ≥ 0 时, f(x)= 1(|x - a 2|+ |x - 2a 2|- 3a 2),若对于任意 x ∈ R , f( x -1)≤ f(x)恒成立,2则实数 a 的取值范围为( ) A. -1,1 B.- 6, 6 C. -1,1 D.-3, 36 6 6 6 3 3 3 3( 7)单调性法:确定函数在定义域上的单调性,求出函数的值域。
求函数值域 、 周期的方法总结(适合高一)
求函数值域 、 周期的方法总结(适合高一)求值域一、直接法:(从自变量x 的范围出发,推出()y f x =的取值范围)例1.求函数2+=x y 的值域。
二、配方法(是求二次函数值域的基本方法,如2()()()F x af x bf x c =++的函数的值域问题,均可使用配方法)例2.求函数242y x x =-++([1,1]x ∈-)的值域。
三、分离常数法(分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法)例3.求函数125x y x -=+的值域。
四、换元法(运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如y ax b =+a 、b 、c 、d 均为常数,且0a ≠)的函数常用此法求解。
例4.求函数2y x =五、函数的单调性法(确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域,形如求函数()0>+=k xk x y 的值域(k x <<0时为减函数;k x >时为增函数))例5.求函数y x =六、利用有界性(利用某些函数有界性求得原函数的值域)例6求函数2211x y x -=+的值域。
七、数型结合法(函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法)例7.求函数11-++=x x y 的值域。
除此之外,还有反函数法(即利用函数和它的反函数的定义域与值域的关系,通过求反函数的定义域而得到原函数的值域)和判别式法(即把函数转化成关于x 的二次方程()0,=y x F ,通过方程有实根,0≥∆,从而求得原函数的值域,需熟练掌握一元二次不等式的解法),在今后的学习中,会具体讲述。
周期一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立则f (x )叫做周期函数,T 叫做这个函数的一个周期。
二.重要结论1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。
浅谈求函数值域的几种常用方法
浅谈求函数值域的几种常用方法在函数的三要素中,对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用.本文就函数值域求法归纳如下.一、观察法通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。
例1:求函数y= 的值域。
解:由算术平方根的性质知≥0,故≥3。
∴函数的值域为y≥3.小结:本题通过直接观察算术平方根的性质而获解,这种方法对于一类函数的值域的求法,简捷明了,不失为一种巧法。
二、反函数法利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。
形如的函数的值域,均可使用反函数法。
此外,这种类型的函数值域也可使用“分离常数法”求解。
例2:求函数的值域解法一:(反函数法)解法二:(分离常数法)由,可得值域小结:已知分式函数,如果在其自然定义域(代数式自身对变量的要求)内,值域为;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为,用复合函数法来求值域。
三、配方法配方法是求“二次函数类”值域的基本方法,形如的函数的值域问题,均可使用配方法。
例3、求函数的值域解:由四、换元法利用代数或三角代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如的函数均可使用换元法。
例4、求函数的值域解:(换元法)设,则五、判别式法把函数转化成关于x的二次方程,通过方程有实根,判别式,从而求得原函数的值域,形如均可用判别式法.例5、求函数的值域解:(判别式法)原函数可化为(1)时不成立(2)时,综合(1)、(2)值域六、单调法利用函数在给定的区间上的单调递增或单调递减求值域。
例6、求函数y=4x-(x≤1/3)的值域。
解:设f(x)=4x,g(x)= -(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)= 4x-在定义域为x≤1/3上也为增函数,而且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}。
函数求值域方法之值域换元法
函数求值域方法之值域换元法值域换元法是一种常见的函数求值域的方法,通过将自变量进行一定的换元变换,从而转化为一个更简单的函数,通过分析这个新的函数的性质,来确定原函数的值域。
值域换元法的基本思想是通过适当的变量替换,将函数的自变量转化为另一个具有一定性质的自变量,从而使得原函数的值域问题变得更加简单。
这种方法适用于多种不同形式的函数,因此具有较广泛的适用性。
具体步骤如下:1.分析原函数的特点:首先需要对原函数进行一定的分析,确定其性质和特点。
这包括确定函数的定义域、奇偶性、单调性等。
2.设定新的变量:根据原函数的性质,选择一个新的变量来替代原函数的自变量,使得新变量的取值范围更为简单。
3.建立新的函数关系式:通过变量替换,建立新的函数关系式。
根据变量替换的方式不同,可以分为三种情况:-线性关系:如果原函数和新变量之间存在线性关系,可以直接建立新的函数关系式。
-可逆替换:如果变量替换是可逆的,即可以通过一定的算法从新变量反解出原函数的自变量,那么可以通过反解的方式建立新的函数关系式。
-不可逆替换:如果变量替换是不可逆的,即不能通过一定的算法从新变量反解出原函数的自变量,那么可以通过构造一个新的函数来近似原函数。
4.分析新函数的性质:对新函数进行分析,确定其定义域、奇偶性、单调性等。
可以通过导数的方法、函数图像的方法等来进行分析。
5.再逆变换回原变量:如果最终确定了新函数的值域,可以将新函数的值域通过逆变换的方式转化回原函数的值域。
值域换元法的优点是可以将原问题转化为一个更简单的问题,并且适用范围广,同时也有一定的局限性。
在实际运用中,需要根据具体的问题来选择合适的变量替换方法,以及确定合适的新函数进行分析。
总的来说,值域换元法是一种常见的函数求值域的方法,通过适当的变量替换和建立新的函数关系式,可以将原函数的值域问题转化为一个更简单的问题。
这种方法在实际问题中具有广泛的应用,可以提高问题求解的效率。
函数值域求法大全
函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
高中数学函数值域的求法(9种)
函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。
常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。
(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。
如函数211xy +=的值域{}10|≤<y y 。
(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。
例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。
(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。
如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。
(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。
(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。
例如:12--+=x x y 。
(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。
如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。
求值域常用的七种方法
2、换元法
• 此法特点:函数的解析式含有根式或者三角函数 模型的.
• 求下列函数的值域
x 1 (1) y 2 (2) y x x 1 x 1 (3) y cos 2 x cos x 1
2
(4) y 9 3 2( x [0,1])
x x
3、基本不等式法
( x [0,3])
求值域常用的七种方法
1、二次函数配方法(图像法) 2、换元法 3、基本不等式法 4、利用函数的单调性法 5、分离常数法 6、数形结合法 7、导数法
1、配方法
• 求下列函数的值域
(1) y x 2 x
2
( 2) y x 2 x ( x [0,3])
2
(3) y x 4 x 1( x [ 4,4])
2
(2) y | x 2 | | x 8 | (3) y | x 1 | | x 3 | (4) y | x 3 | | x 1 |
(5) y x 6 x 13 x 4 x 5
2 2
(6) y x 6 x 13 x 4 x 5
2 2
注:求两距离之和时,要函数式变 形,使A、B在x轴的两侧,而求两 距离之差时,则使A、B两点在x轴 的同侧。
sin x (7 ) y cos x 2
7、导数法
• 求下列函数的值域
x (1) y x ( x [0,4]) e
3 2
(2) f ( x) 2 x 3 x 12 x 5
• 求下列函数的值域
1 (1) y x 1 x 2 x 2x 2 (2) y ( x 1) x 1 (3) y log 3 x log x 3 1
函数求值域方法总结(适用于高一)
函数求值域方法总结(适用于高一)在函数的三要素中,定义域和值域起决定作用,而值域是由定义域和对应法则共同确定。
研究函数的值域,不但要重视对应法则的作用,而且还要特别重视定义域对值域的制约作用。
确定函数的值域是研究函数不可缺少的重要一环。
对于如何求函数的值域,是学生感到头痛的问题,它所涉及到的知识面广,方法灵活多样,在高考中经常出现,占有一定的地位,若方法运用适当,就能起到简化运算过程,避繁就简,事半功倍的作用。
本文就函数值域求法归纳如下,供参考。
1. 直接观察法例1. 求函数x 1y =的值域。
变式: 1. 求函数x 3y -=的值域。
2. 函数x y 1= ()32<<-x 的值域为3. 函数[]3,2,2-∈=x x y 的值域为2. 配方法例2. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域。
变式:求下列函数的最大值.最小值与值域:①142+-=x x y ; ②]4,3[,142∈+-=x x x y ;③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y .3. 换元法例3. 求函数1x x y -+=的值域。
变式1:求函数x x y -+=142的值域.2. 求y =2x -3+4x -13 的值域.3. 求938x xy =--的值域4. 求21y x x =++的值域5. 求x y -+=42的值域 4.分离常数法:求下列函数的值域:例四(1)y =2x -4x +1 ;(2)y =1-x 2x +5【变式1】求函数66522-++-=x x x x y 的值域.2. 求函数31x y x -=+的值域 .3. 函数133+=x x y 的值域是 4. 35,[3,)1x y x x -=∈+∞+5.图像法: 例五. 求函数y=|x+1|+|x-2|的值域.【变式1】求函数y =|x +1|-|x -2|的值域.6. 判别式法例4. 求函数22x1xx 1y +++=的值域。
高中函数求值域的九种方法和例题讲解
之吉白夕凡创作高中函数值域和定义域的大小,是高中数学常考的一个知识点,本文介绍了函数求值域最经常使用的九种办法和例题讲解.一.不雅察法通过对函数定义域、性质的不雅察,结合函数的解析式,求得函数的值域. 例1求函数y=3+√(2-3x)的值域.点拨:按照算术平方根的性质,先求出√(2-3x)的值域.解:由算术平方根的性质,知√(2-3x)≥0,故3+√(2-3x)≥3.∴函数的知域为.点评:算术平方根具有双重非负性,即:(1)被开方数的非负性,(2)值的非负性.本题通过直接不雅察算术平方根的性质而获解,这种办法对于一类函数的值域的求法,简捷明了,不失为一种巧法.练习:求函数y=[x](0≤x≤5)的值域.(答案:值域为:{0,1,2,3,4,5})二.反函数法当函数的反函数存在时,则其反函数的定义域就是原函数的值域.例2求函数y=(x+1)/(x+2)的值域.点拨:先求出原函数的反函数,再求出其定义域.解:显然函数y=(x+1)/(x+2)的反函数为:x=(1-2y)/(y -1),其定义域为y≠1的实数,故函数y的值域为{y∣y≠1,y∈R}.点评:利用反函数法求原函数的定义域的前提条件是原函数存在反函数.这种办法体现逆向思维的思想,是数学解题的重要办法之一.练习:求函数y=(10x+10-x)/(10x-10-x)的值域.(答案:函数的值域为{y∣y<-1或y>1})三.配办法当所给函数是二次函数或可化为二次函数的复合函数时,可以利用配办法求函数值域例3:求函数y=√(-x2+x+2)的值域.点拨:将被开方数配方成完全平方数,利用二次函数的最值求.解:由-x2+x+2≥0,可知函数的定义域为x∈[-1,2].此时-x2+x+2=-(x-1/2)2+9/4∈[0,9/4]∴0≤√-x2+x+2≤3/2,函数的值域是[0,3/2]点评:求函数的值域不单要重视对应关系的应用,并且要特别注意定义域对值域的制约作用.配办法是数学的一种重要的思想办法.练习:求函数y=2x-5+√15-4x的值域.(答案:值域为{y∣y≤3})四.判别式法若可化为关于某变量的二次方程的分式函数或无理函数,可用判别式法求函数的值域.例4求函数y=(2x2-2x+3)/(x2-x+1)的值域.点拨:将原函数转化为自变量的二次方程,应用二次方程根的判别式,从而确定出原函数的值域.解:将上式化为(y-2)x2-(y-2)x+(y-3)=0(*)当y≠2时,由Δ=(y-2)2-4(y-2)x+(y-3)≥0,解得:2<x≤10/3当y=2时,方程(*)无解.∴函数的值域为2<y≤10/3.点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非正数,可求得函数的值域.常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数.练习:求函数y=1/(2x2-3x+1)的值域.(答案:值域为y≤-8或y>0).五.最值法对于闭区间[a,b]上的连续函数y=f(x),可求出y=f(x)在区间[a,b]内的极值,并与鸿沟值f(a).f(b)作比较,求出函数的最值,可得到函数y的值域.例5已知(2x2-x-3)/(3x2+x+1)≤0,且满足x+y=1,求函数z=xy+3x的值域.点拨:按照已知条件求出自变量x的取值规模,将目标函数消元、配方,可求出函数的值域.解:∵3x2+x+1>0,上述分式不等式与不等式2x2-x-3≤0同解,解之得-1≤x≤3/2,又x+y=1,将y=1-x代入z=xy+3x中,得z=-x2+4x(-1≤x≤3/2),∴z=-(x-2)2+4且x∈[-1,3/2],函数z在区间[-1,3/2]上连续,故只需比较鸿沟的大小.当x=-1时,z=-5;当x=3/2时,z=15/4.∴函数z的值域为{z∣-5≤z≤15/4}.点评:本题是将函数的值域问题转化为函数的最值.对开区间,若存在最值,也可通过求出最值而获得函数的值域.练习:若√x为实数,则函数y=x2+3x-5的值域为()A.(-∞,+∞)B.[-7,+∞]C.[0,+∞)D.[-5,+∞)(答案:D).六.图象法通过不雅察函数的图象,运用数形结合的办法得到函数的值域.例6求函数y=∣x+1∣+√(x-2)2的值域.点拨:按照绝对值的意义,去掉符号后转化为分段函数,作出其图象.解:原函数化为-2x+1(x≤1)y=3(-1<x≤2)2x-1(x>2)它的图象如图所示.显然函数值y≥3,所以,函数值域[3,+∞].点评:分段函数应注意函数的端点.利用函数的图象求函数的值域,体现数形结合的思想.是解决问题的重要办法.求函数值域的办法较多,还适应通过不等式法、函数的单调性、换元法等办法求函数的值域七.单调法利用函数在给定的区间上的单调递增或单调递减求值域.例1求函数y=4x-√1-3x(x≤1/3)的值域.点拨:由已知的函数是复合函数,即g(x)=-√1-3x,y=f(x)+g(x),其定义域为x≤1/3,在此区间内辨别讨论函数的增减性,从而确定函数的值域.解:设f(x)=4x,g(x)=-√1-3x,(x≤1/3),易知它们在定义域内为增函数,从而y=f(x)+g(x)=4x-√1-3x在定义域为x≤1/3上也为增函数,并且y≤f(1/3)+g(1/3)=4/3,因此,所求的函数值域为{y|y≤4/3}.点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域.练习:求函数y=3+√4-x的值域.(答案:{y|y≥3})八.换元法以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域.例2求函数y=x-3+√2x+1的值域.点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值,确定原函数的值域.解:设t=√2x+1(t≥0),则x=1/2(t2-1).于是y=1/2(t2-1)-3+t=1/2(t+1)2-4≥1/2-4=-7/2.所以,原函数的值域为{y|y≥-7/2}.点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域.这种解题的办法体现换元、化归的思想办法.它的应用十分广泛.练习:求函数y=√x-1–x的值域.(答案:{y|y≤-3/4}九.机关法按照函数的结构特征,付与几何图形,数形结合.例3求函数y=√x2+4x+5+√x2-4x+8的值域.点拨:将原函数变形,机关平面图形,由几何知识,确定出函数的值域.解:原函数变形为f(x)=√(x+2)2+1+√(2-x)2+22作一个长为4、宽为3的矩形ABCD,再切割成12个单位正方形.设HK=x,则ek=2-x,KF=2+x,AK=√(2-x)2+22,KC=√(x+2)2+1.由三角形三边关系知,AK+KC≥AC=5.当A、K、C三点共线时取等号.∴原函数的知域为{y|y≥5}.点评:对于形如函数y=√x2+a±√(c-x)2+b(a,b,c均为正数),均可通过机关几何图形,由几何的性质,直不雅明了、便利简捷.这是数形结合思想的体现.练习:求函数y=√x2+9+√(5-x)2+4的值域.(答案:{y|y≥5√2})以上九种是函数求值域最经常使用的办法,下面介绍三种特殊情况下求值域的几种办法.十.比例法对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函数,进而求出原函数的值域.例4已知x,y∈R,且3x-4y-5=0,求函数z=x2+y2的值域.点拨:将条件方程3x-4y-5=0转化为比例式,设置参数,代入原函数.解:由3x-4y-5=0变形得,(x3)/4=(y-1)/3=k(k为参数)∴x=3+4k,y=1+3k,∴z=x2+y2=(3+4k)2+(14+3k)2=(5k+3)2+1.当k=-3/5时,x=3/5,y=-4/5时,zmin=1函数的值域为{z|z≥1}.点评:本题是多元函数关系,一般含有约束条件,将条件转化为比例式,通过设参数,可将原函数转化为单函数的形式,这种解题办法体现诸多思想办法,具有一定的创新意识.练习:已知x,y∈R,且满足4x-y=0,求函数f(x,y)=2x2-y 的值域.(答案:{f(x,y)|f(x,y)≥1})十一.利用多项式的除法例5求函数y=(3x+2)/(x+1)的值域.点拨:将原分式函数,利用长除法转化为一个整式与一个分式之和.解:y=(3x+2)/(x+1)=3-1/(x+1).∵1/(x+1)≠0,故y≠3.∴函数y的值域为y≠3的一切实数.点评:对于形如y=(ax+b)/(cx+d)的形式的函数均可利用这种办法.练习:求函数y=(x2-1)/(x-1)(x≠1)的值域.(答案:y≠2)十二.不等式法例6求函数Y=3x/(3x+1)的值域.点拨:先求出原函数的反函数,按照自变量的取值规模,机关不等式.解:易求得原函数的反函数为y=log3[x/(1-x)],由对数函数的定义知x/(1-x)>01-x≠0解得,0<x<1.∴函数的值域(0,1).时间:二O二一年七月二十九日点评:考查函数自变量的取值规模机关不等式(组)或机关重要不等式,求出函数定义域,进而求值域.不等式法是重要的解题东西,它的应用很是广泛.是数学解题的办法之一.时间:二O二一年七月二十九日。
求函数值域的三种方法
题较为复杂,需要同时用到多种方法才能使问题获
解,同学们在解题时要善于分析,注意随机应变,优化
解题的方案.
(作者单位:新疆哈密市第三中学)
Copyright©博看网 . All Rights Reserved.
,
{ } ∴原函数
y
=
1-x 2x + 5
的值域为
y|y
≠
-
1 2
.
该函数为分式的形式,需运用分离常数法来解答.
首先将原函数化简,使常数与变量分离,由于该函数
的 分 母 不 为 0,便 能 快 速 求 得 函 数 的 值 域 为
{ } y|y
≠
-
1 2
.
除了上述这三种方法,求函数值域的技巧还有很
多,比如不等式法、配方法、开方法等.有的函数值域问
变量分离为
y
=
a c
+
b
-
ad c
cx + d
(ad
≠
bc)
的形式,求得分式
部分的值域,便可快速得到函数的值域.
例
3.求函数
y
=
1-x 2x + 5
的值域.
解:∵y =
1-x 2x + 5
=
-
1 2
(2x
+
5)
+
2x + 5
7 2
=
-
1 2
+
7 2 2x + 5
,
7
又∵
2 2x +
5
≠
0
,∴
y
≠
-
1 2
知识导航
求函数值域的三种方法
函数求值域方法之值域换元法
函数求值域方法之值域换元法值域换元法是函数求值域的一种方法,它主要通过对自变量进行换元,将原函数转化为一个新的函数,从而求得函数的值域。
下面将介绍值域换元法的基本思路和具体的步骤。
1.基本思路值域换元法的基本思路是通过对自变量进行合适的换元操作,将原函数转化为一个新的函数,使得新函数的值域更易于确定。
一般来说,我们会选择使得新函数具有更简单形式的换元操作。
2.具体步骤值域换元法的具体步骤如下:(1)选择合适的换元变量。
一般来说,我们会选择一个使得新函数具有更简单形式的变量作为换元变量。
换元变量的选择需要根据具体问题进行分析和判断,一般有一定的经验和技巧。
(2)进行换元操作。
根据换元变量的选取,对原函数进行相应的换元操作,得到新的函数表达式。
换元操作需要保证函数的定义域和值域在变换之后保持不变。
(3)确定新函数的值域。
通过分析新函数的特点和性质,可以更容易地确定新函数的值域。
常用的方法包括求导、分析函数的极值和边界值等。
(4)确定原函数的值域。
根据新函数的值域和换元关系,可以通过逆变换的方式确定原函数的值域。
逆变换的具体方法需要根据具体问题进行分析和判断。
3.示例分析下面通过一个具体的例子来说明值域换元法的应用。
例如,求函数f(x)=x^3在定义域为[-1,1]上的值域。
(1)选择合适的换元变量。
由于函数f(x)=x^3是一个奇函数,即满足f(-x)=-f(x),因此可以选择u=x^3作为换元变量。
(2)进行换元操作。
将x^3替换为u,可得到新函数g(u)=u。
(3)确定新函数的值域。
新函数g(u)=u是一个线性函数,其值域为(-∞,+∞)。
(4)确定原函数的值域。
由于u=x^3,因此可以通过求解u=x^3关于x的逆变换,即x=u^(1/3),得到原函数的值域为(-1,1)。
4.注意事项在进行值域换元法求解时,需要注意以下几个方面:(1)换元操作需要保证函数的定义域和值域在变换之后保持不变。
(2)选择合适的换元变量可以使求解过程更简单和直观。
如何用换元法求三类函数的值域
探索探索与与研研究究函数问题的考查形式多种多样,其命题方式也各不相同.其中,函数值域问题具有较强的综合性,侧重于考查函数的解析式、定义域、值域、图象、性质等.有些函数的值域问题较为复杂,其中含有根式、三角函数式、对数式,需采用换元法来求解.下面结合实例,重点探究一下如何运用换元法来求这三类函数的值域.一、求含有根式的函数的值域若函数的解析式中含有根式,我们通常无法直接根据基本初等函数的性质和复合函数的性质来求得函数的值域,需利用换元法,将根号下的式子用一个新变量替换,把函数式转化为关于新变量的函数式,根据函数的定义域求得新变量的取值范围,再根据基本初等函数的性质和复合函数的性质来求函数的值域.例1.求函数f ()x =2x -5+13-2x 的值域.解:令t =13-2x ()t ≥0,可得x =13-t 22,由f ()x =2x -5+13-2x 可得f ()t =-t 2+t +8=-æèöøt -122+334,∵当t ∈éëöø12,+∞时,函数f ()t 单调递减;当t ∈éëùû0,12时,函数f ()t 单调递增,∴当t =12时,f ()t 取最大值334,∴函数f ()x 的值域为æèùû-∞,334.令t =13-2x ,可通过换元,去掉根号,将函数式转化为关于t 的二次函数式,利用二次函数的性质即可求得函数的最值,从而得到函数的值域.一般地,若函数的最大值为M 、最小值为m ,则函数的值域为[m ,M ],因此,只要求得函数的最值,即可得到函数的值域.例2.求函数f ()x =x +1-x 2的值域.解:令sin t =x ,可得1-x 2=1-sin 2t =cos t ,由f ()x =x +1-x 2可得f ()t =sin t +cos t =2sin æèöøt +π4,∵1-x 2≥0,-1≤x ≤1,∴t ∈[]0,2k π,∴t +π4∈éëùûπ4,π4+2k π,∴f ()t ∈[]-2,2,∴函数f ()x 的值域为[]-2,2.由y =1-x 2可得x 2+y 2=1,于是联想到sin 2x +cos 2x =1,便令sin t =x ,使得1-x 2=cos t ,以便去掉根号.这样函数式就可转化为三角函数式,根据正弦函数的有界性即可求得函数的值域.例3.求函数f ()x =1-x +3+x 的值域.解:令2sin α=1-x ,2cos α=3+x ,可得f ()α=2sin α+2cos α=22sin æèöøα+π4,∵α∈éëùû0,π2,∴α+π4∈éëùûπ4,3π4,此时函数单调递增,∴当α+π4=π4时,函数f ()α取最小值2;当α+π4=3π4时,函数f ()α取最大值22,∴函数f ()x 的值域为[]2,22.解答本题,需通过三角换元去掉根号,将问题转化为三角函数最值问题来求解.可见,求含有根式的函数的值域,关键在于将根号下的式子合理换元,去掉根号,将问题转化为常规的函数最值问题来求解,这样才能化难为易.二、求三角函数的值域求三角函数的值域,常需用利用正弦、余弦、正切函数的单调性和有界性.而对于含有高次幂、同时含有不同函数名称的复杂三角函数值域问题,往往需要运用换元法来求解.通常需首先利用三角函数的诱导公式、两角的和差公式、辅助角公式、二倍角公式等将函数式化简;然后选取合适的部分进行换元,将问题转化为简单的正弦、余弦、正切函数的最值问题来求解.例4.已知函数f ()x =sin x +cos x +3sin x cos x ,则陈铤53探索探索与与研研究究函数f()x的值域为解:令t=sin x+可得t2=1+2由f()x=sin x可得f()t=32t2则当t∈éë-2,当t∈éëùû-13,2所以当t=-13当t=2时,故函数f()x式化简,例5.求函数f(解:令t=sin x∴由f()x=cos2f()t=-t2-2t∵t=sin x∈[∴当t∈[]-1,1∴当t=-1取最小值1,∴函数f()x引入变量t,性质来解题.换元,三、关,较为复杂,用新变量替换,.在求含有对数式的函数值(0,+∞),底数求函数f()x=ln2x-2ln x+3的x+3可得)t-12+2,∈[]0,3,f()t单调递减;f()t单调递增,)取最大值6;2,[]2,6.需令t=ln x,将函数式转利用二次函数的性质来解f()x=log2()x2-2x+9,则函数9=()x-12+8≥8,)2x+9可得f()t=log2t,28=3,)+∞,[)3,+∞.为了便于求解,需将对数函通过换元,将问题转化为简单这样便能快速求得问题的需重点研究新旧运用换元法求解函数的选取合适再快速求得(作者单位:江苏省启东中学)54。
求函数值域的四种方法
求函数值域的四种方法一、观察法。
1.1 这种方法就像是我们用眼睛去打量一个人,直观又简单。
对于一些简单的函数,我们可以直接通过观察函数的性质来确定值域。
比如说一次函数y = 2x + 1,x 可以取任意实数,那随着x的变化,y也会相应地在实数范围内变化,所以这个一次函数的值域就是全体实数。
这就好比我们看一个一目了然的事情,不用费太多周折。
1.2 再看函数y = x²,因为任何实数的平方都大于等于0,所以这个函数的值域就是[0,+∞)。
这就像我们知道太阳总是从东边升起一样确定,一眼就能看出来这个函数值的范围。
二、配方法。
2.1 配方法就像是给函数做个“美容整形”。
拿二次函数y = x² 2x + 3来说,我们可以把它配方成y = (x 1)²+ 2。
因为(x 1)²大于等于0,所以y就大于等于2。
这就好比我们把一个有点杂乱的东西整理得井井有条,然后就能清楚地看到它的价值范围了。
2.2 还有函数y = -x²+ 4x 1,配方后得到y = -(x 2)²+ 3。
由于-(x 2)²小于等于0,所以这个函数的值域就是(-∞,3]。
这就像我们把一个原本模糊不清的东西,通过自己的巧手整理,让它的界限清晰起来。
2.3 配方法就像是一个神奇的魔法,能把复杂的二次函数变得简单易懂,让我们轻松地找出值域这个“宝藏”。
三、换元法。
3.1 换元法有点像“偷梁换柱”。
例如函数y = 2x + √(x 1),我们可以设t = √(x 1)(t≥0),那么x = t²+ 1。
这样原函数就变成了y = 2(t²+ 1)+ t = 2t²+ t + 2。
这就把原来带根号的复杂函数转化成了一个二次函数,然后我们就可以用配方法或者观察法来求值域了。
这就像我们在一个迷宫里,找到了一条新的通道,一下子豁然开朗。
3.2 再比如函数y = x + √(1 x²),我们设x = sinθ(-π/2≤θ≤π/2),那么原函数就变成了y = sinθ+ cosθ。
函数求值域方法之值域换元法
函数求值域方法之值域换元法求值域的方法有很多,在众多的方法中,换元法是比较常用且非常有效的求解值域的办法,这里,给大家总结五种常见的换元方法,欢迎大家补充。
五种常见换元办法:①一般换元法;②三角换元法(难度较大);③三角换常值换元法;④双换元法;⑤整体换元法类型一:一般换元法 形如:y=ax+b ±d cx +方法:本形式下,部分函数在取值区间内,单调性确定,所以可以直接使用单调性判断,单调性无法确定的时候,本题可使用一般换元的思路,令t=d cx +,用t 表示x ,带入原函数得到一个关于t 的二次函数,求解值域即可。
例1:求函数1)(--=x x x f 的值域分析:本题),1[+∞∈x ,在取值区间内,x 单调增,1-x 单调增,两个单调增的函数相减无法直接判断单调性,所以单调性无法确认,考虑使用一般换元。
解:另1-=x t (0≥t ),则12+=t x , 代入)(x f 得1)(2+-=t t x f (0≥t )本题实求二次函数在指定区间内的范围 当0≥t ,43)(≥x f所以),43[)(+∞∈x f变式:求函数1)(-+=x x x f 的值域分析:本题),1[+∞∈x ,在取值区间内,x 单调增,1-x 单调增,两个单调增的函数相加,所以整个函数在取值区间上单调递增所以)1()(f x f ≥即可 答案:),1[)(+∞∈x f由于一般换元法相对来说比较简单,这里就不赘述,留一道练习练习:求1332)(+-+=x x x f 的值域类型二:三角换元记住一句话:三角换元 一个大原则,三个常用公式 A 、一个大原则:x 有界,换成θθcos ,sin x 无界,换成θtanB 、三个常用公式:①遇到2x ,且前面系数为1-,常用1cos sin 22=+θθ ②遇到2x ,且前面系数为1,常用θθ22tan 1cos 1+= ③巧用万能公式:2tan 12tan2sin 2θθθ+=2tan 12tan 1cos 22θθθ+-=三角换元时,尤其注意确定好θ的取值范围,下面用具体的例题跟大家说明。
高三总复习2——求函数值域的几种方法
求函数值域的几种方法求函数值域(最值)的常用方法:(1)基本函数法:对于基本函数的值域可通过它的图象性质直接求解.(2)配方法对于形如y=a +bx+c(a ≠0)或F(x)=a[ +bf(x)+c](a ≠0)类的函数的值域问题,均可用配方法求解.(3)换元法 利用代数或三角换元,将所给函数转化成易求值域的函数,形如y= 的函数,令f(x)=t,形如y=ax+b ± (a,b,c,d 均为常数,ac ≠0)的函数, 令 =t;形如含 的结构的函数,可利用三角代换,令x=acos θ, θ∈[0,π]或令x=asin θ,θ∈ . (4)不等式法利用基本不等式:a+b ≥2 ,用此法求函数值域时,要注意条件“一正、二定、三相等”.如利用a+b ≥2 求某些函数值域(或最值)时应满足三个条件:①a>0,b>0;②a+b(或ab)为定值;③取等号条件a=b ,三个条件缺一不可.(5)函数的单调性法确定函数在定义域(或某个定义域的子集)上的单调性求出函数的值域,例如, f(x)=ax+ (a>0,b>0).当利用不等式法等号不能成立时,可考虑用函数的单调性. (6)数形结合法如果所给函数有较明显的几何意义,可借助几何法求函数的值域,形如: 可联想两点 与 连线的斜率. (7)函数的有界性法形如 ,可用y 表示出sin x,再根据-1<sin x ≤1,解关于y 的不等式,可求y 的取值范围.(8)导数法设y=f(x)的导数为f ′(x),由f ′(x)=0可求得极值点坐标,若函数定义域为[a,b],则最值必定为极值点和区间端点中函数值的最大值和最小值.x 2()x f 2()x f 1d cx +d cx +x a 22-⎥⎦⎤⎢⎣⎡-2,2ππab ab xb x x y y 2121--()y x 11,()y x 22,x x y sin1sin +=典型例题1 定义法要深刻领会映射与函数值域的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数求值域方法之值域换元法
求值域的方法有很多,在众多的方法中,换元法是比较常用且非常有效的求解值域的办法,这里,给大家总结五种常见的换元方法,欢迎大家补充。
五种常见换元办法:①一般换元法;②三角换元法(难度较大);③三角换常值换元法;④双换元法;⑤整体换元法
类型一:一般换元法 形如:y=ax+b ±d cx +
方法:本形式下,部分函数在取值区间内,单调性确定,所以可以直接使用单调性判断,单调性无法确定的时候,本题可使用一般换元的思路,令t=d cx +,用t 表示x ,带入原函数得到一个关于t 的二次函数,求解值域即可。
例1:求函数1)(--=x x x f 的值域
分析:本题),1[+∞∈x ,在取值区间内,x 单调增,1-x 单调增,两个单调增的函数相减无法直接判断单调性,所以单调性无法确认,考虑使用一般换元。
解:另1-=x t (0≥t ),则12+=t x , 代入)(x f 得1)(2+-=t t x f (0≥t )
本题实求二次函数在指定区间内的范围 当0≥t ,4
3)(≥
x f 所以),4
3
[)(+∞∈x f
变式:求函数1)(-+=x x x f 的值域
分析:本题),1[+∞∈x ,在取值区间内,x 单调增,1-x 单调增,两个单调增的函数相加,所以整个函数在取值区间上单调递增所以)1()(f x f ≥即可 答案:),1[)(+∞∈x f
由于一般换元法相对来说比较简单,这里就不赘述,留一道练习
练习:求1332)(+-+=x x x f 的值域
类型二:三角换元
记住一句话:三角换元 一个大原则,三个常用公式 A 、一个大原则:x 有界,换成θθcos ,sin x 无界,换成θtan
B 、三个常用公式:①遇到2x ,且前面系数为1-,常用1
cos sin 22=+θθ
②遇到2x ,且前面系数为1,常用
θθ
22
tan 1cos 1
+= ③巧用万能公式:2
tan 12tan
2sin 2θ
θ
θ+=
2
tan 12tan 1cos 2
2
θ
θθ+-=
三角换元时,尤其注意确定好θ的取值范围,下面用具体的例题跟大家说明。
例2:求21)(x x x f -+=的值域
分析:本题若使用一般换元法,则只能得到2x 与2t 之间的关系,操作起来比较麻烦,换元法本身的目的就是要使得题目变得更为简单便捷,所以一般换元法失灵,考虑使用三角换元,因为2x 前面的系数是-1,所以使用公式①换元 解:令θsin =x , 012≥-x ,∴]1,1[-∈x ,]1,1[sin -∈∴θ
另]2
,2[π
πθ-
∈(原因:方便后面化出来的θcos ,不用讨论正负性了)
代入)(x f ,得θθ2sin 1sin )(-+=x f =|cos |sin θθ+
]2
,2[π
πθ-
∈,θθcos sin )(+=∴x f 辅助角公式,合一变形得:)4sin(2)(πθ+=x f (]2
,2[π
πθ-∈)
]43,
4[4
π
ππ
θ-
∈+
,∴]2,1[)(-∈x f
变式:求22)(x x x f -+=的值域 分析:另θsin 2=x 即可 答案:]2,2[-
例3 :求 1
1
)(2-+=x x x f 的值域
分析:本题2x 前面的系数是1,所以考虑使用公式② 解:1,01012≠∴≠-≥+x x x ,
另)4,2(,tan π
πθθ-
∈=x U )2
4(π
π, )4
sin(21cos sin 1cos cos sin cos 1
1tan 1tan )(2
2πθθθθθθθθθ-=-=-=-+=x f
)
(4,2π
πθ-
∈ U )2,4(ππ,)0,4(4ππθ-∈-U )4
,0(π
]2
2
,()(-
-∞∈∴x f U ),1(+∞
变式: 求1
1
2)(2+++=
x x x x f 的值域
分析:1111,20,1,022-≤+≥+∴-≤≥∴-≠≥+x x x x x x x 或或 0,11
1
1≠≤+≤
-但x ,使用三角公式
具体过程问群主哟 答案:]2,1[]1,2[)(⋃--∈x f
例4:求4
2321)(x
x x
x x f ++-=的值域 分析:本题是高次式求值域,通过常规的解法很难操作,因而我们通过转化,进行三角换元,再求解值域。
解: 1
x 1
·1)1()1()(222222+-+=+-=x x x x x x x f
到这一步以后,自然而然想到我们的第三个三角公式—万能公式
2
tan 12tan
2sin 2
θ
θ
θ+=
2tan 12tan 1cos 2
2θ
θθ+-=
对f (x )再进行转化
令)2
,2(,,tan π
πθθ-
∈∴∈=R x x
θθθθθθθ4sin 4
1
)2cos (·2sin 211tan 1tan ·tan 1tan 221)(2
22-=-=+-+=x f ]4
1
,41[)(),2,2(4-∈∴-∈x f ππθ
类型三:三角换常值换元法
2
2211·12·21)(x
x x x x f --+=
本类型主要是三角函数求值域下的一类,由于涉及换元,所以在本专题下讲解,此类题目主要是针对分式形式的三角函数,用到的换元方法是万能公式的逆向应用。
由于θθ
θ
θθθcos 2tan 12tan 1,sin 2tan 12tan 22
22=+-=+,可令θ2tan =t ,则θθcos ,sin 就转化成了关于t 的函数,再根据一般函数求解值域的办法求解(在另外专题中讲解)
例5:求x
x
x f cos 2sin )(-=
的值域
分析:本题解法颇多,这里主要讲解两种方法。
利用万能公式我们可以把正余弦转发为关于t 的函数;当然本题也可用斜率的相关知识求解。
解:方法一:万能公式法
x x x
x x x
x
x x f 2tan 312tan 22tan 12tan 122tan 1tan 2cos 2sin )(2222+=+--
+=
-= 令有范围要求虽然x x R x x t x 2tan ,,0cos 2,2tan ∈∴≠-= ,但是R x ∈整体2tan ,
R t ∈∴ 2
312)(t t x f +=
,当t
t x f t x f t 132
)(0,0)(0+=≠==时,时,,分母是对勾函数,应用对勾函数的相关性质,可得值域]3
3,33[)(-
∈x f 方法二:斜率法(联系 群主 要哦)
类型四:双换元法
例6:求31)(++-=x x x f 的值域
分析:本题含有两个根号,使用一次换元,无法把根号去掉。
有根号的题目,要么换元,要么平方,要么分子分母有理化。
本题介绍两种解法。
解:方法一:平方法
322432231)(222+--+=+--+++-=x x x x x x x f
1303,01≤≤-⇒≥+≥-x x x
本题实求在]1,3[-∈x 时,322+--x x 的取值范围,二次函数求范围
43202≤+--≤∴x x ,]8,4[)(2∈∴x f ,]22,2[)(∈x f
方法二:双换元法
令13,3,1≤≤-+=-=x x n x m
20,20≤≤≤≤∴n m 43122=++-=+x x n m
本题等价于:已知422=+n m ,求n m x f +=)( 接下来有两种思路: 思路一:
如有侵权请联系告知删除,感谢你们的配合!。